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SECTION 1

INTRODUCTION

Collable-longeron lattice columns called Astromasts -V have been

manufactured by Astro Research Corporation (Astro) For a variety of spacecraft.

missions. These alight structures have varied in diameter from 0.2 to 0.5

meter (9 to 19 in.), and the longest Astromast of this type deploys to a

length of 30 meters (100 feet). Astro has also developed a double-laced

diagonal Astromast design referred to as the Supermast N ;"►hick, because it has

shorter baylengths than an Astromast, is approximately four times as strong.

The longeron cross section and composite material selection for these

structures are limited by the maximum strain associated with stowage and

deployment. As a result, future requirements for deployable columns with high

stiffness and strength require the development of both structures in larger

diameters.

Astro is under contract with NASA Marshall Space Flight Center (MSFC) to

develop large diameter Astromast technology. This report describes the

design, development, and manmfacture of a 6.1-m-long (20-r t), 0.75-m-diameter

(30-in.), double-laced diagonal version of the Astromast. The manufacture of

this model completes Phase I of this program. A 15-m-long (50-ft) model will

be manufactured during Phase II which will be completed by the end of 1983.

Astromase^', U.S. and foreign patents
Supermast", U.S. patent

i

1



E
ii

SECTION 2

PROGRAM SUMMARY

2.1 DESIGN APPROACH

The purposes of this study are to develop large diameter Astromast

technology and to manufacture two structural models. Since the potential

applications in space involve a variety of structural performance

requirements, Astro decided to attempt a design which would maximize all

performance characteristics of a double-laced diagonal Astromast with a

diameter of 0.75 m (30 in.). Previous Astromast designs, built to specific

design requirements for each mission, have not been required to maximize all

of these characteristics which includes

• Highest stiffness-to-weight ratio for the fiber-reinforced composites

• Maximum mast stiffness (axial, flexural, and torsional)

• Maximum strength (bending, shear, torsion)

Experience gained in earlier Astromast projects was to be used to upscale

existing designs properly to the larger dimensions of a 0.75-m-diameter

(30-in.), self-deploying mast.

2.2 STUDY PLAN

The Phase I study plan originally consisted of two major activities: a

longeron materials investigation and the manufacture of a 6.1-m-long (20-ft)

model.	 Astro recognized that there were a number of high risk factors

involved in the design approach. As a result, an internally funded IR&D

project was established to manufacture a 3.8-m-long (12-ft) development model

prior to the ,fabrication of the 6.1-m-long (20-ft) engineering model for NASA

MSFC. In summary, the following tasks have been accomplished during Phase I:

o A parametric design study

o Pultrusion of three different longeron materials

o Evaluation of longeron materials

o Detailed design

o Fabrication and testing of component parts

2



• Fabrication and testing of a 3.8-m (12-ft) development model

• Reinvestigation of the longeron design

• Fabricatior and testing of a 6.1-m (20-ft) engineering model

2.3 PARAMETRIC DESIGN STUDY

An analytical parametric design study was conducted at the beginning of

the program to establish preliminary sizing for Astromast designs

incorporating several different composite longeron materials. The results of

the study predicted the relative performance of masts employing these

longerons materials. 	 Both single- and double-laced diagonal configurations

were considered.	 It was assumed that the longeron cross section would be

square and of a maximum thickness established by the stowed strain of fiber

material.	 Three fibers were considered for the unidirectional composite

longeron material:

• S-2 fiberglass

• High-elongation graphite

• Hybrid combination of both fibers (see Figure 1)

In the case of the hybrid combination, it was assumed that the graphite fibers

would be sandwiched between two layers of S-glass in order to maximize the

strain capability of the longeron in one bending direction.

The results of this parametric study have been reported in Reference 1.

The results indicate that S-glass is superior to graphite in this application

because of its much higher strain limit. The analysis also shows that the

hybrid design, as compared to the S-glass alone, would improve the stiffness

of the masts if the sandwich material allowed the same strain limit as the

S-glass alone.

2.4 PULTRUSION AND EVALUATION OF LONGERON MATERIALS

The pultrusion and evaluation of longeron materials are discussed in

detail in Section 3 of this report. The hybrid longeron material was not

acceptable because of a low strain limit. S-glass was selected for use in the

longerons.
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2.5 DETAILED DESIGN

A detailed design for the 0.75-m-diameter (30-in.) Astromast was

developed using the largest allowable longeron and diagonal thicknesses, as

dism.ussed in Reference 1. Details of fittings were established on the basis

of Astro's past experience in the design of single- and double-laced diagonal

versions of the Astromast. A quasi-square longeron was selected to maximize

strength and stiffness.

2.6 FABRICATION AND TESTING OF COMPONENT PARTS

Samples of each of the fittings were manufactured and tested as described

in Section 4 of this report.

2.7 DEVELOPMENT MODEL

A 3.8-m-long (12-ft) development model was manufactured and retracted as

described in Section 4 of this report. Two longerons failed before the mast

was completely retracted.

