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PREFACE

The Agriculture and Resources Inventory Surveys Through Aerospace

Remote Sensing Program, AgRISTARS, is a multi-year program of research,

development, evaluation, and application of aerospace remote sensing

for agricultural resources, which began in Fiscal Year 1980. This

program is a cooperative effort of the National Aeronautics and Space

Administration, the U.S. Departments of Agriculture, Commerce, and the

Interior, and the U.S. Agency for International Development.

The work reported herein was sponsored by the Supporting Research

(SR) Project and Inventory Technology Development (ITD) Project under

the auspices of the National Aeronautics and Space Administration, NASA.

Mr. Robert B. MacDonald, NASA Johnson Space Center, is the NASA Manager

of the SR Project and Dr. Glen Houston was the Technical Coordinator for

the reported SR effort. Dr. Jon Erickson is the NASA Manager of the

ITD Project and Mr. Mickey Trichel was the Technical Coordinator for the

reported ITD effort.

The Environmental Research Institut e of Michigan and the Space

Sciences Laboratory of the University of California at Berkeley comprised

a consortium having responsibility for development of corn/soybeans area

estimation procedures for foreign applications.' This report focuses

primarily on the ERIM efforts in detail, while only summarizing UCB

efforts.

This reported research, which addresses a broad spectrum of tech-

nical issues related to Landsat-aided crop inventory technology, was

performed within the Environmental Research Institute of Michigan's

Infrared and Optics Division, then headed by Mr. Richard R. Legault,

a Vice-President of ERIM. Mr. Robert Horvath acted as overall Program

Manager. Dr. William Malila was Technical Manager of the SR effort,

while Mr. Richard Cicone was Technical Manager of the ITD effort.
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A number of ERIM personnel share in authorship of this document.

In addition to Mr. Horvath, Ur. Malila and Mr. Cicone, contributions

were made by (alphabetically): Eric Crist, David Hicks, Karen Johnson,

Michael Metzler, Christian Pestre, Frank Pont, Daniel Rice, Albert

Sellman, and Brian Thelen. Capable secretarial support was provided

by Darlene Dickerson and Patricia Wessling.
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INTRODUCTION

This report summarizes the research activities conducted by the

Environmental Research Institute of Michigan (ERIM) for NASA under two

projects of the AgRISTARS (Agriculture and Resources Inventory Surveys

through Aerospace Remote Sensing) Program. These are the Supuorting

research (SR) Project and the Inventory Technology Development (ITD)

Project (formerly Foreign Commodity Production Forecasting (FCPF) Pro-

ject). The reported work was part of a larger effort conducted from

15 November 1980 - 31 December 1981 by a consortium composed of ERIM

and the Space Sciences Laboratory of the University of California at

Berkeley (UCB), for which ERIM had the overall technical lead.

The objective of this report is to give a concise technical des-

cription of the research activities conducted, the results achieved, and

the technical insights gained. Several of the research t)pics are

supplemented by separate technical reports or papers giving additional

details about the research. These supplemental documents are referenced

within the main body of the text.

1.1 POTENTIAL CONTRIBUTIONS OF AEROSPACE REMOTE SENSING TO AGRICULTURAL
INVENTORY AND ASSESSMENT

Aerial photography has gained a place in operational inventory and

assessment activities of the U.S. Department of Agriculture and other

state and local government agencies. Aerospace remote sensing technology

potentially can make additional contributions. Exploration of this

potential is the major objective of the AgRISTARS Program.

A summary of types of information that are potentially extractable

from aerospace remote sensing data is presented in Table I.I. The first

is crop identification which has received a majority of the attention in

agricultural studies to date, especially in conjunction with crop area

estimation. Next are indications of crop development stage and crop

ia
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TABLE 1.1 POTENTIAL CONTRIBUTIONS OF AEROSPACE REMOTE SENSING
TO AGRICULTURAL INVENTORY AND ASSESSMENT

• Crop Identification

- Crop Group
- Crop Type

• Crop Development Stage

- Planting and Harvesting Progress
- Key Growth/Development Stages
- Management Practices (e.g., crop

rotations)

• Crop Conditions

- Vigor, Stress
- Ground Cover, LAI
Management Practices (e.g., irrigation

and double cropping)
- Homogeneity

Episodal Events

• Inputs to Yield Models

- Spectral-based Deductions of Development,
Condition, and Management Practices

- Meteorological
- Combined Spectral and Meteorological

• Soil Characteristics

• Crop Area

- Total Area Planted, Emerged, and/or
Harvested

- Area by Crop Group and Crop Type
- Area by Condition Class

• Crop Production

2
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i	 condition which could provide important inputs to yield models. Soils

are a topic that have an important effect on yield and productivity.

Together, estimates of crop area and crop yield permit estimates of

overall crop production, the "bottom line" of agricultural crop inven-

tories.

Investigations conducted prior to AgRISTARS, such as the Large Area

Crop Inventory Experiment (LACIE), have demonstrated the practical

feasibility and effectiveness of the sample survey approach for

satellite-based estimation of crop area and production. Elements of

this approach which were developed and tested were the sample-frame de-

sign, the sampling design (allocation acid location of sampling units),

area estimation or measurement at a segment level, area and production

estimation at stratum and large-area levels, and analysis of errors and

error sources.

However, the scope and needs of AgRISTARS require technological

capabilities beyond those demonstrated previously, necessitating con-

tinued research and development activities. For example, the single-

crop focus of sampling and measurement procedures needs expansion to

mutliple crops, including corn and soybeans. Aggregation procedures

should more accurately handle different levels of accuracy in segment-

level estimates, including non-response. Also measurement procedures

should be more objective and accurate.

Very important are the facts that current Landsat-based crop area

estimation technology is not efficient in terms of expert labor, com-

puter, and time resource requirements,is not geared to crop inventory

estimates throughout the growing season, and has not been applied to all

major crops and world production regions. Improvements are being made

during the course of AgRISTARS in sensors (e.g., Thematic Mapper and

meteorological satellites), information extraction techniques, inventory

system technology, and in joint use of meteorological and spectral data.

Also, as a result of AgRISTARS, this technology will be adapted to, and

evaluated in, additional geographic regions and for additional crops.

3
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1.2 GENERAL OBJECTIVES OF THE CONTRACT

The contract research was directed at supporting requirements of

the two separate AgRISTARS projects. The project activities have both

distinct objectives and mutually supportive aspects.

3

1.2.1 OBJECTIVES UNDER THE SUPPORTING RESEARCH PROJECT

The direction of our Supporting Research Project activities

evolved toward support of two broad long-range objectives. The first

long-range objective was to develop advanced techniques for timely,

efficient, and cost-effective estimation of crop areas using remotely

sensed data from Landsat together with ccilateral data. These techni-

ques should be capable of generating estimates at any time throughout the

growing season, since a capability to produce early estimates is highly

desirable for AgRISTARS. They should utilize multiple segments to faci-

litate efficient and effective crop inventories over large areas. Where

a crop/region focus was needed for the research, corn, soybeans, and

their confusion crops were to be emphasized, keeping in mind an eventual

application in South America.

The second long-range objective was to understand and capitalize on

the information content of Landsat MSS and Thematic Mapper data and

their relationships to agronomic and biophysical phenomena. A subobjec-

tive was to develop simulation and modeling capabilities that will en-

hance this type of research.

1.2.2 OBJECTIVES UNDER THE INVENTORY TECHNOLOGY DEVELOPMENT PROJECT

The overall objective of the ITD program at ERIM was to research

and develop, integrate, implement, test and evaluate technology which

uses remote sensing to assist in assessing the status of crops without

ground derived observations. The primary focus of this technology is

the inventory of the corn and soybeans production in Argentina and Brazil,

two countries that are major producers of agricultural commodities and

4
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therefore influential in the overall economic and nutritional picture

of world food balance.

The specific objective of the work reported in this document was

to formulate a base of component technology that, through evaluation in

a U.S. scenario, shows promise in being adaptable to agricultural con-

ditions of Argentina and Brazil. Both end-to-end area estimation pro-

cedures and component techniques using Landsat MSS would be developed,

implemented and objectively tested.

1.3 GENERAL APPROACH

The research activities were divided into two groups of tasks

addressing objectives of the SR Project and ITD Project, respectively.

SR Project tasks were:

(1) Sampling and Estimation Technology Research

(2) Measurements Technology Research

ITO Project tasks were:

(1) Experiments

(2) Technology Development, Evaluation and Integration

1.3.1 GUIDELINES FOR TECHNOLOGY DEVELOPMENT

The eventual application of research under both AgRISTARS projects

is for crop inventories in foreign areas, with emphasis for ERIM/UCB

on corn and soybeans area estimation in Argentina and Brazil. This and

other sponsor guidelines established general constraints on the types

of technology that were to be utilized and developed. These include:

(1) No dependence on direct ground identifications for procedure

performance: use permitted only for development and evalu-

ation purposes.

5
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(2) Use of Landsat as the prime sensor--MSS now and TM added

later.

(3) Initial dependence on segment-based technology, e.g., the

5x6-mile segments utilized in LACIE.

(4) Implementation of selected technology in a formal configuration

controlled environment on NASA/JSC AS-3000 computing system.

1.3.2 THE ERIM/UCB CONSORTIUM

A consortium was established to promote a unified attack on the de-

velopment of corn and soybeans area estimation technology. It was com-

posed of the Environmental Research Institute of Michigan (ERIM) and the

Space Sciences Laboratory of the University of California at Berkeley

(UCB). Both contractors have had extensive experience in the develop-

ment of remote sensing technology for agricultural applications, includ-

ing participation in the LACIE project, and in other applications. They

brought complementary capabilities in addition to common understandings

and capabilities, forming an effective research team. A majority of

the program described in this report was pursued in a joint manner by

ERIM and UCB, with ERIM having the overall technical lead. ERIM and

UCB efforts are reported separately.

6
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2

SUPPORTING RESEARCH TECHNICAL
PROGRESS AND RESULTS

A broad spectrum of research activities was conducted in pursuit

of the Supporting Research objectives. They are reported here by re-

search topic at the level of subtasks. Substantial progress was rude

in several areas.

2.1 GENERAL APPROACH AND TASK STRUCTURE

Two major long-range objectives for our Supporting Research Project

activities were identified in Section 1.2.1. A compatible task

structure was established, with two major tasks covering research areas

in sampling and estimation technology research and in measurement tech-

nology research, respectively. The subtasks under those two headings

are listed in Table 2.1. This table also identifies the fact that UCB

conducted complementary research under the first task whereas only ERIM

addressed the second. The nature of UCB research is mentioned where

appropriate in this report but is being reported separately [1]•

2.1.1 SAMPLING AND ESTIMATION TECHNOLOGY RESEARCH

The identified needs for efficiency, accuracy, and timeliness in

estimation impact all aspects of area-estimation procedure research and

development: sampling, measurement, aggregation and estimation. The

approaches taken in the various subtasks considered these criteria.

Efficiency requirements suggest a high degree of automation through-

out a procedure. An ability to process multiple segments without retain-

ing or examining each in detail is highly desirable. Flexibility is

another attribute which can enhance efficiency. If elements of the pro-

cedure can adapt to local conditions (e.g., degree of complexity) and

variable accuracy requirements, overall efficiency gains can be made.

I
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TABLE 2.1. ERIM/UCB SUPPORTING RESEARCH TASK

STRUCTURE

i

Partici pation

IM	 UCB

	

Task	 Title

	

1.0	 Sampling and Estimation Technology Research

	

1.1	 Multisegment Estimation Research

	

1.2	 Through-the-Season Estimation research

	

1.3	 Argentina/Brazil Agronomic Understanding

	

2.0	 Measurement Technology Research

	

2.1	 Seed-to-Satellite Model Development and
Analysis

	

2.2	 Information Ex*raction Technology Research

(2.3)* Small-Grains Labeling Techniques

X	 X

X	 X

X	 X

X

X

X

*Not a full subtask; it represents completion, of R&D efforts in4tiated

during the preceding year.
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Accuracy requirements also impact ill elements of a procedure,

particu'larly the measurement element (e.g., information extraction or

labeling) which is addressed more fully under the second SR task

(Section 2.1. 9 ). One must not lose sight of the interaction between

elements; for example, the size of sampling units can affect measure-

ment accuracy.

Timeliness is important both in terms of speed of response, once

a particular set of data becomes available, and in terms of being able

to produce estimates at any given time throughout the growing season.

The latter requires a good understanding of the increasing information

content of Landsat data as the season progresses and its use with other

forms of information to p induce the best possible estimate for each

situation.

Lack of ground "truth" observations, especially in foreign regions,

hampered LACIE research and development activities. Information from

foreign regions is essential for an understanding of differences from

U.S. test areas so that developed techniques can be general and extend-

able or adaptable to those regions. In AgRISTARS, a major regional

focus for corn and soybeans inventory technology is South America

(Argentina and Brazil). Agencies in Argentina and Brazil have given

evidence of being amenable to cooperative ground- 106*ruth data collection

efforts. Initial data collection effr:rts were successfully carried out

in Argentina early in the contract year, with a minimal amount of time

for planning due to the timing of their growing season. Plans were made

for new field activities in 1982, though not carried through due to

political instability in Argentina.

2.1.2 MEASUREMENT TECHNOLOGY RESEARCH

Measurement technology, which extracts agrophysically meaingful

features (including assignment of cover ciass labels to observations),

is a crit i cal element in area estimation procedures that use Landsat,

9



especially those that cannot rely on ground "truth" observations in

their operational context. The measurement component of an advanced

area estimation procedure must support goals of accuracy, efficiency,

timeliness, and information content for advanced procedures that employ

multisegment concepts and/or new sensor systems, such as the Thematic

Mapper. This requirement defines both the general characteristics of an

advanced measurement component and guidelines for research under this

task.

The key to extraction and use of meaningful and accurate information

from remotely sensed data is the ability to consistently relate observed

patterns in the remotely sensed data to agronomic and biophysical char-

acteristics of the various crop and cover classes in the scens. The

need has been identified for techniques which are more automatic and

objectively perform these functions, especially on spatially registered

multidate data sets over large areas.

However, more research and development effort is required to pro-

duce techniques and procedures that can attain the full potential of

information extraction from remotely sensed and collateral data. In

particular, additional research into the relationships between crop

phenology and morphology and remote sensing observables is required.

Substantial progress was made through study of agronomic literature and

analysis of field measurement data.

Use of simulation can help provide the understanding necessary to

develop effective information extraction and measurement techniques.

Existing simulation models can be useful but need to be improved since

they do not adequately represent the full range and character of factors

that affect remotely sensed data from agricultural scenes. Three ad-

vancements in simulation capability were made during the year.

The crop emphasis of our research was directed to be on corn and soy-

beans and their confusion crops. During the first part of the contract

year, however, we did complete work previously begun on small grains

labeling techniques.

10
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2.2 THROUGH-THE-SEASON ESTIMATION RESEARCH

The research emphasis of the AgRISTARS SR and ITO (FCPF) Projects

has been broadened from techniques for producing estimates near the end

of the growing season to include techniques for producing estimates

early in the season. To guide our research, we generalized the problem

to one of being able to produce estimates at any given time throughout

the growing season, making full use of available information from all

sources. Emphasis, consequently, was placed on identifying and extract-

ing the agronomically related information available from Landsat and

developing a framework and ways of using it. This emphasis was pro-

moted by our establishment of a context and perspective for viewing

the through-the-season (TTS) estimation process and the potential con-

tributions of Landsat, within the general context of AgRISTARS area

estimation using stratified estimation approaches with no use of current-

year ground observations. The focus was narrowed to estimation of corn

and soybean acreages, but the general approach and principles should be

applicable to other crops as well. Comments also are made where appro-

priate to yield and production estimation. Finally, although the data

available for study were from the U.S. Corn Belt and, to a lesser

extent, the south and southeast United States, portions of the analysis

should apply to crops in other countries, such as Argentina.

Landsat is used throughout this section to identify the remote

sensing system. In most instances the ideas and concepts would apply

to Thematic Mapper data as well, and it should provide additional

capability when available.

2.2.1 THROUGH-THE-SEASON ESTIMATION CONCEPTS AND CONTEXT

Crop production assessment can be viewed as a combination of pre-

diction ana observation (e.g., direct measurement) processes for crop

acreages, yields, and resultant production. Throughout the season, the

relative importance of these two processes gradually change. Prediction

11
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dominates pre-season forecasts of both farmer's planting intentions and

their expected successes. However, as the season progresses, infor-

mation accumulates and opportunities increase for direct measurement of

the actual situations and rea l izations. Thus, estimates can be updated

and refined, based on those measurements.

Figure 2.1 pictorially illustrates the time-varying importance of

prediction and observation/measurement in the assessment proce7.s. It

also indicates the situation for early season estimates and later sea-

son estimates in AgRISTARS.

Information for use in crop assessment can come from a variety of

sources. Table 2.2 lists conventional sources for predictive and obser-

vational variables. It also indicates that remote sensing has the

potential for providing both types of information, a reflection of space-

borne sensor's capabilities to survey large areas and to make site-

specific and even field-specific identifications of crop type and con-

dition.

Figure 2.2 highlights the general way in which predictive and ob-

servational variables would enter the TTS estimation process. The un-

certainty in predicting or deducing punting decisions is reduced as the

number and/or quality of predictive variables is increased. On the other

hand, observational variables provide ar increa^,ingly better basis for

induction or measurement of the crops actually planted as the season

progresses and the number of observations increases. Ideally, one would

make use of both types of decision processes to produce the best

possible estimates using all available information at the time the esti-

mate is required.

Predictive variables can come from crop identifications and are

estimates made for the proceeding year(s) using Landsat data. For in-

stance, they could include crop rotation histories on individual fields

which, with knowledge of rotational practices, could establish prior

probabilities for specific crops in these fields, before they are

12
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observed in the current year. Observations with predictive uses also

can be found early in the season when tilled soil is observed rather than

plants or when emerged crops are not yet differentiable by Landsat.	 1

These could lead to identification of a crop group (e.g., summer crop)

before the field can be identified as being corn, soybeans, or sorghum.

We have developed a new approach that incorporates this type of infor-

mation directly into conventional, econometric, crop acreage response

models.

As far as direct measurement is concerned, we note that Landsat

observes only what is present on the ground at the times of its over-

passes. In order to select appropriate features and maximize the amount

of agronomic information that is extracted from the Landsat data, one

should have a thorough understanding of the practice and history of

agriculture in the region(,) being surveyed. In addition, full use

should be made of collateral information sources. To facilitate the

realization of these needs and provide a perspective for Landsat obser-

vables, we suggest that observational data be utilized and analyzed with

predictive models of Landsat responses fromthe crops of interest and the

relevant scene classes. Note that these models predict the appearances

of crops at the times of overpass rather than the crop acreages in

segments, strata, or regions, as estimated by the previously mentioned

crop acreage response models and related models. They could get down to

the detail of how specific crops would appear in specific fields at the

specified times.

A final comment is that overall needs for agronomic understanding,

effective use of collateral data, and integration of data from multiple

segments all are intensified early in the season and also in situations

where Landsat coverage is frequently precluded by cloud cover.

The next four sections present in greater detail the concept of

continuously merging prediction and direct observation/measurement in

TTS estimation, and describe some specific procedures we have developed.
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Reference also is made there to publications which have additional de-

tail.

The first of these sections (2.2.2) discusses which agricultural

phenomena might be observable by Landsat, what one might deduce about

agricultural practices from these observations, and how that knowledge

can enhance TTS interpretation of Landsat data.

The second section (2.2.3) develops a new approach for using early

season Landsat crop-group area estimates to augment conventional crop

acreage response models that predict on the basis of prior yields,

prices, acreages, and government policy. An exploratory study is pre-

sented which produced encouraging results.

The third section (2.2.4) develops an 7pproach for merging pre-

diction variables and Landsat observational variables in a segment area

estimation procedure that has the capability to incorporate multiyear

data. A Bayesian classification approach applied to quasi-field targets

was chosen as an alternative to direct estimation approaches being pur-

sued at NASA/JSC. Prior probabilities are based on the predictive

variables discussed in preceding sections.

The fourth section (2.2.5) introduces the longer-range possibility

of building the required capability around the concepts of knowledge

engineering, artificial intelligence, or expert systems.

A final section (2.2.6) summarizes the major concepts developed

and conclusions drawn from the TTS estimation research.

2.2.2 USING KNOWLEDGE OF AGRICULTURAL PRACTICES TO ENHANCE TTS

INTERPRETATION OF LANDSAT DATA

Much of the material summarized in this section is to be described

in greater dc-tail in a separate technical report [2].

17
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2.2.2.1 Review of Seasonal Practices and Decisions in Agriculture

The practice of agriculture is, of course, carried out by real

farmers, in real fields, under real market conditions, and in real

weather. A host of decisions and practices take place which are based

on past, present and expected conditions and the personal preferences

of the farmer. An understanding of these can improve the process of

estimating their results.

Planning. In a farmer's planning for the approaching crop season,

expectations of profit and market conditions, previous cropping practices

(such as rotation and fallowing), existing soil conditions and weather,

etc., all play a role in his decisions. They affect decisions regarding

the specific use of each field, as well as the amount of each crop to

plant, the varieties to order and plant, the balance to maintain between

crops and livestock, and the timing of preparations. Consideration also

is given by farmers to the policies of various governments and govern-

mental b1dies and to the availability and cost of fuel, fertilizer, and

equipment.

Preparation. Based on this planning, fields are prepared by plow-

ing, disking, incorporating fertilizer and/or by fallowing or pasturing.

These preparations may take place in the previous growing season, at its

end, or early in the current season. More elaborate preparations might

include ditching, tiling, leveling or diking for irrigation, as well as

drilling of wells and preparation of irrigation equipment.

Planting. Planting will normally follow

prevalent practices, but can depart from them

wet, too dry, or too cold. A late season may

cultivar or another crop. Early planting may

ment or replanting. The market may undergo a

a change in crop selection.

the planned schedule and

The weather may be too

force use of another

fail and require abandon-

significant change, forcing

18
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Crop Management. During the growing season, decisions to spray, to

cultivate, to fertilize, to apply herbicides, or to irrigate will be

affected by weather and other factors such as degree of infestations and

costs of materials. Catastrophic conditions can cause defoliation,

severe lodging, crop failure, and a decisionto abandon or replant a crop.

Harvest may be affected in various ways by weather, available storage,

market conditions, or need for grazing or silage.

2.2.2.2 Agricultural Features and Events Observable by Landsat

The agricultural practices, features, and events briefly described

above may be observed in, or inferred from, Landsat data in some cases.

This discussion sets forth a brief introduction to these potentialities.

These features have various spatial associations, applying to different

strata such as pixels, fields, districts, soil groups, regions and even

countries.

Pre-Season Conditions and Planting. Observations continued over

several years can be used to determine cropping practices for the indi-

vidual fields and regions. Crop rotations, for example, can be tabulated

and sequences learned to establish prior probabilities for specific

crops. Fallowing or green manuring sequences can be observed. Patterns

can be found for planting time sequences based on local soil conditions

and topography (wetness, contours, etc.) and crop types. In general, an

extensive history of each field may be obtained and related to factors

affecting subsequent use.

Pre-Planting and Planting. Pre-season preparations may be observed

in one or more acquisitions enabling mapping of stubble, plowed ground,

wet soils, and predecessor crops. Irrigation preparations or practice

may be observed. Flooding and abnormal conditions can be seen. Aban-

doned crops, unplowed ground, and indications of changed usage can be

observed. Possibly various stages of preparation may be distinguished
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Early Growth and Growing Season. Emergence may be detected and

used to infer planting dates. By continued observation during the season,

rates of greening may be determined for all fields. Estimates of per-

cent cover or leaf-area-index and time of peak greenness may be calcu-

lated. Declines in greenness and occurrence of reproductive events,

such as tasseling and heading may be observed or inferred. Effects of

grazing, hail, lodging, disease, flooding, and crop loss also may be ob-

served or inferred. In addition,the duration and general timing of

plant cycles may be observed and crop development stages estimated. All

of the above are subject to having an adequate acquisition history.

Harvest. Time of harvest and progression of harvest may be moni-

tored. Unusual timing can be noted when crops are cut early for silage

or are left unharvested for long periods. Fields may be determined to

be abandoned or unharvestable after sufficient time. Beginning of late-

season cultural practice may be monitored. Winter cropping practices

may be observed and monitored for later mapping.

2.2.2.3 Using Agronomic Understanding to Enhance the Predictive

Value of Landsat Data

The predictive aspect of crop assessment in essence attempts to

understand the farmers' situations and anticipate both their decisions

and the eventual results of thole decisions. Landsat's potential to

contribute varies as a function oT'time, as the various agricultural

features and events discussed earlier become observable and detectable.

Landsat is usually thought of as providing agricultural information

only by direct measurement of crop acreages (etc.) during the current

growing season. However, Landsat does have potential for improving pre-

dictive capability as well, including both prior-year and current-;rear

aspects.
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End-uf-season crop area estimates from prior years give a basis for

relating sample-segment estimates to aggregated values and values from

other sources for larger regions to which they belong, revealing ten-

dencies to be higher or lower. They also provide information on year-

to-year variance for individual segments and within-year variance among

segments. Over time, the Landsat-based data base may come to rival other

sources of information, at least in developing countries.

Existing crop acreage prediction models do not generally include

current-year inputs, let alone inputs from Landsat. We gave consider-

ation to ways in which the frequent looks for Landsat might be capita-

lized upon for predictive purposes. We identified several uses.

One major use of current-year Landsat data we identified and inves-

tigated was for augmenting conventional crop acreage response models

(CARM's). This study is described in detail in Section 2.2.3, as applied

to predicting acreages for summer crops like corn, soybeans, and sorghum.

The main idea is that early in the season, before summer crops are dif-

ferentiable, Landsat still can identify acreages of predecessor crops,

like wheat, and identify the total acreage that has been prepared for

(and, later, planted to) summer crops.

Use of these current-year quantities should improve acreage pre-

dictions for the individual summer crops because they give partial infor-

mation on what the farmer's decisions have been. This, together with

historical information and conventional predictor variables should

improve predictions. A simulation of Landsat-augmented CARM's, based

on USDA statistics over 18 years for the state of Missouri, showed sub-

stantial decreases in unexplained variance with the Landsat augmentation,

as described later in Section 2.2.3.

Another predictive use of current-season Landsat data takes advan-

tage of the fact that individual fields can be detected and their

emergence dates and growth patterns monitored for yield-related infor-

mation. One clear example is that of double-cropped sobyeans which are

21
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planted later than single-cropped soybeans and generally have lower

yields. Their acreages should be tabulated and aggregated separately

in the estimation process. Other elements of AgRISTARS are investigat-

ing the use of Landsat inputs to yield models; these could include

derived measures of leaf area or percent cover, condition, and develop-

ment stage (vs. 'ime and weather) based on peak greenness, rates of

greenup and dec .ne, duration, etc. These uses suggest research into

questions of preparation and planting practices as distinguishable

events in Landsat (and Thematic Mapper) data as well as the use of

Landsat to estimate soil type and condition which can affect planting

choices and yield-related acreage estimates.

Another use of Landsat would be with models that predict farmers'

decisions leading to switches to alternative crops or cultivars as a

function of factors such as weather-caused planting delays. For ex-

ample, in the U.S. Corn Belt, there are dates beyond which each day's

delay in planting corn decreases its expected yield substantially. Up

to a point shorter-season cultivars of corn could be used. Beyond that

point in time it would become prudent to switch from corn to soybeans

which are more tolerant of the reduced length of growing season.

Landsat could confirm the delayed emergence of crops and predictions

could be improved.

2.2.2.4 Using Agronomic Understanding to Enhance the Measurement
Value of Landsat Data

The biggest problem in using Landsat data for crop identification

and acreage measurement is that of determining the spectral character-

istics of the crops of interest and detecting differences from their

confusion classes. This is especially difficult under the given con-

straint that precludes use of local ground truth information. Addi-

tionally, early season requirements add more difficulty since Land;*at

acquisitions are fewer and crops are not all fully developed. There-

fore, any way that agronomic understanding of conditions at the local
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level can be used to improve spectral definition and expectations will

be beneficial. This has two aspects, one geographic and one temporal.

Geographically, one observes spectral differences wit`in the crops

of interest and in the mix of classes present. as a function of soil

type, topography, climate, and other regionally and locally varying

agrophysical factors. An objective of any Landsat-based measurement

system should be to adapt or "tune" its relevant parameters to local

agrophysical conditions at both the segment level and the individual-

field level.

Temporally, we have the dominant influence of weather, which can

cause substantial differences from year to year in the timing of plant-

ing and subsequent operations and in the overall vigor and appearance

of the crops throughout the season at a fixed location. Again, adaption

to the local, this tine weather-related, conditions is highly important.

Of course, other factors and episodal events, such as insects, disease,

and floods, should similarly be accounted for when they are important.

Another key, longer term temporal factor is the pattern of crop

rotations which can be used to establish prior probabilitie . ^ for crops

in individual fields for use in crop identification and classification.

Just as for prediction, we can divide discussion of enhancing the

measurement value of Landsat into consideration of previous years' data

and of current year's data.

Previous year:,' data provide a basis for local expectations of

spect ral signatures, spectral classes, and crop calendars for the various

cropb, as functions of the conditions encountered during those years.

In addition to providing spectral expectations, they might show where

flooding i!, likely to occur and areas where planting operations are

more likely to be advanced or retarded from the average due to drainage,

topographical influences, or other factors. Year-end crop identifi-

cations from previous years can be used to determine crop rotations on

a field-by-field basis and used to establish prior probabilities, as
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previously mentioned. They also would provide information on previously

non-cropped areas and fields, which can be excluded from further consi-

deration after appropriate confirmation of no change from past usage.

The field pattern from previous years should be a good starting point

for use in early season analysis of current-year data.

To investigate early-season uses of multiyear data, we conducted

a study of crop rotation patterns in several U.S. Corn Belt segments and

found that soybeans seldom followed soybeans in rotation. Agricultural

extension agents indicated that this was due both to increased erosion

effects with continuously cropped soybeans, where land is not flat, and

to increased incidence of certain root diseases. By using last year's

field patterns and crop identifications, we found that we could identify

crop strata of high crop purity to get an early sample of crop spectral

signatures for use in identification and classification. For example,

any field that was soybeans the preceding year was very likely to be

corn the following year, if it remained a summer crop. Furthermore, it

would be a relatively unbiased sample of corn, including both early and

late planted fields. This has an advantage over other approaches we

examined which used only current-year data and used the fact that corn

is usually planted earlier than soybeans, so that the earliest emerging

summer crop fields are primarily corn and the latest primarily soybeans.

These latter samples are biased.

The preceding is one example to illustrate the use of knowledge of

local agricultural practices to improve Landsdt measurement accuracy.

Other geographic regions would require their own approaches. For ex-

ample, several weeks separate the usual planting dates for corn and soy-

beans in Argentina, so simple temporal discrimination between them would

be more powerful there than in the U.S. Corn Belt but different confusion

classes would exist. Double-cropping with soybeans following wheat is

another practice that leads to substantial within-crop diversity and can

lead to confusion if no g recognized in the segment.
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The high-purity crop strata from the multiyear example above also

provide an opportunity to gain a good estimate of the local crop

calendar for the segment. They can be used to adjust calendars computed

with local weather data which have planting date prediction as their

greatest source of uncertainty. Even without benefit of the previous

year's data, one should be able to use Landsat observations with

general knowledge of local cropping practices to improve crop calendar

estimates. Another general use of Landsat data would be to search for

and flag anamolous conditions in comparison with data from nearby seg-

ments or prior years.

For identification and classification with current-year Landsat

data, two classes of variables can benefit from agricultural understand-

ing. One is the prior probability of a given crop, which can be based

on general information for the region, but more desirably would be

field-specific, given prior year data and past rotation history. The

sec,nd class is the expected temporal-spectral signature of each crop,

which includes effects mentioned above, such as crop calendar, crop

vigor, weather, and local agrophysical factors. We suggest that, in

the long term, a systematic approach for incorporating this type of

information would be the joint use of predictive models and Landsat-based

measurements for estimation. One would develop a predictive model for

each crop signature cased on local weather data with perturbation factors

to account for field-by-field deviations due to site and seasonal effects.

These signature models would be used for classification and identification

in the absence of other information and would be updated and refined as

more and more spectral observations are obtained in the current year

and as a multi-year data base is assembled.

Obviously, management of the required amount and types of infor-

mation could be very complex and a well defined framework would be re-

quired. These issues are addressed further in both Section 2.2.4, where

a specific segment-level approach is discussed which could be imple-

mented in a relatively short period of time, and Section 2.2.5, where
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a longer-lead-time approach involving knowledge engineering techniques

is discussed.

2.2.3 LANDSAT AUGMENTATION OF CROP ACREAGE RESPONSE MODELS (CARM)

The research reported in this section has a different emphasis on

the use of Landsat than is found in the rest of this report. Rather

than being the primary source of data for crop acreage estimation,

Landsat is here considered in a new role, one of providing supplemental

current-year inputs to an econometric prediction model. This research

effort is to be documented more fully in a separate technical report

[ 31.

2.2.3.1 Introduction

Research indicates that a sequence of information, with respect to

time, is obtainable from remote sensing, for corn and soybeans acreage

estimation. At an early stage, it may be possible to estimate only

acreages of gross crop groups, such as summer crops (which would include

corn, soybeans, sorghum, and cotton), and at some later date it may be

possible to estimate corn and soybeans acreages directly.

