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â

i^ep(̂^C t
^ F

AC

IM h

h

am`

S.C. Cox and J.F. Rose

MAR ,"K 1983

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

j^
f

jE

k



TM 85022

TEXTURE FUNCTIONS IN IMAGE ANALYSIS:

A COMPUTATIONALLY EFFICIENT SOLUTION

P

4

Scott C. Cox
Eastern Regional Remote Sensing Applications Center

Goddard Space Flight Center
Greenbelt, Maryland

James F. Rose
Computer Science Corporation

Silver Spring, Maryland

March 1983

1

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland



TEXTURE FUNCTIONS IN IMAGE ANALYSIS;

A COMPUTATIONALLY EFFICIENT SOLUMN

ABSTRACT

A set of statistics that measures ivisually perceivable textures in images by use of co-occurrence

matrices has previously been developed. Presented here is a computationally efficient means for

calculating texture measurements from digital images by use of the co-occurrence technique. This

paper discusses the calculation of the statistical descriptors of image texture and presents a solution

that circumvents the need for calculating and storing a co-occurrence matrix. The results show that

existing efficient algorithms for calculating sums, sums of squares, and cross products can be used to

compute complex co-occurrence relationships d irectly from the digital image input.
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TEXTURE FUNCTIONS IN IMAGE ANALYSIS:

A COMPUTATIONALLY EFFICIENT SOLUTION

1.0 INTRODUCTION

N'

This paper presents a computationally efficient solution developed as part of the Multispectral

^f

Linear Array Supporting Science Studies (MLASSS) at the Goddard Space Flight Center (GSFC), 	 s
aE

for calculating texture statistics from digital images. Presented here are the mathematical founds-

,'}
tions of image -texture calculations based on the Spatial Grey Tone Dependence (SGTD) method

developed by Haralick ( 1) and Haralick et al. (2) and reviewed by Conners (3) and Conners and

Harlow (4).	 '!}

^f
One aim of the MLASSS is to determine the synergistic effects of increased sensor spatial,

spectral, and radiometric resolution. Spatial resolution studies at GSFC have focused in increases'
f

in image information content with increased spatial resolution and evaluation of sensor systems

with mixed spatial resolution as possible candidates for future land remote -sensing missions. To

this end texture analysis, in particular SGTD, was seen as one way to quantify the increased spatial

information apparent in 1,M;h-resolution digital imagery. This paper documents the development

and use of software at GSFC to implement Haralick 's algorithms.

2.0 BACKGROUND

Landsat-4's successful launch and subsequent successful operation of the Thematic Mapper

(TM) and Multispectral Scanner (MSS) heralded a new era in space-based remote sensing. Advances

include improved spatial resolution of 30-meters instantaneous field-of-view, 7 spectral bands and

8-bit quantization for the TM. In the future, multispectral linear array (MLA) technology will

I
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make it possible to obtain digital imagery of vastly improved spatial resolution, 10 to 15-m in the

visible and near infrared (5). In anticipation of this increased capability, several investigators have

used high-resolution aircraft scanner data to study the tradeoffs associated with increased spatial

resolution, processing strategies, and costs. A potentially serious problem has been encountered in

the use of conventional unsupervised or supervised per-pixel classifiers; as spatial resolution in-

creases, classification accuracies tend to diminish in areas of high spatial complexity (6). Further-

more, as the proportion of mixed pixels increases, classification accuracies decrease. An example

would be the decreasing classification accuracy of small agricultural fields whose size approaches

the sensor IFOV. Conversely, heterogeneous land covers characterized by small high-frequency

components tend to be averaged at lower resolutions so that classification accuracies are higher with

per-pixel classifiers. These results have been independently confirmed by Latty (7) for forested

sites.

These studies point to a need to incorporate spatial information in the classification process..

Several methods have been advocated in addition to Haralick's SGTD method; they include spatial/

spectral context, used by Tilton and Swain (8), and categorical/spatial context, developed by

Wharton (9). This paper discusses the Haralick SGTD algorithm and derives a computationally

efficient means for calculating various texture statistics derived from a spatial gray-tone co-

occurrence matrix.

Texture analysis as discussed in thip, paper is used to quantify the spatial information in a 	 r

digital image by measuring the spatial arrangement of gray tones within it. The recent literature

includes a review of various texture-analysis methods by Haralick (2) and an update by Davis (10).
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Conners and Harlow,(4) investigated the theoretical merits of various texture-analysis strategies

for quantifying image patterning. Cox et al, (11) and Weszka et al. (12) conducted empirical com-

parisons of various texture measures.