2.8 REINVESTIGATION OF THE LONGERON DESIGN

As an extension of the IR&D project for the development model, Astro

conducted an extensive investigati.on of the longeron material and design as

summarized in Section 4 of this report. It was concluded that the sglarc

cross section, as compared with a round cross section, significantly increased

the strain when the longeron is subject to the combination of bending and

twisting which occurs in the transition section during deployment or

retraction. It was also established that the longeron performance under these

conditions could be improved by increasing the adhesive thickness at the pivot

fittings.

2.9 ENGINEERING MODEL

As a result of the investigation described above, several design changes

were incorporated in the 6.1-m-long (20-ft) engineering model. The longeron

cross section was changed to an octagonal shape which could be fabricated by

grinding the corners of the quasi-square pultruded material. In addition, the

G
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bond line thickness was increased at each pivot fitting. The original batten

design was retained. This resulted in a higher ratio of batten stiffness to

longeron stiffness than orig?nally intended.

Tile mast was again retracted and deployed. Tile interference between the

diagonal ball ends and the cups was reduced except at each end of the mast.
Ile observed that substantial static friction existed between the bolted

diagonals and battens. This tends to restrain the diagonals near the ends in

a position where they cannot deploy properly. These sam` static friction
effects counter the self-deploying forces in the mast, and it was necessary to

apply torque to erect the ends of the mast.

2.10 DESIGN CHANGES

In order to ensure that the engineering model would self-deploy without

damage to diagonal elements, it was necessary to reduce the stiffness of both

diagonal and batten members. In order to learn as much as possible about the

influence of these changes oil deployment and retraction, Astro made the

changes in several steps and tested the mast between each step. Tile following

configurations were tested:

• A single-laced diagonal configuration without changing the design of
either the diagonals or battens - not self-deploying

• A single-laced diagonal configuration with three battens of reduced
stiffness at each end - not self-deploying

• A single-laced diagonal configuration as above but with the diagonals
reduced in diameter from 5.7 to 3.7 nun (0.22 to 0.145 in.), yokes of
end battens modified to minimize interference with diagonals - self-
deploying

• A double-laced configuration, as above - not self-deploying

• A double-laced configuration with all battens reduced to 50 percent of
their original stiffness, end battens reduced to 25 percent of their
original stiffness - self-deploying

The properties of the final version of the engineering model are
presented in Table 1.
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MATERIAL S9=11074

3. 1 CRITERIA

Because of the high-strain requirement, battens and dingonntn weve tunde
of S-glaun,/epoxy composites. The Wittens would lend themselves to a hybrid
S- glas ,./graphite coiiib^nntion7 however:, since the pertinent feature of the

battery is its bending ntiftness, as outlined in reference 1 1 the relatively
small gain in ntiffneas-to-weight ratio does not Justify the increased

v,mnufa4 turing complexity and costs. The diagonals with their gall joints must

be froa to rotate about their axis and are, thus, preferably made from

circular rods.

A circular,' cross section was a lso cho mn for the b , ttmn s ,1--c-ms- of
manufacturing cyonside cat Lolls. 	 Circular dies for pultrusions are easier to

fabricate and, thus, less expensive. Also, batten material can be centerless
ground to a desired diameter with high precision. 	 In fact, the pultruded

batten material was centerlesn ground to a smaller diameter in order to

eliminate a roucl r, rosin--starved surface.

Pultrusion was selected as the manufacturing proce ss for all the

unidirectional composites becaause it offers better uniformity of the parts "And

better economy for ►nediurrt to 14rge quantitie s than a mole l.ayup process,.

In the past, when longerons have been produced by layup methods, either
their length and cross section were limited because of tooling and nutoclave

size or excessive warping, or, as in the case Of ►,►nnd;re1 winding, a less

efficient cross section had to be utilized in order to overcome stability

problems inherent in precurved longoron mntorial.

seen with tiro pultrusion process, the feasibility of larger cross soctio ►
was in doubt. aeQA rse the ro=sin must cure in a short time, uniform
temperatur=e and pressure over the whole pro ,s section are essential. --
requirements which become more difficult to r,Wet with increasing size of the
pultruded cross section.
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° Therefore, one manufacturer was assigned the task to develop his

pultrusion technique such as to produce longeron mat^a.rial of quasi-square

cross section with a thickness of up to 1e mm (0.5 inch). S-glass fibers were

to be combined with different matrix resins (vinyl ester, epoxy), and a

glass/graphite sandwich using epoxy resin was to be produced in such a way

that the graphite fibers would occupy the center third "1E the cross section.

The efforts of Composite Products Technology Center (CPTG), a division of

Goldsworthy Engineering, Inc., were compiled in a report which is presented in

Appendix A.

3.2 MATERIAL WALUATION

The three .Fiber/matrix combinations which CFTC supplied were evaluated by

Astro for potential use as longeron material. Air Logistics manufactured the

circular pultrusions for the batt iuis and diagonals. Dimensions and material

composition of all pultrusions are listed in Table 2.