An important question arises as to the method of using the early

stage, crop group estimates available from remote sensing. A natural

candidate is to use these observed crop group acreage estimates as

added, current-year inputs into an econometric crop acreage estimation

scheme based on the predictive variables of historical and current

pricas, historical yields, government policy, and historical crop acre-

ages.

This section documents a study of early season Landsat augmenta-

tion (via crop group estimates) of a crop acreage response model (CARM)

for corn, soybeans and sorghum. The results of the study indicate that

accuracy of crop acreage estimation could be significantly increased by

Landsat augmentation of sufficient accuracy.

f

T

26



Eventual application in Argentina was of interest, but detailed

data were available only for the United States. Therefore, we searched

for a state that grows substantial acreages of corn, soybeans, and small

grains, as they do in Argentina. It also was desirable that there had

been substantial year-to-year changes ii the acreages devoted to these

crops. The state of Missouri met tnesf- criteria.

Crop acreages and other historical information on prices, yields,

and government policy was available far the years 1962 through 1979.

Since Landsat data were not avai;aW a for those years, USDA estimates

of crop group acreages were used as substitutes for inputs derivable

from current-year Landsat data :n the analysis.

2.2.3.2 Unique Anects of This Study

This research was unique for two reasons. The first is that this

is one of the first crop acreage estimation models we are aware of that

merges the incomplete early season Landsat information with a conven-

tional crop acreage prediction model. There was a similar effort con-

ducted in LACIE in attempting to estimate winter and spring wheat acre-

ages when the extractable information from Landsat was only for the

winter and spring-small grains crop groups (4 1. Their approach was

to estimate the ratio of winter wheat to winter small grains (or spring

wheat to spring small grains) using conventional predictive variables

(historical and current prices, historical acreages, etc.). This ratio

was then multiplied by the winter small grain acreage estimate from

Landsat to give a final figure for winter wheat acreage. Our approach

is new in that we estimate directly the target crop using both the

Landsat estimates of crop group acreages and the normal predictive

variables in a conventional type of crop acreage response model.

Secondly, there appears to be few models in the literature developed

at a regional level. It is precisely in the regional setting that one

can observe the true competitive nature of the crops of interest for

acreage (and quantify it). At the national level the differing regional
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competitive relationships are aggregated and smeared. Thus, in our

opinion, it is advantageous for this purpose to develop CARM's at the

regional levels where they can model the true competitive relationships

and where the Landsat augmentation would be most helpful.

2.2.3.3 Model Specification and Notation

The purpose of the study was to determine the importance of early

season Landsat crop group information for crop acreage estimation.

Thus two models were compared, one which was a conventional crop acre-

age response model and the other which was the same model augmented by

Landsat inputs. The first model for crop acreage has the form of a re-

gression equation, with a number of independent variables representing

expected revenues, last year's acreages, and government policy effects.

Both the crop of interest and a 7ompetitive or substitute crop are re-

presented. A mathematical representation is as follows:

AP i't = f(C,ExREV i't , ExREVj,t, APi,t-1' PVl i't , PV2 i't ) + et (1)

where

APi't is the acreas planted to commodity i in year t in
thousand acres

C is a constant

ExREV i't is the expected gross revenue per acre by U.S.
farmers for commodity i in year t

ExREVj,t is the expected gross revenue per acre by U.S.
farmers for commodity j (substitute commodity

which farmers may choose to plant) in year t

PVl i't is a government policy variable which encourages
producers to plant commodity i in year t

PV2 i't is a government policy variable which encourages

producers to plant commodity i in year t

28
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Et is an error term

The variable ExREVi,t was computed by multiplying last year's price by

the average yield per acre over the last three years for crop i.

This is a conventional specification that is used by agricultural

economists to explain crop acreage. The origin of this specification

and a full discussion of acreage estimation procedures is available

(Houck, et al, 1976) [ 51.

The second specification which includes Landsat augmentation of

summer crops and small grains (previously defined) is as follows:

APi,t = f(C,ExREV i X ExREVj,t, 
APi,t-1' 

PVl i't , PV2 1,t ,	 (2)

APSC t
, APSGt) + Et

where

APSCt is acreage planted to summer :rops in year t

APSGt is acreage planted to small grains in year t

It is envisioned that these latter, current-year acreages will be

estimated via Landsat. But for the purpose of model development,

current-year USDA estimates of summer crops and small grains were used,

as was previously stated.

The approach taken for the analysis was as follows:

(a) Assume f is linear.

(b) Dete ►7iiine, by stepwise regression techniques, which explanatory

variables to exclude, i.e., the models in (1) and (2) are over

specified and certain variables that have insignificant ex-

planatory power should be deleted.
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c	 (c) Determine if e t are serially correlated. If not, then use

ordinary least squares; otherwise, modify the coefficient

computation scheme.

(d) Use the coefficient of determination to measure the increase

of explanatory power of Model 2 over Model 1.

(e) Determine the increase of prediction accuracy of Model 2 over

Model 1.

(f) Determine the level of error which could be incurred on the

Landsat estimates of summer crops and small grains before the

prediction error of Model 2 degrades to prediction error of

Model 1.

Section 2.2.3.4 documents the results of Steps (b)-(d) through

normal regression type analysis. Using prediction analysis and simu-

lation, the results of Steps (e) and (f) are documented in Section 2.2.3.5.

2.2.3.4 Regression Analysis and Results

In general, the R 2 value for Model 1 (conventional) were high, rang-

ing from 0.87 to 0.94. The Landsat augmentation (Model 2), nevertheless,

made substantial improvements, decreasing the unexplained variances by

17% to 49%.

Corn. After Step (b), the explanatory variables in Model 1 for

corn were a constant, the expected revenue of corn, expected revenue of

soybeans, and both policy variables. The results for Model 2 were the

same, except for the addition of the explanatory Landsat variable of

current-year summer-crop acreage. The unexplained variability is de-

creased by 17% from Model 1 (conventional) to Model 2 (Landsat aug-

mented). The test for serial correlation was not significant at 0.95

level for either Model 1 or Model 2. The results for the regression
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analysis of corn, along with those for soybeans and sorghum, are listed

in Table 2.3 for Steps (b), (c) and (d).

Soybeans. After Step (b), the explanatory variables in Model l

for soybeans were a constant, the expected revenue of soybeans, ex-

pected revenue of corn, and the previous-year's planted acreage for soy-

beans. For Model 2, the same variables are included, with the addition

of both summer-crop and small-grain acreages from Landsat. Unexplained

variability is decreased by 49% from Model 1(conventional) to Model 2

(Landsat augmented). The test for serial correlation was not signifi-

cant for either model. It should be noted that the test for serial

correlation used here is a modified Durbin Watson Statistic since this

is an autoregressive process [ 61.

Sorghum. After Step (b), the explanatory variables in Model 1

for sorghum are a constant, the expected revenue for sorghum, expected

revenue for wheat, and both government policy variables. For Model 2,

the same variables are included with the addition of summer-crop acreage

from Landsat. Unexplained variability is decreased by 49% from Model 1

(conventional) to Model 2 (Landsat augmented). The test for serial cor-

relation again was not significant for either model.

Discussion of the Results. The results of the regression analysis

in general are consistent with our agricultural understanding of the

crops and agriculture in Missouri. An example of this is evident when

comparing the corn and soybeans Model 2 (Landsat-augmented) specifi-

cations. The different crops vary significantly in their soil moisture

and fertility needs, with corn having the highest requirements followed

by soybeans, and lastly wheat and sorghum (which can be combined be-

cause of their similar requirements). These varying crop requirements

are depicted in the following figure:
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LRIM	 -

CORN	 SOYBEANS —► SMALL GRAINS

SORGHUM

High soil moisture	 Low soil moisture
and fertility	

Requirements	
and fertility

of Crop

The corn and soybeans Model 2 specifications both include summer

crops acreage which one would expect since corn and soybeans comprise a

major portion of the summer crops. But the soybeans Model 2 specifi-

cations includes small grain acreages also, which is consistent with

the figure in that they compete for the same land. On the other hand,

the figure depicts the fact that corn does not compete directly with

small grains. Thus, it is appropriate that the soybean model include

small grains as a variable and the corn model omit it. Furthermore,

the signs of the coefficients of current-year summer-crop and small-

grain acreages were consistent with the supportive and competitive nature

of these interactions.

2.2.3.5 Prediction Analysis and Results

Prediction errors were analyzed and then a prediction scenario was

simulated. The prediction analysis consisted of estimating prediction

error via the normal type of analysis for least squares regression. The

explanatory variables for prediction error estimation were obtained by

averaging over data from 1974-1979. The estimated prediction errors

decreased, from Model 1 to Model 2, by 5.1, 22.6, and 23.5 percent for

corn, soybeans, and sorghum, respectively. Also included in prediction

analysis was a determination of the affects of errors in the Landsat
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estimates of summer crops and small grains. Specifically, a deter-

mination was made of the magnitude of the coefficient of variation that

is tolerable before Model 2 prediction would become more inaccurate than

Model 1 predictions. The assumptions for the analysis were that normal

USDA estimates have coefficient of variation of 0.04 and that Landsat

area estimation errors would be independent of regression errors. The

results of prediction analysis are given in Table 2.4. The tolerable

errors are slightly larger than those assumed for the USDA estimates.

Prediction simulation consisted of simulating an actual prediction

scenario, i.e., developing models on data up to year T and predicting

for year T+1 given current-year acreage estimates of summer crops and

small grains. This was done for the values of T = 1971 through 1978 for

both Models 1 and 2. The results, given in Table 2.5, are that the error

for the conventional and the Landsat-augmented CARM are about equal for

sorghum while the Landsat-augmented CAJIM is significantly better for

soybeans and corn. The results, however, also suggest instability of

both Models 1 and 2 when developed over fewer years. Thus, the results

also show that one needs a good data base to achieve acceptable accuracies

using this regression approach.

2.2.3.6 Discussion of Extension to Argentina

As was stated earlier, Missouri's and Argentina's agricultures have

similarities. Specifically they have similar crop mixes, similar

meteorological conditions, and both have had recent expansions in soy-

beans and sorghum. The differences lie in government agricultural policy

and agricultural technology. Based on previous work 17 ), it is be-

lieved that international prices and past acreages are the primary ex-

planatory variables able to be incorporated into a conventional CARM

specification for Argentina. This specification is the same as the

conventional model for soybeans for Missouri for which the added Landsat

inputs of current-year summer crops and small-grain acreages dramatically

increased the model's explanatory power. It is our belief that this

would also occur in Argentina.

16
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Another scenario in Argentina which we simulated is the following.

We performed the regression analysis far• soybeans using only the ex-

planatory variables of last year's soybean acreage, summer-crop  acreage,

and small-grain acreage. The R 2 of this specification was 0.9473 which

is significantly better than Crie R of 0.9382 for soybeans Model 1 (non-

Landsat model). This suggests that in a year in which government policy

may be very strong and tending to dampen the effect of prices, it might be

better to exclude the pricing variables and only use the three acreage

variables for prediction. The results discussed above suggest that

this is a possible successful estimation scheme in the face of adverse

prediction conditions.

2.2.3.7 Summary

This feasibility study has shown that current-year Landsat esti-

mates of gross crop groups could be of importance in augmenting con-

ventional estimation of crop acreages with acreage response mot-As. It

also has shown potential advantages of CARM's developed at the regional

level. The approach has been shown to have a fair robustness to errors

in the Landsat estimates. W li therefore recommend :hat additional re-

search be directed at exploring the Landsat augmentation of conventional

crop acreage response models, including a first look at its potential in

a foreign country like Argentina.

2.2.4 THROUGH-THE-SEASON SEGMENT ESTIMATION APPROACH

2.2.4.1 Introduction

The objective of Through-the-Season (TTS) area estimation research
	

i
is to provide the basis for a technology for estimating target crop	 l

acreages at any user-specified time. This technology should be auto-

mated, timely, and cost effective. It also should make use of Landsat 	

a
data as well as pertinent ancillar y information such as meteorological

data and regional agronomic practices. In this section, we address the
1
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generation of segment-level estimates, although multisegment aspects

will become important, especially early in the season and also where

Landsat coverage is not complete.

Our research on this aspect to date has been limited to the de-

velopment of an initial approach to segment-level estimation which is

presented here, in the form of a flow diagram, along with first-cut

details of specific approaches that might be taken at various points in

the estimation process. It is consistent with the more general concepts

presented elsewhere. The next step in a detailed approach would more

fully address the merging of the new concepts with current techniques

such as profile classification techniques.

Our concept of a TTS segment-level estimation system is illustrated

in the flow diagram of Figure 2.3. Note that we have identified a

classification approach in cnntrast to a direct estimation approach.

This was done for the following reasons:

(1) We believe that an augmented classification approach is a

viable candidate with several potential advantages:

(a) It more readily permits the incorporation of prior infor-

mation from a variety of sources, including agronomic and

economCLric ones.

(b) It has growth potential since refinement of priors can

improve a procedure's accuracy from year to year in a

multiyear context.

(c) When spectral information is limited or uncertain, em-

phasis on priors can reduce the possibility of major

errors in estimates.

(d) Previous studies of classification techniques with prior

probabilities did not use as sophisticated a method for

obtaining the priors as we envision and one should be

able to reduce or control tendencies toward bias.
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(2) Direct proportion estimation approaches were receiving exten-

sive attention by other SR researchers at NASA/JSC, so our

emphasis provided a vehicle for development and evaluation of

an alternative approach.

We now take a more detailed look at the segment-level estimation

approach diagrammed in Figure 2.3. The proposed procedure begins with

current spectral data x s , for each pixel, along with associated ancillary

data, xA . The spectral data are from the current season's acquisitions

available at the time of estimation. The ancillary data could include

historical Landsat data, historical crop classifications, historical

field (quasi-field) patterns and characteristics, historical crop prices,

and quantifications of relevant government policy. The spectral data

are first normalized (corrected for haze, sun angle, and sensor cali-

bration) and then transformed to Greenness and Brightness features.

Next, the segment is stratified by spectral/spatial clustering into

quasi-fi elds to approximate true target fields, based on x  and xA . In

particular, this procedure may initially utilize the previous year's

field patterns which could be derived based on the full prior season of

spectral data. The quasi-fields are then stratified by ass i gning each

to one or more crop classes that it could belong to, based on spectral

zones for x  and on prior year information, including crop rotations.

These spectral zones would be determined by planting date models and

spectral appearance models, both af which are functions of meteorological

parameters and other location-specific information, including prior-year

characteristics. This step also is used, where possible, to identify

substrata which are known to be of high single-crop purity, based on in-

formation such as planting date and crop rotation history. This infor-

mation feeds the process of estimating expected crop signatures for the

segment.

Then classification takes place for quasi-fields assigned to crop

groups which contain target crops. Crop temporal-spectral profile

models will be used in a Bayesian classification scheme with priors
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based on the ancillary data. This classification approach is discussed

more fully in the next section.

Lastly, the classified quasi-fields are aggregated into segment-

level acreage estimates for the target crops.

This approach could be generalized in a multisgement context t;;

take advantage of information from neighboring segments.

2.2.4.2 Detailed Classification Approach

We contemplate using a Bayesian classification approach that incor-

porates temporal-spectral profiles in order to take full advantage of

multidate Landsat data and our understanding of crop phenological dif-

ferences and growth characteristics.

Two methods of using these profiles are identified here for later

exploration and comparison. One method would fit expected crop profile

shapes to current-year data values, e.g., along lines developed by re-

searchers at ERIM [ 81. This could have an advantage when a full season

of data is not available. In a complex implementation, one might compute

probabilities by first determining a continuum of expected profiles and

tolerance limits with respect to planting date for each crop, based on

meteorological conditions, i.e., there could be different shapes for

different planting dates. In choosing the best fitting profile one

obtains a planting or emergence date in addition to crop type and a

quantification of fit or certainty.

The second method would fit a model form to the data and make de-

cisions based on resultant valt-es of the model parameters. One could

apply some constraints when sufficient data acquisitions to produce

stable fits are not available, to increase the applicability of the

model. This method could be a modification of an approach being explored

at NASA/JSC [ g]. One would need to develop multivariate probability

distributions of the parameters.

I
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	 Mathematically speaking, the first method assumes a model of the

form

x s (t) = uX (t,«^,m) + Tx (t)	 (3)
s

where

xs (t) = Vector of observed spectral variables

NX = The expected profile

E S

t = Vector of acquisition times

= Class

= Estimate of meteorological (and other) parameters which

m	 help define the expected temporal-spectral profile

X (t) = Error vector

We assume that we can get estimates of the density of e(t} conditioned

on the class	 and m. We designate this estimated density by

P( X(t}i ,m)

We further assume that we have estimates of the prior probability of a

class conditioned on the auxiliary information x A . Let these priors

be designated by

P(wxA)

Then the class	 is chosen to maximize the posterior probability,

P( " A ) P(!X (t) "m)
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In the second method, we would assume a model of the form

e = u e + e e	 (4)

where u^ is the vector of true profile parameters for the target crop

and a is an estimate of the parameter vector for the chosen profile

model, as derived from the spectral data x s . The error term E  has an

estimated density

P(et^ Im,m)

As before, the class w is chosen to maximize the posterior probability,

P(L,IxA ) P(Ee1m'w)

Of course, the estimation of priors and the error densities for

either model will require a substantial effort. The advantage of this

classification approach is that prior probabilities, estimated using

data W r r than Landsat, can have a greater influence when Landsat dis-

crimination is uncertain and assume a lesser role when Landsat offers

discriminability.

2.2.4.3 Summary

The segment-level estimation scheme described above is one realiza-

tion of the general concept we developed earlier. It lets agronomically

based priors have the major weight until there is enough evidence spec-

trally to do otherwise. Thus, it merges the functions of prediction and

direct observation, as outlined in Section 2.2.1 and in particular in

Figure 2.1. Furthermore, the Bayesian classification approach provides

for a continuous balancing of information gained from the ancillary and

current-year spectral data.
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2.2.5 AN ADVANCED APPROACH FOR THROUGH-THE-SEASON ESTIMATION

The preceeding discussion has shown how information from varied

ancillary and collateral sources is important for the full extraction

and utilization ofinformation from Landsat data. A decision structure

is needed that can effectively utilize data from disparate data sources

having differing degrees of information content, accuracy, and precision.

Furthermore, we believe that this structure should be flexible and

adaptable, should allow for both machine-derived and human inputs,

should maximize the efficiency of the human resource, and should be able

to "learn" or build a knowledge base as it continues in use.

We have studied the opportunities for artificial intelligence,

specifically knowledge engineering systems, and believe that they would

serve as the desired vehicle for TTS decision making and utilization of

remotely sensed data.

Figure 2.4 is an elaboration of the general TTS estimation diagram

presented earlier in Figure 2.2. It presents the various elements in a

form that would be amendable to implementation through a knowledge-

engineering or rule-based inference approach. In such an approach, a

knowledge base and inference structure are built so that, as each new

fact or observation is introduced, a particular inference will become

more certain. The chain of inferences leading to particular decisions

can be based on the knowledge and experience of expert interpreters,

analysts, and agronomists. These systems were first developed for

medical applications.

A candidate prototype for the desired system is found in the

PROSPECTOR system [101. It differs from its predecessors, the EMYCIN

and MYCIN systems [11], in that it uses Bayesian methods of esti-

mation whereas the others use a more empirical, yet axiomatic approach.

Both have provisions to grow and "learn" and incorporate new facts and

data as they become available. Prospector was developed to help locate

optimal drilling sites in prospecting for ore bodies for mining.
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Although it will take some time to fully develop the knowledge

engineering approach to TTS estimation, we recommend it as a desirable

pursuit with a potentially large payoff in accuracy, efficiency, and

automation.

2.2.6 SUMMARY OF THROUGH-THE-SEASON ESTIMATION RESEARCH

In conclusion, we summarize the main ideas and concepts that have

been developed and expressed in this section. They are:

(1) The crop estimation process was characterized as being a time-

varying combination of prediction and measurement (observation) pro-

cesses through-the-season (TTS), with the balance swinging from pre-

diction to measurement as time progresses through the growing season.

It was shown how Landsat can contribute to both processes.

(2) Value was shown for merging traditional prediction variables

(prices, government policy, etc.) with early season Landsat observation

of the farmers' actions (gross crop group acreages) to produce improved

early estimates of specific summer crop acreages. Quantitative results

were presented for a simulation study based on historical USDA

statistics for an entire state. Furthermore, potential was shown for

models based on regional rather than the usual national levels.

(3) Field-by-field Landsat observations are seen as the appro-

priate and optimal basis for use in TTS estimation. It is by observing

fields on multiyear basis that one can best interpret current-year

Landsat observations of farmers' actions for crop acreage estimation.

(4) Predictive models of crop spectral appearance, which taken in-

to account local weather and other factors, would be most beneficial for

interpreting Landsat observations and maximizing the amount of measure-

ment information extracted from them.

(5) Agricultural practices were identified which are observable by

Landsat and could be of high interpretive value in TTS estimation.
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These include the timing of field preparation, irrigation, predecessor

crops and time of spectral emergence (related to planting date).

(6) Multiyear use of Landsat was shown to be important for estab-

lishing the expected crop spectral signature for a given area under a

variety of conditions. Also, the interpretive keys discussed in (5)

would be more readily and accurately used with a multiyear Landsat data

base.

(7) A segment-level Bayesian estimation approach was presented

for merging prior probabilities based on ancillary (predictive) vari-

ables with direct crop Landsat observation at the field level. The

priors are based on predictive variables and indirect (prior year)

Landsat observations. The current-season Landsat observations are used

to produce direct spectral-based probabilities. An important property

of this approach in early season is that the predictive priors can

dominate the classification when direct observation by Landsat is of

little value. As the season progresses and direct observations by

Landsat are of much greater value, the current-season spectral-based

probability dominates the classification. Thus we have a scheme which

shifts in a continuous fashion from predictive acreage in early season

to observed acreage in later season.

(8) For long-range development, we recommend investigation of

knowledge engineering systems tailored to the TTS estimation problem.

They seem well suited to handling the varied information sources avail-

able and have a potentially large payoff.

47



ERIM
AMMW

2.3 MULTISEGMENT ESTIMATION RESEARCH

2.3.1 BACKGROUND AND INTRODUCTION

2.3.1.1 LACIE

The bulk of the current Landsat-based crop inventory methods used

in AgRISTARS are based on the multistage sampling techniques developed

during LACIE. If one wished to estimate the proportion of a crop of

interest within a given region with today's technology then one would

go through the following steps:

(1) Partition the region into strata in such a way that the crop

proportions varied little within a stratum yet these strata would still

be large enough to allocate samples for the steps given below. APU's

(agrophysical units) and CRD's (crop reporting districts) are examples

of such stratifications.

(2) Partition the region of interest into 5x6-mile segments for

data base purposes. We will simplify this discussion by assuming that

this segmentation represents a refinement of the stratification defined

above. The segments which survive cloud screening are the sample units.

(3) Choose a random sample of segments from each stratum. During

LACIE this sample tended to represent about 1% to 2% of the total area.

(This can be viewed as the stage-one sample.)

(4) Obtain an estimate of the proportion for each segment in the

sample, based on a second stage of sampling. Two of the methods are:

(4a) Procedure 1 (Developed by NASA/JSC) LO]. Choose a de-

terministic sample of 60 to 100 pixels from the segment as the stage two

sample units. The elements of this sample are called dots. These dots

are divided into type one and type two dots.

Type one dots include only pixels deemed to be "pure" (single crop)

by an analyst interpreter, whereas type two dots may be either pure or

mixed.
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I
The analyst labels each dot as crop of interest, 1, or not crop of

interest, 0. A classifier is trained on the type one dot labels and

then assigns labels to every pixel in the segment, including the type

two dots. The labels of the type two dots are used to estimate the

performance matrix of the classifier. This estimated performance matrix

is then used to debias the mean of the classifier's labels.

(4b) Procedure M (aeveloped by ERIM) [13]. The pixels within

each sample segment are clustered using spatial and spectral variables

into field-like patterns called blobs. These blobs are the stage-two

sample units.

The blobs within a segment are clustered again using spectral/

temporal variables. The resulting clusters were treated as strata for

the stage-two sample. The Midzuno sampling technique is used to select

blobs for labeling, because the blobs vary in size. About 100 blobs

are sampled and labeled. The weighted proportion of the blob labels

Within a cluster gives the cluster proportion estimate. The weighted

mean of the cluster estimates then gives the segment estimate.

(5) The sample segment proportion estimates are aggregated into

stratum estimates and an overall region estimate in the normal manner.

2.3.1.2 AgRISTARS

Post LACIE research has been conducted in several areas, these

include:

(1) Advanced Labeling Techniques. In LACIE about 50% of the

standard deviation in the segment grain estimates and all of the bias

in the estimates were due to labeling errors. There have been improve-

ments but this component is still a major source of errors and cost.

Labeling is being made more objective and hence more automatable.

(2) Multiyear Estimation. Procedures which take advantcge of

.tear-to-year correlation to improve sampling efficiency have been
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developed. The level at which the multiyear procedures should be im-

plemented at is not clear at this time.

(3) Through-the-Season Estimation. The most used procedures

require acquisitions throughout most of the growing season. Procedures

which give estimates throughout the growing season, especially early and

midseas- n, are in the development stage. This topic is the subject of

another section of this report (Section 2.2).

(4) Profile Based Techniques. Profiles are parameterized functions

which map a day of year, t, into Greenness (and sometimes Brightness or

other spectral variables) based on observations of crops. Because pro-

files allow the comparison of crops in segments which have different

acquisition histories, profiles will most likely play a major role in

multisegment estimation. The drawback of the current profile techniques

is that at least three acquisitions are required in order to fit a good

profile. The number of acquisitions required could be reduced if con-

straints were added on the parameter space such as a linear relationship

within a subset of the parameters, or in a multistage procedure in which

one set of parameters are estimated and then the remaining are fitted.

(5) Multisegment Estimation. In multisegment estimation the over-

all objectives are to increase sampling efficiency and reduce measure-

ment cost without sacrificing accuracy. Sampling efficiency can be

increased by reducing the segment size and increasing the number of

segments. Sampling is discussed in Section 2.3.2. Measurement cost

reductions might be gained by processing several segments together and/

or by processing a few intensely and a larger number with a more eco-

nomical but less accurate procedure. Though reduction in the scope and

funding of our efforts precluded carrying out the research to fruition,

we considered three methods of measurement. First signature extension

is conceptually described in Section 2.3.3. In signature extension,

labels mea,,,.id from a few segments would be geographically extended to

other segments thereby reducing measurement cost by eliminating the need

to extract training from all segments. Secondly, regression methods are

t
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discussed in Section 2.3.4. Such met'ods extend relationships between

economically derived estimates and intensive estimates thereby achieving

a higher level of accuracy at a reduced cost. Finally, the bin method

is described in Section 2.3.5. Sufficient resources were available co

evaluate this multisegment measurement scenario experimentally and it

is so reported. The bin method extends the decomposition of the spectral

distribution from a training sample to the entire segment. Due to the

robustness of the method, a reduced traininc: sample is required thereby

achieving d cost reduction. In addition, judicious selection of fea-

tures would enable the use of the bin method within a signature exten-

sion scenario.

2.3.2 MULTISEGMENT SAMPLING

2.3.2.1 Effect of Sample Size

Sample variance is known to increase as the segment size increases,

assuming the product of the segment area and'the sample size remain;

constant. Perry [141 showed that this effect could be approximated

V(x) = ax e where x is the segment size. LARS and UCB estimated, empiri-

cally, that the LACIE sampling efficiency was about 1/8 compared to

simple random sampling. The choice of cluster (or two stage) sampling

was made in LACIE for valid cost, data base, and measurement consider-

ations. However, the present 5x6-mile seyment size was just a first try.

The increases in computer power per unit cost and d6vances in registration

technology relax data base considerations and it appears that the segment

size could be reduced significantly with very small impact on the measure-

ment procedure. We developed plans with UCB to test a segment size of

64x64 pixels, extracted from full-frame Landsat data sets.

2.3.2.2 Sampling Vs. Segment Selection for Training

The optimal method o` selecting segments depends on the estimator

which is being used. Random sampling schemes are required in some pro-

cedures such as the regression method and Procedure M. When using the
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sample to train a classifier, it is more important to represent all of

the major spectral classes in the region, randomizing only after these

constraints are met. One multisegment procedure we postulated and

planned to test is based on a profile classifier. The parameters of

the profiles would be estimated for every pixel in every segment (or a

large sample) in the stratum. The classification would take place in

the parameter space. The problem is how to choose the sample which

will best train the classifier.

The IBM Procedure-2 [151 experiment used a technique which first

clustered the pixels (CLASSY) across segments and then used a factor-

analysis-like technique for segment selection. Earlier ERIM Procedure-

B experiments [16,171 also clustered targets (blobs) across segments

using spectral/temporal variables. But the method of segment selection

differed from that used by IBM. ERIM employed a pairwise selection

procedure which chose the two remaining segments which best represented

the major undersampled clusters. The pairwise selection continued until

the sample budget was exhausted. These two segment allocations gave

about the same results.

In the profile-based multisegment procedure, the profile parameters

will form the feature space. The pixels will be clustered based on

these parameters and the segments selected using either IBM's factor-

loading or ERIM's pairwise-loading technique. Labels obtained for tar-

gets in the sample segments will be used to train the classifier. The

classifier will be applied to every pixel of every segment with suf-

ficient acquisition history.

Early multisegment experiments will use ground truth labels or will

modify existing measurement techngiues. Later research will optimize

measurement techniques in a multisegment environment.

Ift
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2.3.3 SIGNATURE EXTENSION

2.3.3.1 Notation and Signature Extension Assumption

R... is the region of interest

R i .. is the stratum i

R . 	 is the j th signature extension stratum of stratum i

Rijk is segment K

P..., P i .., P ij ., and P ijk are the corresponding crop proportions

We assume the region R... is partitioned into clusters based on spectral/

temporal attributes of the labeling targets. Denote these clusters as

{S cc so that R... = U aSa . Let Qijka	 Rijk n S  and gijka 
as the

corresponding crop proportion.

The signature extension assumption is that the distribution of the

random variable 
gijkR 

is independent of k. (This assumption can be re-

laxed somewhat.) This assumption implies that all of the segments

within Rij . can be processed using the same decision logic, and that a

classifier which has been trained on a subset of segments which repre-

sents the S a 's within R ij . can be used to classify all of the targets

within R. j . .^

2.3.3.2 Signature Extension Region

The signature extension experiment, described in [16,171, trained

and applied a classifier across the state of Kansas. This was too large

of a region to apply any one decision rule. There were Greenness/

Brightness/Temporal signatures which represented pure grain on one side

of the state and pure non-grain on the other. These Kansas signature

extension experiments indicated that there are at least four signature

extension regions in Kansas. A different decision rule is generally

needed for each signature extension region.
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Signature extension regions have to be small enough for the

assumption to hold and have to be large enough to allow a large enough

sample to ao-velup a decision rule (train a classifier).

Research has been conducted in this area by UCB under the Dynamic

Stratification Task.

2.3.4 MULTISEGMENT REGRESSION METHODS

2.3.4.1 General Regression Methods

We assume that there are two random variables X and Y with the fol-

lowing linear relationship:

(Y - uy ) = B(X - u x ) + e

where a is a random variable with mean zero. Two samples are taken.

In the first sample, we observe (X i )ill (i.i.d. X) and in the second we

observe (X1,Y1)=̂1. Cochran [18] gives the estimate for u  as:

uy=Y+b(X-X'}

where X' and X are the means of the first and second samples, respec-

tively, and b is the least squares estimate for B, based on the second

sample. This estimate is conditionally biased, i.e.,

E(uy - uy JV) = B(X' - ux)

In most applications n<<n' because each Y observation is much more

expensive than each X observation.

Cochran's figure 12.1 [18] gives a useful chart for comparing a

one-phase simple random sample and a two-phase regression estimator.
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1	 2.3.4.2 A Multisegment Regression Procedure

The Baseline Corn/Soybean Procedure described in Section 3 is a

two-phase procedure. The procedure provides two levels of corn/

soybeans estimates. The first, called the stage one estimate is a nearly

automatic procedure while the second is a more intensive and more

accurate procedure. The stage-two estimator requires twice the computer

time and five times as much analyst time as the stage-one estimator.

This suggests that regression estimation methods might provide a lower

varianced estimator for a fixed cost.

Let Y denote the stage-two estimator and X denote the stage-one

estimator. Because of the nature of the Baseline Corn/Soybean Proce-

dure, a stage-one estimate is obtained automatically for every stage-

two estimate. This implies that n' = 0 is not an option. Hence the

Baseline could be viewed as a special case of a regression estimator

where n = n'.

An ITD experiment was carried out in order to determine if it

would be cost effective to have a large number of stage-one estimates

and, for a smaller subsample, to also have stage-two estimates. This

experiment is reported in detail in Section 3.3.3. The experiment indi-

cated that variance could be reduced by 25°0' to 50%, for fixed cost, by

the use of regression estimates. This application of regression methods

of estimation is more general than that discussed in Section 2.3.4.1 in

the following ways:

(a) The quantity to be estimated is multivariate, i.e., the

acreage of two or more crops (in this case, corn and soy-

beans) simultaneously.

(b) The cost constraints are more general, consisting of two

or more linear constraints imposing limitations on several

resources (analyst and computers).
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2.3.5 AN EXPERIMENT USING THE BIN METHOD FOR SEGMENT PROPORTION
ESTIMATION

The bin method is a direct proportion estimation scheme which has

been researched in the past by JSC and for which there is current

interest for use as an early season proportion estimator. We ran an

experiment using the bin method in order to increase our understanding

of it in a real life estimation scenario and to establish its applica-

bility as a signature extension scheme for inultisegment estimation.

