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PREFACE

The Agriculture and Resources Inventory Surveys Through Aerospace
Remote Sensing Program, AgRISTARS, is a multi-year program of research,
development, evaluation, and application of aerospace remote sensing
for agricultural resources, which began in Fiscal Year 1980. This
program is a cooperative effort of the National Aeronautics and Space
Administration, the U.S. Departments of Agriculture, Commerce, and the
Interior, and the U.S. Agency for International Development.

The work reported herein was sponsored by the Supporting Research
(SR) Project and Inventory Technology Development (ITD) Project under
the auspices of the National Aeronautics and Space Administration, NASA,
Mr. Robert B. MacDonald, NASA Johnson Space Center, is the NASA Manager
of the SR Project and Dr. Glen Houston was the Technical Coordinator for
the reported SR effort. Dr. Jon Erickson is the NASA Manager of the
ITD Project and Mr. Mickey Trichel was the Technical Coordinator for the
reported ITD effort.

The Environmental Research Institut~ of Michigan and the Space
Sciences Laboratory of the University of California at Berkeley comprised
a consortium having responsibility for development of corn/soybeans area
estimation procedures for foreign applications.  This report focuses
primarily on the ERIM efforts in detail, while only summarizing UCB
efforts.

This reported research, which addresses a broad spectrum of tech-
nical issues related to Landsat-aided crop inventory technology, was
performed within the Environmental Research Institute of Michigan's
Infrared and Optics Division, then headed by Mr. Richard R. Legault,

a Vice-President of ERIM. Mr. Robert Horvath acted as overall Program
Manager. Dr. William Malila was Technical Manager of the SR effort,
while Mr. Richard Cicone was Technical Manager of the ITD effort.
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were made by (alphabetically): Eric Crist, David Hicks, Karen Johnson,
Michael Metzler, Christian Pestre, Frank Pont, Daniel Rice, Albert
Sellman, and Brian Thelen. Capable secretarial support was provided

bv Darlene Dickerson and Patricia Wessling.
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1
INTRODUCTION

This report summarizes the research activities conducted by the
Environmental Research Institute of Michigan (ERIM) for NASA under two
projects of the AgRISTARS (Agriculture and Resources Inventory Surveys
through Aerospace Remote Sensing) Program. These are the Supoorting
Research (SR) Project and the Inventory Technology Development (1TD)
Project (formerly Foreign Commodity Production Forecasting (FCPF) Pro-
ject). The reported work was part of a larger effort conducted from
15 November 1980 - 31 December 1981 by a consortium composed of ERIM
and the Space Sciences Laboratory of the University of California at
Berkeley (UCB), for which ERIM had the overall technical lead.

The objective of this report is to give a concise technical des-
cription of the research activities conducted, the results achieved, and
the technical insights gained. Several of the research tipics are
supplemented by separate technical reports or papers giving additional
details about the research. These supplemental documents are referenced
within the main body of the text.

1.1 POTENTIAL CONTRIBUTIONS OF AEROSPACE REMOTE SENSING TO AGRICULTURAL
INVENTORY AND ASSESSMENT
Aerial photography has gained a place in operational inventory and
assessment activities of the U.S. Department of Agriculture and other
state and local government agencies. Aerospace remote sensing technology
potentially can make additional contributions. Exploration of this
potential is the major objective of the AgRISTARS Program.

A summary of types of information that are potentially extractable
from aerospace remote sensing data is presented in Table 1.1. The first
is crop identification which has received a majority of the attention in
agricultural studies to date, especially in conjunction with crop area
estimation. Next are indications of crop development stage and crop
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TABLE 1.1 POTENTIAL CONTRIBUTIONS OF AEROSPACE REMOTE SENSING
TO AGRICULTURAL INVENTORY AND ASSESSMENT

Crop ldentification

- Crop Group
- Crop Type

e Crop Development Stage

- Planting and Harvesting Progress

- Key Growth/Development Stages

- Management Practices (e.g., crop
rotations)

¢ Crop Conditions

- Vigor. Stress

- Ground Cover, LAI

Management Practices (e.g., irrigation
and double cropping)

Homogeneity

Episodal Events

¢

e Inputs to Yield Models

- Spectral-based Deductions of Development,
Condition, and Management Practices

- Meteorological

- Combined Spectral and Meteorological

e So0il Characteristics

e Crop Area

- Total Area Planted, Emerged, and/or
Harvested

-~ Area by Crop Group and Crop Type

- Area by Condition Class

e Crop Production
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condition which could provide important inputs to yieid models. Soils
are a topic that have an important effect on yield and productivity.
Together, estimates of crop area and crop yield permit estimates of
overall crop production, the "bottom 1ine" of agricultural crop inven-
tories.

Investigations conducted prior to AgRISTARS, such as the Large Area
Crop Inventory Experiment (LACIE), have demonstrated the practical
feasibility and effectiveness of the sample survey approach for
satellite-based estimation of crop area and production. Elements of
this approach which were developed and tested were the sample-frame de-
sign, the sampling design (allocation and location of sampling units),
area estimation or measurement at a segment level, area and production
estimation at stratum and large-area levels, and analysis of errors and
error sources.

However, the scope and needs of AgRISTARS require technological
capabilities beyond those demonstrated previously, necessitating con-
tinued research and development activities. For example, the single-
crop focus of sampling and measurement procedures needs expansion to
mutliple crops, including corn and soybeans. Aggregation procedures
should more accurately handle different levels of accuracy in segment-
level estimates, including non-response. Also measurement procedures
should be more objective and accurate.

Very important are the facts that current Landsat-based crop area
estimation technology is not efficient in terms of expert labor, com-
puter, and time resource requirements,is not geared to crop inventory
estimates throughout the growing season, and has not been applied to all
major crops and world production regions. Improvements are being made
during the course of AgRISTARS in sensors (e.g., Thematic Mapper and
meteorological satellites), information extraction techniques, inventory
system technology, and in joint use of meteorological and spectral data.
Also, as a result of AgRISTARS, this technology will be adapted to, and
evaluated in, additional geographic regions and for additional crops.

3
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1.2 GENERAL OBJECTIVES OF THE CONTRACT

The contract research was directed at supporting requirements of
the two separate AQRISTARS projects. The project activities have both
distinct objectives and mutually supportive aspects.

1.2.1 OBJECTIVES UNDER THE SUPPORTING RESEARCH PROJECT

The direction of our Supporting Research Project activities
evolved toward support of two broad long-range objectives. The first
long-range objective was to deveiop advanced techniques for timely,
efficient, and cost-effective estimation of crop areas using remotely
sensed data from Landsat together with ccllateral data. These techni-
ques should be capable of generating estimates at any time throughout the
growing season, since a capability to produce early estimates is highly
desirable fo: AQRISTARS. They should utilize multiple segments to faci-
Titate efficient and effective crop inventories over large areas. Where
a crop/region focus was needed for the research, corn, soybeans, and
their confusion crops were to be emphasized, keeping in mind an eventual
application in South America.

The second long-range objective was to understand and capitalize on
the information content of Landsat MSS and Thematic Mapper data and
their relationships to agronomic and biophysical phenomena. A subobjec-
tive was to develop simulation and modeling capabilities that will en-
hance this type of research.

1.2.2 OBJECTIVES UNDER THE INVENTORY TECHNOLOGY DEVELOPMENT PROJECT

The overall objective of the ITD program at ERIM was to research
and develop, integrate, implement, test and evaluate technology which
uses remote sensing to assist in assessing the status of crops without
ground derived observations. The primary focus of this technology is
the inventory of the corn and soybeans production in Argentina and Brazil,
two countries that are major producers of agricultural commodities and

Y Ty
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therefore influential in the overall economic and nutritional picture
of world food balance.

The specific objective of the work reported in this document was
to formulate a base of component technology that, through evaluation in
a U.S. scenario, shows promise in being adaptable to agricultural con-
ditions of Argentina and Brazil. Both end-to-end area estimation pro-
cedures and component techniques using Landsat MSS would be developed,
implemented and objectively tested.

1.3 GENERAL APPROACH

The research activities were divided into two groups of tasks
addressing objectives of the SR Project and ITD Project, respectively.
SR Project tasks were:

(1) Sampling and Estimation Technology Research
(2) Measurements Technology Research
ITD Project tasks were:
(1) Experiments
(2) Technology Development, Evaluation and Integration

1.3.1 GUIDELINES FOR TECHNOLOGY DEVELOPMENT

The eventual application of research under both AgRISTARS projects
is for crop inventories in foreign areas, with emphasis for ERIM/UCB
on corn and soybeans area estimation in Argentina and Brazil. This and
other sponsor guidelines established general constraints on the types
of technology that were to be utilized and developed. These include:

(1) No dependence on direct ground identifications for procedure
performance: use permitted only for develooment and evalu-
ation purposes.
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(2) Use of Landsat as the prime sensor--MSS now and TM added
later,

(3) Initial dependence on segment-based technology, e.g., the
5x6-mile segments utilized in LACIE.

(4) Impiementation of selected technology in a formal configuration
controlled environment on NASA/JSC AS-3000 computing system,

1.3.2 THE ERIM/UCB CONSORTIUM

A consortium was established to promote a unified attack on the de-
velopment of corn and soybeans area estimation technology. It was com-
posed of the Environmental Research Institute of Michigan (ERIM) and the
Space Sciences Laboratory of the University of California at Berkeley
(ucB). Both contractors have had extensive experience in the develop-
ment of remote sensing technology for agricultural applications, includ-
ing participation in the LACIE project, and in other applications. They
brought complementary capabilities in addition to common understandings
and capabilities, forming an effective research team. A majority of
the program described in this report was pursued in a joint manner by
ERIM and UCB, with ERIM having the overall technical lead. ERIM and
UCB efforts are reported separately.
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2

SUPPORTING RESEARCH TECHNICAL
PROGRESS AND RESULTS

A broad spectrum of research activities was conducted in pursuit
of the Supporting Research objectives. They are reported here by re-
search topic at the level of subtasks. Substantial progress was made
in <everal areas.

2.1 GENERAL APPROACH AND TASK STRUCTURE

Two major long-range objectives for our Supporting Research Project
activities were identified in Section 1.2.1. A compatible task
structure was established, with two major tasks covering research areas
in sampling and estimation technology research and in measurement tech-
nology research, respectively. The subtasks under those two headings
are listed in Table 2.1. This table also identifies the fact that UCB
conducted complementary research under the first task whereas only ERIM
addressed the second. The nature of UCB research is mentioned where
appropriate in this report but is being reported separately [1].

2.1.1 SAMPLING AND ESTIMATION TECHNOLOGY RESEARCH

The identified needs for efficiency, accuracy, and timeliness in
estimation impact all aspects of area-estimation procedure research and
development: sampling, measurement, aggregation and estimation. The
approaches taken in the various subtasks considered these criteria.

Efficiency requirements suggest a high degree of automation through-
out a procedure. An ability to process multiple segments without retain-
ing or examining each in detail is highly desirable., Flexibility is
another attribute which can enhance efficiency. If elements of the pro-
cedure can adapt to local conditions (e.g., degree of complexity) and
variable accuracy requirements, overall efficiency gains can be made.
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TABLE 2.1. ERIM/UCB SUPPORTING RESEARCH TASK
STRUCTURE

Participation
ask Title ERIM  UCB

Sampling and Estimation Technology Research
1 Multisegment Estimation Research

.2 Through-the-Season Estimation “esearch

3 Argentina/Brazil Agronomic Understanding

2.0 Measurement Technology Research

2.1 Secd-to-Satellite Model Development and X
Analysis

2.2 Information Extraction Technology Research
(2.3)* Small-Grains Labeling Techniques

*Not a full subtask; it represents completion of R&D efforts initiated
during the preceding year.
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Accuracy requirements aiso impact all elements of a procedure,
particularly the measurement element (e.g., information extraction or
labeling) which is addressed more fully under the second SR task
(Section 2.1.2). One must not lose sight of the interaction between
elements; for example, the size of sampling units can affect measure-
ment accuracy.

Timeliness is important both in terms of speed of response, once
a particular set of data becomes available, and in terms of being able
to produce estimates at any given time throughout the growing se:2son.
The latter requires a good understanding of the increasing information
content of Landsat data as the season progresses and its use with other
forms of information to produce the best possible estimate for each
sftuation.

Lack of ground "truth" observations, especially in foreign regions,
hampered LACIE research and development activities. Information from
foreign regions is essential for an understanding of differences from
U.S. test areas so that developed techniques can be general and extend-
able or adaptable to those regions. In AgRISTARS, a major regional
focus for corn and soybeans inventory technology is South America
(Argentina and Brazil). Agencies in Argentina and Brazil have given
evidence of being amenable to cooperative ground-truth data collection
efforts. Initial data collection effrirts were successfully carried out
in Argentina early in the contract year, with a minimal amount of time
for planning due to the timing of thei: growing season. Plans were made
for new field activities in 1982, though not carried through due to
political instability in Argentina.

2.1.2 MEASUREMENT TECHNOLOGY RESEARCH

Measurement technology, which extracts agrophysically meaingful
features (including assignment of cover ciass labels to observations),
is a critical element in area estimation procedures that use Landsat,

9
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especially those that cannot rely on ground "truth" observations in

their operational context. The measurement component of an advanced 3

area estimation procedure must support goals of accuracy, efficiency,
timeliness, and information content for advanced procedures that employ
multisegment concepts and/or new sensor systems, such as the Thematic
Mapper. This requirement defines both the general characteristics of an
advanced measurement component and guidelines for research under this
task.

The key to extraction and use of meaningful and accurate information
from remotely sensed data is the ability to consistently relate observed
patterns in the remotely sensed data to agronomic and biophysical char-
acteristics of the various crop and cover classes in the scenz. The
need has been identified for techniques which are more automatic and
objectively perform these functions, especially on spatially registered
multidate data sets over large areas.

AR S b .
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However, more research and develcpment effort is required to pro-
duce techniyues and procedures that can attain the full potential of
information extraction from remotely sensed and collateral data. In
particular, additional research into the relationships between crop
phenology and morphology and remote sensing observables is required.
Substantial progress was made through study of agronomic literature and
analysis of field measurement data.

Use of simulation can help provide the understanding necessary to
develop effective information extraction and measurement techniques.
Existing simulation models can be useful but need to be improved since
they do not adequately represent the full range and character of factors
that affect remotely sensed data from agricultural scenes. Three ad-
vancements in simulation capability were made during the year.

The crop emphasis of our research was directed to be on corn and soy-
beans and their confusion crops. During the first part of the contract
year, however, we did complete work previously begun on small grains
Tabeling techniques.

10
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2.2 THROUGH-THE-SEASON ESTIMATION RESEARCH

The research emphasis of the AgRISTARS SR and ITD (FCPF) Projects
has been broadened from techniques for producing estimates near the end
of tne growing season to include techniques for producing estimates
early in the season. To guide our research, we generalized the problem
to one of being able to produce estimates at any given time throughout
the growing season, making full use of available information from all
sources. Emphasis, consequently, was placed on identifying and extract-
ing the agronomically related information available from Landsat and
developing a framework and ways of using it, This emphasis was pro-
moted by our establishment of a context and perspective for viewing
the through-the-season (TTS) estimation process and the potential con-
tributions of Landsat, within the general context of AgRISTARS area
estimation using stratified estimation approaches with no use of current-
year ground observations. The focus was narrowed to estimation of corn
and soybean acreages, but the general approach and principles should be
applicable to other crops as well. Comments also are made where appro-
priate to yield and production estimation. Finally, although the data
available for study were from the U.S. Corn Belt and, to a lesser
extent, the south and southeast United States, portions of the analysis
should apply to crops in other countries, such as Argentina.

Landsat is used throughout this section to identify the remote
sensing system. In most instances the ideas and concepts would apply
to Thematic Mapper data as well, and it should provide additional
capability when available.

2.2.1 THROUGH-THE-SSASON ESTIMATION CONCEPTS AND CONTEXT

Crop production assessment can be viewed as a combination of pre-
diction ana observation {e.g., direct measurement) processes for crop
acreages, yields, and resultant production. Throughout the season, the
relative importance of these two processes gradually change. Prediction

11
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dominates pre-season forecasts of both farmer's planting intentions and
their expected successes. However, as the season progresses, infor-
mation accumulates and opportunities increase for direct measurement of
the actual situations and realizations. Thus, estimates can be updated
and refined, based on those measurements.

Figure 2.1 pictorially illustrates the time-varying importance of
prediction and observation/measurement in the assessment procezs. It
also indicates the situation for early season estimates and later sea-
son estimates in AgRISTARS.

Information for use in crop assessment can come from a variety of
sources. Table 2.2 Tists conventional sources for predictive and obser-
vational variables. It also indicates that remote sensing has the
potential for providing both types of information, a reflection of space-
borne sensor's capabilities to survey large areas and to make site-
specific and even field-specific identifications of crop type and con-
dition.

Figure 2.2 highlights the general way in which predictive and ob-
servational variables would enter the TTS estimation process. The un-
certainty in predicting or deducing planting decisions is reduced as the
number and/or quality of predictive variables i< increased. On the other
hand, observational variables provide ar increasingly better basis for
induction or measurement of the crops actually planted as the season
progresses and the number of observations increases. Ideally, one would
make use of both types of decision processes to produce the best
possible estimates using all available information at the time the esti-
mate is required.

Predictive variables can come from crop identifications and are
estimates made for the proceeding year(s) using Landsat data. For in-
stance, they could include crop rotation histories on individual fields
which, with knowledge of rotational practices, could establish prior
probabilities for specific crops in these fields, before they are

12
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observed in the current year. Observations with predictive uses also

can be found early in the season when tilled soil is observed rather than
plants or when emerged crops are not yet differentiable by Landsat.

These could lead to identification of a crop group (e.g., summer crop)
before the field can be identified as being corn, soybeans, or sorghum.
We have deve]dped a new approach that incorporates this type of infor-
mation directly into conventional, econometric, crop acreage response
models.

As far as direct measurement is concerned, we note that Landsat
observes only what is present on the ground at the times of its over-
passes. In order to select appropriate features and maximize the amount
of agronomic information that is extracted from the Landsat data, one
should have a thorough understanding of the practice and history of
agriculture in the region(s) being surveyed. In addition, full use
should be made of collateral information sources. To facilitate the
realization of these needs and provide a perspective for Landsat obser-
vables, we suggest that observational data be utilized and analyzed with
predictive models of Landsat responses fromthe crops of interest and the
relevant scene classes. Note that these models predict the appearances
of crops at the times of overpass rather than the crop acreages in
segments, strata, or regions, as estimated by the previously mentioned
crop acreage response models and related models. They could get down to
the detail of how specific crops would appear in specific fields at the
specified times.

A final comment is that overall needs for agronomic understanding,
effective use of collateral data, and integration of data from multiple
segments all are intensified early in the season and also in situations
where Landsat coverage is frequently precluded by cloud cover.

The next four sections present in greater detail the concept of
continuously merging prediction and direct observation/measurement in
TTS estimation, and describe some specific procedures we have developed.

16
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Reference also is made there to publications which have additional de-
tail.

The first of these sections (2.2.2) discusses which agricultural
phenomena might be observable by Landsat, what one might deduce about
agricultural practices from these observations, and how that knowledge
can enhance TTS interpretation of Landsat data.

The second section (2.2.3) develops a new approach for using early
season Landsat crop-group area estimates to augment conventional crop
acreage response models that predict on the basis of prior yields,
prices, acreages, and government policy. An exploratory study is pre-
sented which produced encouraging results.

The third section (2.2.4) develops an approach for merging pre-
diction variables and Landsat observational variables in a segment area
estimation procedure that has the capability to incorporate multiyear
data. A Bayesian classification approach applied to quasi-field targets
was chosen as an alternative to direct estimation approaches being pur-
sued at NASA/JSC. Prior probabilities are based on the predictive
variables discussed in preceding sections.

The fourth section (2.2.5) introduces the longer-range possibility
of building the required capability around the concepts of knowledge
engineering, artificial intelligence, or expert systems.

A final section (2.2.6) summarizes the major concepts developed
and conclusions drawn from the TTS estimation research.

2.2.2 USING KNOWLEDGE OF AGRICULTURAL PRACTICES TO ENHANCE TTS
INTERPRETATION OF LANDSAT DATA

Much of the material summarized in this section is to be descrijbed
in greater detail in a separate technical report [2].

17
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2.2.2.1 Review of Seasonal Practices and Decisions in Agriculture

The practice of agriculture is, of course, carried out by real
farmers, in real fields, under real market conditions, and in real
weather. A host of decisions and practices take place which are based
on past, present and expected conditions and the personal preferences
of the farmer. An understanding of these can improve the process of
estimating their results.

Planning. In a farmer's planning for the approaching crop season,
expectations of profit and market conditions, previous cropping practices
(such as rotation and fallowing), existing soil conditions and weather,
etc., all play a role in his decisions. They affect decisions regarding
the specific use of each field, as well as the amount of each crop to
plant, the varieties to order and plant, the balance to maintain between
crops and livestock, and the timing of preparations. Consideration also
is given by farmers to the policies of various governments and govern-
mental bLodies and to the availability and cost of fuel, fertilizer, and
equipment.

Preparation. Based on this planning, fields are prepared by plow-
ing, disking, incorporating fertilizer and/or by fallowing or pasturing.
These preparations may take place in the previous growing season, at its
end, or early in the current season. More elaborate preparations might
include ditching, tiling, leveling or diking for irrigation, as well as
drilling of wells and preparation of irrigation equipment.

Planting. Planting will normally follow the planned schedule and
prevalent practices, but can depart from them. The weather may be too
wet, too dry, or too cold. A late season may force use of another
cultivar or another crop. Early planting may fail and require abandon-
ment or replanting. The market may undergo a significant change, forcing
a change in crop selection.

18
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Crop Management. During the growing season, decisions to spray, to
cultivate, to fertilize, to apply herbicides, or to irrigate will be
affected by weather and other factors such as degree of infestations and
costs of materials. Catastrophic conditions can cause defoliation,
severe lodging, crop failure, and a decisionto abandon or replant a crop.
Harvest may be affected in various ways by weather, available storage,
market conditions, or need for grazing or silage.

2.2.2.2 Agricultural Features and Events Observable by Landsat

The agricultural practices, features, and events briefly described
above may be observed in, or inferred from, Landsat data in some cases.
This discussion sets forth a brief introduction to these potentialities.
These features have various spatial associations, applying to different
strata such as pixels, fields, districts, soil groups, regions and even
countries.

Pre-Season Conditions and Planting. Observations continued over

several years can be used to determine cropping practices for the indi-
vidual fields and regions. Crop rotations, for example, can be tabulated
and sequences learned to establish prior probabilities for specific
crops. Fallowing or green manuring sequences can be observed. Patterns
can be found for planting time sequences based on local soil conditions
and topography (wetness, contours, etc.) and crop types. In general, an
extensive history of each field may be obtained and related to factors
affecting subsequent use.

Pre-Planting and Planting. Pre-season preparations may be observed

in one or more acquisitions enabling mapping of stubble, plowed ground,
wet soils, and predecessor crops. Irrigation preparations or practice
may be observed. Flooding and abnormal conditions can be seen. Aban-
doned crops, unplowed ground, and indications of changed usage can be
observed. Possibly various stages of preparation may be distinguished
for various crop types.

19
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Early Growth and Growing Season. Emergence may be detected and
used to infer planting dates. By continued observation during the season,
rates of greening may be determined for all fields. Estimates of per-
cent cover or leaf-area-index and time of peak greenness may be calcu-
lated. Declines in greenness and occurrence of reproductive events,
such as tasseling and heading may be observed or inferred. Effects of

grazing, hail, lodging, disease, flcoding, and crop loss also may be ob-
served or inferred. In addition,the duration and general timing of
plant cycles may be observed and crop development stages estimated. Al1l
of the above are subject to having an adequate acquisition history.

Harvest. Time of harvest and pragression of harvest may be moni-
tored. Unusual timing can be noied when crops are cut early for silage
or are left unharvested for long periods. Fields may be determined to
be abandoned or unharvestable after sufficient time. Beginning of late-
season cultural practice may be monitored. Winter cropping practices
may be observed and monitored for later mapping.

2.2.2.3 Using Agronomic Understanding to Enhance the Predictive
Value of Landsat Data
The predictive aspect of crop assessment in essence attempts to
understand the farmers' situéﬁions and anticipate both their decisions
and the evertual results of thbge decisions. Landsat's potential to
contribute varies as a function 5?“lime, as the various agricultural
features and events discussed earlier become observable and detectable.

Landsat is usually thought of as providing agricultural information
only by direct measurement of crop acreages (etc.) during the current
growing season. However, Landsat does have potential for improving pre-
dictive capability as well, including both prior-year and current-year
aspects.

20
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End-uf-season crop area estimates from prior years give a basis for
relating sample-segment estimates to aggregated values and values from
other sources for larger regions to which they belong, revealing ten-
dencies to be higher or lower. They also provide information on year-
to-year voriance for individual segments and within-year variance among
segments. Over time, the Landsat-based data base may come to rival other
sources of information, at least in developing countries.

Existing crop acreage prediction models do not generally include
current-year inputs, let alone inputs from Landsat. We gave consider-
ation to ways in which the frequent looks for Landsat might be capita-
lized upon for predictive purposes. We identified several uses.

One major use of current-year Landsat data we identified and inves-
tigated was for augmenting conventional crop acreage response models
(CARM's). This study is described in detail in Section 2.2.3, as applied
to predicting acreages for summer crops like corn, soybeans, and sorghum.
The main idea is that early in the season, before summer crops are dif-
ferentiable, Landsat still can identify acreages of predecessor crops,
like wheat, and identify the total acreage that has been prepared for
(and, later, planted to) summer crops.

Use of these current-year quantities should improve acreage pre-
dictions for the individual summer crops because they give partial infor-
mation on what the farmer's decisions have been. This, together with
historical information and conventional predictor variables should
improve predictions. A simulation of Landsat-augmented CARM's, based
on USDA statistics over 18 years for the state of Missouri, showed sub-
stantial decreases in unexplained variance with the Landsat augmentation,
as described later in Section 2.2.3.

Another predictive use of current-season Landsat data takes advan-
tage of the fact that individual fields can be detected and their
emergence dates and growth patterns monitored for yield-related infor-
mation. One clear example is that of double-cropped sobyeans which are
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planted later than single-cropped soybeans and generally have lower
yields. Their acreages should be tabulated and aggregated separately
in the estimation process. Other elements of AgRISTARS are investigat-
ing the use of Landsat inputs to yield models; these could include
derived measures of leaf area or percent cover, condition, and develop-
ment stage (vs. “ime and weather) based on peak greenness, rates of
greenup and dec .ne, duration, etc. These uses suggest research into
questions of preparation and planting practices as distinguishable
events in Landsat (and Thematic Mapper) data as well as the use of
Landsat to estimate soil type and condition which can affect planting
choices and yield-related acreage estimates.

Another use of Landsat would be with models that predict farmers'
decisions leading to switches to alternative crops or cultivars as a
function of factors such as weather-caused planting delays. For ex-
ample, in the U.S. Corn Belt, there are dates beyond which each day's
delay in planting corn decreases its expected yield substantially. Up
to a point shorter-season cultivars of corn could be used. Beyond that
point in time it would become prudent to switch from corn to soybeans
which are more tolerant of the reduced length of growing season.
Landsat could confirm the delayed emergence of crops and predictions
could be improved.

2.2.2.4 Using Agronomic Understanding to Enhance the Measurement
Value of Landsat Data

The biggest problem in using Landsat data for crop identification
and acreage measurement is that of determining the spectral character-
istics of the crops of interest and detecting differences frcm their
confusion classes. This is especially difficult under the given con-
straint that precludes use of local ground truth information. Addi-
tionally, early season requirements add more difficulty since Landvat
acquisitions are fewer and crops are not all fully developed. There-
fore, any way that agronomic understanding of conditions at the local
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level can be used to improve spectral definition and expectations will
be beneficial. This has two aspects, one geographic and one temporal.

Geographically, one observes spectral differences within the crops
of interest and in the mix of classes present, as a function of soil
type, topography, climate, and other regionally and locally varying
agrophysical factors. An objective of any Landsat-based measurement
system should be to adapt or "tune" its relevant parameters to local
agrophysical conditions at both the segment level and the individual-
field level.

Temporally, we have the dominant influence of weather, which can
cause substantial differences from year to year in the timing of plant-
ing and subsequent operations and in the overall vigor and appearance
of the crops throughout the season at a fixed location. Again, adaption
to the local, this time weather-related, conditions is highly important.
O0f course, other factors and episodal events, such as insects, disease,
and floods, should similarly be accounted for when they are important.

Another key, longer term temporal factor is the pattern of crop
rotatfons whi<h can be used to establish prior probabilitiec for crops
in individual fields for use in crop identification and classification.

Just as for prediction, we can divide discussion of enhancing the
measurement value of Landsat into consideration of previous years' data
and of current year's data.

Previous years;' data provide a basis for local expectations of
spect~al signatures, spectral classes, and crop calendars for the various
crops, as functions of the conditions encountered during those years.

In addition teo providing spectral expectations, they might show where
flocding iy 1ikely to cccur and areas where planting operations are
more likely to be advanced or retarded from the average due to drainage,
topographical influences, or other factors. VYear-end crop identifi-
cations from previous years can be used to determine crop rotations on

a field-by-field basis and used to establish prior probabilities, as
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previously mentioned. They also would provide information on previously
non-cropped areas and fields, which can be excluded from further consi-
deration after appropriate confirmation of no change from past usage.
The field pattern from previous years should be a good starting point
for use in early season analysis of current-year data.

To investigate early-season uses of multiyear data, we conducted
a study of crop rotation patterns in several U.S. Corn Belt segments and
fourd that soybeans seldom followed soybeans in rotation. Agricultural
extension agents indicated that this was due both to increased erosion
effects with continuously cropped soybeans, where land is not flat, and
to increased incidence of certainroot diseases. By using last year's
field patterns and crop identifications, we found that we could identify
crop strata of high crop purity to get an early sample of crop spectral
sfgnatures for use in identification and classification. For example,
any field that was soybeans the preceding year was very likely to be
corn the following year, if it remained a summer crop. Furthermore, it
would be a relatively unbiased sample of corn, including both early and
late planted fields. This has an advantage over other approaches we
examined which used only current-year data and used the fact that corn
is usually planted earlier than soybeans, so that the earliest emerging
summer crop fields are primarily corn and the latest primarily soybeans.
These latter samples are biased.

The preceding is one example to illustrate the use of knowledge of
local agricultural practices to improve Landsat measurement accuracy.
Other geographic regicns would require their own approaches. For ex-
ample, several weeks separate the usual planting dates for corn and soy-
beans in Argentina, so simple temporal discrimination between them would
be more powerful there than in the U.S. Corn Belt but different confusion
classes would exist. Double-cropping with soybeans following wheat is
another practice that leads to substantial within-crop diversity and can
lead to confusion if not recognized in the segment.

24



YERIM
o

The high-purity crop strata from the multiyear example above also
provide an opportunity to gain a good estimate of the local crop
calendar for the segment. They can be used to adjust calendars computed
with local weather data which have planting date prediction as their
greatest source of uncertainty. Even without benefit of the previous
year's data, one should be able to use Landsat observations with
general knowledge of local cropping practices to improve crop calendar
estimates. Another general use of Landsat data would be to search for
and flag anamolous conditions in comparison with data from nearby seg-
ments or prior years.

For identification and classification with current-year Landsat
data, two classes of variables can benefit from agricultural understand-
ing. One is the prior probability of a given crop, which can be based
on general information for the region, but more desirably would be
field-specific, given prior year data and past rotation history. The
second class is the expected temporal-spectral signature of each crop,
which includes effects mentioned above, such as crop calendar, crop
vigor, weather, and local agrophysical factors. We suggest that, in
the Tong term, a systematic approach for incorporating this type of
information would be the joint use of predictive models and Landsat-based
measurements for estimation. One would develop a predictive model for
each crop signature pased on local weather data with perturbation factors
to account for field-by-field deviations due to site and seasonal effects.
These signature models would be used for classification and identification
in the absence of other information and would be updated and refined as
more and more spectral observations are obtained in the current year
and as a multi-year data base is assembled.

Obviously, management of the required amount and types of infor-
mation could be very complex and a well defined framework would be re-
quired. These issues are addressed further in both Section 2.2.4, where
a specific segment-level approach is discussed which could be imple-
mented in a relatively short period of time, and Section 2.2.5, where
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a longer-lead-time approach involving knowledge engineering techniques
is discussed.

2.2.3 LANDSAT AUGMENTATION OF CROP ACREAGE RESPONSE MODELS (CARM)

The research reported in this section has a different emphasis on
the use of Landsat than is found in the rest of this report. Rather
than being the primary source of data for crop acreage estimation,
Landsat is here considered in a new role, one of providing supplemental
current-year inputs to an econometric prediction model. This research
effort is to be documented more fully in a separate technical report
[3].

2.2.3.1 Introduction

Research indicates that a sequence of information, with respect to
time, is obtainable from remote sensing, for corn and soybeans acreage
estimation. At an early stage, it may be possible to estimate only
acreages of gross crop groups, such as summer crops (which would include
corn, soybeans, sorghum, and cotton), and at some later date it may be
possible to estimate corn and soybeans acreages directly.

An important question arises as to the method of using the early
stage, crop group estimates available from remote sensing. A natural
candidate is to use these observed crop group acreage estimates as
added, current-year inputs into an econometric crop acreage estimation
scheme based on the predictive variables of historical and current
pricas, historical yields, government policy, and historical crop acre-
ages.