A series of three tests was performed on each material and the results

are compared. The tests were:

• Bending to failure (ultimate strain)

• Four-point bending (Flexural modulus)

• Burnout (percentage of fiber content)

The results of these tests are presented in Table 3. A brief description

of each test procedure will be given, along with comments regarding each

material as appropriate.

3.2.1 Bending to Failure	 ,

A typical test setup for longeron samples is shown in Figure 2. This

test consisted of bending specimens of each material around successively

smaller circular mandrels. A hydraulic bench press was used to apply the load

smoothly. Mandrel sizes ranged from 356-mm (14-in.) radius to 127-mm (5-in.)

radius in 1-inch increments representing strains of 1.5 to 4.2 percent with

the 11.1-mm (0.437-in.) longeron material. Support points were placed far

enough apart to avoid local shear failure. The specimens were cut long enough

7



to provide considerable overhang and, thus, to avoid setup-induced neutral

axis delaminations. Nevo:.theless, the S-glass with vinyl ester as matrix

failed exactly in this mode, as shown in Figure 3. Representative failure

modes for the other specimens are shown in Figures 4 and 5. The ultimate

bending strain was computed by the well }mown relationship

t
£	 (t + 2R)

where t is the thickness of the specimen, and R is the radius of the mandrel.

3.2.2 Four-Point Bending

Astro's test fixture, SK 2241, is shown in Figure 6. The loads are

applied by dead weights, and the deformation of the sample is measured at

midspan by a dial indicator. A detailed explanation of its use and a sample

calculation are presented in Appendix B. The primary data of loads and

deflections were used to calculate the flexural modulus of elasticity.

Because the data showed a slight nonlinearity when plotted, a best-fit

straight line approximation was made using "CV," a curve-fitting program

available on ROM for a Hewlett-Packard 41C calculator. Load-versus-deflection

plots for two longeron samples are shown in Figure 7.

3.2.3 Burnout

This test was conducted by measuring the exact dimensions and weight of a

sample of the composite and then placing it into a furnace at a temperature

sufficient to burn out the resin leaving the fiber unaffected. This allows

determination of the fiber content by weight as well as the fiber content by

volume when the density of the glass is known. Results of these tests are

shown in Table 3. The fiber content of both the vinyl ester/glass and

epoxy/glass samples was slightly higher than that in longeron materials used

by Astro previously. 	 Unfortunately, this method cannot be, applied for

graphite/epoxy composites because the fibers oxidize, as well as the resin.

It

8



3.3 CHOICE OF MATERIAL

Of the three materials considered for use as longerons, S-glass/epoxy was

chosen. It exhibited not only the best ultimate strain but also exceeded the

hybrid glass/graphite composite in sti ffness when the latter was bend tertit^mfi

in its we „.er direction. The anisotropic characteristics of the hybrid

composite were an additional concern; the material behaves similar to one with

isotropic properties but a rectangular cross section. In the transition from

stowed to deployed configuration the longeron is subjected to bending about

both neutral axes. This may lead to instability when the bending stiffness

about one axis is considerably higher than in the other direction.

The S-glass/vinyl ester composite was eliminated because the resin

exhibited too low a shear capability as represented by repeated delaminations

along the neutral axis.

The S-glass/epoxy exhibited a peculiar feature also. Ultimate strain

tests differed when measured shortly after fabrication and five months later.

The implications of this aging are discussed in a later section.
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SECTION 4

I EVELOPMT MODEL

Because of an upscaling factor of more than 1.5 from existing designs and

the v-se of maximum member sizes, it appeared prudent to build and test a

single joint as well as a short development model of the mast before

manufacturing the 6.1-m-long (20-ft) engineering model. A few cups and

shortened diagonals were built and mounted in a representative manner to a

test fixture. This Allowed application of pull forces to the diagonals as if

they were in the deployed configuration (see Figure 8). The joint was tested

to destruction. In one case (see Figure 9) one diagonal pulled out of its

terminal at 5520 N (1240 lb) applied load which corresponds to 3017 N (678 lb)

per diagcnal or 8.9 MPa (1290 psi) shear stress in the EA 934 adhesive,

i
indicating poor bonding. The cup broke at a considerably higher applied load

F

€
k
	of 8230 N (1840 lb) without damage to the diagonals (see Figure 10). This

4	 result could be used to determine the ultimate shear strength of the mast as
r

12600 N (2840 lb) taking into account the double lacing, although this value

is rather academic because a load of this amount could hardly be applied to

the mast without damaging other parts.

Funded by hstro's internal research and development program, the

development model was to incorporate all the features of the engineering model

except its length which was 3.75 m (12 ft) or eight full baylengths. Table 1

lists the pertinent dimensions and performance values (in the first column as

planned and in the second column as measured or as predicted based on the

measurements made on the material). Figures 11 and 12 show the model as

assembled in vertical position and cantilevered from its baseplate,

respectively. A 3/16-inch-diameter steel cable was used as a control lanyard;

it was attached to the center of the tip plate, routed through the center of

the mast and the baseplate, over a pulley, and to a hand-operated winch.