For the experiment we had spectral data for 17 segments of which

ten had been processed through the ITD Baseline Corn and Soybean Pro-

cedure for proportion estimation based on sampling and classification

(Section 3). For purposes of understanding, all segments were processed

as follows; targets (targets will be defined later on) were sampled

(different sampling rates were tried), assigned their ground truth

labels, and used as training data for the bin method. For the purpose

of testing an alternative proportion estimation segments were run

through the bin method using the sampled and labeled targets as training

data. The purpose of this section is to outline the results of the ex-

periment and understandings gained.

2.3.5.1 The Bin Method

The bin method is a direct crop-proportion estimation scheme that

can use spectral data from several satellite passes. The basic idea is

to divide the multitemporal spectral space into regions or bins and,

based on the overall dispersion of the data across these bins, to deter-

mine the proportions of categories of interest. Specifically, the total

joint density across the bins, denoted by f, is computed from the

spectral data. If one also has f(x I corn), f(x I soy) and f(x I other)

then regression methods can be used to solve the model:
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where

c denotes the proportion corn;

s denotes the proportion soybe

o denotes the proportion other.

If one has consistent estimates for f(x I corn), f(x ( soy), and

f(x I other), then regression methods will give consistent estimates of

c, s, and o. If the estimates are biased (may still be consistent),

then the complete procedure will give slightly biased estimates for c,

s, and o, however. But the results of the experiment give evidence that

the bias is quite small. A slight problem is that the procedure does

not restrict its estimates to the three-dimensional simplex; and indeed

this experiment gave estimates above one and below zero. We will dis-

cuss this in more detail later on.

2.3.5.2 The Bins

The bins were derived by establishing thresholds on Greenness

values measured for scene targets on three different dates for each seg-

ment. The targets were quasi-fields generated during other processings

by an ERIM spatial-spectral clustering (or blobbing) algorithm.

Labeling Greenness measured on Day i as g i , where i =1,2,3, two

thresholds, t il and t12 , were determined for Bach day. Then for every

quasi-field there was a mapping

h:	 R3 4. {1 ,2,3 13

^-ERIM
Ammi

f(x) = cf(x I corn) + sf(x I s

where h is defined as
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h(g l ,g 2 ,g 3 ) 	 (bl,b2,b3)

where

b  = 1	 if 
gi < til

= 2 if t
il `— g i << ti2

= 3 if t
i2 < gi

Thus, the mapping h defines 27 spectral bins and these bins were

determined for every segment by setting the six threshold levels based

on expected crop spectral responses on the given days of year. A list-

ing of the Julian days with corresponding thresholds is given in Table

2.6. For seven segments, a supervised mode of blobbing was used in

which the clusters were restricted to include only pixels of like ground

truth. The other ten segments were run through the Baseline C/S Pro-

cedure.

The basis for the choice of acquisitions and thresholds was the

logic used by the Baseline C/S Procedure in stratifying for summer crops

and in separation of corn and soybeans. This led to selection of early

and late acquisitions, which gave substantial separability between

summer crops (corn and soybeans) and other crops, and a middle date

where there appeared to be maximum separability between corn and soy-

beans in Greenness space.

2.3.5.3 Methods of Estimating f(x I corn), f(x I soy), and
f(x J other)

This experiment estimated the above conditional densities by train-

ing on a random sample of the data in each segment. The random sample

was labeled with "ground truth" for Segments 107, 127, 809, 844, 854,

866 and 891. The sampling rates, denoted Q, were .05, .10, .15, .20

and .25. Baseline corn-soybean labels were used to obtain bin esti-

mates for Segments 141, 202, 205, 800, 832, 842, 852, 853, 877 and 881.
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Since the bin method sometimes gave estimates outside of the three-

dimensional simplex, negative estimates were replaced by 0 and then the

other estimates were normalized to add to one. The next section gives

the results of this experiment.

2.3.5.4 Results

Figure 2.5 through 2.7 display true vs. estimated crop proportions

determined for the seven segments for which supervised quasi-fields

were available, for sampling frequencies Q = 0.05, 0.15 and 0.25, re-

spectively. Each point represents the mean of 100 estimates produced

from bin proportions generated by using the different training samples.

Each figure has seven estimates each for corn, soybeans and other, ex-

cept Figure 2.5 which is missing values for Segment 809. The bin

method gave unbiased estimates for all of the sampling frequencies, on

the average, for this source of labels.

It was expected that the standard deviation would depend on sample

size in somewhat the same way as that of a simple random sample, namely

proportional to the inverse of the square root of the sample size. Be-

cause the number of targets varied from segment to segment, the sample

size also varied from segment to segment. Figure 2.8 gives the stan-

dard deviation vs. sample size least squares response function for corn

and soybeans, where the response function is assumed to be of the form:

s = c / 3n

where c is to be estimated by standard linear regression. The standard

deviation drops rapidly from 10 to 50 samples after which the decrease

slows significantly.

For the second part of the experiment, we analyzed about 100 tar-

gets per segment which were given analyst labels in an early test of the

Baseline Corn/Soybean Procedure. The segments were: 141, 202, 205,

800, 832, 842, 852, 853, 377 and 891. These analyst labels are called
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Stage 2 labels. The Baseline Corn/Soybean Procedure also gives semi-

automatic labels, called Stage 1 labels, for every potential target.

The samples which were used in the above baseline procedure test were

used to estimate f(x I corn), f l,x I soy) and f(x ; other) for these ten
segments. Table 2.7 gives four values for each segment for each crop

class. These were based on the ground truth, the mean of Stage 1

labels, bin estimates using Stage 1 labels and bin estimates using

Stage 2 labels, respectively. Averages across all segments, standard

deviations, and biases are also given.

The mean of the Stage 1 corn labels gives an unbiased estimate

while the Stage 1 and Stage 2 bin methods give 6% and 3% bias, respec-

tively. The mean of the Stage 2 soybeans labels gives a -10% bias

while the bin method using Stage 1 labels gives only -6% bias.

2.3.5.5 Conclusions

The choice of the thresholds for the bins as outlined in Section

2.3.5.2 was made using prior knowledge of the distributions of Green-

ness for corn, soybeans and other. In an operational system, these

thresholds would need to be based on one, two or three of the following:

. Historical Landsat data and ancillary data

• Histogram of all the pixels/blobs Greenness

• Identifiable subpopulations of specific crops

Intuitively it is appealing to :hoose bins which maximize the difference

between probabilities of two cover types of being in each of these bins.

The results are supportive of this in general but it seems that late in

the season, the bins did not pick up c.,-_h separation of crops. It also

appears that not many quasi-fields had b  = 2 for i = 1,2,3. Thus this

may need to be looked at in the future also. The results of experiment

on the BASELINE segments indicates that the bin method is a fairly un-

biased way to use the labeled targets.
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Our recommendation is that research be conducted to determine:

(1) the effects of the choice of bins and (2) the optimal estimation

scheme when the bin method gives proportion estimates greater than one

or less than zero. Use of labeled targets as training data also should

be explored further because of the relative unbiasedness of the results.
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2.4 ARGENTINA-BRAZIL AGRONOMIC UNDERSTANDING

The principal reason for establishing this subtask was to help

ensure an orderly transition from a U.S.-based technology development

for corn and soybeans area estimation to one adaptable to foreign areas

(Argentina and Brazil). As such, the subtask was designed to anticipzte

and/or respond to data and information needs so that techniques designed

and developed primarily with U.S. data can be adapted to handle expected

agronomic conditions found in Argentina and Brazil. This requires the

collection, organizatio nand summarization of a wide variety of infor-

mation relating to country specific agricultural crop types, crop-

livestock practices, the location and extent of agricultural regions,

soils and climatic data and other factors that characterize the agri-

cultural systems operating in Argentina and Brazil. Another critical

aspect was the collection of ground information on crop types in segments

in these countries for which Landsat data are being acquired. Initial

emphasis was placed on Argentina due to its greater similarity to U.S.

regions.

2.4.1 DESCRIPTION OF AGRICULTURE IN ARGENTINA

A separate technical report [191 has been written to give a detailed

presentation of the information and understanding we gained about agri-

culture in Argentina. Related reports include References [201 to [241.

This section presents a summary and overview of that report.

2.4.1.1 Study Area Defined

The AgRISTARS study area which had been selected in Argentina

(Argentina Indicator Region) for the corn/soybean classification and

area estimation technology experiment includes four provinces located in

the east-central part of the country (see Maps 1 and 	 Three of the

provinces, Buenos Aires, Cordoba and Santa Fe, comprise the Pampa heart-

land while a fourth province, Entre Rios, is located immediately to the

W
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east. The study area is situated in the lower middle latitude zone of

the Southern Hemisphere, roughly between 30 and 40 degrees South latitude

and 59 and 65 degrees West longitude.

Fifty sample segme nts had been selected in the four provinces, 25 of

which are former LACIE segments. Of the total number, about half (26)

are found Buenos Aires province with diminishing numbers found in Santa

Fe, Cordoba and Entre Rios provinces, in that order.

2.4.1.2 Overview

A variety of physiographic factors including nearly level terrain,

mild climate, and fertile soil have been conducive to the development of

a ;riculture within the study area. In the center, which covers northern

Buenos Aires, southern Santa Fe and southeastern Cordoba, the amount and

distribution of precipitation favor the cultivation of corn, soybeans,

and other crops, but drought is a problem farther west and south. Con-

ditions in southern Buenos Aires are favorable for wheat production. In

Entre Rios, somewhat less favorable conditions for wheat prevail due to

high humidity.

Topography and Drainage. The AgRISTARS four-province study area

mainly lies within the borders of the Argentina Pampa, a very large, flat

to slightly rolling plain that stretches westward into the interior from

the east coast of Buenos Aires province, the Rio de la Plata estuary and

the lower Parana River Valley (see Map 2). The Pampa extends westward

and southwestward well beyond the borders of the study area and ultimately

to the desert which separates it from the Andean mountain system. It

extends north to the Chaco, a subtropical scrub woodland zone, and south-

westward to northern Patagonia. Strictly speaking, the province of Entre

Rios is not part of the Pampa, but is a flat plain broken by north-south

aligned ridges.

Sedimentary materials cover nearly all of the Pampa, most of which

is fine wind-blown loass which was transported from areas farther westward
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along the Andean front. Generally coarser rock materials are found in

the western Pampa while the finer wind-blown materials were carried

farther eastward. Two topographic divisions can be distinguished in the

Pampa, although differences are subtle. The "Pampa ondulada" or

Undulating Pampa exhibits slightly rolling topography such as portions

of northern Buenos Aries, southern Cordoba and southern Santa Fe. In

constrast, much of central Buenos Aires province to the south is low-

lying and poorly drained and forms part of the "Pampa deprimida"

(Depressed Pampa), especially to the west of the Parana River (central

and northern Santa Fe) where numerous low-lying areas occur. Summer

flooding is common in all of these areas and both crop and liv;:s%.ock

losses occur. Sinn events often result in loss of teed for livestock

and conversion of cropland to pasture or forage as an emergency measure.

Nearly all of the study area, with the exception of a few isolated hill

areas and the Sierra de Cordoba highlands in the far northwest, lies

below 200 meters elevation as do 13 of the 14 segments visited for ground

data collection purposcs in 1981.

Climate. The study area exhibits considerable climiatic variation

with respect to temperature, precipitation totals, and seasonality and

variability of precipitation. The most critical factor in terms of

agriculture	 the occurrence of drought in interior farming zones.

Temperature di fferences are also important, given the north-south extent

of the study zone (1400 kilometers), as is distance from marine moisture

sources.

Five climatic types occur within the study area (see Map 3). Most

of the area lies within a zone of humid subtropical climate that extends

southwestward from Brazil and Paraguay into Santa Fe, Entre Rios, Buenos

Aires, and the eastern third of Cordoba. Farther west, a variant of

this climate with dry winters and decreased, more unreliable summer

rainfall is found. A similar climate prevails much farther south in

southwestern Buenos Aires. In contrast, southeastern Buenos Aires has a
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cool marine climate because of its proximity to cold offshort currents

in the Atlantic Ocean.

Great differences in precipitation occur within the study area

(see Map 4). Total precipitation decreases from east to west and from

northeast to southwest. The seasonality of precipitation is also very

important. Precipitation is more evenly distributed and reliable in

northern Buenos Aires than in areas to the west and south, which is a

key factor in agricultural land use. Rainfall in the Pampa of northern

Buenos Aires is generally adequate for corn and soybean cultivation and

is well distributed annually. To the west and south, rainfall decreases,

while high temperatures produce high evapotranspiration rates which re-

duce precipitation effectiveness in the extreme north. In both areas,

drought-resistant crops such as sorghum are grown rather than corn or

soybeans.

Generally speaking, the region is characterized by long, hot, humid

summers and mild winters. Chief climatic controls are landmass heating

at subtropical latitudes and the nearby Atlantic moisture source. In

more interior locations, the higher temperatures are ameliorated by

lower humidity. Frost can occur during winter in interior areas, but

snow is rare, and winter climatic conditions are less severe than those

of the U.S. corn/soybean zone.

The Pampa region also can be divided into three zones arranged in

concentric crescents around the city of Buenos Aires: the Humid Pampa,

the Subhumid Pampa, and the Semi-arid Pampa, in order of increasing

distance from that city. The Humid Pampa is the center of corn/soybean

product and other crops having high moisture requirements while the Sub-

humid Pampa is used for wheat, alfalfa, sorghum and rye. The Semi-arid

Pampa is mainly devoted to livestock raising due to low rainfall.

Drought risk increases rapidly to the west of the Humid Pampa while high

evapotranspiration rates as well as seasonal flooding adversely affect

agriculture and livestock to the north of that same area.
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Soils and Vegetation. Soils within the provinces of Santa Fe,

Cordoba and Buenos Aires generally consist of fine wind-blown (aeolian)

material transported from the arid west of Argentina with the soil par-

ticles of finest texture being transported farthest eastward. The fine

wind-blown soil is powd,.ry yellowish loess which is an extremely pro-

ductive soil for agriculture.

Most of the soils that occur throughout the Pampa region are

classified as mollisols (see Map 5). These soils are easily worked,

very fertile and are similar to those found throughout much of the U.S.

Corn Belt.

Within the Pampa, several types of mollisols have developed due to

parent material and climate. The most extensive types are the Udolls

which occur in the Humid Pampa. The.,, soils are moist, very high in

organic matter and have great agricultural potential. To the west are

Ustolls, a drier soil variant of the former type which have developed in

areas that are dry for at least 90 consecutive days annually. In southern

Cordoba, soils that are transitional between Udolls and Ustolls are found

while, in the extreme southwest of Buenos Aires, conditions have favored

the development of Aridosols, an even drier variant. The soils of Entre

Rios are also Mollisols of the Alboll subtype. These soils arz sea-

sonally wet due to much higher precipitation and are also less permeable

due to high clay content.

The original vegetation cover of the Humid Pampa was prairie grass-

land when the first Spanish explorers arrived. Tall plumed grasses

covered most of the zone and marsh vegetation was also widespread, given

the large number of poorly drained topographic depressions. As the Pampa

was settled, this vegetation type was greatly modified through the plant-

ing of eucalyptus treees as windrows and woodlots.

Rainfall gradually decreases to the west and southwest of the Humid

Pampa and the grassland windrow vegetation of that zone gradually gives

way to short-grass steppe. In contrast, extreme northern Santa Fe and
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Cordoba lie along the southern margin of the tropical scrub woodland

"Chaco" zone, while central Santa Fe and east-central Cordoba are trans-

itional between the grassland-scrub of the Chaco margin and the Humid

Pampa grasslands to the south. Scrub forests as well as marshland occur

along the Parana River valley and extend far upriver out of the study

area. However, marshland areas are also found immediately to the west

in central Santa Fe province. Extensive marshland zones also occur in

the low-lying poorly drained "Depressed Pampa" of central Buenos Aires

as well as in some areas of southeastern Buenos Aires. Other types of

vegetation are also found. A "parkland" vegetation type consisting of

scattered trees and grassland typifies much of southern Entre Rios.

In general, existing vegetation closely corresponds to precipitation

amounts received, evapotranspiration rates and topography. Decreasing

precipitation is reflected in the southwestern and western short grass

stappes, while high evapotranspiration rates and poor drainage are

major factors that influence vegetation in the far north.

2.4.1.3 Crop/Livestock Zones in the Argentina Study Area

Despite the relative physiographic homegen pity of the Pampa region

which characterizes most of the AgU STARS study area in Argentina, very

substantial differences in agricultural land use, crop mix and practices

exist, due mainly to differences in rainfall amount and distribution

(see Map 6).

Zone--'k - Cotton. The cotton area shown in northern Santa Fe is a

southward extension of Argentina's major cotton production zone which

also covers parts of the provinces of Formosa, Chaco and Santiago del

Estero. Moderate rainfall, high evapotranspiration, poor drainage and

sporadic flooding of cotton plantings characterize the zone. The zone

is geographically remote from all 50 segments in the study area and is

therefore not directly relevant to the corn/soybean agronomic under-

standing efforts of this subtask.
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Zone 2 - Highlands. This highland zone in extreme northwestern

Cordoba (Sierra de Cordoba) is a non-agricultural zone and is likewise

not of direct concern to the corn/soybean agronomic understanding

effort.

Zone 3 - Livestock/Sorghum; Zone 6 - Sorghum; Zone 7 - Sorghum/

Corn/Livestock; Zone 8 - Sorghum/Wheat/Livestock. These four zones re-

present various crop mixes, but in all cases, sorghum cultivation is

significant. The zones are all located in the Subhumid Pampa, west and

northwest of the Humid Pampa centered on northern Buenos Aires. In all

four zones, sorghum along with beef livestock raising is the chief rural

activity. Zone 3 covers northern Cordoba and central Santa Fe. Live-

stock pasture is the chief land use in this zone with most sorghum grown

being forage sorghum. The sorghum plant's resistance to drought makes it

the chief crop as very little corn or soybeans are in the far north due

to moisture limitations and drought prevalence. Still, the amount of

sorghum grown in Zone 3 is much less than in Zone 6 due to high evapo-

transpiration which reduces precipitation effectiveness, except for

northeast Cordoba where more sorghum is grown. Zone 6 is a slightly more

humid area than Zone 3 and is Argentina's major sorghum production zone.

The largest portion is located in central Cordoba, while the remainder

is located in extreme western Buenos Aires. Livestock raising remains

important, but the percentage of land devoted to sorghum is much greater

in Zone 6 than in Zone 3. In addition, some soybeans are grown in the

zone. Zone 7 is similar to Zone 6, but corn is also a major crop. Zone

7 is the largest producer of corn in Argentina outside of the Humid

Pampa for reasons not clearly understood, given the low average annual

precipitation for the zone, 700 mm (28 in). However, livestock acti-

vities for forage sorghum production remain important. Zone 8 is

similar to Zone 7 except that wheat production is also important. Pre-

cipitation is also slightly higher, 750 mm (30 in). Wheat production is

greatest in the northern portion of Zone 8 and gradually decreases

southward. Also, the zone accounts for less of the Argentine wheat total
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than in the past as newer production zones in southwestern Buenos Aires

have become more important. The northern part of Zone 8 is relatively

densely populated, by Argentine rural standards, and has been an impor-

tant agricultural zone since about 1900.

Agricultural practices within the four zones are fairly uniform.

Irrigation is virtually non-existent and many sorghum fields were weed-

infested due in part to the high organic content of the soil and the

lack of herbicide application which would discourage weed proliferation.

Furthermore, fertilizer use remains low due to high prices and high

natural soil fertility. Crop rotation is practiced but no consistent,

organized system exists. Land left in pasture for several years is

generally planted to forage sorghum with the decision to plant being

made in a real-time context because of weather and changing market

prices. Most pastures are unimproved in the north but alfalfa becomes

more important in Zone 6. Also, the flooding of forage crops in low-

lyina areas may necessitate sudden new plantings of sorghum or oats

planted for livestock ground forage.

Zone 4 - Flax. Zone 4 covers most of Entre Rios province except

the extreme northeast. Flax is the chief crop grown in the zone with

the heaviest concentration being in central and southern Entre Rios.

Livestock raising is of some importance, as are corn and soybeans in

the extreme west-central portion. Although one segment is allocated to

Entre Rios, Zone 4 is somewhat peripheral to corn/soybean technology

development for Argentina, as flax and linseed oil production dominate

the zone's economy.

Zone 5 - Rice. Zone 5 is a southern continuation of Argentina's

major wet rice production zone, most of which islocated in Corrientes

province to the north outside the study area.
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Zone 9 - Corn; Zone 10 - Soybeans/Mheat Corn. Zones 9 and 10,

located in the Humid Pampa of northern Buenos Aires, southeastern

Cordoba and southern Santa Fe, arethe chief areas of interest relative

to the Argentina agronomic understanding subtask. Zones 9 and 10

account for approximately 80% of Argentina's corn, while Zone 10 accounts

for over 90% of the nation's soybeans. Climatic conditions within the

zones are very favorable for the cultivation of both crops, but soy-

bean production is geographically concentrated in the northeastern por-

tion of the larger corn production zone (see Maps 7 and 8). Corn and

alfalfa production along withlivestock raising is important in Zone 9,

as is sunflower cultivation. Zone 10 is also important for corn culti-

vation but soybean/wheat double cropping surpasses corn in area planted

and is the chief agricultural activity. About 75% of the soybeans

grown are double cropped with wheat but this percentage may vary about

10% above or below this figure for different years.

Mechanized agricultural production is widespread in Zones 9 and

10. Although mechanization levels are lower than in the U.S. Corn Belt,

they are nevertheless high by Latin American standards. Three-to five-

bottom (moldboard) plows are used on smaller farms, while ten-to

fifteei-bottom implements are used on large properties. No-till plant-

ing is not widely practiced since plowing is considered a weed control

measure.

Planting times are governed by temperature, drainage conditions

and moisture availability. Corn is normally planted from mid-September

to mid-October in both zones and harvested in March. However, planting

and crop growth dates, as well es harvest dates, vary with weather and

location. Soybean planting and harvest dates vary substantially depend-

ing on whether the fields are single-cropped or double-cropped after

wheat harvest. Row width for corn, soybeans and grain sorghum is 70 cm,

and that of forage sorghum an(A winter wheat is 15 cm.

SW
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Several other agricultural practices deserve mention. In some

areas of the zone, wheat and alfalfa are intercropped in the same field.

Planted wheat is mature after about 125 days and following the harvest,

the alfalfa is left for beef cattle pasture. Two major rotation

patterns are also practiced. In many cases, fields may remain in

pasture for five jr six years after which time a row crop is planted

such as corn, grain sorghum, or soybeans. Should single-crop soybeans

be planted, the land would revert 'o a fallow condition following har-

vest. In cases where second-crop soybeans are planted, winter wheat is

again sown in the field following the soybean harvest. After one or two

years of row crops, the land would be left to pasture once again and an

adjacent field planted in row crops. A second rotation pattern is the

planting of corn, followed by rye, and then corn once again, after which

time alfalfa is planted for three years.

Zone_11 - Market Gardening. Zone 11 is a zone of intensive veget-

able and fruit production serving the city of Buenos Aires. The zone,

which forms a crescent around metropolitan Buenos Aires on its northern,

western and southwestern margins, is located outside the major corn/

soybean production zone an'. is not directly relevant to this agronomic

understanding subtask.

Zone 12	 Alfalfa/Wheat. This, the major alfalfa/wheat production

zone in the Argentina study area, is located to the southwest of the

principal corn/soybean growing areas. Despite its proximity to the

corn/soybean zone, corn production is much less and soybean production

is negligible due to decreased annual precipitation and erratic and un-

reliable rainfall patterns. Drought is a major risk in the zone and

farmers therefore plant alfalfa or wheat. Sunflowers are also of some

importance. Alfalfa is planted in March as winter forage throughout

the zone, and is cut in May, July and September. In October, alfalfa is

usually planted for a second time and the process is repeated. Unlike
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the U.S. Corn Belt, feedlot fattening of livestock is not commonly

practiced in Argentina. Rather, alfalfa is the principal livestock

feed, along with forage sorghum. Winter wheat is also grown, but pro-

duction is generally less than in eastern Cordoba to the north, or areas

farther south in Buenos Aires. In some areas of the zone, wheat and

alfalfa are intercropped in the same field. Also, alfalfa is sometimes

rotated with rye to restore soil moisture. Despite drought risk,

irrigation is not practiced in the zone.

Zone 13 - Livestock Raising, Zone 13 located in central Buenos

Aires is a low-lying, poorly drained area devoted mainly to beef live-

stock raising. Corn and soybean production are not important within the

zone, due principally to poor drainage and flood risk. However, annual

precipitation is sufficiently high, 800-900 mm (32 to 36 in), to support

their cultivation. Oats, barley and rye are grown within the zone as

cattle feed but many cattle are sent to alfalfa producing areas in Zone

12 for fattening prior to marketing. Some wheat is also grokdn b!it, as

in the case of Zone 12, the amount grown is much less than in southern

Buenos Aires.

Zone 14 - Wheat/Livestock. Argentina's largest and most important

wheat growing region is located in southwestern Buenos Aires, south of

a diagonal line separating it from Zones 12, 13 and 15. Pasture, wheat

cultivation and some forage sorghum dominate rural land use but wheat

is by far the most important crop produced. Precipitation decreases

steadily from northeast to southwest to the extent that corn and soy-

bean production is preculded in the southwest. Wheat is normally planted

in June and harvested in late December. Following harvest, oats are

normally planted in wheat stubble as forage for cattle. Also, several

varieties of pasture grass are planted, but alfalfa plantings are of

little importance, unlike areas farther north. Irrigation is rarely

practiced and many pastures are unimproved and weedy.
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Zone 15 - Livestock/General Farming. In southeastern Buenos Aires,

the crop mix is considerably different from all other zones in the Pampa.

Total annual precipitationis nearly double that of southwestern Buenos

Aires and relative humidity is much higher. In addition, the soils of

southeastern Buenos Aires are very high in organic matter ( 16%) and are

among the most productive in Argentina. However, poor drainage and

salinity are problems in some locales. Durum wheat, potatoes and pasture

(alfalfa) used for l i v,:stock raising rather than fattening, dominate

land use in Zone 15. Although, potato production is `avored by the cool,

moist climate as is rye and barley cultivation, the cooler temperatures

discourage the production of corn and soybeans within the zone despite

rich soils. Potatoes, which are the chief crop, are normally planted

for two years followed by the planting of wheat, and then oats.

2.4.1.4 The Argentina Agricultural Econcmy

In 1981 the Argentine agricultural economy was adversely affected

by poor weather in some crop zones as well as severe inflation. How-

ever, positive indicators resulted from the conclusion of several new

bilateral trade agreements which will guarantee markets for agricultural

products. The nation's major cotton production zone in the far north

suffered serious flooding as a result of heavy rains in January and

February 1981. Also heavy rains in April and May 1981 delayed the har-

vest of corn, soybeans and sorghum. Secondly, the agricultural sector

of the economy was beset by high inflation which triggered successive

monetary devaluations and rapidly increasing farm production costs.

Consequently, some export rebates paid to farmers to btimulate pro-

duction subsequently had to be rescinded since they were inflationary.

High production costs continue to hold back the purchase of new farm

equipment and the implementation of new approaches. Consequently,

farmers opt to reduce costs by using traditional farming methods. The

lack of irrigation in areas where needed, poor maintenance of some

fields, and lower fertilizer consumption are examples of this situation.
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About 75% of Argentina's exports are agricultural products,

mainly wheat, corn, sorghum and soybeans. Given this, market guarantees

for these crops are a critical issue. In addition, Argentina chose not

to participate in the U.S.-sponsored Sovietgrain :.mbargo initiated in

1980. In that same year, Argentina concluded a five-year agreement

with the USSR. The agreement calls for annual Soviet purchases of three

million metric tons of corn, 2.4 million metric tons of wheat, one

million metric tons of sorghum, and 500,000 tons of soybeans. A re-

negotiated agreement with the People's Republic of China was also con-

cluded in 1980 which calls for the annual sale of one million to 1.5

million metric tons of corn, soybeans and wheat to the PRC. A third

agreement between Argentina and Mexico was also signed in 1980 covering

thel981 and 1982 calendar years, during which time Mexico will purchase

one million tons of corn, soybeans, sorghum and sunflower seed. A major

task now confronting Argentine producers is to be able to meet the new

export commitments given the high production and transportation costs

involved.

2.4.2 FIELD DATA COLLECTION

Integral parts of the Argentina/Brazil Agronomic Understanding sub-

task were the collection of ground data in Argentina during February

1981, participation in an in-country evaluation of the USDA Brazil Sampl-

ing Frame (also conducted in February 1981), and the preparation of a

ground data collection plan for Argentina for the 1981-1982 crop year.

2.4.2.1 Ground Data Collection in Argentina During 1981

During February 1981, a trip to Argentina was made by members of a

consortium composed of staff from the Environmental Research Institute

of Michigan (ERIM) and the Space Sciences Laboratory of the University

of California at Berkeley (UCB). The general objective was to begin to

gather and synthesize a wide range of agronomic information, that could

be used as a data base by AgRISTARS researchers working on research,
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development, and testing of technology for application in Argentina.

Preparations for the trip begin in late 1980 and February was chosen as

the time frame for field work since both the corn and soybean crops

would be in advanced stages of phenological development at that time.

A full trip report is contained in a separate technical report [20].

A summary follows.

The trip had several specific interrelated objectives:

(a) To become familiar with the problems as well as the o pportu-

nities for collection of ground data in support of AgRISTARS

program needs.

(b) To collect crop identification data for a limited number of

fields in 14 5x6-mile sites located throughout the corn, soy-

bean, and wheat growing areas of the Argentine pampa, and to

acquire collateral data such as crop calendars, and historical

agronomic statistics.

(c) To meet with public officials representing the agronomic and

remote sensing community of Argentina in order to familiarize

them with our goals and gain their collaborative support for

this ground data collection expedition.

(d) To encourage these public officials to consider future in-

volvement in the AgRISTARS program that would be mutually

beneficial.

All of the objectives, in our opinion, were achieved. The Agronomic

Understanding Task team is satisfied that its first-year data-collection

goals in Argentina were achieved. The data collected and observations

made will provide a useful foundation for future activities. Perhaps

more important is our impression that there is considerable interest

among key agency officials in Argentina in making productive use of

contemporary remote sensing technology in agriculture. They graciously

provided support to our field trip and appear open to future participation
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in AgRISTARS-related activities. Also important to the success of the

field trip were the timely planning assistance of NASAMSC, their rapid

response to our data needs, and the assistance and coordination of USDA

staff in securing introductions in Argentina and providing other needed

support.

During the 14-day period of field work, 14 segements were visited

(see Map 9), with assistance provided by the State Secretariat of Agri-

culture and Livestock Raising (SEAG) and the National Commission for

Space Investigations (CNIE). Roadside observations of crop identification

and condition were annotated on enlarged color Landsat imagery of the

sites, as were field boundaries. In the case of two of the segments,

aircraft overflights made possible the identification of additional

crops in fields inaccessible by road. Over 500 ground and air photos

were taken during the inventory to provide information for subsequent

study and crop identification information for 629 fields was obtained.

Two soil samples and a small quantity of hybrid flint corn seeJ were

gathered and transmitted to other AgRISTARS researchers at Purdue Uni-

versity. In addition, historical crop calendar data and crop acreage

statistics were obtained for three provinces.

The trip report contains descriptive information, maps of sairple

segment areas visited, and an annotated graytone Landsat image of each

segment showing crop identification codes, field boundaries and per-

tinent remarks about individual fields where warranted. In addition, a

few copies also contain annotated color Landsat images as well as color

slides with commentaries.

The annotated crop identification data for each inventoried field

in the 14 segments were digitized and merged with Landsat data at ERIM

under ITD support, as discussed in Section 3.3.5 of this report.
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2.4.2.2 Brazil Sampling Frame Evaluation

The United States Department of Agriculture, Economics and

Statistics Service (USDA/ESS, Fairfax, Virginia), developed a sampling

frame for future use in a Brazil Corn/Soybean Pilot Study. In February,

two of their personnel conducted a trip to evaluate it. Dr. David R.

Hicks of ERIM was invited to accompany them since he had extensive

agronomic field experience in southern Brazil and spoke Portuguese.

Previously annotated Landsat images showing percentage of land

under cultivation and the percentage of land devoted to corn/soybean

production were brought into the field by team members so that their

accuracy could be assessed through ground truth checks. In addition to

assessing the accuracy of prior percentage estimates of agricultural

land use, the team paid special attention to the problem of small field

detection.

Trips were made to six cities in the southern Brazilian states of

Parana, Santa Catarina and Rio Grande do Sul. From those cities visits

were mace to selected outlying agricultural areas for the purpose of

evaluating the annotated Landsat imagery as a potential sampling frame.

The sampling frame evaluation proved to be generally successtul, i.e.,

the percentage rata shc'^,n c the annotated Landsat imagery were quite

accurate upon, being compared with ground truth checks. However, the

percent of land classified as agricultural on the Landsat in the plateau

escarpment area west of Curitiba in Parana state was greatly overesti-

mated. Secondly, the detection of small fields on Landsat images was

not possible, as was anticipated. The results of this evaluation eapear

in a subsequent Ur9A trip report [21], as well as in Notes for Brazil

Sampling Frame Evaluation Trip published by ERIM in August 1981 [221.