This section documents a study of early season Landsat augmenta-
tion (via crop group estimates) of a crop acreage response model (CARM)
for corn, soybeans and sorghum. The results of the study indicate that
accuracy of crop acreage estimation could be significantly increased by
Landsat augmentation of sufficient accuracy.
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Eventual application in Argentina was of interest, but detailed
data were available only for the United States. Therefore, we searched
for a state that grows substantial acreages of corn, soybeans, and small
grains, as they do in Argentina. It 21so was desirable that there had
been substantial year-to-year changes ii the acreages devoted to these
crops. The state of Missouri met thess criteria.

Crop acreages and other historicat information on prices, yields,
and government policy was availabie fo~ the years 1962 through 1979,
Since Landsat data were not avaiiatle for those years, USDA estimates
of crop group acreages were use* as substitutes for inputs derivable
from current-year Landsat data :n the analysis.

2.2.3.2 Unique A:nects of This Study

This research was unique for two reasons. The first is that this
is one of the first crop acreage estimation models we are aware of that
merges the incomplete early season Landsat information with a conven-
tional crop acreage prediction model. There was a similar effort con-
ducted in LACIE in attempting to estimate winter and spring wheat acre-
ages when the extractable information from Landsat was only for the
winter and spring-small grains crop groups (4 ]. Their approach was
to estimate the ratio of winter wheat to winter small grains (or spring
wheat to spring small grains) using conventional predictive variables
(historical and current prices, historical acreages, etc.). This ratio
was then multiplied by the winter small grain acreage estimate from
Landsat to give a final figure for winter wheat acreage. Our approach
is new in that we estimate directly the target crop using both the
Landsat estimates of crop group acreages and the normal predictive
variables in a conventional type of crop acreage response model.

Secondly, there appears to be few models in the literature developed
at a regional level. It is precisely in the regional setting that one
can observe the true competitive nature of the crops of interest for
acreage (and quantify it). At the national level the differing regional
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competitive relationships are aggregated and smeared. Thus, in our
opinion, it is advantageous for this purpose to develop CARM's at the
regional levels where they can model the true competitive relationships
and where the Landsat augmentation would be most helpful.

2.2.3.3 Model Specification and Notation

The purpose of the study was to determine the importance of early
season Landsat crop group information for crop acreage estimation.
Thus two models were compared, one which was a conventional crop acre-
age response model and the other which was the same model augmented by
Landsat inputs. The first model for crop acreage has the form of a re-
gression equation, with a number of independent variables representing
expected revenues, last year's acreages, and government policy effects.
Both the crop of interest and a ~ompetitive or substitute crop are re-
presented. A mathematical representation is as follows:

Api,t = f(C,ExREVi,t, ExREVj,t, APi,t-]’ PV‘i,t’ PVZi’t) te, (1)
where
APi t is the acreas planted to commodity i in year t in
>~ thousand acres
C 1is a constant
ExREVi t is the expected gross revenue per acre by U.S.
>~ farmers for commodity i in year t
ExXREV . t is the expected gross revenue per acre by U.S.
3>t farmers for commodity j (substitute commodity
which farmers may choose to plant) in year t
PV]i t is a government policy variable which encourages
*" producers to plant commodity i in year t
PVZi t is a government policy variable which encourages

producers to plant commodity i in year t
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€4 is an error term

The variable ExREVi ¢ was computed by multiplying last year's price by
the average yield per acre over the last three years for crop 1.

This is a conventional specification that is used by agricultural
economists to explain crop acreage. The origin of this specification
and a full discussion of acreage estimation procedures is available
(Houck, et al, 1976) [ 5].

The second specification which includes Landsat augmentation of
summer crops and small grains (previously defined) is as follows:

ExREV,

it AP

AP PV PV2, (2)

- f(C,ExREV it it

i, i,t’ i,t-1°

APSCt, APSGt) t ey

where

APSCt is acreage planted to summer crops in year t

APSGt is acreage planted to small grains in year t

It is envisioned that these latter, current-year acreages will be
estimated via Landsat. But for the purpose of model development,
current-year USDA estimates of summer crops and small grains were used,
as was previously stated.

The approach taken for the analysis was as follows:
(a) Assume f is linear.

(b) Deterwine, by stepwise regression techniques, which explanatory
variables to exclude, i.e., the models in (1) and (2) are over
specified and certain variables that have insignificant ex-
planatory power should be deleted.
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(c) Determine if e, are serially correlated. If not, then use
ordinary least squares; otherwise, modify the coefficient
computation scheme.

(d) Use the coefficient of determination to measure the increase
of explanatory power of Model 2 over Model 1.

(e) Determine the increase of prediction accuracy of Model 2 over
Model 1.

(f) Determine the level of error which could be incurred on the
Landsat estimates of summer crops and small grains before the
prediction error of Model 2 degrades to prediction error of
Model 1.

Section 2.2.3.4 documents the results of Steps {b}-(d) through
normal regression type analysis. Using prediction analysis and simu-
lation, the results of Steps (e) and (f) are documented in Section 2.2.3.5.

2.2.3.4 Regression Analysis and Results

In general, the R? value for Model 1 (conventional) were high, rang-
ing from 0.87 to 0.94. The Landsat augmentation (Model 2), nevertheless,
made substantial improvements, decreasing the unexplained variances by
17% to 49%.

Corn. After Step (b), the explanatory variables in Model 1 for
corn were a constant, the expected revenue of corn, expected revenue of
soybeans, and both policy variables. The results for Mode! 2 were the
same, except for the addition of the explanatory Landsat variable of
current-year summer-crop acreage. The unexplained variability is de-
creased by 17% from Model 1 (conventional) to Model 2 (Landsat aug-
mented). The test for serial correlation was not significant at 0.95

level for either Model 1 or Model 2. The results for the regression
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analysis of corn, along with those for soybeans and sorghum, are listed
in Table 2.3 for Steps (b), (c) and (d).

Soybeans. After Step (b), the explanatory variables in Model 1
for soybeans were a constant, the expected revenue of soybeans, ex-
pected revenue of corn, and the previous-year's planted acreage for soy-
beans. For Model 2, the same variables are included, with the addition
of both summer-crop and small-grain acreages from Landsat. Unexplained
variability is decreased by 49% from Model 1(conventional) to Model 2
(Landsat augmented). The test for serial correlation was not signifi-
cant for either model. It should be noted that the test for serial
correlation used here is a modified Durbin Watson Statistic since this

is an autoregressive process [ 6].

Sorghum. After Step (b), the explanatory variables in Model 1
for sorghum are a constant, the expected revenue for sorghum, expected
revenue for wheat, and both government policy variables. For Model 2,
the same variables are included with the addition of summer-crop acreage
from Landsat. Unexplained variability is decreased by 49% from Model 1
(conventional) to Model 2 (Landsat augmented). The test for serial cor-
relation again was not significant for either model.

Discussion of the Results. The results of the regression analysis

in general are consistent with our agricultural understanding of the
crops and agriculture in Missouri. An example of this is evident when
comparing the corn and soybeans Model 2 (Landsat-augmented) specifi-
cations. The different crops vary significantly in their soil moisture
and fertility needs, with corn having the highest requirements followed
by soybeans, and lastly wheat and sorghum (which can be combined be-
cause of their similar requirements). These varying crop requirements
are depicted in the following figure:
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CORN <+1— SOYBEANS «¢— SMALL GRAINS

SORGHUM
High soil moisture _ , Low soil moisture
and fertility Requirements and fertility

of Crop

The corn and soybeans Model 2 specifications both include summer
crops acreage which one would expect since corn and soybeans comprise a
major portion of the summer crops. But the soybeans Model 2 specifi-
cations includes small grain acreages also, which is consistent with
the figure in that they compete for the same land. On the other hand,
the figure depicts the fact that corn does not compete directly with
small grains. Thus, it is appropriate that the soybean model include
small grains as a variable and the corn model omit it. Furthermore,
the signs of the coefficients of current-year summer-crop and small-
grain acreages were consistent with the supportive and competitive nature
of these interactions.

2.2.3.5 Prediction Analysis and Results

Prediction errors were analyzed and then a prediction scenario was
simulated. The prediction analysis consisted of estimating prediction
error via tne normal type of analysis for least squares regression. The
explanatory variables for prediction error estimation were obtained by
averaging over data from 1974-1979. The estimated prediction errors
decreased, from Model 1 to Model 2, by 5.1, 22.6, and 23.5 percent for
corn, soybeans, and sorghum, respectively. Also included in prediction
analysis was a determination of the affects of errors in the Landsat
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estimates of summer crops and small grains. Specifically, a deter-
mination was made of the magnitude of the coefficient of variation that
is tolerable before Model 2 prediction would become more inaccurate than
Model 1 predictions. The assumptions for the analysis were that normal
USDA estimates have coefficient of variation of 0.04 and that Landsat
area estimation errors would be independent of regression errors. The
results of prediction analysis are given in Table 2.4. The tolerable
errors are slightly larger than those assumed for the USDA estimates.

Prediction simulation consisted of simulating an actual prediction
scenario, i.e., developing models on data up to year T and predicting
for year T+l given current-year acreage estimates of summer crops and
small grains. This was done for the values of T = 1971 through 1978 for
both Models 1 and 2. The results, given in Table 2.5, are that the error
for the conventional and the Landsat-augmented CARM are about equal for
sorghum while the Landsat-augmented CARM is significantly better for
soybeans and corn. The results, however, also suggest instability of
hoth Models 1 and 2 when developed over fewer years. Thus, the results
also show that one needs a good data base to achieve acceptable accuracies
using this regression approach.

2.2.3.6 Discussion of Extension to Argentina

As was stated earlier, Missouri's and Argentina's agricultures have
similarities. Specifically they have similar crop mixes, similar
meteorological conditions, and both have had recent expansions in soy-
beans and sorghum. The differences lie in government agricultural policy
and agricultural technology. Based on previous work [7 ], it is be-
lieved that international prices and past acreages are the primary ex-
planatory variables able to be incorporated into a conventional CARM
specification for Argentina. This specification is the same as the
conventional model for soybeans for Missouri for which the added Landsat
inputs of current-year summer crops and small-grain acreages dramatically
increased the model's explanatory power. It is our belief that this
would also occur in Argentina.
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Another scenario in Argentina which we simulated is the following.
We performed the regression analysis for soybeans using only the ex-
planatory variables of last year's soybean acreage, summer-crop acreage,
and small-grain acreage. The R2 of this specification was 0.9473 which
is significantly better than *he R2 of 0.9382 for soybeans Model 1 {non-
Landsat model). This suggests that in a year in which government policy
may be very strong and tending to dampen the effect of prices, it might be
better to exclude the pricing variables and only use the three acreage
variables for prediction. The results discussed above suggest that
this is a possible successful estimation scheme in the face of »dverse
prediction conditions.

2.2.3.7 Summary

This feasibility study has shown that current-year Landsat esti-
mates of gross crop groups could be of importance in augmenting con-
ventional estimation of crop acreages with acreage response moc:1s. [t
aiso has shown potential advantages of CARM's developed at the regional
level. The approach has been shown to have a fair robustness to errors
in the Landsat estimates. W= therefore recommend hat additional re-
search be directed at exploring the Landsat augmentation of conventiunal
crop acreage response models, including a first look at its potential in
a foreign country like Argentina.

A1 A B

2.2.4 THROUGH-THE-SEASON SEGMENT ESTIMATION APPROACH

2.2.4.1 Introduction

The objective of Through-the-Season (TTS) area estimation research
is to provide the basis for a technology for estimating target crop
acreages at any user-specified time. This technology should be auto-
mated, timely, and cost effective. It also should make use of Landsat
data as well as pertinent ancillary information such as meteorological 1
data and regional agronomic practices. In this section, we address the
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generation of segment-level estimates, although multisegment aspects
will become important, especially early in the season and also where
Landsat coverage is not complete.

OQur research on this aspect to date has been limited to the de-
velopment of an initial approach to segment-level estimation which is
presented here, in the form of a flow diagram, along with first-cut
details of specific approaches that might be taken at various points in
the estimation process. It is consistent with the more general concepts
presented elsewhere. The next step in a detailed approach would more
fully address the merging of the new concepts with current techniques
such as profile classification techniques.

Our concept of a TTS segment-level estimation system is illustrated
in the flow diagram of Figure 2.3. Note that we have identified a
classification approach in contrast to a direct estimation approach.
This was done for the following reasons:

(1) We believe that an augmented classification approach is a
viable candidate with several potential advantages:

(a) It more readily permits the incorporation of prior infor-
mation from a variety of sources, including agronomic and
economciric ones.

(b) It has growth potential since refinement of priors can
improve a procedure's accuracy from year to year n a
multiyear context.

(c) When spectral information is limited or uncertain, em-
phasis on priors can reduce the possibility of major
errors in estimates.

(d) Previous studies of classification techniques with prior
probabilities did not use as sophisticated a method for
obtaining the priors as we envision and one should be
able to reduce or control tendencies toward bias.
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(2) Direct proportion estimation approaches were receiving exten-
sive attention by other SR researchers at NASA/JSC, so our
emphasis provided a vehicle for development and evaluation of
an alternative approach.

We now take a more detailed look at the segment-level estimation
approach diagrammed in Figure 2.3. The proposed procedure begins with
current spectral data I;, for each pixel, along with associated ancillary
data, IA. The spectral data are from the current season's acquisitions
available at the time of estimation. The ancillary data could include
historical Landsat data, historical crop classifications, historical
field (quasi-field) patterns and characteristics, historical crop prices,
and quantifications of relevant government policy. The spectral data
are first normalized (corrected for haze, sun angle, and sensor cali-
bration) and then transformed to Greenness and Brightness features.

Next, the segment is stratified by spectral/spatial clustering into
quasi-fields to approximate true target fields, based on i; and EA. In
particular, this procedure may initially utilize the previous year's
field patterns which could be derived based on the full prior season of
spectral data. The quasi-fields are then stratified by assigning each
to one or more crop classes that it could belong to, based on spectral
zones for ig and on prior year information, including crop rotations.
These spectral zones would be determined by planting date models and
spectral appearance models, both of which are functions of meteorological
parameters and other location-specific information, including prior-year
characteristics. This step also is used, where possible, to identify
substrata which are known to be of high single-crop purity, based on in-
formation such as planting date and crop rotation history. This infor-
mation feeds the process of estimating expected crop signatures for the

segment.

Then classification takes place for quasi-fields assigned to crop
groups which contain target crops. Crop temporal-spectral profile
models will be used in a Bayesian classification scheme with priors
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based on the ancillary data. This classification approach is discussed
more fully in the next section.

Lastly, the classified quasi-fields are aggregated into segment-
level acreage estimates for the target crops.

This approach could be generalized in a multisgement context tc
take advantage of information from neighboring segments.

2.2.4.2 Detailed Classification Approach

We contemplate using a Bayesian classification approach that incor-
porates temporal-spectral profiles in order to take full advantage of
multidate Landsat data and our understanding of crop phenological dif-
ferences and growth characteristics.

Two methods of using these profiles are identified here for later
exploration and comparison. One method would fit expected crop profile
shapes to current-year data values, e.g., along lines developed by re-
searchers at ERIM [ 8]. This could have an advantage when a full season
of data is not available. In a complex implementation, one might compute
probabilities by first determining a continuum of expected profiles and
tolerance limits with respect to planting date for each crop, based on
meteorological conditions, i.e., there could be different shapes for
different planting dates. In choosing the best fitting profile one
obtains a planting or emergence date in addition to crop type and a
quantification of fit or certainty.

The second method would fit a model form to the data and make de-
cisions based on resultant valres of the model parameters. One could
apply some constraints when sufficient data acquisitions to produce
stable fits are not available, to increase the applicability of the
model. This method could be a modification of an approach being explored
at NASA/JSC [ 9]. One would need to develop multivariate probability
distributions of the parameters.
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Mathematically speaking, the first method assumes a model of the

form
;S(_f) = u;s(-f,w,ﬁ) + EX(E) (3) §
where
X (t) = Vector of observed spectral variables
vy = The expected profile
s

t = Vector of acquisition times

w = Class

= Estimate of meteorological (and other) parameters which
help define the expected temporal-spectral profile

3.

)

x(f) = Error vector

We assume that we can get estimates of the density of ¢(t) conditioned
on the class . and m. We designate this estimated density by

T m
P(Z, ()]sm)
We further assume that we have estimates of the prior probability of a

class conditioned on the auxiliary information EA. Let these priors
be designated by

Then the class . is chosen to maximize the posterior probability,

P(Z (T) M)

P(\;ng) Sy "
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In the second method, we would assume a model of the form
6=y +% (4)

wherg My is the vector of true profile parameters for the target crop
and 6 is an estimate of the parameter vector for the chosen profile
model, as derived from the spectral data ig. The error term Ee has an
estimated density

P(eglm,m)
As before, the class w is chosen to maximize the posterior probability,
P(w]XA) P(Eglm,w)

0f course, the estimation of priors and the error densities for
either model will require a substantial effort. The advantage of this
classification approach is that prior probabilities, estimated using
data oth-r than Landsat, can have a greater influence when Landsat dis-
crimination is uncertain and assume a lesser role when Landsat offers
discriminability.

2.2.4.3 Summary

The segment-level estimation scheme described above is one realiza-
tion of the general concept we developed earlier. It lets agronomically
based priors have the major weight until there is enough evidence spec-
trally to do otherwise. Thus, it merges the functions of prediction and
direct observation, as outlined in Sec*tion 2.2.1 and in particular in
Figure 2.1. Furthermore, the Bayesian classification approach provides
for a continuous balancing of information gained from the ancillary and
current-year spectral data.
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2.2.5 AN ADVANCED APPROACH FOR THROUGH-THE-SEASON ESTIMATION

The preceeding discussion has shown how information from varied
ancillary and collateral sources is important for the full extraction
and utilizationof information from Landsat data. A decision structure
is needed that can effectively utilize data from disparate data sources
having differing degrees of information content, accuracy, and precision.
Furthermore, we believe that this structure should be flexible and
adaptable, should allow for both machine-derived and human inputs,
should maximize the efficiency of the human resource, and should be able
to "learn" or build a knowledge base as it continues in use.

We have studied the opportunities for artificial intelligence,
specifically knowledge engineering systems, and believe that they would
serve as the desired vehicle for TTS decision making and utilization of
remotely sensed data.

Figure 2.4 is an elaboration of the general TTS estimation diagram
presented earlier in Figure 2.2. It presents the various elements in a
form that would be amendable to implementation through a knowledge-
engineering or rule-based inference approach. In such an approach, a
knowledge base and inference structure are built so that, as each new
fact or observation is introduced, a particular inference will become
more certain. The chain of inferences leading to particular decisions
can be based on the knowledge and experience of expert interpreters,
analysts, and agronomists. These systems were first developed for
medical applications.

A candidate prototype for the desired system is found in the
PROSPECTOR system [10]. It differs from its predecessors, the EMYCIN
and MYCIN systems [11], in that it uses Bayesian methods of esti-
mation whereas the others use a more empirical, yet axiomatic approach.
Both have provisions to grow and "learn" and incorporate new facts and
data as they become available. Prospector was developed to help locate
optimal drilling sites in prospecting for ore bodies for mining.
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Although it will take some time to fully develop the knowledge
engineering approach to TTS estimation, we recommend it as a desirable
pursuit with a potentially large payoff in accuracy, efficiency, and
automation.

2.2.6 SUMMARY OF THROUGH-THE-SEASON ESTIMATION RESEARCH

In conclusion, we summarize the main ideas and concepts that have
been developed and expressed in this section. They are:

(1) The crop estimation process was characterized as being a time-
varying combination of prediction and measurement (observation) pro-
cesses through-the-season (TTS), with the balance swinging from pre-
diction to measurement as time progresses through the growing season.

It was shown how Landsat can contribute to both processes.

(2) Vvalue was shown for merging traditional prediction variables
(prices, government policy, etc.) with early season Landsat observation
of the farmers' actions (gross crop group acreages) to produce improved
early estimates of specific summer crop acreages. Quantitative results
were presented for a simulation study based on historical USDA
statistics for an entire state. Furthermore, potential was shown for
models based on regional rather than the usual national levels.

(3) Field-by-field Landsat observations are seen as the appro-
priate and optimal basis for use in TTS estimation. It is by observing
fields on multiyear basis that one can best interpret current-year
Landsat observations of farmers' actions for crop acreage estimation.

(4) Predictive models of crop spectral appearance, which taken in-
to account local weather and other factors, would be most beneficial for
interpreting Landsat observations and maximizing the amount of measure-
ment information extracted from them.

(5) Agricultural practices were identified which are observable by
Landsat and could be of high interpretive value in TTS estimation.
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These include the timing of field preparation, irrigation, predecessor
crops and time of spectral emergence (related to planting date).

(6) Multiyear use of Landsat was shown to be important for estab-
1ishing the expected crop spectral signature for a given area under a
variety of conditions. Also, the interpretive keys discussed in (5)
would be more readily and accurately used with a multiyear Landsat data
base.

(7) A segment-level Bayesian estimation approach was presented
for merging prior probabilities based on ancillary (predictive) vari-
ables with direct crop Landsat observation at the field level. The
priors are based on predictive variables and indirect (prior year)
Landsat observations. The current-season Landsat observations are used
to produce direct spectral-based probabilities. An important property
of this approach in early season is that the predictive priors can
dominate the classification when direct observation by Landsat is of
little value. As the season progresses and direct observations by
Landsat are of much greater value, the current-season spectral-based
probability dominates the classification. Thus we have a scheme which
shifts in a continuous fashion from predictive acreage in early season
to observed acreage in later season.

(8) For long-range development, we recommend investigation of
knowledge engineering systems tailored to the TTS estimation problem.
They seem well suited to handling the varied information sources avail-
able and have a potentially large payoff.
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2.3 MULTISEGMENT ESTIMATION RESEARCH
2.3.1 BACKGROUND AND INTRODUCTION

2.3.1.7 LACIE

The bulk of the current Landsat-based crop inventory methods used
in AgRISTARS are based on the multistage sampling techniques developed
during LACIE. If one wished to estimate the proportion of a crop of
interest within a given region with today's technology then one would
go through the following steps:

(1) Partition the region into strata in such a way that the crop
proportions varied little within a stratum yet these strata would still
be Targe enough to allocate samples for the steps given below. APU's
(agrophysical units) and CRD's (crop reporting districts) are examples
of such stratifications.

(2) Partition the region of interest into 5x6-mile segments for
data base purposes. We will simplify this discussion by assuming that
this segmentation represents a refinement of the stratification defined
above. The segments which survive cloud screening are the sample units.

(3) Choose a random sample of segments from each stratum. During
LACIE this scmple tended to represent about 1% to 2% of the total area.
(This can be viewed as the stage-one sample.)

(4) oObtain an estimate of the proportion for each segment in the
sample, based on a second stage of sampling. Two of the methods are:

(4a) Procedure 1 (Developed by NASA/JSC) (12). Choose a de-
terministic sample of 60 to 100 pixels from the segment as the stage two
sample units. The elements of this sample are called dots. These dots
are divided into type one and type two dots.

Type one dots include only pixels deemed to be "pure" (single crop)
by an analyst interpreter, whereas type two dots may be either pure or
mixed.
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The analyst labels each dot as crop of interest, 1, or not crop of
interest, 0. A classifier is trained on the type one dot labels and
then assigns labels to every pixel in the segment, including the type
two dots. The labels of the type two dots are used to estimate the
performance matrix of the classifier. This estimated performance matrix
is then used to debias the mean of the classifier's labels.

(4b) Procedure M (aeveloped by ERIM) [13]. The pixels within
each sample segment are clustered using spatial and spectral variables
into field-1ike patterns called blobs. These blobs are the stage-two
sample units.

The blobs within a segment are clustered again using spectral/
temporal variables. The resulting clusters were treated as strata for
the stage-two sample. The Midzuno sampling technique is used to select
blobs for labeling, because the blobs vary in size. About 100 blobs
are sampled and labeled. The weighted proportion of the blob labels
within a cluster gives the cluster proportion estimate. The weighted
mean of the cluster estimates then gives the segment estimate.

(5) The sample segment proportion estimates are aggregated into
stratum estimates and an overall region estimate in the normal manner.

2.3.1.2 AgRISTARS

Post LACIE research has been conducted in several areas, these
include:

(1) Advanced Labeling Techniques. In LACIE about 50% of the
standard deviation in the segment grain estimates and all of the bias
in the estimates were due to labeling errors. There have been improve-
ments but this component is still a major source of errors snd cost.
Labeling is being made more objective and hence more automatable.

(2) Multiyea: Estimation. Procedures which take advantage of
rear-to-year correlation to improve sampling efficiency have been
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developed. The level at which the multiyear procedures should be im-
plemented at is not clear at this time.

(3) Through-the-Season Estimation. The most used procedures
require acquisitions throughout most of the growing season. Procedures
which give estimates throughout the growing season, especially early and
midseas.n, are in the development stage. This topic is the subject of
another section of this report (Sectfon 2.2).

(4) Profile Based Techniques. Profiles are parameterized functions
which map a day of year, t, into Greenness (and sometimes Brightness or
other spectral variables) based on observations of crops, Because pro-
files allow the comparison of crops in segments which have different
acquisition histories, profiles will most likely play a major role in
multisegment estimation. The drawback of the current profile techniques
is that at least three acquisitions are required in order to fit a good
profile. The number of acquisitions required could be reduced if con-
straints were added on the parameter space such as a linear relationship
within a subset of the parameters, or in a multistage procedure in which
one set of parameters are estimated and then the remaining are fitted.

(5) Multisegment Estimation. In multisegment estimation the over-
all objectives are to increase sampling efficiency and reduce measure-
ment cost without sacrificing accuracy. Sampling efficiency can be
increased by reducing the segment size and increasing the number of
segments. Sampling is discussed in Section 2.3.2. Measurement cost
reductions might be gained by processing several segments together and/
or by processing a few intensely and a larger number with a more eco-
nomical but less accurate procedure. Though reduction in the scope and
funding of our efforts precluded carrying out the research to fruition,
we considered three methods of measurement. First signature extension
is conceptually described in Section 2.3.3. In signature extension,
labels mea..:2d from a few segments would be geographically extended to
other segments thereby reducing measurement cost by eliminating the need
to extract training from all segments. Secondly, regression methods are
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discussed in Section 2.3.4. Such met' ods exterd relationships between
economically derived estimates and intensive estimates thereby achieving i
a higher level of accuracy at a reduced cost. Finally, the bin method

is described in Section 2.3.5. Sufficient resources were available co z
evaluate this multisegment measurement scenario experimentally and it g
is so reported. The bin method extends the decomposition of the spectral Z
distribution from a training sample to the entire segment. Due to the :
robustness of the method, a reduced traininc sample is reguired thereby

achieving a cost reduction. In addition, judicious selection of fea-

tures would enable the use of the bin method within a signature exten-

sion scenario.

2,3,2 MULTISEGMENT SAMPLING

2.3.2.1 Effect of Sample Size

Sample variance is known to increase as the segment size increases, ,
assuming the product of the segment area and the sample size remains f
constant. Perry [14] showed that this effect could be approximated '
V(x) = ax® where x is the segment size. LARS and UCB estimated, empiri-
caily, that the LACIE sampling efficiency was about 1/8 compared to
simple random sampling. The choice of cluster (or two stage) sampling
was made in LACIE for valid cost, data base, and measurement consider-
ations. However, the present 5x6-mile ceyment sizz was just a first try.

The increases in computer power per unit cost and advances in registration
technology relax data base considerations and it appears that the segment
size could be reduced significantly with very small impact on the measure-
ment procedure. We developed plans with UCB to test a segment size of
64x64 pixels, extracted from full-frame Landsat data sets.

2.3.2.2 Sampling Vs. Segment Selection for Training

The optimal method of selecting segments depends on the estimator
which is being used. Random sampling schemes are required in some pro-
cedures such as the regression method and Procedure M. When using tne
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sample to train a classifier, it is more important to represent all of
the major spectral classes in the region, randomizing only after these
constraints are met. One multisegment procedure we postulated and
planned to test is based on a profile classifier. The parameters of
the profiles would be estimated for every pixel in every segment (or a
large sample) in the stratum. The classification would take place in
the parameter space. The problem is how to choose the sample which
will best train the classifier.

The IBM Procedure-2 [15] experiment used a technique which first
clustered the pixels (CLASSY) across segments and then used a factor-
analysis-1ike technique for segment selection. Earlier ERIM Procedure-
B experiments [16,17] also clustered targets (blobs) across segments
using spectral/temporal variables. But the method of segment selection
differed from that used by IBM. ERIM employed a pairwise selection
procedure which chose the two remaining segments which best represented
the major undersampled clusters. The pairwise selection continued until
the sample budget was exhausted. These two segment allocations gave
about the same results.

In the profile-based multisegment procedure, the profile parameters
will form the feature space. The pixels will be clustered based on
these parameters and the segments selected using either IBM's factor-
loading or ERIM's pairwise-loading technique. Labels obtained for tar-
gets in the sample segments will be used to train the classifier. The
classifier will be applied to every pixel of every segment with suf-
ficient acquisition history,

Early multisegment experiments will use ground truth labels or will
modify existing measurement technqiues. Later research will optimize
measurement techniques in a multisegment environment.
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2.3.3 SIGNATURE EXTENSION

2.3.3.1 Notation and Signature Extension Assumption
R... 1is the region of interest

R... 1is the stratum i

h

R;.. is the jt signature extension stratum of stratum i

is segment K

P..., Pi"’ Pij" and Pijk are the corresponding crop proportions
We assume the region R... is partitioned into clusters based on spectral/
temporal attributes of the labeling targets. Denote these clusters as

{S,} so that R... = Uasa. Let Q, Ry sk n s, and q

i 5k = as the

ijka
corresponding crop proportion.

The signature extension assumption is that the distribution of the
random variable qijkn is independent of k. (This assumption can be re-
laxed somewhat.) This assumption implies that all of the segments
within Rij' can be processed using the same decision logic, and that a
classifier which has been trained on a subset of segments which repre-
sents the Sa's within Rij' can be used to classify all of the targets

within Rij‘ .

2.3.3.2 Signature Extension Region

The signature extension experiment, described in [16,17], trained
and applied a classifier across the state of Kansas. This was too large
of a region to apply any one decision rule. There were Greenness/
Brightness/Temporal signatures which represented pure grain on one side
of the state and pure non-grain on the other. These Kansas signature
extension experiments indicated that there are at least four signature
extension regions in Kansas. A different decision rule is generally
needed for each signature extension region.
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Signature extension regions have to be small enough for the
assumption to hold and have to be large enough to allow a large enough
sample to develup a decision rule (train a classifier).

Research has been conducted in this area by UCB under the Dynamic
Stratification Task.

2.3.4 MULTISEGMENT REGRESSION METHODS

2.3.4.1 General Regression Methods

We assume that there are two random variables X and Y with the fol-
lTowing Tinear relationship:

(Y - uy) = B(X - ux) +e

where e is a random variable with mean zero. Two samples are taken.
In the first sample, we observe (Xi)?=] (i.i.d. X) and in the second we
observe (Xi’yi)?=1' Cochran [18] gives the estimate for u, as:

A

=Y+ b(X-X
u, ( )

where X' and X are the means of the first and second samples, respec-
tively, and b is the least squares estimate for B, based on the second
sample. This estimate is conditionally biased, i.e.,

E(Gy - u IX') = BIX - uy)

In most applications n<<n' because each Y observation is much more
expensive than each X observation.

Cochran's figure 12.1 [18] gives a useful chart for comparing a
one-phase simple random sample and a two-phase regression estimator.
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2.3.4.2 A Multisegment Regression Procedure

The Baseline Corn/Soybean Procedure described in Section 3 is a
two-phase procedure. The procedure provides two levels of corn/
soybeans estimates. The first, called the stage one estimate is a nearly
automatic procedure while the second is a more intensive and more
accurate procedure. The stage-two estimator requires twice the computer
time and five times as much analyst time as the stage-one estimator.
This suggests that regression estimation methods might provide a lower
varianced estimator for a fixed cost.

Let Y denote the sage-two estimator and X denote the stage-one
estimator. Because of the nature of the Baseline Corn/Soybean Proce-
dure, a stage-one estimate is obtained automatically for every stage-
two estimate. This implies that n' = 0 is not an option. Hence the
Baseline could be viewed as a special case of a regression estimator

where n = n'.

An ITD experiment was carried out in order to determine if it
would be cost effective to have a large number of stage-one estimates
and, for a smaller subsample, to also have stage-two estimates. This
experiment is reported in detail in Section 3.3.3. The experiment indi-
cated that variance could be reduced by 25% to 50%, for fixed cost, by
the use of regression estimates. This application of regression methods
of estimation is more general than that discussed in Section 2.3.4.1 in
the following ways:

(a) The quantity to be estimated is multivariate, i.e,, the
acreage of two or more crops (in this case, corn and soy-
beans) simultaneously.

(b) The cost constraints are more general, consisting of two
or mor2 linear constraints imposing limitations on several
resources (analyst and computers).
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2.3.5 AN EXPERIMENT USING THE BIN METHOD FOR SEGMENT PROPORTION
ESTIMATION

The bin method is a direct proportion estimation scheme which has
been researched in the past by JSC and for which there is current
interest for use as an early season proportion estimator. We ran an
experiment using the bin method in order to increase our understanding
of it in a real life estimation scenario and to establish its applica-
bility as a signature extension scheme for multisegment estimation.