During the first retraction attempt, the initial torque was applied

manually to the tip plate, but as soon as the longeron started coiling, the

lanyard was employed to continue retraction (see Figure 13). Although the

lanyard force did not exceed 900 N (200 lbs) (as measured on a dynanometer at

10



the tip plate), one of the longerons broke just below the third pivot from the

top (see Figure 14). Shortly afterwards, a second longeron fractured at the
same station. The mast was subsequently redeployed with manual assistance

(see Figure 12), and although two longerons were fractured completely across

their thickness, the mast still could sustain the lateral load of the tip

plate weight of approximately 27 kg (60 lb) as shown in Figure 15.

As a result of this failure, the longeron material was subjected to a

series of additional strength tests, and the strains in the transition section

of the longerons were analyzed more precisely. It was found that:

o The original strain limit (measured shortly after delivery from the
manufacturer) could not be reached anymore. In fact, it was reduced
to about 75 percent of the original value.

o When tested with a pivot bonded on, the strain limit was reduced even
further to 43 percent of the originally measured value.

o With a glue line increased from 0.18 to 0.43 mm (0.007 to 0.017 in.),
50 percent of the originally measured strain value could be reached.

o Changing the adhesive from Hysol EA 934 A/B to EA 9320 increased the
strain limit once more `co about 63 percent of the original value.

Additional tests were performed with the longeron samples being wrapped

helically around circular tubes in order to establish failure criteria for

combined bending and tcrsion. The results are plotted as an interaction

diagram with ultimate shear angle y versus ultimate bending strain a in Figure

16. In the same figure, strain combinations are plotted as they have been

calculated for the transition section of a quasi-square longeron and an

octagonal longeron of the same thickness. The arrows indicate the direction a
along the longeron from stowed to deployed configuration while the subscripts

1, 2, and 3 refer to the location of the strains in the cross section as

indicated by the inset. Test points of longeron material used in previous

Astromast designs are included in Figure 16 for reference and comparison

purposes.

A comparison between longerons used in the development model and those

used in previous Astromasts is presented in '.Cable 4. Subsequent modifications

to the longeron design are discussed in the next section.

11
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SUCTION 5

ENGINEERING MODEL

5.1 DESIGN MODIFICATIONS

The design of the 6.1-m-Long (20-ft) engineering model was modified as a

result of the experience with the development mode?. The following changes

were made to the design before fabrication:

• The quasi,-square longeron blanks were Bound to an octagonal cross

section of the same thickness of 11.1 min (0.437 in.)

• The pivots were modified by replacing the square broach hole with a
circular hole of 12.3-mm diameter (31/64-in,) and increasing the
chamfer from 0.5 to 1.0 mm (0.02 to 0.04 in.).

• Hysol, F..A 9320 was substituted for EA 934 A/B as bonding adhesive for
the longeron .fittings.

Obviously, the major modification is the change of the cross-sectional shape

of the longerons. This reduces not only the strain level in the transition
section but also the axial and flexural stiffness of the longeron. The actual

mast performance is, therefore, also reduced as follows:

o Axial and bending stiffness by a factor of 0.03

o Bending and compression strength which rely on the bending stiffness
of the longeron (buckling) by a factor: of 0.69

In regards to the substitution of adhesives, it should be noted that the

manufacturer (Dexter Hysol Division) lists a narrower service temperature

range for EA 9320 (-55 to +110 0C) than for EA 934 A/B (-260 to +1750C).

However, the epoxy used in the l.ongoron material has an even lower heat

resistance of 90 to 100 0C depending on the mixture ratio of the catalyst, and

the pultruded material of Air Logistics should not be exposed to temperatures

above 90"x. when it is strained as in the stowed mast.

5.2 RETRACTION AND DEPLOYMENT '.PESTS

The engineering model was successfully retracted without the problems

experienced with the development model.. However, during deploymant,

12



interference was observed between the diagonal ball ends and the cups, and

several diagonals were broken at each end of the mast. The aluminum washers

behind the cups were also distorted.

The mast was disassembled, and the following changes were made:

• The cups were modified to provide more space for the right-hand
diagonal terminals when they have to rotate from the stowed to
deployed configuration.

• The special washers on the back of the cup and the keeper plates at
the end clevises were replaced with hardened stainless steel (410)
washers and plates.

The mast was again retracted and deployed. The modification to the cups

substantially eliminated the interference between the diagonals and the cups

except at the end of the mast. It was observed that rxe very stiff diagonals

f	 were developing substantial static friction loads among themselves and the
t

i	 battens.	 This condition prevented the diagonals from moving to a position

where they would not be damaged by the batten yoke fittings. 	 These same

strain friction forces were sufficient to overcome the self-deploying forces

of the mast.	 Photographs of the fully deployed and fully retracted mast

appear in Figures 17 through 20.

