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ABSTRACT

A combustion program is underway to evaluate fuel
quality effects on gas turbine combustors. A rich-
lean variable geometry combustor design was chosen to
evaluate fuel quality effects over a wide range of
primary and secondary zone eguivalence ratios at simu-
lated engine operating conditions. The first task of
this effort, was to evaluate the performance of the
variable geometry combustor. The combustor incor-
porates three stations of variable geometry to control
primary and secondary zone eguivalence ratio and over-
all pressure loss., Geometry changes could be made
while a test was in progress through the use of remote
control actuators. The primary zone liner was water
cooled to eliminate the concern of liner durability.

Emissions and performance data were obtained at
simulated engine conditions of 80 percent and ful)l
power. Inlet air temperature varied from 611 to
665 K, inlet total pressure varied from 1,02 to 1.24
MPa, reference velocity was 18.0 m/sec and exhaust gas
temperature was a constant 1400 K.

INTRODUCT ION

A great deal of work has been done on the effects
of broadened property fuels on aircraft combustor per-
formance (1-4). However, this work has all been done
on conventional fixed geometry hardware, which limits
the scope of these results. Fixed neometry hardware
by its nature limits the range of primary and second-
ary zone equivalence ratios and the overall pressure
Toss to narrow limits. Thus, extensive parametric
evaluation of primary zone and secondary zone equiva-
lence ratios with different fuels becomes prohibi-
tively expensive. Therefore, an existing variable
geometry combustor was selected for this program.

This combustor consisted of a water cooled primary
zone and three stations of variable geometry to con-
trol primary and secondary zone equivalence ratios and
overall pressure loss. This hardware was previously
successfully used on a ground power research applica-
tion where steam cooling was employed in the primary

zone (5). The water cooled primary zone eliminated
the durability problems usually associated with rich-
lean combustion of nitrogenous fuels. Reference 6
found that nitric oxide emissions were not a strong
function of wall temperature thus water cooling has a
small impact on results.

The results reported are part of a larger effort
which will utilize the variable geometry combustor to
explore stoichimetric effects on performance using
broadened specification fuels, The results reported
are from the preliminary phase of this larger pro-
gram. In addition to the stoichimetric variations
possible with this combustor, two different primary
zones were tested in order to evaluate the effects on
performance of primary zune residence time.

Emissions and performance data were obtained at
conditions simulating a 12:1 pressure ratio engine
from 80 percent to full power. Inlet air temperature
varied from 611 to 665 K, iniet pressure varied from
1.02 to 1.24 MPa, reference velocity was 18.0 m/sec
and exhaust gas temperature was a constant 1400 K.

APPARATUS

Variable Geometry Combustor

This combustor was designed so that very high
primary zone equivilence ratios could be obtained.
The primary zone wax water cooled to eliminate local
lean zones which would occur along the walls if film
cooling was used. A drawing of the combustor is shown
in Fig. 1. The combustor shown in Fig. 1 has the
larger volume primary zone installed. The primary
zone stoichiometry was controlled by varying the vane
angle of a variable pitch vane, axial flow swirler
located at the inlet to the primary zone. Being a
nonfilm cooled liner, the only way air entered the
primary zone was either through the swirler or through
the air passage of the single air-assist fuel nozzle
which penetrated into the primary zone through the
center of the swirler. The secondary zone stoichiome-
try was controlled by circumferentially rotating a
band which would open or close the quench holes locat-
ed at the inlet to the secondary zone. The overall
pressure loss was controlled and maintained constant

s rmm s
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by circumferentially rotating a band which would open
or close the dilution holes ?ocated at the inlet to
the tertiary 2one.

Figure 1 shows the locations of the combustion
zones and the variatle geometry provisicns, This fig-
ure also shows that this combustor is a composite of
discrete pieces of hardware, i.e., the primary,
secondary and tertiary or dilution zones. The housing
in which the combustor was mounted had & diameter of
35.6 c¢cm and was 76 cm long. Two different primary
zone volumes were used in order to determine the
effects of primary zone residence time on combustor
performance. The primary zone volumes, their percent
of total combustor volume, and the combustor maximum
heat release rates are given in table I. Table 1l
1ists other characteristic parameters of this
combustor.

