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ABSTRACT

A ground-based search for stratospheric 
35
CtO was carried out during May

and October, 1981, using an infrared heterodyne spectrometer in the solar

absorption mode. Lines due to stratospheric HNO 3 and tropospheric OCS were

detected at about 0.2% absorptance levels, but the expected 0.1% lines of CaO

in this same region were not seen. We find that stratospheric Ct0 is at least

a factor of seven less abundant than is indicated by in situ measurements, and

we set an upper limit of 2.3x10 13 molecules cm-2 at the 95% confidence level

for the integrated vertical column density of CnO. Our results imply that the

release of chlorofluorocarbons may be significantly less important for the

destruction of stratospheric ozone (0 3 ) than is currently thought.
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Chlorofluorocarbons are important and widely used industrial chemicals,

but current photochemical models of the stratosphere indicate that their

release ultimately depletes the ozone layer (1). Chlorine monoxide (CtO) is

thought to be a key tracer of this process, and measurements of its

stratospheric abundances are therefore particularly important. J. G. Anderson

and his colleagues have reported (2) a series of in situ measurements of

stratospheric CtO, based on its chemical conversion to chlorine atoms, which

are then detected by resonance fluorescence. Their results show large

variations from flight-to-flight.

Since direct detection of chlorine monoxide's electronic resonance bands

is not practical, confirmation of the chemical kinetic results has been

directed toward its detection by rotational and vibrational spectroscopy.

Ground-based (3) and balloon-borne (4) measurements of the (J - 11/2 + 9/2)

rotational line of 
35
CL0 at 204.352 GHz have been reported. The balloon-borne

detection (5) by infrared vibrational spectroscopy near 12 µm is incorrect

(6). Precise laboratory spectroscopy shows that the atmospheric line reported

in (5) does not correspond to a transition of CtO. A subsequent

re-examination of the experimental data of Ref. 5 does show the presence of a

weak absorption line at the correct frequency to be Ca0 (7).

We report here the results of a search for stratospheric Cn0 using a

ground-based infrared heterodyne spectrometer. Three vibrational lines were

searched for near 12 µm, two from the 2 11 3/2 fundamental of 35ct160 and one

from the 
2113/2 

fundamental of 37Cn0. These lines should have been detected if

currently accepted abundances are correct, yet none was found. A detailed

comparison of the observed and synthetic atmospheric spectra near 356.515 cm-1

is reported here. An upper limit to the stratospheric U O abundance is

derived which is significantly smaller than the abundances obtained from the

(independent) chemical kinetic and rotational spectroscopic methods.

Infrared absorption measurements of stratospheric CQ0 are important for

two reasons: first, because the detection of vibrational absorption lines

with the correct frequencies and relative strengths is a necessary condition

for the presence of UO to be confirmed, and second, because quantitative

analysis of the line strengths and shapes provides an inaependent check on the

results obtained by other methods. The vibrational fundamental band (v=0 ► 1)

of U O lies near 12µm, overlapping both a particularly favorable window in the
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terrestrial atmosphere and the (00 01) - (1000, 0200) 1 band of the 14C1602

laser, Close coincidences exist for lines of CeO (6) with the P8 and P12
transitions of the 14C1602 laser (8), suggesting that detection of

stratospheric C&O by infrared heterodyne spectroscopy (9) using these local

oscillator transitions might be possible. Furthermore, recent stratospheric-

infrared spectra (10), taken at 12.8 air masses and at moderately high

resolving power, show weak atmospheric absorption lines with only a few

scattered strong lines of tropospheric water vapor in this spectral region.

Atmospheric path lengths of this order can readily be obtained from the

ground, and strong H2O lines can be avoided, thus setting the stage for a

ground-based search for stratospheric CtO by ultra-high resolution infrared

spectroscopy.

Atmospheric spectra were measured at the Kitt Pear National Observatory

(320N, 112 
0, 

during May and October, 1981, using the McMath Solar Telescope

and an infrared heterodyne spectrometer (9) developed at Goddard Space Flight

Center. The observing parameters are given in Table 1. The sun was chopped

optically against a precision blackbody source (typically 1100 K), and their

intensities were adjusted until the mean heterodyne signal (5-1600 MHz) was

null-balanced. The difference spectrum was then measured with a 128-channel

spectral line receiver. Subsequent measurement of the blackbody reference

spectrum, chopped against the room, established the differential transmittance

scale and provided an absolute optical calibration for all channels

simultaneously.

Each spectrum (9) was recorded at 25 MHz (0.00083 cm-1 ) resolution with a

64-channel rf filter bank extending 1600 MHz from the laser local oscillator.