It became apparent that two design changes were necessary in order to

ensure satisfactory self-deploymennt of the mast:

• The diagonals must be reduced in diameter to a size that is closer to
the scale used in the past (they were originally about twice that
diameter).

• The batten stiffness must be reduced, at least at the ends of the
mast, to increase the self-deploying force.

In order to learn as much as possible about the influence of these changes on

`	 the retraction and deployment, Astro made the changes in several steps and

tested the mast between each step. The following configurations were tested:

o The mast was disassembled so that every other batten and corresponding
set of diagonals could be removed. The reassembled single-laced
Astromast was tested for deployment and retraction. Like the double-
laced version, this mast would not self-deploy, and there were
indications of considerable interference between the diagonals and the
battens at each end of the mast during deployment and retraction.

o The last three battens at each end were modified to reduce their
stiffness by 50 percent, and the mast was retested with the same
results.

13
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• All diagonals Caere replaced by diagonals of a smaller diameter, 3.7
instead of 5.7 mm, and the yokes of the end batten assemblies were
modified to minimize interference with the diagonals. This version of
the single-laced Astromast self-deployed and packaged satisfactorily.

• The mast was reassembled as a double-laced diagonal Astromast with the
same size members as above. The mast would not self-deploy the last
bays.

• The batten assemblies were removed and modified so that all central
batten assemblies were reduced in stiffness by 50 percent compared
with the original design and that the end battens were reduced to 25
percent of the original stiffness. This version of the Supermast was
self-deploying and packaged satisfactorily.

5.3 PREDICTED PERFORMANCE OF THE ENGINEERING MODEL

k,
The revised values of predicted performance are listed in the third

coluun of Table 1. Thanks to the much higher-than-nominal modulus of the

longerons, the bending stiffness of the mast with reduced longeron cross

section should be equal the originally planned value. The shear and torsional

properties were raducel due to smaller diagonals.	 The reduction in cross

sections also low-rered the mass per unit length to 3.32 kg/m.

14
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SWTION 6

CONCLUSIONS AND FUTURE DEVELOPMENT

The design at its present stage still has to be tested extensively to

verify its performance. Future development will be aimed at the improvement

. of the strain margin for the longerons. The high fiber content of the present

longeron material appears to render it very sensitive to local shear forces, a

characteristic not observed on other longeron material which appeared, in

general, of lower quality than the quasi-square material produced by CPT4.

Also, the apparent decrease in strain capacity associated with aging needs

verification. Inquiries with the resin manufacturer disclosed that the amount

of catalyst used may affect the long-time curing properties of the composite.

CFTC indicated that to achieve a more flexible composite, 5 pph of catalyst

were used instead of the normal 3 pph. Shell maintains that as high as 12 pph

of catalyst are feasible to incr-ease flexibility,

The experience gained thus far with (:he resin system suggests that fiber

content and catalyst percentage are two independent variables, each capable of

affecting the developed properties of the Final product significantly. For

this reason, in Phase II we plan to evaluate enough combinative samples to

establish both the independent effects, as well as the interactive effects of

each variable. This could be accomplished by varying the amount of fiber

bundles (ends), e.g., from 91 to 83 for the quasi-square cross section, while

varying the catalyst mixture ratio from 3 to 12 pph, thus establishing a

matrix of sample variations. 	 Testing of these samples in bending and

bending/torsion combinations should shed light on this issue.

The final development of the 0.75-m-diameter (30-in.) Supermast will be

achieved as a result of the modifications described in Section 5 and through

further improvement of the longeron material as previously described. In

addition, prior to the fabrication of the 15-m-long (50-ft) model for

Phase II, a lanyard-controlled deployment and retraction system will be

developed. In order to make the mast erect from one end, pushoff mechanisms
	 i

will be installed on one endplate. These spring-loaded units will push out

through the stack of battens by applying a force at each of the pivot fittings

15



located at the first: half bay. The retraction system will consist of three

bridles connected to the central lanyard. The bridles will be attached to the

lot one baylekngth from the tip and will be capable of providing a torque to
initiate the retraction process through a system of pulleys. Deployment and

retraction will be controlled with a gear motor.

I

t
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Figure 1. Hybrid longeron material, glass/graphite wita epoxy matrix.
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Figure 2. Ultimate strain test fixture (sample shown is
S-glass/epoxy undergoir	 . 3.51% strain).
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Figure 3. Vinyl ester failure mode (strain = 1.81).
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Figure 4. S-glass/epoxy failure mode (attempting
4.2% strain).
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Figure h. Four-point honding test fixture (SK2241).
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Figure 8. Diagonals/cup Pull test getup.
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Figure 9. Cup/diagonal pull test setup.
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h Sure 10. Cup failure.
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Figure 11. Twelve-foot model Supermast (SK2258) as assembled.
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Figure 12. Twelve-foot model Supermast test setup.
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Figure 13. Twelve-foot model Supermast retraction
with lany ard tension only.
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Figure 14. Twelve-foot model Supermast showing many broken
fibers in first-failed longeron.
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Broken lonneron

Figure 15. Cantilevered tip plate after failure of two longerons.