The combustor was constructed of Hastelloy-X for
all the surfaces in contact with the flame. The
secondary and tertiary zones were coated on the hot
gas side with a thermal barrier coating consisting of
an undercoat of 0.127-mm NiAlY and an overcoat of
0.4-mm 2102 8Y308. A shroud was fitted around
the secondary and tertiary zones to increase the back-
sidc convective cooling by increasing the local air
velocity. Type 304 stainless steel was used for the
secondary and tertiary shrouds and the exterior of the
water cooling jacket for the primary zone.

Water for cooling was introduced on the backside
of the primary zone liner at its downstream end where
it was manifolded into a narrow 0.33 cm annular chan-
nel. This channel extended along the backside of the
1iner at constant height until it reached the front
end of the primary zone where the water was collected
for delivery out of the primary zone casing. Twenty
0.32-cm wires divided the water into 20 spiral flow
passages within the annular channel, During hot
operation, thermal expansion of the Hastelloy-X inner
1iner would cause the gap between the wires (attached
to the Hastelloy-X) and the outer cooler stainless
steel shell to diminish to zero clearance, effectively
dividing the water flow into 20 spiral passages.

These 0.32-cm wires spiraled one-half revolution
around the surface of the inner liner.

A DelLavan air assist fuel nozzle Model 32163 was
used for all the testing. Figure 1 shows such a
nozzle installed. All of the testing was done using
Jet A fuel.

Test Facility
A closed duct, high pressure, nonvitiated test

facility was utilized for this program. Test condi-
tions simulating idle to full power could be obtained.
The combustion rig is shown schematically in
Fig. 2. In operation air is metered and then enters
an indirect fired preheater where the air is heated to
the desired temperature. Upon heating the air entered
an inlet plenum where the combustor inlet temperature
and pressure were measured. Fuel, air assist nozzle
air, and primary zone water cooling lines all share
this plenum downstream of the inlet instrumentation
station. The variable geometry combustor used a 35.6
cm diameter by 1.51 cm thick housing. This relatively
large size pipe was necessitated by the variable
geometry actuation mechanism and by the water cooling
line plumbing. An exhaust instrumentation section
followed the test section. Remote control valves were
used upstream and downstream of the rig to provide
flow and pressure control.

Liner Instrumentation
Twenty-one Chromel-Alumel thermocouples were
installed to monitor liner temperatures, eight on both

the primary and secondary zone and five on the terti-
ary zone. A static pressure tap was 2lso located in
each combustion zone to provide pressure drop informa-
tion for calculating airflow into each zone.

Exhaust Instrumentation

Exhaust instrumentation consisted of 40 platinum
vs platinum-13-percent-rhodium thermocouples mounted §
to a rake on centiers of equal areas. There were 8 of
these rakes., Static pressure taps, and a 10 point
centers-of-equal-area gas sample probe complicted the
exhaust instrumentation. Their location is shown in
Fig. 2. The gas collected from all 10 ports of the
gas sample probe was passed to a common manifold and
from there through steam-heated lines to a gas analy-
sis console. The exhaust gas was analyzed for concen-
tration of COp, CO, unburned hydrocarbons, oxide of
nitrogen and smoke in accord with the recommendations
set forth in Refs. 7 and 8.

PROCEDURE

Combustor Operation

Operation of the combustor was accomplished by
setting desired primary zone and secondary zone equiv-
alence ratios for each test point. This was done by
adjusting the position of the swirler vanes until the
desired primary zone equivalence ratio was achieved,
This equivalence ratio was based on the sum of the
airflows through the swirlers and the air-assist fuel
injector. Secondary zone equivalence ratio was then
set by adjusting the secondary zone variable area
holes until the desired airflow in the secondary zone
was achieved. Secondary zone equivalence ratio was
calculated usinﬁ the sum of the airflows from the
primary zone, the variable area secondary zone holes,
and secondary zone film cooling holes. As far as it
was possible the overall pressure drop of the entire
combustor was kept constant by varying the area of the
tertiary zone holes.

Flow Calibration

In order to be able to determine equivalence
ratio in each combustion zone of this multiple zone
variable geometry combustor, it was necessary to flow
calibrate each zone while its variable geometry com-
ponent was cycled. This calibration was accomplished
in three stages, one for each combustion zone. ‘or
convenience, the secondary zone was calibrated first.
To calibrate the secondary zone 1%t was assembled into
the combustor housing with the following modific.-tions
to prevent air from entering into the primary and
tertiary zones: (1) The swirler assembly was removed
from the primary zone and a blank-off p.ate installed
thus preventing air from entering; (2) A dam was
installed at the junction of the secondary and terti-
ary zone; (3) The tertiary zone shroud was plugged and
the tertiary zone shroud auxiliary holes were taped
closed.