The spectral region near the expected frequency of the CtO transition was

measured simultaneously over a range of 320 MHz with a second 54-channel

filter bank using 5 MHz bandwidth filters. The P12 line at 856.51545 cm
-1
 and

the P8 line at 859.78513 cm 
1 
of a line-by-line tuneable 14CO2 laser wereused

as local oscillators in searching for the R9.5 and R12.5 lines of 3500,

respectively (Table 1). The R16:5 line of 
37
CR0 also lies near the P12 line

of 14CO 2
9
 however, it is expected to be only s1/3 as strong as the

corresponding line of 35CR0 (Table 2). We defer detailed analysis and

discussion of the P8 observations to a later paper, except to note that

preliminary results based on P8 agree with the results presented here for P12.

A typical spectrum of the measured atmospheric transmittance vs. the
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frequency offset from the P12 laser line is shown in Fig. I.	 The observed
spectrum was acquired on 14 October, 1981, and represents 16 co-added scans

(each representing 89 seconds of integration), centered on a time 47 minutes

before stratospheric sunset (11) (Table 1).	 The spectral resolving power

(v/ev) is 1X106 in Fig. la and 6X10 6 in Fig. lb.	 All channels were acquired
simultaneously.

Synthetic atmospheric spectra were calculated for comparison with the

measured spectra, including spectral	 lines of OCS, HNO3 , NO
21

"nano-gen" (see

below), and CRO.	 Since the atmosphere is optically thin in this spectral

region, the absorptances were modelled for each molecule individually and

later combined linearly, giving the overall atmospheric transmittance to good

approximation.	 A multi-layered spherical atmosphere was constructed,

consisting of ten equally thick layers for each species. 	 The layers differed

for each species, and were chosen to cover approximately two decades of

molecular abundances in each case. 	 Voigt lineshape functions were calculated

for each layer using mid-latitude temperature and pressure profiles (12). 	 The
E

modelled spectrum is shown at 25 MHz resolution in Fig. la (displaced downward
for clarity), and is shown at infinite resolution in Fig. lb (solid, dashed
curves).	 The model atmosphere used in calculating the synthetic spectra is

shown in Fig. 2.

The volume mixing ratio profile used for OCS was the average of the

measurements of Mankin et al. (13) and Inn et al. (14) and the modeled

profiles of Turco et al. (15) and Sze and Ko (16). 	 Line prsitions and

intensities for OCS were taken from Wells et al. (17) and were also confirmed

in the laboratory using the field heterodyne spectrometer. 	 OCS contributes a

single line to this spectrum, centered only 25 MHz from the local oscillator
a

(Table 2).	 Because OCS is tropospheric, this line is strongly pressure

broadened and appears in Fig. la as a gradually decreasing absorptance as the

offset from the local oscillator increases (compare modelled transmittances

near 25, 750, and 1400MHz).
Several features due to stratospheric HNO 3 are seen in Fig. la as much

narrower absorption lines due to the much lower local pressures. 	 The most

obvious HNO3 absorptions are centered near 156, 554, 463, and 1186 MHz (Table

2).	 The volume mixing ratio profile used for HNO 3 is the average of the

profiles obtained by Barker et al. (16) below about 20 km, and the average of
the theoretical	 profiles summnarized by Hudson and Reed (19) 	 above 20 kiii.

.
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Relative intensities and accurate line positions were measured (20) for HNO3

in the laboratory using a similar heterodyne system.

Stratospheric NO2 contributes a small amount ($10x) to the absorption

feature offset 563 MHz from the P12 
14CO2 laser line, and it is included in

the synthetic spectra. The volume mixing ratio profile used for NO2 is an

average of measurements summarized by Hudson and Reed (19)• Line positions

for NO2 were measured in the laboratory (20) using a similar heterodyne system

and were found to agree with those given by Flaud et al. (21) to within the

experimental error. Ground state energies and absolute line strengths were

taken from Flaud et al. (21).

The molecule responsible for the absorption line offset 1500 MHz from

the local oscillator frequency has not been identified. This line is not

listed on the AFGL trace gas atlas, and our laboratory heterodyne spectroscopy

rules out CcO, OCS, HNO 3 , H2O, NO2 , Coct 2 , Freon-11, Freon-12, CCt
49
 CH3CL,

and C 
2 
H 
6 

as possibilities for this absorption feature (cf. 20).

0 3 is eliminated based on Barbe's results (22). The observed line displays a

full-width at half-maximum (FWHM) of 425 MHz, consistent with a predominantly

stratospheric location. Its double side-band depth is 4.6%, comparable to

that of the deepest HNO 3 absorption (near 1166 MHz). It grows with increasing

air-mass and , is definitely a real, terrestrial atmospheric line. Furthermore,

three other (weaker) lines are also present in the observations shown in Fig.

la, and their widths are consistent with 125 MHz FWHM. These arguments

suggest that all four lines are associated with a single molecular species of

stratospheric origin with mixing ratio 40-9±1 .  We call this constituent

"nano-gen" and list the line parameters in Table 2. Fortunately, none of the

nano-gen lines falls near the CtO line position.