The trip, in addition to its original purpose, served as an

opportunity to obtain a general understandin g of crop-livestock systems

in southern Brazil. Some agronomic data also were obtained as were

numerous soil samples. This reconnaissance should provide a useful
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background for future studies of and visits to Brazilian corn/soybean

zones, should a cooperative program be developed.

Argentina Ground Data Collection for 1981-1982 Crop Year

A key objective within the Argentina/Brazil Agronomic Understand-

ing Subtask was to identify research needs and establish requirements

for future data collection missions in Argentina that could build on

information already obtained in and from that country. In response to

this need, a collection plan for 1981-1982 crop year was prepared at

ERIM [231. This same plan was subsequently translated into Spanish

and also published that same month [24]. The document outlined plans

for data collection and field research in Argentina for 1982 through

1984 and proposed steps to be taken by United States and Argentine

researchers and government agencies to achieve mutually beneficial

objectives.
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2.5 INFORMATION EXTRACTION TECHNOLOGY RESEARCH

This section describes work carried out during FY81 to better

understand the temporal-spectral development patterns (profiles) of

corn and soybeans. To that end, a technique was defined for deriving

standard profile features from spectral data collected at different

times, years, and/or intervals. The technique was then applied to

field reflectance data collected at the Purdue Agronomy Farm by per-

sonnel from the Laboratory for Application of Remote Sensing (LARS),

after which changes in those features as a function of treatments

applied to experimental plots were quantitatively assessed, and compared

to expectations derived from review of relevant literature in the area

of agronomic research.

This work, summarized in Sections 2.5.2 and 2.5.3, represents the

initial phase of an overall data analysis approach described in Section

2.5.1. Details of the analyses are available in Reference [25].

2.5.1 OVERALL APPROACH

The evaluation of crop spectral characteristics as viewed by Landsat

is hindered by a number of largely external factors. First, atmospheric

effects, illumination geometry, and similar phenomena result in varia-

tions in signal values entirely removed from the characteristics of the

crop being viewed. Second, misregistration and ground truth errors can

create substantial problems with regard to obtaining a pure sample of a

crop. Third, and for the present purpose most important, environmental

conditions, cultural practices used, crop development stages, and similar

pieces of data are unavailable and/or imprecise for the majority of

Landsat data.

As a result of all these factors, conclusions drawn with regard to

crop spectral characteristics, crop separability, or classification

techniques which are based largely or entirely on Landsat data will be

j

I
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extremely dependent on the particular set of data employed. A better

approach to deriving information about crop appearances in Landsat data

is to begin as close to the plants themselves as possible and, in effect,

to step back by increments, moving farther away from the plants or field

at each increment, but utilizing the results of the previous higher-

resolution steps as a context in which to evaluate information obtained

at the present level.

This approach recognizes that the basic elements of interest in

classification or interpretation of Landsat data for agricultural appli-

cations are not pixels, but rather collections of biological entities.

The better we understand workings at the plant or plant population level,

the better able we will be to understand and utilize Landsat data in

deriving crop-related information.

In practice, this approach to crop spectral understanding consists

of some or all of the following steps:

1) Determining relevant physiological, cultural, and environmental

influences on those characteristics of plants or plant populations likely

to influence their spectral appearance. This involves review of litera-

ture in the field of agronomic research and, frequently, gleaning of per-

tinent information from reports of experiments whose purposes are far

removed from remote sensing interests.

2) Modeling the effects of these influences on crop spectra. A

model such as that described in Section 2.6.1 provides a means of assess-

ing the spectral expression of particular changes in crop characteristics

while keeping all other factors constant.

3) Evaluating field reflectance data to determine or confirm the

effects of key factors on crop spectral characteristics. This step pro-

vides the crucial link between the modeled data and the real world, but

maintains a fairly high degree of control over confounding effects.

V&
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Results of modeling, and the plant - level information gathered at earlier

steps, provide a context in which to understand the results obtained

through field data analysis.

4) Evaluating Landsat data to adjust expectations and conclusions

formulated at the other levels. Having established a foundation and

context through the previous analyses, one can analyze Landsat data,

in conjunction with whatever associated information is available (crop

labels, weather data, etc.), and better understand and explain what is

seen there. The quantitative results of the previous levels are com-

bined with a Landsat data set that is probably larger, more geographi-

cally widespread, and more variable in terms of crop mix and growing

conditions, to allow more comprehensive evaluation of crop spectral

characteristics.

2.5.2 CURVE-FITTING TECHNIQUES FOR ANALYSIS OF CROP SPECTRAL
DEVELOPMENT PATTERNS

Analysis of crop spectral data collected at discrete intervals,

and particularly at irregular discrete intervals, is often restricted

by the absence of observations at key times in the crop development

cycle. In addition, comparison of data from different plots or loca-

tions is hindered by the temporal mismatch of observations between

plots. Even when all plots are observed on the same days, planting

date differences cause a mismatch of data with respect to some sort

of 'effective day' time scale (e.g., days since planting). In order

to make meaningful comparisons among several plots, some method must

be devised by which the spectral characteristics of the plots may be

described in a standard fashion.

The technique developed at ERIM for this purpose consists of two

elements: a standard set of features, and a curve-fitting technique

for deriving those features for any particular plot.
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Profile Features. Analysis carried out in FY81 used Tasseled-Cap

Greenness as the spectral variable. The Tasseled-Cap transformation,

and its adaptation to reflectance data, are described in Section 2.5.3.

Figure 2.9 shows a typical, simple Greenness profile, and illustrates

the set of features used in this analysis. These features represent a

basic set of parameters to describe any simple curve of more or less a

bell shape. Particular crops may warrant additional features, although

this standard set should still be appropriate. For example, corn data

tend to appear as a flattened bell shape (Figure 2.10). This shape has

been observed both in spectral data [26,27] and in other agronomic varia-

bles (e.g., leaf area index) correlated to Greenness [28]. While addi-

tional features were not used in the analyses described in Section 2.5.3,

some possible additional features are described in Figure 2.11. Use of

a spectral variable other than Greenness would simply require that a new

set of features be defined.

Curve-Fitting Technique. In order to use the profile features just

described, the intermittent spectral data must be transformed into a

smooth, continuous curve.

An approach which offers some smoothing of irrelevant data variation

without the complexity of empirical modeling is the use of a curve-fitting

function to derive a new set of smoothed data based on the original obser-

vations. As long as one can be reasonably confident that the majority

of data taken over a particular plot is free from major external effects,

that is, that the outliers in a set of observations are the contaminated

rather than the pure data, then a curve-fitting technique can provide

some more or less-precise correction for major externally-induced varia-

tions.

Work toward selecting a smoothing technique involved less an exhaus-

tive evaluation of all possible approaches and more an evaluation of a

few particular techniques which were readily available and comprised

46
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something of a sample from the range of possible approaches. Because

the corn Greenness profile is a more complex shape and therefore a more

challenging problem for curve-fitting, corn data were used in the com-

parison of curve-fitting approaches. The simpler nature of the soybean

Greenness profile can be well described with a number of techniques.

Six techniques were evaluated: polynomial regression, least squares

approximation using cubic splines with variable knots, a cubic smoothing

spline, a non-linear filtering algorithm developed at ERIM called the

Rolling Ball algorithm [29], a three-parameter profile model originally

developed for small grains [30,311, and a five-parameter model developed

at ERIM specifically for corn.

Evaluation of the techniques took a number of forms. All the tech-

niques were applied to the set of corn reflectance data described in

Table 2.8 of Section 2.5.3 (118 total plots from 3 years), with the

previously described set of profile features computed in each case.

Evaluation criteria included overall performance and stability, residual

errors, ability to detect significant treatment effects on the experi-

mental data, and ability to reproduce the flattened peak of corn.

It should be noted that the spline techniques and the Rolling Ball

algorithm, as well as the polynomial technique to some extent, are

usually used in an interactive mode, with parameters tuned for each

individual curve fit. However, to be of use in the evaluation of many

plots (as in this application), the techniques must be automated. Thus

the degree of the polynomial, number and spacing of knots, smoothing

parameter, and ball diameter sequence were all fixed, based on results

of a more intensive interactive application of the techniques to a sub-

set of the data.

1
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	 Comparison of Techniques, While all the techniques tended to detect

most of the same treatment effects in the profiles, the profile models,

or at least the non-linear least squares techniques used to fit them,

were more likely to fail in attempting to find a solution for any indi-

vidual data set. All the other techniques successfully fit most or all

of the data. Figure 2.12 provides an example of results obtained using

the six curve-fitting techniques on the same set of data; residual errors

are plotted vs. time from estimated peak in Figure 2.13 for the entire

data set analyzed. These data provide a clear example of the flattened

peak of corn, and include observations spaced throughout the growing

period of the crop. The results displayed illustrate many of the find-

ings of the curve-fitting comparison.

First, both polynomial regression and least squares approximation

by cubic splines with variable knots tended to catch some of the flat-

ness, but included extra loops or dips, particularly in the tails of the

profile. Reducing the complexity of the curves (degree or number of knots)

eliminated these extra slope inflections, but also reduced the ability of

the functions to reproduce the flattened peak.

The Rolling Ball algorithm avoided the dips or ringing at the tails,

but tended to smooth out the fairly sharp corners associated with the

beginning of the flattened peak. The 5-parameter or Corn model, on the

other hand, tended to produce too sharp a corner and, in addition, tended

to overestimate data values early in the season root as clearly illus-

trated in this particular plot, but readily apparent in the residual

plots in Figure 2.13(f). The simple 3-parameter or Wheat model failed

to provide a flattened curve, since it has no mathematical mechanism to

allow for such a result. This shortcoming is highlighted in Figure

2.12(e).

Of the six techniques evaluated, the cubic smoothing spline algo-

rithm produced the most intuitively appealing results, captured the

flattened peak most often, and accurately fit the data throughout the

season.
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As a result the cubic smoothing spline was selected for use in sub-

sequent analyses of field reflectance data. The same cubic smoothing

spline technique was evaluated, in a more abbreviated fasnion, for the

soybeans data, and found acceptable. In the analyses reported in the

following sections, all curve-fitting was done with this technique.

2.5.3 CULTURAL AND ENVIRONMENTAL EFFECTS ON CORN AND SOYBEANS
SPECTRAL DEVELOPMENT PATTERNS

The curve-fitting technique described in Section 2.5.2 was applied

to reflectance data collected over corn and soybeans plots by and at

Purdue/LARS. Included were data collected using an Exotech 10C Landsat

band radiometer as we'l as data collected using an Exotech 20C spectro-

radiometer. Exotech 20C data were converted to Landsat band reflectances

by multiplying by Landsat sensor relative spectral response curves and

integrating over wavelength. Multiple observations of a single plot on

a single day were represented by their mein.

In order to simplify analysis of the spectral data, and to provide

spectral variables that are readily associated with physical phenomena,

a transformation was used which captures the majority of data variability

over agricultural regions in two variables. It was based on a transfor-

mation, derived for Landsat data, which is termed the Tasseled-Cap trans-

formation [32], and produces two variables which typically cor;ratin more

than 95/0' of the total data variation in an agricultural scene. Bright-

ness, the first variable, corresponds to the s,)ectral direction in which

the majority of soil brightness variation is found. The second variable,

Greenness, is orthogonal to Brightness, and is an indicator of the amount

of green vegetation present in the scene.

A rotation of the principle components plane of the fiela reflectance

data was used to provide Tasseled-Cap equivalent values. The final trans-

formation determined to derive Tasseled-Cap equivalent variables from, the

raw Landsat band reflectances is:

106



ORIGINAL PAGE 1s

(* POOR QUALITY

Refl. Band 4
.3298	 .3996 .5910 .61821	 Refl. Band 5(Reflectance Brightness)
.4778 -.6486 .0932 .5851, x Refl. Band 6	 [Reflectance Greenness J

Refl. Band 7

A small degree of subjective data screening was also cart-led out.

A few observations that were clearly abnormal were deleted, and several

entire plots were deleted, either because they showed substantial noise

overall or because they lacked acquisitions in a urge and significant

portion of the growing period. Elimination of plots with excessive noise

or too few observations resulted in a data set consisting of 118 corn

plots and 111 soybean plots in eight experiments from 1978 through 1980,

as detailed in Table 2.8.

After applying the techniques previously described, a series of

oneway analyses of variance was carried out to determine the significance

of effects of the various experimental t ► •eatments on the derived profile

features. The following sections provide a summary of the results of

these analyses. Details may be found ii Reference [25].

2.5.3.1 Corn Results - Summary

The effects of Nitrogen fertilization, planting date, and plant

population were evaluated with regard to their impact on features of

corn Greenness profiles. All were found to significantly affect the

Greenness development of the test plots.

Addition of Nitrogen (which promotes vegetative development) to a

plot increased the peak Greenness values and the length or duration of

the flattened portion of the profile. Both of these effects are indi-

catots of more lush, vigorous vegetation. A 25% (5 count) difference

in peak Greenness was observed from lower to higher fertilization levels.

Planting date differences were spectrally expressed in the he4ght

an' time of occurrence of the peak profile value. Later planting always
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TABLE 2.8. CORN AND SOYBEAN REFLECTANCE DATE

USED IN ANALYSIS

Year	 Experiment Name	 # Plc

1978 Corn Nitrogen

1979 Corn Nitrogen

1979 Corn Cultural Practices

1979 Corn Soil Background

1980 Corn Cultural Practices

E

R
L

IM

1:

31

11

5:

1979	 Soybeat- Management
	

69

1979	 Soybean Cultural Practices
	

46

1980	 Soybean Cultural Practices
	

56
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caused the peak value to occur sooner, as emergence and early growth

were promoted by warmer temperatures. The effect on the magnitude of

the peak, however, was variable with time. Peak Greenness values in-

creased from very early to more medium planting dates, probably as a

result of the colder, less conducive environment encountered by the

very early-planted plots. As planting was delayed later, peak Greenness

values tended to decline again, probably an indication of the stresses

encountered by later-planted crops in the heat of the summer. Peak

Greenness variation was similar to that observed in the Nitrogen experi-

ment, with 27% (4 counts) variation, while planting delays hastened the

time of peak by as much as 15 days.

Plant population also affected the height and time of occurrence

of the peak Greenness value. Increasing the number of plants per hectare

resulted in an earlier peak value, a reflection of the increased competi-

tion and accompanying increase in development rate, and also produced a

higher profile peak. The higher peak was most likely the result of in-

creased Green biomass, and reduced shadow and soil background in the

sensor field of view. Not detected was an earlier decline in Greenness,

which would be expected when the increased competition and associated

increase in growth rate causes the plants to use up the avrilable nutri-

ents and water. This may have been an indication of the favorable grow-

ing conditions encountered by most of the plots during most of the vege-

tative phase (the latest planting dates were not included in this analysis).

Population-related peak Greenness variation ranged from 41 to 62%

(7 to 8 counts) in 1980, but only 22 to 32% (4 to 6 counts) in 1979.

Variations in time of peak were 11 to 33% (9 to 18 days) in 1980, and

14 to 32% (10 to 23 days) in 1979. Other profile features were found

to be significantly affected by population in only one of the years.
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2.5.3.2 Soybean Results - Summary

The effects of variety, planting date, row spacing, and plant popu-

lation on Greenness profile features were examined. All had some degree

Of impact. with population effects of least significance.

Soybean varieties differ considerably in growth habit, length of

growing period, response to environmental changes, and other character-

istics. Four varieties were available for comparison including samples

from two maturity groups, a semi-dwarf determinate variety, and a "thin

line" variety.

Although a seasonal effect was evident between 1979 and 1980, the

class III (later maturing) varieties generally showed a slower Greenness

decline than the class II (earlier maturing) varieties. The semi-dwarf,

determinate. class III variety reached higher peak Greenness values and

exhibited a more rapid green-up rate than the larger, indeterminate,

class II varieties. The bushy class III variety also achieved a higher

peak than the thin line class II variety. In addition, differential

responses to row spacing and plant population were noted and are dis-

cussed later. Varietal peak Greenness differences ranged from 6 to 12'•

(2 to 4 counts). and occurred as much as 5 days apart.

These results are consistent with the described characteristics of

the varieties. The later-maturing varieties stayed green longer. the

more compact semi-dwarf cast fewer shadows and thus reached a higher

peak Greenness, and the bushy varieties filled in the space better than

the thin line variety, and so achieved a higher peak value.

Planting date effects are, as previously indicated, strongly con-

nected to temperature and its effects on emergence and vegetative develop-

ment. Later planting tended to increase peak Greenness values, although

very late planting was accanpanied by a reduction in the profile peak.

The time of peak was substantially influenced. occurring much earlier
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for later planted plots. Some indication of a reduced effect on maturity

date as compared to vegetative development was seen in a lengthening of

the Greenness profile after the peak for later planted plots, as would

be expected. Planting-date-related variation in peak Greenness was

about 16% (5 counts), while plots planted in early July reached their

peak value in 42 fewer days than those planted in early May.

Increasing the row spacing in a soybean plot reduced peak Green-

ness. since more soil and shadow was in view. The rate of green-up was

reduced, and the rate of Greenness decline increased, again largely due

to the percentage of the field of view occupied by non-green components.

A hastening of the time of peak Greenness was observed with narrower rows.

This was probably due to an earlier achievement of complete canopy

closure. If so, it should be noted that for soybeans, the time of peak

Greenness cannot be clearly associated with any particular development

stage. Varietal differences were observed. Peak Greenness values

varied some 12% (4 counts), with 8 to 11 day delays in the profile peak.

The impact of population should be of a similar nature to that of

row width. However. possibly as a result of the soybean plant's tendency

to fill in the available space. very little effect was detected. Peak

Greenness values tended to increase with population. but the variability

present at the highest populations rendered the increase statistically

insignificant.

.5.3.3 Evaluation of Curve-Fitting Technique

Overall. the technique described in Section 2.5.1 performed as

desired. The cubic smoothing spline technique fit the soybean data,

and much of the corn data. very well. The extraction of standard pro-

file features allowed ready comparison of plots with different planting

and/or observation dates. and characterized the continuous profile in a

manageabl6 number of variables. With these variables, quantitative

analysis of experimental effects was greatly facilitated.



In the course of analysis, two improvements to the procedure were

suggested. First, even the cubic smoothing spline algorithm failed to

detect the flat peak of corn data when insufficient data points were

available, especially when the sparse data occurred just before or on

the plateau. Given the expectation of a flattened peak, one could often

see such a feature in the data when the spline technique had not.

The 5-parameter corn model, which is designed to function with a

similar expectation, also detected flat peaks when other techniques

did not (Figure 2.14 provides an example), although that model had

other weaknesses. Most desirable would be a curve-fitting function with

the flexibility of the cubic smoothing spline, but also the prior expec-

tation of crop development that would allow it to draw a "corn-like" or

"crop-like" profile even with sparse data. Development of such a f-rnc-

tion would greatly increase the power of this analysis technique for

corn data.

The second suggested modification to the analysis technique regards

the rate-related features. As described, half-peak values are used as

critical points in measuring time intervals. However, in some cases

it appeared that treatment effects were missed because of significant

increases in the peak value, which of course resulted in increased half-

peak values. Time intervals related to half-peaks were thus based on

the achievement of substantially different Greenness thresholds, and rate

differences between treatments were, at least to a degree, normalized.

While half-peak values may provide useful information, rates might

better be computed, or at least also be computed, based on fixed thres-

holds, i.e., compute absolute rates of change in Greenness 
of
AG  

as opposed

to relative rates G/Gmax
_t

2.5.4 CONCLUSIONS AND RECOMMENDATIONS

The analyses of field reflectance data presented in the previous

sections provide a clear indication that a number cf commonly varying
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field characteristics can exert a substantial influence on the spectral

appearance of crops. Such key features as the maximum Greenness value

and rate of green-up can be altered significantly by varying any one of

a number of parameters including Nitrogen fertilization, planting date,

variety, and plant spacing. In a real-life situation where any or all

of these characteristics may vary, the likely effects on crop spectral

appearance will be considerable. Such variability must be taken into

account in any crop identification technique, whether carried out by

human analysts or computer algorithms. In addition, this type of infor-

mation is of critical importance in the design and implementation of

accurate, useable simulation systems.

The work presented is, however, only a first step. Expanding the

Greenness profile analysis for corn to include the new features des-

cribed in Figure 2.11, which specifically relate to the flattened peak

or "plateau" observed in corn Greenness data, and applying a similar

analysis technique to the understanding of Brightness profiles and

their sensitivity to cultural and environmental factors, will provide

still more insight. The derived profile features could also be used

to determine, again on a quantitative basis, the similarities and

differences between corn and soybeans profiles, and the effect of the

various treatments on their separability.

Finally, of course, the insights gained through field data analysis

must be applied to real Landsat data. The loss of control over crop

parameters, the inclusion of an atmosphere, the degradation of resolu-

tion, and the mixing of the independently evaluated factors, as well

as others not even considered, will likely cause some of the observed

and/or- predicted effects to be reduced, while others will be intensified.

Controlled experimentation provides a foundation and a context, but

it cannot completely replace real data, nor can crop inventory techniques

be derived from field data alone. It is the progression from physiological

114



LRIM

understanding through modeling and field data analysis to Landsat data

analysis that brings the experimental data and understanding into the

real world, while at the same time anchoring the uncertain real world

to some reliable and stable points of reference.
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2.6 SIMULATION, MODELING AND ANALYSIS

Simulation models are designed to capture one's best understanding

of how the "real world" operates and can be used for many purposes.

They can help rank the importance of multiple factors, predict the

nature of responses to those factors individually and in concert, help

in analysis of existing measurements and empirical data sets, make pre-

dictions for unmeasured conditions and situations, and guide the speci-

fication of new measurement and analysis efforts. They can be used in

the design of new sensors and to develop preliminary analysis procedures

and predictions of performance in advance of new sensor operations.

Fast simulation models have not adequately represented the full

range and character of factors that affect remotely sensed data. For

example, in agricultural applications such as AgRISTARS, the effects

of crop physiological parameters, meteorological variables, and atmos-

pheric and sensor characteristics on spectral observations currently

are not well enough understood. Field measurements are not practical

under all the observation conditions and situations necessary to fully

explore the nature and range of variation, so improved simulation

models are appropriate.

This section describes three substantial developments in simulation

modeling capability. The first two relate to a simulation tool that

ERIM is developing named the "Seed-to-Satellite Model" [33]. Its pur-

pose is to help analysts better understand factors that affect the ob-

servable spectral responses of crops, analyze data sets that have been

acquired by Landsat, and develop improved information extraction tech-

niques. It has modules to model crop reflectances, atmospheric effects,

and sensor spectral responses, modules that have been used in previous

analyses [34,35]. It can also help in preparation for Thematic Mapper

data and data from other sensors.

PR
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The first development involved incorporating, for the first time,

a meteorologically driven, physiological growth model for a crop and

interfacing it with a bidirectional reflectance model for vegetation

canopies.

The second substantial development was modification of the Suits

bidirectional reflectance model for vegetation canopies to incorporate

row effects as observed in many agricultural crops.

The third development was of a capability to simulate the spatial

and spectral effects of Landsat when viewing agricultural scenes. This

capability includes representation of the temporal-spectral profiles

)f crops and variations of planting dates and crop vigor on a field-

by-field basis. It also incorporates the full two-dimensional point-

spread function of the Landsat MSS to permit detailed simulation and

analysis of mixed pixels and field boundary effects.

2.6.1 SIMULATION OF THE SPECTRAL APPEARANCE OF WHEAT AS A

FUNCTION OF ITS GROWTH AND DEVELOPMENT

The objective of this simulation was to provide an understanding

of the connection between important agronomic features of an agri-

cultural crop and the satellite signals that are received from that

crop.

The agronomic features of general interest are crop type, crop

vigor, and ultimate yield at use end of the growing season. On the

ground, the crop type can be determined from the taxonomy of the indi-

vidual plants. Crop vigor and yield predictions can be inferred from

the size and morphology of the plants and the size, number, weight,

and color of plant components - such as, leaves, stems, flowers, and

heads of grain. The same plant components and plant morphology also

partially control the signals received by satellites, by way of their

radiometric properties.

E
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A simulation, which incorporates a physiological growth model for

a crop as an intermediary, can supply that output signal which can be

used for vigor and yield estimates as well as estimates of plant com-

ponent number, sizes, color and morphology for signal calculations

that are important for crop identification procedures. Laboratory mea-

surements of the radiometric properties of actual components, a canopy

reflectance model and atmospheric scattering model can then be used to

predict the corresponding signals received by the satellite. In this

way, the connection between agronomic features and satellite signals

is made by means of the growth model and the other models.

During the reporting period, the problem of incorporating a crop

physiological growth model into the Seed-to-Satellite Model and inter-

facing it to the Suits reflectance model was addressed. Wheat was

selected as the first crop to be investigated.

2.6.1.1 Summary Description of the Simulation for Wheat

The block diagram showing the logical structure and information

flow through the wheat simulator is shown in Figure 2.15. The wheat

growth model is the November 1979 version by Ritchie [36]• The growth

model requires a number of input parameters representing genetic in-

fluences, environmental influences (soil-moisture and weather para-

meters), and planting density. Growth occurs through several stages

that can be identified with Feekes scale numbers. The day-by-day out-

puts of the growth model are green leaf area index, number of active

tillers, change in leaf area, and grain weight (where appropriate).

Since all of the plant components which are radiometrically sig-

nificant are not supplied as outputs, a canopy geometry interface is

required to complete the physical description of the crop. For our

purposes, we derived quantitative relationships from field data col-

lected for wheat by Jackson and Pinter [37] and scaled them to the

10
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growth model LAI and active tiller number output at the equivalent

Feekes scale of the growth model. New leaves differ spectrallly from

old leaves. Sloughed off dead leaves and some dead tillers are part

of the growth process. They are radiometrically important and do not

disappear from the field but, rather, record by their presence the

charactr-istics of the growth process predicted by the growth model.

The spectral properties of the components of the wheat plant

were obtained from laboratory measurements made previously at ERIM of

samples of Kansas wheat. There are likely to be some varietal differ-

ences in such spectra, particularly between wheat suited to different

moisture conditions. An average soil spectrum from measurements rude

by Condit was utilized. The spectra of soil upon which the crop is

planted is often an important cause of crop reflectance variation which

is purely coincidental with the crop development. Such variation can

make the connection between agronomic features and received signals

more obscure.

The size, number, orientation and spectral properties of the plant

components are the inputs to the canopy reflectance model. The uniform

canopy reflectance model of Suits [38] was used in this simulation;

three layers were employed. A fixed sun angle and a nadir view angle

were used for the simulation parameters for Landsat.

The atmospheric scattering model has not yet been introduced into

this simulation. The spectral responses of the Landsat channels were

used to determine the relative signal values which would be received

by Landsat if perfect corrections were made for atmosphe r ic attenua-

tion and path radiance. These signal values were also converted into

reflectance-space-equivalent Tasseled-Cap transformed signals, i.e.,

Reflectance Brightness and Reflectance Greenness.
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2.6.1.2 Initial Results of Simulation

Simulation of a single growing season for wheat was made. The

time locus of points on the reflectance Brightness-Greenness plot shows

the characteristic path of wheat in the Tasseled-Cap plane; in Figure

2.16, Feekes scale indications are given for selected times. Feekes 2

is the beginning of tillering where the vegetation cover is nearly un-

detectable. The progression through tillering and stem extension to

Feekes 9 corresponds to the rapid vegetative growth of the canopy.

Between Feekes 9 and Feekes 10 the LAI continues to increase with the

flag leaf at the top of the canopy becoming fully extended and mature.

Between Feekes 10 and Feekes 11 the wheat goes from boot stage to

a full development and extension of the head over the flag leaf. At

Feekes 11, stem and head till the tGp layer (Layer 1) of the canopy,

stem and mature leaves occupy Layer 2, the next layer down, and dead

leaves, any dead tillers from previous growth, and active green stem

occupy Layer 3 next to the soil. This particular growing season's

weather into the model resulted in very little dead tissue in this

lowest third layer. From Feekes 11 to 11.4 the heads ripen and the

wheat leaves and stem die and change color. Feekes 12 represents the

harvested field where only the dead stubble and tissue in Layer 3 remain.

Everything above Layer 3 has been cut and carried away. The position

of Feekes 12 will change with harvesting practice.

The sharp cornered transitions in the plot are artifacts of the

simulation where all wheat in the field developed in perfect synchronism

and the leaves died off abruptly. In actual fields, there is a spread

in the stages of development which will cause these corners to be

rounded. This spread will have to be introduced in later simulations.

The simulated maturation of the new and upper leaves of the canopy

between Feekes 9 and Feekes 10 also contributed to the path shown on
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the Tasseled-Cap diagram. The choice of when and how fast to change

from immature to mature green leaf spectral properties is a decision

required for the simulation. Unfortunately, the growth model is mute

on the significance of this detectable transition. The yield predic-

tions by the growth model depend, in part, upon total leaf area rathe_

than leaf area in a particular portion of the canopy. The remotely

sensed signal on the other hand depends largely upon the scattering

in the upper portion of the canopy when LAI is near maximum. In sub-

sequent simulations, we have let leaves mature in a fixed number of

days after their emergence.

Figure 2.17 shows one of several parametric studies we performed

on various canopy parameters. This was a study of the effect of head

size on the time trajectory in the Tasseled-Cap plane. The head length

of 8 cm was taken as "normal" and a variation in head length from 6 cm

to 10 cm shows that the variation in the Feekes 11 to 11.4 transition

is clearly affected. The results emphasize that even small plant com-

ponents which are consistently located at the top of the canopy have a

much larger effect than one might suspect purely from the size and

number of such components.

2.6.1.3 Summary and Conclusions

A number of other parametric studies were made to determine the

sensitivity of each separate parameter upon the Tasseled-Cap and

MSS5-MSS7 plots of Landsat-equivalent reflectances. The variation

of each parameter revealed the timing and magnitude of the variation

in Landsat signals which could be expected. However, while each para-

meter in the canopy geometry interface was at all times consistent

with the Growth Model outputs, the Growth Model outputs were insuffi-

ciently detailed for determining all of the needed parameters in the

Canopy Geometry Interface. Consequently, we had to use the empirical
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i	 observations of Jackson and Pinter with scaling rules to complete the

canopy description.

Clearly, the Canopy Geometry Interface is the weak link in the

simulation. The parameters in Vie Interface should be causally con-

nected to the same physiological growth process as are the agronomic

features but the growth model was designed to predict the agronomic

features rather than the concurreit expression of the growth and con-

ditions of plant components wi`.hin the canopy that control satellite

signals. The causal connecLion between the Growth Model and Geometry

Interface is incomplete.

The situation .s !umt,rable to the position of a practicing physi-

cian who utilizes v,3rious symptoms of the patient to arrive at a diag-

nosis of a disease. Medical research could fully explore and understand

the disease process and the manner in which the disease causes destruc-

tion of vital organs - the central issue of course. Yet the same disease

process can also produce concurrent symptoms which, by themselves, are

not directly involved with the destruction of vital organs but could be

used as causal connections or symptoms of the impending destruction.

If medical research ignores the latter connection, the physician has

little ur no diagnostic power.

We. in remote sensing, are attempting to diagnose agricultural

fields using satellite signals as symptoms. Our modeling has traced

the causal connection down to the Canopy Geometry Interface but the

growth model, addressing the central issues of economics, fails to

connect completel y the growth process with the concurrent features

which we use as symptoms. Our use of empirical observations and scaling

relations are not necessarily causally connected to the growth process.
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2.6.2 THE EXTENSION OF A UNIFORM CANOPY REFLECTANCE MODEL

TO INCLUDE ROW EFFECTS

2.6.2.1 Introduction

Many crops are planted in rows ^y machinery. 1 1pon emergence of

the plants, the bare soil between rows is still the dominant feature

which reflects incident daylight. As growth continues, the vegetation

grows both higher and spreads out over the inter-row regions, covering

the bare soil. At some time during the growing season, the soil is

covered enough that the bare soil between rows is no longer a dominant

feature. The vegetation canopy becomes essentially laterally uniform

in its radiation scattering properties. The alteration of incident day-

light can be understood and calculated by a previously developed uniform

canopy reflectance model [39] at this stage of growth.

However, for a considerable time during the early part of the grow-

ing season. the strips of bare soil between rows and the increasing

density of vegetation along the rows become equally important in their

contributions to canopy reflectance. One may intuitively understand

that the direction of sunlight relative to the row direction will change

the relative influence of vegetation and bare soil. When the sun is

directed along the row direction. the bare soil is fuliy illuminated

but. when the sun is directed across rows, the soil is largely in the

shadow of the standing vegetation along the rows. Thus. Landsat can

receive different signals due only to the way the rows trend relative

to sunlight. An inference that such altered radiation is due to a change

in some important, agron anic feature could be in error.

The following text reviews the concepts. nomenclature. and symbols

of the uniform canopy model in order to fonn the logical basis for its

modification to incorporate the "row effect". The concept of density

modulation is introduced to account for the row structure of a canopy

and the manner of calculation using such a concept is described.
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The extended model is applied to wheat in rows. The results are

similar to those of field measurements. The red band, Landsat MSS

Band 5, is most sensitive to row direction because of the usual large

contrast between vegetation and soil. Reflectance in this band may

easily vary by a factor of two with changing row direction. The 1R

bands, Landsat Bands 6 and 1, are least affected by row direction be-

cause of low contrast between soil and vegetation and because of the

large amount of diffuse flux scattered to soil by the vegetation.