The secondary zone calibration utilized near
ambient pressure and temperature air. The calibration
began with the secondary zone variable geometry holes
in the closed positicn. Airflow was then measured as
combustor differential pressure was varied from three
to nine percent in three percent increments. The
jctuator that controlled the position variable geome-
try in the secondary zone was then moved to 10 percent
of its travel and data on airflow and combustor dif-
ferential pressure were taken. This process was
repeated until the entire actuator range from full
closed to full open was completed. Check points were
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taken on the return to full close position to deter-
mine repeatability and to verify that the flow was
independent of the direction of actuator travel.

Once the secondary zone actuator was returned to
the closed position, the tertiary zone was unplugyed.
The flow-pressure drop matrix used to calibrate the
secondary zone was repeated for each tertiary zone
actuator position, The secondary zone actuator
remained closed while the tertiary zone actuator was
varied. The actual t{ertiary zone airflow was then
obtained by subtracting the calculated secondary zone
"airflow which was based on the secondary zone flow
calibration, frem the total airflow which was feeding
both the secondary and tertiary zones. During terti-
ary zone calibration, the primary zone remained
blocked off.

The primary zone variable area swirler was flow
calibrated by itself using the same ¢low-pressure drop
procedure for each different vane angle, From these
data, curves of effective discharge coefficient at
constant pressure differential versus actuator posi-
tion for each swirler assembly were obtained. These

curves were then used to obtain airflows entering each
combustor 2zone,

Test Conditions

Operating conditions representative of a 12:1
pressure ratio engine were chosen, Table II] lists
the conditions which ranged from 80 percent to full
power. A limited amount of data was also taken at 30
and 50 percent power levels, At the 30 and 50 percent
power condition only liner temperature data is
presented.

RESULTS AND DISCUSSION

Exhaust Emissions

Nitric Oxide Emissions. Figures 3(a) to 3(c)
show oxides of nitrogen (NOx) emission index as a
function of primary zone equivalence ratio. These
data are for two different size primary zones as shown
in table I. For the large volume primary zone, both
climb-out and take-off power conditions are plotted.
For the small volume primary zone only the climb-out
power condition is given. In all cases, secondary
zone equivalence ratio is presented as a parameter.

Figure 3a represents the 80 percent power point
with the small volume primary zone. For the cases
where the secondary zone equivalence ratios were 0.58
and 0.43, there is a downward trend in emissions of
NOy as the primary zone equivalence ratio is
increased. The minimum NO, emissions are found at
the highest values of primary zone equivalence
ratios. It would appear from these data that to
achieve the minimum NOy emissions, a secondary zone
equivalence ratio of 0.43 or less should be used along
with a primary zone equivalence ratio of at least 1.5.

Data on NOy emissions for the large volume
primary zone is shown on Figs. 3{b) and 3(c). In
Fig. 3(b) it is apparent that NOy emissions are not
a strong function of primary 2one equivalence ratio.
As in the previous case, minimum NO, emissions
require secondary zone equivalence ratios as low as
possible. Levels of NO, emissions with the large
volume primary zone are similar to the average levels
observed at the 80 percent power condition with the
small volume primary zone. The same comments applied
to Fig. 3(b) apply to Fig. 3(c). Residenca times are
higher with this larger volume primary zone. Hot

residence time is about 10 ms for the large volume
primary zone and about 5 ms f .~ the small volume pri-
mary zone.

Figure 4 is a plot for the small and large volume
primary zones showing only the secondary zone equiva-
lence ratio that preduced minimum NOx. The second-
ary zone equivalence ratio producing minimum NO, for
both zones was the lowest value tested, i.e., 0.43 for
the small volume and 0.40 for the large volume primary
zone. The two curves converged at the higher values
of primary zone equivalence ratio. It is conceivable
that if it were possible to obtain leaner values of
secondary zone equivalence ratio, NO, emissions
might have been iower. Leaner values of secondary
zone equivalence ratio were not possible with the
experimental hurdware because of the limits in the
size of the variable area quench holes.