The SGTD method has been used frequently by investigators working with remotely sensed

data, including Haralick et al. (1), Hsu (13), Jensen (14) and Toll (15), Schowengerdt (16), and

Weszka et al. (12). Compared to first-order statistics such as mean and standard deviation, SGTD

has greater potential but is computationally more complex. The SGTD method transforms the

gray values within a neighborhood (window) into a two-dimensional gray-tone co-occurrence of

gray-tone pairs i and j as measured among angle a for distance d and can be interpreted as a prob-

ability matrix of gray-tone pairs. Haralick et al. (1) introduced a number of statistics based on

information theory to describe such matrices, and its put of the spatial studies of the MLASSS,

eight have been put to use at GSFC on the HP-3000-based Interactive Digital Image Manipulation

System (IDIMS) in the Applications Directorate. What follows is a discussion of these eight algo-

rithms and their implementation.

3.0 CO-OCCURRENCE CALCULATIONS

Given a rectangular matrix (window) of values (brightness), an occurrence matrix is defined

as the frequency with which a value of i precedes a value of j in the d irection a. Call this matrix

gij(a).

A co-occurrence matrix is defined as

Pij ((x) = qu(ae) + gb (a+lr)

or the sum of the occurrence matrix in one direction plus the occurrence matrix in the opposite

direction.

^r

r;
4
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It should be noted that 	
ORIGINAL PAGE 13
OF POOR QUALITY

%(c&v) = gji(a)

and

%(a) = gji(cift)
t

That is, the number of times i precedes j in direction a is exactly the number of times j pre-

cedes i in the opposite (a+,r) direction.

Consequently

Pu(a) = qu(«) + gji(a)

or alternatively

Pu(a) = gij (a) + q'ii(a)

Where glj (a) is the transpose of qu(a).

Further relationships between the co-occurrence matrix and the occurrence, or precedence,

matrix can be readily seen.

The sum of all elements within the matrix

NI NJ	 N1 NJ	 N1 NJ

7- N(a) _	 gij(a) +	 I gij(a)

NI NJ

_ 2	 qu(a); due to symmetry

Furthermore, since the precedence matrix (q) is strictly a count of relationships within the

window of precedence, the sum of that matrix is simply the number of relationships within that

window. Since each cell specifies a single relationship within the precedence matrix

4
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ORIGINAL PAGE 1.9

OF POOR QUALITY

NI N1
I Y.PU (a) _ 2N01 ; where Na is the number of a-pairs
ij

In a similar fashion

EEi2P0 = EE i2g0 
+ 

EEj2gU

and

EEUPU 
= EEUgU + EEjiqu

= a EEuqu; due to symmetry.

The occurrence matrix q is more literally a precedence matrix in that it is a count of the num-

ber of times a value i precedes a value j in direction a. The particular values that precede occur in

a subset of the original window, depending on the direction a. Specifically, in the diagrams below

the range of precedence is indicated.

0°	 90°	 45
	

135°

Range of Precedence

Similarly, the range of succession depends on the direction a,

0°
	

90°	 45°
	

135°

Range of Succession
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It should be noted in these diagrams that the number of rows (scan lines) and the number of

columns (pixels) within the range of precedence both depend on the direction ct. However, for any

given direction ac the limits on the range of precederr(,t- are equivalent to the limits on the range

of succession.

The average brightness value within the range of precedence can be expressed in two ways.

The brightness value times the relative frequency of occurrence of that brightness—summed—is one

way to express the mean:

NV
µ = E ifi

i-t

Expressed in the language of precedence and co-occurrence, that relative frequency is the

relative number of times which that brightness (i) preceded all other brightness values.
r

NV
qij

fi =— st	 where N« is the total number of a=pairs
^a

Thus, one expression for the mean is

µ = N EiEgij = N EEigij
Na	 i

z:f

A more efficient method of calculating the average brightness within the range of precedence

is only to sum all brightness values and divide by the number of a-pairs.

NS NR

A_ I I xk1/N«
k	 t'

b

Where NS and NR are the limits of the range of precedence.

ORIGINAL pUA^t-1^Y
OF POOR Q
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ORIGINAL PAGE IS
OF POOR QUALITY

The equivalence of these twq measures of average brightness points oua that

NV NV	 NS NR

EN = 17- Xk1

In a similar fashion it can be demonstrated that for the range of succession

NV NV	 MS MR

E F. jqu = 7. 1Xk 1
i	 j

Where MS and MR are the limits of the range of succession.

Again, for higher order moments of precedence or succession it can be shown that

EE :^ EINI

and

7,Eijgij = EEklXk+a,l+b

where a and b depend on the direction a.