2.6.2.2 Review of the Unifonm Canopy Model

The uniform canopy reflectance model consists of a number of infi-

nitely extended horizontal layers or strata as illustrated in Figure

2.18. Within each layer, the plant components of the canopy are con-

sidered to be randomly distributed and homogeneously mixed. The plant

components are the identifiable parts of the plant, such as. stems,

leaves, branches, flewcrs, and pods or heads.

Collimated radiation from the sun enters the top of the canopy.

This collimated flow of radiation is called specular flux in the fol-

lowing text. That specular flux which is intercepted by a plant com-

ponent is diffusely scattered and partially absorbed. The remaining

specular flux, steadily diminished by such scattering, proceeds on to

the soil making "sun flecks" upon the soil surface.

The diffuse flux created by scattering may be produced by reflec-

tion from a component or by transmission through a component. Some of

the diffuse flux is scattered towards the top of the canopy; the remainder

is scattered towards the soil. As the diffuse flux moves through the

canopy, some of the diffuse flux will be intercepted and scattered again

with some of the rescattered flux going up and some going down and so

forth.
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	 The lateral average flux density on a horizontal plane, of specular

flux and upward- and downward-welling diffuse flux, varies with depth

in the canopy. Allen, Gayle, and Richardson [40] showed by experiment

that the flux densities could be derived using Duntley's differential

equations for scattering in diffuse optical media. The scattering prop-

erties of any particular medium are specified by the values assigned to

five independent parameters in these equations. These differential equa-

tions are shown in relations (5), (6), and (7),

dE(+d)/dz = -aE(+d) + bE(-d) + cE(s) 	 (5)

dE(-d)/dz = aE(-d) - bE(+d) - c'E(s) 	 (6)

dE(s)/dz = k(Es)
	

(7)

where	 E(+d) = upward welling diffuse flux density,

E(=d) = downward welling diffuse flux density,

E(s) = specular flux density

a = extinction coefficient for diffuse flux,

b = backscattering coefficient for diffuse flux,

c = backscattering coefficient for specular flux,

c' = forward scattering coefficient for specular flux,

k = extinction coefficient for specular flux.

The five parameters, a, b, c, c', and k for each layer plus the boundary

conditions of soil reflection at the bottom and sunlight at the top are

all that is needed to specify how much flux goes which way. What remains

unknown is the relationship between these parameters and the plant com-

ponents that are present within the canopy,
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The uniform c

of calculating approximate values for these parameters given the number,

orientation, and spectral properties of the plant components in a canopy.

This method conceptually replaces a particular plant component with

three-plane orthogonal projections of that component. Each plane pro-

jection (hereafter called a model equivalent component) is assigned the

same hemispherical spectral reflectance and transmittance as that of the

actual plant component. The concept of projections is illustrated in

Figure 2.19.

The five unknown parameters can now be calculated using model equi-

valent components.

Equipped with the values for the five parameters for each layer,

one may solve relations (5), (6), and (7) for each layer and, hence,

for the flux within the canopy. This flux is the illuminant for objects

within the canopy which one can see from some direction of view. The

final computation now is simply to determine the radiance, L, (radiometric

brightness) of each component in the canopy and what fraction of these

components can be seen without obstruction. The model equivalent com-

ponents are again used to calculate the expected radiance of the com-

ponents.

The reflectance is the ratio formed by dividing nL by the irradiance

on the top of the canopy.

2.6.2.3 Extension to Include Row Effects

The fundamental concepts, nomenclature, and procedures of the

uniform canopy model will be used with certain modifications to incor-

porate the effects of a row structure in agric-iltural crops. These

modifications are introduced in such a way as to reduce to the uniform

canopy model as row structure disappears from the crop due to overgrowth

of the area between rows by the natural _growth of the crop during the

growing season.
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F1GIRE 2.19. CONCEPT OF MODEL EQUIVALENT COMPONENTS.
Three orthogonal projections of a leaf
component are shown for illustration.
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The Concept of Density_Modulation. In the uniform canopy, the

density of components are the mean values for a patch of fieid the size

of the instantaneous field of view (IFOV). Locally, the densities can

be expected to vary due to the randomness of the distribution. Random

distributions are expected to be clumpy but without any order as to

where the clumps occur. One could consider any narrow strip of field

and determine the mean density of components within that strip. The

mean density would be the same as the IFOV mean, given sufficient strip

length for any direction the strip might take over a uniform canopy.

However, in the case of a canopy with row structure, the strip

mean will converge to a different mean density for strips parallel to

the row direction depending upon the lateral displacement, f,, of the

strip from the row center. The variation of strip means would be

periodic for displacements of the strip in the across-row direction

with large values on the row centers and small values between row cen-

ters. This variation in strip means, M(f), relative to the IFOV mean

is hereafter called density modulation. Density modulation is the evi-

dence for the existence of row structure and is the measure of the

amount of row structure.

Computation Method. In the extension of the uniform canopy model,

the density modulation will be the same for all layers so that a par-

ticular profile would not be evident to the eye as illustrated in

Figure 2.20. The use of the same density modulation, M(^,), for all

layers simplifies the calculations but should still lead to the essen-

tial features of the row effect on canopy reflectance.

Let the five parameters, a, b, c, c', and k, be the IFOV mean

values. Then the five parameters for strips require, j for row structure

must be simply the IFOV means multiplied by the modulation, M(A), since

all parameters vary in direct proportion to component density.
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	 Now, using the same differential equations as before but with the

five parameters required for row structure, one obtains

dE(=d)/dz = -M(S) aE(+d) + M(S) bE(-d) + M(a) cE(s)	 (8)

dE(-d)/dz = M(S) aE(-d) - M(S) E( +d) - M(S) C E(s)	 (9)

dE(s)/dz = M(S) U (s)
	

(10)

for each strip at level z in the canopy displaced from the row center

by distance, S.

The relations (8), (9), and (10) are to be solved for each displace-

ment, S, assuming that the diffuse flux is still approximately latera'"v

uniform across rows. Then the lateral avera ge of radiance over 	 I c+ -

placements, S, must be calculated to f.nd the average radiance	 0-

direction of view.

2.6.2.4 Row Model Predictions for Wheat

Two wheat development stages were modeled: Feekes 5 and Feekes 8.

The row modulation was taken to be a "rectangular prism" modulation

which might be suitable at Feekes 5 but limited inter-row growth was

assumed for Feekes 8. Figures 2.21 and 2.22 each show polar plots of

reflectance for three band-center wavelengths -- 550. 650, and 750 nm.

Row direction is North-South in the plot and the direction of view is

the nadir in all cases. Because of the symmetry due to the nadir view,

only one sun azimuth quadrant for each band center is necessary to

illustrate all of the important variations. Along with solar azimuthal

variations shown on the polar plot, three different polar sun angles

(zenith angles) were used. The solid polar plot is for a 25° sun polar

angle, the long dash plot is for a 45° polar angle, and the short dash

is for a 60° polar angle. The radial scale for 750 nm plot is different

from the scale for the 550 and 650 nm plots.
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FIGURE 2.21. POLAR PLOT OF REFLECTANCE OF WHEAT AT FEEKES 5

WITH RECTANGULAR ROW STRUCTURE AS A FU;:CTION
OF SUN ANGLES (WITH NADIR VIEW)

136



ORIGINAL PA©j a
OF POOR QUALITY

[RIM

•

sn

FIGURE 2.22. POLAR PLOT OF REFLECTANCE OF WHEAT AT FEEKES 8

WITH MODIFIED ROW STRUCTURE AS A FUNCTION OF
SUN ANGLES (WITH NADIR VIEW)
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Figure 2.21 shows the results for Feekes 5 wheat, The greatest

effect is in the 650 nm band center and the effect becomes more signifi-

cant as the polar sun angle increases, while the infrared 750 nm band

center is only moderately affected. One can see that the infrared-to-

red ratio, which is often used as a crop vigor measure, will be

cantly altered merely by sun to row angle conditions. These calculations

are for direct sunlight alone. The addition of skylight will tend to

reduce the extreme variations for the setting sun.

The case for Feekes 8 wheat for sunlight alone is shown in Figure

2.22. The row structure was modified to allow 5% of the peak on-row

concentration to appear at mid-row. Notice that the row effect is

still significant but is much more subdued. It would not take much

more vegetation in the inter-row region to reduce the row effect to

negligible proportions.

The impact of row direction on Landsat signals from the latter

field was estimated for a 45° sun angle and a nominal amount of path

radiance. The resulting MSS7/MSS5 ratio and Greenness measures are

shown in Table 2.9 for sun down-row and sun across-row directions.

TABLE 2.9. ESTIMATED EFFECT OF ROW DIRECTION ON LANDSAT
RESULTS (Feekes 8, 45 0 sun zenith)

Across-Row	 Down-Row

MSS7/MSS5	 2.0	 1.33

Greenness	 47.5	 42.1

The down-row direction gives an indication of a much less vigorous

field. An underestimation of crop vigor and biomass could result purely

from a chance row-sun relation. However, the cross-row direction does

not lead to a serious overestimation. The reflectance for the cross-row

direction is not greatly different from that of the uniform canopy.
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2.6.3 SPATIAL AND SPECTRAL SIMULATION OF LANDSAT AGRICULTURAL DATA

This section summarizes the development of a scene simulation capa-

bility which is described more fully in a separate technical report [41].

2.6.3.1 Introduction

The signal which the Landsat multispectral scanner generates is a

function of many variables, few of which we have any control over. The

ideal method of understanding a process is to hold all of the variables

constant, except those under consideration. This method fails for the

most part in the study of the Landsat signal-generation process with its

seeming contradiction of vast amounts of data at the pixel level but a

scarcity of data with unique combinations of factors such as scan angle,

day of year, crop, field pattern, etc. Simulation is a tool which allows

one to use combinations of assumed or known effects to infer the com-

posite effect. The uses of a simulation include:

(1) The study of the interaction of known first order effects,

(2) Tests of procedures on data generated under known conditions, and

(3) Empirical estimation of model parameters when fitted to "real

data."

The major motivation for the simulation model described here was

the need for a capability to investigate, in detail, the effects of

various factors on pixel values from small fields, boundaries between

fields, and misregistered pixels. Both spectral and spatial properties

were of interest. With this model any desired polygonal field pattern

can be simulated and spectral characteristics can differ from field to

field, with within-field variances being included.

2.6.3.2 The Model

Consider the point (x,y) on the ground at time t. Except for a set

of area zero, (x,y) will be contained in the interior of a field. Denote
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this field as k. The main effect which a sensor could detect is that of

the crop at point (x,y). We denote the crop in field k as C k . We use

crop development profiles in Greenness and Brightness to simulate the

mean crop response as a function of time since planting. Reference 41

gives the empirically estimated profiles used, while Figure 2.23 illus-

trates those for corn, soybeans, small grains, pasture, etc.

Denote the profile for crop c as P c (.). Note that two fields with

the same crop would not in general have the same profile value at time t

due to different planting days. Denote the planting date for field k

as Tk . The model further assumes that there are field effects beyond

crop type and planting date due to soil characteristics, crop variety,

fertilizer, etc. These additional between-field, within-crop sources

of variability are viewed as geometric noise factors which scale each

profile. Denote the scale factor for field k as U k , where U  is a ran-

dom variable with a mean of 1. The profile at (x,y) is

g ( x ,Y,t) : _ UkPck(t-Tk) + ctxy

where

ctxy is assumed to be a bivariate normal with mean of zero.

The model assumes that the covariance of c txy is a function of crop and

time. This is reasonable if the dominant effect in within-field varia-

tion is due to crop-field effects. If sensor noise were the real domi-

nant effect, then variances of the Landsat Bands 4, 5, and 6 would be

proportional to the signal and the variance would be constant in Band 7.

One of the major problems encountered in multitemporal Landsat

data is spatial misregistration between dates. The coordinate system

changes between passes of the satellite. The point (x,y) in the satel-

lite's coordinate system does not correspond to the same ground point.

The relationship between the ground coordinate system and that of the

sensor's is non-linear. There are re_,istration procedures which reduce
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the differences in coordinate systems; however, there is always a

residual error in registration procedures. The model assumes the sen-

sor coordinate system changes only by a translation between passes.

If the ground coordinates are (x,y) then the sensor's coordinates at

time t are (x+xt,Y+Yt). This form of misregistration is suitable for

most applications using simulation. A more general form of misregistra-

tion could be simulated by warping the coordinates which define the

fields.

The signal which the sensor receives is not g(x,y,t) but rather

f(x,y,t) = ffg(x+x t - r,y+yt - s,t)p(r,$)drds

where

p is the Landsat point spread function.

p was derived in Reference 43 using the sensor's size, blur circle

and properties of its three-pole Butterworth filter. Figure 2.24 gives

a three-dimensional drawing of p and Figure 2.25 gives plots of p along

the scan line and along track, at pixel center. The signals which the

sensor allows us to observe are

{f(x + idx, y + jdy,t))	 i=1,Nx

j=1 +Ny

Values for a 5x6-mile AgRISTARS segment are dx = 79M, dy = 57M,

Nx = 196, and NY = 117.

2.6.3.3 Implementation

The Field Geometry. Each field is stored in the computer as a

polygon. The vertices of all of the fields are contained in arrays,

say {U kj , V kj 1. Polygon (field) k is defined by the vertices

k i ,k2 ,...,knk such that the points {U kj , V kj ) Nk circumscribe field k
j=1
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Landsat Along Scan Line Point Spread Function

Landsat Down Track Point Spread Function

FIGURE 2.25. PROJECTION OF MSS POINT SPREAD FUNCTION

ALONG AND DOWN TRACK

144



ORIGINAL

Of POOR QUALM

IMMW
ERIM

in a counterclockwise direction, It is important that there be no gaps

in adjacent fields and non-nil intersections can cause unexpected re-

sults. We assume that all fields are simply connected, but more general

sets could be incorporated into the model easily.

A two-dimensional grid of points is assigned polygon identifica-

tion. The point (x,y) is assigned to the first polygon whose winding

number is positive. The polygon search begins with the polygon which

contained the previous pixel. If only translation misregistration is

to be simulated then this pixel-to-field assignment only has to be per-

formed once. If more general misregistration is to be simulated then

the points {U i ,V i I can be replaced by {H t (U i ,V i )) where H t is the warp-
ing transform for time t. Examples of H t are

5
H t (LI,V) _	 agjUjVq-g'	 bgjUjVq-d	 (11)

q=0 j-0	 q=0 j-0

and

Ht (Z) = A t (Z- Z t ) + Zt

where

z = u+vi, z  = U t +V ti, and A t = R te iet	 ;12)

Functions of the form (11) are often used to correct geometric dis-

tortions in Landsat data. Regression methods are often used to estimate

the coefficients agj 's and bgj 's. Since there are 21 terms in each coordi-
nate of (11) there should be somewhat more than 21 control points used in

the estimation, if estimates of all coefficients are desired. Stepwise

regression methods tend to get good results with 5-9 contro l points.

Functions of the form (12) represent a rotation of e t and a scaling by R 

about NO t ) .
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Crop Response as a Function of Time and Field. The crop for point

(x,y) on the ground at time t is

q(x,y,t) = U k Pck (t-Tk) + Etxy

where

k is the field containing (x,y).

U  is the scale factor for field k,

Ck is the crop growing in field k,

T  is the time of planting,

Pc (.) is the Greenness/Brightness response of crop c

as a function of time since planting, and

E txy is the within-field variance.

The polygon specific parameters U k , C  and T  are saved in a file until

all acquisitions are generated. U  and T  are viewed as random vari-

ables such that E0 k ) = 1 and the distribution of T  is obtained from

a crop calendar specific to the region being simulated. Empirical pro-

files were incorporated for grain, sunflowers, corn, soybeans, and

three types of grass/pasture/hay. New profiles can be added or old

ones modified easily.

Presently the within-field error term is used only to add texture

to the pixels contained in a given field. Data which would support an

accurate estimation of the covariance matrix of t txy do not exist. The

reason is that ground-truth polygons often contain more than one field

with the same ground truth code, while field-finding algorithms are

constrainted to construct field-like regions with small within-field

variances.

The Convolution. The convolution of the sensor's point spread

function blurs the image by adding correlations between nearby pixels.

The sensor's response at

jj

point (x,y) and at time t is

f(x,y,t) = 	 g(x-r,y-s,t)p(r,$)drds.
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We use two different levels of approximations of f(x,y,t):

1
f l ( x +Y, t ) =: I 	

I	
9(x- 1^6 Y - 6' t)p l (16.	 )	 (13)

i=-16 j=-16

where

P(116. 6)
P1(T64)	 48	 16i	 i	

•

r=-16 s=-16
P( 16' 16 )

and

16	 4

f2 ( x .Ylt) = i l 
4 j1_4 

9(x - 4' Y - 41t )P2(4, 4)	 (i4)

whe re

i P(4' 4)
P2 ( 4' 4) = 16

1 p (4 ' 4)
r=-4 s=-4

2.6.3.4 An Example

To illustrate the capabilities of the model, the field pattern from

the southwest quarter of Segment 844, during the year 1978, was digitized

in polygonal form. Crops were assigned to the fields at random. The

crop probability and planting date distributions in Table 2.10 were used.

The field scale factor was generated randomly from the uniform (.95,1.05)

distribution for each field. Figure 2.26 gives d plot of the field pat-

tern used in this simulation. This region was represented by a 256x256

subpixel grid. Each pixel was defined to be a 44 subpixel region. The

crop signatures were generated at the subpixel level; thus, within-pixel
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TABLE 2.10. PARAMETERS USED IN GENERATING

THE SIMULATION

crop	 P	 Tk Distribution

Grain	 .10	 N(105.10)

Pasture Vl	 .05	 N(105.10)

Pasture V2	 .05	 N(105.10)

Pasture 1.1 4	 .10	 N(105.10)

Sunflower	 .10	 N(138.10)

Corn	 .25	 N(148.10)

Soybeans	 .25	 N(156.10)

Flax	 .10	 N(105.10)

mixtures were in multiples of 1/16. The field identification of each

point in the subpixel grid was obtained from the polygons. A 64x64

simulated image was produced for the following dates: 160, 169, 178,

187, 196, 205, 214, 223, 232, 241, 250, 259, 268, and 286 with no

misregistration.

Figure 2.27 gives a Greenness/Brightness scatterplot for Date 178.

The spring crops are for the most part greening down from their peak

value of Greenness, while the summer crops are just starting to green up.

Figure 2.28 gives the scatterplot for Date 205. The spring crops

by then have almost all dropped below a Greenness value of 10 and the

summer crops are approaching their peak Greenness values. Corn and

soybeans have not separated yet. There also are many mixed spring/summer

crop pixels which take on the whole range of values between the high

Greenness values of the summer crops and the low Greenness values of

the spring crops.

Figure 2.29 gives the scatterplot for Date 223. Corn and soybeans

are at their point of maximum separation. The random planting dates,
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scale factors, and mixed corn/soybeans pixels blur the spectral boundary

between the two crops. A body of early summer crop pixels, mostly sun-

flowers, are greening down ahead of the main body of summer crops.

Mixed spring/summer crop pixels still are evident.

2.6.3.5 Summary

The present understanding of several components in the Landsat

, , ignal-generation process allows the simulation of Landsat data.

The simulation described in this section allows for:

(1) Mixed pixels,

(2) Field geometry,

(3) Landsat point spread function,

(4) Crop development spectral profiles, and

(5) Variation in planting dates.

The simulation has been used in small field research. Other applications

include the simulation of other sensors, the test of new procedures, and

the study of new crop mixes and field patterns,
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2.7 SMALL GRAINS LABELING TECHNIQUES

Research and development of automated labeling techniques for small

grains were conducted primarily during 1980 and concluded during the

first half of the current contract year. Two reports were written, one

to describe the development procedure and initial test results [43] and

the other to document the computer programs that were written and adapted

to JSC computer facilities [44].

The work was a continuation of prior research in which a machine

procedure was developed to discriminate between spring wheat and barley,

given that the targets under consideration were spring small grains [13].

The objective here was to develop an automated technique for making the

initial identifications of those spring small grains. Both labeling

techniques exploit the temporal-spectral characteristics available from

spatially registered multidate Landsat data. This technique was not

intended to be the final and best use of profile technology, but rather

a first generation technique, a demonstration of concepts, that can be

used to more fully understand profiles and their uses, and thereby to

develop improved labeling techniques.

2.7.1 DEVELOPMENT AND EVALUATION OF AN AUTOMATIC LABELING TECH-
NIQUE FOR SPRING SMALL GRAINS

Crop acreage estimates made using Landsat invariably require

association of a crop label or labels with some sampling entity (e.g.,

pixel, field, cluster, etc.). The accuracy with which this association

is made clearly has a substantial impact on the accuracy of the acreage

estimates produced. In the Large Area Crop Inventory Experiment (LACIE),

the labeling step, which was carried out through manual analysis of

imagery and associated information, was found to be both time-consuming

and a source of considerable error. An obvious candidate for improving

both the objectivity and the timeliness of labeling decisions is auto-

mation of much of the labeling process.
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The technique described in Reference 43 and summarized here was

a response to the need for a faster, more accurate, and more objective

labeling procedure. Human analysts are utilized only to set up the

system and provide contextual information which can be used to adjust

the labeling procedure to local conditions; the labeling decisions them-

selves are left to the machine. A problem addressed is that Landsat

observations are fairly widely spaced and discrete samples in time of

the generally continuous spect ral development patterns of crops. To

counter this, we developed "profit:" techniques to characterize the

sampled patterns and adjust for planting date differences and, to a

degree, normalize stress effects among fields of a given crop [13,451.

The central element in the procedure is a group of profile sets

representing spectral development of a number of crops in the domain

described by Tasseled-Cap Greenness and Brightness. These profile sets

were developed using spectral data from fields of known crop type,

sampled from the U.S. Northern Great Plains over three growing seasons.

They serve as reference standards to which each unknown sampling entity

is compared.

For each profile set, a series of comparisons is carried out.

First, a temporal shift is determined which maximizes the cross-

correlation of the data points to the Greenness profile. This provides

an estimate of the date of spectral emergence, and indirectly of the

start of the growing season of the target field. The temporal shift

estimate also provides a means of normalizing the planting dates of

fields of a single crop type, andthereby minimizes one major source of

spectral confusion.

After estimating and applying the temporal shift, a multiplicative

scale factor is computed, again using the Greenness profile. This

scale factor is applied to normalize the magnitude of the Greenness de-

velopment profile which is strongly influenced, within a single crop

type, by the percentage of ground covered by green vegetation (which
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is itself influenced by such factors as planting density, fertilization

and moisture availability).

With both adjustments made,a goodness-of-fit of the data to the

Greenness profile is computed, and similarly, using the Greenness pro-

file temporal shift, a fit or correlation of the Brightness data to the

Brightness profile is computed.

The shift, Greenness fit, and Brightness correlation are used to

compute a probability associated with the crop represented by the profile

set and the sampling entity, and this combined probability serves as the

basis for labeling decisions. In a different application of this pro-

cedure, one might use different or additional features to compute the

requisite probabilities.

2.7.2. TEST RESULTS AND EVALUATION SUMMARY

The small grains labeling technique was applied to 38 5x6-nautical-

mile sample segments spanning three growing seasons. The labeling tech-

nique was run on ground-truth identified small grains targets in a num-

ber of different configurations, with various combinations of profile

sets, test statistic weightings, and probability thresholds.

Although acquisition requirements for the procedure were not severe

(three vegetated acquisitions), only 57% of the targets (spectral-spatial

clusters called "blobs") in both the development and testing data sets

(64 total segments) met the acquisition requirements for labeling.

However, most sample segments were either "labelable" or not; 31 of the

64 had more than 80% of their blobs labeled, while 16 of the segments

had less than 75% labeled.

Grain labeling accuracies reached 86%, but large errors of com-

mission occurred at this level. Overall accuracies reached 74%. Major

causes of errors were Grasses and Flax (and the Grass and Flax profiles),

and overall results were substantially improved when the profiles of

these two crops were omitted from the profile set.
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Several improvements were supported by the test results. A

mechanism by which pasture blobs could be detected prior to application

of the grain labeler would remove the largest source of erroneous labels.

Improvement in the Brightness profiles, and in our understanding of

Tasseled-Cap Brightness as it relates to crop characteristics, would

also be beneficial.

The test results also point up some larger issues with regard to

crop identification using Landsat. The low percentage of labelable

blobs, using acquisition requirements similar to those observed by

others [46,47], strongly suggests the need for more frequent coverage,

and places a premium on development of techniques which can extract the

maximum information possible from a limited set of observations.

Second, the relatively frequent occurrence of abnormal spectral

patterns for blobs of a known crop type raises questions related to

profile matching techniques. While a range of variability is expected

and accomodated in the techniques described in this section, extreme

deviations cannot be accomodated. We suggest that such patterns are,

in the vast majority of cases, the result of catastrophic events which

reduce, or eliminate any yield from the field in question (or ground

truth error). Thus, while profile matching techniques may be less

appropriate for detection of all fields of a given crop, they should

serve well in detecting yield producing fields.

2.7.3 SOFTWARE DOCUMENTATION

Reference [44] describes and documents the computer software

necessary to perform two research labeling procedures, thA small grains

labeling procedure described in the preceding sections and they pre-

viously developed procedure for discriminating between spring wheat and

barley. The subroutines were designed to operate on three computer

systems in an environments developed for use on the AgRISTARS program

and built around the ERIM/UCB corn and soybeans baseline classification
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procedure. These facilities are located at ERIM (actually the Univer-

sity of Michigan), Purdue/LARS and NASA/JSC (EODLS).

2.7.4 GROUND TRUTH SUMMARIES FOR U.S. AREAS

A summary of crop proportions in digitized ground truth data was

prepared under this contract for all 5x6-mile segments inventoried

(and digitized) for AgRISTARS in agricultural areas of the United

States during the years 1976-1979 [48]. The complete set of ground

truth data was collected by ground truth enumerators from the U.S.

Department of Agriculture. The enumerators recorded crop type and con-

dition and field boundaries on base maps. The resulting ground truth

records were digitized by LEMSCO and by ERIM.

These complete ground truth records were used by ERIM to prepare

summary data. Fifty-four year-independent crop categories were estab-

lished and further consolidated into a concise summary of major crop

types and groups present in each segment. The occurrences of special

categories and situations arealso noted, such as percent of scene in

special fields, percent strip farmed and percent abandoned. The pro-

portions were based on a systematic, 20% sample produced by processing

one line in five of the original (20) sub-pixel data. These summaries

should be useful in screening and selecting segments for analysis and

conducting evaluations of developed procedures.

46
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1	 2.8 SUPPORTING RESEARCH CONCLUSIONS AND RECOMMENDATIONS

Substantial progress was made along two major lines of research

for supporting crop inventory systems utilizing Landsat data. These

addressed, respectively, sampling and estimation technology and measure-

ment technology, the latter dealing with the extraction of agrophysi-

cally meaningful features from Landsat data for use by the former in

crop inventory estimation and assessment.

A prime emphasis of the sampling and estimation research was on

techniques capable of providing estimates throughout the growing season,

particularly early in t+ie season. Crop estimation was characterized as

being a composite process beginning primarily with prediction and be-

coming more dependent on actual measurement as the season progresses.

An approach, that was developed and thought to be original, was to

merge early, but current-season Landsat-derived information with prior

season inputs of a conventional crop acreage prediction model. The

resulting Landsat-augmented crop acreage response model (CARM) showed

potential for early season estimates with improved accuracy. Also,

the model was applied to a regional area rather than the usual national-

level use of the conventional CARM models. We also explored ways in

which knowledge of cropping practices at the regional and local levels

could be used on a field-by-field basis to improve the quality and

accuracy of information extractable from Landsat; included were tech-

niques that could use multiyear information such as on year-to-year

crop rotations. Finally, a segment-level Bayesian estimation approach

was formulated to incorporate the trey elements identiried for through-

the-season estimation.

Multisegment research examined approaches for increasing sampling

efficiency and reducing measurement cost without sacrificing accuracy.

Signature extension, regression, and bin methods were studied and an

experiment using the bin method was carried out before the scope of

these activities was reduced,

BLANY, NC)T FII,h Q
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The remaining activity under estimation technology research was

the organization and conduct of a field trip to Argentina to acquire

crop identification data for over 600 fields in 14 segments located in

three major agricultural provinces. This trip was arranged on short

notice to provide an initial Landsat data set with ground truth infor-

mation. Possibilities for continued and expanded ground data collection

activities in South America were explore) and draft plans were generated.

Under measurement technology research, studies were made of crop

temporal-spectral profile characteristics, three simulation models were

developed, and a previously started small-grain labeling procedure was

completed. Field measurement reflectance data for corn and soybeans

were analyzed, with emphasis on relating temporal-spectral (Greenness)

profile features and characteristics to crop development stages and

the effects of farm management variables such as planting date and

fertilization.

The first simulation modeling activity interfaced a meteorologi-

cally driven wheat growth model with a vegetation canopy reflectance

model to provide a capability to simulate the observable crop charac-

teristics as a function of time and environment. The second modeling

activity extended a uniform canopy reflectance model to include row

effects. The final model was able to simulate both the spatial and

spectral characteristics of agricultural scenes in order that mixed

and boundary pixel effects can be analyzed. Effects of the Landsat

spatial point-spread function and varied planting dates also were

included.

Several recommendations are made on the basis of the conducted

research and experience of the investigators.

(1) Recommendation re Sampling and Estimation Technology

(a) That research be continued cn the Landsat augmentation

of conventional crop acreage response models.
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(b) That development be continued of techniques, that blend

prediction and measurement capabilities and incorporate agronomic infor-

mation at the field level, taking advantage of multiyear data where

available; for long range development, we specifically recommend inves-

tigation of knowledge engineering systems tailored to this application.

(c) That research into multisegir.2nt approaches be conducted

to improve inventory system efficiency and that it brs closely linked

to through-the-season requirements and techniques.

(d) That plans for ground data collection in Argentina and/or

Brazil be further developed and carried out to provide basic information

essential to the full development of Landsat-based inventory techniques

for that region.

(2) Recommendations re Measurement Technology

(a) That Brightness profile variables from crops be investi-

gated in addition to Greenness variables and that the study be extended

from reflectance data to Landsat data.

(b) That the Seed-to-Satellite model be upgraded to incorpo-

rate the revised Ritchie wheat growth model and that extension to other

crops, such as corn and soybeans, be pursued.

(c) That the row effects extension of the canopy reflectance

model be verified by comparison with empirical data.

(d) That the existing models be used to further investigate

small-fields effects in Landsat data from agricultural scenes and its

impact on estimation accuracy.
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INVENTORY TECHNOLOGY DEVELOPMENT PROGRESS AND RESULTS

Activities in support of the AgRISTARS Inventory Technology

Development Project (ITD), formerly Foreign Commodity Production Fore-

casting, have revolved about developing Landsat-based crop inventory

system component technology that is appropriate for eventual application

in a foreign context, specifically for corn and soybeans in Argentina

and Brazil. Activities reported in this section represented a joint

effort involving ERIM and The Space Sciences Laboratory of the Univer-

sity of California at Berkeley (UCB), with test and evaluation support

from Lockheed Engineering and Management Services Company, Inc. (LEMSCO).

3.1 APPROACH AND TASK STRUCTURE

The approach pursued in support of ITD in AgRISTARS has involved

overlapping phases as is illustrated in Figure 3.1. In the initial phase,

effort has been placed in the application and evaluation of technology

based on Landsat MSS using, as in LACIE, segment sampling for wide area

estimates of crop acreage and production in the U.S. where developmental

data is readily available. The next stage would focus on the develop-

ment of alternative techniques to establish a base of technology that

could be comparatively evaluated and adapted to the foreign application

and be supportive of an end-to-end inventory technology for Argentina

and Brazil. This would then be evaluated in a controlled experimental

environment to determine the technologies' feasibility for the foreign

context.

Section 3 describes efforts conducted in the first two phases of

the program to develop crop inventory technology for Argentina and

Brazil. Efforts have been structured into two tasks in addressing the
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overall objective of using remote sensing as a tool to inventory and

assess corn and soybeans in Argentina and Brazil.

The first task, entitled "Experiments", ttsted and evaluated sys-

tems of technology components for crop inventor y (i.e., procedures)

under controlled and documented conditions. This task focused on eval-

uating the technology, formed into procedures, with respect to accuracy,

objectivity, efficiency, timeliness and applicability to foreign condi-

tions.

Reported in Section 3.2 is the development and evaluation of a

procedure designated the Baseline Corn and Soybean Area Estimation

Procedure. The technique was (and modifications continue to be)

rigurously evaluated under configuration controlled conditions. The

experiment discussed in Section 3.2 is referred to as the U.S. Corn

and Soybean Pilot Experiment and was a joint LEMSCO/Consortium activity.

In addition, a description is provided of the software system called

STARS designed for purposes of configuration controlled procedure

testing.

The second task is entitled "Technology Development, Evaluation

a ► id Integration". The major objectives of this task are to obtain,

adapt (modify), or develop technology components (as opposed to end.-

to-end procedures) for assessing crop status, to evaluate the compon-

ents for applicability to the problem, and to select and integrate

appropriate components into end-to-end procedures T-or more formal

evaluation.

Five areas of study are presented in Section 3.3 pursuant of the

objectives of the second task. r ` Nst, an examination of potential dis-

criminating features of corn and soybeans with respect to key confusion

crops present in Argentina was undertaken. Since procedures are de-

veloped under the constraint that ground training data would not be
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used, it is critical to determine the level of discriminating informa-

tion directly derivable from Landsat based on prior understanding of

crop attributes. This activity was largely the responsibility of UCB.