For the experiment we had spectral data for 17 segments of which
ten nau been processed through the ITD Baseline Corn and Soybean Pro-
cedure for proportion estimation based on sampling and classification
(Section 3). For purposes of understanding, all segments were processed
as follows; targets (targets will be defined later on) were sampled
(different sampling rates were tried), assigned their ground truth
labels, and used as training data for the bin method. For the purpose
of testing an alternative proportion estimation segments were run
through the bin method using the sempled and labeled targets as training
data. The purpose of this section is to outline the results of the ex-
periment and understandings gained.

2.3.5.1 The Bin Method

The bin method is a direct crop-proportion estimation scheme that
can use spectral data from several satellite passes. The basic idea is
to divide the multitemporal spectral space into regions or bins and,
based on the overall dispersion of the data across these bins, to deter-
mine the proportions of categories of interest. Specifically, the total
joint density across the bins, denoted by f, is computed from the
spectral data. If one also has f(x | corn), f(x | soy) and f(x | other)
then regression methods can be used to solve the model:
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f(x) = cf(x | corn) + sf(x | soy) + of(x | other) + e,
where

¢ denotes the proportion corn;
s denotes the proportion soybeans; and
o denotes the proportion other.

If one has consistent estimates for f(x | corn), f(x | soy), and
f(x | other), then regression methods will give consistent estimates of
c, S, and o. If the estimates are biased (may still be consistent),
then the complete procedure will give slightly biased estimates for c,
s, and o, however. But the results of the experiment give evidence that
the bias is quite small. A slight problem is that the procedure does
not restrict its estimates to the three-dimensional simplex; and indeed
this experiment gave estimates above one and below zero. We will dis-
cuss this in more detail later on.

2.3.5.2 The Bins

The bins were derived by establishing thresholds on Greenness
values measured for scene targets on three different dates for each seg-
ment. The targets were quasi-fields generated during other processings
by an ERIM spatial-spectral clustering (or blobbing) algorithm.

Labeling Greenness measured on Day i as 95 where i=1,2,3, two
thresholds, ti] and tiZ’ were determined for zach day. Then for every
quasi-field there was a mapping

he RS - 1,2,38°

where h is defined as
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h(g] :92’93) = (b]ab29b3)

where
bi=] if 95 < ti
=2 1ty 295 <ty
=3 ifti2<g‘i

Thus, the mapping h defines 27 spectral bins and these bins were
determined for every segment by setting the six threshold levels based
on expected crop spectral responses on the given days of year. A list-
ing of the Julian days with corresponding thresholds is given in Table
2.6. For seven segments, a supervised mode of blobbing was used in
which the clusters were restricted to include only pixels of like ground
truth. The other ten segments were run through the Baseline C/S Pro-
cedure.

The basis for the choice of acquisitions and thresholds was the
logic used by the Baseline C/S Procedure in stratifying for summer crops
and in separation of corn and soybeans. This led to selection of early
and late acquisitions, which gave substantial separability between
summer crops (corn and soybeans) and other crops, and a middle date
where there appeared to be maximum separability between corn and soy-
beans in Greenness space.

2.3.5.3 Methods of Estimating f(x | corn), f(x | soy), and
f(x | other)

This experiment estimated the above conditional densities by train-
ing on a random sample of the data in each segment. The random sample
was labeled with "ground truth" for Segments 107, 127, 809, 844, 854,
866 and 891. The sampling rates, denoted Q, were .05, .10, .15, .20
and .25. Baseline corn-soybean labels were used to obtain bin esti-
mates for Segments 141, 202, 205, 800, 832, 842, 852, 853, 877 and 881.
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Since the bin method sometimes gave estimates outside of the three-
dimensional simplex, negative estimates were replaced by O and then the
other estimates were normalized to add to one. The next section gives
the results of this experiment.

2.3.5.4 Results

Figure 2.5 through 2.7 display true vs. estimated crop proportions
determined for the seven segments for which supervised quasi-fields
were available, for sampling frequencies Q = 0.05, 0.15 and 0.25, re-
spectively. Each point represents the mean of 100 estimates produced
from bin proportions generated by using the different training samples.
Each figure has seven estimates each for corn, soybeans and other, ex-
cept Figure 2.5 which is missing values for Segment 809. The bin
method gave unbiased estimates for all of the sampling frequencies, on
the average, for this source of labels.

It was expected that the standard deviation would depend on sample
size in somewhat the same way as that of a simple random sample, namely
proportional to the inverse of the square root of the sample size. Be-
cause the number of targets varied from segment to segment, the sample
size also varied from segment to segment. Figure 2.8 gives the stan-
dard deviation vs. sample size least squares response function for corn
and soybeans, where the response function is assumed to be of the form:

s =¢c/ /n

where ¢ is to be estimated by standard lirear regression. The standard
deviation drops rapidly from 10 to 50 samples after which the decrease
slows significantly.

For the second part of the experiment, we analyzed about 100 tar-
gets per segment which were given analyst labels in an early test of the

Baseline Corn/Soybean Procedure. The segments were: 141, 202, 205,
800, 832, 842, 852, 853, 377 and 891. These analyst labels are called
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Stage 2 labels. The Baseline Corn/Soybean Procedure also gives semi-
automatic labels, called Stage 1 labels, for every potential target.
The samples which were used in the above baseline procedure test were
used to estimate f(x | corn), fix | soy) and f(x | other) for these ten
segments. Table 2.7 gives four values for each segment for each crop
class. These were based on the ground truth, the mean of Stage 1
labels, bin estimates using Stage 1 labels and bin estimates using
Stage 2 labels, respectively. Averages across all segments, standard
deviations, and biases are also given.

The mean of the Stage 1 corn labels gives an unbiased estimate
while the Stage 1 and Stage 2 bin methods give 6% and 3% bias, respec-
tively. The mean of the Stage 2 soybeans labels gives a -10% bias
while the bin method using Stage 1 labels gives only -6% bias.

2.3.5.5 Conclusions

The choice of the thresholds for the bins as outlined in Section
2.3.5.2 was made using prior knowledge of the distributions of Green-

ness for corn, soybeans and other. In an operational system, these
thresholds would need to be based on one, two or three of the following:

e Historical Landsat data and ancillary data
e Histogram of all the pixels/blobs Greenness
e Identifiable subpopulations of specific crops

Intuitively it is appealing to <hoose bins which maximize the difference
between probabilities of two cover types of being in each of thcse bins.
The results are supportive of this in genercl but it seems that late in
the season, the bins did not pick up «...h separation of crops. It also
appears that not many quasi-fields had bi =2 for i =1,2,3. Thus this
may need to be looked at in the future also. The results of experiment
on the BASELINE segments indicates that the bin method is a fairly un-
biased way to use the labeled targets.
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Our recommendation is that research be conducted to determine:
(1) the effects of the choice of bins and (2) the optimal estimation
scheme when the bin method gives proportion estimates greater than one
or less than zero. Use of labeled targets as training data also should
be explored further because of the relative unbiasedness of the results.
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2.4 ARGENTINA-BRAZIL AGRONOMIC UNDERSTANDING

The principal reason for establishing this subtask was to help
ensure an orderly transition from a U.S.-based technology development
for corn and soybeans area estimation to one adaptable to foreign areas
(Argentina and Brazil). As such, the subtask was designed to anticipazte
and/or respond to data and information needs so that techniques designed
and developed primarily with U.S. data can be adapted to handle expected
agronomic conditions found in Argentina and Brazil. This requires the
collection, organizatiunard summarization of a wide variety of infor-
mation relating to country specific agricultural crop types, crop-
livesteck practices, the location and extent of agriculturai regions,
soils and climatic data and other factors that characterize the agri-
cultural systems operating in Argentina and Brazil. Another critical
aspect was the collection of ground information on crop types in segments
in these countries for which Landsat data are being acquired. Initial
emphasis was placed on Argentina due to its greater similarity to U.S.
regions.

2.4.1 DESCRIPTION OF AGRICULTURE IN ARGENTINA

A separate technical report [19] has been written to give a detailed
presentation of the information and understanding we gained about agri-
culture in Argentina. Related reports include References [20] to [24].
This section presents a summary and overview of that report.

2.4.1.1 Study Area Defined

The AgRISTARS study area which had been selected in Argentina
(Argentina Indicator Region) for the corn/soybean classification and
area estimation technology experiment includes four provinces located in
the east-central part of the country (see Maps 1 and Z). Three of the
provirces, Buenos Aires, Cordoba and Santa Fe, comprise the Pampa heart-
land while a fourth province, Entre Rios, is located immediately to the
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east. The study area is situated in the lower middle latitude zone of
the Southern Hemisphere, roughly between 30 and 40 degrees South latitude
and 59 and 65 degrees West longitude.

Fifty sample segme'ts had been selected in the four provinces, 25 of
which are former LACIE segments. Of the total number, about half (26)
are found Buenos Aires province with dimirishing numbers found in Santa
Fe, Cordoba and Entre Rios provinces, in that order.

2.4.1.2 OQverview

A variety of physiographic factors including nearly level terrain,
mild climate, and fertile soil have been conducive to the development of
ajriculture within the study area. In the center, which covers northern
Buenos Aires, southern Santa Fe and southeastern Cordoba, the amount and
distribution of precipitation favor the cultivation of corn, soybeans,
and other crops, but drought is a problem farther west and south. Con-
ditions in southern Buenos Aires are favorable for wheat production. In
Entre Rios, somewhat less favorable conditions for wheat prevail due to
high humidity.

Topography and Drainage. The AgRISTARS four-province study area

mainly lies within the borders of the Argentina Pampa, a very large, flat
to slightly rolling plain that stretches westward into the interior from
the east coast of Buenos Aires province, the Rio de la Plata estuary and
the lower Parana River Valley (see Map 2). The Pampa extends westward

and southwestward well beyond the borders of the study area and ultimately
to the desert which separates it from the Andean mountain system. It
extends north to the Chaco, a subtropical scrub woodland zone, and south-
westward to northern Patagonia. Strictly speaking, the province of Entre
Rios is not part of the Pampa, but is a flat plain broken by ncrth-south
aligned ridges.

Sedimentary materials cover nearly all of the Pampa, most of which
is fine wind-blown loass which was transported from areas farther westward

72



D ERIN

along the Andean front. Generally coarser rock materials are found in
the western Pampa while the finer wind-blown materials were carried
farther eastward. Two topographic divisions can be distinguished in the
Pampa, although differences are subtle. The "Pampa ondulada" or
Undulating Pampa exhibits slightly rolling topography such as portions
of northern Buenos Aries, southern Cordoba and southern Santa Fe. In
constrast, much of central Buenos Aires province to the south is low-
lying and poorly drained and forms part of the "Pampa deprimida"
(Depressed Pampa), especially to the west of the Parana River (central
and northern Santa Fe) where numerous low-lying areas occur. Summer
flooding is common in all of these areas and both crop and livesiock
losses occur. Such events often result in loss of teed for livestock
and conversion of cropiand to pasture or forage as an emergency measure.
Nearly all of the study area, with the exception of a few isolated hill
areas and the Sierra de Cordoba highlands in the far northwest, lies
below 200 meters elevation as do 13 of the 14 segments visited for ground
data collection purposes in 1981.

Climate. The study area exhibits considerable climiatic variation
with respect to temperzture, precipitation totals, and seasonality and
variability of precipitation. The most critical factor in terms of
agriculture - the occurrence of drought in interior farming zones.
Temperature d. “ferences are also important, given the north-south extent
of the study zone (1400 kilometers), as is distance from marine moisture
sources.

Five climatic types occur within the study area (see Map 3). Most
of the area lies within a zone of humid subtropical climate that extends
southwestward from Brazil and Paraguay into Santa Fe, Entre Rios, Buenos
Aires, and the eastern third of Cordoba. Farther west, a variant of
this climate with dry winters and decrcased, more unreliable summer
rainfall is found. A similar climate prevails much farther south in
southwestern Buenos Aires. In contrast, southeastern Buenos Aires has a
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cool marine climate because of its proximity to cold offshort currents
in the Atlantic Ocean.

Great differences in precipitation occur within the study area
(see Map 4). Total precipitation decreases from east to west and from
northeast to southwest. The seasonality of precipitation is also very
important. Precipitation is more evenly distributed and reliable in
northern Buenos Aires than in areas to the west and south, which is a
key factor in agricultural land use. Rainfall in the Pampa of northern
Buenos Aires is generally adequate for corn and soybean cultivation and
is well distributed annually. To the west and south, rainfall decreases,
while high temveratures produce high evapotranspiration rates which re-
duce precipitation effectiveness in the extreme north. In both areas,
drought-resistant crops such as sorghum are grown rather than corn or
soybeans.

Generally speaking, the region is characterized by long, hot, humid
summers and mild winters. Chief climatic controls are landmass heating
at subtropical latitudes and the nearby Atlantic moisture source. 1In
more interior locations, the higher temperatures are ameliorated by
Tower humidity. Frost can occur during winter in interior areas, but
snow is rare, and winter climatic conditions are less severe than those
of the U.S. corn/soybean zone.

The Pampa region also can be divided into three zones arranged in
concentric crescents around the city of Buenos Aires: the Humid Pampa,
the Subhumid Pampa, and the Semi-arid Pampa, in order of increasing
distance from that city. The Humid Pampa is the center of corn/soybean
product and other crops having high moisture requirements while the Sub-
humid Pampa is used for wheat, alfalfa, sorghum and rye. The Semi-arid
Pampa is mainly devoted to livestock raising due to low rainfall,
Drought risk increases rapidly to the west of the Humid Pampa while high
evapotranspiration rates as well as seasonal flooding adversely affect
agriculture and livestock to the north of that same area.
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Soils and Vegetation. Soils within the provinces of Santa Fe,
Cordoba and Buenos Aires generally consist of fine wind-blown (aeolian)
material transported from the arid west of Argentina with the soil par-
ticles of finest texture being transported farthest eastward. The fine
wind-blown soil is powdiry yellowish loess which is an extremely pro-

ductive snil for agriculture.

Most of the soils that occur throughout the Pampa region are
classified as mollisols (see Map 5). These soils are easily worked,
very fertile and are similar to those found throughout much of the U.S.
Corn Belt,

Within the Pampa, several types of mollisols have developed due to
parent material and climate. The most extensive types are the Udolls
which occur in the Humid Pampa. The.c soils are moist, very high in
organic matter and have great agricultural potential. To the west are
Ustolls, a drier soil variant of the former type which have developed in
areas that are dry for at least 90 consecutive days annually. In southern
Cordoba, soils that are transitional between Udolls and Ustolls are found
while, in the extreme southwest of Buenos Aires, conditions have favored
the development of Aridosols, an even drier variant. The soils of Entre
Rios are also Molilisols of the Alboil subtype. These soils ar: sea-
sonally wet due to much higher precipitation and are also less permeable
due to high clay content.

The original vegetation cover of the Humid Pampa was prairie grass-
land when the first Spanish explorers arrived. Tall plumed grasses
covered most of the zone and marsh vegetation was also widespread, given
the large number of poorly drained topographic depressions. As the Pampa
was settled, this vegetation type was greatly modified through the plant-
ing of eucalyptus treees as windrows and woodlots.

Rainfall gradually decreases to the west and southwest of the Humid
Pampa and the grassland windrow vegetation of that zone gradually gives
way to short-grass steppe. In contrast, extreme northern Santa Fe and
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Cordoba 1ie along the southern margin of the tropical scrub woodland
“Chaco" zone, while central Santa Fe and east-central Cordoba are trans-
itional between the grassland-scrub of the Chaco margin and the Humid
Pampa grasslands to the south. 3crub forests as well as marshland occur
along the Parana River valley and extend far upriver out of the study
area. However, marshland areas are also found immediately to the west
in central Santa Fe province. Extensive marshiand zones also occur in
the low-1ying poorly drained "Depressed Pampa" of central Buenos Aires
as well as in some areas of southeastern Buenos Aires. Other types of
vegetation are also found. A "parkland" vegetation type consisting of
scattered trees and grassland typifies much of southern Entre Rios.

In general, existing vegetation closely corresponds to precipitation
amounts received, evapotranspiration rates and topography. Decreasing
precipitation is reflected in the southwestern and western short grass
stappes, while high evapotranspiration rates and pocr drainage are
major factors that influence vegetation in the far north.

2.4.1.3 Crop/Livestock Zones in the Argentina Study Area

Despite the relative physiographic homegeneity of the Pampa region
which characterizes most of the AgRISTARS study area in Argentina, very
substantial differences in agricultural land use, crop mix and practices
exist, due mainly to differences in rainfall amount and distribution
(see Map 6).

Zone 1 - Cotton. The cotton area shown in northern Santa Fe is a

southward extension of Argentina's major cotton production zone which
also covers parts of the provinces of Formosa, Chaco and Santiago del
Estero. Moderate rainfall, high evapotranspiration, poor drainage and
sporadic flooding of cotton plantings characterize the zone. The zone
is geographically remote from all 50 segments in the study area and is
therefore not directly relevant to the corn/soybean agronomic under-
standing efforts of this subtask.
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Zone 2 - Highlands. This highland zone in extreme northwestern
Cordoba (Sierra de Cordoba) is a non-agricultural zone and is likewise
not of direct concern to the corn/soybean agronomic understanding
effort.

Zone 3 - Livestock/Sorghum; Zone 6 - Sorghum; Zone 7 - Sorghum/

Corn/Livestock; Zone 8 - Sorghum/Wheat/Livestock. These four zones re-

present various crop mixes, but in all cases, sorghum cultivation is
significant. The zones are all located in the Subhumid Pampa, west and
northwest of the Humid Pampa centered on northern Buenos Aires. In all
four zones, sorghum along with beef livestock raising is the chief rural
activity. Zone 3 covers northern Cordoba and central Santa Fe. Live-
stock pasture is the chief land use in this zone with most sorghum grown
being forage sorghum. The sorghum plant's resistance to drought makes it
the chief crop as very little corn or soybeans are in the far north due
to moisture limitations and drought prevalence. Still, the amount of
sorghum grown in Zone 3 is much less than in Zone 6 due to high evapo-
transpiration which reduces precipitation effectiveness, except for
northeast Cordoba where more sorghum is grown. Zone 6 is a slightly more
humid area than Zone 3 and is Argentina's major sorghum production zone.
The largest portion is located in central Cordoba, while the remainder

is located in extreme western Buenos Aires. Livestock raising remains
important, but the percentage of land devoted to sorghum is much greater
in Zone 6 than in Zone 3. In addition, some soybeans are grown in the
zone. Zone 7 is similar to Zone 6, but corn is also a major crop. Zone
7 is the largest producer of corn in Argentina outside of the Humid

Pampa for reasons not clearly understood, given the low average annual
}.ecipitation for the zone, 700 mm (28 in). However, livestock acti-
vities for forage sorghum production remain important. Zone 8 is
similar to Zone 7 except that wheat production is also important. Pre-
cipitation is also slightly higher, 750 mm (30 in). Wheat production is
greatest in the northern portion of Zone 8 and gradually decreases
southward. Also, the zone accounts for less of the Argentine wheat total

C -
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than in the past as newer production zones in southwestern Buenos Aires %
have become more important. The northern part of Zone 8 is relatively |
densely populated, by Argentine rural standards, and has been an impor-
tant agricultural zone since about 1900.

Agricultural practices within the four zones are fairly uniform.

SO

Irrigation is virtually non-existent and many sorghum fields were weed-
infested due in part to the high organic content of the soil and the
lack of herbicide application which would discourage weed proliferation.
Furthermore, fertilizer use remains low due to high prices and high

natural soil fertility. Crop rotation is practiced but no consistent,
organized system exists. Land left in pasture for several years is
generally planted to forage sorghum with the decision to plant being
made in a real-time context because of weather and changing market
prices. Most pastures are unimproved in the north but alfalfa becomes
more important in Zone 6. Also, the flooding of forage crops in low-
lying areas may necessitate sudden new plantings of sorghum or oats
planted for livestock ground forage.

Zone 4 - Flax. Zone 4 covers most of Entre Rios province except

the extreme northeast. Flax is the chief crop grown in the zone with
the heaviest concentration being in central and southern Entre Rios.
Livestock raising is of some importance, as are corn and soybeans in
the extreme west-central portion. Although one segment is allocated to
Entre Rios, Zone 4 is somewhat peripheral to corn/soybean technology
development for Argentina, as flax and linseed oil production dominate
the zone's economy.

Zone 5 - Rice. Zone 5 is a southern continuation of Argentina's

major wet rice production zone, most of which islocated in Corrientes
province to the north outside the study area.
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Zone 9 - Corn; Zone 10 - Soybeans/Wheat Corn. Zones 9 and 10,
located in the Humid Pampa of northern Buenos Aires, southeastern
Cordoba and southern Santa Fe, arethe chief areas of interest relative
to the Argentina agronomic understanding subtask. Zones 9 and 10
account for approximately 30% of Argentina's corn, while Zone 10 accounts
for over 90% of the nation's soybears. Climatic conditions within the
zones are very favorable for the cultivation of both crops, but soy-
bean production is geographically concentrated in the northeastern por-
tion of the larger corn production zone (see Maps 7 and 8). Corn and
alfalfa production along withlivestock raising is important in Zone 9,

as is sunflower cultivation. Zone 10 is also important for corn culti-
vation but soybean/wheat double cropping surpasses corn in area planted
and is the chief agricultural activity. About 75% of the soybeans
grown are double cropped with wheat but this percentage may vary about
10% above or below this figure for different years.

Mechanized agricultural production is widespread in Zones 9 and
10. Although mechanization levels are lower than in the U.S. Corn Belt,
they are nevertheless high by Latin American standards. Three-to five-
bottom (moldboard) plows are used on smaller farms, while ten-to
fifteea-bottom implements are used on large properties. No-till plant-
ing is not widely practiced since plowing is considered a weed control
measure.

Planting times are governed by temperature, drainage conditions
and moisture availability. Corn is normally planted from mid-September
to mid-October in both zones and harvested in March. However, planting
and crop growth dates, as well &s harvest dates, vary with weather and
location. Soybean planting and harvest dates vary substantially depend-
ing on whether the fields are single-cropped or double-cropped after
wheat harvest. Row width for corn, soybeans and grain sorghum is 70 cm,
and that of forage sorghum anu winter wheat is 15 cm.
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Several other agricultural practices deserve mention. In some
areas of the zone, wheat and alfalfa are intercropped in the same field.
Planted wheat is mature after about 125 days and following the harvest,
the alfalfa is left for beef cattle pasture. Two major rotation
patterns are also practiced. In many cases, fields may remain in
pasture for five ur six years after which time a row crop is planted
such as corn, grain sorghum, or soybeans. Should single-crop soybeans
be planted, the land would revert *o a fallow condition following har-
vest. In cases where second-crop soybeans are pianted, winter wheat is
again sown in the field following the soybean harvest. After one or two
years of row crops, the land would be left to pasture once again and an
adjacent field planted in row crops. A second rotation pattern is the
planting of corn, followed by rye, and then corn once again, after which
time alfalfa is planted for three years.

Zone 11 - Market Gardening. Zone 11 is a zone of intensive veget-

able and fruit production serving the city of Buenos Aires. The zone,
which forms a crescent around metropolitan Buenos Aires on its northern,
western and southwestern margins, is located outside the major corn/
soybean production zone an! is not directly relevant to this agronomic
understanding subtask.

Zone 12 - Alfalfa/Wheat. This, the major alfalfa/wheat production
zone in the Argentina study area, is located to the southwest of the

principal corn/soybean growing areas. Despite its proximiiy to the
corn/soybean zone, corn production is much less and soybean production
is negligible due to decreased annual precipitation and erratic and un-
reliable rainfall patterns. Drought is a major risk in the zone and
farmers therefore plant alfalfa or wheat. Sunflowers are also of some
importance. Alfalfa is planted in March as winter forage throughout

the zone, and is cut in May, July and September. In QOctober, alfalfa is
usually planted for a second time and the process is repeated. Unlike
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the U.S. Corn Belt, feedlot fattening of livestock is not commonly
practiced in Argentina. Rather, alfalfa is the principal livestock
feed, along with forage sorghum. Winter wheat is also grown, but pro-
duction is generally less than in eastern Cordoba to the north, or areas
farther south in Buenos Aires. In some areas of the zone, wheat and
alfalfa are intercropped in the same field, Also, alfalfa is sometimes
rotated with rye to restore soil moisture. Despite drought risk,
irrigation is not practiced in the zone.

Zone 13 - Livestock Raising, Zone 13 located in central Buenos

Aires is a low-lying, poorly drained area devoted mainly to beef live-
stock raising. Corn and soybean production are not important within the
zone, due principally to poor drainage and flood risk. However, annual
precipitation is sufficiently high, 800-900 mm (32 to 36 in), to support
their cultivation. Oats, barley and rye are grown within the zone as
cattle feed but many cattle are sent to alfalfa producing areas in Zone
12 for fattening prior to marketing. Some wheat is also grown but, as
in the case of Zone 12, the amount grown is much less than in southern
Buenos Aires.

Zone 14 - Wheat/Livestock. Argentina's largest and most important

wheat growing region is located in southwestern Buenos Aires, south of
a diagonal line separating it from Zones 12, 13 and 15. Pasture, wheat
cultivation and some forage sorghum dominate rural land use but wheat
is by far the most important crop produced. Precipitation decreases
steadily from northeast to southwest to the extent that corn and soy-
bean production is preculded in the southwest. Wheat is normally planted
in June and harvested in late December. Following harvest, oats are
normally planted in wheat stubble as forage for cattle. Also, several
varieties of pasture grass are pianted, but alfalfa plantings are of
little importance, unlike areas farther north. Irrigation is rarely
practiced and many pastures are unimproved and weedy.
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Zone 15 - Livestock/General Farming. In southeastern Buenos Aires,
the crop mix is considerably different from all other zones in the Pampa.
Total annual precipitation is nearly double that of southwestern Buenos
Aires and relative humidity is much higher. In addition, the soils of
southeastern Buenos Aires are very high in organic matter (16%) and are
among the most productive in Argentina. However, poor drainage and
salinity are problems in some locales. Durum wheat, potatoes and pasture
(alfalfa) used for livustock raising rather than fattening, dominate
land use in Zone 15. Although, potato production is <avored by the cool,
moist climate as is rye and barley cultivation, the cooler temperatures
discourage the production of corn and soybeans within the zone despite

rich soils. Potatoes, which are the chief crop, are normally planted
for two years followed by the pianting of wheat, and then oats.

2.4.1.4 The Argentina Agricultural Econcmy

In 1981 the Argentine agricultural economy was adversely affected
by poor weather in some crop zones as well as severe inflation. How-
ever, positive indicators resulted from the conclusion of several new
bilateral trade agreements which will guarantze markets for agricultural
products. The nation's major cotton production zone in the far north
suffered serious flooding as a result of heavy rains in January and
February 1981. Also heavy rains in April and May 1981 delayed the har-
vest of corn, soybeans and sorghum. Secondly, the agricultural sector
of the economy was beset by high inflation which triggered successive
monetary devaluations and rapidly increasing farm production costs.
Consequently, some export rebates paid to farmers to stimulate pro-
duction subsequently had to be rescinded since they were inflationary.
High production costs continue to hold back the purchase of new farm
equipment and the implementation of new approaches. Consequently,
farmers opt to reduce costs by using traditional farming methods. The
lack of irrigation in areas where needed, poor maintenance of some
fields, and lower fertilizer consumption are examples of this situation.
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About 75% of Argentina's exports are agricultural products,
mainly wheat, corn, sorghum and soybeans. Given this, market guarantees
for these crops are a critical issue. In addition, Argentina chose not
to participate in the U.S.-sponsored Sovietgrain cmbargo initiated in
1980. In that same year, Argentina concluded a five-year agreement
with the USSR. The agreement calls for annual Soviet purchases of three
million metric tons of corn, 2.4 million metric tons of wheat, one
million metric tons of sorghum, and 500,000 tons of soybeans. A re-
negotiated agreement with the People's Republic of China was also con-
cluded in 1980 which calls for the annual sale of one million to 1.5
million metric tons of corn, soybeans and wheat to the PRC. A third
agreement between Argentina and Mexico was also signed in 1980 covering
the 1981 and 1982 calendar years, during which time Mexico will purchase
one million tons of corn, soybeans, sorghum and sunflower seed. A major
task now confronting Argentine producers is to be able to meet the new
export commitments given the high production and transportation costs
involved.

2.4.2 FIELD DATA COLLECTION

Integral parts of the Argentina/Brazil Agronomic Understanding sub-
task were the collection of ground data in Argentina during February
1981, participation in an in-country evaluation of the USDA Brazil Sampl-
ing Frame (also conducted in February 1981), and the preparation of a
ground data collection plan for Argentina for the 1981-1982 crop year.

2.4.2.1 Ground Data Collection in Argentina During 1981

During February 1981, a trip to Argentina was made by members of a
consortium composed of staff from the Environmental Research Institute
of Michigan (ERIM) and the Space Sciences Laboratory of the University
of California at Berkeley (UCB). The general objective was to begin to
gather and synthesize a wide range of agronomic informatior that could
be used as a data base by AgRISTARS researchers working on research,
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development, and testing of technology for application in Argentina.
Preparations for the trip begin in late 1980 and February was chosen as
the time frame for field work since both the corn and soybean crops
would be in advanced stages of phenological development at tiiat time.

A full trip report is contained in a separate technical report [20].

A summary follows.

The trip had several specific interrelated objectives:

(a) To become familiar with the problems as well as the opportu-
nities for collection of ground data in support of AgRISTARS
program needs.

(b) To collect crop identification data for a limited number of
fields in 14 5x6-mile sites located throughout the corn, soy-
bean, and wheat growing areas of the Argentine pampa, and to
acquire collateral data such as crop calendars, and historical
agronomic statistics.

(c) To meet with public officials representing the agronomic and
remote sensing community of Argentina in order to familiarize
them with our goals and gain their collaborative support for
this ground data collection expedition.

(d) To encourage these public offizials to consider future in-
volvement in the AgRISTARS program that would be mutually
beneficial.

A1l of the objectives, in our opinion, were achieved. The Agronomic
Understanding Task team is satisfied that its first-year data-collection
goals in Argentina were achieved. The data collected and observations
made will provide a useful foundation for future activities. Perhaps
more important is our impression that there is considerable interest
among key agency officials in Argentina in making productive use of
contemporary remcte sensing technology in agriculture. They graciously
provided support to our field trip and appear open to future participation
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in AgRISTARS-related activities. Also important to the success of the

field trip were the timely planning assistance of NASA/JSC, their rapid
response to our data needs, and the assistance and coordination of USDA
staff in securing introductions in Argentina and providing other needed

support.

During the 14-day period of field work, 14 segements were visited
(see Map 9), with assistance provided by the State Secretariat ot Agri-
culture and Livestock Raising (SEAG) and the National Commission for
Space Investigations (CNIE). Roadside observations of crop identification
and condition were annotated on enlarged color Landsat imagery of the
sites, as were field boundaries. In the case of two of the segments,
aircraft overflights made possible the identification of additional
crops in fields inaccessible by road. Over 500 ground and air photos
were taken during the inventory to provide information for subsequent
study and crop identification information for 629 fields was obtained.
Two soil samples and a small quantity of hybrid flint corn seed were
gathered and transmitted to other AgRISTARS researchers at Purdue Uni-
versity. In addition, historical crop calendar data and crop acreage
statistics were obtained for three provinces.

The trip report contains descriptive information, maps of sample
segment areas visited, and an annotated graytone Lands:t image of each
segment showing crop identification codes, field boundaries and per-
tinent remarks about individual fields where warranted. In addition, a
few copies also contain annotated color Landsat images as well as color
slides with commentaries.

The annotated crop identification data for each inventoried field
in the 14 segments were digitized and merged with Landsat data at ERIM
under ITD support, as discussed in Section 3.3.5 of this report.
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2.4.2.2 Brazil Sampling Frame Evaluat.on

The United States Department of Agriculture, Economics and
Statistics Service (USDA/ESS, Fairfax, Virginia), developed a sampling
frame for future use in a Brazil Corn/Soybean Pilot Study. In February,
two of their personnel conducted a trip to evaluate it. Dr. David R.
Hicks of ERIM was invited to accompany them since he had extensive
agronomic field expei ience in southern Brazil and spoke Portuguese.

Previously annotated Landsat images showing percentage of land
under cultivation and the percentage of land devoted to corn/soybean
production were brought into the field by team members so that their
accuracy could be assessed through ground truth checks. In addition to
assessing the accuracy of prior percentage estimates of agricultural
land use, the team paid special attention to the problem of small field
detection.

Trips were made to six cities in the southern Brazilian states of
Parana, Santa Catarina and Rio Grande do Sul. From those cities visits
were made to selected outlying agricultural areas for the purpose of
evaluating the annotated Landsat imagery as a potential sampling frame.
The sampling frame evaluation proved to be generally successtul, i.e.,
the percertage cata shcwn ¢ the anrotated Landsat imagery were quite
accurate upon being compared with ground truth checks. However, the
percent of land classified as agricultural on the Landsat in the plateau
escarpment area west of Curitiba in Parana state was greatly overesti-
mated. Secondly, the detection of small fields on Landsat images was
not possible, as was anticipated. The results of this evaluation appear
in a subsequent USDA trip report [21], as well as in Notes for Brazil
Sampling Frame Evaluation Trip published by ERIM in August 1981 [22].

The trip, in addition to its original purpose, served as an
opportunity to obtain a general understanding of crop-livestock systems
in southern Brazil. Some agronomic data also were obtained as were
numerous soil samples. This reconnaissance should provide a useful
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background for future studies of and visits to Brazilian corn/soybean
zones, should a cooperative program be developed.