Sum, sums of squares, and crossproducts are computationally efficient algorithms. These

translations have made it possible to compute fairly complex co-occurrence relationships by use of

computationally efficient techniques.

4.0 CALCULATION OF TEXTURE STATISTICS

Eight texture functions based on the pairs of co -occurrence were developed. The background

and application of these functions has been fully described elsewhere (1, 2, 3, 4).

Of the eight functions, three (variance, skewness, kurtosis) can be phrased readily in a com-

putationally efficient form. Three further functions (difference moment, homogeneity, correla-

r

4

tion), which are based on the cry-occurrence matrix approach, can be reduced to a more efficient
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OF POOR QUALIty	
1^

and standard form. The last two functions (energy, entropy) have not yielded an efficient solution

and still require co-occurrence calculations.

4.1 Variance, Skewness, Kurtosis

Within each window the first four moments of the brightness values were calculated. Define

µr = 1 E Xr
n

Then

µ2 = µi _ (µ1)Z

µ3 = µa — 3µs µi + 2 (µi )3

µ4 = µi — 4µ3µi + 6µ2(µi )2 — 3 (µi )4

Using those definitions, the variance is

02 
Y 

(Nµ 
1)

The coefficient of skewness is defined as

µ3
Y ^1	

(J'2)3/2

And the coefficient of kurtosfs is given as

z
µ2

These statistics require only that the four raw moments (µ=) be accumulated for each pixel

within a window as a whole.

8
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4.2 Difference Moment	 'F. POOR QUALITY

The co-occurrence formulation of the difference moment function is

NV NV

_ It I  (i j)2PiJ

r

Since this is a symmetric function [(i j) 2 = a-i)2 ] occurrence, or precedence, matrix formu-

lation is

NV NV

0 = 2 E E (ij )2 q0
i	 j

This is again the standard grouped-data formulation of a moment. Writing it in more efficient

ungrouped format,

2 
EE(X X

Na

Where, the X 1 values are the brightness values of preceding pixels and the X2 values are the

values of their successors. The summation is over the full range of precedence.

4.3 Homogeneity

The co-occurrence formulation of homogeneity is

NV NV	 1
r = 7- 7 F+-+ (i j)2 Pij

Once again we pan observe the symmetry, and the precedence formulation is similar:

NV NV	 1
T= 2	 1 1+ (i j )2 q..

j	 i]

And finally, thf• more standard ungrouped form of this moment equation:

9
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I' — EE 
1 +(X i 1

N 
	 Xz),

4.4 Correlation

The co-occurrence formulation of this function has been expressed as

(i—m) 0—m) Pij
P —
	 (i-M)2 P..j	 u

where m = EEN/EEpu

In expar, ,icd form.

EEijpi, — MZZ ipij — mEEjp ij + m^ E_ EpijP	 EEO pij — 2mEEipij + in' pE u

EEjpij EEOpu since Pij is symmetric

and EEipij = m=pij

^-	 therefore

EEijpij — m 2 EEpij
P EEi 2 pij — m E p J

In terms of the precedence matrices the correlation can be expressed

2ZZijp^1 — 2m2 N«
P EEi2 g ij + E2:j l g ij ' — 2M2Na

And in ungrouped terms

i

ff
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EEX, Xz

Na
_ms

Pa 
1 =X ZIN

a	 a

f	 In addition

niz = tEEipu )^
2Na

^EEiqu + EEjgij')z

=	 2Na

= ( EEX, EEX2 )z

2Na 214'M

which is the square of the average of the mean precedence and the mean successor value.

4.5 Energy and Entropy

Neither of these functions has been found amenable to any simplification. The energy func-

tion has been expressed

NV NVE,=I I put

and the entropy function

NV NV
Ez =	 I 1_pij log pij

1	 j

As can be seen, both functions use nonlinear forms of the frequencies (not of the brightness

values). This nonlinearity requires that the entire co-occurrence matrix be accumulated before the

function can be evaluated. Since there is little limitation on the size of NV (spectral variance),

these functions are notably expensive in terms of computer resources.

it
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5.0 SUMMARY

We have presented a straightforward method of computing texture statistics from digital

images. Based on the SGTD method, the computation of co-occurrence matrices is viewed as

matrices of precedence and succession from which spatial/spectral relationships between neighbor-

ing pixels can be calculated. The precedence/succession method allows for the direct calculation of

several texture statistics directly from the input data window without the need to calculate a time

co-occurrence matrix as an intermediate step. This allows the realization of certain economies in

memory and processing speed through the elimination of the co-occurrence matrix in the computa-

tion. However, instances in which individual co-occurrence matrix elements must be operated

upon, the precedence/succession technique is not applicable.
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