Secondly, a technique based on the use of parame triL models of MSS spec-

tral features was examined with respect to its feasibility in establish-

ing crop features derived from the multitemporal Landsat data that relate

to crop agronomic attributes, for example, the length of a growth cycle.

Thirdly, a study was carried out to assess methods that establish the

basic sampling unit within a segment. Automatic techniques for defini-

tion of field-like targets were of central interest. Fourthly, an

analysis of a double sampling technique to aggregate segment estimates

to a regional level was undertaken. In this analysis the feasibility

of joining two types of estimates, an inexpensive and less accurate

technique, with a more expensive and accurate technique, was found to

reduce the variance of estimates for given cost constraints. Finally,

an effort carried out to prepare an initial foreign ground data set

collected in Argentina (see Section 2.4) is described.
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3.2 U.S. BASED CORN AND SOYBEAN AREA ESTIMATION PROCEDURE DEVELOP-
MENT AND TESTING

The Corn and Soybean Consortium, with ERIM assigned the lead tech-

nical role, was given the responsibility of developing a baseline corn

and soybean area estimation procedure which uses Landsat data without

ground observed training data. This procedure was designated the Base-

line Procedure because it was intended to serve as the standard against

which all future modifications of the procedure, and new procedures,

would be judged and thereby provide a benchmark against which progress

can be assessed. Twofold design specifications of this procedure re-

quired first that it consist of a modular framework within which indi-

vidual component technologies could be deve'?'.,d, compared, substituted

and evaluated, and secondly that the proceaure could be carried out by

analysts that were not necessarily expert. The procedure which re-

sulted, called C/S-1, was developed by ERIM and UCB and delivered to

JSC for evaluation in a major test conducted by LEMSCO.

This test, known as the U.S. Corn and Soybean Pilot Experiment,

was structured in two phases. The first phase, conducted from January

to April 1981, consisted of 39 segment processings of Landsat MSS data

from the U.S. Central Corn Belt; 30 of these were 1978 data and 9 were

1979 data. The test involved 3 teams of 2 analysts each. A balanced,

incomplete design was used, resulting in each segment being processed

twice, but not necessarily by the same two analyst teams. It was in-

tended that these processings be evaluated in time to allow modifica-

tion of the procedure, if necessary, prior to proceeding with the

second phase of the experiment. The second phase was scheduled to be

completed in FY1982, and is to include testing of the aggregation pro-

cedures, which would produce regional estimates as well as the segment

estimation procedure. To allow aggregation, approximately 50 segments

of 1980 data are to be processed in each of Iowa, Indiana, and Illinois.
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Results of the Phase 1 test of the experiment indicated the pre-

sence of bias in C/S-1 in excess of 10% relative to the true. This led

to a decision to study the procedure in greater depth to provide guidance

for efforts aimed at (1) reducing the observed bias, and (2) improving

the efficiency of the procedure. This study consisted of component and

subcomponent performance evaluations of C/S-1 performed by LEMSCO and

ERIM, respectively, to identify those parts of the procedure which held

the most promise for modification, resulting in improved accuracy and

efficiency. Implementation by ERIM and UCB of the modifications recom-

mended by th,s study resulted in the augmented baseline procedure,

C/S-lA. Initial tests performed by ERIM indicate that C/S-lA repre-

sents an improvement over C/S-1 in both accuracy and efficiency.

Further testing of the procedure is to be performed in FY1982 in the

second phase of the pilot.

Development and implementation of machine procedures for C/S-1

and C/S-lA was performed by ERIM using the Software Technology for

Aerospace Remote Sensing system (STARS). This system was developed

by ERIM to provide a controlled environment for procedure implementa-

tion as well as providing the user and data interfaces necessary for

smooth operation of the procedure in a production mode. This latter

capability was demonstrated in the U.S. Pilot experiment, in which

both C/S-1 and C/S-lA operated within STARS.

The following sections provide a more detailed description of the

history, technical specifications, and evaluation of the baseline corn

and soybean area estimation procedure and STARS.

3.2.1	 B :.'KGROUND

The Baseline Procedure represents the integration of thre- earlier

component technologies: (1) Procedure M [13], (2) the corn/soybean

classification logic [49], and (3) the Delta Function Stratification

WFS) [50]. Procedure M (for multicrop) was developed at ERIM in

parallel with development of Proc-dure 1 in LACIE [12]. Procedure 1 was
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I	 developed by the Earth Observations Division of NASA/JSC in 1976-77

and supported producing LACIE generic wheat estimates. It was the fore-

runner of the Paseline Procedure from the standpoint of being the first

"proceduralized" approach to large area crop inventory in foreign areas

using Landsat. Proceduralized means employing a well-defined methodology

which can be objectively applied over large areas. Procedure 1 also

broke new ground by relying on a statistical design to generate crop

proportion estimates, as opposed to more typical pixel classification

techniques.

The sf.itchover from classification technology to strategies employ-

ing st-atil-ied areal estimation statistical designs was justified on

the grounds that the latter techniques are theoretically unbiased,

while classification technologies are not. Furcnermore, the component

technologies necessary to support a statistical approach were now in

existence and tested sufficiently to provide the confidence that such

a procedure could be practically implemented.

Since ground observed training data was not used, the sample label-

ing logic used in Procedure 1 relied on analyst interpreters making

decisions about the identity of areas located under dots (pixels).

These sample dots were located systematically throughout a segment of

Landsat MSS data (5x6 miles). The system is described as an "expert"

labeling system, because the analysts did not have to follc a well-

defined decision logic to reach an identity for the sample but, rather,

only had to stay within general guidelines and exercise their own judg-

ment.

Roughly in parallel with the development of Procedure 1, a similar

procedure called Procedure M was developed at ERIM in 1977-78. Pro-

cedure M was designed to reduce labeling errors by using a different

method of selecting the samples that the analyst was required to label.

Studies had shown that a maJor source of labeling error in Procedure 1

was the problem of not bring able to correctly identify boundary pixels
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(pixels located on the edge of fields). Procedure M reduced this prob-

lem by using an algorithm called BLOB to find field-like samples and

then restricting labeling to blob interiors, on the presumption that

they were spectrally and spatially (in terms of ground truth) pure. In

a related change, the systematic selection of the samples to be labeled

was also dropped, in favor of a stratified random selection of blobs,

where the stratification is based on the spectral similarity of the

blobs. The method of sample selection tested to show a substantial

reduction in the variance of the estimate over that of Procedure 1.

The development of Procedure M resulted in a general proceduralized

approach that could be used to F,r:^_!.... estimates for a variety of crops.

To make it applicable for produ,_ 	 -(n and soybean estimates, a deci-

sion logic capable of identifying 	 +s of these crops was also re-

quired. An initial logic was available as a result of wo rk done by

Lockheed in 1979. Their original goal was to test whether or not a well-

defined decision logic could produce consistent classification results

as accurate as those generated by an "expert" system. The results of

this work showed promise in achieving objectivity. In 1980 the initial

corn/soybean logic was substantially revised and augmented by UCB for

incorporation in the Baseline Procedure,

The other key component required to complete the Baseline Procedure

is the Delta Function Stratification (DFS) technology. OFS is a way of

introducing crop calendar data into the procedure in a useful and con-

sistent fashion. The development of DFS began at UCB in 1978, con-

tinued in 1979, and was integrated into the procedure in 1980. A side

benefit of DFS is that it also provides a method of obtaining first

cut estimates of the proportion crops, other than corn and soybeans,

and other land use categories in the segment early in the procedure,

and without the need to actually classify the data into crop types.

In 1980, when all of these component technologies were success-

fully integrated, the Baseline Procedure, or C/S-1, was born [51].
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It is a procedure unique in the fashion in which a convergence of evi-

dence produced by different subcomponents feed each other and result in

a statistically trackable estimate of the crop proportions in a segment.

3.2.2 BASE_INE TECHNOLOGY

3.2.2.1	 Introduction

The U.S. Baseline corn and soybean segment classification procedure

is a methodology for estimating the corn and soybean acreage in Landsat

segments selected from the U.S. Corn Belt (Illinois, Indiana, and Iowa).

It is designed to produce near-har vest crop proportion estimates

within segments for corn and soybeans using multitemporal Landsat data.

The estimates are produced by an integrated Analyst/machine procedure.

The procedure is initiated with the Analyst screenin g the Landsat data

for quality, selecting ac quisitions for analysis, and participating in

stratification of the scene. The machine then digitially preprocesses

the Landsat data to remove external effects, completes the stratifica-

tion of the scene, and samples the data proportional to the size of the

strata. The Analyst then labels these samples as to crop type using an

objective decision logic.

Assignment of crop type labels follows a "convergence-of-evidence"

approach. That is, a progressive accumulation of information contri-

butes to the selection of a particular crop label. Multi-date Landsat

data are required since phenological crop development patterns which

manifest themselves as changes in Landsat reflectance over time are

the key to crop separability. The samples, consisting of field-like

labeling targets called blobs, are objectively labeled by an Analyst

according to crop type, specifically "corn", "soybean" or "other".

Analysts label blobs according to an objective, well-defined decision

logic with the aid of spectral plots and statistics provided by the

machine, keeping in mind the influences of local meteorological condi-

tions and cropping practices.
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The machine then combines the labeled samples into a final segment

wide proportion estimate of the crops observed.

The regional aggregation of segment-level area estimates produced

in this manner and the formation of production estimates are functions

outside the scope of this classification procedure.

3.2.2.2 Summary Description of C/S-1 Procedure

The flow of the specific activities which make up toe U.S. Corn/

Soybean Baseline Procedure (C/S-1) is characterized *.;y an integrated,

mutually supportive, Analyst/machine effort. The machine performs

routine data manipulation functions, supports the Analyst's activities

through the production of aids, maintains the data base, and insures

statistical objectivity in the estimation process. The Analyst is

responsible for data quality assurance through acquisition screening

and selection, data verification and adJastment such as in biowindow

boundary placement, and data analysis through crop group stratification

and target labeling.

The Baseline Procedure can be functionally divided into three

major stages as illustrated in Figure 3.2(a). These three stages are

(1) -egment familiarization and preprocessing, (2) stratification i-Id

same, ng, and (3) labeling and proportion estimation. The purpose of

the fist stage is to extract information from both pertinent collateral

data and f-om the Landset segment image to provide a foundation for the

labeling and est i mation activities. The second stage, stratification

and sampling, results in the identification of targets for labeling and

the development of analysis aids Lhat will be used in the blob labeling

process. The final stage involves the labeling of a sample of blobs

and the aggregation of those samples to a segment-wide proportion

estimate.

a
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As stated earlier, analyst and machine interact in this procedure.

Thus, within each stage ;t is possible to further subdivide the pro-

cedure on the basis of whether an activity is primarily an analyst

activity or machine activity. Subdividing the procedure this way has

resulted in breaking it down into eight basic steps. These steps are

shown in Figure 3.2(b). The number of each step is preceded by an "A"

or an "M", indicating whether it is primarily an analyst or machine

function, respectively.

A description of the activities that make up each of these steps

is presented next.

STAGE 1: SEGMENT FAMILIARIZATION AND PREPROCESSING

Step Al: Initial Segment Analysis

This step is an analyst function and consists of four separate

activities:

Segment Familiarization. If an analyst is not familiar with the

environmental and cultural characteristics of a region in which a

segment is located, the analyst should study the materials sup-

plied in (1) the analyst information manual, and (2) the segment

analysis packet.

Data Screening. Through the use of standard imagery products

(PFC 1 and PFC 3), acquisitions are visually screened and those

with excessive cloud cover, heavy haze and bad data are deleted.

This function is designed to eliminate unusable acquisitions

from further consideration.

Crop Calendar Analysis. Crop calendars are used to identify the

expected phenological patterns for different crops and define bio-

windows for those crops in the geographical area where the segment
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is located. This requires the use of the best available phenologi-

cal crop calendar. The Analyst compares the normal phenological

crop calendar for the area to the apparent spectral development

of a crop by associating each acquisition with a crop growth stage.

If there are differences between them, then the normal phenological

crop calendar is adjusted by the Analyst to conform to the crop

development pattern observed for the year in which the Landsat

data was collected.

Acquisition Selection. A total of up to ten acquisitions may be

processed. Based on inputs from the crop calendar analysis and

acquisition priority listings, up to seven of these acquisitions

are chosen for Temporal Pattern Class (TPC) extraction. These

acquisition selections are identified to the computer for machine

processing.

Step M2: Normalization and Preprocessing

This step is a machine function and consists of two separate

activity sequences:

Normalization. Normalization of spectral data is a process de-

signed to adjust for effects of haze, varying sun angle and sensor

calibration, and to screen out clouds and other unusable data.

The purpose of this activity is to reduce the effect in the Land-

sat data of phenomena that are external to, or bear no information

with respect to, agricultural factors that are of interest. The

goal is to provide the Analyst with products that are consistent

between dates with respect to the conditions under which the

scene is observed, and thus minimize segment-to-segment varia-

tions in signal that are not actually due to development of the

crops (See Figure 3.3).
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Spectral/Temporal Feature Extraction. Using normalized spectral/

temporal data, features are extracted in this activity sequence

that facilitate analysis of agronomic conditions. Specifically,

the Tasseled-Cap transformation is computed and a Greenness mea-

sure defined as the "Greenness Above Bare Soil" (GRABS) is derived.

These features are eventually used for crop discrimination in this

procedure. A benefit of this step is that the dimensionality of

the data is reduced by a factor of two.

A related activity is the extraction of a Temporal Pattern

Class (TPC) for each pixel. A TPC describes the pattern of vege-

tation development observed for a pixel over the course of the

growing season with regard to the number of acquisitions available

and the Crop Group Biowindows in which they occur. Thus, each

crop group considered in the crop calendar analysis has an expected

TPC based on the acquisition history of the segment relative to

its idealized phenological development. The result of this acti-

vity is a report which summarizes the TPC patterns observed fir

the segment.

STAGE 2: STRATIFICATION AND SAMPLING

Step A3: Crop Group Stratification

Using information derived from crop calendar analysis and the TPC

report generated in Stage 1, the Analyst stratifies the TPCs into major

crop groups based on expected patterns for summer crops, small grains,

permanent vegetation, and non-vegetated areas. Crap group stratifica-

tion is used bath by the machine in producing the stratified area esti-

mate, and by the Analyst to facilitate the analysis process associated

with blob labeling. Of immediate concern is the fact that the summer

crop stratum is used to produce a spectral aid, a GRABS vs. Brightness

scatterplot.
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Step M4: Stratified Scatterplots

Scatterplots of GRABS vs. Brightness are generated for each acqui-

sition using pixels assigned to the pure summer crop stratum or signifi-

cantly large alternate summer crop subclasses. These plots show the

progression of the vegetation phenology of this stratum in the poten-

tial crop separation window. The initial use of these stratified

Scatterplots will be to verify the boundaries of the Separation Window.

Only those acquisitions showing a distinct separation in the distribu-

tion of points along the 'Green Arm' are to be considered separation

acquisitions (Ss2 Figure 3.4).

Step A5: Corn/Soybean Discriminant

Using the GRABS vs. Brightness scatterplot of pixels in the summer

crop stratum for each available acquisition, the Analyst determines

when the best separability between corn and soybean distributions is

achieved. Examining crop development along the "Green Arm" the Analyst

looks for soybeans to cluster at higher GRABS values than corn. A

boundary is placed between these distributions and perpendicular to

the Green Arm for each acquisition exhibiting separability. This

boundary and assoc i ated lii,,iters will be used in preliminary labeling

of blob targets as corn or soybeans. At this point the analyst also

identifies a subset of acquisitions that are used in defining field-

like targets (blobs) (See Figure 3.4).

Step M6: Mobbing, Blob Clustering and Sampling

Blobbing (Target Definition). Field-like targets called blobs

are defined. These targets are intended to correspond to farmers'

fieids and provide candidate labeling targets, Ideally, each

target is composed of a single crop type. The machine clusters

pixels on the basis of their spectral characteristics and spatial
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position. Pixels grouped in a single blob must be spectrally

similar and spatially contiguous. Once the blobs are formed they

are separated into two groups according to their size. The first

group, called "big blobs", consists of all blobs that have at

least one pixel in their interior (i.e., one pixel left when a

one pixel boundary is stripped off the blob). The second group,

or "little blobs", has no interior. Only big blobs are candidate

labeling targets. This segregation is carried out in order to

isolate mixture pixels and very small fields which prove to be

poor labeling targets. Each blob, big or little, is assigned

to crop group strata according to the vegetative temporal pattern

of their spectral means. This is done by the machine based on

the temporal pattern class assignments previously defined by the

Analyst.

Blob Clustering. Since it is too time-consuming to label all big

blobs, it is desirable to produce a sample of blobs for labeling

that would best represen^. the entire population. In order to

realize a gain in sampling efficiency, big blobs are grouped into

smaller strata within each crop group. An unsupervised cluster-

ing algorithm is used to group the blobs into spectrally homo-

geneous strata that ideally are homogeneous with respect to crop

type, as well.

Sampling. Once strata are formed, a specified number of blobs are

selected for labeling. The sample is allocated proportior3l to the

size, in pixels, of each stratum. Since blobs are of different sizes,

the Midzuno technique [13] is used tc select a sample that is an un-

bias,d representation of each stratum. Once the sample is selected,

a number of labeling aids are produced for the Analyst including

GRAB:. vs. Time and GRABS vs. Brightness plots, a PFC overlay identi-

fying the blobs to be labeled, and other diagnostic statistics.
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STAGE 3: BLOB LABELING AND PROPORTION ESTIMATION

Step A7: Blob Labeling

Using aids produced by the machine, the Analyst follows a well-

defined decision logic to label each sampled blob according to its

major crop group (see Figure 3.5). The crop group stratification

assignment is used as an initial indicator of crop group. This assign-

ment is refined using additional available information. The resultant

label will be either "Summer Crop" or "Non-Summer Crop".

If supported by the segment acquisition history, the Analyst will

also label each blob sampled according to its crop type, in particular

"corn", "soybean", or "other". Again the Analyst makes use of a well-

defined decision logic (See Figure 3.6). Since this procedure was de-

signed for the Corn Belt where corn and soybeans are dominant, other

summer crops are not discriminated. In addition to crop labels, the

Analyst assigns a confidence to the label to indicate an expectation

regarding the accuracy of the label. These labels are provided to the

machine for the final estimate of crop area proportions.

Step M8: Estimation

Stratified Area Estimate. A weighted aggregation of the labels

of the sampled blobs in each spectral stratum results in an esti-

mate of summer crop area, or, if information is sufficient for

crop type labeling, corn anal soybean area, for each stratum. An

estimate is then produced for each crop group stratum by a simple

weighted aggregation of the spectral stratum estimates.

Segment ProportionEstimates. Each crop group stratum was pre-

viously assigned an estimate of summer crop area, or, corn and

soybean area, according to a sample of big blobs. The segment
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area estimate is produced by extending the crop group stratum

estimates to the in-stratum unsampled (little) blobs. and then

aggregating the overall stratum estimates. In this process. the

weights used are formed from the total number of pixels in each

blob. Figure 3.1 graphically illustrates the estimation process.

3.2.2.3 Evaluation of C/S-1 Procedure

Overall Results

Results from the 46 segment processings performed in Phase 1 of

the Pilot indicated that while the estimates for summer crops as an

aggregate were within 1.5% relative to the true (see Figures 3.8(a)

and 3.8(b)), corn was significantly overestimated and soybeans were

underestimated by a similar amount. Table 3.1 identifies statistical

measures used.

To eliminate the effect analyst labels might cause on the final

segment estimates, the blobs were given actual labels from digitized

ground truth. With these labels the estimates illustrated in Figures

3.9(a) and 3.9(b) were produced. While these results are a substantial

improvement over the analyst-produced results, especially in terms of

variance, sigrificant error still remained, indicating that the errors

were both machine and analyst induced.

Detailed Analysis

In order to gain insight into the sources of these errors as soon

as possible, the initial 11 segments processed were selected for in-depth

analysis. As the pilot processings progressed, four additional segments

were included in the study. As it eventually turned out, the particular

15 segments analyzed exhibited poorer soybean estimates than the ensem-

ble of processing, mainly because of the unusual conditions encountered
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TABLE 3. 1. STANDARD STATISTICAL MEASURES OF AREA PROPORTION
ESTIMATION PERFORMANCE FOR n SEGMENT PROCESSINGS

MEAN ERROR (e): 
j;i=i 

e i /n = P - is

STANDARD DEVIATION OF ERROR (se): 	
11:1=i (ei - ^ 

2
/(n - i)11/2

MEAN ABSOLUTE ERROR (M.A.E.): ri=i leil/n

RELATIVE MEAN ERROR (R.M.E.): e/P

-------------------------------------------------------------------

GROUND TRUTH PROPORTION FOR iTH SEGMENT:	 Pi

ESTIMATED PROPORTION FOR iTH SEGMENT:	 P.
i

ERROR FOR iTH SEGMENT: 	 ei	 Pi - Pi

ABSOLUTE ERROR FOR iTH SEGMENT:	 leil

MEAN GROUND TRUTH PROPORTION: 	
1 P i /n_

MEAN ESTIMATED PROPORTION: 	 P = y4i i Pi/n

i
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in these segments with regard to acquisition histories, environwrental

conditions during the growing season, and an atypical case of double

crapping of soybeans that was encountered. Nevertheless, the ger.pral

performance characteristics of the procedure observed in the analysis
	

i

of these 15 segments represent the same trends later observed in the

later analysis by LEMSCO of the full set of 46 segment processings, and

so formed a reasonable basis for investigating the source of errors

associated with the C/S-1 procedure.

The approach ERIM adopted to investigate the sources of error can

be described as a series of subcomponent level evaluations of C/S-1.

This approach was selected because it made it possible to isolate

(1) how much error is built into the automated machine side of the

system, versus that contributed by labeling, and (2) even more speci-

fically how much error is contributed by each step of the estimation

process carried out by the machine. The effects of l abeling error were

removed by substituting ground truth information for the labels normally

furnished by the analyst. Thus, machine functions were analyzed in the

absence of other error sources, and observed deviations between the

machine's crop proportion estimates for the segment and the true crop

proportion estimates, as computed from ground truth, could be attri-

buted to deficiencies in the estimation procedure.

Thus, tests of each major step in the flow of estimation-related

activities were conducted. These tests, it was hoped, would show the

amount of error introduced into the final crop proportion estimate due

to the error contribution of each step of the procedure. This resulted

in the evaluation of the following six strategies of the estimation

procedure:

1) The effect of using only the big blobs (those with interior

pixels) of the segment and their boundaries to produce the

estimate;
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2) The effect of using only the interiors of the big blobs of

the segment to produce the estimate;

3) The effect of using only certain allowable mixture propor-

tions wher describing the composition of the interiors of

mixed blobs;

4) All of the above conditions applied to only a sample of the

big blobs;

5) All of the above conditions, with analyst labels substituted

for ground truth;

6) All of the above, plus the effect of adding in the little

blobs, which constitute an unsampled stratum.

Behind each of these strategies there is an assumption. So, by

comparing the actual crop proportion estimates of a segment with those

produced using these strategies we have a way of testing the following

assumptions:

1) That the pixels contained in big blobs and their boundaries

are a representative sample of all the pixels in the segment;

2) That the interior pixels of a blob are representative of the

entire blob;

3) That the proportion of crop types farad in mixed blobs can

be accurately meazured using a system that allows designating

mixture in terms of halves and thirds of a blob;

4) That a sample of available big blobs, produced by the sampling

procedure used, yields an unbiased estimate of the crop pro-

portion found in all big blobs;

5) That analyst lapels are accurate;

6) That the little blobs (the unsampled stratum) have the same crop

proportions as the big blobs in the sane crop group, and taking

advantage of this adjusts for crop error due to assumption #1.
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Figure 3.10 illustrates the results of this study with a plot of

the cumulative estimation error which results at the end of each step.

From the plot the following can be seen:

1) The big blobs alone are not representative of the entire seg-

ment. Further analysis indicated that typical corn blobs were bigger

than typical soybean and non-summer blobs, and that the little blobs

and smaller big blobs were predominantly non-corn. While the available

evidence indicates that actual corn field are bigger than actual soy-

bean and non-summer fields on the average, the difference in blob size

for different crops may be a phenomenon associated witn the manner in

which the BLOB algorithm works. Analysis of BLOB in these terms is

discussed in Section 3.3.3.

2) Extending the label of the blob interior to the blob boundary

is not an unbiased assignment. In particular, it was determined that

the boundaries of corn blobs were "dirtier" than the boundaries of non-

corn blobs. This is due to the central position corn occupies spec-

traily between non-summer crops and soybeans; and to the fact that the

BLOB algorithm grows a field-like target until a variance threshold

is exceeded. The spectral position of corn will tend to make mixed

signatures look like corn (non-summer + soybeans will be too ,reen

for non-summer, not green enough for soybeans; corn + soybeans will

look like green corn or weak soybeans), and the lower variance observed

in corn blobs will tend to make them grow excessively.

3) Forcing a blob label to be quantized into fractional parts of

r	 1/3 or more had no significant effect on the results of the procedure.

4) The Midzuno sampling was unbiased in implementation as it is

by theorem, and added variance to the estimate, as expected.

Up to this point in the analysis, all labeling of blobs had been

done using digitized ground truth, with non-inventoried pixels being
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i designated as "other". Additional analysis required analyst labels,

which posed a problem when all or part of the blobs in question was

"non-inventoried". To assess the uncertainty introduced into the esti-

mate by this "unknown" ground truth, the following approach was taken:

An estimate was produced using ground truth labels for the sampled

blobs, with "non-inventoried" pixels counted as "other". The estimate

was recalculated, this time using the analyst label for each blob which

was 50% or more "non-inventoried", in effect assuming that the analyst

labels for those blobs were correct. This estimate was then the base

with which to compose estimates using analyst labels exclusively.

5) The introduction of analyst labels into the procedure added

significant bias, particularly with respect to corn and soybeans. To

gain additional insight into the nature of the labeling errors, the

blobs were divided into the set of all blobs with at least 5/6 of

their interior pixels of the same crop class, and the set containing

all other blobs. These strata were designated "pure" and "mixed" blobs,

respectively.

Analysis indicated that although the 80% of the sampled blobs

which were "pure" were labeled with good accuracy (96t for corn, 88%

for soybeans and 92% for :ion-summer crops), the 20% of the blobs which

were mixed contributed 50{ to 70% of the final error caused by labeling.

Two basic factors contributed to the poor labeling performance on

mixed blobs: 1) too many mixed blobs were being created by the BLOB

algorithm, and 2) the analysts were only detecting approximately 10%

of the mixed targets. It appeared that this problem resulted primarily

from non-optimal acquisition selections and to a lesser degree, to inher-

ent limitations on the separability of the crops using Landsat MSS.

6) The correction for the unsampled stratum performed as desired

in correcting summer/non-summer bias introduced by sampling big blob
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interiors only, but was inadequate in dealing with crop type (corn/
soybean) corrections. This appeared to be primarily the result of
assignment of little blobs to crop group strata, which did not allow
for corn/soybean discrimination. It was also observed that this bias
correction step was the major contributor to the variance of the esti-

mates.

The above analysis led to the following major conclusions:

1) The labeling targets defined by C/S-1 were of unsatisfactory

quality. In particular, too many impure blobs were being formed, and

the analysts were not able to detect these blobs as mixed.

2) The correction for the bias introduced by sampling only from

big blobs was inadequate with respect to crop type, but performed as

desired in eliminating crop group bias.

On the basis of these findings, a set of modifications to C/S-1

was proposed which it was felt would remedy the most serious of the

procedure's deficiencies. These modifications and the procedure re-

sulting from their implementation are described in the following

section.

3.2.3 AUGMENTED BASELINE PROCEDURE (C/S-IA)

3.2.3.1 Description of Procedure

The augmented Baseline Corn and Soybean Procedure, C/S-1A, was

developed in response to weaknesses observed in Procedure C/S-1 as

detailed in the previous section. Technical specification of C/S-lA

is provided in Appendix 1 and procedures are documented in [52].

The major areas targeted for development were the unsampled stratum

bias correction, and target definition and labeling. Additional modi-

fications aimed at increasing the consistency and efficiency of the
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procedure were also implemented, although they were not the primary

focus of the development effort. The basic structure of the procedure

remained unchanged, with most of the modifications being a continuation

of development along the original philosophical lines.

Development directed at reducing the mixed blob labeling problem

proceeded along two lines: (1) modifications which decreased the num-

ber of mixed blobs, and (2) modifications which improved the accuracy

with which the remaining mixed blobs were labeled. To reduce the num-

ber of mixed blobs created, the blob acquisition guidelines were

clarified (the importance of an acquisition in the corn/soybean sepa-

ration window to reduce corn/soybean mixtures was emphasized, and the

use of an acquisition prior to summer crop emergence to reduce summer

crop/other mixtures was recommended). Additionally, the decision rule

in BLOB was modified to apply acquisition-by-acquisition thresholds,

as well as a threshold based on averages over all acquisitions.

To improve the detection and labeling of mixed blobs, a machine

procedure for automatic detection of potentially mixed blobs was de-

veloped, and the labeling logic was modified to label those blobs

flagged as potentially mixed on a pixel-by-pixel basis.

Arn^ther important modification was to automate those parts of the

decision logic that were completely objective. This resulted in a

segment-specific set of reference crop profiles for the analyst to use

as references, as well as a decreased number of blobs that the analyst

had to label. This modification allowed the machine to label approxi-

mately 50A" of the blobs with a high level of confidence (about 95%

accuracy).

It was observed in the analysis of the C/S-1 test results that

the nature of the bias problem associated with the unsampled stratum

was primarily a corn/soybean problem, as opposed to a summer crop/

other problem. Thus the bias correction step was modified so that
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little blobs were assigned to a stratum within a_DFS, instead of assign-

inp them to the DFS alone. The rationale behind this modification was

that the sub-DFS strata allowed crop type stratification while DFS is

simple a crop group stratification.

An additional modification aimed primarily at decreasing the time

required to run the procedure was the automation of the assignment of

TPC's to DFS. During the first phase of the pilot experiment it was

found that this essentially rote step was one of the inost tedious and

error prone activities performed by the analyst. The automation was

performed by developing a machine procedure which precisely followed

the objective, well defined logic which the analysts had employed.

A summary of the modifications to C/S-1 and the observed problems

which motivated the modifications is given in Table 3.2. Appendix 1

provides a detailed specification of the subcomponents comprising

Procedure C/S-IA.

3.2.3.2 Evaluation of C/S-lA

Evaluation of the C/S-1 subcomponents that were modified for use

in C/S-lA was performed by ERIM to determine the performance improve-

ment which could be expected. Three major tests were performed. They

were: target definition, automatic labeling, and the unsampled stratum

correction. Due to resource constraints, it was not possible to use

all 39 segment processings for each test, and so some tests were per-

formed using only a subset of these 39. These subcomponent evaluations

indicate C/S-lA possesses a potential for improvement in segment pro-

portion estimates over C/S-1. End-to-end performance will be determined

during Phase 2 of the Pilot, which will be initiated in FY1982. Des-

criptions of these tests and the results follow.

i
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Target Definition

To determine the improvement, if any, in target definition rea-

lized by a modified BLOB rule and clarified acquisition selection

guidelines, blobs were produced two different ways and compared. In

one case, the original C/S-1 BLOB rule was applied to acquisitions

selected during Phase 1 of the Pilot; in the second case, the C/S-lA

BLOB rule was applied to acquisitions selected using the C/S-lA acqui-

sition selection guidelines. Both sets of blobs were analyzed in terms

of interior purity and the proportion of the scene covered by each of

the blob interiors, blob edges, and little blobs. The results of this

study are presented in Table 3.3.

From these results, we can conclude that the modifications in

C/S-lA have had the intended effect, i.e., the analysts are now pre-

sented with labeling targets of higher purity than they experienced

with C/S-1. As a consequence, however, the size of the unsampled

stratum (little blobs) has increased significantly, placing even

greater importance on the proper treatment of this stratum.

Automatic Labeler

The automatic labeling subcomponent was evaluated in a test con-

ducted on blobs created by C/S-1 during Phase 1 of the Pilot. The auto-

matic labeler labeled those 60- of the targets that were >5/6 pure,

achieving 96' accuracy for crop type and 98" accuracy for crop group.

Because the automatic labeler requires a corn/soybean discrimi-

nant defined in terms of maximum GRABS vs. Brightness, the discrimi-

nants identified in the C/S-1 processings were not usable due to being

acquisition specific. As a compromise, a standard discriminant value

of 64.0 was used for all processings in this test. This value has been

shown to provide good results over a large number of segments in the

past (See Table 3.4).
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TABLE 3.3. TARGET DEFINITION SUBCOMPONENT

Original CIS-1
(conducted on
5 segments)

Blob Interior Purity	 87.2%

% of Scene one:

• Big blob interiors	 36.0%

• Big blob edges	 52.0%

• Little blobs	 12.0%

New Acquisitions,
New Blobbing Rule

93.6%

24.4%

46.8%

27.8%
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TABLE 3.4. C/S-IA AUTOMATIC LABELER PERFORMANCE

Crop Type (39 processings, 1534 blobs labeled)

GT	 GT

C	 S	 0	 Sumner Other

	

Labeler C
	 96.0
	

Labeler Sumner 97.6

	

S	 95.7
	

Other	 98.1

	

0	 98,1

Crop Group* (7 processings, 242 blobs labeled)

GT	 GT

C	 S	 0	 Sumner Other

	

Labeler C
	 89.4	 Sumner	 96.0

	

S	 82.3	 Other	 95.7

	

0	 95.7

The C/S-1 procedure did not allow processing to crop type for some
segments. Use of the maximum GRABS vs. Brightness discriminant
default allows crop type estimates for these segments.