Larbon Monoxide Emissions. Figures 5(a) to 5(c)
shows carbon monoxide (CO) emission index as a func-
tion of primary zone equivalence ratio. The plots are
for 2 different primary zone volumes as outlined in
table I. For the large volume primary zone, both
climb-out and take-off power data are plotted. For
the small volume primary zone only the climb-out power
data are given., Secondary zone equivalence ratio is
again presented as a parameter,

Figure 5(a) shows that CO emissions generally
increase with increasing primary zone equivalence
ratio for both secondary zone equivalence ratios
tested. However, for a secondary zone equivalence
ratio of 0.43, CO emissions peak at a primary zone
eguivalence ratio of about 1.5, Low values of CO
emissions were obtained at less rich primary zone
equivalence ratios (between 1 and 1.5). If richer
primary zone equivalence ratios are desired (greater
than 1.5), minimum 0 would be obtained at a secondary
zone equivalence ratio of 0.43.

Figure 5(b) presents CO emissions as & function
of primary zone equivalence ratio for the large volume
primary zone at 80 percent power. At a secondary zone
equivalence ratio of 0.40, there is a peak in the CO
concentrations at a primary zone equivalence ratio of
about 1.3. For a secondary zone equivalence ratio of
0.44 CO emissions are virtually insensitive to the
primary zone equivalence ratio. Thus if a primary
zone equivalence ratio operating point above 1.6 is
chosen, secondary zone equivalence ratios of both 0.40
and 0.44 will give low values of CO emissions, It
should be noted that small changes in secondary zone
equivalence ratios can cause large changes in combus-
tor performance.

For the same configuration as Fig. 5{b), Fig.
5(c) presents CO emissions at the full power condi-
tions. As with the previous figure, a secondary zone
equivalence ratio of 0.41 produced maxirum CO
sions. In order to obtain minimum CO emissions a
secondary zone equivalence ratio of 0.44 was re-
quired. The emissions data at & secondary zone eguiv-
alence ratio of 0.50 was midway between the curves at
0.41 and 0.44. Also, as with the previous figure, the
data at a secondary zone equivalence ratio of 0.41 was
a stronger function of primary zone equivalence ratio,
being a maximum at a primary zone equivalence ratio of
1.2. At secondary zone equivalence ratios of 0.50 and
0.44, CO emissions were not a very strong function of
primary zone equivalence ratio.

Unburned Hydrocarbon Emissions. Emissions of
Unburned hydrcarbons were less than 1 part per million
(ppm).
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Smoke Emissions. Smoke emissions were high.
These high smoke emissions are thought to be due, at
least in part, to the fuel injection technique em-
ployed. Specifically, a pocr exhaust temperature pro-
file at all operating conditions indicated a maldis-
tribution of fuel within the combustor and conse-
quently the need for improvement in fuel preparation.
Other fuel injection technqiues are currently being
investigated in an effort to minimize smoke emissions.

Combustion Efficiency. Combustion efficiency was
determined by exhaust gas analysis. As shown in the
Exhaust Emission section, all of the combustion
inefficiency is attributable to carbon monoxide since
less than 1 ppm of hydrocarbon was present. It is
quite apparent from examinatior of Figs. 4 and 6 that
the large volume primary zone section significantly
outperformed the small volume primary zone section.
The large primary zone section had combustion ineffi-
ciencies on the order of 0.1 percent at primary zone
cquivalence ratios of 0.8 and 1.65, while the small
primary zone section inefficiencies ran from 0.2 to
1.4 percent at the same equivalence ratios.

Hydrocarbon emissions were less than one ppm for
all points tested was mentioned earlier. Therefore,
resuiting inefficiecy due to hydrocarbons was be less
than 0.003 percent. The large volume primary zone
section produced combustion efficiencies in excess of
99.8 percent when nperated at selected points and
still exceeded 99.7 percent when operated at any prim-
ary zone equivalence ratio from 0.8 to 1.65.

Another type of inefficiency in this combustor {s
cycle inefficiency due to the loss of heat through
primary zone water cooling. There was approximately
two percent cyclic inefficiency due to this heat loss.

Combustor Durability. A nonconventional tech-
nique (a water coolad primary liner) was employed to
enhance primary zone liner durability. In cycling
from lean-rich equivalence ratios in the primary zone
and back as would be encountered in the parametric
study this program requires, it is necessary to main-
tain the liner temperature below 800K to aveid car-
bonization of the liner material. Carbonization can
cause the liner to fail {n just a few rich-lean
cycles. Figure 7 shows the maximum 1iner temperature
to be about 480K and that liner temperature was inde-
pendent of equivalence ratio. As expected, figure 8
shows that liner temperature were found to decrease
with decreasing power levels. Maximum temperature of
the film cooled secondary and tertiary liners remained
within acceptable levels.