2.4.2.3 Argentina Ground Data Collection for 1981-1982 Crop Year

A key objective within the Argentina/Brazil Agronomic Understand-
ing Subtask was to identify research needs and establish requirements
for future data collection missions in Argentina that could build on
information already obtained in and from that country. In response to
this need, a collection plan for 1981-1982 crop year was prepared at
ERIM [23]. This same plan was subsequently translated into Spanish
and also published that same month [24]. The document outlined plans
for data collection and field research in Argentina for 1982 through
1984 and proposed steps to be taken by United States and Argentine
researchers and government agencies to achieve mutually beneficial
objectives.
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2.5 INFORMATION EXTRACTION TECHNOLOGY RESEARCH

This section describes work carried out during FY81 to better
understand the temporal-spectral development patterns (profiles) of
corn and soybeans. To that end, a technique was defined for deriving
standard profile features from spectral data collected at different
times, years, and/or intervals. The technique was then applied to
field reflectance data collected at the Purdue Agronomy Farm by per-
sonnel from the Laboratory for Application of Remote Sensing (LARS),
after which changes in those features as a function of treatments
applied to experimental plots were quantitatively assessed, and compared
to expectations derived from review of relevant literature in the area
of agronomic research.

This work, summarized in Sections 2.5.2 and 2.5.3, represents the
initial phase of an ovevall data analysis approach described in Section
2.5.1. Details of the analyses are available in Reference [25].

2.5.1 OVERALL APPROACH

The evaluation of crop spectral characteristics as viewed by Landsat
is hindered by a number of largely external factors. First, atmospheric
effects, illumination geometry, and similar phenomena result in varia-
tions in cignal values entirely removed from the characteristics of the
crop being viewed. Second, misregistration and ground truth errors can
create substantial problems with regard to obtaining a pure sample of a
crop. Third, and for the present purpose most important, environmental
conditions, cultural practices used, crop development stages, and similar
pieces of data are unavailable and/or imprecise for the majority of
Landsat data.

As a result of all these factors, conclusions drawn with regard to
crop spectral characteristics, crop separability, or classification
techniques which are based largely or entirely on Landsat data will be
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extremely dependent on the particular set of data employed. A better
approach to deriving information about crop appearances in Landsat data
is to begin as close to the plants themselves as possible and, in effect,
to step back by increments, moving farther away from the plants or field
at each increment, but utilizing the results of the previous higher-
resolution steps as a context in which to evaluate information obtained
at the present level.

This approach recognizes that the basic elements of interest in
classification or interpretation of Landsat data for agricultural appli-
cations are not pixels, but rather collections of biological entities.
The better we understand workings at the plant or plant population level,
the better able we will be to understand and utilize Landsat data in
deriving crop-related information.

In practice, this approach to crop spectral understanding consists
of some or all of the following steps:

1) Determining relevant physiological, cultural, and environmental
influences on those characteristics of plants or plant populations likely
to influence their spectral appearance. This involves review of litera-
ture in the field of agronomic research and, frequently, gleaning of per-
tinent information from reports of experiments whose purposes are far
removed from remote sensing interests.

2) Modeling the effects of these influences on crop spectra. A
model such as that described in Section 2.6.1 provides a means of assess-
ing the spectral expression of particular changes in crop characteristics
while keeping all other factors constant.

3) Evaluating field reflectance data to determine or confirm the
effects of key factors on crop spectral characteristics. This step pro-
vides the crucial link between the modeled data and the real world, but
maintains a fairly high degree of control over confounding effects.
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Results of modeling, and the plant-level information gathered at earlier
steps, provide a context in which to understand the results obtained
through field data analysis.

4) Evaluating Landsat data to adjust expectations and conclusions
formulated at the other levels. Having established a foundation and
context through the previous analyses, one can analyze Landsat data,
in conjunction with whatever associated information is available (crop
labels, weather data, etc.), and better understand and explain what is
seen there. The quantitative results of the previous levels are com-
bined with a Landsat data set that is probably larger, more geographi-
cally widespread, and more variable in terms of crop mix and growing
conditions, to allow more comprehensive evaluation of crop spectral
characteristics.

2.5.2 CURVE-FITTING TECHNIQUES FOR ANALYSIS OF CROP SPECTRAL
DEVELOPMENT PATTERNS

Analysis of crop spectral data collected at discrete intervals,
and particularly at irregular discrete intervals, is often restricted
by the absence of observations at key times in the crop development
cycle. In addition, comparison of data from different plots or loca-
tions is hindered by the temporal mismatch of observations between
plots. Even when all plots are observed on the same days, planting
date differences cause a mismatch of data with respect to some sort
of ‘effective day' time scale (e.g., days since planting). In order
to make meaningful comparisons among several plots, some method must
be devised by which the spectral characteristics of the plots may be
described in a standard fashion.

The technique developed at ERIM for this purpose consists of two
elements: a standard set of features, and a curve-fitting technique
for deriving those features for any particular plot.
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Profile Features. Analysis carried out in FY8] used Tasseled-Cap
Greenness as the spectral variable. The Tasseled-Cap transformation,
and its adaptation to reflectance data, are described in Section 2.5.3.
Figure 2.9 shows a typical, simple Greenness profile, and illustrates
the set of features used in this analysis. These features represent a

basic set of parameters to describe any simple curve of more or less a
bell shape. Particular crops may warrant additional features, although
this standard set should still be appropriate. For example, corn data
tend to appear as a flattened bell shape (Figure 2.10). This shape has
been observed both in spectral data [26,27] and in other agronomic varia-
bles (e.g., leaf area index) correlated to Greenness [28]. While addi-
tional features were not used in the analyses described in Section 2.5.3,
some possible additional features are described in Figure 2.11. Use of

a spectral variable other than Greenness would simply require that a new
set of features be defined.

Curve-Fitting Technique. In order to use the profile features just
described, the intermittent spectral data must be transformed into a

smooth, continuous curve.

An approach which offers some smoothing of irrelevant data variation
without the complexity of empirical modeling is the use of a curve-fitting
function tc derive a new set of smoothed data based on the original obser-
vations. As long as one can be reasonably confident that the majority
of data taken over a particular plot is free from major external effects,
that is, that the outliers in a set of observations are the contaminated
rather than the pure data, then a curve-fitiing technique can provide
some more or less-precise correction for major externally-induced varia-
tions.

Work toward selecting a smoothing technique involved less an exhaus-
tive evaluation of all possible approaches and more an evaluation of a
few particular techniques which were readily available and comprised
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something of a sample from the range of possible approaches. Because
the corn Greenness profile is a more complex shape and therefore a more
challenging problem for curve-fitting, corn data were used in the com-
parison of curve-fitting approaches. The simpler nature of the soybean
Greenness profile can be well described with a number of techniques.

Six techniques were evaluated: polynomial regression, least squares
approximation using cubic splines with variable knots, a cubic smoothing
spline, a non-linear filtering algorithm developed at ERIM called the
Rolling Ball algorithm [29], a three-parameter profile model originally
developed for small grains [30,31], and a five-parameter model developed
at ERIM specifically for corn.

Evaluation of the techniques took a number of forms. A1l the tech-
niques were applied to the set of corn reflectance data described in
Table 2.8 of Section 2.5.3 (118 total plots from 3 years), with the
previously described set of profile features computed in each case.
Evaluation criteria included overall performance and stability, residual
errors, ability to detect significant treatment effects on the experi-
mental data, and ability to reproduce the flattened peak of corn.

It should be noted that the spline techniques and the Rolling Ball
algorithm, as well as the polynomial technique to some extent, are
usually used in an interactive mode, with parameters tuned for each
individual curve fit. However, to be of use in the evaluation of many
plots (as in this application), the techniques must be automated. Thus
the degree of the polynomial, number and spacing of knots, smoothing
parameter, and ball diameter sequence were all fixed, based on results
of a more intensive interactive application of the techniques to a sub-
set of the data.

102



R

D ERIN

Comparison of Techniques, While all the techniques tended to detect
most of the same treatment effects in the profiles, the profile models,
or at least the non-linear least squares techniques used to fit them,
were more likely to fail in attempting to find a solution for any indi-
vidual data set. A1l the other techniques successfully fit most or all
of the data. Figure 2.12 provides an example of results obtained using
the six curve-fitting techniques on the same set of data; residual errors
are plotted vs. time from estimated peak in Figure 2.13 for the entire
data set analyzed. These data provide a clear example of the flattened
peak of corn, and include observations spaced throughout the growing
period of the crop. The results displayed illustrate many of the find-
ings of the curve-fitting comparison,

First, both polynomial regression and least squares approximation
by cubic splines with variable knots tended to catch some of the flat-
ness, but included extra loops or dips, particularly in the tails of the
profile. Reducing the complexity of the curves (degree or number of knots)
eliminated these extra slope inflections, but also reduced the ability of
the functions to reproduce the flattened peak.

The Rolling Ball algorithm avoided the dips or ringing at the tails,
but tended to smooth out the fairly sharp corners associated with the
beginning of the flattened peak. The 5-parameter or Corn model, on the
other hand, tended to produce too sharp a corner and, in addition, tended
to overestimate data values early in the season {not as clearly illus-
trated in this particular plot, but readily apparent in the residual
plots in Figure 2.13(f). The simple 3-parameter or Wheat model failed
to provide a flattened curve, since it has no mathematical mechanism to
allow for such a result. This shortcoming is highlighted in Figure
2.12(e).

Of the six techniques evaluated, the cubic smoothing spline algo-
rithm produced the most intuitively appealing results, captured the
flattened peak most often, and accurately fit the data throughout the
season.

103



ORIGINA

L PAGE '3

UAL“Y
ERIM oF POOR 8
§ Polynomial - (a) 5 Least Sqs. Spline -
6th Degree Var. Knots (h)
Bg gg
4
5 5
s 4 :
L—L’g “ (XY » ga of s
&
=
a8 a3
& 5
'Y . i — 1
Somv 4000 8000 12000 \eo. stum T 00 e 12000
DAYS SINCE PLANTING DAYS SINCE PLANTING
B
g Cubic Smoothing (c) 5 Rolling Ball (d)
Spline Algorithm
o3 =
z %
ot [
by . ] .
dg i, 5% R _
& 4
-4
&2 B3
(&) (3]
5tmo 000 6000 12000 160.00 3u.uu W00 6000 12000 16000
DAYS SINCE PLANTING DAYS SINCE PLANTING
g 3-Parameter or s 5-Parameter or
Wheat Model (e) Corn Model (f)
u ¥V
24 o
— -
g §8 .
_' »
) R 3
7 9
=
§§ gé
&l R TR TITTICT
DAYS SINCE PLANTING

4000 9000 120,00 160,00
DAYS SINCE PLANTING

FIGURE 2.12. EXAMPLE CURVE FITS - PLOT 44, 1979 CORN
CULTURAL PRACTICES EXPERIMENT

104

b=



[ ——

2

t

ORIGINAL PAGE IS
OF POOR QUALITY

105

r
N POLYNOMIAL - nch DEGREE (a) LEAST SQUARES SPLINE - VAR, KNOTS (b)
S. 5,
5 ]
3 [V - 1 0.
E 3
3 - g
-5, -S.
-3, -9,
-0 -50. 0. s0. [N -90, -30. 0. [TR 90.
DAYS FROM ESTIMATED PEAK DAYS FROM ESTIMATED PEAK
CUBLC >MOUTHING SPLINE (C) ROLLING BALL ALCORITIM (d)
s, S,
L3
3 3
3 3
4 QJ 2 0.
2 g
M k
F 4
-5, -5,
- -9-
e, =30, 0. s0. S0, =90, ~30. 0. %0, W,
DAYS FROM ESTIMATED PEAK DAVS FROM SSTIMATED PEAX
-PARAMETER or wHEAT MODEL (@) *-PARAMETER or CORN MEL ()
3, v,
5, S.
2 g
3 3
NN . = .
2 8 3
g e 3
-3, -3,
.9, -9.
-0, LA, o, 50, 0. -90, -0, g, S0, 90,
JAYS FRON FSTIMATED PEAR DAYS FROM ESTIMATED PEAK
FIGURE 2.13. RESIDUAL ERRORS FROM CURVE FITS - 1979 AND 1980 CORN DATA



D ERIM

As a result the cubic smoothing spline was selected for use in sub-
sequent analyses of field reflectance data. The same cubic smoothing
spline technique was evaluated, in a more abbreviated fasnion, for the
soybeans data, and found acceptable. In the analyses reported in the
Tollowing sections, all curve-fitting was done with this technique.

2.5.3 CULTURAL AND ENVIRONMENTAL EFFECTS ON CORN AND SOYBEANS
SPECTRAL DEVELOPMENT PATTERNS

The curve-fitting technique described in Section 2.5.2 was applied
to reflectance data collected over corn and soybeans plots by and at
Purdue/LARS. Included were data collected using an Exotech 10C Landsat
band radiometer as we'l as data collected using an Exotech 20C spectro-
radiometer. Exotech 20C data were converted to Landsat band reflectances
by multiplying by Landsat sensor relative spectral response curves and
integrating over wavelength. Multiple observations of a single plot on
a single day were represented by their mean.

In order to simpiify analysis of the spectral data, and to provide
spectral variables that are readily associated with physical phenomena,
a transformation was used which captures the majority ov data variability
over agricultural regions in two variables. It was based on a transfor-
mation, derived for Landsat data, which is termed the Tasseled-Cap trans-
formation [32], and produces two variables which typically corizin more
than 95% of the total data variation in an agricultural scene. Bright-
ness, the first variable, corresponds to the snectral direction in which
the majority of soil brightness variation is found. The second variable,
Greenness, is orthogonal to Brightness, and is an indicator of the amount
of green vegetation present in the scene.

A rotation of the principle components plana of the fielu reflectance
data was used to provide Tasseled-Cap equivalent values. The final trans-
formation determined to derive Tasseled-Cap equivalent variables from the
raw Landsat band reflectances is:
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A small degree of subjective data screering was also carried out.
A few observations that were clearly abnormal were deleted, and several
entire plots were deleted, either because they showed substantial noise
overall or because they lacked acquisitions in a large and significant
portion of the growing period. Elimination of plots with excessive noise
or too few observations resulted in a data set consisting of 118 corn
plots and 171 soybean plots in eight experiments from 1978 through 1980,
as detailed in Table 7.5.

After applying the techniques previously described, a series of
oneway analyses of variance was carried out to determine the significance
of effects of the various experimental tieatments on the derived profile
features. The following sections provide a summary of the results of
these analyses. Details may be found i1 Reference [25].

2.5.3.1 Corn Results - Summary

The effects of Nitrogen fertilization, planting date, and plant
population were evaluated with regard to their impact on features of
corn Greennecs profiles. A1l were found to significantly affect the
Greenness development of the test plots.

Addition of Nitrogen (which promctes vegetative development) to a
plot increased the peak Greenness values and the length or duration of
the flazttened portion of the profile. Both of these effects are indi-
cators of more lush, vigorous vegetation. A 25% (5 count) difference
in peak Greenness was observed from lower to higher fertilization levels.

Planting date differences were spectrally expressed in the height
an! time of occurrence of the peak profile value. Later planting always
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TABLE 2.8.

Year

1978
1979
1979
1979
1980

1979
1979
1980

USED IN ANALYSIS

Exper iment Name

Corn Nitrogen

Corn Nitrogen

Corn Cultural Practices
Corn Soil Background

Corn Cultural Practices

Soybea~ Management
Soybean Cultural Practices

Soybean Cultural Practices
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CORN AND SOYBEAN REFLECTANCE DATA

#f Plots

13

9
34
10
52

69
46
56
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caused the peak value to occur sooner, as emergence and early growth
were promoted by warmer temperatures. The effect on the magnitude of
the peak, however, was variable with time. Peak Greenness values in-
creased from very early to more medium planting dates, probably as a
result of the colder, less conducive environment encountered by the

very early-planted plots. As planting was delayed later, peak Greenness
values tended to decline again, probably an indication of the stresses
encountered by later-planted crops in the heat of the summer. Peak
Greenness variation was similar to that observed in the Nitrogen experi-
ment, with 27% (4 counts) variation, while planting delays hastened the
time of peak by as much as 15 days.

Plant population also affected the height and time of occurrence
of the peak Greenness value. Increasing the number of plants per hectare
resulted in an earlier peak value, a reflection of the increased competi-
tion and accompanying increase in development rate, and also produced a
higher profile peak. The higher peak was most likely the result of in-
creased Green biomass, and reduced shadow and soil background in the
sensor field of view. Not detected was an earlier decline in Greenness,
which would be expected when the increased competition and associated
increase in growth rate causes the plants to use up the aveilable nutri-
ents and water. This may have been an indication of the favorable grow-
ing conditions encountered by most of the plots during most of the vege-
tative phase (the latest planting dates were not included in this analysis).

Population-related peak Greenness variation ranged from 41 to 62%
(7 to 8 counts) in 1980, but only 22 to 32% (4 to 6 counts) in 1979.
Variations in time of peak were 11 to 33% (9 to 18 days) in 1980, and
14 to 32% (10 to 23 days) in 1979. Other profile features were found
to be significantly affected by population in oniy one of the years.

109




RN

2.5.3.2 Soybean Results - Summary

The effects of variety, planting date, row spacing, and plant popu-
lation on Greenness profile features were examined. A1l had some degree
of impact, with population effects of least significance.

Soybean varieties differ considerably in growth habit, length of
growing period, response to environmental changes, and other character-
istics. Four varieties were available for comparison including samples
from two maturity groups, a semi-dwarf determinate variety, and a "thin
line" variety.

Although a seasonal effect was evident between 1979 and 1980, the
class III (later maturing) varieties generally showed a slower Greenness
decline than the class II (earlier maturing) varieties. The semi-dwarf,
determinate, class III variety reached higher peak Greenness values and
exhibited a more rapid green-up rate than the larger, indeterminate,
class II varieties. Tihe bushy class III variety also achieved a higher
peak than the thin line class Il variety. In addition, differential
responses to row spacing and plant population were noted and are dis-
cussed later. Varietal peak Greenness differences ranged from 6 to 12
(2 to 4 counts), and occurred as much as 5 days apart.

These results are consistent with the described characteristics of
the varieties. The later-maturing varieties stayed green longer, the
more compact semi-dwarf cast fewer shadows and thus reached a higher
peak Greenness, and the bushy varieties filled in the space better than
the thin line variety, and so achieved a higher peak value.

Planting date effects are, as previously indicated, strongly con-
nected to temperature and its effects on emergence and vegetative cevelop-
ment. Later planting tended to increase peak Greenness values, although
very late plantinq was accompanied by a reduction in the profile peak.

The time of peak was substantially influenced, occurring much earlier
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for later planted plots. Some indication of a reduced effect on maturity
date as compared to vegetative development was seen in a lengthening of
the Greenness profile after the peak for later planted plots, as would

be expected. Planting-date-related variation in peak Greenness was

about 16% (5 counts), while plots planted in early July reached their
peak value in 42 fewer days than those planted in early May.

Increasing the row spacing in a soybean plot reduced peak Green-
ness, since more soil and shadow was in view. The rate of green-up was
reduced, and the rate of Greenness decline increased, again largely due
to the percentage of the field of view occupied by non-green components.

A hastening of the time of peak Greenness was observed with narrower rows.
This was probably due to an earlier achievement of complete canopy
closure. If so, it should be noted that for soybeans, the time of peak
Greenness cannot be clearly associated with any particular development
stage. Varietal differences were observed. Peak Greenness values

varied some 12% (4 counts), with 8 to 11 day delays in the profile peak.

The impact of population should be of a similar nature to that of
row width. However, possibly as a result of the soybean plant's tendency
to fill in the available space, very little effect was detected. FPeak
Greenness values tended to increase with population, but the variability
present at the highest populations rendered the increase statistically
incignificant.

2.5.3.3 Evaluation of Curve-Fitting Technique

Overall, the technique described in Section 2.5.,2 performed as
desired. The cubic smoothing spline technique fit the soybean data,
and much of the corn data, very well. The extraction of standard pro-
file features allowed ready comparison of plots with different planting
and/or observation dates, and characterized the continuous profile in a
manageable number of variables. With these variables, quantitative
analysis of experimental effects was greatly facilitated.
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In the course of analysis, two improvements to the procedure were
suggested. First, even the cubic smoothing spline algorithm failed to
detect the flat peak of corn data when insufficient data points were
available, especially when the sparse data occurred just before or on
the plateau. Given the expectation of a flattened peak, one could often
see such a feature in the data when the spline technique had not.

The 5-parameter corn model, which is designed to function with a
similar expectation, also detected flat peaks when other techniques
did not (Figure 2.14 provides an example), although that model had
other weaknesses. Most desirable would be a curve-fitting function with
the flexibility of the cubic smoothing spline, but also the prior expec-
tation of crop development that would allow it to draw a "corn-like" or
"crop-like" profile even with sparse data. Development of such a func-
tion would greatly increase the power of this analysis technique for
corn data.

The second suggested modification to the analysis technique regards
the rate-related features. As described, half-peak values are used as
critical points in measuring time intervals. However, in some cases
it appeared that treatment effects were missed because of significant
increases in the peak value, which of course resulted in increased half-
peak values. Time intep4a1s related to half-peaks were thus based on
the achievement of subétantia]ly different Greenness thresholds, and rate
differences between treatments were, at least to a degree, normalized.
While half-peak values may provide useful information, rates might
better be computed, or at least also be computed, based on fixed thres-

holds, i.e., compute absolute rates of change in Greenness %% as opposed
to relative rates 5§Z§?ﬁui.

2.5.4 CONCLUSIONS AND RECOMMENDATIONS

The analyses of field reflectance data presented in the previous
sections provide a clear indication that a number ~f commonly varying
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field characteristics can exert a substantial influence on the spectral
appearance of crops. Such key features as the maximum Greenness value
and rate of green-up can be altered significantly by varying any one of
a number of parameters including Nitrogen fertilization, planting date,
variety, and plant spacing. In a real-life situation where any or all
of these characteristics may vary, the likely effects on crop spectral
appearance will be considerable. Such variability must be taken into
account in any crop identification technique, whether carried out by
human anaiysts or computer algorithms. In addition, this type of infor-
mation is of critical importance in the design and implementation of
accurate, useable simulation systems.

The work presented is, however, only a first step. Expanding the
Greenness profile analysis for corn to include the new features des-
cribed in Figure 2.11, which specifically relate to the flattened peak
or "plateau" observed in corn Greenness data, and applying a similar
analysis technique to the understanding of Brightness profiles and
their sensitivity to cultural and environmental factors, will provide
still more insight. The derived profile features could also be used
to determine, again on a quantitative basis, the similarities and
differences between corn and soybeans profiles, and the effect of the
various treatments on their separability.

Finally, of course, the insights gained through field data analysis
must be applied to real Landsat data. The loss of control over crop
parameters, the inclusion of an atmosphere, the degradation of resolu-
tion, and the mixing of the independently evaluated factors, as well
as others not even considered, will likely cause some of the observed
and/or predicted effects to be reduced, while others will be intensified.

Controlled experimentation provides a foundation and a context, but
it cannot completely replace real data, nor can crop inventory techniques
be derived from field data alone, It is the progression from physiological
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understanding through modeling and field data analysis to Landsat data
analysis that brings the experimental data and understanding into the
real world, while at the same time anchoring the uncertain real world
to some reliable and stable points of reference.
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2.6 SIMULATION, MODELING AND ANALYSIS

Simulation models are designed to capture one's best understanding

~of how the "real world" operates and can be used for many purposes.

They can help rank the importance of multiple factors, predict the
nature of responses to those factors individually and in concert, help
in analysis of existing measurements and empirical data sets, make pre-
dictions for unmeasured conditions and situations, and guide the speci-
fication of new measurement and analysis efforts. They can be used in
the design of new sensors and to develop preliminary analysis procedures
and predictions of performance in advance of new sensor operations.

Past simulation models have not adequately represented the full
range and character of factors that affect remotely sensed data. For
example, in agricultural applications such as AgRISTARS, the effects
of crop physiological parameters, meteorological variables, and atmos-
pheric and sensor characteristics on spectral observations currently
are not well enough understood. Field measurements are not practical
under all the observation conditions and situations necessary to fully
explore the nature and range of variation, so improved simulation
models are appropriate.

This section describes three substantial developments in simulation
modeling capability. The first two relate to a simulation tool that
ERIM is developing named the "Seed-to-Satellite Model" [33]. Its pur-
pose is to help analysts better understand factors that affect the ob-
servable spectral responses of crops, analyze data sets that have been
acquired by Landsat, and develop improved information extraction tech-
niques. It has modules to model crop reflectances, atmospheric effects,
and sensor spectral responses, modules that have been used in previous
analyses [34,35]. It can also help in preparation for Thematic Mapper
data and data from other sensors.

PRECEDING EAGE BLANK NOT FoLmpp
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The first development involved incorporating, for the first time,
a meteorologically driven, physiological growth model for a crop and
interfacing it with a bidirectional reflectance model for vegetation
canopies.

The second substantial development was modification of the Suits
bidirectional reflectance model for vegetation canopies to incorporate
row effects as observed in many agricultural crops.

The third development was of a capability to simulate the spatial
and spectral effects of Landsat when viewing agricultural scenes. This
capability includes representation of the temporal-spectral profiles
»f crops and variations of planting dates and crop vigor on a field-
by-field basis. It also incorporates the full two-dimensional point-
spread function of the Landsat MSS to permit detailed simulation and
analysis of mixed pixels and field boundary effects.

2.6.1 SIMULATION OF THE SPECTRAL APPEARANCE OF WHEAT AS A
FUNCTION OF ITS GROWTH AND DEVELOPMENT
The objective of this simulation was to provide an understanding
of the connection between important agronomic features of an agri-
cultural crop and the satellite signais that are received from that
crop.

The agronomic features of general interest are crop type, crop
vigor, and ultimate yield at .ne end of the growing season. On the
ground, the crop type can be determined from the taxonomy of the indi-
vidual plants. Crop vigor and yield predictions can be inferred from
the size and morphology of the plants and the size, number, weight,
and color of plant compunents - such as, leaves, stems, flowers, and
heads of grain. The same plant components and plant morphology also
partially control the signals received by satellites, by way of their
radiometric properties.

118



D ERIN

A simulation, which incorporates a physiological growth model for
a crop as an intermediary, can supply that outpuc signal which can be
used for vigor and yield estimates as well as estimates of plant com-
ponent number, sizes, color and morphology for signal calculations
that are important for crop identification procedures. Laboratory mea-
surements of the radiometric properties of actual components, a canopy
reflectance model and atmospheric scattering model can then he used to
predict the corresponding signals received by the satellite. In this
way, the connection between agronomic features and satellite signals
is made by means of the growth model and the other models.

During the reporting period, the problem of incorporating a crop
physiological growth model into the Seed-to-Satellite Model and inter-
facing it to the Suits reflectance model was addressed. Wheat was
selected as the first crop to be investigated.

2.6.1.1 Summary Description of the Simulation for Wheat

The block diagram showing the logical structure and information
flow through the wheat simulator is shown in Figure 2.15. The wheat
growth model is the November 1979 version by Ritchie [36]. The growth
model requires a number of input parameters representing genetic in-
fluences, environmental influences (soil-moisture and weather para-
meters), and planting density. Growth occurs through several stages
that can be identified with Feekes scale numbers. The day-by-day out-
puts of the growth model are green leaf area index, number of active
tillers, change in leaf area, and qrain weight (where appropriate).

Since all of the plant components which are radiometrically sig-
nificant are not supplied as outputs, a canopy geometry interface is
required to complete the physical description of the crop. For our
purposes, we derived quantitative relationships from field data col-
lected for wheat by Jackson and Pinter [37] and scaled them to the
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growth model LAl and active tiller number output at the equivalent
Feekes scale of the qrowth model. New leaves differ spectrallly from
old leaves. Sloughed off dead leaves and some dead tillers are part
of the growth process. They are radiometrically important and do not
disappear from the field but, rather, record by their presence the
charactr-istics of the growth process predicted by the growth model.

The spectral p-operties of the components of the wheat plant
were obtained from laboratory measurements made previously at ERIM of
samples of Kansas wheat. There are likely to be some varietal differ-
ences in such spectra, particularly between wheat suited to different
moisture conditions. An average soil spectrum from measurements made
by Condit was utilized. The spectra of soil upon which the crop is
planted is often an important cause of crop reflectance variation which
is purely coincidental with the crop development. Such variation can
make the connection between agronomic features and received signals
more obscure.

The size, number, orientation and spectral properties of the plant
components are the inputs to the canopy reflectance model. The uniform
canopy reflectance model of Suits [38] was used in this simulation;
three layers were employed. A fixed sun angle and a nadir view angle
were used for the simulation parameters for Landsat,

The atmospheric scattering model has not yet been introduced into
this simulation. The spectral responses of the Landsat channels were
used to determine the relative signal values which would be received
by Landsat if perfect corrections were made for atmosphe *ic attenua-
tion and path radiance. These signal values were also converted into
reflectance-space-equivalent Tasseled-Cap transformed signals, i.e.,
Reflectance Brightness and Reflectance Greenness.
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2.6.1.2 Initial Results of Simulation

Simulation of a single growing season for wheat was made. The
time locus of points on the relectance Brightness-Greenness plot shows
the characteristic path of wheat in the Tasseled-Cap plane; in Figure
2.16, Feekes scale indications are given for selected times. Feekes 2
is the beginning of tillering where the vegetation cover is nearly un-
detectable. The progression through tillering and stem extension to
Feekes 9 corresponds to the rapid vegetative growth of the canopy.
Between Feokes 9 and Feekes 10 the LAI continues to increase with the
flag leaf at the top of the canopy becoming fully extended and mature.

Between Feekes 10 and Feekes 11 the wheat goes from boot stage to
a full development and extension of the head over the flag leaf. At
Feekes 11, stem and head ti%1 the tun layer (Layer 1) of the canopy,
stem and mature leaves occupy Layer 2, the next layer down, and dead
leaves, any dead tillers from previous growth, and active green stem
occupy Layer 3 next to the soil. This particular growing season's
weather into the model resulted in very little dead tissue in this
lowest third layer. From Feekes 11 to 11.4 the brads ripen and the
wheat leaves and stem die and change color. Feekes 12 represents the
harvested field where only the dead stubble and tissue in Layer 3 remain.
Everything above Layer 3 has been cut and carried away. The position
of Feekes 12 will change with harvesting practice.

The sharp cornered transitions in the plot are artifacts of the
simulation where all wheat in the field developed in perfect synchronism
and the leaves died off abruptly. In actual fields, there is a spread
in the stages of development which will cause these corners to be
rcunded. This spread will have to be introduced in later simulations.

The simulated maturation nf the new and upper leaves of the canopy
between Feekes 9 and Feekes 10 also contributed to the path shown on
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the Tasseled-Cap diagram. The choice of when and how fast to change
from immature to mature green leaf spectral properties is a decision
required for the simulation. Unfortunately, the growth model is mute
on the significance of this detectable transition. The yield predic-
tions by the growth model depend, in part, upon total leaf area rather
than leaf area in a particular portion of the canopy. The remotely
sensed signal on the other hand depends largely upon the scattering

in the upper portion of the canopy when LAI is near maximum. In sub-
sequent simulations, we have let leaves mature in a fixed number of
days after their emergence.

Figure 2.17 shows one of several parametric studies we performed
on various canopy parameters. This was a study of the effect of head
size on the time trajectory in the Tasseled-Cap plane. The head length
of 8 cm was taken as "normal" and a variation in head length from 6 cm
to 10 cm shows that the variation in the Feekes 11 to 11.4 transition
is clearly affected. The results emphasize that even small plant com-
ponents which are consistently located at the top of the canopy have a
much larger effect than one might suspect purely from the size and
number of such components.

2.6.1.3 Summary and Conclusions

A number of other parametric studies were made to determine the
sensitivity of each separate parameter upon the Tasseled-Cap and
MSS5-MSS7 plots of Landsat-equivalent reflectances. The variation
of each parameter revealed the timing and magnitude of the variation
in Landsat signals which could be expected. However, while each para-
meter in the canopy geometry interface was at all times consistent
with the Growth Model outputs, the Growth Model outputs were insuffi-
ciently detailed for determining all of the needed parameters in the
Canopy Geometry Interface. Consequently, we had to use the empirical
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observations of Jackson and Pinter with scaling rules to complete the
canopy description.

Clearly, the Canopy Georetry Interface is the weak link in the
simulation. The parameters in the Interface should be causally con-
nected to the same physiological yrowth process as are the agronomic
features but the growth model wdas designed to predic* the agronomic
features rather than the concurreat expression of the growth and con-
ditions of plant ccmponents wi'.hin the canopy that control satellite
signals. The causal conneciion between the Growth Model and Geometry
Interface is incomplete.

The situation s cumj .rable to the position of a practicing physi-
cian who utilizes various symptoms of the patient to arrive at a diag-
nosis of a disesse. Medical research could fully explore and understand
the disease process and the manner in which the disease causes destruc-
tion of vital organs - the central issue of course. Yet the same disease
process can also produce concurrent symptoms which, by themselves, are
not directly involved with the destruction of vital organs but could be
used as causal connections or symptoms of the impending destruction.

If medical research ignores the latter connection, the physician has
little ur no diagnostic power,

We, in remote sensing, are attempting to diagnose agricultural
fields using satellite signals as symptoms. Our modeling has traced
the causal connection down to the Canopy Geometry Interface but the
growth model, addressing the central issues of economics, fails to
connect completely the growth process with the concurrent features
which we use as symptoms. Our use of empirical observations and scaling
relations are not necessarily causally connected to the growth process.
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2.6.2 THE EXTENSION OF A UNIFORM CANOPY REFLECTANCE MODEL
TO INCLUDE ROW EFFECTS

2.6.2.1 Introduction

Many crops are planted in rows Ly machinery. 'lpon emergence of
the plants, the bare soil between rows is still the dominant feature
which reflects incident daylighkt. As growth continues, the vegetation
grows both higher and spreads out over the inter-row regions, covering
the bare soil. At some time during the growing season, the soil is
covered enough that the bare soil between rows is no longer a dominant
feature. The vegetation canopy becomes essentially laterally uniform
in its radiation scattering properties. The alteration nf incident day-
light can be understood and calculated by a previously developed uniform
canopy reflectance model [39] at this stage of growth.