1
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Unsampled Stratum Correction

The modified unsampled stratum bias correction subcomponent was

evaluated on 39 Phase 1 Pilot processings by comparing the performance

of the C/S-1 and C/S-lA bias correction subcomponent on a set of identi-

cal blobs. To prevent contamination of this test by errors in analyst

labels for these blobs, labels derived from ground truth were used.

These labels were produced by LEMSCO from digitized ground truth.

A comparison of the results of this test is presented in Table 3.5.

This comparison indicates that the modification tested produced the de-

sired effect, i.e., the bias remaining after the C/S-lA correction is

performed is approximately half that observed when the C /S-1 bias cor-

rection procedure is used with identical labels.

3.2.4 STARS

3.2.4.1 Introduction

The Software Technology for Aerospace Remote Sensing system (STARS)

was developed by ERIM to fulfill a need for a standardized, controlled

environment within which development, testing, processing, and evalu-

ation of image processing procedures could take place.

This system has been successfully used to develop three crop area

estimation procedures, support major experiments with two of these

procedures, evaluate the procedures, and is being used to develop new

techniques for estimating crop area using Landsat data.

3.2.4.2 STARS Design Features

Several design features of STARS make it unique. Key ones in-

clude: the manner in which individual modules are relatively inde-

pendent of one another and of the host operating system, the data

management capabilities of STARS, and the status tracking features.

These will be discussed in greater detail in the following paragraphs.
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TABLE 3.5. COMPARISON OF RESULTS USING GROUND TRUTH LABELS

Year
	

C/S-1
	

CIS-lA

Summer
	

Sumer

1978 e

S e

n

Corn Soybean Crop

4.12 -2.91 0.91

2.13 2.33 2.95

30 30 36

Corn Soybean Crop

2.19 -0.96 0.85

2.47 2.49 3.23

30 30 36

Summer
	

Summer

1979	 e

S
e

n

Corn Soybean Crop

3.15 -1.94 1.50

2.18 2.53 3.27

9 9 10

Corn Soybean Crop

1.90 -1.22 1.21

2.22 2.93 3.73

9 9 10
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Due to the fact that software may often be developed on one com-

puter facility with one set of operating conditions, then transferred
F

for use on a different facility with different conditions, there

exists a need for the software to be independent of the conditions,

such as the operating system, within which it performs. If this inde-

pendence is not achieved, extensive modifications may be required to

the individual modules to allow the transfer to occur, which in turn

would require additional testing to verify that modified code. 	
i
i

To achieve this independence from the underlying operating sys-

tem, a set of systefi primitives, called System Interface Routines (SIRs)

was developed. These primitives are implemented for each system for

which STARS is intended to be used. Given these primitives and a

compatible compiler, software which interacts with the system only

through the SIR's can be transferred from one system to another with

no modifications. The functions provided by the SIR's include I/O

operations (Create, Open, Close, or Destroy files; head, Write, Delete

records; obtain access to non-file device); memory management (Get

space, Free space); and other necessary functions (Get current time/

date, query if Batch or Interactive, error handling). In every ir;ple-

mentation of the SIR's, the interface with the calling program is

unchanged.

In addition to this independence from the operating system, the

independence of each application module from all others was required

to facilitate testing of individual modules as well as to simplify

the substitution of one module for another. To meet this need, all

data is passed to/from the application modules v i a parameter lists,

and only a limited number of specialized application modules are per-

mitted to use the SIR's.

For each application (e.g., merge data, produce maps, etc.) an

overall controlling program, called a scenario, directs the operation
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of tale individual application modules. This scenario controls the

sequence of execution of the application modules and provides all the

data management for those modules.

The data management capabilities are prcvided through a set of

primitives available only to the scenario. These primitives access

a simplified data base called Collateral Holding And Retrieval Library

for Information Extraction (CHARLIE). CHARLIE is composed of a collec-

tion of entities, each of which is a FORTRAN-like variable, i.e.,

scalar, vector, multi-dimensioned array. Each has a descriptor con-

taining the variable name (up to 40 characters), size, shape (dimensions)

and mode (Real, Integer, Logical, Complex, Character). The data prim-

itives provide the capability to create an entity in virtual memory,

give it initial value, crange its shape (e.g., from dimensions of 1, 1,

1 to 3, 4, 117), save it in permanent storage, and retrieve an entity

from permanent storage. With these primitives, the burden of data

base access is constrained to the scenarios, with the application

modules viewing the data as standard FORTRAN variables.

To insure repeatability of results, it is necessary to know which

version of each software module was used in the run. It is also use-

ful durinS development to know what events have occurred up to a given

point. To serve this need, STAR-" has a status tracking capability

which records the entry and exit of each application module and

scenario, each data base access, any errors detected and major I/O

events, such as transferring a file from disk to tape or destraying

a file. This log, which is maintained automatically, contains informa-

tion describing the time of the event and the version of the module.

3.2.4.3 Image Processing on STARS

A primary use for STARS is image processing. With that as a

design consideration, two major requirements were identified: images

must be processed efficiently, and the system must be adaptable to

the various formats images are stored in.
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The image processing efficiency results from the "assembly line"

processing capability in STARS. In this mode, an image is read, scan

line by scan line, and each line (or group of lines) is processed by

one or more application routines before the final transformed scan line

is saved. This method of image processing minimizes Ij0 operations,

reading each line of the image only once.

The images which are processed may be found in any one of several

formats. However, all application modules must share a common view of

all images to allow the "assembly line" processing to occur. There-

fore, images arc viewed by STARS as existing in two forms: Internal

and External. The Internal form is the view all a pplication modules

have of the image. It is a standardized, one scan line at a time

image format. The External image form encompasses all possible formats

an image may be stored in Externa! to the STARS environment (e.g.,

Universal, EROS, etc.). It is the job of Format Service Routines

(FSRs) to convert images between Internal and External image formats.

With the appropriate FSRs, any external image format may be handled

by STARS without modification of application modules.

3.2.4.4 Production Processing in STARS

For STARS to be used for processing in a production environment

several criteria must be met. The integrity of the data must be in-

sured, management must have access to processing status, the user

interface must be simple, and management must have the ability to

allocate storage facilities (disk and tape) as needed.

To maintain the integrity of the data, that data generated by

each user of the system is kept physically separate from data belong-

ing t ,, othar :users. Additionally, the user has no need to know pre-

cisely where the data is stored, and in fact the actual names of the

data files are hidden from the user. This is all accomplished through
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a file directory which is maintained by the SIRS. This directory pro-

vides the translation between the logical file name, which the applica-

tion module uses, and the physical location of the data.

The quantity of data generated in many image processing applica-

tions is enormous. To maintain all this data in disk files would

impose excessive disk requirements on the system, as well as tying

up the disk storage with files which may be used very infrequently.

Storage of data on tapes is an obvious alternative, but tape access

is relatively slow, and processing multiple images simultaneously

would require several tape drives - leading to long waits for an

available drive. Even more untenable is the possibility that these

several images exist on the same tape, and scan line by scan line pro-

cessing then becomes nearly impossible.

The solution to this problem is the use of a mixture of tape and

disk storage. Data is stored on disk as it is generated, then trans-

ferred to tape if it is expected to be inactive for a long time.

Prior to using data, the scenario insures the data is on disk, trans-

ferring it from tape to disk if necessary. The mechanism used by the

scenario to affect these transfers is a simple command, and the

scenarios may easily be modified to change the decision of what gets

transferred where and when. For example, if disk storage is scarce,

the decision could be made to transfer all data to tape immediately

after it is generated, then back to disk each time it is needed.

In a production environment where throughput is important, it

is essential that the interface between the user and the system be

simple, both to minimize errors and rework and to minimize training

time for new users. To this end the scenario/command language con-

cept was developed.
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I
The user invokes the scenario through a simple command, then

each input is requested with a prompt and verified before being

finalized. After all user inputs are received, the user is given a

final chance to abort the processing or continue. This approach

allows most entry errors to be corrected without needing to await the

results of processing. User inputs are requested only for those data

which the machine cannot otherwise obtain (e.g., from CHARLIE), mini-

mizing the quantity of user inputs.

To insure the integrity of the overall experiments, management

must have access to status information. A management query capability

exists in STARS which allows information describing processing status,

error conditions, disk and tape status, and intermediate and final pro-

cessing results to be extracted and placed in a report. The query

system also provides a limited "Help" facility which describes the

capabilities of the system and the commands necessary to utilize those

features.

3.2.4.5 Research and Development in STARS

In its applications to date, STARS has been used primarily as a

production processing environment. Another in'ended use of STARS is

in a research or development mode. Although many of the needs of a

research user are identical to those of a production user, there are

requirements which are in conflict.

The primary difference between the researcher and production

user is one of data access. Where the production user wants to

process a data set only once, wants measures which prevent modifica-

tion of that data set, wants use of that data set restricted to himself,

and wants a fixed set of simple commands. the researcher may want to

process the same data set multiple times with different parameters or

modules, and several researchers may want to share a common data set.
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To permit this duality, two avenues for development have been

established. The primary one is the concept of workspace management,

wherein each user maintains data in a separate workspace, but data may

be easily transferred from one workspace to another, and a workspace

may be shared by multiple users under proper conditions. The second

concept is the use of a command language or scenario processor to

replace the current scenario modules. This command language would

allow a scenario to be easily built by the user, providing much more

flexibility than currently exists while retaining the capability for

simple, pre-defined commands.

Although these concepts are still under development, STARS has

already proven to be useful for research and development of new pro-

cedures. The modular construction demanded of application modules

makes modification of existing modules simpler and minimizes debugging

time.

3.2.4.6 Summary

STARS was designed to provide a controlled environment for image

processing procedure development and processing. Software for an

area estimation procedure (C/S-1) and its subsequent modifications

(C/S-IA) were developed by ERIM and exercised in major experiments

at NASA/JSC. A number of additional applications are also available.

This process of development and testing provided an excellent basis

for the evaluation of the design concepts behind STARS.

The volume of the code developed was considerable - more than

30,000 lines of FORTRAN. The productivity achieved in producing this

code was good, and the procedures were transferred frmi the system on

which they were initially developed (the University of Michigan's

Amdahl 470/8 using the MTS operating system) to a second system for

shakedown testing and user training (CMS on the LARS IBM 3031), and
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finally to the user's system (CMS on the NASA/JSC EODLS AS/3000).

The initial transfer (MTS to LARS) required the rewriting of the SIRS,

which comprise less than 10% of the total code. The final transfer

(LARS to EODLS) required no modifications. In no case did the appli-

cation modules or data management routines require any modification.

The procedures were run at JSC by persons who had limited prior

computer experience and received minimal training. These users re-

ported STARS to be a smooth running, easy to use system. The manage-

ment of data and permanent storage was totally transparent to these

users.

In the evaluation of these procedures, extraction of both inter-

mediate and final results was greatly simplified through the use of

CHARLIE. Additional evaluation capabilities, such as the processing

of ground data, were readily developed.

STARS has been shown to successfully meet all of its original

design goals, but development of the system should not stop here.

Effort should continue in the development of workspace and command

language capabilities, and the use of STARS for additional applica-

tions should be pursued.

i
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3.3 RESEARCH ON TECHNOLOGY ADAPTATION TO ARGENTINA

In this section we consider five research topics that address

known technical needs for Argentina crop inventory. These are intro-
1

duced in the succeeding paragraphs.

First, work on ground cover classes that are likely to be spec-

trally similar to corn and soybeans was carried out, both to identify

those classes and to begin to study growth and spectral characteristics

that may serve to distinguish the cover classes from corn or soybeans.

This work was principally carried out at UCB [1].

A second topic examines spectral-temporal features derivable by

profile-fitting methods to identify corn/soybean/other discrimination

information presented in several types of profile features. This

effort is aimed at extracting crop-related information that is not

sensitive to extraneous factors such as data acquisition date and

thereby working toward procedures that are automatic in that they do

not rely on a human analyst.

Due to the growing need to reduce the cost of making crop esti-

mates a third topic presents a double sampling method of combining

inexpensively obtained segment level crop estimates with ones that

are more expensive and accurate to produce a required estimate. This

discussion identifies how targets can be allocated to the crop esti-

mation methods so that estimation error is minimized subject to a

fixed total cost. This method is carried out to illustrate a minimum

error solution based on one set of cost and budget assumptions. How-

ever, the most significant aspect of this work is the method used to

set up and solve this type of optimization problem.

Another research area is aimed at improving the targets that are

selected for identification in crop inventory procedures. This study

consists of attempts to quantify the performance of such targets,

identify sources of error (especially bias) that these targets may
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introduce into an overall procedure, and improve the quality of the

system components that form or select potential targets.

The final topic presented in this section summarizes preparation

of familiar ground truth products from the data collected by the con-

sortium Argentina mission previously discussed in Section 2.4.2. The

methods used for this preparation are emphasized, and a description of

the available data is presented. This activity has produced a data

base that is available through NASA/JSC for fur-t-her work in adapting

or developing crop estimation technology for Argentina.

3.3.1 CONFUSION CROP RESEARCH

In order to carry out accurate inventory of corn and soybeans in

Argentina, it is necessary to deal with inventory conditions present

in Argentina that are not present in the U.S., to which inventory

techniques have been primarily tuned. One of these conditions is the

presence of crops other than corn and soybeans that have the same

growing season and other characteristics as corn or soybeans. The

ability to understand and distinguish these confusion crops is a key

issue in the effort to develop an estimation procedure in Argentina.

Principle Argentina confusion crops are sorghum, sunflowers, and

peanuts. Secondary confusion crops are cotton and rice. The regions

in which these crops are grown are shown by Figure 3.11. The work

described herein deals with sorghum and sunflower confusion crops

only. To date, no conclusive keys to eliminating these crops from

the confusion category have been found, although several insights have

been gained.

Corn and Soybean Features

The current inventory technologies are based on several discrimi-

nating features related to the spectral and temporal development of
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corn and soybeans in the U.S. Corn Belt. The principle feature used

is a Landsat green vegetation measure (GRABS) that tracks the growth

of the crops. Figure 3.12 illustrates that GRABS values taken through-

out the growing season track the early growth and ripening of grains,

the lengthy continuously green vegetation in pasture, and the rela-

tively late greening up of summer crops such as corn and soybeans.

Discrimination between corn and soybeans is based on several

features. Soybeans are often planted slightly later than corn, and

therefore reach their highest GRABS values later than corn. Discrimi-

nation is still possible without this temporal difference, however,

since soybeans generally have both higher GRABS and Brightness values

than corn. Soybeans also often have a greater variability in GRABS

and Brightness values (Figure 3.13).

Discussion of Confusion Crops

Intensive study of sorghum spectral characteristics have revealed

how closely sorghum parallels corn in both spectral and temporal develop-

ment (Figure 3.14). Sorghum appears to be slightly later in spectral

green-up than corn, and rarely much later. The maximum GRABS are sim-

ilar, with sorghum occasionally being greener. For any given GRABS

value, sorghum tends to have slightly higher brightness values than

corn, especially when the corn is irrigated. Occasionally, irrigated

corn is greener than the sorghum, although the sorghum remains brighter.

Generally, soybeans achieve higher GRABS values than sorghum,

and higher Brightness values when the GRABS values are much higher.

When the GRABS values of the two crops are similar, the Brightness

values also coincide (Figure 3.14).

Sunflowers are generally greener than corn, less green than soy-

beans, and brighter than either (Figure 3.15). Temporally, sunflowers

are similar to both corn and soybeans, but are much more variable than

either. Two types of sunflower spectral patterns have emerged in the
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study, referred to as higher-green and lower-green sunflowers. The

lower-green sunflowers cause confusion with corn and the higher-green

sunflowers cause confusion with soybeans. Maximum spectral separation

between sunflowers and corn seems to occur at different times of the

growing season from sunflower/soybean spectral separation.

Separation between corn and sunflowers is complicated by the

variability of sunflowers. Sunflowers are usually, but not always,

greener than corn. Th,.y are usually brighter for the same GRABS value,

exhibiting a "parallel green arm" effect. This parallel green arm is

only visible, however, at certain times in the growing season. Some

segments display a spectral progression through the year as follows:

(a) sunflowers brighter with GRABS similar; (b) corn and sunflowers

similar; (c) sunflowers greener; then (d) corn brighter with GRABS

similar at maturity and harvest.

The parallel green arm effect has also been observed at certain

times of the year between soybeans and sunflowers, and on plots of

maximum GRABS vs. Brightness; with sunflowers tending to be brighter

for a given GRABS value (Figure 3.16). Temporally, soybeans tend to

develop later than sunflowers. Spectrally, the green canopy of soy-

beans tends to be of longer duration than that of sunflowers.

The above insights provide a basis for further study into the

problem of confusion crops rather than conclusive keys to crop differ-

entiation. Many of these insights are based in distributions visible

only in a research environment, and are not as yet useful as analysis

tools in a crop inventory procedure.

3.3.2 AREA ESTIMATION USING PROFILE-DERIVED FEATURES

The estimation of corn and soybean acreage from remotely sensed

data is a complex process. Considerable effort has been invested in

attempting to automate the process as much as possible. While many
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phases have been successfully automated, the critical area of scene

classification remains at least partially dependent on the human ana-

lyst. In an attempt to minimize the amount of analyst labor, several

researchers, notably Dr. G. Badhwar of NASA [9] and Dr. W. Malila and

E. Crist of ERIM [45], have developed semi-automatic classification

and estimation procedures based on features derived from profile models.

This section describes research conducted on such a model form and a

preliminary classification/area estimation method based on profile

models. It is hoped the method will eventually become an operational

procedure requiring minimal analyst interaction or perhaps even be

fully automatic.

The classification/estimation method has many conceptual simi-

larities to the Badhwar procedure. Both model summer crop spectral-

temporal behavior with a multi-parameter mathematical representation.

Both attempt classification and estimation based on parameter values

derived from fitting a model profile to data. There are, however,

important differences between the two methods as will be seen. Since

the Badhwar procedure is well-known, it will serves as a basis of

comparison for the method described below. It must be kept in mind,

however, that while the Badhwar technique is a complete procedure for

area estimation, the method described below is still in the early

stages of development.

3.3.2.1 Mathematical Model of Spectral-Temporal Behavior

At the core of the classification/estimation method is an analy-

tical model form of the temporal trajectory of summer crop GRABS

(Greenness Above Bare Soil). A GRABS value is a simple linear com-

bination of Tasseled-Cap Greenness and Brightness given by

GRABS = 0.9962* Greenness - 0.0872 * Brightness	 (15)
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The model form is a two-piece sigmoidal profile jointed at the point

of peak GRABS; the mathematical representation of the model is;

A	 t < DP	 (16a)
1 + Q1 .(t - DP)

G(t) =

A	
t , DP	 (16b)

1 + Q2 .(t - DP)2

GM = GRABS value at time t

DP = day of peak GRABS

A = peak GRABS value, i.e., G(DP) = A

Ql = mergence to peak "green-up" rate parameter

Q2 = peak to harvest "green-down" rate parameter

Interpretation of Model Parameters

Figure 3.17 provides a graphical interpretation of the model

parameters. As can be seen, the reciprocals of the rate parameters,

Ql and Q2, define the time intervals between peak GRABS and the half-

peak point on each side. Thus, larger values of Ql or Q2 correspond

to increased rates of change of GRABS values, i.e., steeper slopes in

the profile shape. The remaining two parameters of model form, the

peak GRABS value and the day of peak are self-explanatory.

Comparing the four parameters of Equation 16 to the parameters of

the Badhwar model reveals many similarities in the types of information

provided by each. The Badhwar procedure fits a one-piece three para-

meter model to Tasseled-Cap Greenness vs. Time, and a quadratic fit to

the ratio of Greenness to Brightness vs. Time. The first fit yields

the parameters a, s and to , while the second produces the parameter a.

a and d describe the rates of "green-up" and "green-down", respectively,

and so are analogous to Q1 and Q2. (Note from Equation 15 that GRABS
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and Greenness are nearly identical quantities.) The parameter t o is

the time of spectral emergence. Given to , a and s, one can calculate

the time of peak Greenness and the actual peak value of the one-piece

profile. The parameter a from the quadratic fit is essentially a mea-

sure of the "width" or duration of the Greenness profile. As Figure

3.17 suggests, the sane type of information is available from an appro

-priate combination of Ql and Q2. Defining a quantity, SPAN, as the

measure of profile width, we see that it is given by:

SPAN = measure of profile width $ 1/Q1 + 1/Q2 	 (17)

3.3.2.2 Parameter Estimation Procedure

Having established a model profile, the next step is to estimate

profile parameters for various crops and crop types by fitting the

model to actual data. Subsequent sections describe the results of

profile fitting to 11 corn/soybean segments. The present section pro-

vides a brief discussion of the method used to fit the two-piece pro-

file to data.

The method of fitting Equation 16 to spectral-temporal data is

embodied in the program STEPFIT. The program name is descriptive or

the method employed to estimate the four-parameters DP, A. Ql and Q2.

The program steps through a series of DP values, estimating the remain-

ing three parameters at each value, in a search for the day of peak

that best fits (in a least squares sense) the data.

To explain this process in greater detail, we will use the variable

names appearing in STEPFIT. Equation 16 is fit to the data over an inter-

val of DP values. The interval is defined as NDP days on each side of

some center value DPO. Thus, there are (2*NDP +I) days in the entire

interval. STEPFIT uses the day of the maximum data value as the value

of DPQ. The program therefore initially expects to find the "true" day

of peak Greenness within NDP days of the maximum data point.
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With the initial interval defined, STEPFIT sets DP equal to the

first value in the interval, i.e., DPQ-NDP, calls ZXSSQ (a standard

IMSL non-linear regression routine) to fit the model using that day as

the peak. ZXSSQ returns, among other things, SSQ, the residual sum of

squares for the final parameter estimates. This quantity is stored as

a function of the corresponding value of DP. The value of DP is incre-

mented by DPINC, usually one day, and ZXSSQ is called again with the

new DP value. This process continues throughout the interval. The

result is a series of SSQ values as a function of the values of DP.

The value of DP with the minimum corresponding SSQ is taken as the

"true" day of peak. Since the other model parameter estimates, i.e.,

A, Q1 and Q2, are saved with each value of DP, once the " true" day of

peak is found, the optimum profile fit is already known. Figure 3.18

illustrates the above process graphically.

3.3.2.3 Profile Fitting Experiment

As mentioned previously, Equation 16 was fit to data in 11 corn/

soybean segments to assess the model's usefulness for scene classifi-

cation -- specifically, its ability to model corn and soybean spectral

behavior. An analysis was made to determine if the profile parameters

could be used to discriminate between summer crops and "other" scene

features, and within the summer crop category, between corn and soybeans.

Data Base

Eleven segments located in the central Corn Belt were used in

the experiment.* Each segment was processed to define quasi-fields,

or "blobs". Ground truth data was available for all the blobs gen-

erated in each segment. The spectral means of the blobs were trans-

formed into GRABS values and input to STEPFIT. The resulting profile

parameters are thus characteristic of corn, soybean and other quasi-

Segments 123, 141, 202, 205, 800, 832, 842, 852, 853, 877, 881.
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fields. This is in contrast to the Badhwar procedure in which profile

parameters are computed for individual pixels.

Two types of blobs were identified: those containing interior

pixels as well as blob boundary pixels (big blobs) and those consist-

ing of only boundary pixels (little blobs). The interior pixels of

big blobs are considered to be spectrally pure, i.e., free of misregi-

stration effects. Big and little blobs were subdivided further into

those blobs whose ground truth classification exceeded 5/6 in any crop

class (i.e., at least 5/6 of the blob's pixels had the same ground

truth classification) and those that didn't. For the big blobs, this

distinction was made by considering the ground truth classification

of interior pixels only. Similarly, the spectral means of big blobs

were computed solely from interior pixel spectral values.

The data base thus contained four levels of "signature purity".

The first level, represented by big blobs with greater than 5/6 ground

truth purity, consists of signatures contaminated by neither crop mix-

tures nor misregistration. The second, little blobs with greater than

5/6 ground truth purity, consists of signatures which are potentially

impure due to misregistration. The third, big blobs with less than

5/6 ground truth purity, contains signatures which are impure due to

crop mixtures but not misregistration. The fourth level, represented

by little blobs with less than 5/6 ground truth purity, contains sig-

natures which are impure due to both crop mixtures and potential mis-

registration.

Profile Fitting Results

After computing profile fits to all blobs in the 11 segments, an

analysis was made to determine the efficiency of profile fitting in

the four signature purity levels. "Efficiency", in this context,

refers to the number of blobs that were accurately fit by Equation 16.
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Accuracy or goodness-of-fit (G-O-F) is quantifiable in a number of ways.

The program STEPFIT computes for each blob the following measure of

goodness-of-fit,

G-O-F -- 1 _	
[PV(t) - D(t)]2	

(18)
[D(t) - D]

where

PV(t) = computed profile value at time t

NO = actual data value at time t
D = mean value of data values D(t)

and the summations are over the number of data points (acquisitions).

From Equation 18 we see that G-O-F can have a maximum value of 1.00,

corresponding to perfect fit, while the minimum value is theoretically

unbounded.

G-O-F = 0.75 was arbitrarily chosen as the boundary between two

classes of blobs: well-fit blobs (i.e.. 0.75 < G-O-F - < 1.00) and

poorly-fit blobs (G-O-F < 0.75). In addition, there exists a third

class, those blobs not fit at all. This situation occurs when ZXSSQ,

the non-linear regression routine used in STEPFIT, is unable to con-

verge upon the set of profile parameters which best fit the data.

This may occur for a number of reasons, but the most common is simply

the inability of Equation 16 to adapt to certain spectral-temporal tra-

jectories. This characteristic can be exploited to advantage as we

shall see.

Table 3.6 summarizes the profile fitting efficiencies observed

for the four classes of signature purity. In Table 3.6 , "pure"

denotes greater than 5/6 ground truth purity and "impure" indicates

less than that.

Tables 3.7 and 3.8 further subdivide the pure blobs into four

components: corn, soybeans, vegetated non-agricultural (e.g., pasture)

and unvegetated non-agricultural. These four classes comprise more
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TABLE 3.6. OVERALL SUMMARY OF PROFILE FITTING EFFICIENCY

Class No. of Blobs % Not Fit % Poorly Fit X Well Fit

Pure Big Blobs 3581 17.0 12.1 70.9

Pure Little Blobs 4643 18.0 23.3 58.7

Impure Big Blobs 1459 13.1 17.2 69.7

Impure Little Blobs 4701 14.2 22.7 63.1

TABLE 3.7. BREAKDOWN OF PURE BIG BLOBS

Class

Corn

Soy

Non-Agricultural
(Vegetated)

Non-Agricultural
(Unvegetated)

% of Blobs % Not Fit % Poorly Fit % Well Fit

1134 2.9 8.2 88.9

1334 1.9 5.3 92.8

943 53.7 22.6 23.8

170 27.1 33.5 39.4

TABLE 3.8. BREAKDOWN OF PURE LITTLE BLOBS

Class

Corn

Soy

Non-Agricultural
(Vegetated)

Non-Agricultural
(Unvegetated)

% of Blobs % Not Fit % Poorly Fit % Well Fit

	

808	 8.8	 18.6	 7.26

	

1745	 5.9	 16.0	 78.1

	

1229	 31.5	 29.2	 39.3

	861	 31.7
	

34.1	 34.1
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than 90% of all pure blobs in to 11 segments. (The remaining less

than 10% were blobs for which ground truth was unknown or unavailable.)

Table 3.6 shows only small differences between the four levels

of signature purity. As might be expected little blobs are fit well

less often than are big blobs, however, blob purity has only a small

effect on whether or not a blob is fit well. Indeed, pure blobs appear

more likely to t2 not fit at all compared to impure blobs. This effect

can be explained by considering Tables 3.7 and 3.8. When pure blobs

are resolved into their four component classes, it is seen that the

vast majority (80-90%) of those not fit fall into the non-agricultural

category, especially vegetated non-agricultural. For example, Table

3.6 shows that 17%, or 610, of the 3581 pure big blobs were not fit.

Table 3.7 shows that 53.7%, or 506, of the 943 pure big vegetated

non-agricultural blobs were not fit. Thus 506 of the 610 pure big

blobs not fit were vegetated non-agricultural. An additional 46 were

unvegetated non-agricultural.

The reason a smaller percentage of impure big blobs were not fit

may also be explained. In the 11 segments, most of the impure big blobs

were mixtures of summer crops with other that was spectrally similar to

summer crops. The spectral-temporal pattern of the mixture blob was

therefore "summer-crop-like" in appearance. Such a blob is more likely

to be fit by Equation 16 than is a blob with a purely non-summer crop

appearance. This is evidenced in Table 3.6 for both little and big

blobs.

As seen in Tables 3.7 and 3.8 , only a small fraction of pure

corn and soy blobs were not fit, while a significant number of pure

non-agricultural blobs were not fit. Indeed, in the 11 segments ana-

lyzed, if a pure big blob was not fit its probability of being non-

summer crop was over 90%. This suggests that a reliable first order

separation of summer and non-summer blobs is possible using only a
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single profile parameter (G-O-F) and a simple binary decision (fit or

not fit). To achieve more refined Summer/Other separation of discrimi-

nation between rrrn and soy requires the Other profile parameters as

discussed in the following section.

3.3.2.4 Classification Feature Space

A six-dimensional feature space spanned by G-O-F, SPAN (defined in

Equation 17), and the four parameters of Equation 16 was analyzed to de-

termine the potential separability of Corn, Soybean, and Other (vegetated

and unvegetated non-agricultural). Only pure big blobs were considered

in the analysis to ensure relative signature purity. The use of pure

big blobs is analogous to the use of "pure" pixels to train an auto-

matic classifier in the Badhwar procedure. In that procedure, "pure"

pixels - those identified as being within field interiors and considered

by an analyst to be pure Corn, Soy or Other - are profile fit. The re-

sulting parameter values are used to adjust classification boundaries

which are applied to the remaining pixels in the scene. Such adjust-

ments allow the procedure some adaptability to the growing conditions

in a particular region.

The analysis of the six-dimensional space used pure big blobs to

define the parameter values characteristic of Corn, Soy and Other.

Ideally, each class would occupy a distinct region in the feature

space allowing for deterministic classification. However, in practice,

this was not the carp . The parameter distributions of the three classes

tended to overlap to some degree. Typically, the distribution for Corn

fell between Soy and Other and was overlapped by each.

Figure 3.19 is a semi-quantitative presentation of the relation-

ships between Corn, Soy and Other in each of the feature space's six

dimensions. The positions of each class are intended to correspond to

the medians of their respective distributions, although the scales of

each parameter are arbitrary. The figure is representative of pure

\
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big blobs that were fit. As can be seen, ether is most distinct from

Corn and Soy along the dimensions G-O-F &rd SPAN, while Corn is most

separable from Soy along the A dimension.

Figures 3.20 and 3.21 show the actual 1.'Astributions observed over

all 11 segments for two of the pa-ameters, A and SPAN. Again, the

distributions are for pure big blobs that were fit. Figure 3.20 shows

that although Corn and Soy have relatively distinct distributions of

peak GRABS, the Corn and Other distributions are completely overlapping.

This illustrates the major obstacle encountered in attempting classi-

fication based on parameter values - namely, the separation of Corti

from we i-fit Other.

A partial solution to this problem is suggested by Figure 3.21,

the distributions in the parameter SPAN. Other blobs tend to have

larger SPAN values than either Corn or Soy. There is still substan-

tial overlen between Corn ar gil Other, but this is not as serious as it

would appear for the following two reasons. The first is that the

entire Other distribution of SPAN is not shown in Figure 3.21(c).

Over 25% of the pure big Other blobs fit hi!'! SPAN values in excess of

250. Thus, the portion of the Other distribution overlapping the Corn

distribution is less significant than it appears. The second reason

is that the Other blobs making up the overlapping portion (i.e., SPAN

150) tend to have low values of G-O-F (median value - 0.50), and so

could be separated from Corn ba yed on that p rameter.

Once Other is separated from summer crops, Corn and Soy pure big

blobs are distinguishable using only a few parameters. Figures 3.20

and 3.21 suggest that they are fairly distinct in a plane spanned by

A and SPAN. This is indeed the case as shown in Figure 3.22 where the

central portion of each distribution has been outlined.

It should be emphasized that the distributions shown in Figures

3.20, 3.21 and 3.22 are composed of data from all 11 segments. The

11 segments represent a variety rF graving conditions and planting

dates; at least one segment contained stressed soy. The potential
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separability of Corn, Soy and Other illustrated in these figures might

be improved on a segment by segment basis. In other words, adjusting

the classification decision boundaries according to the partiuclar con-

ditions of a segment, as in the Badhwar procedure, might improve classi-

fication accuracy. However, the distributions illustrated in Figures

3.20, 3.21, and 3.22 suggest that fixed decision boundaries in the

feature space could be used successfully. If this proves to be true,

a fully automatic classification procedure becomes a viable concept.

3.3.2.5 Preliminary Crop Classification Experiment

A preliminary strategy for classifying pure big blobs was formu-

lated and tested in an experiment. The basic approach used was as

follows. All blobs not fit were classified as Other. This follows

from the observation that over 90% of the blobs not fit were Other.