At the 30 and 50 percent power condition only
liner temperature data is presented. Air swirler
resonance was encountered during operation of the com-
bustor during these low power conditions, Because of
this resonant condition, operations at low power were
avoided. The combustor resonant conditions were
severe enough to cause failure in the swirler vanes.
These vanes have since been redesigned for the follow-
on efforts planned for the hardware.

Total pressure loss. Figure 9 is a plot of hot
flow total pressure loss as a function of axial length
for the variable geometry combustor at the full power
condition. Pressure drop across the diffuser was not
included. Most of the pressure drop was taken across
the variable geometry air swirler to promote rapid
mixing in the rich-burn primary zone. It was intended
that the next largest pressure drop should occur at
the guench plane. Obviously this did not occur.
Secondary zone liner film cooling air was found to be

excessive. Unfortunately this reduced the amount of
air asvailable for quenchiny the primary zone products
while maintaining a particular secondary zone equiva-
lence ratio. Secondary zone film cooled liner temper-
atures at the full power conditions ranged from 750 to
1100 K, as opposed to the design temperature of 1200 K.

SUMMARY OF RESULTS

As the initial phase of an effort to determine
the effects of fuel properties on primary zone and
secondary zone combustor stoichiometry, a variable
geometry combustor was studied using Jet A fuel, This
combustor utilized water cooling to maintain rich-burn
primary zone combustor liner integrity. The rich-burn
primary zone was followed by a lean-burn secondary
zone and a tertiary or dilution zone, Two different
volume primary zones were tested, Among the results
were:

1. Doubling the volume of the primary zone gave
a reduction of NOy for a range of primary zone
equivalence ratfos with secondary zone equivalence
ratio at an optimum value.

2. The large volume primary zone had minimum
NOx at a secondary zone equivalence ratio of 0.41
anﬁ primary zone equivalence ratios greater than 1.4.

3. The large volume primary zone performed with
a significant reduction CO in exhaust emissions when
compared to the smaller volume primary zone. Combus-
tion efficiency remained acceptable (»99.5 percent)
over a range in primary zone equivalence ratios from
0.8 to 1.68.

4, Liner durability was satisfactory and the
variable geometry parts performed well except for the
primary zone variable area swirler,
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TABLE I. - VARIABLE GECMETRY COMBUSTOR DESIGN DETAILS

Primary zone Volgme, Percent Max. heat relegse rate,?
M total volume Joule/hr MO MPa

Medium volume | 3.32x103 30.8 1.36x1012

Large volume | 6.49x10-3 46.5 1.05x1012

8Based on combustor total volume

Table Il. - RESIDENCE TIMES AND EQUIVALENCE

RATIO VARIATIONS

TABLE I111. NOMINAL TEST CONDITIONS FOR VARIABLE
GEOMETRY COMBUSTOR

Primary zone residence time . . . . 3.5
Secondary zone residence time . . . 2.5
Primary zone equivalence ratio . . . . .

Secondary zone equivalence ratio . .
Tota) pressure 10SS « « v « « o o o o

Power level 25 percent | Full
Total airflow, kg/sec 4.9 5.3
- 10.0 msec Inlet temperature, K 610 665
- 2.95 msec Inlet total pressure, MPa 1.02 1.21
. 0.6 -2.0 Inlet mach no. 0.0138 0.0133
0.45 - 0.55 Exit average temperature, K 1297 1422
3.0 percent Fuel-air ratio 0.0191 0.0241
Fuel weight flow, kg/sec 0.093 0.114
Reference velocity, m/sec 18.0 18.3
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Figure 3, - NO, emission of a function of priinary zone equiv-
alence ratio with secondary zone equivalence ratio as a
parameter,
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Figure 4. - NO, emissions as a function of primary
zone equivaience ratio for the secondary zone
equivalence ratio that produces minimum nitric
oxide emissions. Two different primary zone
volumes,
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Figure 5. - CO emissions and combustion efficlency
as a function of primary zone equivalence ratio
with secondary zone equivalence ratio as a para-
meter.
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Figure 6. - CO emissions and combusticn efficiency
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produces minimum NO, emissions. Two different
primary zone volumes,
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Figure 7. - Primary zone liner temperature as a func-
tion of primary zone equivalence ratio at take-off
power conditions.
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Figure 8. - Primary zone liner temperature as
a function of combustor power level,
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Figure 9, - Variable Geometry Combustor
total pressure loss as a function of axial
length, 100 percent power condition.
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