However, for a considerable time during the early part of the grow-
ing season, the strips of bare soil between rows and the increasing
density of vegetation along the rows become equally important in their
contributions to canopy reflectance. One may intuitively understand
that the direction of sunlight relative to the row direction will change
the relative influence of vegetation and bare soil, When the sun is
directed along the row direction, the bare soil is fuliy illuminated
but. when the sun is directed across rows, the soil is largely in the
shadow of the standing vegetation along the rows. Thus, Landsat can
receive different signals due only to the way the rows trend relative
to sunlight. An inference that such altered radiation is due to a change
in some important agronomic feature could be in error,

The following text reviews the concepts, nomenclature, and symbols
of the uniform canopy model in order to form the logical basis for its
modification to incorporate the "row effect". The concept of density
modulation is introduced to account for the row structure of a canopy

and the manner of calculation using such a concept is described.
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The extended model is applied to wheat in rows. The results are
similar to those of field measurements. The red band, Landsat MSS
Band 5, is most sensitive to row direction because of the usual large
contrast between vegetation and soil. Reflectance in this band may
easily vary by a factor of two with changing row direction. The IR
bands, Landsat Bands 6 and 7, are least affected by row direction be-
cause of low contrast between soil and vegetation and because of the
large amount of diffuse flux scattered to soil by the vegetation.

2.6.2.2 Review of the Uniform Canopy Model

The uniform canopy reflectance model consists of a number of infi-
nitely extended horizontal layers or strata as illustrated in Figure
2.18. Within each layer, the plant components of the canopy are con-
sidered to be randomly distributed and homogeneously mixed. The plant
components are the identifiable parts of the plant, such as. stems,
leaves, branches, flcwers, and pods or heads.

Collimated radiation from the sun enters the top of the canopy.
This collimated flow cf radiation is called specular flux in the fol-
lowing text. That specular flux which is intercepted by a plant com-
ponent is diffusely scattered and partially absorbed. The remaining
specular flux, steadily diminished by such scattering, proceeds on to
the soi! making "sun flecks" upon the soil surface.

The diffuse flux created by scattering may be produced by reflec-
tion from a component or by transmission through a component, Some of
the diffuse flux is scattered towards the top of the canopy: the remainder
is scattered towards the soil. As the diffuse flux moves through the
canopy, some of the diffuse flux will be intercepted and scattered again
with some of the rescattered flux going up and some going down and so
forth.
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The lateral average flux density on a horizontal plane, of specular
flux and upward- and downward-welling diffuse flux, varies with depth
in the canopy. Allen, Gayle, and Richardson [40] showed by experiment
that the flux densities could be derived using Duntley's differential
equations for scattering in diffuse optical media. The scattering prop-
erties of any particular medium are specified by the values assigned to
five independent parameters in these equations. These differential equa-
tions are shown in relations (5), (6), and (7),

dE(+d)/dz = -aE(+d) + bE(-d) + cE(s) (5)
dE(-d)/dz = aE(-d) - bE(+d) - c'E(s) (6)
dE(s)/dz = k(Es) (7)

where E(+d)

upward welling diffuse flux density,

m
—
H
[= 1
~—
1]

downward welling diffuse flux density,

m
——
(72
~—
n

specular flux density

a = extinction coefficient for diffuse flux,

b = backscattering coefficient for diffuse flux,

¢ = backscattering coefficient for specular flux,

c¢' = forward scattering coefficient for specular flux,

k = extinction coefficient for specular flux.
The five parameters, a, b, ¢, ¢', and k for each layer plus the boundary
conditions of soil reflection at the bottom and sunlight at the top are
all that is needed to specify how much flux goes which way. What remains

unknown is the relationship between these parameters and the plant com-
ponents that are present within the canopy.
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The uniform canopy model provides a systematic and logical method
of calcuiating approximate values for these parameters given the number,
orientation, and spectral properties of the plant components in a canopy.
This method conceptually replaces a particular plant component with
three-plane orthogonal projections of that component. Each plane pro-
jection (hereafter called a model equivalent component) is assigned the
same hemispherical spectral reflectance and transmittance as that of the
actual plant component. The concept of projections is illustrated in
Figure 2.19.

The five unknown parameters can now be calculated using model equi-
valent components,

Equipped with the values for the five parameters for each layer,
one may solve relations (5), (6), and (7) for each layer and, hence,
for the flux within the canopy. This flux is the illuminant for objects
within the canopy which one can see from some direction of view. The
final computation now is simply to determine the radiance, L, (radiometric
brightness) of each component in the canopy and what fraction of these
components can be seen without obstruction. The model equivalent com-
ponents are again used to calculate the expected radiance of the com-
ponents.

The reflectance is the ratio formed by dividing nL by the irradiance
on the top of the canopy.

2.6.2.3 Extension to Include Row tffects

The fundamental concepts, nomenclature, and procedures of the
uniform canopy model will be used with certain modifications to incor-
porate the effects of a row structure in agriciltural crops. These
modifications are introduced in such a way as to reduce to the uniform
canopy model as row structure disappears from the crop due to overgrowth
of the area between rows by the natural growth of the crop during the
growing season.
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FIGURE 2.19. CONCEPT OF MODEL EQUIVALENT COMPONENTS.
Three orthogonal projections of a leaf
component are shown for illustration.
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The Concept of Density Modulation. In the uniform canopy, the
density of components are the imean values for a patch of fieid the size
of the instantaneous field of view (IFOV). Locally, the densities can
be expected to vary due to the randomness of the distribution. Random
distributions are expected to be clumpy but without any order as to
where the clumps occur. One could consider anv narrow strip of field
and determine the mean density of components within that strip. The
mean density would be the same as the IFOV mean, given sufficient strip
length for any direction the strip might take over a uniform canopy.

However, in the case of a canopy with row structure, the strip
mean will converge to a different mean density for strips parallel to
the row direction depending upon the lateral displacement, <, of the
strip from the row center, The variaticn uof strip means would be
periodic for displacements of the strip in the across-row direction
with large values on the row centers and small values between row cen-
ters. This variation in strip means, M(é), relative to the IFOV mean
is hereafter called density modulation. Density modulation is the evi-
dence for the existence of row structure and is the measure of the

amount of row structure.

Computation Method. In the extension of the uniform canopy model,
the density modulation will be the same for all layers so that a par-
ticular profile would not be evident to the eye as illustrated in
Figure 2.20. The use of the same density modulation, M(¢), for all
layers simpliTies the calculations but should still lead to the essen-
tial features of the row effect on canopy reflectance.

Let the five parametevs, a, b, ¢, ¢', and k, be the IFOV mean
values. Then the five parameters for strips required for row structure
must be simply the IFOV means multiplied by the modulation, M(%), since
all parameters vary in direct proportion to component density.
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Now, using the same differential equations as before but with the
five parameters required for row structure, one obtains

dE(=d)/dz = -M(8) aE(+d) + M(5) bE(-d) + M(8) cE(s) (8)
dE(-d)/dz = M(&) aE(-d) - M(&) E(+d) - M(5) c'E(s) (9)
dE(s)/dz = M(s) kE(s) (10)

for each strip at level z in the canopy displaced from the row center
by distance, §.

The relaticns (8), (9), and (10) are to be solved for each displace-
ment, &, assuming that the diffuse flux is still approximately latera'’y
uniform across rows. Then the lateral average of radiance over ' ¢ -
placements, &, must be calculated to f.nd the average radiance - ¢’ .
direction of view.

2.6.2.4 Row Model Predictions for Wheat

Two wheat development stages were modeled: Feekes 5 and Feekes 8.
The row modulation was taken to be a "rectangular prism" modulation
which might be suitable at Feekes 5 but limited inter-row growth was
assumed for Feekes 8. Figures 2.21 and 2.22 each show polar plots of
reflectance for three band-center wavelengths -- 550, 650, and 750 nm.
Row direction is North-South in the plot and the direction of view is
the nadir in all cases. Because of the symmetry due to the nadir view,
only one sun azimuth quadrant for each band center is necessary to
illustrate all of the important variations. Along with solar azimutnal
variations shown on the polar piot, three different polar sun angles
(zenith angles) were used. The solid polar plot is for a 25° sun polar
angle, the long dash plot is for a 45° polar angle, and the short dash
is for a 60° polar angle. The radial scale for 750 nm plot is different
from the scale for the 550 and 650 nm plots.
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Sun Zenith
Angle:
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Sun
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Reflectance
(radial direction)

:Rnu Direction

FIGURE 2.21. POLAR PLOT GF REFLECTANCE OF WHEAT AT FEEKES 5
WITH RECTANGULAR ROW STRUCTURE AS A FUNCTION
OF SUN ANGLES (WITH NADIR VIEW)
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FIGURE 2.22. POLAR PLOT OF REFLECTANCE OF WHEAT AT FEEKES 8

WITH MODIFIED ROW STRUCTURE AS A FUNCTION OF
SUN ANGLES {WITH NADIR VIEW)
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Figure 2.21 shows the results for Feekes 5 wheat, The greatest
effect is in the 650 nm band center and the effect becomes more signifi-
cant as the polar sun angle increases, while the infrared 750 nm band
center is only moderately affected. One can see that the infrared-to-
red ratio, which is often used as a crop vigor measure, will be sig.iti-
cantly altered merely by sun to row angle conditions. These calculations
are for direct sunlight alone. The addition of skylight will tend to
reduce the extreme variations for the setting sun.

The case for Feekes 8 wheat for sunlight alone is shown in Figure
2.22. The row structure was modified to allow 5% of the peak on-row
concentration to appear at mid-row. Notice that the row effect is
still significant but is much more subdued. It would not take much
more vegetation in the inter-row region to reduce the row effect to
negligible proportions.

The impact of row direction on Landsat signals from the latter
field was estimated for a 45° sun angle and a nominal amount of path
radiance. The resulting MSS7/MSS5 ratio and Greenness measures are
shown in Table 2.9 for sun down-row and sun across-row directions.

TABLE 2.9. ESTIMATED EFFECT OF ROW DIRECTION ON LANDSAT
RESULTS (Feekes 8, 45° sun zenith)

Across-Row Down-Row
MSS7/MSS5 2.0 1.33
Greenness 47.5 42.1

The down-row direction gives an indication of a much less vigorous
field. An underestimation of crop vigor and biomass could result purely
from a chance row-sun relation. However, the cross-row direction does
not lead to a serious overestimation. The reflectance for the cross-row
direction is not greatly different from that of the uniform canopy.
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2.6.3 SPATIAL AND SPECTRAL SIMULATION OF LANDSAT AGRICULTURAL DATA

This section summarizes the development of a scene simulation capa-
bility which is described more fully in a separate technical report [41].

2.6.3.1 Introduction

The signal which the Landsat multispectral scanner generates is a
function of many variables, few of which we have any control over. The
ideal method of understanding a process is to hold all of the variables
constant, except those under consideration. This method fails for the
most part in the study of the Landsat signal-generation process with its
seeming contradiction of vast amounts of data at the pixel level but a
scarcity of data with unique combinations of factors such as scan angle,
day of year, crop, field pattern, etc. Simulation is a tool which allows
one to use combinations of assumed or known effects to infer the com-
posite effect. The uses of a simulation include:

(1) The study of the interaction of known first order effects,
(2) Tests of procedures on data generated under known conditions, and

(3) Empirical estimation of model parameters when fitted to "real
data."

The major motivation for the simulation model described here was
the need for a capability to investigate, in detail, the effects of
various factors on pixel values from small fields, boundaries between
fields, and misregistered pixels. Both spectral and spatial properties
were of interest. With this model any desired polygonal field pattern
can be simulated and spectral characteristics can differ from field to
field, with within-field variances being included.

2.6.3.2 The Model

Consider the point (x,y) on the ground at time t. Except for a set
of area zero, (x,y) will be contained in the interior of a field. Denote
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this field as k., The main effect which a sensor could detect is that of
the crop at point (x,y). We denote the crop in field k as Ck. We use
crop development profiles in Greenness and Brightness to simulate the
mean crop response as a function of time since planting. Reference 41
gives the empirically estimated profiles used, while Figure 2.23 illus-
trates those for corn, soybeans, small grains, pasture, etc.

Denote the profile for crop ¢ as PC(.). Note that two fields with
the same crop would not in general have the same profile value at time t
due to different planting days. Denote the planting date for field k
as Tk’ The model further assumes that there are field effects beyond
crop type and planting date due to soil characteristics, crop variety,
fertilizer, etc. These additional between-field, within-crop sources
of variability are viewed as geometric noise factors which scale each
profile. Denote the scale factor for field k as Uk’ where Uk is a ran-
dom variable with a mean of 1. The profile at (x,y) is

g(x,y,t) : = Uchk(t-Tk) + ©txy

where

Etxy is assumed to be a bivariate normal with mean of zero.

The model assumes that the covariance of €txy is a function of crop and
time. This is reasonable if the dominant effect in within-field varia-
tion is due to crop-field effects. If sensor noise were the real domi-
nant effect, then variances of the Landsat Bands 4, 5, and 6 would be

proportional to the signal and the variance would be constant in Band 7.

One of the major problems encountered in multitemporal Landsat
data is spatial misregistration between dates. The coordinate system
changes between passes of the satellite. The point (x,y) in the satel-
lite's coordinate system does not correspond to the same ground point.
The relationship between the ground coordinate system and that of the
sensor's is non-linear. There are re istration procedures which reduce
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the differences in coordinate systems; however, there is always a
residual error in registration procedures. The model assumes the sen-
sor coordinate system changes only by a translation between passes.

If the ground coordinates are (x,y) then the sensor's coordinates at
time t are (x+xy,yty;). This form of misregistration is suitable for
most applications using simulation. A more general form of misregistra-
tion could be simulated by warping the coordinates which define the
fields.

The signal which the sensor receives is not g{(x,y,t) but rather

f(x,y,t) = ”g(x+xt - ruytyy - s,tlp(r,s)drds

where

p is the Landsat point spread function.

p was derived in Reference 43 using the sensor's size, blur circle

and properties of its three-pole Butterworth filter. Figure 2.24 gives
a three-dimensional drawing of p and Figure 2.25 gives plots of p along
the scan line and along track, at pixel center. The signals which the
sensor allows us to observe are

{f(x + idx, y + jdy,t)} i=1,N,
J=1,Ny
Values for a 5x6-mile AgRISTARS segment are dx = 79M, dy = 5/M,

Ny = 196, and N, = 117.

2.6.3.3 Implementation

The Field Geometry. Each field is stored in the computer as a

polygon. The vertices of all of the fields are contained in arrays,
say {Ukj’ ij}. Polygon (field) k is defined by the vertices

N
kl’k2""’knk such that the points {Ukj’ ij}j=1 circumscribe field k
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in a counterclockwise direction, It is important that there be no gaps
in adjacent fields and non-nil intersections can cause unexpected re-
sults. We assume that all fields are simply connected, but more general
sets could be incorporated into the model easily.

A two-dimensional grid of points is assigned polygon identifica-
tion. The point (x,y) is assigned to the first solygon whose winding
number is positive. The polygon search begins with the polygon which
contained the previous pixel. If only translation misregistration is
to be simulated then this pixel-to-field assignment only has to be per-
formed once. If more general misregistration is to be simulated then
the points {Ui’vi} can be replaced by {Ht(ui'vi)} where Ht is the warp-

ing transform for time t. Examples of Ht are
5 O .. S5 g C
Huwy ={ 5§ a o3, f § b udved (1)
q=0 j=0 ¢=0 j=0 ¥

and

Ht(Z) = At(Z- Zt) + Zt
where

_ _ . _ i8 :
Z-U+Vi’zt'ut+vt1’ and At—Rte t 12)

Functions of the form (11) are often used to correct geometric dis-
tortions in Landsat data. Regression methods are often used to estimate
the coefficients aqj's and bqj's. Since there are 21 terms in each coordi-
nate of (11) there should be somewhat more than 21 control points used in
the estimation, if estimates of all coefficients are desired. Stepwise
regression methods tend to get good results with 5-9 control points.
Functions of the form (12) represent a rotation of o, and a scaling by R,

about (Ut,V ).
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Crop Response as a Function of Time and Field. The crop for point
(x,y) on the ground at time t is

q(x,y,t) = Uchk(t-Tk) + ©txy

where
k is the field containing (x,y).
Uk is the scale factor for field k,
Ck is the crop growing in field k,
Tk is the time of planting,
Pc(') is the Greenness/Brightness response of crop ¢
as a function of time since planting, and

Etxy is the within-field variance.

The polygon specific parameters Uk’ Ck and Tk are saved in a file until
all acquisitions are generated. Uk and Tk are viewed as random vari-
ables such that E{Uk} = 1 and the distribution of Tk is obtained from

a crop calendar specific to the region being simulated. Empirical pro-
files were incorporated for grain, sunflowers, corn, soybeans, and
three types of grass/pasture/hay. New profiles can be added or old
ones modified easily.

Presently the within-field error term is used only to add texture
to the pixels contained in a given field. Data which would support an

accurate estimation of the covariance matrix of ¢ do not exist. The

txy
reason is that ground-truth polygons often contain more than one field
with the same ground truth code, while field-finding algorithms are
constrainted to construct field-like regions with small within-field

variances.

The Convolution. The convolution of the sensor's point spread

function blurs the image by adding correlations between nearby pixels.
The sensor's response at point (x,y) and at time t is

f(x,y.t) = jj g(x-r,y-s,t)p(r,s)drds.
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We use two different levels of approximations of f(x,y,t):

48 16 . . L
- 1 1
i) = 30 1 al- 5 y-{e t)p, (3 1) (13)
where
i
'i . _ p(Tg ’T'Jg) )
e Ts) = 8 Te T
Lig oty P> T6)
and
16 4 ; . .
falx,y,t) = 1_=Z_4 J_=Z_ alx - 7> ¥ - FtIpy(ze P (14)
where
i
iy - p(z» )
P2'3: 3 Eé g" s
p As A
LRSS RAL L

2.6.3.4 An Example

T2 illustrate the capabilities of the model, the field pattern from
the southwest quarter of Segment 844, during the year 1978, was digitized
in polygonal form. Crops were assigned to the fields at random. The
crop probability and planting date distributions in Table 2.10 were used.
The field scale factor was generated randomly froem the uniform (.95,1.05)
distribution for each field. Figure 2.26 gives « plot of the field pat-
tern used in this simulation. This region was represented by a 256x256
subpixel grid. Each pixel was defined to be a 4x4 subpixel region. The
crop signatures were ¢znerated at the subpixel level; thus, within-pixel
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TABLE 2.10. PARAMETERS USED IN GENERATING
THE SIMULATION

Crop P Tk Distribution
Grain .10 N(105.10)
Pasture V1 .05 N(105.10)
Pasture V2 .05 N(105.10)
Pasture V4 .10 N(105.10)
Sunflower .10 N(138.10)
Corn .25 N(148.10)
Soybeans .25 N(156.10)
Flax 10 N(105.10)

mixtures were in multiples of 1/16. The field identification of each
point in the subpixel grid was obtained from the polygons. A 64x64
simulated image was produced for the following dates: 160, 169, 178,
187, 196, 205, 214, 223, 232, 241, 250, 259, 268, and 286 with no
misregistration.

Figure 2.27 gives a Greenness/Brightness scatterplot for Date 178.
The spring crops are for the most part greening down from their peak
value of Greenness, while the summer crops are just starting to green up.

Figure 2.28 gives the scatterplot for Date 205. The spring crops
by then have almost all dropped below a Greenness value of 10 and the
summer crops are approaching their peak Greenness values. Corn and
soybeans have not separated yet. There also are many mixed spring/summer
crop pixels which take on the whole range of values between the high
Greenness values of the summer crops and the low Greenness values of
the spring crops.

Figure 2.29 gives the scatterplot for Date 223. Corn and soybeans
are at their point of maximum separation. The random planting dates,
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scale factors, and mixed corn/soybeans pixels blur the spectral boundary
between the two crops. A body of early summer crop pixels, mostly sun-
flowers, are greening down ahead of the main body of summer crops.

Mixed spring/summer crop pixels still are evident.

2.6.3.5 Summary

The present understanding of several components in the Landsat
~ignal-generation process allows the simulation of Landsat data.

The simulation described in this section allows for:
(1) Mixed pixels,

(2) Field geometry,

(3) Landsat point spread function,

(4) Crop development spectral profiles, and

(5) variation in planting dates.

The simulation has been used in small field research. Other applications
include the simulation of other sensors, the test of new procedures, and
the study of new crop mixes and field patterns,
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2.7 SMALL GRAINS LABELING TECHNIQUES

Research and development of automated labeling techniques for small
grains were conducted primarily during 1980 and concluded during the
first half of the current contract year. Two reports were written, one
to describe the development procedure and initial test results [43] and
the other to document the computer programs that were written and adapted
to JSC computer facilities [44].

The work was a continuation of prior research in which a machine
procedure was developed to discriminate between spring wheat and barley,
given that the targets under consideration were spring small grains [13].
The objective here was to develop an automated technique for making the
initial identifications of those spring small grains. Both labeling
techniques exploit the temporal-spectral characteristics available from
spatially registered multidate Landsat data. This technique was not
intended to be the final and best use of profile technology, but rather
a first generation technique, a demonstration of concepts, that can be
used to more fully understand profiles and their uses, and thereby to
develop improved labeling techniques.

2.7.1 DEVELOPMENT AND EVALUATION OF AN AUTOMATIC LABELING TECH-
NIQUE FOR SPRING SMALL GRAINS

Crop acreage estimates made using Landsat invariably require
association of a crop label or labels with some sampling entity (e.q.,
pixel, field, cluster, etc.). The accuracy with which this association
is made clearly has a substantial impact on the accuracy of the acreage
estimates produced. In the Large Area Crop Inventory Experiment (LACIE),
the labeling step, which was carried out through manual analysis of
imagery and acsociated information, was found to be both time-consuming
and a source of considerable error. An obvious candidate for improving
both the objectivity and the timeliness of labeling decisions is auto-
mation of much of the labeling process.
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The technique described in Reference 43 and summarized here was
a response to the need for a faster, more accurate, and more objective
labeling procedure. Human analysts are utilized only to set up the
system and provide contextual information which can be used to adjust
the labeling procedure to local conditions; the labeling decisions them-
selves are left to the machine. A problem addressed is that Landsat
observations are fairly widely spaced and discrete samples in time of
the generally continuous spectral development patterns of crops. To
counter this, we developed "profil2" techriques to characterize the
sampled patterns and adjust for planting date differences and, to a
degree, normalize stress effects among fields of a given crop [13,45].

The central element in the procedure is a group of profile sets
representing spectral development of a number of crops in the domain
described by Tasseled-Cap Greenness and Brightness. These profile sets
were developed using spectral data from fields of known crop type,
sampled from the U.S. Northern Great Plains over three growing seasons.
They serve as reference standards to which each unknown sampling entity
is compared.

For each profile set, a series of comparisons is carried out.
First, a temporal shift is determined which maximizes the cross-
correlation of the data points to the Greenness profile. This provides
an estimate of the date of spectral emergence, and indirectly of the
start of the growing season of the target field. The temporal shift
estimate also provides a means of normalizing the planting dates of
fields of a single crop type, andthereby minimizes one major source of
spectral confusion,

After estimating and applying the temporal shift, a multiplicative
scale factor is computed, again using the Greenness profile. This
scale factor is applied to normalize the magnitude of the Greenness de-
velopment profile which is strongly influenced, within a single crop
type, by the percentage of ground covered by green vegetation (which
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is itself influenced by such factors as planting density, fertilization
and moisture availability).

With both adjustments made,a goodness-of-fit of the data to the
Greenness profile is computed, and similarly, using the Greenness pro-
file temporal shift, a fit or correlation of the Brightness data to the
Brightness profile is computed.

The shift, Greenness fit, and Brightness correlation are used to
compute a probability associated with the crop represented by the profile
set and the sampling entity, and this combined probability serves as the
basis for labeling decisions. In a different application of this pro-
cedure, one might use different or additional features to compute the
requisite probabilities.

2.7.2. TEST RESULTS AND EVALUATION SUMMARY

The small grains labeling technique was applied to 38 5x6-nautical-
mile sample segments spanning three growing seasons. The labeling tech-
nique was run on ground-truth identified small grains targets in a num-
ber of different configurations, with various combinations of profile
sets, test statistic weightings, and probability thresholds.

Although acquisition requirements for the procedure were not severe
(three vegetated acquisitions), only 57% of the targets (spectral-spatial
clusters called "blobs") in both the development and testing data sets
(64 total segments) met the acquisition requirements for labeling.
However, most sample segments were either "labelable" or not; 31 of the
64 had more than 80% of their blobs labeled, while 16 of the segments
had 'ess than 75% labeled.

Grain labeling accuracies reached 86%, but large errors of com-
mission occurred at this level. Overall accuracies reached 74%. Major
causes of errors were Grasses and Flax (and the Grass and Flax profiles),
and overall results were substantially improved when the profiles of
these two crops were omitted from the profile set.
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Several improvements were supported by the test results. A
mechanism by which pasture blobs could be detected prior to application
of the grain labeler would remove the largest source of erroneous labels.
Improvement in the Brightness profiles, and in our understanding of
Tasseled-Cap Brightness as it relates to crop characteristics, would
also be teneficial.

The test results also point up some larger issues with regard to
crop identification using Landsat. The low percentage of labelable
blobs, using acquisition requirements similar to those observed by
others [46,47], strongly suggests the need for more frequent coverage,
and places a premium on development of techniques which can extract the
maximum information possible from a limited set of observations.

Second, the relatively frequent occurrence of abnormal spectral
patterns for blobs of a knuwn crop type raises questions related to
profile matching techniques. While a range of variability is expectec
and accomodated in the techniques described in this section, extreme
deviations cannot be accomodated. We suggest that such patterns are,
in the vast majority of cases, the result of catastrophic events which
reduce, or eliminate any yield from the field in question (or ground
truth error). Thus, while profile matching techniques may be less
appropriate for detection of all fields of a given crop, they should
serve well in detecting yield producing fields.

2.7.3 SOFTWARE DOCUMENTATION

Reference [44] describes and documents the computer software
necessary to perform two research labeling procedures, the small grains
labeling procedure described in the preceding sections and they pre-
viously developed procedure for discriminating between spring wheat and
barley. The subroutines were designed to operate on three computer
systems in an environments developed for use on the AgRISTARS program
and built around the ERIM/UCB corn and soybeans baseline classification
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procedure. These facilities are located at ERIM (actually the Univer-
sity of Michigan), Purdue/LARS and NASA/JSC (EODLS).

2.7.4 GROUND TRUTH SUMMARIES FOR U.S. AREAS

A summary of crop proportions in digitized ground truth data was
prepared under this contract for all 5x6-mile segments inventoried
(and digitized) for AQRISTARS in agricultural areas of the United
States during the years 1976-1979 [48]. The complete set of ground
truth data was collected by ground truth enumerators from the U.S.
Department of Agriculture. The enumerators recorded crop type and con-
dition and field boundaries on base maps. The resulting ground truth
records were digitized by LEMSCO and by ERIM.

These complete ground truth records were used by ERIM to prepare
summary data. Fifty-four year-independent crop categories were estab-
1ished and further consolidated into a concise summary of major crop
types and groups present in each segment. The occurrences of special
categories and situations arealso noted, such as percent of scene in
special fields, percent strip farmed and percent abandoned. The pro-
portions were based on a systematic, 20% sample produced by processing
one line in five of the original (2x3) sub-pixel data. These summaries
should be useful in screening and selecting segments for analysis and
conducting evaluations of developed procedures.
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2.8 SUPPORTING RESEARCH CONCLUSIONS AND RECOMMENDATIONS

Substantial progress was made along two major lines of research
for supporting crop inventory systems utilizing Landsat data. These
addressed, respectively, sampling and estimation technology and measure-
ment technology, the latter dealing with the extraction of agrophysi-
cally meaningful features from Landsat data for use by the former in
crop inventory estimation and assessment.

A prime emphasis of the sampling and estimation research was on
techniques capable of providing estimates throughout the growing season,
particularly early in tne season. C(rop estimation was characterized as
being a composite process beginning primarily with prediction and be-
coming more dependent on actual measurement as the season progresses.

An approach, that was developed and thought to be original, was to
merge early, but current-season Landsat-derived information with prior
season inputs of a conventional crop acreage prediction model. The
resulting Landsat-augmented crop acreage response model (CARM) showed
potential for early season estimates with improved accuracy. Also,
the model was applied to a regional area rather than the usual national-
level use of the conventional CARM models. We also explored ways in
which knowledge of cropping practices at the regional and Tocal levels
could be used on a field-by-field basis to improve the quality and
accuracy of information extractable from Landsat; included were tech-
niques that could use multiyear information such as on year-to-year
crop rotations. Finally, a segment-level Bayesian estimation approach
was formulated to incorpcrate the rey elements identiried for through-
the-season estimation,

Multisegment research examined approaches for increasing sampling
efficiency and reducing measurement cost without sacrificing accuracy.
Signature extension, regression, and bin methods were studied and an
experiment using the bin method was carried out before the scope of
these activities was reduced, ‘ _
b LG DAGE BLANK NOT FM{EQ
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The remaining activity under estimation technology research was
the organization and conduct of a field trip to Argentina to acauire
crop identification data for over 600 fields in 14 segments located in
three major agricultural provinces. This trip was arranged on short
notice to provide an initial Landsat data set with ground truth infor-
mation. Possibilities for continued and expanded ground data collection
activities in South America were explorej ind draft plans were generated.

Under measurement technology research, studies were made of crop
temporal-spectral profile characteristics, three simulation models were
developed, and a previously started small-grain labeling procedure was
completed. Field measurement reflectance data for corn and soybeans
were analyzed, with emphasis on relating temporal-spectral (Greenness)
profile features and characteristics to crop development stages and
the effects of farm management variables such as planting date and
fertilization.

The first simulation modeling activity interfaced a meteorologi-
cally driven wheat growth model with a vegetation canopy reflectance
model to provide a capability to simulate the observable crop charac-
teristics as a function of time and envircnment. The second modeling
activity extended a uniform canopy reflectance model to include row
effects. The final model was able to simulate both the spatial and
spectral characteristics of agricultural scenes in order that mixed
and boundary pixel effects can be analyzed. Effects of the Landsat
spatial point-spread function and varied planting dates also were
included.

Several recommendations are made on the basis of the conducted
research and experience of the investigators.

(1) Recommendation re Sampling and Estimation Technology

(a) That research be continued cn the Landsat augmentation
of conventional crop acreage response models.
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(b) That development be continued of techniques, that blend
prediction and measurement capabilities and incorporate agronomic infor-
mation at the field level, taking advantage of mul{.year data where
available; for long range development, we specifically recommend inves-
tigation of knowledge engineering systems tailored to this application.

(c) That research into multisegmant approaches be conducted
to improve inventory system efficiency and that it b~ closely linked
to through-the-season requirements and techniques.

(d) That plans for ground data collection in Argentina and/or
Brazil be further developed and carried out to provide basic information
essential to the full development of Landsat-based inventory techniques
for that regioen.

(2) Recommendations re Measurement Technology

(a) That Brightness profile variables from crops be investi-
gated in addition to Greenness variables and that the study be extended
from reflectance data to Landsat data.

(b) That the Seed-to-Satellite model be upgraded to incorpo-
rate the revised Ritchie wheat growth model and that extension to other
crops, such as corn and soybeans, be pursued.

(c) That the row effects extension of the canopy reflectance
model be verified by comparison with empirical data.

(d) That the existing models be used to further investigate
small-fields effects in Landsat data from agricultural scenes and its
impact on estimation accuracy.
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3
INVENTORY TECHNOLOGY DEVELOPMENT PROGRESS AND RESULTS

Activities in support of the AgRISTARS Inventory Technology
Development Project (ITD), formerly Foreign Commodity Production Fore-
casting, have revolved about developing Landsat-based crop inventory
system component technology that is appropriate for eventual application
in a foreign context, specifically for corn and soybeans in Argentina
and Brazil. Activities reported in this section represented a joint
effort involving ERIM and The Space Sciences Laboratory of the Univer-
sity of California at Berkeley (UCB), with test and evaluation support
from Lockheed Engineering and Management Services Company, Inc. (LEMSCO).

3.1 APPROACH AND TASK STRUCTURE

The approach pursued in support of ITD in AgRISTARS has involved
sverlapping phases as is illustrated in Figure 3.1. In the initial phase,
effort has been placed in the application and evaluation of technology
based on Landsat MSS using, as in LACIE, segment sampling for wide area
estimates of crop acreage and production in the U.S. where developmental
data is readily available. The next stage would focus on the develop-
ment of alternative techniques to establish a base of technology that
could be comparatively evaluated and adapted to the rforeign application
and be supportive of an end-to-end inventory technology for Argentina
and Brazil. This would then be evaluated in a controlled experimental
environment to determine the technologies' feasibility for the foreign
context.

Section 3 describes efforts conducted in the first two phases of
the program to develop crop inventory technology for Argentina and
Brazil. Efforts have been structured into two tasks in addressing the

v INUg ROV
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overall objective of using remote sensing as a tool to inventory and
assess corn and soybeans in Argentina and Brazil.