The remaining blobs were separated into Summer Crop and Other based

on a Stage 1 discrimination. The Summer Crop group was then resolved

into Corn and Soy based on a Stage 2 discrimination. The number of

pixels allocated to each class was totaled and converted into a per-

centage. The results were compared with the known ground truth per-

centages of each class.

The experiment was conducted on a segment by segment basis. The

Stage 1 and Stage 2 discriminations were accomplished by applying a

segment specific optimum linear discriminant to the data. The linear

discriminant was calculated based on segment specific parameter dis-

tributions of the well-fit (G-O-F 0.75) pure big blobs. Thus, to a

large extent, the discriminant separated the same data distributions

it was "trained" upon. The key objectives of the experiment were to

assess the blanket classification of not-fit blobs as Other, and the

classification of poorly-fit blobs based on the parameter values of

well-fit blobs.
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Table 3.9 shows the results of the experiment for each of the

11 segments. Both the estimated and true percentages apply to pure

big blobs only.

In all but Segment 877, the estimated percentage agrees fairly

well with the true percentages. In Segment 877, for an as of yet

unexplained reason, a large percentage of fit Corn was classified as

Other. The error is evenly split between well-fit and poorly-fit Corn.

Most of the remaining segments show a slight bias toward Other. This

is to be expected due to the few not-fit Corn and Soy blobs being

classified as Other. A compensating adjustment of the linear discrimi-

nant - i.e., one that biases the Stage 1 classification toward Summer

Crop - could probably eliminate this bias. No definite trend was noted

with respect to poorly-fit blobs. They tended to be misclassified and

classified correctly with nearly equal probability, although poorly-fit

Other was generally recognized as Other.

3.3.2.6 Deriving Area Estimates from Feature Space Classification

Given that crop classification based on profile parameters is

possible, the next step is to generate an area estimate based on those

classifications. There are several possible approaches to this prob-

lem. One would be to simply fit all blobs, classify them based on

their profile parameters, and aggregate the number of pixels allocated

to each class. However, this approach ignores the errors likely to

arise from applying decision boundaries derived from pure big blobs

to blobs which are little and/or impure. A second approach might be

to classify big and little blobs independently using separate decision

boundaries for each. Unfortunately, it was observed that the parameter

distributions for pure little Corn. Soy and Other blobs tended to

cluster together compared to pure big blobs. This makes the accurate

classification of little blobs a more difficult task. A third approach

might classify only big blobs, generate an area estimate for them, and

then somehow extend that estimate to the little blobs, as in the C/S-1A.
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TABLE 3.9. RESULTS OF CLASSIFICATION EXPERIMENT \

Sego:-- ,t 123

Class Estimated X True X

Corn 41.5 41.4
Soy 36.2 37.8
Other 22.3 20.9

Segment 202

Corn 22.9 25.7
Sov 34.3 37.0

Other 42.8 37.3

Segment800

Corn 63.5 64.9

Sov 26.4 26.0
Other 10.1 9.1

Segment 84 2

'.orn 49.0 51.3
Sov 34.8 34.8

Other 16.1 13.3

Segment 853

Corn 48.9 50.8
Sov 29.6 30.8
Other 21.5 18.4

Segment 881

Corn 47.1 47.8

Soy 6.1 6.8
Other 46.8 45.4

Segment 141

Class Estimated % True X

Corn 26.7 26.7
Soy 20.5 18.6
Other 52.8 54.6

Segment 205

Corn 20.7 17.2
Sov 62.8 64.0
Other 16.5 18.8

Segment 832

Corn 19.8 20.2
Soy 54.8 57.8
Other 25.4 22.0

Segment 852

Corn 36.4 37.3
Soy 27.2 29.9
Other 36.3 32.7

Segment 877

Corn 28.2 55.2
Soy 23.5 25.9
Other 48.4 19.0
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None of the approaches outlined above adequately addresses the

problem of impure or mixture blobs. While this problem is certainly

not unique to profile based procedures, it is one of the most formida-

ble obstacles to a fully automatic area estimation procedure.

There are then several areas of research in which effort is re-

quired before a complete area estimation procedure can be developed

from the feature space classifications. One is determining the

classification accuracies possible with little blobs. Another in-

volves a study of mixture blobs to see if they exhibit any character-

istic behavior in the feature space that would identify them as being

impure. Yet another is a complete assessment of the use of fixed

decision boundaries in the parameter space.

3.3.2.7 Summary and Conclusions

A summer crop spectral-temporal profile model and profile fit-

ting procedure has been developed which accurately fits summer crop

behavior and discriminates against (does not fit) non-summer crop

behavior. A six-dimensional feature space based on the profile para-

meters was analysed and was found to have potential for the automatic

or semi-automatic classification of Corn, Soy and Other. With further

research, it is felt that an automatic or semi-automatic classifica-

tion/area estimation procedure could be developed from the profile

techniques described above. Such a procedure would operate as an

end-of-season technique and would require four well-timed acquisi-

tions as a minimum.

3.3.3 ESTIMATING ACREAGE BY DOUBLE SAMPLING

3.3.3.1 Introduction

In crop inventory application, as in many forms of survey sampling,

there may be two, nominally competing, techniques of measurement avail-
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i	 able, each with its associated per sample variance, bias, and cost.

If it is necessary to choose one or the other technique, and if the tech-

niques both have an acceptably small bias, the answer is well known:

Choose the technique with smaller cost-variance product.

More often it is not necessary to choose strictly among measure.

ment techniques. Rather, it is possible to make r-ome of both kinds

of measurements and mix the results to obtain an overall lower vari-

ance at the same total cost, even when one of the techniques, when

used alone, has an unacceptable bias. Consider a low cost, biased,

high variance technique and a high cost, ( nearly) unbiased low vari-

ance technique whose results on the same samples are well correlated.

We can view the high cost technique as a method of calibration of the

low cost technique. The calibration is performed by double sampling

wherein the bulk of the samples will be measured inexpensively, and a

certain subset of samples are measured by both techniques. The entire

set of measurements is then used to make a regression estimate which

is unbiased with respect to the more expensive measurement technique

and lower variance (than either technique used separately) for a given

total cost. The conditions for which this is true are again given by

Cochran [18]. The answer (the number of double and single samples

allocated) is obtained by minimizing the variance of the estimator

subject to a fixed total cost. Such situations are most likely to

arise in practice if the competing techniques in question share some

substantial portion cf their overhead costs in .common, e.g., if the

more expensive technique is a more extensive or thorough application

of the lower cost technique.

The USDA's Domestic Crop/Land Cover Project utilizes double

sampling techniques to adjust a Landsat-based estimate over a large

region by the use of an estimated regression relationship between the

Landsat-based and ground survey-based estimates over a subset of the

region.
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The application discussed in this section centers around several

Landsat-based techniques for estimating crop acreages, namely: a

fictional perfect procedure, a relatively expensive analyst-intensive

use of Landsat data, and a less expensive but closely related method

of using Landsat data. However, the application studied in this

report is of more general interest than described above in two sig-

nificant ways:

a) The quantity to be estimated is multivariate, i.e., the

acreages of two or more crops (in particular, corn and

soybeans) simultaneously.

b) The cost constraints are more general, consisting of

limitations on two or more types of resources (analysts

and computers) as well as total cost.

In this more general situation one must define a suitable objec-

tive function to minimize (replacing the variance) subject to the

(more elaborate) constraint set.

In the next section we describe briefly the double sampling solu-

tion algorithm and in the section following we present applications of

the technique to hypothetical constraint sets.

3.3.3.2 Description of the Double Sampling Approach

The solution algorithm for the double sampling optimization prob-

lem is most completely described in Pont, Horwitz b Kauth [53], and a

synopsis is given in the paragraphs below.

First, an initial determination is made as to whether double

sampling would be beneficial. From [18] double sampling would be

used if:

c	 _	 p
2

c	 (1 - 2)2
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I	 where

c - cost of more expensive technique;

c' - cost of less expensive technique;

p = correlation (multiple correlation) betwe6n

results of two estimation techniques

The greater the cost ratio, or the greater the correlation of answers

from the two techniques, the more valuable double sampling becomes.

Second, once double sampling is found useful the optimum sample

allocation is determined. This requires that a suitable object func-

tion be found:

F(n, n' )

where

n is the number of samples allocated to the more expensive

technique;

n' is the number of samples allocated to the less expensive

technique.

This function could be the variance of one crop estimate, or a combina-

tion of the variances of several crop estimates. Then the problem may

be formulated as finding (n, n') that minimizes F subject to a con-

straint set:

	

[
n
" ]A 	 -1 b	 (where A is a matrix and b a vector)

	n 	 n'

n and n' must be positive integers
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This is a nonlinear integer programming problem with linear con-

straints. The solution method used depends on F decreasing with n

and n'. For each possible value of n, the largest possible n' within

the constraints is determined, and F computed. The value of r. mini-

mizing F determines the solution point.

Finally, once the sample is taken and procedure results tabu-

lated, the overall estimate is determined as follows. We denote the

results obtained for the inexpensive procedure samples as

n'
{xi} i=1

and for the expensive procedure samples as

n
{yk} 

k=1

The linear relationships

( y - µy ) = B(x - u x ) + e

whe re

e = random variable with mean 0

is assumed to associate the two types of results using y k and the subset

of {x i ) that cover the samples, the overall final estimate is

yk=y+b(x''x)

where

Y_ is mean of yk

T is mean of those x i that cover the same samples

as the y k (n of the n' values of x)

z' is the mean of all xi

b is the least squares estimate for B based on

the common samples.
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3.3.3.3 Example Application

In this section, two examples of double sampling are considered.

First, the procedure and data used in the analysis will be described, 	 i

then the example problems will be presented and finally results acid

comments will be given.

The examples considered are based on the C/S-1 corn and soybeans
t

procedure discussed in Section 3.2.7. This procedure generates two

types of crop estimates: (1) Stage 1 estimates that are produced

early in the procedure (before analyst labeling), and (2) Stage 2

estimates which comprise the final results of the procedure. We wish

to produce many Stage 1 estimates, and a smaller number of the more

expensive Stage 2 estimates, in order to achieve better overall per-

formance (e.g., lower variance) for a given cost.

The data base used in the analysis is composed of the corn and

soybean segment estimates, both Stage 1 and Stage 2, that were obtained

from 39 segment processings of Procedure C/S-1 carried out in early

1981 at JSC. This data base is more fully explained in Section 3.2. .

In the first example, we establish a hypothetical problem that

an estimation system manager would face. Table 3.10 presents a list

of the constraints, which were selected to be reasonable within the

C/S-1 procedure operational environment. The question being asked is:

"How many Stage 1 and how many Stage 2 samples should be processed to

obtain the best overall estimate"?

In the second example, Constraints 2 and 3 are changed to 320

analyst hours and 30 computer hours.

As described in the previous section, this question is tackled

by mathematically setting up the constraint space, identifying the

objective function to minimize, and carrying out an integer program-

ming algorithm to minimi-e the objective function subject to the

constiO nts.
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TABLE 3.10. HYPOTHETICAL CONSTRAINTS FOR CONDUCTING C/S-1
IN AN OPERATIONAL ENVIR0NMENT

1. Manager has 2 weeks (ten 8-hour working days to obtain an estimate.

2. The system has five analysts at its disposal, i.e., a maximum of

400 hours.

3. The system has at its disposal a maximum of 35 hours of computer

time.

4. Costs of resources for processing include:

Stage 1	 2 analyst hours	 .25 computer hours

Stage 2	 8 analyst hours	 .5 computer hours

5. The data for sufficient number of segments is available and is

not counted in the cost analysis.
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The constraints reduce to the following, where n' is the number

of samples of less expensive (Stage 1) technique, and n is the number

of samples of the more expensive (Stage 2) technique.

(1) 2	 8 	 [n-]	 [400]
<	 (for Problem 1)

0.25 0.5	 n	 35

[320
<	 (for Problem 2)

30

(2) n' > n	 (since Stage 1 estimates always exist

if a Stage 2 estimate is produced)

(3) n > 10	 (to insure sufficient significance in

the relation that is formed between the

two types of estimates)

These constraints are plotted in Figures 3.23 and 3.24 for the two

examples.

In a one-crop example, the object function is simply the variance

of the overall crop proportion estimate. When more than one crop is

involved, such as in the examples presented in this section, there are

many reasonable object functions. For instance:

(1) Variance of corn estimate

(2) Variance of soybean estimate

(3) Sum of variance of each crop estimate

(4) Maximum of variance of each crop estimate

In the results presented below, each of these was included in the eval-

uation.

M.
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Denoting the Stage 2 corn and soybeans estimates as y  and ys,

and the Stage 1 corn and soybeans estimates as x  and xs , the sample

correlation matrix of

yc

x 

Ys

x 

was

1.00	 .79	 .34	 .26

-	 1.00	 .15	 .11

-	 1.00	 .90

-	 1.00

The multiple R was not significantly larger than the simple correla-

tions so only simple regression was used.

The results of the two examples are given in Table 3.11. The

middle two columns represent the results of the optimized sample

selection. Precision relative to baseline is a measure of improved

performance resulting from the optimized choice, compared to the base-

line alternative of single sampling, using the same resource constraints.

The number of samples in the baseline mode is the maximum number n of

Stage 2 estimates that can be afforded (n= n'). The column called

"solution point" is the label of points in Figure 3.23 or 3.24 that

represent the optimum sample selection.

In both examples, there is a clear gain in accuracy by using double

sampling, and the amount of improvement is between 24 and 54%. The choice

of object functions made some but relatively little difference in the

results of optimization, but had a moderate effect on the measurement of

'	 relative precision.
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3.3.4 TARGET DEFINITION ANALYSIS

As discussed in Section 3.1, target selection is an important

component in crop area estimation technology. The use of quasi-fields

has been emphasized in our work, but it is by no means tNe only work-

able approach. Table 3.12 lists the principal of-.ca along with com-

parative attributes of each. While the existence of these alternative

approaches is recognized, we have not carried out comparative evalua-

tions of them. This section will concentrate primarily on using quasi-

fields as targets for labeling.

3.3.4.1 General Remarks on Bias Characteristics Associated
With Quasi-Field Definition

A key goal in defining quasi-fields is to represent true agri-

cultural fields on the ground. If this objective is met, then quasi-

field interiors are pure, and the area associated with each quasi-field

is accurate. In this case, labeling of crop type of a field is more

likely to be correct, and the combining of such lables, weighted by

area, to form an estimate will not introduce bias.

But the current quasi-field algorithms fall short of this goal.

They do not perfectly locate a boundary between two distinct fields.

In most cases, the algorithms successfully detect that the fields are

distinct, but often there is inaccuracy in assigning pixels near t{ie

boundary to the correct field. This can introduce bias.

Figure 3.25 conceptually shows the effect of this inaccurate

assignment. In the illustrated artificial region consisting of just

two fields, suppose error is present in the assignment of two pixels.

The results is a bias of 8% in an area estimate made over the region.

Bias will be introduced over a larger region as well, when assignment

error of near-boundary pixels tends to be preferential to one crop

over another. This effect has been observed, and will be quantified

later.
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TABLE 3.12. LABELING TARGET APPROACHES

Pixels ("dots") selected
from the scene

Approach

Selected Pixels ("dots")

Selected Pixels, as Controlled
by Quasi-Field Definition
("relocated dots")

Define Quasi-Field

Select Blocks of Pixels
(e.g., 3 x 3)

+ Computationally inexpensive

- Mixed pixels must be handled or
labeled

- No longer inexpensive or simple

• Bias characteristics same as
quasi-field

+ Boundary pixels are identified
and handled

- No advantage of averaging pixels

- Computationally expensive

• Boundary pixels are identified
and handled

• Target is "natural" to a human
labeler

• Noise reduction by averaging
over pixels

- Quasi-fields imperfectly repre-
sent actual fields

+ Computationally inexpensive

- Mixed blocks especially hard to
handle

- Unnatural target

+ Noise reduction

Identify Spectral	 - Distribution labeling requires
Distributions	 technology, different from above,

not yet perfected

+ Above approaches may not work in
areas of very small fields

• Bias characteristics more diffi-
cult to address
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a a a

r^
br b b

a a ar	 ^

^r
b b b

True Boundary

i

Quasi-Field
Boundary

a
field number

b

= pixels marked as boundary

Field a	 Field b

True crop area 12 (50X) 12 (50X)

True interior area 8 (50X) 8 (50X)

Estimate of interior area 10 (62X) 6 (38X)

Estimate of total area 14 (58X) 10 (42X)

FIGURE 3.25. EFFECT OF INACCURATE QUASI-FIELD BOUNDARY PLACEMENT

ON A CROP AREA ESTIMATE
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As shown in the figure, this bias is not Pvoided by eliminating

edge pixels. Furthermore, the bias is not avoided by using a pixel

("dot") labeling algorithm ( rather than a one that labels quasi-fields)

when a "dot-relocation" step is used to move pixels from the boundaries

to the nearest quasi -field. This can most easily be seen by trying a

100% sample of dots on the region in Figure 3.25 and relocating the

edge dots.

Evidence is presented in what follows that the situation just

described hypothetically is in fact characteristic of presently used

quasi-field algorithms.

3.3.4.2 Evaluation of BLOB as a Subcomponent of an Area

Estimation Procedure

This section presents a detailed evaluation of the quasi-field

algorithm BLOB [54] as a component of an area estimation procedure

such as the one described in Section 3.2. This evaluation provides

comparative information before and after two modifications in the use

of BLOB that were made when the procedure was updated from C/S-1 to

C/S-lA. First, the modifications will be described, then the evalua-

tion procedures will be presented and finally, the results will be

given.

The first modification involves the selection of spectral inputs

to the algorithm. The change was to select at least one acquisition

prior to spectral emergence of corn and soybeans, and not to use the

Brightness channel of early-season acquisitions. The necessity for

this change arises since sufficient information must be present in

the spectral inputs so that the important crops can be distinguished.

Without the change BLOB was often unable to distinguish classes such

as pasture from corn or soybeans, and so these classes were sometimes

lumped into the same field. The early-season Brightness channel was
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eliminated since at that time of year, Brightness information was

sometimes found to falsely signal a boundary.

The second modification was intended to improve the purity of

quasi-fields by making BLOB more sensitive to crop spectral differ-

ences that are present only within short intervals in a growing sea-

son. In order to do this, separate spectral decision thresholds were

established for pre-season acquisitions and corn/soybeans separation

acquisitions. A difference flagged by any one of these thresholds

could then force separation into two fields.

Some terminology used in describing BLOB and its performance is

needed at this point. Each pixel in a scene is assigned to exactly

one blob, such that each blob consists of spatially connected and

spectrally similar pixels. A pixel is in the interior of a blob if

the pixel and all of the four strong neighbor pixels fall in the same

blob (algorithm STRIP); otherwise the pixel is in the exterior. A bii

blob is a blob that has at least one interior pixel. Thus a segment

is composed of three strata -- big blob interiors, big blob exteriors,

and little blob exteriors. In the context of the C/S-1 and C/S-lA pro-

cedure (Section 3.2), a subset of big blobs is selected as labeling

targets by a randomizing procedure, and the selected blobs are labeled

according to the spectral character of the interior pixels. The blob

labels are aggregated to form a segment estimate.

The evaluation consisted of computing and analyzing several per-

formance measures listed below:

(1) Fraction of Scene

(a) in big blob interiors

(b) in big blob exteriors

(c) in little blobs
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(2) Purity

(a) of big blob interiors

(b) of big blob exteriors

(3) Impure Big Blobs Interiors (purity 80% rule)

(a) number of them

(b) percent by area of all big blob interiors

(4) Bias Indication

(a) purity of corn big blob interiors

(b) purity of corn big blob exteriors

The ground truth used for evaluation was established in the form of

fraction of an area that is corn, soybean, other and unknown ground

truth. Blobs containing more than 50% unknown were not used in the

evaluation and other blobs containing some unknown ground truth were

treated by reassigning the unknown area in proportion to the remaining

three classes.

Purity (of a blob, or of a stratum of a scene) was computed as

the largest of percent corn, percent soy, percent other, after the

correction for unknown ground truth. Then mixed quasi-fields were

identified as one whose interior pixels have purity less than a purity

threshold. The threshold whose setting is an arbitrary matter of defini-

tion was held at 80% in the data that follows.

Purity values were given for corn blobs as well as for all big

blobs since there was significant bias in favor of overestimating

corn in the C/S-1 procedure. These values can help to -inderstand the

cause for some of this bias.

Three configurations of BLOB were tested. They are:

(A) the version used in C/S-1

(b) the same BLOB algorithm as in (A), but with revised

acquisition selection procedure (first modification).
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(C) the version used in C/S-lA. This involves both the

revised acquisition selection and the spectral decision

threshold modification (first and second modifications).

The two modifications, especially the change in spectral inputs,

clearly improved the performance. Blob purity was improved, dramati-

cally from about 85% to about 90% and the fraction of the scene in

mixed blob interiors was reduced from 26% to 16% (Tables 3.1.5, 3.14).

However, there was a negative side to the changes. The percent

of the scene in blob interiors was decreased by 8% and the percent of

the scene in small blobs (with no interior pixels) was increased by

11%. This factor by itself could increase bias in a segment estimate

unless methods for extending estimates to this stratum are suffi-

ciently robust.

Of the two modifications, the most significant one is the change

of spectral inputs. Most of the increased purity and decreased occur-

rence of mixed blob interiors was due to its effect. The unwanted

changes in balance between big and little blobs was due about equally

to each of the two changes.

The net impact on the procedure of making the two changes was

positive. Additional evidence of this net positive impact has been

given in Section 3.2 in which procedure test results were discussed.

An important effect that was observed in the C/S-1 procedure

results was a positive bias in favor of corn. In order to examine

this effect, purity was computed separately for the set of corn

blobs. The results show that corn blobs are very consistently less

pure than all blobs taken together. The magnitude of the difference

in purity is about four percentage points for blob interiors and

about eight percentage points for blob exteriors, and these differ-

ences hold true independent of which configuration of blob was used.
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TABLE 3.14. SUMMARY RESULTS OF BLOB SUBCOPPONENT TESTS

Fraction big blob interior

Fraction big blob exterior

Fraction little blob

Number of mixed big blobs

Number of big blobs

Fraction of blobs mixed

Interior area fraction mixed

Interior purity (big blobs)

Interior purity (corn big blobs)

Exterior purity (big blobs)

Exterior purity (corn big blobs)

Blob Configuration

A B C

.36 .32 .28

.52 .49 .48

.13 .19 .24

10.7 71 74

464 436 467

23.1 16.3 15.3

25.6 15.4 16.4

87.3 91.7 92.3

82.9 87.9 88.7

70.0 75.7 77.6

62.3 67.8 69.9
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This observation fulfills the expectation developed in the pre-

ceding section that inaccurate blob boundary placement would sometimes

occur and cause bias. In the next section, some reasons for this

behavior are postulated.

3.3.4.3 Bias and Its Causes and Treatment

In the last section, it was shown that the BLOB algorithm acts

in a biased way toward at least one specific crop. During a signifi-

cant part of the growing season, e.g., when corn is rapidly accumu-

lating biomass and then becoming ripe, corn's spectral distribution,

first, is more narrow than most other crops, especially soybeans,

and second, is more centrally located in spectral space. The first

characteristic (narrow spectral distribution) is thought to interact

with BLOB's algorithm in a way that tends to incorporate more variance

into each corn blob before BLOB forces a new blob to be defined. The

second characteristic (central spectral location) can allow certain

mixtures of non-corn crops to look like corn and can cause a spectral

mixing between corn and most other crops. Any or all of these ex-

planations (or others) could be the cause of the observed low corn

purity and bias.

Other, quasi-field algorithms also are subject to similar effects,

perhaps for different reasons. For example, if a fixed spectral de-

cision line is used, scene spectral effects can cause bias in favor

of one crop or the other.

In an example run of a different quasi-field algorithm [55)

based on superposition of edges formed by spectral decision boundaries,

the presence of non-uniform purity values among crops was also ob-

served as shown in Table 3.15. We would expect this segment to ex-

hibit an overestimate of soybeans, and an underestimate of the less

pure corn and other categories. There is little guarantee that the
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TABLE 3.15. PURITIES BY CROPS IN CATE-DENNIS QUASI-FIELD
ALGORITHM (One Segment)

Purity of

Corn

Purity of
Soy

Purity of
Other

Quasi-Field

Interior

Quasi-Field

Edge
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i '	 direction of the bias for this algorithm is consistent, or that it

would cancel out over an ensemble of segments. The effects described

above should be taken into account in defining improved quasi-field

techniques. An improvement in purity or a reduction in purity dif-

ferences can have a favorable influence on the bias of a procedure.

If any of the above-mentioned potential bias-causing mechanisms can

be circumvented, possibly by using an edge detection and placement

approach that does not rely on specific spectral conditions, bias

may also be reduced.

3.3.5 ARGENTINA GROUND DATA PREPARATION

3.3.5.1 Introduction

In February 1981 a ground data mission in Argentina was success-

fully carried out by Supporting Research personnel from ERIM and UCB.

This activity, described in Section 2.4.2, and also in the 1981 Ground

Data Collection Report [20], generated numerous kinds of information,

most notably crop identifications for visited fields in 15 segments.

In this section, we describe an activity that used this information

and one site visited by a USDA team* to produce a digital ground truth

image, registered to Landsat data, for each segment visited.

This product, as discussed below, was configured to be as similar

as possible to ground truth products, called UGTT's, commonly used in

the AgRISTARS program. Three key di`ferences of this product from

the UGTT product are worthy of special note.

First, the nature of the Argentina survey did not permit wall-'.-

wall ground data collection in a segment. Since activities were ..I.ited

to main roads, fields visited were in linear strings within a segment.

*Segment 685, San Pedro (33°57'S/59 046'W) by C. Caudell et al,

15 Dec 1980.
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On the average 41 fields were visited in each segment (range of 18 to

117 fields) for a total of 651 fields in the 16 segments surveyed.

Second, the base map which the data collection team used for

annotation of crop codes was not high-resolution aircraft photography,

but rather Landsat imagery, enlarged to 1:85,000, for one date only.

For eight segments, acquisitions were used that had been acquired

within two months of the mission. For the rest, acquisitions used

were acquired from five to six months prior to the mission.

And finally, the Landsat data that was used was provided in a

form different from the form traditionally used. The pixels were

sampled to form a 57 x 57 meter grid, rather than the usual 57 x 79

meter grid. The segment size remained 5x 6 miles, but the number of

scan lines was increased from 117 to 162. The ground truth informa-

tion was sampled at the rate of 3 per scan line and 2 per pixel along

the scan line, as in the UGTT products, but this scan line sampling

rate is subject to the same resolution change as the associated

Landsat data.

3.3.5.2 Approach

The following steps were carried out in making the digital ground

truth products discussed above:

(1) Staff members familiar with the Landsat data, and with the

data collection activity, delineated the position of field boundaries

on the 1:85,000 base image that was annotated with the ground truth

data, and assigned field numbers. The image used for this delineation

was the base acquisition used at JSC for Landsat data registration.

(2) The delineated field boundaries were digitized on an x-y

coordinate digitizer, and recorded in a polygon format. Descriptive

information including field number and crop type was recorded with

each field polygon.
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(3) The digitizer coordinates were converted to Landsat line

and point numbers. This step required no special registration step

since the base image was already in Landsat coordinates.

(4) A computer algorithm effectively placed a 28.5 by 19 meter	
1,

grid (1/2x 1/3 pixel grid) over the field polygons, and assigned the

proper field number to each grid position. For each pixel, the ground

truth code for the associated field was placed into the output image.

(5) A quality assurance check of the encoded image data was

carried out for each site. This check consisted primarily of the

following two steps. First, a computer generated list of each field

with its associated ground truth code was &! —r:ked against the original

list provided by the data collection to-.:. 	 a map displaying

field numbers was generated. The map was ,,; az ly compared to the

Landsat image to insure proper location, shape and relationship to

other fields on the image. Once these steps were completed, any

errors detected were corrected.

(6) Both the polygon data and the encoded image are retained

in a data base. The encoded image data, which has been carefully

checked, has been made available in the form described in the next

section.

3.3.5.3 Data Base Description

The data prepared as described above exists in the form of UGTT

products (images giving crop codes). This section describes the

format of these products.

code: given

ken from

In a few

defined

not handled

This data product makes use of the crop ground truth

in Table 3.16. These codes were, as much as possible, to

those given in the 1981 Enumerator's Manual (JSC-16860).

cases additional codes (marked with * in Table 3.16) were

in order to cover conditions found in Argentina that were

by the pre-existing codes.
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TABLE 3.16. CROP CODES USED IN ARGENTINA GROUND TRUTH
DATA PRODUCTS

Crop	 Crop Code

Alfalfa 101

Corn 105

Oats 111

Peanuts 112

Soybeans 119

Sorghum 120

Sunflower 121

Winter Wheat 125

Grasses 131

Other Hay 132

Pasture 134

Trees > 8 pixels 135

Water > 5 acres 136

Non-Agricultural 140

Idle Land/Fallow 231

Previous Year Residue/Stubble 232

Mixed Crop 233

Problem Field 99

Non-Inventoried 255

Bare Soil 128*

Internal Drainage, Drainage Way 129*

Chicory 130*

Natural Vegetation (Non-Ag) 141*

Corn or Sorghum 143*

*New codes unique to Argentina data
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	 For convenience, Table 3.17 is provided to identify the status

of related Landsat data. This table presents the Landsat acquisition

used during field work, the Landsat acquisition that was used by JSC

for registration (and that was used for delineation and digitization),

and the number of acquisitions that exist.

The format of the UGTT product is Universal format [56], a for-

mat widely used at JSC. In this product, each pixel in the ground

truth image consists of one channel ground truth code. Each 2-pixel

by 3-scan line array of codes in the ground truth image represents

one Landsat pixel. As previously noted, the Landsat pixel size used

is 57x 57 meters rather than the usual 57x 79. The ground trutn code

actually stored in tape is a modification of crop code presented in

Table 3.16. If each code is interpreted as a positive 8 binary bit

number, the modification is:

Table 1 Code	 Action

less than 128	 add 128

greater than or	 subtract 128
equal to 128

(This artifact is retained in order to conform to other UGTT products

produced at JSC.)

One UC ; product for each of the 16 segments is stored in a data

base that has been made available to JSC. This data base also in-

cludes special notations for each segment identifying any special

comments or considerations.
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3.4 INVENTORY TECHNOLOGY DEVELOPMENT CONCLUSIONS AND RECOMMENDATIONS

An end-to-end analyst-based, computer-aided crop inventory method

for crop inventory without in situ training data has been developed

and tested. This procedure, termed the Baseline Corn and Soybean Pro-

cedure sought to formalize an analyst int?rpreter based technology into

one that would be essentially automatable. Detailed analysis of results

enabled the development of procedural modifications that would improve

the procedure's precision while automating certain processes, particu-

larly the analyst logic for crop identification.

In addition to the research conducted in end-to-end estimation

procedures, advanced component procedures have been examined. Initial

understanding of the spectral/temporal nature of corn and soybean con-

fusion crops, particularly sunflowers and sorghum has been formulated.

The evaluation of analytical profile techniques as a method to extract

features from multitemporal spectral trajectories revealed very pro-

mising results. Features related to a crop's rate of emergence and

senescence, growing season length and peak spectral response were

derived and found to contain sufficient discriminating potential to

produce accurate crop area estimates. Examination of the appropriate

target selection procedures for automatic labelers was initiated. It

was found that current techniques for automatic definition of 'fields'

as targets could introduce bias into estimates due to inconsistent

treatment of pixels as a function of crop class. For example, the

BLOB procedures tend to produce consistently larger targets that are

predominantly corn (due to the central position corn occupies in spec-

tral space).

As a result of the research conducted in support of the Inventory

Technology Development Project, the following key recommendations are

made:
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• The development of completely automatic techniques for crop

area estimation should be pursued; automatic technology, beyond its

operational efficiency, enables the diagnosis or problem areas in a

shorter turnaround time resulting in a more rapid development cycle.

• Much of the current research has stressed at harvest estimation,

the development of early seasons methods remains critical.

• The adaptation of Landsat-based inventory achnology from the

U.S. to the Southern Hemisphere will encounter a crop mix and agri-

cultural environment significantly different; emphasis should be placed

on developing a thorough understanding of the spectral/temporal charac-

teristics of key crops ( corn, soybeans, rice, cotton, sorghum, sun-

flowers) as well as cropping practices (e.g., crop calendars); it

should be well understood to what degree Landsat can support crop iden-

tification and discrimination in that environment so as to set realistic

expectations on the technology.

• As seen in both SR analysis in the small grains application

(Section 2 . 7) and in the ITD analysis ( Section 3.3), profile-based

technology is an extremely promising approach; efforts should be ex-

tended in this direction in addition to the expert-based methods; the

two approaches coupled in a comprehensive research program would pro-

vide a penetrating understanding of the potential of Landsat-based

crop inventory technology.

• The identification of an appropriate target provided to analyst

interpreters or to machine classifiers remains an unresolved technical

issue; the resolution of MSS results in mixture pixels that must be

interpreted or classified in an unbiased manner; in addition, multi-

temporal analysis of such targets requires highly accurate acquisition-

to-acquisition registration; both quasi - field-based and ;pixel-based

labeling strategies need to be evaluated to establish their attributes

with respect to the bias or variance that they introduce that are

unrelated to sampling but to target feature selection; in addition

methods should be explored that relax the registration requirement.
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