The absorptance expected for the R9.5 line of. 35CaO was calculated using

the profile labeled "accepted CzO" in Fig. 2, which represents the mean of

nine profiles measured by Anderson and coworkers (2) below about 40 km and the

mean of the theoretical profiles summarized by Hudson and Reed (19) above 40

km. The CzO line positions (Table 2) are given by Maki (6) based on diode

laser absorption spectroscopy, and were confirmed directly by us using

heterodyne spectroscopy in the laboratory. The line strengths (Table 2) are

taken fr)m Gillis and Godman (23), who re-normalized the Boltzmann intensity

distribution to the individual line intensities and total band strength

measured by Rogowski et al. (24). The pressure broadening coefficient

I

d
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(4.4410.23 MHz/Torr at 218K) measured by Pickett et al. (25) for broadening of

CtO by N
2
 was used.

The modelled spectrum is compared with observations in fig. 1. 	 The C&O

lines predicted in the synthetic spectrum are clearly absent in the observed

spectrum measured at both 25 MHz and 5 MHz resolution. 	 Indeed, the 5 MHz

resolution data show dramatically that the accepted stratospheric C&O

abundances (2-4) are not supported by our infrared data.

^ Although C&O is not detected in our measurements, u PPer limits on its

stratospheric abundance can be derived.	 We shall use both subjective and

^z
objective methods to derive upper limits from the 5 MHz resolution data (Fig.

lb).	 One (subjective) approach is to add gaussian random noise to the

noise-less synthetic spectrum, and then to decrease the CLO line depth

proportionally until its presence can just be discerned in the 5 MHz

residuals.	 This procedure suggests an upper limit which is 415 of the amount

labeled "accepted", 	 We determine an objective upper limit by co-adding

channels symmetrically centered on the line. 	 Abbas et al. (26) have sown

that an optimum signal-to-noise ratio is achieved for gaussian-shaped lines

when the ratio of spectral resolution to full width at half maximum is 1.2.

The FWHM of the expected CtO line is 60 MHz, but it departs from gaussian

shape, due to pressure broadening.	 We thus expect optimum S/N by adding

roughly 15 channels. 	 Co-adding 15 channels, we find the abundance of CtO

consistent with our data may not exceed 7.1% (lo) of the "accepted" C&O

abundance.	 We shall take 14.2% as an upper limit, toe value at the 95%
4

confidence level 	 (2a).	 We thus find the stratospheric CtO abundance to be at

least seven times smaller than is currently accepted (Fig. 2). 	 If this were

interpreted as a scaling factor, to be applied to the "accepted" profile, we

would formally derive an upper limit profile as shown in Fig. 2.	 However, it

must be stressed that our data do not provide any indication that CtO is

present anywhere in lithe stratosphere.
rt

Given our surprisingly small 	 upper limit for CZO, we must carefully

} review possible sources of error.	 We first consider the effect of

uncertainties in the frequency and the intensity of the R9.5 line of 35CEO.

The frequency of this line is 856.50137±0.00018 cm -1 (6).	 The 5.4 MHz

uncertainty is much less than the width of one of the 25 MHz filters in the

heterodyne spectrometer and should therefore not be a problem at the

resolution used here. 	 Furthermore, we have measured botn the R9.5 line of

f
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35
CLO and the R16.5 line of 

37 
CLO in a laboratory heterodyne spectrometer

identical to the field instrument and find agreement with Maki's values.

The intensity used for the R9.5 CLO line is based on the experimentally

measured band intensity of 11.8 cm-2 atm- 1 at 296K (23). Margolis et al. (27)

have independently measured the band strength to be 13.4 cm
-2

 ati1-1.

Ab initio calculations of the band strength have been done at the SCF level by

Komornicki and Jaffe (28) who find 23 cm- 2 atm-1 . Calculations at the SCF-CI

level by Langhoff et al. (29), including the effects of electron correlation,

predict a band intensity of 32 cm' 2 atm-1 . A systematic error in the line

intensity will certainly affect our results, but there is reason to believe

that the experimental line strengths may be too low rather than too high, and

this would only make the CLO upper limits even smaller.