The first task, entitled "Experiments", tested and evaluated sys-
tems of technology components for crop inventory (i.e., procedures)
under controlled and documented conditions. This task focused on eval-
uating the technology, formed into procedures, with respect to accuracy,
objectivity, efficiency, timeliness and eapplicability to foreign condi-
tions.

Reported in Section 3.2 is the development and evaluation of a
procedure designated the Baseline Corn and Soybean Area Estimation
Procedure. The technique was (and modifications continue to be)
rigurously evaluated under configuration controlled conditions. The
experiment discussed in Section 3.2 is referred to as the U.S. Corn
and Soybean Pilot Experiment and was a joint LEMSCO/Consortium activity.
In addition, a description is provided of the software system called
STARS designed for purposes of configuration controliad procedure
testing.

The second task is entitled "Technology Development, Evaluation
and Integration". Tne major objectives of this task are to obtain,
adapt (modify), or develop technology components (as opposed to end-
to-end procedures) for assessing crop status, to evaluate the compon-
ents for applicability to the problem, and to select and integrate
appropriate compunents into end-to-end procedures for more formal
evaluation.

Five areas of study are presented in Section 3.3 pursuant of the
objectives of the second task. Fvst, an examination of potential dis-
criminating features of corn and soybeans with respect to key confusion
crops present in Argentina was undertaken. Since procedures are de-
veloped under the constraint that ground training data would not be
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used, it is critical to determine the level of discriminating informa-
tion directly derivable from Landsat based on prior understanding of
crop attributes. This activity was largely the responsibility of UCB.
Secondly, a technique based on the use of parametric models of MSS spec-
tral features was examined with respect to its feasibility in establish-
ing crop features derived from the multitemporal Landsat data that relate
to crop agronomic attributes, for example, the length of a growth cycle.
Thirdly, a study was carried out to assess methods that establish the
basic sampling unit within a segment. Automatic techniques for defini-
tion of field-like targets were of central interest. Fourthly, an
analysis of a double sampling technique to aggregate segment estimates
to a regional level was undertaken. In this analysis the feasibility

of joining two types of estimates, an inexpensive and less accurate
technique, with a more expensive and accurate technique, was found to
reduce the variance of estimates for given cost constraints. Finally,
an effort carried out to prepare an initial foreign ground data set
collected in Argentina (see Section 2.4) is described.
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3.2 U.S. BASED CORN AND SOYBEAN AREA ESTIMATION PROCEDURE DEVELOP-
MENT AND TESTING

The Corn and Soybean Consortium, with ERIM assigned the lead tech-
nical role, was given the responsibility of developing a baseline corn
and soybean area estimation procedure which uses Landsat data without
ground observed training data. This procedure was designated the Base-
line Procedure because it was intended to serve as the standard against
which all future modifications of the procedure, and new procedures,
would be judged and thereby provide a benchmark against which progress
can be assessed. Twofold design specifications of this procedure re-
quired first that it consist of a modular framework within which indi-
vidual component technologies could be deve'». :d, compared, substituted
and evaluated, and secondly that the proceaure could be carried out by
analysts that were not necessarily expert. The procedure which re-
sulted, called C/S-1, was developed by ERIM and UCB and delivered to
JSC for evaluation in a major test conducted by LEMSCO.

This test, known as the U.S. Corn and Soybean Pilot Experiment,
was structured in two phases. The first phase, conducted from January
to April 1981, consisted of 39 segment processings of Landsat MSS data
from the U.S. Central Corn Belt; 30 of these were 1978 data and 9 were
1979 data. The test involved 3 teams of 2 analysts each. A balanced,
incomplete design was used, resulting in each segment being processed
twice, but not necessarily by the same two analyst teams. It was in-
tended that these processings be evaluated in time to allow modifica-
tion of the procedure, if necessary, prior to proceeding with the
second phase of the experiment. The second phase was scheduled to be
completed in FY1982, and is to include testing of the aggregation pro-
cedures, which would produce regional estimates as well as the segment
estimation procedure. To allow aggregation, approximately 50 segments
of 1980 data are to he prccessed in each of Iowa, Indiana, and Illinois.
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Results of the Phase 1 test of the experiment indicated the pre-
sence of bias in C/S-1 in excess of 10% relative to the true. This led
to a decision to study the procedure in greater depth to provide guidance
for efforts aimed at (1) reducing the observed bias, and (2) improving
the efficiency of the procedure. This study consisted of component and
subcomponent performance evaluations of C/S-1 performed by LEMSCO and
ERIM, respectively, to identify those parts of the procedure which held
the most promise for modification, resulting in improved accuracy and
efficiency. Implementation by ERIM and UCB of the modifications recom-
mended by th:s study resulted in the augmented baseline procedure,
C/S-1A. Initial tests performed by ERIM indicate that C/S-1A repre-
sents an improvement over C/S-1 in both accuracy and efficiency.
Further testing of the procedure is to be performed in FY1982 in the
second phase of the pilot.

Development and implementation of machine procedures for C/S-1
and C/S-1A was performed by ERIM using the Software Technology for
Aerospace Remote Sensing system (STARS). This system was developed
by ERIM to provide a controlled environment for procedure implementa-
tion as well as providing the user and data interfaces necessary for
smooth operation of the procedure in a production mode. This latter
capability was demonstrated in the U.S. Pilot experiment, in which
both C/S-1 and C/S-1A operated within STARS.

The following sections provide a more detailed cescription of the
history, technical specificitions, and evaluation of the baseline corn
and soybean area estimation procedure and STARS.

3.2.1 BRZKGROUND

The Baseline Procedure represents the intagration of thre- earlier
component technologies: (1) Procedure M [12], (2) the corn/soybean
classification logic [49], and (3) the Delta Function Stratification
(DFS) [50]. Procedure M (for multicrop) was developed at ERIM in
parallel with development of Proc~dure 1 in LACIE [12]. Procedure 1 was
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developed by the Earth Observations Division of NASA/JSC in 1976-77

and supported producing LACIE generic wheat estimates. It was the fore-
runner of the Raseline Procedure from the standpoint of being the first
"proceduralized" approach to large area crop inventory in foreign areas
using Landsat. Proceduralized means employing a well-defined methodology
which can be objectively applied over large areas. Procedure 1 also
broke new ground by relying on a statistical design to generate crop
proportion estimates, as opposed to more typical pixel classification
techniques.

The switchover from classification technology to strategies employ-
ing st-etined areal estimation statistical designs was justified on
the grounds that the Tatter techniques are theoretically unbiased,
while classification technologies are not. Furchermore, the component
technologies necessary to support a statistical approach were now in
existence and tested sufficiently to provide the confidence that such
a procedure could be practically implemented.

Since ground observed training data was not used, the sample label-
ing logic used in Procedure 1 relied on analyst interpreters making
decisions about the identity of areas located under dots (pixels).

These sample dots were located systematically throughout a segment of
Landsat MSS data (5x6 miles). The system is described as an "expert"
labeling system, because the analysts did not have to follc' a well-
defined decision iogic to reach an identity for the sample but, rather,
only had to stay within general guidelines and exercise their own judg-
ment.

Roughly in parallel with the development of Procedure 1, a similar
procedure called Procedure M was developed at ERIM in 1977-78. Pro-
cedure M was designed to reduce labeling errors by using a different
method of selecting the samples that the analyst was required to label.
Studies had shown that a maior source of labeling error in Procedure 1

was the problem of not hcing able to correctly identify boundary pixels
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(pixels located on the edge of fields). Procedure M reduced this prob-
Tem by using an algorithm called BLOB to find field-like samples and
then restricting labeling to blob interiors, on the presumption that
they were spectrally and spatially (in terms of ground truth) pure. In
a related change, the systematic selection of the samples to be labeled
was also dropped, in favor of a stratified random selection of blobs,
where the stratification is based on the spectral similarity of the
blobs. The method of sample selection tested to show a substantial
reduction in the variance of the estimate over that of Procedure 1.

The development of Procedure M resulted in a general proceduralized
approach that could be used to pr 2! - estimates for a variety of crops.
To make it applicable for produ.:-. :ra and soybean estimates, a deci-
sion logic capable of identifying - i.s of these crops was also re-
quired. An initial logic was availabie as a result of work done by
l.ockheed in 1979. Their original goal was to test whether or not a well-
defined decision logic could produce consistent classification results
as accurate as those generated by an "expert" system. The results of
this work showed promise in achieving objectivity. In 1980 the initial
corn/soybean logic was substantially revised and augmented by UCB for
incorporation in the Baseline Procedure,

The other key component required to complete the Baseline Procedure
is the Delta Function Stratification (DFS) technology. OFS is a way of
introducing crop calendar data into the procedure in a useful and con-
sistent fashion. The development of DFS began at UCB in 1978, con-

tinued in 1979, and was integrated into the procedure in 1980. A side
benefit of DFS is that it also provides a method of obtaining first

cut estimates of the proportion crops, other than corn and soybeans,
and other land use categories in the segment early in the procedure,
and without the need to actually classify the data into crop types.

In 1980, when all of these component technologies were success-
fully integrated, the Baseline Procedure, or C/S-1, was born [51].
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It is a procedure unique in the fashion in which a convergence of evi-
dence produced by different subcomponents feed each other and result in
a statistically trackable estimate of the crop proportions in a segment.

3.2.2 BASE_INE TECHNOLOGY

3.2.2.1 Introduction

The U.S. Baseline corn and soybean segment classification procedure
is a methodology for estimating the corn and soybean acreage in Landsa.
segments selected from the U.S. Corn Belt (I11inois, Indiana, and lowa).

It is designed to produce near-harvest crop proportion estimates
within segments for corn and soybeans using multitemporal Landsat data.
The estimates are produced by an integrated Analyst/machine procedure.
The procedure is initiated with the Analyst screening the Landsat data
for quality, selecting acquisitions for analysis, and participating in
stratification of the scene. The machine then digitially preprocesses
the Landsat data to remove external effects, completes the stratifica-
tion of the scene, and samples the data proportional to the size of the
stirata. The Analyst then labels these samples as to crop type using an
objective decision logic.

Assignment of crop type labels follows a "convergence-cf-evidence"
approach. That is, a progressive accumulation of information contri-
butes to the selection of a particular crop label. Multi-date Landsat
data are required since phenological crop development patterns which
manifest themselves as changes in Landsat reflectance over time are
the key to crop separability. The samples, consisting of field-like
labeling targets called blobs, are objectively labeled by an Analyst
according to crop type, specifically "corn", "soybean" or "other".
Analysts label blobs according to an objective, well-defined decision
logic with the aid of spectral plots and statistics provided by the
machine, keeping in mind the influences of local meteorological condi-
tions and crcpping practices.
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The machine then combines the labeled samples into a final segment
wide proportion estimate of the crops observed,

The regional aggregation of segment-level area estimates produced
in this manner and the formation of production estimates are functions
outside the scope of this classification procedure.

3.2.2.2 Summary Description of C/S-1 Procedure

The flow of the specific activities which make up tne U,S. Corn/
Soybean Baseline Procedure (C/S-1) is characterized 'y an integrated,
mutually supportive, Analyst/machine effort. The machine performs
routine data manipulation functions, supports the Analyst's activities
through the production of aids, maintains the data base, and insures
statistical objectivity in the estimation process. The Analyst is
responsible for data quality assurance through acquisition screening
and selection, data verification and adjustment such as in biowindow
boundary placement, and data analysis through crop group stratification
and target labeling.

The Baseline Procedure can be functionally divided into three
major stages as illustrated in Figure 3.2(a). These three stages are
(1) ~egment familiarization and preprocessirg, (2) stratification cad
samp ng, and (3) labeling and proportion estimation. The purpose of
the first stage is to extract information from both pertinent collateral
data and f-om the Landset segment image to provide a foundation for the
labeling and estiation ectivities. The second stage, stratification
and sampling, results in the identification of targets for labeling and
the development of analysis aids that will be used in the blob labeling
process. The final stage invclves the labeling of a sample of blobs
and the aggregation of those samples to a segment-wide proportion
estimate.
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As stated earlier, analyst and machine interact in this procedure.
Thus, within each stage it is possible to further subdivide the pro-
cedure on the basis of whether an activity is primarily an analyst
activity or machine activity. Subdividing the procedure this way has
resulted in breaking it down into eight basic steps. These steps are
shown in Figure 3.2(b). The number of each step is preceded by an "A"
or an "M", indicating whether it 1s primarily an analyst or machine
function, respectively.

A description of the activities that make up each of these steps
is presented next.

STAGE 1: SEGMENT FAMILIARIZATION AND PREPROCESSING

Step Al: Initial Segment Analysis

This step is an analyst function and consists of four separate
activities:

Segment Familiarization. If an analyst is not familiar with the

environmental and cultural characteristics of a region in which a
segment is located, the analyst should study the materials sup-
plied in (1) the analyst information manual, and (2) the segment
analysis packet.

Data Screening. Through the use of standard imagery products

(PFC 1 and PFC 3), acquisitions are visually screened and those
with excessive cloud cover, heavy haze and bad data are deleted.
This function is designed to eliminate unusable acquisitions
from further consideration.

Crop Calendar Analysis. Crop calendars are used to identify the
expectec¢ phenological patterns for different crops and define bio-
windows for those crops in the geographical area where the segment
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is located. This requires the use of the best available phenologi-
cal crop calendar. The Analyst compares the normal phenological
crop calendar for the area to the agparent spectral development

of a crop by associating each acquisition with a crop growth stage.
If there are differences between them, then the normal phenological
crop calendar is adjusted by the Analyst to conform to the crop
development pattern observed for the year in which the Landsat

data was collected.

Acquisition Selection. A total of up to ten acquisitions may be

processed. Based on inputs from the crop calendar analysis and
acquisition priority listings, up to seven of these acquisitions
are chosen for Temporal Pattern Class (TPC) extraction., These
acquisition selections are identified to the computer for machine
processing.

Step M2: Normalization and Preprocessing

This step is a machine function and consists of two separate

activity sequences:

Normalization. Normalization of spectral data is a process de-

signed to adjust for effects of haze, varying sun angle and sensor
calibration, and to screen out clouds and other unusable data.

The purpose of this activity is to reduce the effect in the Land-
sat data of phenomena that are external to, or bear no information
with respect to, agricultural factors that are of interest. The
goal is to provide the Analyst with products that are consistent
between dates with respect to the conditions under which the

scene is observed, and thus minimize segment-to-segment varia-
tions in signal that are not actually due to development of the
crops !(See Figure 3.3).
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Spectral/Temporal Feature Extraction, Using normalized spectral/
temporal data, features are extracted in this activity sequence
that facilitate analysis of agronomic conditions. Specifically,
the Tasseled-Cap transformation is computed and a Gi:enness mea-
sure defined as the "Greenness Above Bare Soil" (GRABS) is derived.
These features are eventually used for crop discrimination in this
procedure. A benefit of this step is that the dimensionality of
the data is reduced by a factor of two.

A related activity is the extraction of a Temporal Pattern
Class (TPC) for each pixel. A TPC describes the pattern of vege-
tation development observed for a pixel over the course of the
growing season with regard to the number of acquisitions available
and the Crop Group Biowindows in which they occur. Thus, each
crop group considered in the crop calendar analysis has an expected
TPC based on the acquisition history of the segment relative to
its idealized phenological development. The result of this acti-
vity is a report which summarizes the TPC patterns observed for
the segment,

STAGE 2: STRATIFICATION AND SAMPLING

Step A3: Crop Group Stratification

Using information derived from crop calendar analysis and the TPC
report generated in Stage 1, the Analyst stratifies the TPCs into major
crop groups based on expected patterns for summer crops, small grains,
permanent vegetation, and non-vegetated areas. Crop group stratifica-
tion is used bocth by the machine in producing the stratified area esti-
mate, and by the Analyst to facilitate the analysis process associated
with blob labeling. Of immediate concern is the fact that the summer
crop stratum is used to produce a spectral aid, a GRABS vs. Brightness
scatterplot.
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Step M4: Stratified Scatterplots

Scatterplots of GRABS vs. Brightness are generated for each acqui-
sition using pixels assigned to the pure summer crop stratum or signifi-
cantly large alternate summer crop subclasses. These plots show the
progression of the vegetation phenology of this stratum in the poten-
tial crop separation window. The initial use of these stratified
scatterplots will be to verify the boundaries of the Separation Window.
Only those acquisitions showing a distinct separation in the distribu-
tion of points along the 'Green Arm' are to be considered separation
acquisitions (Ss2 Figure 3.4).

Step A5: Corn/Soybean Discriminant

Using the GRABS vs. Brightness scatterplot of pixels in the summer
crop stratum for each available acquisition, the Analyst determines
when the best separability between corn and soybean distributions is
achieved. Examining crop development along the "Green Arm" the Analyst
looks for soybeans to cluster at higher GRABS values than corn. A
boundary is placed between these distributions ana perpendicular to
the Green Arm for each acquisition exhibiting separability. This
boundary and associated liwmiters will be used in preliminary labeling
of blob targets as corn or soybeans. At this point the analyst also
identifies a subset of acquisitions that are used in defining field-
like targets (blobs) (See Figure 3.4).

Step M6: BRlobbing, Blob Clustering and Sampling

Blobbing (Target Definition). Field-like targets called blobs

are defined. These targets are intended to correspond to farmers'
fieids and provide candidate labeling targets, Ideally, each
target is composed of a single crop type. The machine clusters
pixels on the basis of their spectral characteristics and spatial
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position. Pixels grouped in a single blob must be spectrally
similar and spatially contiguous. Once the blobs are formed they
are separated into two groups according to their size, The first
group, called "big blobs", consists of all blobs that have at
least one pixel in their interior (i.e., one pixel left when 2
one pixel boundary is stripped off the blob). The second group,
or "little blobs", has no interior. Only big blobs are candidate
labeling targets. This segregation is carried out in order to
isolate mixture pixels and very small fields which prove to be
poor labeling targets. Each blob, big or little, is assigned

to crop group strata according to the vegetative temporal pattern
of their spectral means. This is done by the machine based on
the temporal pattern class assignments previously defined by the
Analyst.

Blob Clustering. Since it is too time-consuming to label all big

blobs, it is desirable to produce a sample of blobs for labeling
that would best represen:. the entire population. In order to
realize a gain in sampling efficiency, big blobs are grouped into
smaller strata within each crop group. An unsupervised cluster-
ing algorithm is used to group the blobs into spectrally homo-
geneous strata that ideally are homogeneous with respect to crop
type, as well.

Sampling. Once strata are formed, a specified number of blobs are
selected for labeling. The sample is allocated proportioral to the
size, in pixels, of each stratum. Since blobs are of different sizes,
the Midzuno technique [13] is used tc select a sample that is an un-
biacd representation of each stratum. Once the sample is selected,

a number of labeling aids are produced for the Analyst including

GRAB: vs. Time and GRABS vs. Brightness plots, a PFC overlay identi-
fying the blobs to be labeled, and other diagnostic statistics.

C- 5
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STAGE 3: BLOB LABELING AND PROPORTION ESTIMATION

Step A7: Blob Labeling

Using aids produced by the machine, the Analyst follows a well-
defined decision logic to label each sampled blob according to its
major crop group (see Figure 3.5). The crop group stratification
assignment is used as an initial indicator of crop group. This assign-
ment is refined using additional available information. The resultant
label will be either "Summer Crop" or "Non-Summer Crop".

If supported by the segment acquisition history, the Analyst will
also label each blob sampled according to its crop type, in particular
"corn", "soybean", or "other". Again the Analyst makes use of a well-
defined decision logic (See Figure 3.6). Since this procedure was de-
signed for the Corn Belt where corn and soybeans are dominant, other
summer crops are not discriminated. In addition to crop labels, the
Analyst assigns a confidence to the label to indicate an expectation
regarding the accuracy of the label. These labels are provided to the
machine for the final estimate of crop area proportions.

Step M8: Estimation

Stratified Area Estimate. A weighted aggregation of the labels
of the sampled blobs in each spectral stratum results in an esti-

mate of summer crop area, or, if information is sufficient for
crop type labeling, corn and soybean area, for each stratum. An
estimate is then produced for each crop group stratum by a simple
weighted aggregation of the spectral stratum estimates.

Segment Proportion Estimates. Each crop group stratum was pre-

viously assigned an estimate of summer crop area, or, corn and
soybean area, according to a sample of big blobs. The segment
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area estimate is produced by extending the crop group stratum
estimates to the in-stratum unsampled (1ittle) blobs, and then
aggregating the overall stratum estimates. In this process, the
weights used are formed from the total number of pixels in each
blob. Figure 3.7 graphically illustrates the estimation process.

3.2.2.3 Evaluation of C/S-1 Procedure

Overall Results

Results from the 46 segment processings performed in Phase 1 of
the Pilot indicated that while the estimates for summer crops as an
aggregate were within 1.5% relative to the true (see Figures 3.8(a)
and 3.8(b)), corn was significantly overestimated and soybeans were
underestimated by a similar amount. Table 3.1 identifies statistical
measures used.

To eliminate the effect analyst labels might cause on the final
segment estimates, the blobs were given actual labels from digitized
ground truth. With these labels the estimates illustrated in Figures
3.9(a) and 3.9(b) were produced. While these results are a substantial
improvement over the analyst-produced results, especially in terms of
variance, sigrificant error still remained, indicating that the errors
were both machine and analyst induced.

Detailed Analysis

In order to gain insight into the sources of these errors as soon
as possible, the initial 11 segments processed were selected for in-depth
analysis. As the pilot processings progressed, four additional segments
were included in the study. As it eventually turned out, the particular
15 segments analyzed exhibited poorer soybean estimates than the ensem-
ble of processing, mainly because of the unusual conditions encountered
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TABLE 3.1. STANDARD STATISTICAL MEASURES OF AREA PROPORTION
ESTIMATION PERFORMANCE FOR n SEGMENT PROCESSINGS
MEAN ERROR (€): X7, e/n=P -F
STANDARD DEVIATION OF ERROR (s ): [2:?_‘ (e, - %(n - l)]'"2
MEAN ABSOLUTE ERROR (M.A.E.): 370 . [e [/n

RELATIVE MEAN ERROR (R.M.E.): e/P

GROUND TRUTH PROPORTION FOR iTH SEGMENT: Py
ESTIMATED PROPORTION FOR iTH SEGMENT: ﬁi
ERROR FOR ITH SEGMENT: e, =P, - P,

ABSOLUTE ERROR FOR iTH SEGMENT: leil
MEAN GROUND TRUTH PROPORTION: F = 2:?_1 P./n
MEAN ESTIMATED PROPORTION: S - /n
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in these segments with regard to acquisition histories, environmental
conditions during the growing season, and an atypical case of double
croppina of soybeans that was encountered. Nevertheless, the general
performance characteristics of the procedure observed in the analysis
of these 15 sagments represent the same trends later observed in the
later analysis by LEMSCO of the full sat of 46 segment processings, and
so formed a reasonable basis for investigating the source of errors
associated with the C/S-1 procedure.

The approach ERIM adopted to investigate the sources of error can
be described as a series of subcomponent level evaluations of C/S-1.
This approach was selected because it made it possible to isolate
(1) how much error is built into the automated machine side of the
system, versus that contributed by l1abeling, and (2) even more speci-
fically how much error is contributed by each step of the estimation
process carried out by the machine. The effects of Yabeling error were
removed by substituting ground truth information for the labels normally
furnished by the analyst. Thus, machine functions were analyzed in the
absence of other error sources, and observed deviations between the
machine's crop proportion estimates for the segment and the true crop
proportion estimates, as computed from ground truth, could be attri-
buted to deficiencies in the estimation procedure.

Thus, tests of each major step in the flow of estimation-related
activities were conducted, These tests, it was hoped, would show the
amount of error introduced into the final crop proportion estimate due
to the error contribution of each step of the procedure. This resulted
in the evaluation of the following six strategies of the estimation
procedure:

1) The effect of using only the big blobs (those with interior
pixels) of the segment and their boundaries to produce the
estimate;
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| é 2) The effect of using only the interiors of the hig blobs of
: the segment to produce the estimate;

3) The effect of using only certain allowable mixture propor-
tions wher describing the composition of the interiors of
mixed blobs;

4) A1l of the above conditions applied to only a sample of the
big blobs;

5) A1l of the above conditions, with analyst labels substituted
for ground truth;

6) A1l of the above, plus the effect of adding in the little
blobs, which constitute an unsampled stratum.

Behind each of these strategies there is an assumption. So, by
comparing the actual crop proportion estimates of a segment with those
produced using these strategies we have a way of testing the following
assumptions:

1) That the pixels contained in big blobs and their boundaries
are a representative sample of all the pixels in the segment;

2) That the interior pixels of a blob are representative of the
entire biob;

3) That the proportion of crop types found in mixed blobs can
be accurately measured using a system that allows designating
mixture in terms of halves and thirds of a blob;

4) That a sample of available big blobs, produced by the sampling
procedure used, yicids an unbiased estimate of the crop pro-
portion found in all big blobs;

5) That analyst labels are accurate;

6) That the little blobs (the unsampled stratum) have the same crop
proportions as the big blobs in the same crop group, and taking
advantage of this adjusts for crop error due to assumption #1.
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Figure 3.10 i1lustrates the results of this study with a plot of
the cumulative estimation error which results at the end of each step.
From the plot the following can be seen:

1) The big blobs alone are not representative of the entire seg-
ment. Further analysis indicated that typical corn blobs were bigger
than typical soybean and non-summer blobs, and that the iittle blobs
and smaller big blobs were predominantly non-corn. While ihe available
evidence indicates that actual corn field are bigger than actual soy-
bean and non-summer fields on the average, the difference in blob size
for different crops may be a phenomenon associated witn the manner in
which the BLOB algorithm works. Analysis of BLOB in these terms is
discussed in Section 3.3.3.

2) Extending the label of the blob interior to the blob boundary
is not an unbiased assignment. In particular, it was determined that
the boundaries of corn blobs were "dirtier" than the boundaries of non-
corn blobs. This is due to the central position corn occupies spec-
traily between non-summer crops and soybeans; and to the fact that the
BLOB algorithm grows a field-like target until a variance threshold
is exceeded. The spectral position of corn will tend to make mixed
signatures look like corn (non-summer + soybeans will be too green
for non-surmer, not green enough for soybeans; corn + soybeans will
look like green corn or weak soybeans), and the lower variance observed
in corn blobs will tend to make them grow excessively.

3) Forcing a blob label to be quantized into fractional parts of
1/3 or more had no significant effect on the results of the procedure.

4) The Midzuno sampling was unbiased in implementation as it is
by theorem, and added variance to the estimate, as expected.

Up to this point in the analysis, all labeling of blobs had been
done using digitized ground truth, with non-inventoried cixels being
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designated as “other". Additional analysis required analyst labels,
which posed a problem when all or part of the blobs in question was
"non-inventoried". To assess the uncertainty introduced into the esti-
mate by this “unknown" ground truth, the following approach was taken:

An estimate was produced using ground truth labels for the sampled
blobs, with "non-inventoried" pixels counted as "other". The estimate
was recalculated, this time using the analyst label for each blob which
was 50% or more "non-inventoried", in effect assuming that the analyst
labels for those blobs were correct. This estimate was then the base
with which to compose estimates using analyst labels exclusively.

5) The introduction of analyst labels into the procedure added
significant bias, particularly with respect to corn and soybeans. To
gain addirtional insight into the nature of the labeling errors, the
blobs were divided into the set of all blobs with at least 5/6 of
their interior pixels of the same crop class, and the set containing
all other blobs. These strata were designated "pure" and "mixed" blobs,
respectively.

Analysis indicated that although the 80% of the sampled blobs
which were "pure" were labeled with good accuracy (96% for corn, 88%
for soybeans and 92% for non-summer crops), the 20% of the blobs which
were mixed contributed 50% to 70% of the final error caused by labeling.

Two basic factors contributed to the poor labeling performance on
mixed blobs: 1) too many mixed blobs were being created by the BLOB
algorithm, and 2) the analysts were only detecting approximately 10%
of the mixed targets. It appeared that this problem resulted primarily
from non-optimal acquisition selections and to a lesser degree, to inher-
ent limitations on the separability of the crops using Landsat MSS.

6) The correction for the unsampled stratum performed as desired
in correcting summer/non-summer bias introduced by sampling big blob
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interiors only, but was inadequate in dealing with crop type (corn/
soybean) corrections. This appeared to be primarily the result of
assignment of little blobs to crop group strata, which did not allow
for corn/soybean discrimination. It was also observed that this bias
correction step was the major contributor to the variance of the esti-
mates.

The above analysis led to the following major conclusions:

1) The labeling targets defined by C/S-1 were of unsatisfactory
quality. In particular, too many impure blobs were being formed, and
the analysts were not able to detect these blobs as mixed.

2) The correction for the bias introduced by sampling only from
big blobs was inadequate with respect to crop type, but performed as
desired in eliminating crop group bias.

On the basis of these findings, a set of modifications to C/S-1
was proposed which it was felt would remedy the most serious of the
procedure's deficiencies. These modifications and the procedure re-
sulting from their implementation are described in the following
section.

3.2.3 AUGMENTED BASELINE PROCEDURE (C/S-1A)

3.2.3.1 Description of Procedure

The augmented Baseline Corn and Soybean Procedure, C/S-1A, was
developed in response to weaknesses observed in Procedure C/S-1 as
detailed in the previous section. Technical specification of C/S-1A
is provided in Appendix 1 and procedures are documented in [52].

The major areas targeted for development were the unsampled Stratum
bias correction, and target definition and labeling. Additional modi-
fications aimed at increasing the consistency and efficiency of the
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procedure were also implemented, although they were not the primary
focus of the development effort. The basic structure of the procedure
remained unchanged, with most of the modifications being a continuation
of development along the original philosophical lines.

Development directed at reducing the mixed blob labeling problem
proceeded along two lines: (1) modifications which decreased the num-
ber of mixed blobs, and (2) modifications which improved the accuracy
with which the remaining mixed blobs were labeled. To reduce the num-
ber of mixed blobs created, the blob acquisition guidelines were
clarified (the importance of an acquisition in the corn/soybean sepa-
ration window to reduce corn/soybean mixtures was enphasized, and the
use of an acquisition prior to summer crop emergence to reduce summer
crop/other mixtures was recommended). Additionally, the decision rule
in BLOB was modified to apply acquisition-by-acquisition thresholds,
as well as a threshold based on averages over all acquisitions.

To improve the detection and labeling of mixed blobs, a machine
procedure for automatic detection of potentially mixed blobs was de-
veloped, and the labeling logic was modified to label those blobs
flagged as potentially mixed on a pixel-by-pixel basis.

Annther important modification was to automate those parts of the
decision logic that were completely objective. This resulted in a
segment-specific set of reference crop profiles for the analyst to use
as references, as well as a decreased number of blobs that the analyst
had to label. This modification allowed the machine to label approxi-
mately 50% of the blobs with a high level of confidence (about 95%
accuracy).

It was observed in the analysis of the C/S-1 test results that
the nature of the bias problem associated wiith the unsampled stratum
was primarily a corn/soybean problem, as opposed to a summer crop/
other problem. Thus the bias correction step was modified so that
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little blobs were assigned to a stratum within a DFS, instead of assign-
inc them to the DFS alone. The rationale behind this modification was
that the sub-DFS strata allowed crop type stratification while DFS is
simple a crop group stratification.

An additional modification aimed primarily at decreasing the time
required to run the procedure was the automation of the assignment of
TPC's to DFS. During the first phase of the pilot experiment it was
found that this essentially rote step was one of the most tedious and
error prone activities performed by the analyst. The automation was ;
performed by developing a machine procedure which precisely followed |
the objective, well defined logic which the analysts had employed.

A summary of the modifications to C/S-1 and the observed problems
which motivated the modifications is given in Table 3.2. Appendix 1
provides a detailed specification of the subcomponents comprising
Procedure C/S-1A.

3.2.3.2 Evaluation of C/S-1A

Evaluation of the C/S-1 subcomponents that were modified for use
in C/S-1A was performed by ERIM to determine the performance improve-
ment which could be expected. Three major tests were performed. They
were: target definition, automatic labeling, and the unsampled stratum
correction. Due to resource constraints, it was not possible to use
all 39 segment processings for each test, and so some tests were per-
formed using only a subset of these 39. These subcomponent evaluations
indicate C/S-1A possesses a potential for improvement in segment pro-
portion estimates over C/S-1. End-to-end performance will be determined
during Phase 2 of the Pilot, which will be initiated in FY1982. Des-
criptions of these tests and the results follow.
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Target Definition

To determine the improvement, if any, in target definition rea-
lized by a modified BLOB rule and clarified acquisition selection
guidelines, blobs were produced two different ways and compared. In
one case, the original C/S-1 BLOB rule was applied to acquisitions
selected during Phase 1 of the Pilot; in the second case, the C/S5-1A
BLOB rule was applied to acquisitions selected using the C/S-1A acqui-
sition selection guidelines. Both sets of blobs were analyzed in terms
of interior purity and the proportion of the scene covered by each of
the blob interiors, blob edges, and little blobs. The results of this
study are presented in Table 3.3.

From these results, we can conclude that the modifications in
C/S-1A have had the intended effect, i.e., the analysts are now pre-
sented with labeling targets of higher purity than they experienced
with C/S-1. As a consequence, however, the size of the unsampled
stratum (little blobs) has increased significantly, placing even
greater importance on the proper treatment of this stratum.

Automatic Labeler

The automatic labeling subcomponent was evaluated in a test con-
ducted on blobs created by C/S-1 during Phase 1 of the Pilot. The auto-
matic labeler labeled those 60 of the targets that were >5/6 pure,
achieving 96 accuracy for crop type and 98° accuracy for crop group.