14

12

Ic

. a

I

6

OF POOR QUALITY

MV! r: ,. ir!l J I ....v ... .... .	 .. .. ... .... .... ... . . .... .... T:n r:. !!t -.I::

rr V

! -F. ... . ..	 .... ... ... ^i fvb
.	 .. .... ... .... ..

PIN-14" C-liqTp J,
;X

inM.: -V
. . . . . . . . . . . . . . . It

K -1--K iiltf

ll;i. lCr

CJ pt

f

.. .... ... ..
w r 1^

:M N"... ....	 ... ... .... .. .... . ..

.... .... .... .. . ... ...
...

—:Y;

-

....	 ....
---- --- ---- t . t7A;:- v-1 im

.. .. T

;v.. L .
i x . .....: .... ...

-:12 lv: * , ". ;1* - . ...
. ...

.... .... ... . . .....

. .. .... ... .. g
ttl'. ..

.. .... ^44 i. at: ........
. ... ....

x;
... dr

.. ...
.. ... .... ...

I	 I •iiir: ::4.

:r.; n Tli : -.E:... ........ Mi
z It!

-T-F C
 

z
-Zll -:t^ L }Iii. . .... ....

Mt.
Ehtk 1.6 P F.

^il . 1;% iz! -.. .... ..
M! .. .... .... ....

4
;!a o i .

7m.

V.: 1^7:
t::f

. ... ....
:::;I .. .... .

1r.q, 4C> T-t to
:::

ti 4^! Hii.
-iiq::.;

—:j-:

Mt

;r.

ril

N:	 ni M! 7:.. . .... ....

-t ....
..

....
........ ....

iiu m,rM=TM

Z.Ci 	—
	

4.

'Sr--N P IN 6 57;ZA IN

Figure 16. Strain interaction diagram.

37



OMCINPI E,:.:.:
OF POOR QUALI) Y

Figure 17. 0.75-m-diameter Supermast, b-ia long.
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Figure 18. 0.75 -m-diameter mast test setup.
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Figure 20. 0.75-m-diameter Supermast retracted detail.
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PULTRUSION OF SQUARE S-GLASS RODS FOR

THE DEVELOPMENT OF LARGE DIAMETER ASTROMASTS

PHASE I - FINAL REPORT

APRIL 15, 1982

COMPOSITE PRODUCTS TECHNOLOGY CENTER

23930 Madison Street
Torrance, CA	 90505
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April 14, 1982	 CFTC# 81-8

Astro Research Corporation	 OF FOUR QUALITY
6390 Cindy Lane
Carpinteria, CA 93013

Attn: Dr. Karl Knapp,
Mr. Roger Lagerquist

Dear Sirs:

With the conclusion of Phase I of the Goldsworthy/CFTC pultrusion
program, I'd like to present the attached summary of laboratory
results. At Goldsworthy we are quite pleased with the program
results and look forward to starting Phase II after your testing
is complete.

In order to initiate Phase II we ask for an addenda to the ini-
tial purchase order #6139 and 500 of the phase price. Reference
back to the CPTC quote dated November 18, 1981 note that we have
asked for one extra production day if the Shell "fast cure" epoxy
is the approved resin. At this time I suggest that such precau-
tion may not be necessary. I would advise that Astro Research/
Goldsworthy proceed on the basis of 3 days @ $836/day as quoted.
Consequently, Goldsworthy requests $1,856.50 or one-half of the
anticipated program price to initiate work. If the program were
to require an additional one day effort to complete production
of 500 feet/S-glass rod, Goldsworthy will present that cost at
final billing. I will continue to assess Astro Research of the
program status along the way.

It would be most convenient to our production schedule if the
test based decisions, to proceed with Phase II, be made as rapid-
ly as possible. If possible, we wish to avoid breaking down the
pultrusion set-up for another task and then re-setting up later.

We look forward to any questions, or results you might-have.

Best regards,	
E
r

Rob Sjostedt
R & D Manager

Enc: as noted above

_
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PULTRUSION OF SQUARE S-GLASS RODS FOR

THE DEVELOPMENT OF LARGE DIMIETER ASTROMASTS

PHASE I FINAL REPORT

I. CONCEPT

Pultrusion would appear to be an ideal process for the production
of quasi-square S-glass/epoxy rods to be used as lon geron members
in lightweight extendible space structures. The need for uniform
mechanical properties throughout long material lengths, low void
content, and evenly tensioned fibers should be fully accomplish-
able with the pultrusion process. Furthermore, the high degree
of fiber packing (72 to 75% by weight) required to achieve the
specified 7.5 million composite modulus can easily be accomplished
by pultrusion.