According to recent atmospheric models, diurnal variability of CLO does

not account for the much lower stratospheric abundances determined from our

data. For example, the diurnal model of N. Sze and M. Ko (private

communication, 1982) indicates that the integrated CLO column density above 30

km at the time of day corresponding to Fig. 1 is about 85% of the noon-time

value, and the diurnal model'of J. Herman (private communication, 1982) shows

no appreciable change from noon to sunset in the integrated C&O column density

above 25 km. It thus seems reasonable to compare our results directly with

those obtained near local noon. The mean column density based on nine

measurements by the chemical kinetic method (2) is 16.1x10 13 cm-2 and the

result using ground-based millimeter-wave spectroscopy (3) is 10.5x10 13 cm-2.

The upper limit reported here using the infrared spectroscopic method is

2.3x10 13 cm
-2 

at the 95% confidence level, which is considerably smaller than

the earlier results. Menzies' (7) latest results also suggest much smaller

CzO abundances. We thus find the stratospheric UO abundance to be at least

seven times smaller than currently accepted values. suggesting that the role

of 40 and the chlorofluorocarbons in the destruction of the earth's ozone

layer may need to be re-evaluated.

it

a
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Table 1. Observing Parameters During Searches for Stratospheric Chlorine
Monoxide.

Local 35C&O Range of Range of
Date Oscillator Line Solar Zenith Anglea Stratospheric
1981 Searched Air Mass

23 May,
Afternoon P12 R9.5 78.6 - 88.8 4.5 - 10.3

24 May,
Morning P12 R9.5 89.4 - 79.5 10.4 - 4.9

25 May,
Morning P8 R12.5 89.1 - 78.2 10.3 - 4.4

25 may,
Afternoon P8 R12.5 69.6 . 81.8 2.8 - 5.8

14 Oct,
Afternoon P12 R9.5 77.0 - 88.9 4.1 -	 10.3

15 Oct,
Afternoon P8 R12.5 75.8 - 88.8 3.8 - 10.2

a. The solar zenith angle is the apparent angle of the sun from the vertical, measured
from the ground, and expressed in degrees.

b. The stratospheric air mass is defined to be the ratio of the (refracted)
slant-pathlength to the vertical pathlength between two spherical boundaries at 20 and 4
km, as seen by an observer at the ground.

8



A*

ORIGINAL. PAQE M

OF POOR QUALITY

Table 2.	 Spectral Line Atlas for the 856.5 cm-1 Region

Molecule Frequency( cm`11 Offset!	 MHz S (cm/molecule,296K )b

HNO3c 856.5102 156 2.82 x 10_21
856.5339 554 1042 x 103,
856.4970 554 1.42 x 10-22
856.4926 685 5.78 x lU„21
856.4833 963 2.82 x 10-21
856.4759 1186 1.69 x 10

-21
856.5550 1186 5.00 x 10_21
856.5680 1575 1.09 x 10

NO2d P P6 15 856,4967 563 '2,36 x 10-22

OCSe P6 856.5146 25 6.24 x 10-21

35CLOf R9.5 856.50137 422 6.99 x 10-21

37
CLOf R16.5 856.54146 780 2.1,6 x 10'21

Nano-gen 9 275 0.16%
688 0.09%

1038 0.30%
1500 0.61%

a. Absolute frequency d!4ference relative to_Pe local oscillator transition•
Lodal oscillator is P12	 CO 2 at 856.51545 cm .

b. These line strength values were scaled to the local temperature for each
atmospheric layer in our model atmosphere.

c. Spectroscopic parameters for HNO 3 , from Weaver et al. (2U).

d. Spectroscopic parameters for NO 2 from Flaud et al. (21).

e. Spectroscopic parameters for OCS from Wells et al. (17)•

f. Line position from Maki et a]. (6), and line strength from Gillis and
Goldman (23).

g. Four lines are observed (see text)	 Absorptances are given in place of
strengths.

9
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Figure Captions

Fig. 1. (a) left. Observed and modelled spectra of the terrestrial atmosphgrae

near the P12 14CO2 laser line. The frequency resolution is 25 MHz and the

spectra are displayed as transmittance vs. the frequency difference from

$56.515 cm 1 . The modelled spectrum is displaced downward for clarity, and the

expected line of 35C&O is indicated. The atmospheric model is described in the

text.

Fig. 1. (b) right. Observed and modelled spectrum, centered on the R9.5 40

line. The frequency resolution in the observed spectrum is 5 MHz and the

modelled spectrum is displayed with infinite resolution. The residual

differences between the observations and the modelled spectrum without Ct0 are

shown, and are compared with the expected CLO fine.

Fig. 2. Volume mixing ratio profiles for OCS, HNO 3 o NO2 and CLO used in

simUlating the experimental spectra. The three measurements on CtO indicated

by ttlio :Tosses are from Waters et al. (4). See text for a discussion of the

^,t^ti`les. The dashed profile represents an upper limit to a stratospheric Ca0

abundance profile consistent with the infrared data.
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