Because the automatic labeler requires a corn/soybean discrimi-
nant defined in terms of maximum GRABS vs. Brightness, the discrimi-
nants identified in the C/S-1 processings were not usable due to being
acquisition specific. As a compromise, a standard discriminant value
of 64.0 was used for all processings in this test. This value has been
shown to provide good results over a large number of segments in the
past (See Table 3.4).
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TABLE 3.3.

Blob Interior Purity

% of Scene one:
e Big blob interiors
e Big blob edges
e Little blobs

ORIGINAL PAGE IS
OF POOR QUALITY

TARGET DEFINITION SUBCOMPONENT

Original C/S-1

(conducted on New Acquisitioms,
5 segments) New Blobbing Rule
87.2% 93.6%
36.0% 24 .42
52.0% 46,82
12.0% 27.8%
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TABLE 3.4. C/S-1A AUTOMATIC LABELER PERFORMANCE
Crop Type (39 processings, 1534 blobs labeled)
(18 6T
C S 0 Summer Other
Labeler C 9.0 Labeler Summer  97.6
95.7 Other 98.1
98,1
Crop Group* (7 processings, 242 blobs labeled)
18 6T
c N 0 Summer Other
Labeler C 89.4 Summer 96.0
82.3 Other 95.7

95.7

*The C/S-1 procedure did not allow processing to crop type for some
segments. Use of the maximum GRABS vs. Brightness discriminant
default allows crop type estimates for these segments.
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Unsampled Stratum Correction

The modified unsampled stratum bias correction subcomponent was
evaluated on 39 Phase 1 Pilot processings by comparing the performance
of the C/S-1 and C/S-1A bias correction subcomponent on a set of identi-
cal blobs. To prevent contamination of this test by errors in analyst
labels for these blobs, labels derived from ground truth were used.
These labels were produced by LEMSCO from digitized ground truth,

A comparison of the results of this test is presented in Table 3.5.
This comparison indicates that the modification tested produced the de-
sired effect, i.e., the bias remaining after the C/S-1A correction is
performed is approximately half that observed when the C/S-1 bias cor-
rection procedure is used with identical labels.

3.2.4 STARS

3.2.4.1 Introduction

The Software Technology for Aerospace Remote Sensing system (STARS)
was developed by ERIM to fulfill a need for a standardized, controlled
environment within which development, testing, processing, and evalu-
ation of image processing procedures could take place.

This system has been successfully used to develop three crop area
estimation procedures, support major experiments with two of these
procedures, evaluate the procedures, and is being used to develop new
techniques for estimating crop area using Landsat data.

3.2.4.2 STARS Design Features

Several design features of STARS make it unique. Key ones in-
clude: the manner in which individual modules are relatively inde-
pendent of one another and of the host operating system, the data
management capabilities of STARS, and the status tracking features.
These will be discussed in greater detail in the following paragraphs.
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TABLE 3.5. COMPARISON OF RESULTS USING GROUND TRUTH LABELS
Cc/S-1
Summer
Corn Soybean Crop Corn
Py 4.12 -2.91 0.91 2.19
Se 2.13 2.33 2.95 2,47
n 30 30 36 30
Summer
Corn Soybean Crop Corn
e 3.15 -1.94 1.50 1.90
Se 2.18 2,53 3.27 2,22
n 9 9 10 9
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C/S-1A
Summer
Soybean Crop
~-0.96 0.85
2.49 3.23
30 36
Summer
Soybean Crop
-1,22 1.21
2.93 3.73
9 10
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Due to the fact that software may often be developed on one com-
puter facility with one set of operating conditions, then transferred
for use on a different facility with different conditions, there
exists a need for the software to be independent of the conditions,
such as the operating system, within which it performs. If this inde-
pendence is not achieved, extensive modifications may te required to
the individual modules to allow the transfer to occur, which in turn
would require additional testing to verify that modified code.

To achieve this independence from the underlying operating sys-
tem, a set of systen primitives, called System Interface Routines (SIRs)
was developed. These primitives are implemented for each system for
which STARS is intended to be used. Given these primitives and a
compatible compiler, software which interacts with the system only
through the SIR's can be transferred from one system to another with
no modifications. The functions provided by the SIR's include 1/0
operations (Create, Open, Close, or Destroy files; Kead, Write, Delete
records; obtain access to non-file device); memory management (Get
space, Free space); and other necessary functions (Get current time/
date, query if Batch or Interactive, error handling). In every iuple-
mentation of the SIR's, the interface with the calling program is
unchanged.

In addition to this independence from the operating system, the
independence of each application module from all others was required
to facilitate testing of individual modules as well as to simplify
the substitution of one module for another. To meet this need, all
data is passed to/from the application modules via parameter lists,
and only a limited number of specialized application modules are per-
mitted to use the SIR's,

For each application (e.g., merge data, produce maps, etc.) an
overall controlling program, called a scenario, directs the operation
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of the individusl application modules. This scenario controls the

sequence of execution of the application modules and provides all the
data management for those modules.

The data management capabilities are provided through a set of
primitives available only to the scenario., These primitives access
a simplified data base called Collateral Holding And Retrieval Library
for Information Extraction (CHARLIE), CHARLIE is composed of a colle:-
tion of entities, each of which is a FORTRAN-1ike varfable, i.e.,
scalar, vector, multi-dimensioned array. Each has a descriptor con-
taining the variable name (up to 40 characters), size, shape (dimensions)
and mode (Real, Integer, Logical, Complex, Character). The data prim-
itives provide the capabtiiity to create an entity in virtual memory,
give it initial value, ctange its shape (e.g., from dimensions of 1, 1,
1 to 3, 4, 117), save it in permanent storage, and retrieve an entity
from permanent storage. With these primitives, the burden of data
base access is constrained to the scenarios, with the application
modules viewing the data as standard FORTRAN variables.

W e

To insure repeatability of results, 17 is necessary to know which
version of each software module was used in the run. It is also use-
ful during development to know what events have occurred up to a given
point. To serve this need, STARS has a status tracking capability
which records the entry and exit of each application module and
scenario, 2ach data base access, any errors detected and major 1/0
events, such as transferring a file from disk to tape or destroying
d file. This log, which is maintained automatically. contains informa-
tion describing the time of the event and the version of the module.

3.2.4.3 Image Processing on STARS

A primary use for STARS is image procescing. With that as a
design consideration, two major requirements were identified: imayes
must be processed efficiently, and the system must be adaptable to
the various formats images are stored in.
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The image processing efficiency results from the "assembly line"
processing capability in STARS. In this mode, an image is read, scan
line by scan line, and each line (or group of lines) is processed by
one or more application routines before the final transformed scan line
is saved. This method of image processing minimizes 1/0 operations,
reading each line of the image only once.

The images which are processed may be found in any one of several
formats., However, all application modules must share a common view of
all images to allow the "assembly line" processing to occur. There-
fore, images are viewed by STARS as existing in two forms: Internal
and External. The Internal form is the view all application modules
have of the image. It is a standardized, one scan line at a time
image format. The External image form encompasses all possible formats
an image may be stored in Externa! to the STARS environment (e.g.,
Universal, EROS, etc.). It is the job of Format Service Routines
(FSRs) to convert images between Internal and External image formats.
With the appropriate FSRs, any external image format may be handled
by STARS without modification of application modules.

3.2.4.4 Production Processing in STARS

For STARS to be used for processing in a production environment
several criteria must be met. The integrity of the data must be in-
sured, management must have access to processing status, the user
interface must be simple, and management must have the ability to
allocate storage facilities (disk and tape) as needed.

To maintain the integrity of the data, that data generated by
each user of the system is kept physically separate from data belong-
ing t~, other users. Additionally, the user has no need to know pre-
cisely where the data is stored, and in fact the actual names of the
data files are hidden from the user. This is all accomplished through
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a file directory which is maintained by the SIRs. This directory pro-
vides the translation between the logical file name, which the applica-
tion module uses, and the physical location of the data.

The quantity of data generated in many image processing applica-
tions is enormous. To maintain all this data in disk files would
impose excessive disk requirements on the system, as well as tying
up the disk storage with files which may be used very infrequently.
Storage of data on tapes is an obvious alternative, but tape access
is relatively slow, and processing multiple images simultaneously
would require several tape drives - leading to long waits for an
available drive. Even more untenable is the possibility that these
several images exist on the same tape, and scan line by scan line pro-
cessing then becomes nearly impossible.

The solution to this problem is the use of a mixture of tape and
disk storage. Data is stored on disk as it is generated, then trans-
ferred to tape if it is expected to be inactive for a long time.
Prior to using data, the scenario insures the data is on disk, trans-
ferring it from tape to disk if necessary. The mechanism used by the
scenario to affect these transfers is a simple command, and the
scenarios may easily be modified to change the decision of what gets
transferred where and when. For example, if disk storage is scarce,
the decision could be made to transfer all data to tape immediately
after it is generated, then back to disk each time it is needed.

In a production environment where throughput is important, it
is essential that the interface between the user and the system be
simple, both to minimize errors and rework and to minimize training
time for new users. To this end the scenario/command language con-
cept was developed.
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The user invokes the scenario through a simple command, then
each input is requested with a prompt and verified before being
finalized. After all user inputs are received, the user is given a
final chance to abort the processing or continue. This approach
allows most entry errors to be corrected without needing to await the
results of processing. User inputs are requested only for those data
which the machine cannot otherwise obtain (e.g., from CHARLIE), mini-
mizing the quantity of user inputs.

To insure the integrity of the overall experiments, management
must have access to status information. A management query capability
exists in STARS which allows information describing processing status,
error conditions, disk and tape status, and intermediate and final pro-
cessing results to be extracted and placed in a report. The query
system also provides a limited "Help" facility which describes the
capabilities of the system and the commands necessary to utilize those
features.

3.2.4.5 Research and Development in STARS

In its applications to date, STARS has been used primarily as a
production processing environment. Another in‘ended use of STARS is
in a research or development mode. Although many of the needs of a
research user are identical to those of a production user, there are
requirements which are in conflict.

The primary difference between the researcher and production
user is one of data access. Where the production user wants to
process a data set only once, wants measures which prevent modifica-
tion of that data set, wants use of that data set restricted to himself,
and wants a fixed set of simple commands, the researcher may want to
process the same data set multiple times with different parameters or
modules, and several researchers may want to share a common data set.
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To permit this duality, two avenues for development have been
established. The primary one is the concept of workspace management,
wherein each user maintains data in a separate workspace, but data may
be easily transferred from one workspace to another, and a workspace
may be shared by multiple users under proper conditions. The second
concept is the use of a command language or scenario processor to
replace the current scenario modules. This command language would
allow a scenario to be easily built by the user, providing much more
flexibility than currently exists while retaining the capability for
simple, pre-defined commands.

Although these concepts are still under development, STARS has
already proven to be useful for research and development of new pro-
cedures. The modular construction demanded of application modules
makes modification of existing modules simpler and minimizes debugging
time.

3.2.4.6 Summary

STARS was designed to provide a controlled environment for image
processing procedure development and processing. Software for an
area estimation procedure (C/S-1) and its subsequent modifications
(C/S-1A) were developed by ERIM and exercised in major experiments
at NASA/JSC. A number of additional applications are also available.
This process of development and testing provided an excellent basis
for the evaluation of the design concepts behind STARS.

The volume of the code developed was considerable - more than
30,000 lines of FORTRAN. The productivity achieved in producing this
code was good, and the procedures were transferred from the system on
which thev were initially developed (the University of Michigan's
Amdahl 470/8 using the MTS operating system) to a second system for
shakedown testing and user training (CMS on the LARS IBM 3031), and
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finally to the user's system (CMS on the NASA/JSC EODLS AS/3000).

The initial transfer (MTS to LARS) required the rewriting of the SIRs,
which comprise less than 10% of the total code. The final transfer
(LARS to EODLS) required no modifications. In no case did the appli-
cation modules or data management routines require any modification.

The procedures were run at JSC by persons who had limited prior
computer experience and received minimal training. These users re-
ported STARS to be a smooth running, easy to use system. The manage-
ment of data and permanent storage was totally transparent to these
users.

In the evaluation of these procedures, extraction of both inter-
mediate and final results was greatly simplified through the use of
CHARLIE. Additional evaluation capabilities, such as the processing
of ground data, were readily developed.

STARS has been shown to successfully meet all of its original
design goals, but development of the system should not stop here.
Effort should continue in the development of workspace and command
language capabilities, and the use of STARS for additional applica-
tions should be pursued.
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3.3 RESEARCH ON TECHNOLOGY ADAPTATION TO ARGENTINA

In this section we consider five research topics that address
known technical needs for Argentina crop inventory. These are intro-
duced in the succeeding paragraphs.

First, work on ground cover classes that are likely to be spec-
trally similar to corn and soybeans was carried out, both to identify
those classes and to begin to study growth and spectral characteristics
that may serve to distinguish the cover classes from corn or soybeans.
This work was principally carried out at UCB [1].

A second topic examines spectral-temporal features derivable by
profile-fitting methods to identify corn/soybean/other discrimination
information presented in several types of profile features. This
effort is aimed at extracting crop-related information that is not

sensitive to extraneous factors such as data acquisition date and

thereby working toward procedures that are automatic in that they do
not rely on a human analyst.

Due to the growing need to reduce the cost of making crop esti-
mates a third topic presents a double sampling method of combining
inexpensively obtained segment level crop estimates with ones that
are more expensive and accurate to produce a required estimate. This
discussion identifies how targets can be allocated to the crop esti-
mation methods so that estimation error is minimized subject to a
fixed total cost. This method is carried out to illustrate a minimum
error solution based on one set of cost and budget assumptions. How-
ever, the most significant aspect of this work is the method used to
set up and solve this type of optimization problem.

Another research area is aimed at improving the targets that are
selected for identification in crop inventory procedures. This study
consists of attempts to quantify the performance of such targets,
identify sources of error (especially bias) that these targets may
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introduce into an overall procedure, and improve the quality of the
system components that form or select potential targets.

The final topic presented in this section summarizes preparation
of familiar ground truth products from the data collected by the con-
sortium Argentina mission previously discussed in Section 2.4,2. The
methods used for this preparation are emphasized, and a description of
the available data is presented. This activity has produced a data
base that is available through NASA/JSC for further work in adapting
or developing crop estimation technology for Argentina.

3.3.1 CONFUSION CROP RESEARCH

In order to carry out accurate inventory of corn and soybeans in
Argentina, it is necessary to deal with inventory conditions present
in Argentina that are not present in the U.S., to which inventory
techniques have been primarily tuned. One of these conditions is the
presence of crops other than corn and soybeans that have the same
growing season and other characteristics as corn or soybeans. The
ability to understand and distinguish these confusion crops is a key
issue in the effort to develop an estimation procedure in Argentina.

Principle Argentina confusion crops are sorghum, sunflowers, and
peanuts. Secondary confusion crops are cotton and rice. The regions
in which these crops are grown are shown by Figure 3.11. The work
described herein deals with sorghum and sunflower confusion crops
only. To date, no conclusive keys to eliminating these crops from
the confusion category have been found, although several insights have
been gained.

Corn and Soybean Features

The current inventory technologies are based on several discrimi-
nating features related to the spectral and temporal development of
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corn and soybeans in the U.S. Corn Belt. The principle feature used
is a Landsat green vegetation measure (GRABS) that tracks the growth

of the crops. Figure 3.12 illustrates that GRABS values taken through-
out the growing season track the early growth and ripening of grains,

the lengthy continuously green vegetation in pasture, and the rela-
tively late greening up of summer crops such as corn and soybeans.

Discrimination between corn and soybeans is based on several
features. Soybeans are often planted slightly later than corn, and
therefore reach their highest GRABS values later than corn. Discrimi-
nation is still possible without this temporal difference, however,

since soybeans generally have both higher GRABS and Brightness values
than corn. Soybeans also often have a greater variability in GRABS
and Brightness values (Figure 3.13).

Discussion of Confusion Crops

Intensive study of sorghum spectral characteristics have revealed
how closely sorghum parallels corn in both spectral and temporal develop-
ment (Figure 3.14). Sorghum appears to be slightly later in spectral
green-up than corn, and rarely much later. The maximum GRABS are sim-
ilar, with sorghum occasionally being greener. For any given GRABS
value, sorghum tends to have slightly higher brightness values than
corn, especially when the corn is irrigated. Occasionally, irrigated
corn is greener than the sorghum, although the sorghum remains brighter.

Generally, soybeans achieve higher GRABS values than sorghum,
and higher Brightness values when the GRABS values are much higher,
When the GRABS values of the two crops are similar, the Brightness
values also coincide (Figure 3.14).

Sunflowers are generally greener than corn, less green than soy-
beans, and brighter than either (Figure 3.15). Temporally, sunflowers
are similar to both corn and soybeans, but are much more variable than
either. Two types of sunflower spectral patterns have emerged in the
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study, referred to as higher-green and lower-green sunflowers. The
Tower-green sunflowers cause confusion with corn and the higher-green
sunflowers cause confusion with soybeans. Maximum spectral separation
between sunflowers and corn seems to occur at different times of the
growing season from sunflower/soybean spectral separation.

Separation between corn and sunflowers is complicated by the
variability of sunflowers. Sunflowers are usually, but not always,
greener than corn. Th.y are usually brighter for the same GRABS value,

exhibiting a "parallel green am" effect. This parallel green amm is
only visible, however, at certain times in the growing season. Some
segments display a spectral progression through the year as follows:
(a) sunflowers brighter with GRABS similar; (b) corn and sunflowers
similar; (c) sunflowers greener; then (d) corn brighter with GRABS
similar at maturity and harvest.

The parallel green arm effect has also been observed at certain
times of the year between soybeans and sunflowers, and on plots of
maximum GRABS vs. Brightness; with sunflowers tending to be brighter
for a given GRABS value (Figure 3.16). Temporally, soybeans tend to
develop later than sunflowers. Spectrally, the green canopy of Soy-
beans tends to be of longer duration than that of surflowers.

The above insights provide a basis for further study into the
problem of confusion crops rather than conclusive keys to crop differ-
entiation. Many of these insights are based on distributions visible
only in a research environment, and are not as yet useful as analysis
tools in a crop inveutory procedure.

3.3.2 AREA ESTIMATION USING PROFILE-DERIVED FEATURES

The estimation of corn and soybean acreage from remotely sensed

data is a complex process. Considerable effort has been invested in
attempting to automate the process as much as possible. While many
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phases have been successfully automated, the critical area of scene
classification remains at least partially dependent on the human ana-
lyst. In an attempt to minimize the amount of analyst labor, several
researchers, notably Dr. G. Badhwar of NASA [9] and Dr. W. Malila and

E. Crist of ERIM [45], have developed semi-automatic classification

and estimation procedures based on features derived from profile models.
This section describes research conducted on such a model form and a
preliminary classification/area estimation method based on profile

S ——

models. It is hoped the method will eventually become an operational
procedure requiring minimal analyst interaction or perhaps even be
fully automatic.

The classification/estimation method has many conceptual simi-
larities to the Badhwar procedure. Both model summer crop spectral-
temporal behavior with a multi-parameter mathematical representation.
Both attempt classification and estimation based on parameter values
derived from fitting a model profile to data. There are, however,
important differences between the two methods as will be seen. Since
the Badhwar procedure is well-known, it will serves as a basis of
comparison for the method described below. It must be kept in mind,
however, that while the Badhwar technique is a complete procedure for
area estimation, the method described below is still in the early
stages of development.

3.3.2.1 Mathematical Model of Spectral-Temporal Behavior

At the core of the classification/estimation method is an analy-
tical model form of the temporal trajectory of summer crop GRABS
(Greenness Above Bare Soil). A GRABS value is a simple linear com-
bination of Tasseled-Cap Greenness and Brightness given by

GRABS = 0.9962 * Greenness - 0.0872 * Brightness (15)
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The model form is a two-piece sigmoidal profile jointed at the point
of peak GRABS; the mathematical representation of the model is:

1+ Q15.(t - DP)
G(t) =
5 A 55 t>0P (16b)
1+ Q2°.(t - DP)
G(t) = GRABS value at time t
DP = day of peak GRABS
A = peak GRABS value, i.e., G(DP) = A
Q1 = emergence to peak "green-up" rate parameter
Q2 = peak to harvest "green-down" rate parameter

Interpretation of Model Parameters

Figure 3.17 provides a graphical interpretation of the model
parameters. As can be seen, the reciprocals of the rate parameters,
Q1 and Q2, define the time intervals between peak GRABS and the half-
peak point on each side. Thus, larger values of Q1 or Q2 correspond
to increased rates of change of GRABS values, i.e., steeper slopes in
the profile shape. The remaining two parameters of model form, the
peak GRABS value and the day of peak are self-explanatory.

Comparing the four parameters of Equation 16 to the parameters of
the Badhwar model reveals many similarities in the types of information
provided by each. The Badhwar procedure fits a one-piece three para-
meter model to Tasseled-Cap Greenness vs. Time, and a quadratic fit to
the ratio of Greenness to Brightness vs. Time., The first fit yields
the parameters a, 8 and to, while the second produces the parameter o.

a and g describe the rates of '"green-up" and "green-down", respectively,
and so are analogous to Q1 ard Q2. (Note from Equation 15 that GRABS
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and Greenness are nearly identical quantities.) The parameter to is
the time of spectral emergence. Given to‘ a and g, one can calculate
the time of peak Greenness and the actual peak value of the one-piece
profile. The parameter ¢ fram the quadratic fit is essentially a mea-
sure of the "width" or duration of the Greenness profile. As Figure
3.17 suggests, the same type of information is available from an appro-
priate combination of Q1 and Q2. Defining a quantity, SPAN, as the
measure of profile width, we see that it is given by:

SPAN = measure of profile width = 1/Q1 + 1/Q2 (17)

3.3.2.2 Parameter Estimation Procedure

Having established a model profile, the next step is to estimate
profile parameters for various crops and crop types by fitting the
model to actual data. Subsequent sections describe the results of
profile fitting to 11 corn/soybean segments. The present section pro-
vides a brief discussion of the method used to fit the two-piece pro-
file to data.

The method of fitting Equation 16 to spectral-temporal data is
embodied in the program STEPFIT. The program name is descriptive of
the method employed to estimate the four-parameters DP, A, Q1 and Q2.
The program steps through a series of DP values, estimating the remain-
ing three parameters at each value, in a search for the day of peak
that best fits (in a least squares sense) the data.

To explain this process in greater detail, we will use the variable
names appearing in STEPFIT. Equation 16 is fit to the data over an inter-
val of DP values. The interval is defined as NDP days on each side of
some center value DP@. Thus, there are (2*NDP+1) days in the entire
interval. STEPFIT uses the day of the maximum data value as the value
of DP@. The program therefore initially expects to find the "true" day
of peak Greenness within NDP days of the maximum data point.
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With the initial interval defined, STEPFIT sets DP equal to the
first value in the interval, i.e., DP@-NDP, calls ZXSSQ (a standard
IMSL non-linear regression routine) to fit the model using that day as
the peak. ZXSSQ returns, among other things, SSQ, the residual sum of
squares for the final parameter estimates. This quantity is stored as
a function of the corresponding value of DP. The value of DP is incre-
mented by DPINC, usually one day, and ZXSSQ is called again with the
new DP value. This process continues throughout the interval. The
result is a series of SSQ values as a function of the values of DP.

The value of DP with the minimum corresponding SSQ is taken as the
“"true" day of peak. Since the other model parameter estimates, i.e.,
A, Q) and Q2, are saved with each value of DP, once the "true" day of
peak is found, the optimum profile fit is already known. Figure 3.18
illustrates the above process graphically.

3.3.2.3 Profile Fitting Experiment

As mentioned previously, Equation 16 was fit to data in 11 corn/
soybean segments to assess the model's usefulness for scene classifi-
cation -- specifically, its ability to model corn and soybean spectral
behavior. An analysis was made to determine if the profile parameters
could be used to discriminate between summer crops and "other" scene
features, and within the summer crop category, between corn and soybeans.

Data Base

Eleven segments located in the central Corn Belt were used in
the experiment.* Each segment was processed to define quasi-fields,
or "blobs". Ground truth data was available for all the blobs gen-
erated in each segment. The spectral means of the blobs were trans-
formed into GRABS values and input to STEPFIT. The resulting profile
parameters are thus characteristic of corn, soybean and other quasi-

*
Segments 123, 141, 202, 205, 800, 832, 842, 852, 853, 877, 88].
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fields. This is in contrast to the Badhwar procedure in which profile
parameters are computed for individual pixels.

Two types of blobs were identified: those containing interior
pixels as well as blob boundary pixels (big blobs) and those consist-
ing of only boundary pixels (little blobs). The interior pixels of
big blobs are considered to be spectrally pure, i.e., free of misregi-
stration effects. Big and little blobs were subdivided further into
those blobs whose ground truth classification exceeded 5/6 in any crop

class (i.e., at least 5/6 of the blob's pixels had the same ground
truth classification) and those that didn't, For the big blobs, this
distinction was made by considering the ground truth classification
of interior pixels only. Similarly, the spectral means of big blobs
were computed solely from interior pixel spectral values.

The data base thus contained four levels of "signature purity".
The first level, represented by big blobs with greater than 5/6 ground
truth purity, consists of signatures contaminated by neither crop mix-
tures nor misregistration. The second, little blobs with greater than
5/6 ground truth purity, consists of signatures which are potentially
impure due to misregistration. The third, big blobs with less than
5/6 ground truth purity, contains signatures which are impure due to
crop mixtures but not misregistration. The fourth level, represented
by little blobs with less than 5/6 ground truth purity, contains sig-
natures which are impure due to both crop mixtures and potential mis-
registration.

Profile Fitting Results

After computing profile fits to all blobs in the 11 segments, an
analysis was made to determine the efficiency of profile fitting in
the four signature purity levels. "Efficiency", in this context,
refers to the number of blobs that were accurately fit by Equation 16.
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Accuracy or goodness-of-fit (G-0-F) is quantifiable in a number of ways.
The program STEPFIT computes for each blob the following measure of
goodness-of-fit,

I [PV(t) - D(t))°

- T 0(t) - DT (18)

G-0-F = 1

where
PV(t) = computed profile value at time t
D(t) = actual data value at time t

D

mean value of data values D(t)

and the summations are over the number of data points (acquisitions).
From Equation 18 we see that G-O-F can have a maximum value of 1.00,
corresponding to perfect fit, while the minimum value is theoretically
unbounded.

G-0-F = 0.75 was arbitrarily chosen as the boundary between two
classes of blobs: well-fit blobs (i.e., 0.75 < G-0-F - <1.00) and
poorly-fit blobs (G-0-F < 0.75). In addition, there exists a third
class, those blobs not fit at all. This situation occurs when ZXSSQ,
the non-linear regression routine used in STEPFIT, is unable to con-
verge upon the set of profile parameters which best fit the data.

This may occur for a number of reasons, but the most common is simply
the inability of Equation 16 to adapt to certain spectral-temporal tra-
jectories. This characteristic can be exploited to advantage as we
shall see.

Table 3.6 summarizes the profile fitting efficiencies observed
for the four classes of signature purity. In Table 3.6 , "pure"
denotes greater than 5/6 ground truth purity and "impure" indicates
less than that.

Tables 3.7 and 3.8 further subdivide the pure blobs into four
components: corn, soybeans, vegetated non-agricultural (e.g., pasture)
and unvegetated non-agricultural. These four classes comprise more
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TABLE 3.6. OVERALL SUMMARY OF PROFILE FITTING EFFICIENCY

Class No. of Blobs X Not Fit X Poorly Fit X Well Fit
Pure Big Blobs 3581 17.0 12,1 70.9
Pure Little Blobs 4643 18.0 23.3 58.7
Impure Big Blobs 1459 13.1 17.2 69.7
Impure Little Blobs 4701 14,2 22,7 63.1

TABLE 3.7. BREAKDOWN OF PURE BIG BLOBS

Class % of Blobs Z Not Fit Z Poorly Fit X Well Fit
Corn 1134 2.9 8.2 88.9
Soy 1334 1.9 5.3 92.8
Non-Agricultural 943 53.7 22.6 23.8
(Vegetated)
Non-Agricultural 170 27.1 33.5 39.4
(Unvegetated)

TABLE 3.8. BREAKDOWN OF PURE LITTLE BLOBS

Class % of Blobs 2% Not Fit X Poorly Fit %X Well Fit
Corn 808 8.8 18.6 7.26
Soy 1745 5.9 16.0 78.1
Non-Agricultural 1229 31.5 29,2 39.3
(Vegetated)
Non-Agricultural 861 31.7 34.1 34.1
(Unvegetated)
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than 90% of all pure blobs in tne 11 segments. (The remaining less
than 10% were blobs for which ground truth was unknown or unavailable.)

Table 3.6 shows only small differences between the four levels
of signature purity. As might be expected little blobs are fit well
less often than are big blobs, however, blob purity has only a small
effect on whether or not a blob is fit well. Indeed, pure blobs appear
more likely to t2 not fit at all compared to impure blobs. This effect
can be explained by considering Tables 3.7 and 3.8. When pure blobs
are resolved into their four component classes, it is seen that the

vast majority (80-90%) of those not fit fall into the non-agricultural
category, especially vegetated non-agricultural. For example, Table
3.6 shows that 17%, or 610, of the 3581 pure big blobs were not fit.
Table 3.7 shows that 53.7%, or 506, of the 943 pure big vegetated
non-agricultural blobs were not fit. Thus 506 of the 610 pure big
blobs not fit were vegetated non-agricultural. An additional 46 were
unvegetated non-agricultural,

The reason a smaller percentage of impure big blobs were not fit
may also be explained. In the 11 segments, most of the impure big blobs
were mixtures of summer crops with other that was spectrally similar to
summer crops. The spectral-temporal pattern of the mixture blob was
therefore "summer-crop-like" in appearance. Such a blob is more likely
to be fit by Equation 16 than is a blob with a purely non-summer crop
appearance This is evidenced in Table 3.6 for both little and big
blobs.

As seen in Tables 3.7 and 3.8, only a small fraction of pure
corn and soy blobs wera not fit, while a significant number of pure
non-agricultural blobs were not fit. Indeed, in the 11 segments ana-
lyzed, if a pure big blob was not fit its probability of being non-
summer crop was over 90%. This suggests that a reliable first order
separation of summer and non-summer blobs is possible using only a
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single profile parameter (G-O-F) and a simple binary decisfon (fit or
not fit). To achieve more refined Summer/Other separation of discrimi-
nation between c~rn and soy requires the Other profile parameters as
discussed in the following section.

3.3.2.4 Classification Feature Space

A six-dimensional feature space spanned by G-0-F, SPAN (defined in
Equation 17), and the four parameters of Equation 1€ was analyzed to de-

termine the potential separability of Corn, Soybean, and Other (vegetated

and unvegetated non-agricultural). Only pure big blobs were considered
in the analysis to ensure relative signature purity. The use of pure
big blobs is analogous to the use of "pure" pixels to train an auto-
matic classifier in the Badhwar procedure. In that procedure, "pure"
pixels - those identified as being within field interiors and considered
by an analyst to be pure Corn, Soy or Other - are profile fit. The re-
sulting parameter values are used to adjust classification boundaries
which are applied to the remaining pixels in the scene. Such adjust-
ments allow the procedure some adaptability to the growing conditions

in a particular region.

The analysis of the six-dimensional space used pure big blobs to
define the parameter values characteristic of Corn, Soy and Other.
Ideally, each class would occupy a distinct region in the feature
space allowing for deterministic classification. However, in practice,
this was not the cace. The parameter distributions of the three classes
tended to overlap to some degree. Typically, the distribution for Corn
fell between Soy and Other and was overlapped by each.

Figure 3.19 is a semi-quantitative presentation of the relation-
ships between Corn, Soy and Other in each of the feature space's six
dimensions. The positions of each class are intended to correspond to
the medians of their respective distributions, although the scales of
each parameter are arbitrary. The figure is representative of pure
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big blobs that were fit. As can be seen, Nther {s most distinct from
Corn and Soy along the dimensions G-0-F ard SPAN, while Corn is most
separable from Soy along the A dimension.

Figures 3.20 and 3,21 show the actual .istributions observed over
all 11 segments for two of the pa-ameters, A and SPAN. Again, the
distributions are for pure big blobs that were fit. Figure 3.20 shows
that although Corn and Soy have relatively distinct distributions of
peak GRABS, the Corn and Other distributions are completely overlapping.

This 1llustrates the major obstacle encountered in attempting classi-
fication based on parameter values - namely, the separation of Corn
from wati-fit Other.

A partial solution to this problem is suggested by Figure 3.21,
the distributions in the paramater SPAN. Other blobs tend to have
larger SPAN values than either Corn or Soy. There is still substan-
tial overlan between Corn ard Cther, but this is not as serious as it
would appear for the following two reasons. The first is that the
entire Gther distribution of SPAN is not shown in Figure 3.21(c).
Over 25% of the pure big Other blobs fit hid SPAN values in excess of
250. Thus, the portion of the (zher distribution overlapping the Corn
distribution is less significant than it appears. The second reason
is that the Other blobs making up the overlapping portion (i.e., SPAN
150) tend to have low values of G-O-F (median value = 0.50), and so
could be separated from Corn based on that p-rameter.

Once Other is separated from summcr crops, Corn and Soy pure big
blobs are distinguishable using only a few parameters. Figures 3.20
and 3.21 suggest that they are fairly distinct in a plane spanned by
A and SPAN. This is indeed the case as shown in Figure 3.22 where the
central portion of each distribution has been outlined.