The recent availability of a new family of developmental "fast
cure" epoxy resins by Shell Chemical, further added to the pro-
bability of producing high-performance rods by pultrusion. Shell
was able to recommend an epoxy resin with both excellent proper-
ties and good processability.

k
II. PROGRAPI OBJECTIVES

Following the design and manufacturin g of the pultrusion die
and related material guidance tooling, three lab trials were
accomplished.

1) Pultrusion of 100 ft. S-2 glass rod with Ashland Hetron
902 vinyl ester resin.

2) Pultrusion of 100 ft. S-2 glass rod with Shell develop-
mental "fast-cure" epoxy resin.

3) Pultrusion of 100 ft. hybrid sample S-2 glass and inter-
mediate strength carbon fiber core/epoxy rod. The carbon
core comprised 1/3 of the rod cross section area.

All pultrusions were processed in a manner consistent with recog-
nition of the high strain loading of the rod. This involved
efforts to correctly wet-out and orient the fiber prior to the
pultrusion die. Secondly, all pultrusions were attempted at
minimum resin filler loadin gs possible. Thirdly, radio fre-
quency pre-heat was used in the glass pultrusions, just prior
to the die entrance, insuring full and uniform cure of the
composite cross section.



Astro Research Corp.	 ORIGINAL	 jjlaboratory results	 OF POOR QUAL11yApril 15, 1982
Page 2 of 3
---------------------------------------------------------------- ------

III. SIGNIFICANT DETAILS
r

1) Pultrusion die design - the 0.443" square pultrusion die
was designed with an improved mating surface seal. Most
of the die mating surface was relieved, such that a narrow
0.25" contact land was left for sealing. This was important
for pultrusion of the Shell "fast-cure" epoxy as any leakage
at the seam line will cause the product to seize. The epoxy

{	 is particularly prone to this phenomena since the resin under-
goes a large viscosity drop before cure.

°•	 2) All resin mixes and processing details are available in the
attached laboratory log sheets.

However, in summary the following optimum processing condi-
tions were observed for each sample group respectively.

1) S-2 glass/vinyl ester - Hetron 902

a) Die temperature - 240°F

b) RF pre-heat (internal - 1" prior to die entrance) - 150°F

c) Line speed - 18 in/min.

2) S-2 glass/epoxy - Shell Epon resin RSL 387 Curing Agent
CA9350.

a) Die temperature - 350°F

b) RF pre-heat - 205°F

c) Line speed - 6 in/min.

3) S-2 glass carbon hybrid/epoxy - Shell Epon resin
RSL 387 with curing agent CA9350.

a) Die temperature - 400°F

b) No RF (due to conductivity/carbon fibers)

c) Line speed - 4 in/min.

IV. RESULTS AND CONCLUSIONS

Approximately 130 to 150 feet total of each of the three sample
types were produced. A low filler loading (5-10% by resin weight)
was required in all cases to yield good surface finish and contin-
uous running. The product samples were sent to Astro Research for
testing and early indications were that the epoxy S-^ glass rod
fully met Astro's requirement. Complete test results are to follow
at a later date. The relatively low performance results of the .
vinyl ester samples are attributable to a high fiber loading. If
future runs are attempted it would be worthwhile to reduce the
glass content to 72% by weight with vinyl ester resin.

4
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OFPOOR QUALITYApril 15, 1982	 Q

Page 3 of 3

r
Another improvement to the process lies in the packaging form of
the S-2 glass rovings. The tangential wrapped spools used in
Phase I developed a twist in the roving as the pultruded length
increased. The twist is probably affecting the ultimate proper-

(	 ties of the rod. Removeable tube (no twist) centerpull S-2 glass
roving doffs are commercially available from Owens-Corning Fiber-

s	 glass. The tangential wrapped spools were used in Phase I to

s
keep c:, -,ts down.

Goldswordhy/CPTC maintains that the current process is fully
developed and production of 500 foot lengths can commence immedi-
ately.

I will be pleased to respond to any questions regarding the above
report.

P.S. Please see attached burn-out tests.

4
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FOUR-POINT BENDING TEST PROCEDURE
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TEST PROCEDURE

BENDING MODULUS OF ELASTICITY BY THE FOUR POINT METHOD.

PURPOSE.

This test determines the bending modulus of elasticity

for slender e1ements'such as the longerons, battens and diagonals

used in Astromast deployable structures.

EQUIPMENT

Test Fixture SK 2241, including the Test Article Support and

Weight Hanger.

Metric Dial Indicator, Brown & Sharp 58261-911 (Yellow Dial).

Set of Metric Weights.

Table with Cast Iron Grating Top.

DESCRIPTION OF THE TEST.

The test article is placed on supports that are a fixed

distance aoart. Bendino loads are applied by a weight hanger that
`

has knife edqes separated by a fixed distance " A series of metric

weiqhts provides incremental loading.