It should be emphasized that the distributions shown in Figures
3.20, 3.21 and 3.22 are composed of data from all 11 segments. The
11 segments represent a variety »f growing conditions and planting
dates; at least one segment contained stressed soy. The potential
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separability of Corn, Soy and Other illustrated in these figures might
be improved on a segment by segment basis. In other words, adjusting
the classification decision boundaries according to the partiuclar con-
ditions of a segment, as in the Badhwar procedure, might improve classi-
fication accuracy. However, the distributions illustrated in Figures
3.20, 3.21, and 3.22 suggest that fixed decision boundaries in the

feature space could be used successfully. If this proves to be true,
a fully automatic classification procedure becames a viable concept.

3.3.2.5 Preliminary Crop Classification Experiment

A preliminary strategy for classifying pure big blobs was formu-
lated and tested in an experiment. The basic approach used was as
follows. A1l blobs not fit were classified as Other. This follows
from the observation that over 90% of the blobs not fit were Other.
The remaining blobs were separated into Summer Crop and Other based
on a Stage 1 discrimination. The Summer Crop group was then resolved
into Corn and Soy based on a Stage 2 discrimination. The number of
pixels allocated to each class was totaled and converted into a per-
centage. The results were compared with the known ground truth per-
centages of each class.

The experiment was conducted on a segment by segment basis. The
Stage 1 and Stage 2 discriminations were accomplished by applying a
segment specific optimum linear discriminant to the data. The linear
discriminant was calculated based on segment specific parameter dis-
tributions of the well-fit (G-0-F 0.75) pure big blobs. Thus, to a
large extent, the discriminant separated the same data distributions
it was "trainec" upon. The key objectives of the experiment were to
assess the blanket classification of not-fit blobs as Other, and the
classification of poorly-fit blobs based on the parameter values of
well-fit blobs.
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Table 3.9 shows the results of the experiment for each of the
11 segments. Both the estimated and true percentages apply to pure
big blobs only.

In all but Segment 877, the estimated percentage agrees fairly
well with the true percentages. In Segment 877, for an as of yet
unexplained reason, a large percentage of fit Corn was classified as
Other. The error is evenly split between well-fit and poorly-fit Corn.
Most of the remaining segments show a slight bias toward Other. This
is to be expected due to the few not-fit Corn and Soy blobs being
classified as Other. A compensating adjustment of the linear discrimi-
nant - i.e., one that biases the Stage 1 classification toward Summer
Crop - could probably eliminate this bias. No definite trend was noted
with respect to poorly-fit blobs. They tended to be misclassified and
classified correctly with nearly equal probability, although poorly-fit
Other was generally recognized as Other.

3.3.2.6 Deriving Area Estimates from Feature Space Classification

Given that crop classification based on profile parameters is
possible, the next step is to generate an area estimate based on those
classifications. There are several possible approaches to this prob-
lem. One would be to simply fit all blobs, classify them based on
their profile parameters, and aggregate the number of pixels allocated
to each class. However, this approach ignores the errors likely to
arise from appiving decision boundaries derived from pure big blobs
to blobs which are little and/or impure. A second approach might be
to classify big and little blobs independently using separate decision
boundaries for each. Unfortunately, it was observed that the parameter
distributions for pure little Corn, Soy and Other blobs tended to
cluster together compared to pure big blobs. This makes the accurate
classification of little blobs a more difficult task. A third approach
might classify only big blobs, generate an area estimate for them, and
then somehow extend that estimate to the little blobs, as in the C/S-1A,
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TABLE 3.9. RESULTS OF CLASSIFICATION EXPERIMENT
Segu.~ t 123 Segment 141
Class Estimated % True X Class Estimated X True %
Corn 41.5 41.4 Corn 26.7 26.7
Soy 36.2 37.8 Soy 20.5 18.6
Other 22.3 20.9 Other 52.8 54.6
Segment 202 Segment 205
Corn 22.9 25.7 Corn 20.7 17.2
Soy 34.3 37.0 Soy 62.8 64.0
Other 42.8 37.3 Other 16.5 18.8
Segment 800 Segment 832
Corn 63.5 64.9 Corn 19.8 20.2
Soy 26.4 26.0 Soy 54.8 57.8
Other 10.1 9.1 Other 25.4 22.0
Segment 842 Segment 852
“orn 49.0 51.3 Corn 36.4 37.3
Soy 34.8 34.8 Soy 27.2 29.9
Other 16.1 13.9 Other 36.3 32.7
Segment 853 Segment 877
Corn 48.9 50.8 Corn 28.2 55.2
Soy 29.6 30.8 Soy 23.5 25.9
Other 21.5 18.4 Other 48.4 19.0
Segment 881
Corn 47.1 47.8
Soy 6.1 6.8
Other 46.8 45,4
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None of the approaches outlined above adequately addresses the
problem of impure or mixture blobs. While this problem is certainly
not unique to profile based procedures, it is one of the most formida-
ble obstacles to a fully automatic area estimation procedure.

There are then several areas of research in which effort is re-
quired before a complete area estimation procedure can be developed
from the feature space classifications. One is determining the
classification accuracies possible with 1ittle blobs. Another in-
volves a study of mixture blobs to see if they exhibit any character-
istic behavior in the feature space that would identify them as being
impure. Yet another is a complete assessment of the use of fixed
decision boundaries in the parameter space.

3.3.2.7 Summary and Conclusions

A summer crop spectral-temporal profile model and profile fit-
ting procedure has been developed which accurately fits summer crop
behavior and discriminates against (does not fit) non-summer crop
behavior. A six-dimensional feature space based on the profile para-
meters was analyzed and was found to have potential for the automatic
or semi-automatic classification of Corn, Soy and Other. With further
research, it is felt that an automatic or semi-automatic classifica-
tion/area estimation procedure could be developed from the profile
techniques described above. Such a procedure would operate as an
end-of-season technique and would require four well-timed acquisi-
tions as a minimum.

3.3.3 ESTIMATING ACREAGE BY DOUBLE SAMPLING

3.3.3.1 Introduction

In crop inventory application, as in many forms of survey sampling,
there may be two, nominally competing, techniques of measurement avail-
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able, each with its associated per sample variance, bias, and cost.

If it is necessary to choose one or the other technique, and if the tech-

niques both have an acceptably small bias, the answer is well known:
Choose the technique with smaller cost-variance product.

More often it is not necessary to choose strictly among measure-
ment techniques. Rather, it is possible to make some of both kinds
of measurements and mix the results to obtain an overall lower vari-
ance at the same total cost, even when one of the techniques, when
used alone, has an unacceptable bias. Consider a low cost, biased,
high variance technique and a high cost, (nearly) unbiased low vari-
ance technique whose results on the same samples are well correlated.
We can view the high cost technique as a method of calibration of the
low cost technique. The calibration is performed by double sampling
wherein the bulk of the samples will be measured inexpensively, and a
certain subset of samples are measured by both techniques. The entire
set of measurements is then used to make a regression estimate which
is unbiased with respect to the more expensive measurement technique
and lower variance (than either technique used separately) for a given
total cost. The conditions for which this is true are again given by
Cochran [18]. The answer (the number of double and single samples
allocated) is obtained by minimizing the variance of the estimator
subject to a fixed total cost. Such situations are most likely to
arise in practice if the competing techniques in question share some
substantial portion c¢f their overhead costs in common, e.g., if the
more expensive technique is a more extensive or thorough application
of the lower cost technique.

The USDA's Domestic Crop/Land Cover Project utilizes double
sampling techniques to adjust a Landsat-based estimate over a large
region by the use of an estimated regression relationship between the
Landsat-based and ground survey-based estimates over a subset of the
region.
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The application discussed in this section centers around several
Landsat-based techniques for estimating crop acreages, namely: a
fictional perfect procedure, a relatively expensive analyst-intensive

use of Landsat data, and a less expensive but closely related method
of using Landsat data. However, the application studied in this
report is of more general interest than described above in two sig-
nificant ways:

a) The quantity to be estimated is multivariate, i.e., the
acreages of two or more crops (in particular, corn and
soybeans) simultaneously.

b) The cost constraints are more general, consisting of
limitations on two or more types of resources (analysts
and computers) as well as total cost.

In this more general situation one must define a suitable objec-
tive function to minimize (replacing the variance) subject to the
(more elaborate) constraint set.

In the next section we describe briefly the double sampling solu-
tion algorithm and in the section following we present applications of
the technique to hypothetical constraint sets.

3.3.3.2 Description of the Double Sampling Approach

The solution algorithm for the double sampling optimization prob-
lem is most completely described in Pont, Horwitz & Kauth [53], and a
synopsis is given in the paragraphs below.

First, an initial determination is made as to whether double
sampling would be beneficial. From [18] double sampling would be
used if:

2
c
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where

(2]
n

cost of more expensive technique;

(2]
L]

cost of less expensive technique;

correlation (multiple correlation) between
results of two estimation techniques

-
"

The greater the cost ratio, or the greater the correlation of answers
from the two techniques, the more valuable double sampling becomes.

Second, once double sampling is found useful the optimum sample
allocation is determined. This requires that a suitable object func-
tion be found:

F(n, n')

where

n is the number of samples allocated to the more expensive
technique;

n' is the number of samples allocated to the less expensive
technique.

This function could be the variance of one crop estimate, or a combina-
tion of the variances of several crop estimates. Then the problem may
be formulated as finding (n, n') that minimizes F subject to a con-
straint set:

n
A [n'] ~ b (where A is a matrix and b a vector)

n<n

n and n' must be positive integers
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This is a nonlinear integer programming problem with 1inear con-
straints. The solution method used depends on F decreasing with n
and n', For each possible value of n, the largest possible n' within
the constraints is determined, and F computed. The value of n mini-
mizing F determines the solution point.

Finally, once the sample is taken and procedure results tabu-
lated, the overall estimate is determined as follows. We denote the
results obtained for the inexpensive procedure samples as

n

{x;}
L EY

and for the expensive procedure samples as
n

R

The linear relationships

()"Uy)=8(x-ux)+e

where

¢ = random variable with mean 0

is assumed to associate the two types of results using Yi and the subset
of {xi} that cover the samples, the overall final estimate is

yk=_¥_+b(7' 'Y)
where
y is mean of Yx

X is mean of those X; that cover the same samples
as the y, (n of the n' values of x)

is the mean of all X;

b is the least squares estimate for B based on
the common samples.
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In this section, two examples of double sampling are considered.
First, the procedure and data used in the analysis will be described,
then the example problems will be presented and finally results and
comments will be given.

3.3.3.3 Example Application

The examples considered are based on the C/S-1 corn and scybeans
procedure discussed in Section 3.2.7. This procedure generates two
types of crop estimates: (1) Stage 1 estimates that are produced
early in the procedure (before analyst labeling), and (2) Stage 2
estimates which comprise the final results of the procedure. We wish
to produce many Stage 1 estimates, and a smaller number of the more
expensive Stage 2 estimates, in order to achieve better overall per-
formance (e.g., lower variance) for a given cost.

The data base used in the analysis is composed of the corn and
soybean segment estimates, both Stage 1 and Stage 2, that were obtained
from 39 segment processings of Procedure C/S-1 carried out in early
1981 at JSC. This data base is more fully explained in Section 3.2. .

In the first example, we establish a hypothetical problem that
an estimation system manager would face. Table 3.10 presents a list
of the constraints, which were selected to be reasonable within the
C/S-1 procedure operational environment. The question being asked is:
"How many Stage 1 and how many Stage 2 samples should be processed to
obtain the best overall estimate"?

In the second example, Constraints 2 and 3 are changed to 320
analyst hours and 30 computer hours.

As described in the previous section, this question is tackled
by mathematically setting up the constraint space, identifying the
objective function to minimize, and carrying out an integer program-
ming algorithm to minimiie the objective function subject to the
constiaints.
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TABLE 3.10. HYPOTHETICAL CONSTRAINTS FOR CONDUCTING C/S-1
IN AN OPERATIONAL ENVIRONMENT

Manager has 2 weeks (ten 8-hour working days to obtain an estimate.

The system has five analysts at its disposal, i.e., a maximum of
400 hours.

The system has at its disposal a maximum of 35 hours of computer
time.

Costs of resources for processing include:
Stage 1 2 analyst hours .25 computer hours
Stage 2 8 analyst hours .5 computer hours

The data for sufficient number of segments is available and is
not counted in the cost analysis.
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The constraints reduce to the following, where n' is the number
of samples of less expensive (Stage 1) technique, and n {s the number
of samples of the more expensive (Stage 2) technique.

) 2 8] [n] 400 |
[ < (for Problem 1)

A

0.25 0.5) |n | 35
320 ]
< (for Problem 2)
[ 30
(2) n'>n (since Stage 1 estimates always exist
if a Stage 2 estimate is produced)
(3) n>10 (to insure sufficient significance in

the relation that is formed between the
two types of estimates)

These constraints are plotted in Figures 3.23 and 3.24 for the two
examples.

In a one-crop example, the object function is simply the variance
of the overall crop proportion estimate. When more than one crop is
involved, such as in the examples presented in this section, there are
many reasonable object functions. For instance:

(1) variance of corn estimate

(2) Variance of soybean estimate

(3) Sum of variance of each crop estimate

(4) Maximum of variance of each crop estimate

In the results presented below, each of these was included in the eval-
uation.
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Denoting the Stage 2 corn and soybeans estimates as Ye and Y
and the Stage 1 corn and soybeans estimates as x_ and Xg s the sample
correlation matrix of

C

was

1.00 .79 .34 .26
- 100 .15 .1
- - 1.00 .90

|- - - 1.00

The multiple R was not significantly larger than the simple correla-
tions so only simple regression was used.

The results of the two examples are given in Table 3.11. The
middle two columns represent the results of the optimized sample
selection. Precision relative to baseline is a measure of improved
performance resulting from the optimized choice, compared to the base-
line alternative of single sampling, using the same resource constraints.
The number of samples in the baseline mode is the maximum number n of
Stage 2 estimates that can be afforded (n=n'). The column called
"solution point" is the label of points in Figure 3.23 or 3.24 that
represent the optimum sample selection.

In both examples, there is a clear gain in accuracy by using double
sampling, and the amount of improvement is between 24 and 54%. The choice
of object functions made some but relatively little difference in the
results of optimization, but had a moderate effect on the measurement of
relative precision.
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3.3.4 TARGET DEFINITION ANALYSIS

As discussed in Section 3.1, target selection is an important
component in crop area estimation technology. The use of quasi-fields
has been emphasized in our work, but it is by no means the only work-
able approach. Table 3.12 lists the principal oic> along with com-
parative attributes of each. While the existence of these alternative
approaches is recognized, we have not carried out comparative evalua-
tions of them. This section will concentrate primarily on using quasi-
fields as targets for labeling.

3.3.4.1 General Remarks on Bias Characteristics Associated
With Quasi-Field Definition

A key goal in defining quasi-fields is to represent true agri-
cultural fields on the ground. If this objective is met, then quasi-
field interiors are pure, and the area associated with each quasi-field
is accurate. In this case, labeling of crop type of a field is more
likely to be correct, and the combining of such lables, weighted by
area, to form an estimate will not introduce bias.

But the current quasi-field algorithms fall short of this goal.
They do not perfectly locate a boundary between two distinct fields.
In most cases, the algorithms successfully detect that the fields are
distinct, but often there is inaccuracy in assigning pixels near the
boundary to the correct field. This can introduce bias.

Figure 3.25 conceptually shows the effect of this inaccurate
assignment. In the illustrated artificial region consisting of just
two fields, suppose error is present in the assignment of two pixels.
The results is a bias of 8% in an area estimate made over the region.
Bias will be introduced over a larger region as well, when assignment
error of near-boundary pixels tends to be preferential to one crop
over another. This effect has been observed, and will be quantified
later.
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TABLE 3.12. LABELING TARGET APPROACHES

Pixels ("dots'") selected _
from the scene '

Approach Attributes
Selected Pixels ("dots") + Computationally inexpensive
- Mixed pixels must be handled or
labeled
Selected Pixels, as Controlled - No longer inexpensive or simple

by Quasi-Field Definition

(“relocated dots™") e Bias characteristics same as

quasi-field

+ Boundary pixels are identified
and handled

- No advantage of averaging pixels

Define Quasi-Field - Computationally expensive

+ Boundary pixels are identified
and handled

+ Target is '"natural' to a human
labeler

+ Noise reduction by averaging
over pixels

~ Quasi-fields imperfectly repre-
sent actual fields

Select Blocks of Pixels + Computationally inexpensive
(e.g., 3 x3) - Mixed blocks especially hard to
handle

- Unnatural target
+ Noise reduction
Identify Spectral - Distribution labeling requires

Distributions technology, different from above,
not yet perfected

+ Above approaches may not work in
areas of very small fields

e Bias characteristics more diffi-
cult to address
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FIGURE 3.25. EFFECT OF INACCURATE QUASI-FIELD BOUNDARY PLACEMENT
ON A CROP AREA ESTIMATE
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As shown in the figure, this bias is not avoided by eliminating
edge pixels. Furthermore, the bias is not avoided by using a pixel
("dot") 1abeling algorithm (rather than a one that labels quasi-fields)
when a "dot-relocation" step is used to move pixels from the boundaries
to the nearest quasi-field. This can most easily be seen by trying a
100% sample of dots on the region in Figure 3.25 and relocating the
edge dots.

Evidence is presented in what follows that the situation just
described hypothetically is in fact characteristic of presently used
quasi-field algorithms.

3.3.4.2 Evaluation of BLOB as a Subcomponent of an Area
Estimation Procedure

This section presents a detailed evaluation of the quasi-field
algorithm BLOB [54] as a compnnent of an area estimation procedure
such as the one described in Section 3.2. This evaluation provides
comparative information before and after two modifications in the use
of BLOB that were made when the procedure was updated from C/S-1 to
C/S-1A. First, the modifications will be described, then the evalua-
tion procedures will be presented and finally, the results will be
given.

The first modification involves the selection of spectral inputs
to the algorithm, The change was to select at least one acquisition
prior to spectral emergence of corn and soybeans, and not to use the
Brightness channel of early-season acquisitions. The necessity for
this change arises since sufficient information must be present in
the spectral inputs so that the important crops can be distinguished.
Without the change BLOB was often unable to distinguish classes such
as pasture from corn or soybeans, and so these classes were sometimes
lumped into the same field. The early-season Brightness channel was
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eliminated since at that time of year, Brightness information was
sometimes found to falsely signal a boundary.

The second modification was intended to improve the purity of
quasi-fields by making BLOB more sensitive to crop spectral differ-
ences that are oresent only within short intervals in a growing sea-
son. In order to do this, separate spectral decision thresholds were
established for pre-season acquisitions and corn/soybeans separation
acquisitions. A difference flagged by any one of these thresholds
could then force separation into two fields.

Some terminology used in describing BLOB and its performance is
needed at this point. Each pixel in a scene is assigned to exactly
one blob, such that each blob consists of spatially connected and
spectrally similar pixels. A pixel is iu the interior of a blob if
the pixel and all of the four strong neighbor pixels fall in the same
blob (algorithm STRIP); otherwise the pixel is in the exterior. A big
blob is a blob that has at least one interior pixel. Thus a segment
is composed of three strata -- big blob interiors, big blob exteriors,
and little blob exteriors. In the context of the C/S-1 and C/S-1A pro-
cedure (Section 3.2), a subset of big blobs is selected as labeling
targets by a randomizing procedure, and the selected blobs are labeled
according to the spectral character of the interior pixels. The blob
labels are aggregated to form a segment estimate.

The evaluation consisted of computing and analyzing several per-
formance measures listed below:

(1) Fraction of Scene
(a) in big blob interiors
(b) in big blob exteriors
(c) in little blobs
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(2) Purity
(a) of big blob interiors
(b) of big blob exteriors

(3) Impure Big Blobs Interiors (purity 80% rule)
(a) number of them
(b) percent by area of all big blob interiors

(4) Bias Indication
(a) purity of corn big blob interiors
(b) purity of corn big blob exteriors

The ground truth used for evaluation was established in the form of
fraction of an area that is corn, soybean, other and unknown ground
truth. Blobs containing more than 50% unknown were not used in the
evaluation and other blobs containing some unknown ground truth were
treated by reassigning the unknown area in proportion to the remaining
three classes.

Purity (of a blob, or of a stratum of a scene) was computed as
the largest of percent corn, percent soy, percent other, after the
correction for unknown ground truth. Then mixed quasi-fields were
identified as one whose interior pixels have purity less than a purity
threshold. The threshold whose setting is an arbitrary matter of defini-
tion was held at 80% in the data that follows.

Purity values were given for corn blobs as well as for all big
blobs since there was significant bias in favor of overestimating
corn in the C/S-1 procedure. These values can help tc 'nderstand the
cause for some of this bias.

Three configurations of BLOB were tested. They are:
(A) the version used in C/S-1

(b) the same BLOB algorithm as in (A), but with revised
acquisition selection procedure (first modification).
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(C) the version used in C/S-1A. This involves both the
revised acquisition selection and the spectral decision
threshold modification (first and second modifications).

The two modifications, especially the change in spectral inputs,
clearly improved the performance. Blob purity was improved, dramati-
cally from about 85% to about 90% and the fraction of the scene in
mixed blob interiors was reduced from 26% to 16% (Tables 3.1J3, 3.14).

However, there was a negative side to the changes. The percent
of the scene in blob interiors was decreased by 8% and the percent of
the scene in small blobs (with no interior pixels) was increased by
11%. This factor by itself could increase bias in a segment estimate
unless methods for extending estimates to this stratum are suffi-
ciently robust.

0f the two modifications, the most significant one is the change
of spectral inputs. Most of the increased purity and decreased occur-
rence of mixed blob interiors was due to its effect. The unwanted
changes in balance between big and little blobs was due about equally
to each of the two changes.

The net impact on the procedure of making the two changes was
positive. Additional evidence of this net positive impact has been
given in Section 3.2 in which procedure test results were discussed.

An important effect that was observed in the C/S-1 procedure
results was a positive bias in favor of corn. In order to examine
this effect, purity was computed separately for the set of corn
blobs. The results show that corn blobs are very consistently less
pure than all blobs taken together. The magnitude of the difference
in purity is about four percentage points for blob interiors and
about eight percentage points for blob exteriors, and these differ-
ences hold true independent of which configuration of blob was used.
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TABLE 3.14. SUMMARY RESULTS OF BLOB SUBCOWPONENT TESTS

Blob Configuration

A B ¢
Fraction big blob interior .36 .32 .28
Fraction big blob exterior .52 .49 .48
Fraction little blob .13 .19 .24
Number of mixed big blobs 167 71 74
Number of big blobs 464 436 467
Fraction of blobs mixed 23.1 16.3 15.3
Interior area fraction mixed 25.6 15.4 16.4
Interior purity (big blobs) 87.3 91.7 92.3
Interior purity (corn big blobs) 82.9 87.9 88.7
Exterior purity (big blobs) 70.0 75.7 77.6
Exterior purity (corn big blobs) 62.3 67.8 69.9
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This observation fulfills the expectation developed in the pre-
ceding section that inaccurate blob boundary placement would sometimes
occur and cause bias. In the next section, some reasons for this
behavior are postulated.

3.3.4.3 Bias and Its Causes and Treatment

In the last section, it was shown that the BLOB algorithm acts
in a biased way toward at least one specific crop. During a signifi-

cant part of the growing season, e.g., when corn is rapidly accumu-
lating biomass and then becoming ripe, corn's spectral distribution,
first, is more narrow than most other crops, especially soybeans,

and second, is more centrally located in spectral space. The first
characteristic (narrow spectral distribution) is thought to interact
with BLOB's algorithm in a way that tends to incorporate more variance
into each corn blob before BLOB forces a new blob to be defined. The
second characteristic (central spectral location) can allow certain
mixtures of non-corn crops to look like corn and can cause a spectral
mixing between corn and most other crops. Any or all of these ex-
planations (or others) could be the cause of the observed low corn
purity and bias.

Otheir quasi-field algorithms also are subject o similar efiec.s,
perhaps for different reasons. For example, if a fixed spectral de-
cision line is used, scene spectral effects can cause bias in favor
of one crop or the other.

In an example run of a different quasi-field algorithm [55]
based on superposition of edges formed by spectral decision boundaries,
the presence of non-uniform purity values among crops was also ob-
served as shown in Table 3.15. We would expact this segment to ex- %
hibit an overestimate of soybeans, and an underestimate of the less i
pure corn and other categories. There is little guarantee that the
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TABLE 3.15.

Quasi-Field
Interior

Quasi-Field
Edge

PURITIES BY CROPS IN CATE-DENNIS QUASI-FIELD

ALGORITHM (One Segment)

Purity of Purity of
Corn Soy
0.793 0.843
0.647 0.810
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direction of the bias for this algorithm is consistent, or that it
would cancel out over an ensemble of segments. The effects described
above should be taken into account in defining improved quasi-field
techniques. An improvement in purity or a reduction in purity dif-
ferences can have a favorable influence on the bias of a procedure.
If any of the above-mentioned potential bias-causing mechanisms can
be circumvented, possibly by using an edge detection and placement
approach that does not rely on specific spectral conditions, bias

may also be reduced.

3.3.5 ARGENTINA GROUND DATA PREPARATION

3.3.5.1 Introduction

In February 1981 a ground data mission in Argentina was success-
fully carried out by Supporting Research personnel from ERIM and UCB.
This activity, described in Section 2.4.2, and also in the 1981 Ground
Data Collection Report [20], generated numerous kinds of information,
most notably crop identifications for visited fields in 15 segments.
In this section, we describe an activity that used this information
and one site visited by a USDA team* to produce a digital ground truth
image, registered to Landsat data, for each segment visited.

This product, as discussed below, was configured to be as similar
as possible to ground truth products, called UGTT's, commonly used in
the AgRISTARS program. Three key di‘“ferences of this product from
the UGTT product are worthy of special note.

First, the nature of the Argentina survey did not permit wall-' -
wall ground data collection in a segment. Since activities were ..ited
to main roads, fields visited were in linear strings within a segment.

*Segment 685, San Pedro (33°57'S/59°46'W) by C. Caudell et al,
15 Dec 1980.
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On the average 41 fields were visited in each segment (range of 18 to
117 fields) for a total of 651 fields in the 16 segments surveyed.

Second, the base map which the data collection team used for
annotation of crop codes was not high-resolution aircraft photography,
but rather Landsat imagery, enlarged to 1:85,000, for one date only.
For eight segments, acquisitions were used that had been acquired
within two months of the mission. For the rest, acquisitions used
were acquired from five to six months prior to the mission.

And finally, the Landsat data that was used was provided in a
form different from the form traditionally used. The pixels were
sampled to form a 57 x 57 meter grid, rather than the usual 57 x 79
meter grid. The segment size remained 5x 6 miles, but the number of
scan lines was increased from 117 to 162, The ground truth informa-
tion was sampled at the rate of 3 per scan line and 2 per pixel along
the scan line, as in the UGTT products, but this scan line sampling
rate is subject to the same resolution change as the associated
Landsat data.

3.3.5.2 Approach

The following steps were carried out in making the digital ground
truth products discussed above:

(1) Staff members familiar with the Landsat data, and with the
data coiiection activity, delineated the position of field boundaries
on the 1:;85,000 base image that was annotated with the ground truth
data, and assigned field numbers. The image used for this delineation
was the base acquisition used at JSC for Landsat data registration.

(2) The delineated field boundaries were digitized on an x-y
coordinate digitizer, and recorded in a polygon format. Descriptive
information including fieid number and crop type was recovrded with
each field polygon.
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(3) The digitizer coordinates were converted to Landsat line
and point numbers. This step required no special registration step
since the base image was already in Landsat coordinates.

(4) A computer algorithm effectively placed a 28.5 by 19 meter
grid (1/2x1/3 pixel grid) over the field polygons, and assigned the
proper field number to each grid position. For each pixel, the ground
truth code for the associated field was placed into the output image.

(5) A quality assurance check of the encoded image data was
carried out for each site. This check consisted primarily of the
following two steps. First, a computer generated list of each field
with its associated ground truth code was ch«cked against the original
list provided by the data collection te>:, ~&i, a map displaying
field numbers was generated. The map was vi uz iy compared to the
Landsat image to insure proper location, shape and relationship to
other fields on the image. Once these steps were completed, any
errors detected were corrected.

(6) Both the polygon data and the encoded image are retained
in a data base. The encoded image data, which has been carefully
checked, has been made available in the form described in the next
section.

3.3.5.3 Data Base Description

The data prepared as described above exists in the form of UGTT
products (images giving crop codes). This section describes the
format of these products.

This data product makes use of the crop ground truth codec given
in Table 3.16. These codes were, as much as possible, taken from
those given in the 1981 Enumerator's Manual (JSC-16860). In a few
cases additional codes (marked with * in Table 3.16) were defined
in order to cover conditions found in Argentina that were not handled
by the pre-existing codes.
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TABLE 3.16.

CROP CODES USED IN ARGENTINA GROUND TRUTH
DATA PRODUCTS

Crop Crop Code
Alfalfa 101
Corn 105
Oats 111
Peanuts 112
Soybeans 119
Sorghum 120
Sunflower 121
Winter Wheat 125
Grasses 131
Other Hay 132
Pasture 134
Trees > 8 pixels 135
Water > 5 acres 136
Non-Agricultural 140
Idle Land/Fallow 231
Previous Year Residue/Stubble 232
Mixed Crop 233
Problem Field 99
Non-Inventoried 255
Bare Soil 128%
Internal Drainage, Drainage Way 129+%
Chicory 130%
Natural Vegetation (Non-Ag) 141%
Corn or Sorghum 143%

*New codes unique to Argentina data
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‘i For convenience, Table 3,17 is provided to identify the status
f of related Landsat data. This table presents the Landsat acquisition
used during field work, the Landsat acquisition that was used by JSC
for registration (and that was used for delineation and digitization), i
and the number of acquisitions that exist.

The format of the UGTT product is Universal format [56], a for-
mat widely used at JSC. In this product, each pixel in the ground
truth image consists of one channel ground truth code., Each 2-pixel
by 3-scan line array of codes in the ground truth image represents |
one Landsat pixel. As previously noted, the Landsat pixel size used g
is 57 x 57 meters rather than the usual 57x 79. The ground trutn code |
actually stored un tape is a modification of crop code presented in
Table 3.16. If each code is interpreted as a positive 8 binary bit
number, the modification is:

Table 1 Code Action
less than 128 add 128
greater than or subtract 128

equal to 128

(This artifact is retained in order to conform to other UGTT products
produced at JSC.)

One UC ' product for each of the 16 segments is stored in a data !
base that has been made available to JSC. This data base also in- i
cludes special notations for each segment identifying any special
comments or considerations.
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3.4 INVENTORY TECHNOLOGY DEVELOPMENT CONCLUSIONS AND RECOMMENDATIONS

An end-to-end analyst-based, computer-aided crop inventory method
for crop inventory without in situ training data has been developed
and tested. This procedure, termed the Baseline Corn and Soybean Pro-
cedure sought to formalize an analyst interpreter based technology into
one that would be essentially automatable. Detailed analysis of results
enabled the development of procedural modifications that would improve
the procedure's precision while automating certain processes, particu-

larly the analyst logic for crop identification.

In addition to the research conducted in end-to-end estimation
procedures, advanced component procedures have been examined. Initial
understanding of the spectral/temporal nature of corn and soybean con-
fusion crops, particularly sunflowers and sorghum has been formulated.
The evaluation of analytical profile techniques as a method to extract
features from multitemporal spectral trajectories revealed very pro-
mising results. Features related to a crop's rate of emergence and
senescence, growing season length and peak spectral response were
derived and found to contain sufficient discriminating potential to
produce accurate crop area estimates. Examination of the appropriate
target selection procedures for automatic labelers was initiated. It
was found that current techniques for automatic definition of 'fields’
as targets could introduce bias into estimates due to inconsistent
treatment of pixels as a function of crop class. For example, the
BLOB procedures tend to produce consistently larger targets that are
predominantly corn (due to the central position corn occupies in spec-
tral space).

As a result of the research conducted in support of the Inventory
Technology Development Project, the following key recommendations are
made:

PRECEDING PAGE BLANK NOT FILMED
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o The development of completely automatic techniques for crop
area estimation should be pursued; automatic technology, beyond its
operational efficiency, enables the diagnosis «f problem areas in a
shorter turnaround time resulting in a more rapid development cycle.

e Much of the current research has stressed at harvest estimation,
the development of early seasons methods remains critical.

e The adaptation of Landsat-based inventory tachnology from the
U.S. to the Southern Hemisphere will encounter a crop mix and agri-
cultural environment significantly different; emphasis should be placed
on developing a thorough understanding of the spectral/temporal charac-
teristics of key crops (corn, soybeans, rice, cotton, sorghum, sun-
flowers) as well as cropping practices (e.g., crop calendars); it
should be well understood to what degree Landsat can support crop iden-
tification and discrimination in that environment so as to set realistic
expectations on the technology.

e As seen in both SR analysis in the small grains application
(Section 2.7) and in the ITD analysis (Section 3.3), profile-based
technology is an extremely promising approach; efforts should be ex-
tended in this direction in addition to the expert-based methods; the
two approaches coupled in a comprehensive research program would pro-
vide a penetrating understanding of the potential of Landsat-based
crop inventory technology.

e The identification of an appropriate target provided to analyst
interpreters or to machine classifiers remains an unresolved technical
issue; the resolution of MSS results in mixture pixels that must be
interpreted or classified in an unbiased manner; in addition, multi-
temporal analysis of such targets requires highly accurate acquisition-
to-acquisition registration; both quasi-field-based and pixel-based
labeling sirategies need to be evaluated to establish their attributes
with respect to the bias or variance that they introduce that are
unrelated to sampiing but to target feature selection; in addition
methods should be explored that relax the registration requirement.
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