Deflections at the center of the test article are converted to

*nnud,s o f V p nt,citv bv an pnuation that uses the

K , st ,rric1e crnssec0onai dimensions. Lost fixture qeometrv.

+nPl/-d |na1s ond obser`/-d Mflections. 3ee "DATA REDUCTION".

to

'

-»

^
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PREPARATION.

Weiqh the weight hanger unit (GK 2241) " inoludinq the nuts

and washers used -For installation.

Add nuts and/or washers to make the tare weight al round number"

w Attach a sticker to the weight hang pr, indicating the tare weight.

-

	

	 Remove the horioontz%1 bar from the weight hanqer and bring

the threaded rods down throuqh the cast iron grating. Re-attach

'	 the h pri#ontal bar and ti g hten the jam nuts, making sure the
/	

bar is equall y distant from both knife edges.

^	 Position the test article support (GK 2241> on the grating

"	 beneath the weight hanger " Center the weight hanger over the

test article support and move the test article support until 	 .

'	 hoth threaded rods clear the grating. Clamp the test article
^

suppcxt to the qrating.

Cut the test article to a minimum length of 18 inches

(24 inches maximum). Lift the weight hanger and slide the

test article onto the supports. Center it. Use rubber bands

to hold the test article against the front sides of the

'	 knife edge slots: Wrap a rubber band around the test article

outboard of each knife edge and attach it to a screw on	 ^
:

the front side of the fixture. `

Mount the dial indicator above the center of the test
'

 article so the plun(-.1er is just above the lowest point in its' trev+l^ 	 ` ^-

	

	 r
Push a q ai/.=t the test article suPport and dial indicator to

'
for	 play. Make sure ^he dial indicator 	 ^ '

^l
/s ^=n^mr^d bv measorznn fr^m ho^h knife edges.	 )

1

^']en`^ f ' ^he '^e^./h^s ^» '/ffix in q a nmober'^d stic/er	 ^ ̂

+o ^-ch ' ^n p .	 ^^rnrd ^h^ s^ ^e of ^ach weiqht nd its ^ ::ti cker nim/ber.	 |

oil	 bill
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TEST PROCEDURE.

Support the weight hanger on blocks so it doesn't touch the

test article " Zero tho dial indicator by rotating its face.

Tap lightly on the dial indicator to remove friction.

Readjust the zero if necessary " Preload the test article by lowering

the weiqht hanger and applying the maximum load. Then remove all
^

of the weights and support the weight hanger on blocks.

 Chpck the dial indicator zero and readjuK it if necessary"

Record the load (zero) and deflection (zero). Lower the weight hanger

onto the test article and record the load (weight hanger tare)

and deflection (indicated by the dial indicator). Add metric

weights one at a time and record the loads and deflections.

Record the sticker numbers of the weights used.

DATA REDUCTION.

	

^	 Secant Modulus,

The flexural modulus of elasticity (E) may be found
`

	

.	 by using the following equation to evaluate data taken with

test fixture GK 2241:

2.500 x W	 -9
^	 E = --------- x 10	 gigapascals

	

^	 IxY

 where	 u is the Applied Weiqht in kilograms.

	

`	 I in the moment of inertia of the test article
4

rrossection in meters

^ nd	 ; is k |`e 0eflection in millimeters.

7~1 1 ' 1enr	 v.os.

ri.~ ' onn-n7 p cy /1uo i- nb+ajned b ^ ubo0totinq 404

[oW '^'^r n' ^h^ ^^~re-xeflec+inn ,ur— at n q i^en strain

all , lift

~

,
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ie+ul in place :1f W/Y in the abovo mXprmssion " To find the	

QUALITỲ

modulus at near zero loads, the forco-d0lmct1on curve should be

omoothed by making a\ least squares fit to a curve of

B
+he form Y = A X X . This can be done with HP-41C Standard

Applications program "POW""

The modulus E can be obtained with HP-41C program "FFFF".
,

This program finds the moment of inertia of

~ a round, square or rectangular crossection including the effect

of corner radii.	 (It also finds the corner radii of a

7quare section, given the side and diagonal measurements>.

Th p program accepts crossection measurements in inches and gives

the moment of inertia in smglish units. Then it converts the moment

nf inertia to SI units and calculates E in gigapascals.

	

^	 SAMPLE CALCULATION.
,

	

^	 Assume the fallowing data were obtained from a four
/̀

point bending test:

	

^	 ^
Crossection Dimensions - .4362" x ,4360" X ,5686" diagonal"

Corner Radius - .0581"

-3 4

	

CrossectioD Moment of inertia - 2.893 x 10	 in

-9 4
or	 1.204 x 10	 m .

Load (including tare) - 7.738 kg.

Deflection - .230 mm.

The modulus of elasticity is:

	

2.500 x 10	 x 7,738 kg
E= --------------------------

-c? 4

	

1.204 x 10	 m	 x " 230 mm

nr	 F = 6n.86 njnonascals

.	 ,̂
-̂

^	 :̂

I ^ Mib^

^


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf

