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SOLUTION OF ELASTIC AND ELASTO-PLASTIC PROBLEMS
BY THE METHOD OF LINES

Abstract
by

ALEXANDER MENDELSON and JAVED ALAM

An improved formulation of the method of lines (MOL) is pre-
sented. The line method lies mic - v between completely analytical
mwethods and completely discrete methods such as finite differences.
The five-point finite difference 7- -mulas are introduced to reduce a
gse: of coupled partial differential equations into a set of simul-
taneous ordinary differential equations. The resulting ordinary
differential equations are solved by a recurrence relation method,
which is found to be very suitable in solving two-point boundary

value probloms.

The formulation is further extended to include the small scale
plasticity effect. The Von-Mises criterion is used for yielding
and isotropic hardening rule is followed to decide for subsequent
yielding. Prantl-Reuss equations are employed as constitutive re-
lations. The resulting nonlinear equations are sclved by using the

method known as successive elastic soluticns.

For two specific geometries namely the edge notch specimen and

the compact tension specimen, the complete field solutions for

stresgses and strains aie ot:cained.
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A numerical experimentation is carried out to establish the
convergence characteristics of the improved MOL. The results for
stress intensity factors (SIF) are also compared with the existing

results obtained by finite element analysis.

The stress intensity factors are calculated for the compact
tension specimen containing curved crack fronts. A thickness aver-
age stress inten.ity factor is evaluated and it 1is used to compare

results for fracture toughness.

To explain the tunnelling behaviour in the compact tension
specimen a complete elasto-plastic analysis is carried out, using
the improved formulation. For a straight crack the load versus
crack mouth opening displacement curve obtained by anaiysis is com
pared with the experimental plot. The experiments were conducted
at NASA Lewis Research Center. The J-integral values at different
thickness levels of the compact tension specimen are computed to

predict the crack initiation through the thickness.

The results obtained show that the introduction of the five-
peint finite difference formulas has considerabiy enhanced the ac-
curacy of the method of lines. A relatively coarse grid is suffici-

ent to yield an accurate result.
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CHAPTER 1

INTRODUCTION

Knowledge of the streas and strain dietributions in the neigh-
borhood of a singu.arity such as the tip of a crack in a beam or
compact tension specimen is of fundamental importance in evaluating
the resistance to fracture of structural materials. In the past
various researchers (1,2) using stress functions and complex variable
approach, solved plane elastic problem for cracked bodies. Gross
et. al. (3) used boundary collocation technique to solve different
planar crack problems. The suécess of both analytical and numerical
methodsﬁpave placed present fracture mechanics on a firm foundation.

However, many fracture mechanics applications do not involve
the solution of plane problems. For example, the stress analysis of
corner cracks or surface cracks in practical structures is a taree-
dimensional problem and rational approach to design of such structures
requires an accurate method of three-dimensional analyses. As de-
scribed in Reference 4, at present, there ;s a wide divergence among
the varioué approximate solutions to such three dimensional crack
problems and in these circumstances structural design using fracture
mechanics must proceed largely on the basis of experience and labora-
tory modeling tests.

A closely related problem occurs during the fracture toughness
testing of standard compact tension specimens as shown in figure 1(a).

Very rigid standard have been imposed by ASTM (5), to ensure that
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vat{d fracture toughness values will be obtained in a given test. Une
of the regquirements f{e the production of a fatijue crack. However,
the fatigue crack will usually not grow uniformly acrosa the specimen
thicknens, {.¢. the fnitially atraight crack front will become curved.
The crack length will thua vary acroas the specimen thicknean, and
aome average value munt be uned to caleulate the fracture touxhness,
Reterence (V) provides a standard measure such that 1f the crack

front curvature as measured after the specimen {s broken, is greater
than thia atandard meanure, the teat is {nvalid.

Rocently, however, auggestiona have been made (o) that the
above atandard {u too rigld and can be relaxed smince the effect of
the curved crack [ront mav be lvaa than originally anticipated. Theae
sugpeat fone, however, ate bamed on rather weak evidence (7) and {t
{4 not vet clear whether the E-109 acandard sahould be relaxed or not
{n thim vempect. . at needed {a a clear definitive analvais ot
the effect of the crack front curvature on the atreas intensity fac-
tor. e of the objectiven of the present inveatigation {s to per-
form this analvafa.

Inttial attempts to solve fullv three-dimennional elastic
problems were made by applving certata boundary correction factors
to the eximting two dimenmfonal veaultn. These approximations were
aoley bamed o {utuliive  judgement and resulted in widely acat-
teved aolut{one for the same problema. Three-dimenaional problema
are fnherent ly more complex and In almost all the camen one has to

reactt to aome sort of numerical techoique which teads to a lavge



set of equations to be solved on a digital computer. Many numerical
schemes are devised to obtain the stress and strain distribution in
the neighborhood cf a crack in a three-dimensional body. Notably
among them are Boundary Element Method (8) and Finite Element Method
(9,10,11). Significant progress has been reported in the develop-
ment of both of these techniques. Special crack tip elements are
developed which include the effect of crack tip singularity. However,
the effect of element size and arrangement around the crack tip, on
the convergence of the solution needs more extensive study.

A few attempts were made to determine stress fields near
crack tips naving some curvature by using experimental techniques.
McGowan (12) used a 3-D stress freezing technique to investigate
the effect of crack front curvature on the stress intensity factor
distribution in a single edge notch specimen. He reported that the
increase in the crack front curvature decreases the stress intensity
factor (SIF) at the center of the specimen and also the thickness
average stress intensity factor. In his study the value of SIF at
the surface was insensitive to the change in crack front curvature
as well as the Poisson's ratio. This study predicts the behavior,
which is in good agreement with other analyses, but the actual results
have discrepancy of about 35X with an existing finite element analysis.
The discrepancy in the results has beenr attributed to the difference
in the crack length in the two analyses.

Fourney (13) devised a new technique of analyzing three-dimen-

sional problems utilizing scattered light speckle interferometry. He



also found that the stress intensity factor increezses at the surface
due to the presence of crack front curvature. The crack tip singu-
larity was found to be strongest at the center. This was cited as
the reason for tunnelliing behavior in a compact tension specimen.

Peirera et. al. (14) carried out a finite element stress analysis
of a compact tension specimen. They distorted the crack tip elements
to model a circular type of crack front. It was found that the local
values of SIF decreases at the center and it rises at the surface of
a compact tension specimen. An average value of SIF based on energy
considerations was also calculated. This value was found to be de-
creasing with increasing crack tunnel depth.

Neale (15) performed another finite element analysis for a non
standard compact tension specimen (W/B = 8) containing a thumbnail
crack. He showved that if the average crack length is calculated
based on ASTM method, then the fraccure toughness is overestimated.
Both the previous analytical studies did not use the standard compact
tension specimen as shown in figure 1(a). Peirera et. al. used a
tensile loading which does not model the actual loading condition.

In their studies a crack length to width ratio (aM) of 0.25 was used,
while ASTM standard prescribes a range of 0.45 to 0.55. In Neale's
analysis the thickness of the specimen used was % of the standard
thickness specified in the ASTM standard. Consequently, the results of
these analyses can not be directly applied to a standard compact
tension specimen.

All these analyse. predict that crack growth will initiate from

the surface of the specimen due to the presence of maximum SIF there.




This finding is in direct contradiction with the experimental results,
in which a tunnelling behavior is cbserved. Neale (16) tried to ex-
plain tais anamoly on the basis of plasticity eftfects. He performed
an approximate elasto-plastic analysis to improve the numerical

values of SIF. His elastic-plastic thumbnail model indicates that

the maximum stress intensity factor occurs in the central portion of
the compact tension specimen which is in agreement with experimental
observations. However, dus to the approximate nature of the analy:is,
there is a need to perform an accurate elasto-plastic stress analysis
to resolve this discrepancy. This is another major objective of the
present investigation.

The recently developed method known in the literature as the
Method of Lines (MOL) was selected to perform the elastic and elasto-
plastic stress analysis of two specimens namely the edge notch speci-
men shown in figure 2 and the standard compact tension of figure 1(a).
In this method there is no prior assumption on the stress field
around the crack tip. There is an extensive literature, primarily
of Russian origin for the method of lines, which has been summarized
to 1965 by Liskovetes (17). The method has been used extensively in
solving problems in the area of fluid mechanics.

Jones, South and Klunker (18) presented an analysis of conver-
gence and stability for the case of linear elljptic partial differen-
tial equations solved by the MOL. They indicated that the results
obtained are of sufficiently high accuracy. It was shown that if

the region of interest is divided into sufficiently few strips by



the dividing lines then accurate solutions can be obtained by using
h.gher order finite difference approximatjon. In the study by Kurtz
et. al. (19) it was observed that in problems where standard techni-
ques failed to converge the line method was able to produce results.
Hopkins and Wait (20) compared the execution time of MOL with
Galerkin and collocation techniques, which were viewed as finite
element discretization. With very few exceptions, they found that
the line method yields faster results as compared to the other two
techniques for a set of coupled and uncoupled parabolic partial dif-
ferential equatijoms.

The line method lies midway between completely analytical
methods and completely discrete methods such as finite differences.
The basis of this technique is the substitution of finite differences
for the derivatives with respect to all the independent variables
except one for which the derivatives are retained. This approach
replaces a given partial differential equation with a system of
simultaneous ordinary differential equations whose solution can then
be obtained by standard means. These equations describe the depen-
dent variable along lines which are parallel to the coordinate in
whose direction the derivatives were retained.

An inherent advantage of the line method over other numerical
methods is that good results are obtained from the use of a relative-
ly coarse grid. This use of a coarse grid is permissible because
parts of the solutions may be obtained .n terms of continuous func-

tions. Addit'ional accuracy in normal strexs distributions is derived



from the fact that they are expressed as first-order derivatives of
the displacements and these derivatives can be analytically evalu-
ated. Inherently inaccurate numericil differentation is required
only for evaluating the shear stresses, but this presents no impor-
tant loss of accuracy in this study since they are usually an order of
magnitude smaller than the normal stresses. For problems with geometric
singularities, additional accuracy is derived fromusing a displacement
formulation since the resulting deformations are not singular.

The method has been shown to be well suited to the solution of
certain three~-dimensional crack problems, as has been successfully
demonstrated (21,22). Fu and Malir (23,24) are the first to report
the application of MOL to elasto-plasticity. The formulation was
presented in terms of displacements and their normal derivatives.
These equations were solvcd by a combination of power series and
modal matrix method.

Although the MOL has given very good results in a number of
specific geometries as described in the previous references, its
use has been limited heretofore to bodies with rectangular boundaries
(including the crack boundaries), or to the problems of axial symmetry.
Thus, the very important surface flaw problem or curved crack front
problem have no: been treated. This was primarily due to the limi-
tation in the rnumber of lines that could be used, since the rate of
convergence of the infinite series solutions of the differential
equations decreases as the number of lines increased and as the

dimensions of the specimen increased. It has also been shown in



reference (18) that the use of the MOL for solving elliptic partial
differential equations can lead to problems of instability if the
line spacing is made too small.

A third major objective of this investigation was therefore to
reformulate the method to avoid or minimize the above difficulties.
This was done by employing 5- point finite difference formulas rather
than the usual 3- point formulas and by devising an algorithm for
solving the three sets of ordinary differential equations for the
twe point boundary value problem using recurrence relations. These
innovations have appreciably increased the applicability and accuracy
of the MOL. The elastic formulation is then modified by including
the plastic strain terms to solve an elasto-plastic problem.

A complete formulation in a rectangular cartesian coordinate
system is presented for the newly improved MOL. The governing field
equations are augmented to include the plastic strain terms. To
study the convergence characteristics of the method, complete elastic
solutions are obtained for different numbers of lines for an edge
notch specimen. The stress intensity factors are computed for an
edge notch specimen and a standard compact tension specimen. They
are compared with the existing finite element analyses results to
assess the validity of the MOL. The complete field solutions are
evaluated for both the specimens for the different cases of crack
front curvature. For compact tension specimen of a given material
(A2-5083) complete elastic-plastic stress analyses are carried out.

Similar analyses are alsuv done for specimers with different curved



crack fronts. Various fracture mechanics parameter such as the

J=- integral are evaluated to establish the effect of crack front

curvature.

0 R . © et
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CHAPTER 2

SOLUTION OF CRACK PROBLEM BY THE
METHOD OF LINES

In this chapter a method of solution for three-dimensional
elasto-static problems is described. All the underlying assumptions
and the governing field equations are described. An improved method
of lines, in which five point finite difference equations are used,
is employea to obtain a set of second order ordinary differential
equations from the governing coupled partial differential equations.
The second order differential equations are rearranged to formulate
a set of first order differential equations and these equations are
then solved by a new algorithm involving recurrence relations,
which was found to be a simpler and an efficient technique to solve
two point boundary value problems. The last section of the chapter
deals with the evaluation of boundary vectors used in the recurrence
relations for an edge notch specimen. The details are also given
for the ioading idealization for a compact tension specimen and its

incorporation into the equations of the method of lines.

For all the elasto-static problems discussed in this thesis the

following assumptions shall apply.

a) The deformations are infinitesimal.
b) All deformations are elastic.

c¢) Materials are isotropic and homogeneous.
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d) Body forces are neglected.
2.1 Governing Equations

Within the framework of linearized elasticity theory, the field
equations neglecting body forces are listed below.

The equilibrium equations are,

0“'j =0 i,j = 1,2,3 (2.1)

where the standard tensor subscript notation is used. Hooke's law
is,

= \§ +2G 2.2
%3 " M5 G ®13 (2.2)

where ) and G are Lame's elastic constants. The strain-displacement

relations are,

Cij = %(ui.j + uj.i) (2.3)

The solution must satisfv these equations at all interior points of
the body and, in addition the prescribed conditions must be met on
the boundaries. The above three sets of equations are combined to
form three partial differential equations in terms of displacements.
The resulting equations which are known as the Navier equations of

equilibrium are,

Gu + (A+G)u

1,33 g =043 =1,2,3, (2.4)

3,3

For problems formulated in rectangular cartesian coordinates, the

equations can be written as,
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vhere cC, = -2 and C. = - 1 (2
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v being Poisson's ratio.

The stress-displacement relations in cartesian coordinates are,

ox-(1+v)E(1-2\’3 [(1-v)%+ \)(g—;'+ ?a_:)] (2.
o " TE T (Y %*V ¥+ ) 2.
°='(1+v)E(1-m[(1"’)%32+v(g—;’+§‘;')1 (2
xy TS [g¥+gl;] (2.
o = TS (5 ¢ 5 Q.
Opx ~ ﬂTETGS [%i"‘%‘;’l (2.

5)

6)

T

8)

9)

10)

.11)

12)

13)

14)
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The method of lines is used to soive the three coupled partial
differential equations given by equations (Z.5) through (2.7). For
each problem appropriate boundary conditions are satisfied. In the
next section the line method is described in detail.
2.2 Method of Lines

The recently developed Method of Lines (MOL) has been shown to
be well suvited to the solution of certain three-dimensional crack
problems. 1In this method there is no prior assumption on the stress
field around the crack tip. The line method lies midway between
completely analytical and grid methods. The basis ~f the method is
substitution of finite differences for the derivatives with respect

to all the independant variables except one, with respect to which

the derivatives are retained. This approach replaces a given partial

differential equztion by a system of simultaneous ordinary differen-
tial equation whose solution can then be obtaired by standard
means. The equations describe the dependent variable along lines
which are parallel to the coordinate in whose direction the derivi:-
tives were retained.

Since in three-dimensional elasticity problems solutions of
three partjal differential equations are desired, three sets of
parallel lines are constructed. An arbitrary grid consisting of
these three sets of parallel lines is shcwn in figure 3. The lines
parallel to the x axis are numbered as 1,2,3, -- NY, NY + 1 -~ 2NY,
2NY + 1 -- 3NY, 3NY + 1 -~ 2. The lines parallel to the y axis are
numbered 1,2,3, -- NZ, NZ + 1 —- 2NZ, 2NZ + 1 -- 3NZ, 3NZ + 1 -- m.

Finally lines parallel to the z axis are numbered as 1,2,3, -- NX,

LRIy ik
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NX + 1 == 2NX, 28X 4+ 1 == 3NX, 3NX + 1 -- n, This numbering system
is chcesen so that the resulting variables in the computer ligtings
are identified through double subscripts only. The first subscript
identifies the line along which the variables are calcuiated while
the second subscript indicates the position along the line. JIa this
work the lines are constantly spaced with spacings hx* hy and hz.
This is done purely for convenience. The advantage of uniform line
spacing is that tle resulting ordinary differential equations cazn be
solved more easily than those that are derived fron non-uniform line
spacing.

The equatione of 3-D elasticity are the three coupled particl
differential equations (2.5-2.7). In this case solutions for the
dependent variavles are possible only at points where the three sets
of parallel lines intersect. These points are usually called nodes in
a discretized body. This limitatic~ is the result of coupling among
the equations, which makes the particular selection of ordinary
di.ferential equations valid only at the nodes. The equations are
developed for a crack specimer as shown in Figure 4. Since we have
a three fold symmetry, only one quarter of .he specimen is considered.
One should also note the numbering of the various planes.

2.2.1 Reduction of the Pirst Navier-Cauchy Equation and Associated
Boundary Conditions for the Cracked Specimen

For the solution of equation (2.5), the iinee parallel to x axis
in rigure 3 are considered. The x directional displacements of points

along these lines will be denoted as u,, u,, == u We define 6\1.

2.
G]z, 6|3 .« o . Qll as the derivativazs of the y directional displace-

ment3 of the same points on these lines with respect to y and &Il.
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;IZ’ ;]3 c e ;lg as the derivatives of the z directional displace-
ments of the same points on these lines with respect to z. These
displacements and derivatives can then be regarded as a function of
x only since they are variables upor lines which are parallel to the
x axis.
By the above given definiton, the ordinary differential equation

along a generic line ij in figure 5 may be written as,

2
du 2 2
ij 3°u , 9°u d - d »
+C, (248 =g, —=v| +C, =W (2.15)
dx2 1 ay2 322 13 2 dx 13 2 dx 13

Introducing 5- point finite differences, the partial derivatives of
u with respect to y and z along the x directional line (ij) of

figure 5 can be written as {_.lows,

2
3 u ~ 1
(=) ,, = == (-u,_ + 1l6u, _ - 30u,, + 1l6u - u )
ayz ij lthy i-2,3 i-1,3 13 i+1,j i+2,3
(2.16)
and
82u 1
—_ S o (- - 1 -
G215 ™ T O, gegt 10y 5q7 30uyy 36y 5y - Yy e
Zz 12.1 2
(2.17)

On substituting equations (2.16) and (2.17) into equation (2.15), the

general equation along interior lines is obtained. Thus,

(2.18)
d2u ]
—4 4 = (- + 16u - 30u,. + 16u -u ) 4 ——x
- -1, 1 141, +2 7
d . .
(- - - = ——
TUg,g-2 HE0Uy gy T 30y A6uy ity )] T G i (g
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The resarrangement of the above equation leads to,
4C 5C 5C 4cC
2 2 Ui-2, é U1,y t ¢ % * % ) ugy T ; X
dx 12h 1 S I
y y ] y
C C 4c 4C
Y41 j + - . u - 1 u
lzhi 1+2 12hi 1.1-2 3,12 i,3-1 3h§ 1,j+1
B ] z
C
+ +C 2.19
;,‘hTim 2 T+ (2.19)

Similar differential equations are obtained for the other displace-
ments of the points on the x directional lines. Since each equation
has the terms of the displacements of the points on the surrounding
lines, these equations constitute a system of ordinary differential

equations for the displacements Uy u . u

5 ¢
The equation (2.19) is applicable only to interior lines. For

boundary surface lines and lines adjacent to the boundary surface
lines, the difference expressions for the second derivative will in-
volve imaginary lines outside the boundary. As shown in figure 6,
the imaginary lines below the plane V are designated as lfy. NY+1fy

. (- NY+1)fy. The imaginary lines lying on the planes adjacent
to nlane VI are numbered as 1fzz . e NYfz' andlfl:. ..NYfllrenpectively.
Similar numbering procudure is followed for the imaginary lines lying
on the planes, which are located adjacent to planes Il and I1I re-

spectively. The arrangement of the planes V, VI, Il and II1I is shown

in figure 4. Since three-dimensional elaaticity problems have three

boundary conditions at every point of the boundary surface and a
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second order ordinary differential equation needs only two conditions,

the shear stresses at the boundaries are used to eliminate the
imaginary lines outside the surface. While the condition of the pre-
scribed normal traction or displacement will be enforced through the
constants of the homogeneous solutions. The method used to derive
the equations for boundary surface lines and line adjacent to it, is
described in detail in the Appendix A. Appropriate difference equa-
tions are used to express the partial derivatives. For example, to
write the difference equations for the partial derivatives with re-
spect to z for the lines { - NY+1 through ¢, a backward finite dif-
ference formula is used due to the lack of sufficient grid points to
write central difference equations. On following the procedure des-
cribed in Appendix A, the differential equation for line 1 can be
written as,

oy G

+ [~20u, + 17u, + "u_ - u,]
5 3
12h.v 1 2 3 4

C
1
o [=30u) + 30upy iy - 2Ny
1207

]

11¢C

PR IFCENES s

2 Ix 6h, ax (+.20)

1

similarly the differential equation for the line ¢ - 2NY+1 is

nd
“

d"u C
¢ - 2NY41 ]
T~ 5 [F20u v P 17N L oowve
dx 12h
y
+ 4u -u Cl
- 2NY43 - INYH4) 4 —— X

<

12h
z
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=ug _oanyer F 109 - oanyar T 31N o oanyer 0¥, yoq]
(v + w) 1 dvl (il— Q‘_"
¢, d - 2NY+1 ~ 6h dx't - 2NY+1 T &R, dx ' - NY+1

(2.21)

Finally, introducing matrix notation all the ordinary differential

equations along the X directional lines are expressed in the form,

2

d“{u} d
-d—xT = [Ky] {u} + = {r(x)}
£x 1 2x2 2x1 2x1 (2.22)

vhere the matrix (K,] and the column vectors {u} and {r(x)} are
given below.

r—

LI I [nu)‘ 0 l 0 0

NY x NY INY x NY | NY x NY) l

| | ‘
LR LPPYN R LTD R L TU

[ ‘ 0 0
! |
NY x NY NY x NY | NY x NY, NY x MY i
b . | !
LW (Ryy) [ IRyy) o (Kyy) ' o 0
\ ' | |
NY x N mrxm'tnxmr N\xN\' NYxNY .
e kN i i
k)= | o B el el 8 | @23
tx ¢ N 1 | o T
0 | 0 gl | Ky “‘21 : L%
| LNy Ny NY x NY | NY x NY | NY x NY;NY x NY
1
0 0 ] (thl £ 21l ll(22 l L I%
NY x NY | NY x NY NY:NYlNYxNY
t
0 0 ° Kp)  [Ngnz-2' 8z wz 1] vz, !
L NY x NY { NY x NY [ NY x NY |NY x NY
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C
8 "1
Kipl == 5 7 1

z

Cl
[K13] - ;;5- (1]
z
C
1
(K, )=~ —- [1]
21 2
3h 2
C
1
K, 1 = —— [1]
24 12h2
z
B
{ = - [1]
KNZ.NZ—Z] 3h2
z
l7C1
{ ] = - —s (1]
KNZ.NZ—I 121’12

Matrix [I] is an indentity matrix of order JY x NY

1l -2

Note that Cl is m
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{r(x)}
x1

{r1 (x)}

{rz (x)}

{ (x)}

INz-1

{er (x) }

]

where the partitioned column vectors are

r

g B
N

1

[

£

{u}
NYx1

r ——
UNY+1

UNY+2

2NY-1

2NY J

(2.24)

oo 5 2y s e

RO
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i 7 -
Ug-2NY+1 “e-Ny+1

Ug-INY42 Ya-NY+2

lulyg =
NYx1

{U}NZ-l -
NYx1

o
1
—

Yo-NY-1

{Tl (x)} =
NYx1 ¢, (v + w)NY_2
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25
r -
(. . llclvI
C, (v+w -
2 NY+ ¢h
1 y NY+l1
(o . clvl
C, (v+w + =
2 NY+
2 6hy NY+1
Cv + "')N‘Y+3
1]
{r,(0} = 5
NYx1 '
L ] ' L ]
C2 (v +w INY~2
(_ . Clv
C, (v +w) - =]
2 NY-1
hy 2NY
. . 11C1V
C, (v +w) + |
2 NY
2 6hy INY
—— J
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. . 11C1v‘ Clw
C, (v+w = em— = '_“'
2 2=-2NY+1 6hy g-2Nv+1  ORy g vy
C,v C.,w
€ O 4 W)y avag * 5| - &
y £-2NY+1 2z 2-NY+2
. . ClwI
C, (v +w) -
2 £-2NY+3 8h_ 2-NY+3
:
[]
]
1
]
[}
]
c (G + G) ! Clw‘
2 E’NY‘Z 6h 2_2
PTIEN ST uf
2 £-NY~1 6hy Ny B8P, og
11C.v C.w
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P
Cy (v + W nys1 ~ Bh, g wvel Bh NY+l

{rNZ(x)} =

NYx1
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2.2.2 Reduction of the Second Navier-Cauchy Equation and Aasociated
Boundary Conditions fsr the Cracked Specimen

For the solution of equation 2.6, the lines parallel to y- axis
in figure 3 are considered. The y directional displacements of points

along these lines will be denoted as ViP Vs Vg e e Voo We define

ull. ulz, \.l

3r u o 28 the derivatives of the x directional dis-
placements of the same points on these lines with respect to x and
G]l. 6]2. 6|3. . e s le as the derivatives of the z directionai dis-
placements of the same poin*s on these lines with respect to z. These
displacements and derivatives can tu~n be regaried as functions of y
only since they are variables upon lines which are parallel to the y

~axis.

By the above given definition, the ordinary differential equa-

tion along a generic line ij may be written =s,

d“v 2 2 d -
—i dv 4y ac L], +cC, = (2.25
o2 + ¢ (dxz ’ ;;5)11 ¢, & Uiy * G2 & ¥lis (2.25)

Introducing 5- point finite differences, the partiai derivatives of

v along the y directional line ij can be written as follows,

2

Y -~ - -
Py = 7 g,y F10V,y 7 30y 10V Vi42,5
ox 12h™,
(2.26)
and
3= 1
v ~ - u—

=3y = =7 VY427 16vy g = 30V + 16V 40 Vi,442)
3z 120°

(2.27)



8
ORIGINAL PAGE
R POOR QUALITY

on substituting equations (2.26) and (2.27) into equation (2.25) the

general equation along interior lines is obtained. Thus,

2
dv
—HB i (v + 16
—_— (-v, v - 30v,. + lév, , -V
dy2 1 l2h2x i-2,j i-1,3 ij i+1,j i+2,j
+ =1 (v + 16v - 30v,, + 16
1202 i,3-2 i,3-1 ij Vi, T Y, 4]
z
=c. L @w+w (2.28)
2 dy ij .
The rearrangement cf the above equation leads to
a2y c 4C 5C 5C
§J= ;"1-2" évi—1j+(%+ ;)"i
dy 12h 3 3h ’ 2h 2h ]
X X X Z
sy c; cy 4y
ST Ny YT Vet T ViLi-2 T T2 ViLga
3h » 12h »3 12h g 3h R
YA 2 z 2
ro, L@+ e W M (2.29)
2 dy ij 3h2 i+1,] 12h2 i+2,j3 *
X X

Similar differential equations are obtained for the other displace-
ments of the points on the y directional lines. Since each equation
has the terms of the displacemnts of the points on the surrounding

lines, these equations constitute a system of ordinary differential

equations for thedisplacementsvl, Vo oo e Vo
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The equation (2.29) is applicable only to interior lines. For
the boundary surface lines and lines adjacent to the boundary surface
lines, the finite difference expressions for the second derivative
will involve the displacements on imaginary lines lying outside the
boundary as shown in figure 7. The shear stress at the boundaries is
used to eliminate the displacements on these imaginary lines near the
surface. While the condition of prescribed normal traction or dis-
placement wil be enforced through the constants of the homogeneous
solutions.

A detailed description of the method used in deriving the equa-
tions for the lines near the boundary, can be found in the Appendix A.

The use of fictitious lines and their subsequent elimination using

the conditions of symmetry and prescribed shear stress at the surface

leads to the following equations for line 1,

dzvl C1
‘;;7 + ol (=20v) + 370 + “onzer ~ Vanzs )
X
1
+ [-30v. + 32v, - 2v.]
1212 1 2 3
¥ A
11¢C
d o e 1
05 (b +w), - — l1 (2.30)
6h_

on following the same procedure the ordinary differential equation

for 1ine m can be written as,

T
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2
d Vm CI 1
Tt ooz Y Yaeanz Y 1 Vpenz T 20V !
dy 12h ;
X i
¢
+ [-v + 4v 4+ 17v - 20v ]
12h2 m-3 m-2 m-1 m
2
11C 11C
d . . 1 du 1 dw
C2 E; (u+ w)m * 6hx 3; [m + 6hz E} lm (2.3D)

The comparison of equations (2.30) and (2.31) with equation (2.28)
shows the presence of additional terms on the right-hand side. These
terms appear here due to the consideration of imaginary lines outside
the boundary surface.

Finally, introducing matrix notation, all the ordinary differen-

tial equations along the y- directional lines are expressed in the form

2

d"{v} d

. = [xy] v} + 5 {s(y)} (2.32)
y

mx1 mxXm mxi mx1

where the matrix [Ky] and the column vectors {v} and {s(y)} are given

below,



LS

32

NZ x N2 NZxNZ

|

oRtnET P S
- ] [
Cl‘
- §
' 7
1
x,,} (Xy,) (X, (.(M] b0 0 0
NZ x N2 INZ x NZ | NZ » 2! NZ xN2Z
v | T l
i ]
K00 1 IRy,0 ! (ky,) iKul ] J 0 0
N2 x N2_'NZ x NZ | N2 x N2 jlxﬂz'
1 ]
“‘1:.] 1K, ) 5 1SN0 B LR IO L% 0 0

|
-NZxNZ N2 x N2 NZx

Pt RS R - N
0 | R \~" “." -‘.‘ ]‘ \\ 0
e > 2 o -~
1 ’ 1 r '
|
0 ¢ KT | IRy 31 | Ky 1%y,
NZx NZ{NZ x NZ |[NZx NZ| NZ x NZ|NZ x N2
0 0 0 | 1K, (Kyy) | 1Ky, | Ky, )
NZ x N2 | NZ x N2 NZ x NZ‘NZ: NZ
0 K l
° 0 (¥4 (Kyg) ) IKy,) I LS%Y
L. NZx NZiNZxNZ| NZx NZ,NZ x NZ
-l

(2.33)



ORIGINAL PAGE IS
OF POOR QUALITY

33

-~
il
1=
A o ~
o ?1 I*Jn
Sl = Ol
(o) -
'
. ™
Jl &
n (=]
TSP SN
o o
[=} o

NZxN2

(K1 =



34

g

i

OR'GINAL PA%.

OF PCOR QUALITY

-4
(o]
-
~{
~t
=3 o’ o o o - +
<y
-4
8
1 =
- - -. — R
\ a5
" o~
4
-4 + -4
o o o, / Q o I
. " ~
/ Y i} ~
. (59 ~—4
‘ ~ 1 &
jo 3 I [
- =3
/|
. s —
2
&
- » 4 < Cl " -4
o o £ £ (S -1
(8} 5 \s | & P
4 o ] 1
"
A
!
¢ ‘ "
N
’ — ol ~
e T IFS ol 4 K] © *ﬂc © qJL
N S|& , | ~ ~
. .
—_ ¥
o /
£
Pl ) ‘
~ — ~ —
~4
JIe Q1 = + ! o o o
© - “ — /
[ 2 7#
.
Wl & ¢
~fe T,
[Th B
- | = ]
N ~ 3+1 — /
ol =
© ?Jn bl I ‘ o o o
™ - ™ ’ .
' C2 ] ’
-4 £ )
-~ o~
= . P S
ity "
- | E n
el u -~y lad B
+ S ] © ~ o o o o
N .
i ' ) !
e
Al K

NZxN2Z



35

ORIGINAL PAGE 1S

OF POOR QUALITY

~ M — N
o © ) o ~Ne O e
L I N B -
- O
M
- T T Tt x.H...l MR
£
5. o~
\ — L] + —
o ° ° / 9 Y
/ - rh;*t N =1
‘ ) £
’ [ B [}
m | SN
L]
. ’ — x
- ]
. ~n . 5. ~ — -
4 - ! + e Ty
o (=4 1~ ‘ 2| &
. — ‘ — N ' '
’ o [N
_ “"lee o
A
+ ’ n
— L ~ —
o sl e ™ ! [T = ol & o
ol & o I ‘ | &5 b
- hd (4] ‘
. P '
— ——
o *
<
il ‘ ~ ¥
~ —
] QI + / vl & =) o
o hd L] . N ~—
e ']
[ QI = P
o~
¥ —
-
[s) _Jn ’
b
~ N /
e ™ o e
_ ey + sla 4 =3 (=) o
) / .
-t
[} ! ’
—t £ [
™ o~
S . — J —
"
L ~ .
~ o n o o -
L o~ o Q
¥ Tim ~

Ky, =

NZxN2Z




36

ORIGINAL PacE 13
OF POOR QuALITY

17C1
(K] = - —5 (1]
12 12h2
X
C
1
[K,,] = - —5 (1]
13 3h2
X
c
1
(K,,) = (1)
14 12h2
X
4C1
(K,,] = - —= (1]
21 3h2
X

Matrix [I] is an identity matrix of order NZ x NZ. Note that C

1l
is 1 - 2v
2(1 - V)
= . - W
{v}1 {sl(y)}
{v}2 {sz(y)}
l 1]
{v} ' {s(y)} '
mx1 ' mx1 ! (2.34)
vhex-1 oo (N}
{v}Nx {SNX(Y)}
L - -
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where the partitioned column vectors are

r - -~ -
V1 YNZ+1
V2 VNZ+2
‘ !
: )
{v}l = ' {v}2 - E
' [
NzZx1 vNZ—l NZx1 VZNZ—l
Nz L Vonz
L i .
P -
] ]
Vm-2NZ+1 Vi-NZ+1
Vin-2NZ+2 Vm-NZ+2
4
I 1]
{v} = ' {V}NX = !
NZx1 vm—NZ—l NZx1 vm_1
Vi-N2Z m
- . L -
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NZx1
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x 1
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C2 (u + w)2 aliarn ]
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L}
[}
[ ]
'
. . 11C1u
C, (u+w - ]
2 NZ-2 6hx NZ-2
11C,u C.,w
. L) 1 l
C, (u+w I
2 Nz-1 6h NZ-1 6 z
. . 11Clu llClw
Cz(u + w)NZ T + 5




{sz(y)} =

NZx1

39

ORIGINAL PAGE IS
OF POOR QUALITY

. Clu
C2 (u +w)

Nz+l T ts_h'l

x 1

Clu

Cp W+ Winze ¥

C, (wtwyns ot g |

Cp (0 + Wy * Gn

(@]

=
* - ‘
C, (u+w + =

2 2NZ 6.1x NZ

|

2

" e v



{83(y)} -

NZx1

C2 (u

C2 (u

C, (u

C2 (u

C2 (u

40

) oNz+1

W)

£0 e e wew-a--

2NZ+2

n o {3

ORIGINAL PACc
OF POOR QUALITY




41

ORIGINAL PAGE 1S
OF POOR QUALITY

. . Clu‘
C, (u+w) -
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c . Clu 11C1w
+
2 W) ml
z m=-NZ




{sNx(y)} -

NZx1

42

ORIGINAL PAGE Ig
OF POOR QUALITY

. . llClu
C) (W Nz * oh_ 1

n-NZ+1

. . 11C1u
C. (u+w) + ——
2 m~-NZ+2 6hx o-NZ+2

.- - - em e s w WS




43 ORIGINAL PAGE i_sg
OF POOR QUAL!™

2.2.3 Reduction of the Third Navier-Cauchy Equation and Associated
Boundary Conditions for the Cracked Specimen

For the solution of equation (2.7), the lines parallel to z- axis
in figure 3 are considered. The z- directional displacements of points

along these lines will be denoted as vy w2, w s W We de-

30 o -

u n as the derivatives of the x- directional

fine ﬁ 1° u 9 513, e e e
displacements of the same points on these lines with respect to x

and Gil’ ;‘2’ ;!3, .« o s Gln as the derivatives of the y- directional
displacements of the same points on these lines with respect to y.
These displacements and derivatives can then be regarded as functions
of z only since they are variables upon lines which are parallel to
the z axis.

Following the procedure as before, the ordinary differential

equation along a generic line ij may be written as,

dzwi. 1
——-:l + C, [ (-w, .+ 16 w, -30w,, + 16 w, .
dzl 1 12h 2 i-2,j i-1,] ij i+l,]
y
T Yi42,9)
1
+ o 5 (-wi,j_2 + 16 Vi,4-1 ~ 30 Y1 + 16 Vi T wi,j+2)]
X
d . .
=C, — (u+v) (2.35)

2 dz ij

Similar differential equations are obtained for the other dis-
placements of the points on the z- directional lines. Since each

equation has the terms of the displacements of the points on the
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surrounding lines, a system of ordinary differential equations is ob-
tained for lines Wis Wy oo ey W The equation (2.35) is applicable
only to interior lines. For boundary surface lines and lines adjacent
to the boundary surface lines, the finite difference expressions for
the second derivative will need the use of the fictitious lines. The
displacements on these fictitious lines is eliminated with the help of
shearing stresses on the free surfaces.

As shown in figure 8, the z- lines 1 through NX are split into
two sets. The first set consists of lines 1 through NXC lying on the
plane V(b). For these lines a fictitious line is used to write the
finite difference equation, which is subsequently eliminated by using
the shear stress boundary condition on this face. The second set con-
sists of lines NXC + 1 through NX lying on the plane V(a). The w dis-
placements are symmetric with respect to this plane. Therefore,
symmetry consideration helps in eliminating displacements onthe fic-
titious lines. A detailed description of the method used in deriving
the equations for the lines lying on the boundary and adjacent to the
boundary, can be found in the Appendix A. For example, the ordinary

differential equation for line 1 is

d wl C1
5+ = [2200w) + 17wy 4 Vo T Vanxed!
dzZ  12n
y
o1
+ (20w, +17w, + 4w, ~w,]
o2 1 2 3~ Y
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11C 11C
d . . 1 du 1 dv
Cr g B +¥, - &h_ dz b - & &h (2.36)
For line NX - 1 the equation can be witten as:
2
d"w C
NX-1 1
+ [-30 w + 32w - 2w, .]
dzZ 12h2 NX-1 2NX-1 3NX-1
€1
+ - [.WNX-B + 16 NK-2 T 31 YNX-1 + 16 wNX]
12h
X
c
¢, L@+ L dey (2.37)

2 dz NX-1 6hx dz NX

Finally introducing matrix notation, all the ordinary differential
equations along the z-directional lines are expressed in the form,

a2} d

dzz = [Kz] {w} + o {t(2)} (2.38)

nxl nxn nxl nxl

where the matrix [Kz] and the column vectors {w} and {t(z)} are given

below,
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I =

Ry | [Rp) | [Ry) |k

NX x NX INX x NX | NX x NX ! NX x NX
| 1
- |

i
LOTURRE LOPY B I LSV RN L9 0 0 0
| NX x NX NX x NX | NX x NK. NX x NX '

| :
(K, LSTURR LT a (Rypl 0 Ry, 0 ; 0
i
| ' |
NX x NX - NX x NX - NX x NX' NX x NX NX x NX :
~<_ ~<. DR ~~ I a
[Kz] = ! O ‘\“; \\\1 \\\\i ~‘.\ \\\..! 0 (2.39)
nxn | ‘ H ! i
0 0 [Kzl.] [Kn] [K33] [K21] l [KZI‘]

1
NX x NK | NX x NX | NX x NX|NX x NX

0 0 O | Kol IRy iy ol ey vy [y !

L NX x NX |NX x NX | NX x NX |NX x NX
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12n° ,
., 8c,

(Kl = - 2 [Tlyx-nxc, Nx-NXC

LBl O

(0] !X,

(Ky5

] Cl

(K.} = - (1)
13 ;;7‘ NXC,NXC

c

" 1
K B em—
[ 13] 6h2 [I]NX-NXC, NX~-NXC
y
X,,1 ¢+ [0
R B
(0] : (0]
NXxNX
(X1 e WS
14 12hi []NXC.NXC
y
(K., ] 1,
K..] = - 1]
21 3h2 NX=xNX
y
C
) N
[Kzal 2 [I’NXxNX

12h
y
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(N, ny-2] = - ;;i' (1) xxnx
y

17

[ ] = - — (1]
Ky, Ny-1 12h2y NXxNX
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nx1

where the partitioned column vectors are

{w}

NXx1

{W}NY-I

{w}

- e e e e e oa w o

£
Z
0
bt

NX

53

{t(z)} =

nxl

{w}

NXx1

IS
ORIGINAL PAGE

{tl(z)}

{tzfz)}

ftgy_ (2}

{tNY(z)}

YNX+1

¥NX+2

YaNX-1

2NX

(2.40)
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2.3 Solution of Differential Equations with Constant Coefficients
The set of £ second order differential equations represented by
equation (2.22) can be reduced to a set of 22 first order differential

equations by treating the derivatives of the u's as an additional set

wr ? ounbrowna, tlast te, defining

The resulting 2% equations can now be written as a single first

order matrix differential equation

du _ dR(x)
R (2.41)

where U and R are column matrices of 2% each and Al is 20 x 22 matrix

of constant .oefficients and are written as follows,

U= IR S S (2.42)
20x1 dx

- | fx1

Jo—
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R = 2..“3‘.1-.. (2.43)
r(xj!
20x1 x1
and
(0100 1 Mgy
A = R R (2.44)
(K Jexe ! 0]
22x28 ' LxL

In the similar manner the second order ordinary differential equation
given by eqution (2.32) can be transformed to a first order ordinary

differential equation and it is given by,

av 45(y)
Iy A2 vV + 3y (2.45)

where matrix Azandcolumn vectors V and S(y) are

- 7

mx1

V=

. (2.46)
2mx1 dv T
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s(y) = |-... (2.47)
{s(y)} 1

2mx1
[,

and
[O]mxm : [I]mxm
A, = i il (2.48)
Zmx2m y '

For the 2- directional lines the second order differential equa-
tion given by equation (2.38) is also transformed to a first order

ordinary differential equation. The transformed equation is,

aw' _ v, dT(2)
e A3w+ P (2.49)

where matrix A3 and column vectors W and T(z) are given below,

nxl

Wom |mmmeeleaann (2.50)

2nx1 ey

— nxl
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{0}

T(z) = |~----. (2.51)
{t(z)} J

2nx1 L

™ ]
lolnxn E [I]nxn 1
A = —m e e eme-
3 ' (2.52)
axn L[Kz]nxn : [Olnxn J
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2.3.1 Solution by Recurrence Relations

The system of ordinary differential equations (2.41), (2.45) and
(2.49) can be solved by any number of standard techniques. An algorithm
is derived for obtaining the solution by using a recurrence relation tc sweep
through, from one boundary to the cpposite one, once, to obtain the
missing boundary conditions and then to sweep through a second time to
obtain the complete solution everywhere. These equations are not in-
dependent of each other. They are courled to the other equation through
the vectors R, S, and T. Therefore, the sclution of the equations can
be achieved by an iterative technique in which the solution for two
sets of different directional lines is used to evaluate the coupling
terms for the third set of directionai lines. Then the complete solu-
tion for this set of directional lines is achieved through the recurrence
relation method described below.

Consider the matrix equation

du _ dR
a = AU + ax (2.53)

Let the x lines be divided into n intervals (not necessarily equally
spaced) with hi the spacing between the (i-1)st and ith nodal points.

Then

Up = Uyy A0+ A 30 Ry =Ry
+
h ) B
i i
h, h,
(I--£AJU = (T4 A DU, +® -R ) (2.54)
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where

Let

Then

or

Since U1 is
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i -1 i
=(1 -5 - )
by 4
+A-FA) T R =R ) (2.55)
Uy =Ly Uity
h h
1, -1 1
L=(@-F5A) (I+54_)
h (2.56)
. 1, -1 .
Mi (1 3 Ai) (Ri 1_1)
Uy =D, Uy + Fy (2.57)

D, U, +F, =L U

g P Eg LUt

=L, (D, U +F, ) +M,

Oy = LDy )V = LyFyy - Fy

abritraty

Dy=1;,D,4
(2.58)

Fymly Fya+hy
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For station 2, we can write from (2.57)
U2 = D2 Ul + F2

and from (2.55)

All the Di and Fi can now be determined from 2.58, starting with (2.59)

At the last station, i = n, we have
Un = Dn U1 + Fn (2.60)

Now parts of the vectors U1 and Up are known (usually half the boundary

conditions will be given at each end). Let us write these vectors as

U1 = s v = (2.61)

where k represents the known part of the vector and u the unknown part.

Let us further partition Dn and Fn as

o Qa
J1r 2 - | B
b, = F o= l' 1 (2.62)

g W 2
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So that we can write

U o, « 4] ]
adk| ) 1,k . 1 (2.63)
Un,u O3 O Ul,u B,
o
Then
Uk "% Y1tV 8
or
U, =al @ , -a U . -B) (2.64)
1l,u 2 n,k 1 1,k 1 *

The vector U1 is now completely known and the complete solution obtained.
It is apparent that if the first part of the vector U1 is the unknown
part and/or the first part of Un is unknown, then the appropriate relation,
taken from equation (2.63), must be used to determine Ul,u;
Thus, suppose the first hslf of U1 is unknown and the second half

known, so that

and

nk % Yy - B (2.65)
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aimilarly if the first part of U“ is unknown and the second part 1is

known, then

U
n,u
U, =
Un,k
and
= 1
Uak %3 U e v Y08
and
U, =0l @ . -a U, -8 (2.66)
1,u 4 n,k 3 "1,k 2 .
Ul,U Unau-]
and finally if U, = and U_ =
1 U "oy
l,kJ n,k
Upk =% Uy y v U 8
and
U = ot U -qa, U - 8.) (2.67)

To summarize:

1. The vectors Ai and R, are known (R cbtained by iteration). If

i

the spacing between lines is maintained constant, then Ai = A is a con-
stant matrix.

2. Calculate the Li and Mi from (2.56).

3. Calculate the Di and Fi from (2.59) and (2.58).
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4, Partition the matrices Dn and Fn as indicated by equations
(2.62) and (2.63). Note that if there are M lines then the vector U
will have 2M elemenits and there will be 2M boundary conditions, divided -
between stations 1 and n. This will determine the length of the known
and unknown vecters and thus the dimensions of the a's and B's.

S. Calculate the unknown vector U1 u from (2.64) or (2.65-2.67).

The complete vector U1 is now known.

6. The displacements at any station are now computed from (2.57).
As noted above if the spacing between lines is constant, 1i.e., hx’ hy'
and hz are constants, then A is a constant matrix. It then foilows

from (2.56) that L1 = I ig a constant matrix (if hi is 2lso constant).

Then equations (2.58) read

Note that although Mi varies along the lines, it is only a column matrix.

2.3.2 Incorporation of Prescribed Boundary Conditions of Normal
Stresses or Applied Displacements in thza Recurrence Relatioms.

The second order differential equations given by equation (2.22)
for the x-lines involve a two point boundary value problem. The first
half of the boundary conditions are given on face IV and the remaining
boundary conditions are given on face I as shown in Figure 4. In the

case of an edge crack specimen they are

oxxlIv =0 (2.68)
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and o = 0 (2.69

xx‘I

The subscriptsIVand I refer to the boundary planes as shown in
Figure 4. With the help of stress~displacement relations the equations

(2.68) and (2.69) are reduced to the following equations respectively,

du \Y

Il 1v T~ &Vt ¥y (2.70)
and gl'-'| - - (v +w) (2.71)

dx'I 1-v 1

Since the derivatives of v and w will be known on all the points on

the face IV and I, a vector of {U, .} and {U_ !}
n,k” x1

1,k x1 can be formed by

assembling the derivatives of u in the proper order, as designated in
Figure 6. These vectors will constitute the lower half of the complete
vector used in the recurrence relation method. The complete set of

vectors are

{Ul,u}lxl 1
U, = (2.72)
U, )
28x1 1.k 2x1
.
r
{Un.u 2x1
and U = (2.73)
Tl )
2% n,k ix1 J
e

As described in the previous section using equation (2.66) the remaining

half of the vector U] can be calculated and a forward sweep is made to

obtain the solution at every grid point. This procedure presents a
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problem because bc'h the boundary conditions are Neumann's type and
due to this the solution can be determined only upto an arbitrarv con-
stant. The presence of rigid body dispiacemen:s makes matrix a3 in
equation (2.66), a singular matrix. To suppress the rigid body dis-

placement, the displacement u is set to zero. This leads to a

el

rearrangement of matrices 03 and a, in equation (2.66). Once

4

{U1 u}lxl is determined by using the rearranged equations, a forward
1

aweep is carried out to determine the solution at all the grid points.

The known value of u22|I is saved before the sweep is carried out.

To maintain the consistancy the newly calculated value of u is

2¢l1
replaced by its old value.

The second order differential equation given by equation (2.32)
for the set of y-directional lines is again a two point boundary value
problem. Half of the boundary conditions are prescribed on face V
and the rewaining half of boundary conditions are given on face II.
The face V and face 11 are the boundary pianes as shown in Figure 4.
It also shows the cracked face designated by the plane V(b). This
leads to two kinds of boundary conditinns for the points lying on the

plane V. The face V(b) is & traction free surface, therefore all the

y- lires, starting from this face will satisfy the following boundary

condition,
0yylv(b) =0 (2.74)

Due to the symmetry of v-displacements with respect to the plane V{a),

all the lines starting from this face will satisfy the condition,
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v[v(b) =0 (2.75)

using the stress-~displacement relations equation (2.74) can be reduced

to

dv \Y du dw
— Z - — =+ —) (2.76)
dy V(b) 1-v dx dz V(b)

The equations (2.75) and (2.76) are assembled into a vector form by

following the sequence of numering of the y-directional lines as shown

\ "
in Figure 7. The assembled vectors are V1 k and V1 K Using these
’ ’
vectors, the vector V1 at face V is written as
r .
VI
1l,u
]
Y1,k
Vi T
2mx1 vl,k
"
Vl,u
L J

where Vi u and VI u represent the unknown parts of the vector Vl.
H]

Rest of the boundary conditions are obtained by utilizing normal

traction at the face II. Ac shown in Figure 2, in the case of tensile

loaling we have an applied normal traction ¢ on this face. Using

the stress-displacement relation, we can write,



ORICINAL PAL2E I35
OF PGCR QU.sLiTY

72
dv o (1+v) (1-2v) _ v du _ dw
Iy 5 T -V }11 a-w &* dz)n
2.77)

The equation (2.77) is arranged to form the vector Vn K The vector

Vn at face 1I can now be written as

\Y
Vo= e (2.78)
vn,k
v represents the unknown par* of the vactor v - Following the

n,u

recurrence relation method, an equation similar o the equation (2.57)
is formulated and giver by
Vh = Dn \'

1 + Fn (2.79)

The evaluation cf m~trices Dn and Fn is described in the previous sec-

tion 2.3.1. The determination of unknown vectors Vi,u and V;,u differs
slightly from the procedure given in the section 2.3.1. The details
of the procedure used to calculate vector V1 can be found in Appendix
B. Once the complete vector Vl is known, using the recurrence relation
method, the uisplacements v and Vv are obtained a: all the grid points.

The secord order ordinary differential equation for the set of
z- directional lines given by the equation (2.38) is a two point boun-
Gary value problem. As shown in Figure 4, half of the toundary conditiors

are obtained by setting ©11 the w- displacements equal to zero on the

plane VI due to symmetry. This leads to
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wl.k = ( (2.80)
nxl
on the boundary plane 111, the prescribed normal tractions are zero.
This leads to a set of equations for each grid point on this plane.

These equations in vector form can be written as

dw \Y . .
Wk {3} " [{u}nxl + {V}nxll (2.81)
nxl
nxl
~ once again thevectorsw1 and wn are formed as
|
W, = .
2nx1 L l,u ]
and
Pw -
n,u
wn - (2.82)
Wnik
L 7
the general equation connecting the vectors wl and wn is
Wn = Dn Wl + Fn (2.7

The matrices Dn and Fn can be partitioned as shown in equation (2.63).

Appropriate matrix equations are extracted to solve for w1 o’ The
’

complete solution for w- displacements and its derivative w is obtained
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for all the grid points by carrying out a forward sweep operation,
described in section 2.3.1.
2,4 Loading Idealization for Compact Tension Specimen

One of the major objectives of this investigation is to study the
compact tension specimen. Figure 1(a) shows a standard compact tension
specimen and the loading on it. The idealized model of this specimen
used in the present study is shown in Figure 1(b). The pin loading
applied on the specimen is approximated by a parabolically varying
shear type loaling. The resultant force due to the applied shear load-
ing is maintained equal to the actual applied pin load (25).

This type of prescribed shear loading can not be incorporated into
~ the solution of the ordinary differential equations in which the normal
traction boundary conditions have been used. The equations for y- lines
are slightly modified to include this type of traction boundary condition.
The y- directional lines whose equatiors are directly affected by this
are 1, 2, . . NZ and RZ + 1, NZ + 2 . . 2NZ.

The traction ony at the boundary face 1V is

"ny‘lv =-ty (2.84)
where t(y) is the prescribed surface. traction. Its variation in y-

direction is expressed as

T =41 @ @-D (2.85)

T is the maximum value of prescribed surface traction at y = g ard h

is the semi length of the specimen as shown in Figure 1(b). The
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inclusion of this leads to a new equation for the y- directional line

1. The modified equation is

d?'v1 C1
7+ 5 (= 20v) + 1T+ 4o T Vanzar !
dy 12h x
!
+ [= 30v, + 32V. - 2V.]
o2 1 2 3
z
11¢ "
e TG W {01
- S CEON ol (Y (2.86)

where G is the shear modulus of the material. Similarly the equations
for lines 2 through NZ can be written. The equation (2.86) is the

same as the equation (..30) with the additional term of - é%;l [Iégl],
which appears due to a non-zero prescribed surface traction. The

modified equations for line 2 through NZ also include this additional
term. The other terms for these equations remain the same as before.
The ordinary differential equations for the line NZ+l througl 2NZ are

1wy

modified by adding additional term of &h G to the original equations.
X

The details of the method used to derive these equations can be found
in the Appendix C.
Introducing the matrix notation, all the ordirary differential

equations along the y- directional lines are expressed in the form,
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2 d
dd{;’z} - K] (HE L)) + (s*() (2.87)
m~] man mxl mx1 mx1

The equation (2.87) is similar to the equation (2.32) with an adiition

of a new vector {sx(y)} whose components are

r{ez‘l*(y',‘} ]
NZx1
{s*(y)} = {sg(y)} (2.88)
Nzx1
mx1
B {O}m-ZNZ 4
[ ]
where 1
1
11C
1 1(y)
s} = - g= =&
NZx1 X L 1
and - 1 W
1
(sk(y)} = S
s\ 6h. G
NZxi X i
X j

once again by following the procedure described in section 2.3, the
equations (2.87) are reduced to a set of first order ordinary differ-

ential equations zud the new set of equations are,
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v _ ds(y)
& sz + 35 + S*(y) (2.89)

Definitions of vectors V, S(y) and matrix A2 are given by equations
(2.46), (2.47) and (2.48) respectively. The vector S*(y) 1s a new

addition and defined as

{0}
Sk(y) =
2mx1 {s*(y)}mml

mx1

The equation (2.89) can not he solved by the direct application of

the method of recurrence relation described in section 2.3.1. It

will require some small modification due to presence of vector S*(y).
Let the y lines be divided into n intervals with hi being the

spacing betweer the (i-1)et and the ith nodal points. Then,

- - *
Vit Vi Ap Yy tAL Vi Spt S5 ST ST,
= + + (2.90)
3 2 h 2
. ' i
The above equation can br: rearranged as
h, -1 by
Vs -g Al T+ F ATV,
hi -1 h1
+ [1 - 5 Ai] [Si - 81‘1 + 5 (SI + SI-I)]
=L V, +M

11 i
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where
h -1 h
1 i
Ly=T-gad [T+ A
h -1 h

i
Mi = [I - 5 Ail [Si - Si_1 + 5 (S: + S;_l)] (2.91)

we see an appearance of new terms in the Mi vecter. Once these modi-

fied Mi vectors are calculated, the procedure described in the section

(2.3.1) is followed.
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CHAPTER 3
SOLUTION OF ELASTO-PLASTIC PROBLEM USING THE

MITHOD OF LINFS

In this Chapter a three-dimensional elasto-plastic material be-
havior formulation for the governing field equations in incremental
form is presented. The method of lines is extended to include the
non-linear plastic strain terms. The solution procedure is special-
ized for the two geometrics considered herein, but can easily be ex-

tented to other geometries.
3.1 Governing Field Equations

The material is assumed to be isotropic and homogeneous. The
deformations are considered to be small and quasi-static. The Von

Mises criterion given below is used to determine the yield condition

at each material point.

1 . 2 2
oe - 75 [(c -0 + (oy - oz) + (oz -0 )
1/2 .
+ 6 (02 +0 2 +0 2 )] (3.1)
Xy yz Zx

Subsequent yield surfaces are determined by using the rule of isotrogpic
hardening. Prantl-Reuss relations are employed for constitutive
equations relating the plastic strain rates and stresses.

In the plastic range the strains are in general not uniquely

determined by the st.esses, but depend on the whole history of loading.

SN Mt S
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Therefore, the load is applied in increments as fractions of the tota!

loading and the equations are written in the incremental form. Let ¢
11

be the total strain after the kth loaiing step. Following the conven-

tional tensor notation it can be written as

1,1 = 1.2,3

- e )% P
Eij Cij + Eij + Aeij (3.2)

where 5;3 is the strain due to the elastic deformations, cg

h|
accumulated plastic strain through the (k-1)th loeding step and Aegj

is the

is the plastic strain due to plastic flow in the kth increment. The

equation (3.2) is rearranged as

= _ P _ P
Eij eij Cij Aeij (3.3)

The elastic strains are related to stresses in the following manner,

vV
€y =% " %5 F %k (3.4)

The incompressibility condition in tensor notation is

P o
€44 0 (3.5;

and

p =
begy = 0

(use of the double subscript represents the summation over that sub-
script.)

on making use of the equation (3.4) and 73.5), the equation (3.2) can
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- E Y E _ E p P
Oy " TF €43 * 01y T3 T G T TFY By * Ly

(3.6)
For small deformations, strain-displacement relations are,
= s(u, L +u, ) (3.7)
1y 2771,) i1 ’
Introducing equation (3.7) into equation (3.6) leads to
E v E
O * T, YUY Y Y TFY OTR Yk
- (E—=) (P, + ocP (3.8)
1+v 1) 13 '

The equation (3.8) represents the constitutive relations for the elaso-

plastic materials. The equilibrium equations for zero body force are

Oij.i =0 (3.9)

A set of equations similar to the Navier-Ceuchy equations for the elasto-
plastic material are obtained on substituting equation (3.8) iato the

equations (3.9). These equations are,

1

Ui, T T YKok

- p p
2(5“'1 + Acij.i) (3.10)
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The equation (3.10) is essentially similar to the equation (2.4) ex-
cept the addition of the plastic strain terms on the right hand side.

For convenience the following non-dimensional quantities are introduced,

e X
B
S
Y= 5 (3.11)
.
B
£ €
F = XX £ = X
XX € Xy €
o o
c .y = .yz
3 = € = (3.12)
yy Eo yz €
€ 3
T w22 g
z2z € zX €
o o)
0O
where eo - N

E is the Young's modulus and 00 is the yield stress of the material,

o] 0

5 XX 5 Xy
Oy, ™ — g =
XX Oy Xy 00
o o
= Xy = _yz
Cyy g._ = (3.13)
yy 9, yz oo
- .2z = o lax
Ozz o] ozx lof
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. B (3.14)

Q
[« -}

[s]

-_Ew

Yo
[o]

where B is tbe thickness of the crack specimen. The substitution of

non-dimensional quantities e and Gi into (3.8) and (3.10) leads

JiJ

to the following non-dimensional equations,

1 v
x (L+V) (1—2\))[(1-\))_""'\’5'I=

Ql
L}

ow
+ v 5;]

AT B ERT)

XX

. 1 3u _ v w
Sy T TEFw Al oW itV
- e (P 4 4EP ) (3.16)
THY) yy yy'
5 .- 1 v

e TR WL "bx* vt ad-v z]

I P =P
T+ (€, +2E ) (3.1

—-—1—[.3_64..1]__..}___
Xy 2(1 +v) 3y 9% 1+ v)

Q)
n

=P =P
(€, +0E) (3.18)

g - 1 a‘- .a_; - _1__ =P =P -
oyz ETT—;—Gjlfi + 3?1 (1 + V) (Eyz + AE:yz} (3.19)
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=~ - l 3\-1 al.: - 1 -p -P
O =TT 38 - Ty Cax * 06 (3.20)
2- 2~ 2~ - -
9 u 3°u , 9'u 3 v . aw
— +C(—=+—) =C, == (= + 32)
ey IR R A R B A
3 (=P P 3 2P P
+ 2C1 éx\txx + AExx) + 5 (ny + Atyx) (3.21)
+ % (& +aeP))
-52 zX X
2- 2- 2 - -
3 Oy ., 9y 3 . ou , ow
- + C.(— + ) = C, ==[= + ==]
3§2 17022 0 422 2 3y ax oz
+ 2C [-a—_ (& + 8P ) + 3 &P+ aEP) (3.22)
1°9% " “xy Xy 3y ‘Cyy yy
+ 2 @ 4]
i}/ zy zy
2- 2- 2~ - -
o'W dw , dw 9 ,ou , v
— +C (= + =) =C, 55 [5z + 3]
2 (zP =P 3 (=P =p
+ 2C1 lai (Exz + Asz) + §§ (Cyz + Aeyz) (3.23)

2 (P =p
* 0Z (sz + Aezz)]
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where
C. = 1 -2v
1 7201 - V)
and
1
€y XCUEEY)

3.2 Solution of Elasto-Plastic Problem

The equations (3.21), (3.22) and (3.23) are compared with the
Navier-Cauchy equations (2.5) through (2.7) described in Chapter 2.

In the new equations, the field quantities Ei's and Gi's are used,
which are now non-dimensional quantities defined by the equations
(3.11) and (3.12). Another difference between these two sets of
equations, 1s the presence of additional terms containing plastic
strains. These differences do not alter the solution procedure
described in the preceding chapter. The line method is still used
to solve the equations (3.21) through (3.23).

The equations (3.18) through (3.20) give the value of shearing
stresses. Since the plastic shearing strains are always zero on the
free surfaces, e-scept in the case when the shearing traction is
prescribed on the boundary, the plastic strain terms can be dropped in
these equations for the boundary shearing tractions. The new equations

will be in terms of non--dimensional quantities, but the type of

(-



ORIGINAL P 5-

)
86 OF POOR QUALl

equations remains the same as used in Chapter 2 to eliminate the
imaginary lines at the boundaries. This result offers considerable
help in extending the method described in the previous chapter for

the elasto-plastic problem. To achieve the complete equivalence we

define the non-dimensional spacings Ex’ Ey and Ez as

hy

x B

=g
"
wh”

(3.24)

b i
z B
where hx, hy and hz are the line spacings for the x, y, and z sets of
lines as shown in Figure 3 and B is the thickness of the cracked speci-
men.

Ordinary differential equations for the set of x- directional
lines are obtained by replacing X u and hi (i =1,2,3) by the

i

. Gi, Ei (1 =1,2,3) in

equation (2.22). 1'sing the matrix notations, the new equatiors f{for

corresponding non-dimensional quantities ;i

the elasto-plastic case are

2
dd;} RIGH+ & G@Y+ & @)+ (zxh o)

(3.25)

2x1 x2 xl x1 x1 2x1



87

Matrix [Ex] and vectors {u}, {r(x)} are obtained from the equations
(2.23) and (2.24) by using the corresponding non-dimensional quantities.
The vectors {tg (x)} and {rg(x)} are new additions to the equations
containing terms of plastic strains. They are considered functions of
x along the x- directional lines s.d expressed as follows,

r -

P P
2c, (5 + Aéxx)l

1
_p :.p
2¢, (P + Aaxx)lz
H
&) - E (3.26)
]
x1 :
=p =p
20 (B + Aexx)lg
-1
=P p
ZCl(exx + AExx)l2
- -
and -
i 3 9
. =p =p =p =p
2(,1[53 (eyx + Aeyx) + 53 (ezx + As:zx)]1
2 (&P =P 3 (gP zP
201[3)_, (ny + Aeyx) + == (ezx + Aezx)]z
]
o :
{rz(x)} - ' (3.27)
]
2x1 !
2C, [ (zP =P d (=P nzP
1 gy(eyx + AEyx) + 3z (ezx + “"zx)]g_l
P -p d ,=p =p
‘Cl'?y'(eyx + Aeyx) + 5= (s:zx + Aezx)ll
- -
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The equation (3.25) is modified by following the procedure describ.d
in section (2.3) to obtain a set of first order ordinary differential

equations. These equations in matrix form are

op,-
= - dR" (x)

- RP¢%
&M T & "Ry (3.28)

The vectors ﬁg(i) and ﬁg(i) are defined as

r
{O}Exl
=p =Pz
RI(R) = {rl(x)}lxl (3.29)
and
b}ixl
Femy = | Pz
RZ(R) {rZ(x)}Qxl (3.30)

The definitions of other matrices and vectors used in equation (3.28)
are the same as given by the equations (2.42) through (2.44) but in
this case non-dimensional quantities are employed tc formulate the
vesvective matrices.

For the set of y- directional lines. The equation (2.32) 1is ex-
pand~d to include the plastic strain terms. Using the matrix notation
and the non-dimensional quantities, the new second order ordinary

differential equations for the elasto-plastic case are,
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2{ } - v - d{; y } _g_ =P P
4;;2— (R1E) + 252+ & GH@) + (8T @) (3.31)
mx1 mXm mXm mx] mx1 mx1

The watrix [ﬁy] and vectors {v}, {8(y))} are obtained by following a
similar procedure used for equations (2.33) and (2.34). The vectors
3?(;)} and {5g(§)} are new additions containing the terms of plastic
strains. They are considered functions of § along the y- directional

lines and expressed as

2C (cp + A( )l

-p -p
2C. (e + A" )
1( yy Yy |2

]
B - ; (3.32)
]
mx1 ]
L}
zcl(Ep + sc » |
vy m-1
2c, (2P 4 arf )|
Yy W
and L .
[ L (D P L =P 3 =P o AP ]
2L1[§§(€xy + A;xy) + 53 (czy + Aczy)],
2c, I= (P + Ae? B & (&P 4 AEP)y)
173%  "xy 3% 2y v
H
]
#0(y)} = ' (3.33)
2 d gP P 3 (=P =P
ax1 2C1[5§(Exy + Atxy) + wz (czy + Aezy)}m_l
=p =p -p =p
2C [§§(c + AE ) T3 (rzy + Ac‘y)]m
L .
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A set of first order ordinary differential equations are derived from
the equation (3.31) by following the procedure described in section

(2.3). 1Introducing the matrix notation they are written as,

- - - d§9(§)
dv _ - . d5(3) 1 P =
e sz + T + 5 + 82\)') (3.34)

The vectors §g(§) and §§(§) are defined as

(o) ]
PGy = = (3.35)
1 &Py}

l\y mx1
L J
and

- -
- {O}mxl
Si(y) = (3.36)
2 P,

USZ(Y)}mxl

The definitions of the othe. matrices and vectors used in equation
(3.34) are the same as given by ecquations (2.46) th.ough (2.48), but
in this case non-dimensional quantities are employed to formulate
the respective matrices.

Similarly the ordinary differential equations for the set of 2z-
directional lines are obtained by extending the equation (2.38) to in-
clude the plastic strain terms. Using the matrix rotations, the new
equationes for the elasto-piastic case are
2(@)

R @+ e+ L @@+ G
2 [K,] @ + = {t@} + 5 H@)+ e 2)] (3.37)

d

nxl nxn axl axl nx1 nxl
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The matrix [iz] is formed by using the non-dimensional spacings Ex
and Ey in place of hx and hy in various submatrices of matrix [Kz]
given by the equation (2.39). The vectors {w} and {t(z)} are formed
by using the non-dimensional quantities in the equation (2.40). New
vectors{Eg(;)} and {Eg(i)} are considered functions of z along the
set of z- directional lines. They are expressed as follows,
- -

=P . =P
2, (€, + ueu)l1

p P
ch(ezz T Atzz)l2

&) - (3.38)
nxl . =P
2¢, (€, + AE, ) |n_1
=P =p
2Cl(ezz + AEzz)ln
and L J
[ 20, [2(EP 4 48P ) + (B + A2 )) |
1'3%" "xz p 3 % yz yz' oy
20, [ (P + 4eP ) + (P + a2P))
1'9% " xz Xz 9y yz yz' .
‘
@) = ' (3.39)
nxl
3 P =0y , 0 =P =P
2C1[3§(Exz +8E )+ ay(Eyz + Aeyz)]“.1
26 [ @EP + 8P ) + @P + 4eP))
1'9x" xz X2 oV yz yz o
L -
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A set of the first order ordinary differential equations are derived
from the equation (3.37) using the procedure described in the section

(2.3). The equations in matrix form are,

-p -
= - - 4T (2)
aw _ 7= dT(z) 1 =p /=
= A3w + 3 + = + Tz(z) (3.40)

The vectors TE(Z) and Tg(;) are defined as,

- .
- - {o}“xl
@ = 7 (3.41)
{t] (@} 4
e X -
o {O}m(l
and ™E) = | (3.42)
- @,
8 §

The definitions of the other matrices and vectors used in equation
(3.40) are the same as given by equation (2.50) through (2.52), but
in this case non-dimensional quantities are employed to formulate the
respective matrices.

The equations (3.28), (3.34) and (3.40) represent a set of two
point boundary value problems, in which half of the boundary conditions
are prescribed on one face and the reraining boundary conditions, in
general, are given on the second face. They are either in the form
of prescribed displacements or normal tractions. For example, for the
set of x- directional lines, we have prescribed surface tractions on

the face 1V and face 1, as shown in Figure 4. To obtain the starting
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vectors for the recurrence relations method, the stress displacement
relations given by equations (3.15) through (3.20) stre used, while the
procedure essentially remains the same as described in section 2.3.2.
The augwented recurrence relations given by equation (2.91) are used.

The equations (3.28), (3.34) and (3.40) are coupled differential
equations. The coupling terms on the right hand side involve u, v, w,
their derivatives and plastic strains Ezj (1,5 = 1,2,3). The solution
is obtained in an iterative manner and the same iteration is used to
eavaluate both the displacement terms and the plastic strain terms. The
solution of these equations yield a field solution for the displacements
Gi's and the total strains Exx’ € _ and Ezz' The total shearing strains

vy
are obtained by using the equation

- 1 - -
Eij "3 (u +u, ) i,j = 1,2,3 (3.43)
1¢#3

The actual evaluation will involve the use of three-point finite
difference equations. To calculate the plastic strains we make use of

the following equations (26).

> Ae
A-C - (2 ‘80 - -E' - .E')
3 et x y z
-P AE -t [ '
Acy - 53—3 (2(»:y - € - Ex)
et
AT
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e -,
Ag)’; = EFP
y ot XY
0 AEp '
AP - £
Yz E::_t yz
) 02
Be e = € (3.44)
et
, k-1 _
where § =g, . - ¢ & 1,§ = 1,2,3 (3.45)

+6(E ) + 6(€y'2) + e(az'x) 13 (3.46)

2 -
£ -z +Vo
and AE = et 3 e,k 1

(3.47)

do
e

The term 1 (—) is deteruined from the stress-strain diagram of
E dsp k-1

the material. The non-dimensional effective stress Se is defined as

-2 - - 1
+ 6(0xy +0 . + oz )] 2 (3.48)



95 T ] Ty
DTN JualiTy

The method, applied to the present problem is known as the method of

successive elastic solutioms (26). At first an elastic solution is

obtained. It is scaled up such that the highest stressed node point

in the grid reaches the incipient yield condition. For the subsequent

loading the loading path is divided into a number of sufficiently small
increments. The iterative procedure for determining the incremental
plastic strains for each load increment is as follows,

1) The applied load is calculated by adding the loading increment
to the current load level.

2) Initial values of plastic strain increments are all assumed to
be zerc in the beginning of the load increment.

3) Obtain the field solution for the total strains Eij(i.j - 1,2,3)
by solving the equations (3.28), (3.34) and (3.40).

4) Calculate the modified total stcains from equation (3.45) and
evaluate the equivalent modified total strain Eet from equation
(3.46).

5) Find the equivalent plustic strain increment AEP from equation
(3.47) in which ae’k_l is the dimensionless value of the
equivalent stress at the end of the previous increment of load-
ing. For the first lcad increment and also for the case where
there was no plastic flow under previous loading, Ee.k_l is
equal to the dimensionless yield stress 50, i.e., unity.

6) Calculate rew set of incremental plastic strains from equations

(3.44).
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7) Check for the convergence of the incremental plastic strains.

The convergence criterion used is

N gml _ En
z [' yy,m 1}"“’]]
m=l
et (3.49)
vy.e EPS
<
N

N represents the total number of ylelded nodes, while n is iteration
namber and m is a grid point identifier. The value of the EPS 1is chosen
depending upon the desired accuracy of the solution. Repeat steps 3
t> 6 until the convergence is achieved on the incr:mental plastic
straine.
8) Sum the plastic strain increments and return to step 1.

Once the successive approximation procedure has converged, the
stresses are calculated at all the grid points. The schematic repre-

seatation of the method is given below,

’—"Acij.u D.E. eij ot > Aeij,n+1

[l ]
&>
™
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CHAPTER 4
STRESS INTENSITY FACTORS AND

J-TINTEGRAL DETERMINATION

The stress intensity factor (SIF) and the path independent
J-integral proposu:a by Rice (27) are most ccmmonly used fracture
mechanics parameters. Cons’:derable effort (28,29,30) has been de-
voted to develop the techniques for an accurate determination of
these parameters.

In the next section a commonly used techniaue to evaluate the
stress intensity factors is discussed. Finally, a procedure is
given to determine the jai: independent J-integral.

4.1 Determwination of Streis Intensity Factors

The stress intensity facts: (SIF) is defined as

K, = Uz 0 m)" (4.1)
R0 Y

where oy is the stress ahead of c1 'k tip, R is the distance measured
from the crack tip. n is the singularity of the stress field in the
neighborhood of the crack. It was found, however, that due to the
coarseness of the grid used, the usual extrapolation techniques did
not vield accurate resulte. The precise crack tip location is also
unknown, except that it is approximately midway between iwo lines.

To overcome these problems, a procedure described in reference (22)
is followed. In this method two terms in the displacement series
expansions around the crack tip are retained rather than one. This
also permits to determine the actual crack tip location from thne

computed results.
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VI},_O = GKI[‘R——Z‘; - K—I R+ 1)3) (4.2)
1

where o is a function of Poisson's ratio, and r is the crack edge
position correction, measured from the originally assumed mid point
position. Using displacement data from the adjacent nodes to the

crack edge in equation (4.2), values of the oK and r are calcu-

L
I’ Ky
lated for each value of z. The distance R is measured from the halfway
point between nodes specifying boundary stresses and displacements,
respectively. A plane strain condition is assumed to exist all through
the thickness of the specimen, except at the surface. Correspondingly
a would be equal to 3.56 for the plane strain case and 4.0 for the
plane stress case.

In the case of the curved crack fronts, the v- displacement values
are extrapolated along the normal directions tc the crack fromt, with
the help of ncdal displacements. These values are used in equation
(4.2) to evaluate the local stress intensity factors through the thick-
ness of a cracked specimen.

4,2 J-integral Determination

Rice (27) developed a path independent integral, known as the
.-integral in the literature. This integral is associated with the
change in energy of a body due to the crack growth and it is expressed

as
du
1 ox

J = j (W(e) dy - T ds) (4.3)
T
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Here I 18 a curve surrounding the notch tip as shown in Figure 9(a).
The contour integral is evaluated in a counter clockwise sense,
starting from the crack surface. The strain energy density W(e) is

defired as e
. mn

W(e ) = Jcij d ey (6.4)

o

and the traction vector 'I‘1 is

T1 =g .10 4.5)

u s the displacement vector.
The consideration of singular terms associated with the stress environ-
ment near the crack tip in a linearly elastic body, in the evaluation

of equation (4.3) leads to well known relationships as obtained by

Rice (27). These relations are,

; KI (for plane strain)
(4.6)

(for plane siress)

The equations (4.6) could be used to determine stress intensity fac-
tors by computing J-~values which can be obtained without a detailed
knowledge of the stress and strain field, very near the crack tip.
By taking advantage of geometric and loading symmetry about the x
axis, retangular paths are chosen to calculate J- integral values.
For a rectangular path shown in Figure 9(b) the contour integral for

J can be written as,
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2 v
J =2 J'l [W(e) -O’x Cx- oxya
3 oV
+2J(o +0 =) 4a
2 Xy x 9x
4 ov
+ 2 I3 W(e) - ox € gy 5;]dy .7)

where

- +
W(e) ijtox dex oy dsy + oz dez

+20 de 4+ 20 de  + 20 _ de_ ) (4.8)
Xy Xy yz yz 2x  2x

The coordinates of the points shown in Figure 9(b) are used as inte-
gration limits in equation (4.7) and the integrations are calculated

using the trapezoidal formula of numerical integration.
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CHAPTER 5

RESULTS AND DISCUSSION

A computer program was written to solve the elastic problem for
the different cracked specimens. This program was later modified to
include the plasticity terms. Since the ordinary differential equa-
tions are coupled, a successive approximation procedure was used to
obtain the solution. The computation for ail the examples were per-
formed on IBM 370/3033 time sharing computer.

5.1 Single Edge-Notched Tensile Specimen

The new formulation of the MOL was first applied to a single edge
notched specimen in tensile loading. The specimen shown in Figure 2
has dimensions, W/a = 2, B/a = 3,L/a = 3.5, where a, B, W and L are
the specimen crack length, thickness, widtb and length respectivelv.

Figure 10 shows a plot of the dimensionless maximum crack opening
versus the number of grid lines. We note the following:

1) This displacement approaches smoothly an asymptotic value. 2) The
value obtained in reference (31) using the old formulation of MOL, is
in error bv approximately 17% whereas the error using the same number
of lines with the new formulation is only about 3 percent from the
asymptotic value. Furthermore, 12 x- grid lines were the most that
could be used in reference (31), before the solution diverged. 3) A
comparison with the results obtained in reference (32) using finite
elements, indicates that the present solution using 16-x lines, is
essentially correct since it was indicated in reference (32) that the

value obtained there may be as much as 25 percent low.
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The dimensionless stress intensity factor for this specimen at
the mid thickness is shown in Figure 11 versus the number of x grid
lines. Again, the value obtained in reference (31) using the old
formulation is in error by about 8 percent, whereas the new formulation
with the same number of grid lines is in error by about 3 percent from
the asymptotic value.

Figure 12 shows the stress distribution ahead of the crack tip
at the mid thickness for different grids. Note that the same distri-
tution is obtained with 12, 14 or 16 x grid lines. The larger the
number of x grid lines, however, the closer the crack tip is approached,
and the more accurate is the stress intensity factor calculation.

The variation of the stress intensity factor through the thickness
of the specimen is shown in Figure 13. The SIF decreases approximately
15 percent in going from the center of the specimen to the surface.

5.2 Compact Tension Specimen

The standard compact tension specimen (CTS) shown in Figure 1(a)
is considered next. The dimensions of this specimen are W/a = 2,

k/a =1, L/a = 2.4, The load was assumed to be parabolic shear load
clong the pin load line as shown in Figure 1(b).

Figure 14 shows the dimensionless crack opening displacements for
this specimen. As is seen, there is very little difference between the
midplane and surface displacements. The experimental value from refe-
rence (25) is also shown and it 1s seen that good agreement is obtained.

The variation of stress intensity factor through the thickness cf
the compact tension specimen is shown in Figure 15. Also, shown in

this figure are some of the results obtained by finite elements in
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reference (11), which treats the Battelle Benchmark geometris, (33).
Several different methods were investigated in reference (11) for
ealuating the stress intensity factors from the finite element results.
These were d’splacement substitution, modified displacement substi-~
tution, virtual crack extension and contour integration methods, desig-
nated as methods D, E, V, and J respectively in reference (12°

In the displacement substitution method, the displacement at the
vertex and mid-edge nodes in the special elements on the face of the
crack were used. Since a coarse mesh was used in reference (11), an
extrapolation was done on the values of SIF obtained by displacement
substitution from the vertex and mid-edge nodes and the method is
named as modified displacement method.

In the virtual crack extension method the evaluation ¢f the energy
change is made corresponding to a small adjustment in the position of
any point on the tip of the crack in any direction. As shown by Rice
(27), the component Jx equals the rate of change of energy per unit
area of crack extension at a point in the direction of the x-~ axis.

The path independent J- integral proposed by Rice (27) is used in the

method J.

The results of methods D, E and V have been plotted in Figure 15

together with the results obtained herein using the MOL. The results
obtained from MOL lies approximately midway between the methods V and
E. The result from the two-dimensional plane strain solution given in
AST™ E399-78(5) 1s also shown in Figure 15. The MOL result is only

0.6 percent higher than this result at the ceater where plane strain is
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expected to exist. The two dimensional solution is obtained by boun-
dary collocation method and believed to have an accuracy of 0.2 percent
fox a CT specimen. Note also the drop of approximately 15 percent in
SIF value as one moves from center to the surface of the specimen.

From the above results it is apparent that the line method of
analysis as modified herein appreciably increases the accuracy and
reduces convergence problems.

5.3 Curved Crack Front Specimens

The method of lines was next applied to curved crack front (CCF)
problems. The compact tension specimen in tensile loading is consi-
dered first. An accurate geometrical description of a curved crack
front is nct possible 1f a coarse grid such such as NX = 12, NY = 6,

NZ = 5 {8 used. Therefcre, two fine grids of NX = 20, NY = 7, NZ = 5
lines and NX = 20, NY = 7, NZ = 7 lines were used in the subsequent
analyses. Since approximate parabolic curves were used in the study it
was difficult to assign a single measurement for the crack front curva-
ture. To describe this curvature, therefore a parameter called crack
tunnel depth is defined as the difference between the crack lengths at
the center and the surface of the specimen. Thus an increasing crack
tuunel depth reflects an increasing crack curvature.

Figure 16 shows a plot of the local stress intensity factor for
a CT specimen in tensile loading. Curve 1 shows the SIF variation
with thickness for a straight crack front. For this case maximum SIF
occurs at the center of the specimen and it drops by 13 percent on
the surface. This trend is in accordance with the previously reported

results of Raju (10). For the crack tunnel depth of 0.1 it is seen



105
ORIGINAL PANRE |3

OF POOR QUALITY
that SIF decreases at the center by 9.5 percent, while at the surface
its value increases by 20.5 percent. Similar type of variation is
reported by Pereira et. al. (14). However, a direct comparison of
the results is not possible because they used a different crack and
specimen size. For higher crack tunnel depths the mazimum SIF value
no longer occurs at the surface. 1t shifts to the adjacent interior
point of the grid. This trend is not reported in reference (14),
probably because a crack length (a/W) of 0.25 was used which is 1/2
of the one used in the present study and more importantly three layers
of elements were used in the thickness direction, making it probable
that the maximum SIF value was missed.

Figure 17 shows the variation of non-dimensional SIF for the CT
specimen with assumed parabolic loading along the crack line instead
of tensile loading. The dimensions of the specimen are the same as
before. Once again for the crack tunnel depth of 0.097 the local SIF
value decreases at the center while its value rises at the surface of
the specimen. For the higher crack tunnel depths the trend of lower-
ing the SIF value at the center of the specimen continues. The
maximum SIF no longer occurs at the surface, but it shifts in the
interfor of the specimen. This is similar to the observed trend for
the tensile loading.

A possible explanation for these trends could be given by consi-
dering the various effects which have direct bearing on the SIF values.
The rise in the SIF value at the surface is mainly due to the presence

of a crack iront with curvature. However, there are two other effects
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which are responsible for the reduction in the SIF walue at the surface.
Firstly, the existence of plane stress condition at the surface ieazds

to a drop in SIF value (an approximate drop of 15 percent was observed
for a straight crack front). Secondly, due to the presence of a curved
crick front, the crack length decreases at the surface as compared to
th2 center, leading to a reduction in the SIF value. As it could be
se2n that for the smaller crack tunnel depth the effect of curvature

is dominant over other effects and thus the maximum SIF value c¢:2curs at
the surface. However, for the curved crack fronts with larger crack
tunnel depths, the effect of reduction in the crack length seems to be
dominating. Consequently the SIF value at the surface no longer remains
maximum. A combination of the three effects, mentioned earlier, deter-
miies the location of maximum SIF value through the thickness of the CT
sp2cimen.

Figure 18 shows the variation of center, surface and thickness
av:rage stress intensity factors with increasing crack tunnel depth for
a _T specimen. The stress intensity factors are non-dimensionalized
with the respective values of SIF occuring for a straight crack. The
thickness average stress intensity factor (Kav) is calcnlated by taking
avarage of the SIF values across the thickness. It is reflective of
the average stress environment existing near the crack tip. Note that
non-dimensional SIF value at the center of the specimen keeps on de-
creasing as the crack tunnel depth increases. However, the value of

SIF at the surface increases only up to a certain crack tunnel depth.

The thickness average SIF also decreases with increasing crack tunnel
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depth.  Similar behavior for the thickness average S1F was observed
bv McGowan (12) in his study on a single edge notch specimen. This
clearly shows that the presence of curved crack front can sifnificantly
change the - alue of SIF. The lowering in the value of SIF indicates a
reduction instressconcentfationneatthecracktip. Consequently, the
specimen can withstand higher loads before showing any appreciable crack growth.
In Fizure 19 the change in the thickness average SIF is plotted
against a non-dimensional curvature parameter n. The value of n corres-
ponds to a difference between the average crack length (aav) and the
surface trace of the crack divided by average crack length (aav)'
The calculation of ay is done by computing an average of the three
crack measurements taken at the center of the crack front and midway
between the center and the end of the crack front on each side. This
definition of a, is in accordance with the ASTM standard E399-78 (5).
The standard restricts the length of either surface traze of the crack
to more than 90 percent of the average crack length (aav)' Based on
this criterion, the ASTM region is marked on the Figure 19. Any test
in which the specimen shows a surface trace within the marked region,
will be considered a valid test., It could be seen that focr the case
when there is a surface trace of 90 percent of a. in the specimen,
there is a 7.0 percent lowering in the thickness average stress intensity
factor. This shows that the use of plane strain formula given in
references (5) will result in an overestima~ion of the fracture toughness
of a material by 7.0 percent.
On the basis of experimental results and three-dimensional analysis

of Pereira et al. and Neale (14,15), recently, an amendment has been
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incorporated (40) to extend the limit on the surface trace of the crack
to 85 percent of the average crack length. This corresponds to a n
value of 15 percent. A drop of 12.5 percent in ti:2 value of thiikness
average SIF can be observed from the Figure 19 for this value of n.

This is an increase ~. 5.5 percent over the previous value and implies
that the use of two-dimensional plane strain formula will result in aﬂ
overestimation of the fracture toughness by 12.5 percent. These figures
provide a fairly good estimate of overestimation of the fracture tough-
ness if the CCF is present in the test specimen.

5.4 Effect of Plastic Flow

The increase in SIF values at the surface of the CT specimens with
different curved crack fronts indicates that the crack initiation will
start from the surface of the specimen. This is contradictory to the
experimentally observed behavior of crack tunnelling. It has been
suggested that certain amount of plastic flow takes place at the surface
which results in lowering of the SIF values there. To verify this an
elasto-plastic stress analysis was carried out for the CT specimen.

The material considered in this study was A2-5083. A stress-str2in
diagram for this material is shown in Figure 20. The yield stress (00;
is taken as 12.417x103 psi and the value of elasticity modulus (E) is
estimated from the test data provided in reference (34). The plasticity
solution was obtained by following an incremental solution procedure.

The total numer of increments needed for complete elasto-plastic analysis
were between 20 and 26. The incremental load %i was taken approximately

equal to 0.075. For one increment, the complete elasto-plastic solution

took approximately 6 minutes of CPU time on the IBM 370-3033 computer
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and for the convergence criterion described in Chapter 3, a fixed value
of 0.001 was taken for EPS.

In Figure 21 the variation of non-dimensional crack opening dis-
placement along the width of the CT specimen i; shown. These displace-
ments are extrapolated to determine the crack mouth opening displacements
of the specimen. The displacements considered herein are at the center
of the specimen for a straight crack front. The different curves re-
present increasing applied load levels.

An experiment was performed to obtain the load versus crack mouth
opening displacement (CMOD) for the compact tension specimen at NASA
Lewis Research Center. The specimen was made according to the ASTM
Standard E399-78 (5). It was loaded in an MTS automated testing system
equipped with a load cell capacity of 2C Kips. The loading was stroke
controlled having a rate of 0.02 inch/minute. The main feature of the
testing system included a closed-loop, servo controlled hydraulic oper-
ation. 1t was fully computer operated. A clip guage satisfying the
requirements of the ASTM £399 standard was mounted on the specimen to
measure the CMOD,

The stroke controlled software developed at Lewis Research Center
was used for the data acquisition. The load and the corresponding CMOD
constitute a data point. These data points were stored on hard disc
with an acquisition rate of 1000 data points in half a second. A real
time plot of load versus CMOD was drawn on a flat bed plotter.

The load versus CMOD results of the experiment were also printed
in a tabular form on a line printer. This numerical data is utilized

to draw the experimental curve on Figure 22. Also shown on this fipure
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is the rssults obtained from the MOL. At incipient load level where
plastic flow begins, the difference between the experimental displacement
and the calculated value is 5 percent. There seems to be a fairly good
correlation between the results obtained by the experiment and the cal-
culated value,

A complete elasto-plastic enalysis was carried out for three
different crack fronts. These crack fronts are shown in Figure 23,

Tte first crack front (CCFO) 4s a straight crack while the other two
((CCF1, CCF2) have some curvature. The growth of the plastic zone with
load for a straight crack front i1s shown in Figure 2.. The growth 1is
shown at three different locations through the thickness of the gpecimen,
at the center, aL the surface and some plane adjacent to the surface.
Location adjacent to the surface was chosen because of maximum plastic
strain (Ezy) there. This growth of plastic zone is different from the
conventional two-dimensional plane model. Note also the growth of the
plastic zone at the back surface of the specimen. In this zone the
plastic strains Ezy are compressive due to the bending component vf the
load. For the two other crack fronts CCFl and CCF2 the development of
the plastic zone growth is shown in Figures 25 and 26.

To compare the plastic zones for different crack fronts, the highest
load level of 2.5 kips was chosen. At this load level the plastic zones
at the three different locations in the thickness of the specimen are
plotted in Figure 27. At the center, the plastic zone sizes are approxi-
mately the same for CCFO and CCFl, while it is considerably smaller for
CCF2. On the surface the plastic zone is bigger for the CCF2. Note

also the presence of a small elastic region within the plastic zone.
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This large growth of the plastic zone {s anticipated for CCF2, due to
the rise in stresses at the surface of the specimen. The plastic zone
growth i{s smaller for the CCFO at the surface as compared to CCFl.

The stresses are relieved due to the large plastic flow at the
surface, when the curved crack fronts are present. This explaines the
beginning of crack advancement at the center of the specimen. The
presence of triaxial constraint due to the stress czz at the center also
contributes to t'ie tunnelling behavior of the crack.

5.5 Calculation of J-Integral

The J-intepral proposed by Rice (27) playe an important role in
the non-linear fracture mechanics., 1t was shown that for linear and
non-linear elastic materials, this integral is path independent.
Furthermore, based on energy considerations, it was proven to te equi-
valent to energyv release rate per unit crack extension. This conclusion
is very important because it removes the need of accurately determining
the stresses near the crack tip. J is also vsed in predicting the
elistic-, lastic crack growth ¢355). In the present study J valucs are
calculated for different curved crack fronts to analyze t..: behavior
of crack growth in the compact tension spec:men.

Nine different paths were chesen to evaluate the J values at
different thicknesses of the CT sperimen. These paihs are shown in
Fipure ?8. The non-dimensional J values at three different locations
are plotted in Figures 29,30 and 31. Thes» vesults are for 4 stra.pht
crack front at increasing load levels. The following observations
are made. 1) For the loads which are close to the load for incipient

plastic flow, the J values remain nearly the same for different paths.
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2) For the higher load levels some perturbation is observed in the
J-values along the different paths. Similar trends are reported in
reference 36 in which a two-dimensional elastic-plastic analysis of a
CT spe:imen is carried out. 3) As we move from center to the surface
of the specimen the path independence property of the J-integral de-
teriorates.

The use of two-dimensional definition of the J-integral in a
three-dimensional analysis is debatable but as reported in reference
(37) that due to the symmetry of the specimen it is enough to consider
only one component Jx of the general three-dimensional vector 3. an
equation to evaluate Jx was given, which is similar to the two-dimen-
sional definition of the J-integral with the addition of a surface in-
tegral term. The detal’ic of the equation can be found in Appendix D.
Ir was further shown in the same study, that the surf#ce integral does
not significantly change the numerical value of J. Only at the surface
does its evaluation have some effect on the J-integral values. Based
on this, in the present study the two dimensional definition of J is
adopted.

Figure 32 shows the different paths used to evaluate J-integral
values for the curved crack front CCFl. All the paths are the same as
used before with the exception of the paths chosen at the surface.
Since the crack length is smaller at the surface due to the curvature,
all the paths are shifted toward the left. Once again the J values are
plotted for different :ocations through the thickness of the specimen
in Figures 33-35. It is observed that for lower load levels the J-integral
is essentially path independent but for the higher loads this property

does not hold good.




113 ORIGINAL PAGE 13
OF POOR QUALITY

In Figure 36 different paths, used for the curved crack front
2 are shown. Note the shifting of paths towards the left at locations
2 = (0.375 and ¢ = 0.5 due to the presence of the curved crack front.
The J-integral values are plotted for different paths and locations
in Figure 37-39 for CCF2. Once again, it is observed that path
independent property of J-integral is closely followed only for the
loads which are closer to the load at which plastic flow berins and
at the center of the specimen.

From the above results it is clear that J-integral has significant
path dependence immediately adjacent to a crack tip under small-scale
vielding conditions i{n an elastic-plastic wmaterial. Parks (38) and
McMeeking (39) have also reported similar results. This wmay be due to
the unloading which occurs at the nodes near the crack tip because of
the plastic flow. These observations very seriously challenge the role
of J as a parameter characterizing the crack-tip stress field , at
least for materials modelled by the Von Mises flow theory.

In view of these observations it was difficult to choose a repre-
sentative J-integral value for each of the loading cases. A reasonable
choice for J can be obtained by considering Figure 40. The non-dimen-
sional values of the stress intensity factor were calculated using the
J values obtained from the path 1. Similar calculations are made tor
the SIF using the average J values which are obtained by averaging all
the J values for paths 3 through 9. These numerical values of S1F and
the SIF values obtained from crack opening diaplacements are plotted in

Figure 40, 1t can be seen that the SIF values obtained from the J-intepral



ORIGINAL PAGE IS
114 OF POOR QUALITY
values for the path 1 are very close to the SIF values from crack
opening displacement. While the average J values do not yield an
accurate result as one proceeds towards the surface of the specimen.
Because of this reaso» the results from the path 1 for the J-integral
are accepted as good estimates for further analysis.

The non-dimensional J-integral values as a function of load, ob-.
tained from the use of path 1 are shown in Figures 41-43., Curves for
the three different crack fronts are shown in the figures. From figure
41, it could be seen that at the center of the specimen, the J values
for CCF1 and CCF2 are lower than the values for CCFO, but at a load of
2.3 kips the J values of CCFO and CCF1l coincide while for CCF2, it
continue to remain lower. On the surface, the J values remain higher
for CCFl and CCF2 for the smaller load levels as shovnrin Figure 43.
But, as load increases this no longer remains true and the J values
go down considerably for CCFl. The J values for CCF2 also fall below
the J values of CCF0. This shows that due to the plastic flow, J-
integral value decreases at the surface for the curved crack fronts
as compared to straight crack front.

The variation of J obtained from path 1 is plotted through the
thickness on Figures 44-47. For the straight crack front the J values
for the lower loads are maximum at the center and minimum at the surface
as shown in Figure 44. With the increase in load this trend is slightly
modified. The J-integral value at the center still remains the maximum
but the minimum value shifts from the surface to some interior point.
For CCFl and CCF2, the J value is maximum at the surface for the loads

close to load at which plastic flow begins. For higher loads this trend

I —
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reversas for CCFl. The maximum value of J shifts to the center of the
specimen while for CCF2 the maximum values do not occur at the center
but shifts to an interior point.

The existence of a critical J* value is assumed at which crack
advancement starts. From Figure 45, it is obvious that for CCFl after
some plastic flow, the crack advancement will start at the center of '
the specimen, not at the surface as predicted by a purely elastic analysis.
Similar behavior was deduced from the approximate elastic-plastic model,
developed by Neale (16) for a CT specimen. This is in full accordance
with the crack tunnelling behavior observed during the experiment. For
CCF2 the maximum J value will occur at the center of the specimen, as

the shift in maximum J value towards the center could be seen in Figure

46 with the increase in load.
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CH.PTER 6

SUMMARY AND CONCLUSIONS

An improved formulation of the method of lines (MOL) is presented.
The five point finite difference fcrmulas are introduced to achieve
more accurate results. The resulting ordinary differential equations'
are solved by a recurrence relation method. It is a well suited method
for solving two point boundary value problems. Two specific geometries
namely the edge notch specimen and the compact tension specimen are
considered. For both the geometries, complete field solution for the
stresses and strains were obtained.

To establish the convergence characteristics of the newly improved
MOL, the field solutions were obtained for edge notch specimen for
different grid sizes. On comparing the maximum crack-opening and the
stress intensity factors for different grid sizes, it was found that
the solution converges to an asymptotic value. Even the coarse grid
such as NX = 12, NY = 6, NZ = 5, yielded fairly good results and the
CPU time was only of the order of 2.5 minutes.

For the compact tension specimen maximum crack opening displacement
was compared with experimental results and were found to be in good
agreement. The SIF value at the center of the compact tension specimen
was only 0.6% higher from the value given in the ASTM standard (reference
(5)).

Only smaller grid sizes such as dX = 12, NY = 8, NZ = 8 could be
used in the old method of lines. For the bigger grid sizes the solution

became instable. This places a serious restriction on the shape of the
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crack fronts which could be used to study the effect of crack front
curvature on the local stress intensity factors. By introducing the
new modifications in the MOL, it became possible to use bigger grid
gizes such as NX = 20, NY = 7, NZ = 7, Presently, only the core size
and the CPU time seem to limit the size of the grid.

The complete solutions were obtained for the compact tension
specimen in tensile and shear loading, containing different crack
fronts. For the purely elastic case, it was found that as the crack
front curvature increases the SIF value at the center of the specimen
decreases while increasing at the surface. For higher values of crack
front curvatures the maximum value of the SIF occur at an interior
point located adjacent to the surface. These results indicate that
for the specimen containing a curved crack front, the crack growth will
initiate at the surface of the specimen. This conclusion is in direct
contradiction with the experimental observations in which a tunnelling
behavior is observed, but can be explained by the presence of plastic
flow.

A thickness average SIF value was computed. It is assumed that
it reflects the average stress environment near the crack edge. On
the basis of this, it was estimated that use of the ASTM formula
(reference (5)) will lead to an overestimation of the fracture toughness
by 7 percent if the curved crack front present in the compact tension
specimen just satisfies the ASTM limit on the surface trace of the crack,
providing no plastic flow occurs. It was further estimated that the

proposed amendment in the ASTM standard on the surface trace of a
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crack will lead to a maximum overestimation of the fracture toughness
by 12.5 percent.

To investigate the effect of plastic flow in the compact tension
specimen, the equations of the method of lines are augmented to in-
clude the plasticity terms. Complete elasto-plastic analysis were
carried out for three different cases of crack fronts, which include
the case of straight crack front.

To check the accuracy of the elasto-plastic analysis, the load
versus crack mouth opening displacements were compared with experimen-
tal results. The experiment was conducted at NASA, Lewis Research
Center. The two results were found in good agreement.

The growth of the plastic zones are compared for a straight crack
and two curved crack fronts. The maximum plastic zone occurs at the
surface for the curved crack front with the maximum curvature. This
qualitatively explains the reason for the initiation of crack growth
at the center of the specimen. Due to the large plastic flow at the
surface, the stresses are relieved.

To further investigate this, the J-integral values are computed
at different locations for each of the crack front. In general, it is
observed that the J values are path independent for the lower loads.
As the extent of plasticity increases, this property of path independence
breaks down. It was also found that as we move from the interior
to the surface, this property deteriorates. In view of these results,
one specific path was chosen to comrare different J values. The choice

of the path was based on a comparison between the SIF values obta ned

from the J-integral values and the SIF values computed using the crack
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opening displacements. For this path it was observed that at the load
levels close to the elastic conditions the J values are higher at the
surface and lower at the center for the curved crack fronts. As the
load increases, the trend reverses itself and for the curved crack
front with small curvature, the maximum of J value occurs at the center.
This provides a quantitative explanation of crack initiation at the
center of the specimen. This conclusion can not be drawn from a purely

elastic analysis.

6.1 Concluding Remarks

The new improvements in the method of lines, have considerably
enhanced the accuracy and the stability of the method. Converged
results can be obtained by using ralatively coarse grids. It was
observed that increase in the number of lines in one direction only,
can lead to an instable solution. In some cases this instability
could be removed by adjusting the spacings, used for the application
of the recurrence relation method. These spacings were selected in
such a way, that they were approximately equal to each other in all
the three directions. This was established purely on the basis of
numerical experimentation. At this stage, a rigorous mathematical
analysis of error estimates and stability of the method is desirable.

In the present work, one particular constant grid size, was chosen
for each directien. This use of the constant grid size to approach
crack tip as close as possible, leads to a lzrge number of equations
to be solved. In any future work this problem can be alleviated by

using a varying grid size.
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The present formulation of the elastic-plastic problem is based

on the successive elastic solution method. It is observed that rate

of the convergence slows down as the extent of plasticity increases.
The solution procedure start to diverge when the plastic zone starts
growving in the compression zone of the compact tension specimen. This
shows that present formulation cannot predict large non-linear effect;.
It will need some modifications to obtain solution for large plasticity
effects.

The iterative scheme of the method of lines was based on the
successive approximation procedure. This scheme is simplier to
adopt, but needs more iterations. To cut down on the iteratiomns, for
the elastic case a successive over-relaxation (SOR) parameter was tried.
An improved guessed solution was obtained by combining the solution
for the current and previous iteration with the help of a SOR parameter.
This improved guessed solution was used to carry out the next iteration.
In the case of a grid, NX = 20, NY = 7, NZ = 5, the number of iterations
were reduced from forty-seven to twenty-eight, when a SOR parameter
of value two was used. This leads to a considerable saving in the
computer time. Such parameters could be studied in wmore detail to

accelerate the convergence rate of the present method of line.
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Figure 22, Load versus maximum crack opening displacement
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Figure 24, Growth of plastic zone with increasing load
for straight crack front at three locations
of the CT specimen.
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Figure 26. Growth of plastic zn.e with increasing load
for curved crack front 2 at three locations
of the CT specimen,
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Figure 27. Plastic zone enclaves for different curved
crack fronts at three locations of the CT
specimen (P=2.5 Kips).
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Figure 29. Non-dimensiona' J-integral values for different
paths at the center of the CT specimen with a
straight crack front for increasing load.
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Figure 30. Non-dimensional J-integral values for different
paths at midway between center and surface of
the CT specimen with a straight crack front for

increasing load.
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Figure 32, Different paths used for evaluating J-integral
for curved crack front 1
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Figure 33. Non-dimensional J-integral values for different
paths at the center of the CT specimen with
curved crack front 1 for increasing load.
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Figure 35. Non-dimensional J-integral values for different

paths at the surface of the CT specimen with
curved crack front 1 for increasing load,
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Figure 36, Different paths used for evaluating J-integral
for curved crack front 2
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Figure 37. Non-dimensional J-integral values for different
paths at the center of the CT specimen with
curved crack front 2 for increasing load.
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Figure 38. Non-dimensional J-integral values for different
paths at midway between center and surface of
the CT specimen with curved crack front 2 for
increasing load.
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Figure 39. Non-dimensional J-integral values for different
paths at the surface of the CT speciien with
curved crack front 2 for increasing load,
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Figure 41. Non-dimensional values of J-integral at the
center of the CT specimen for Path 1 versus

the applied load for three different crack
fronts, 2=0.0
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Figure 42. Non-dimensional values of J-integral at midway
between center and surface of the CT specimen
for Path 1 versus the applied load for three
different crack fronts, z=0.25
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Figure 43. Non-dimensional values of J-integral at the
surface of a CT «.. cimen for Path 1 versus

the applied load for three different crack
1 fronts, z=0.5
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Figure 47. Section cf a three-dimensional crack.
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Figure 48, Schcmatic representation of computer program MAIN1
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APPENDIX A
Formulation of the Governing Ordinary Differential Equations
for the Lines Located at the Surface and

Adjacent to the Surface of the Cracked Specimnn'

For bcundary surface lines and lines aljacent to the boun-
dary surface lines, the difference expressions for the second
derivative will involve imaginary lines outside the boundary.
Since three-dimensional elasticity problems have three boundary
conditions at every point of the bounding surface and a second
order ordinary differential equation needs only two conditioms,
the shear stress at the boundaries is used to eliminate the imag-
inary lines outside the surface while the condition of the pre-
scribed normal traction or displacement will be enforced through
the constants of the homogeneous solutions.

A.l DeriQation of Ordinary Differential Equation for x - Direc-
tional Lines

Let us take the x-directional line which is formed by the
interaction of x ~ 2 and x - y coordinate planes of a solid (Fig-

ure 6). The . ear stress for *he free surface is given by

cyx x-z Coordinate plane = 0 (4.1)

or Jdufdy +90v/dx = 0 (A.2)
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f? of the ficti-

tious line 1fy the equation (A.2) can be written as

At line 1 using the imaginary displacement u

oy By
Y27 Y S A [
2 h 9x 1 dx "1
y
fy
or u u, + 2 hy ( dv/dx) '1 (A.3)

The plane x-y is one of the symmetry planes and u displace-
ments are symmetric with respect to this plane.

The fictitious displacement u fy is used to write a forwuard

1
finite difference equation for the partizl derivative with respect
to y, while two fictitious displacements uflz and usz are used to

write a central difference equation for the partial derivative with
respect to z. The ordinary differential equation for line 1 is

vritten as

2 2 2 fy
(d%u /dx" ) + (C, /12 hy y[11 u,”7 - 20 u +6u,+

1
4u3-u43 +(C,/12 hi) [- ulflz+16 ulf22
" 30Uy + 16Uy LTV Ny 4]

c, —fx— ({:+&)|1 (A.4)

Due to the symmetry considerations,
1 YNy 4

and  u, " Yy +1 (A.5)



179  ORIGINAL PAGE IS
OF POOR QUALITY

on substituting equations (A.3) and (A.5) iato equation (A.4), we
obt‘!n

2 2 2
( d°u,/ax®) +( ¢ /12 hy) (-20u; +17 uy+ 4y, - u,J

2
+(CI/12hz)[-30u1+30um,+1-2u2m+1]

d

= Gy (PN -1 C/6h) @dn) |, A

Similarly for line 2, by making use of the fictitious line
1fy and symmetry the ordinary differential equation can be written as

2 2 2 fy -
du,/ax”) + (c1/12 hy) [- u,” +16u - 30 u,+

16 uy -y ] +€ /120 [-30u,+32 0y, ,-

NN

2y ez "6

n.'n.
x

v +w), (A.7)

Note the use of the central difference equation for the par-

tial derivative with respect to y. The fictitious displacement

v, Y 1a once again eliminated by the use of equation (A.3), and

the resulting ordinary differential equation for line 2 is written

as follows

2 2 2
(d%,/dx") + (C,/12 hy) [16 up = 31 uy + 16 uy - u4]

2
+€ /1210, [ -0 u,+32 0y =20 0.,

- d L] L
CZ “ax (v + w)z +(C1/6 hy Xdv/dx) ' 1 (A.8)

Bounding line 3 to NY - 2 do not require the use of any fic-
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titious line; however the symmetry considerations will be used to

derive the ordinary differential equations. For the line NY - 1

the ordinary differential equation can be written as
(d? rax®) + (c,/1202 ) [ - + 16
YWy -1 1 y UNY - 3 Uny - 2

—u By 2y 1-
=30 uy g 16wy - ue YT+ (c /120 ) [ - 30x

- 1
Uny -1 YI0U gy 12y )

- d . 0
S mV 9 o (A.9)

y

where u}f,y is the displacement at the fictitious line wfy and

it is eleminated by making use of the shear stress boundary

condition at that face

g = a a + - .
yx | face 11 0 v/3 + /3y = 0 (A.10)

The equation (A.10) can be expanded as

fy_
Yy’ T Uy -1 dv

2 h - dx
y

The elimination of u.m,fy from the equation (A.9) with the

help of equation (A.1l) results in the following ordinary differ-
ential equation for the line YWy -1

2 2 2
Cdugy /x4 /12 v ) [- w3 +16 wyy s

ﬂwwwwsn-, e e
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-3 gy _ 16 ug JHc /12 1) [0 w4

d
16u) )y o 1= 283 4y .3 =€ g VAW L,

-(C1/6 hy) (dv/dx) NY (A.12)

In the similar manner the ordinary differential equation can
be vwritten for the line NY, except that now a backward finite dif-
ference equation has to be used to write the difference equation

for the partial derivative with respect to y. For example

@ /&€ /12 12 ) [ - uy g+ bug 5+

6 gy - 1 - 20 wey + 11 ue Y1+ (¢ /a2n2 ) [ - 30

.l d . .

(A.13)

Unce again, the displacement ug on the fictitious line
Nny is eliminated with the help of equation (A.1l1) and it leads
to following ordinary differential equation for the line NY,

@/ axdy+€y/12 W20 = wgy _ 4+ bug _, + 17

2
Wy - 3 - 20wy d /1207 ) [ - 30 ugy + 32w, o -

d . O. .
2uy wl= €, G (vew +(11/6 hy ) @v/dx) oy

(A.14)
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The ordinary differential equations for lines NY + 1 through L-
2 NY can be written in the similar manner. For line 2 NY + 1
through l-— 2 NY there is no need to take symmetry into consider-
ation to write finite difference equations for the partial differ-
entials with respect to z, since there are enough points available
in the grid to write central difference equations.

For the lines & - 2 NY + 1 through A, in addition to
shearing stress oxy » the shearing stress ozy 18 also incorporated
into the ordinary differential equations. This is done to elimin-
ate the displacements appearing due to the use of fictitious lines
while writing difference equations for the partial derivatives

with respect to z. For example

O, | g-ny+1 = © du/dz + w/3x =0  (A.15)

For the fictitious line 1- NY + 1, the above equation can be

written as

fz
U l- Ny +1 7 V8- 2NY +2 dw

2h, dx l»l.-mul

or

fz dw
VAo Ny 41T -2 Ny 41 "R (dx)ll-m+1

(A.16)

Sizilarly by maring use of the fictitious line u'’ ooy + 1
]

the shearing stress oxy is reduced to the following equation,

c=>
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The ordinary differential equation for the line f- 2 NY + 1
is written below,

2 2
(Fog g fedvennly [uof, o

Vogeamer *OUl suyatbug e
Va- 2wy + 4] P12 "3 M-vg fpayt6x
“L-3mr 41" N0V py et Uy gt
“&.L-‘m+1]'°2 T:_(‘;"".')J.-zm+1 (a.18)

Elintastion of u'? p , o . end uff ) Ny + 1 from the

equation (A.18) with the help of equations (A.16) and (A.17)

results in the following ordinary differentisl equation,
(a4 laxt+(c, /1202 ) [ -20 u +
J-2N8+1 1744 % -2 8 +1

”".l-zm+2""“.t-2m+3 LY JRP RN

(cx’u"i)[‘“.1-4m+1"1°“.¢-3m+1 -
Nugomwer*tBug gy Jeoc, & SR VY TR
~(Cy/6 Xav/dm g _ 5 v 4 1 ~(C,/6 B)x

(aw/dx) g o0 0y (A.19)
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The same method is used to construct the ordinary differen-
tial equations for the remaining lines. Appropriate difference
equations are used to express éhe partial derivatives. For example
for lines l - NY + 1 through .1,, to write the difference equation
with respect to z, a backward finite difference formula has to be
used. Since there are not enough grid points to write central

difference equations.
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A.2 Derivation of Ordimary Differential Equations for y - Direc-
tional Lines |
The first y-diueti‘oul line is formed by the intersection of

y-z and y-x coordinate planes (Figure 7). The shear stresses on

these planes are utilized to eliminate the fictitious lings. The

shear stress for the free surface y-z is

°yx y=-2 coordinate plane = 0 (A.20)
or
du/dy + wu/ax = 0 (A.21)

Using the imaginary displacement v, * of the fictitious

1l
line 1fx the equation (A.21) is written as

v -v fx
e+l V1 .- 4
2h, dx’,
or
vlf" = vz + 1+ 2 h(dv/an]1 (A.22)

The plane x-y is one of the symmetry planes and v - displace-
ments are symmetric with respect to this plane. The fictitious
displacement vlf" is used to write a forvard finite difference
equation for the partial derivative with respect to x. For the
partial derivative with respect to gz, a central difference equa-

tion 1s used by using two fictitious displacements v,'1* and
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vln'. The ordinary differential equation for line 1 is written as

(azvlldyzmcllu n2yl v .2 v, +6

1 Yz +1t

2 fls
luvznz_‘_1-113uz'.,l}i-((:lluhg)[—v1 + 16x

f2

2
v -Nvl+16v2-v3]-c

4 .. .
2 Iy (W *V) (a.23)

Due to symmetry

and

3 ) (A.26)

Substitution of equations (A.22) and (A.24) into the equa-

tion (A.23) leads to

2 2
(4 vlldyz)-l-(Cl/lZ ho )yl -2 v, + 17 4x

we+1?t
v - lac,/1202) [- 30 v, +
2Nz +1 " Vanz+1°tGazh, 1
v, -2v.]=c % (u+w), ~(11 C./6 b)x

2 3 2 dy 1 176 By

(du/dy) 1 (A.25)

In the similar manner by making use of fictitious line and
the appropriate finite difference equations, the ordinary differ-

ential equation can be written for lines 2 through NZ - 2.




18?7 ORIGINAL PAGE IS
OF POOR QUALITY

To write the equation for line KZ - 1, there is a need of

fictitious line in the s direction. Lat us denote the displace-
fs

m L]
eliminated by making use of shear stress oy. on the free surface:

ment on this fictitious line by v This displacement will be

s | bounding plane 112 ~ ©

leads to
wn/og + 3vfay = 0 (A.26)

on expanding the equation (A.26) at line NZ, we have

fz dw
V e~ "w-1 "ay‘az
2 h
 §
or
vie ® Vg .- 2h dv/dy)‘ - (A.27)

In the similar manr>r the displacement on the fictitious line

fx fx

NZ - 177 1s denoted by v, _ ; . Since

oyx Bounding plane IV
ieads to du/dy + 3v/ox = 0 (A.28)

on expanding the equation (A.28) at line NZ - 1 leads to

1 A
% —— dx N2 -1
x

or
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fx

on making use of these two fictitious lines the ordinary equation

for the line NZ - 1 can be written as

(av

2 2 fx '
wz - 174y + (6,/12h0) [n Vg ., - 20x

v,

nz-l""‘"znz-l*“"

snz-1"Yanz-1]"

2
(€/12h) Lewg, 4+16v, ,=30v, , +

fz d ot
16 Yoz < Vnz ] - Cz'—a; (u+w)m_l (A.30)

The fictitious displacements vfx and \vfz are elimin-
NZ -1 NZ
ated by substitutine equations (A.28) and (A.29) into the equation

(A.30) and the resulting equation is

2

2 2
(d%vy, _ 1/dy")+(C /12h, ) [- 20 Vaz +17 v

NZ -1 2N -1

2
+4v3nz_1-v,.m_1] +(c1/12hz)[- +

YNz -3

d *» .
VNZ] -Cl"'a'y— (v +w)

16 v v, o, +16
NZ - 1

NZ -2 Nz

-(11 61/6 hdu/dy) NZ - 1 -(C1/6 hx)(dvl/dy) NZ

(A.31)

Using the method described above, the ordinary differential
equations for the lines NZ through m - 2 NZ can be written. An

appropriate choice of fictitious line and the difference equation

will always lead to a ordinary differential equation. From this
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equation the displacement due to fictitious line is eliminated by using
the shearing stress at the boundary surface. For example, for
lines m - 2 HZ + 1 through m, we need to utilize shearing stress
°yx on the free bo\nding plane I. In addition to this, for lines
R-R -1, 8~ N,n -1 and a ve need additional conditions
vhich are provided by the shearing stress o” on the free bounding
surface on face III,

The ordinary differentlal equation for the line m can be

written a®

(& rayd+c 2 B | SR SR

£ 2
6v-_uz-20v'+111-:] +(01/12hy)[-v-_3
fz
+6v._2+§v‘_1-20v.+11v. ]= Cox
d . L]
& (u+w). (A.32)

Note the use of backward finite difference equations for
both the partial derivatives. The displacesents v_'* and v *
on the fictitious lines are eliminated from the equation (A.32)
by making use of the shearing stress at the fres surface in the

following menner,

°yx ‘plans 1

du/dy + 3v/ox = 0 (A.33)
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The equation (A.33) can be written as
fx du
e T T,
2 h:

or

v, e v g -2y (du/dy)’ . (A.34)
Similarly

v‘fz i A -(2 hz) (du/dy)}‘ (A.35)

With the help of equations (A.34) and (A.35) the two dis-
placements which do not belong to grid displacements are elimin-

ated and the new ordinary differential equation for the line m is

2 2 2
(d%v /ax)H(C /12h ) [= v _ ap * 4V _ oz

2
17 v -2 v ] He/12h ) [= v, 4+

m - N2

d e
—v ] =C 5 (u+w) +

lsvm_ 4-17\7m dy

2 -1

(11 C1/6 h,) (du/dy) n +Q1 01]6 hz)(dVIdy) n (A.36)
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A.3 Derivation of Ordinary Differential Equations for s - Direc~
tional Lines
As shown in Figure 8, the lines 1 through NXC are on the
cracked face while lines NXC + 1 through NX are on the mc;achd
face. By making use of fictitious lines the ordinary differential

equation for line 1 can be written as

(a%w 1asD He, 12 hf' Yyl vlf’ -2, +6 +

i + 1

2 fx
bVox 41 = Vax + 1d 6 /12 hy 11w ™ - 20w +

d * .
6v2+633-vl.] =C 5 (u+v), (A.37)

Where vlf’ and wl"'x are the displacements on the fictitious

line 1‘y and 1“. The shear stress

Ofz| plane v °= © ‘ (A.38)
leads to
du/dz + w/9x = 0 {A.39)

The above equation is expanded for the line 1 as follows,

fx du
Vao" —dz 1
Th,
or
v ®auw +2n @u/dn (A.40)
1 2 x 1 *

Similarly by making use of the shearing stress on face v(b)
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we can write

0 fy -
v VMK + 1 + 2 hy(dv/dz) 1 {A.41)

on substituting the equations (A.40) and (A.41) into the equation

(A.37) leads to the following differential equation for the line 1
(@2 jazh+c /1202 ) [- 20w, +17 v +
1 1 y 1 NX + 1

6w ] +(¢, 12 h: y[-20w +

2N +1 " YinNx+

d L ] L]
17w2+low3-va] = C,—g; (u+v), -(11¢/

6 hx)(du/dz) 1 =-(11 C1/6 hz)(dvfdz) 1 (A.42)

Similar procedure can be used to write the ordinary differ-
ential equations for the lines 1 throughNXC. The w displacements are
symmetric with respect to the plane v(a). This consideration
helps in eliminating the displacements on fictitious lines. For
example by making use of two fictitious lines NX - lfly and
NX - 1f2y in y-direction the ordinary differential equation for
the line NX - 1 can be written as follows

2 2 2
(d Vi - lldz )-0-((31/12 hx )N- ik - 3¢ 16 ek - 2 °
NV w + 16 w,, - 'fx ] +(c, /12 hz )[‘

NX -1 NX NX 1 y

fly £2y
VNK - 1 +16wa_1 ”“Nx-f"ls"znx-l
- - d

Vax - 13% €, 4 (u+gy . (AA3)

o s s it e e v



193

Mue to the symmetry ORIGINAL pAQE s
OF POOR QuaALITY
fl
“ox-1 "Vim-1 (A.44)
and
way

-1 " Ya2m-1
The displacement w:; can be exprassed as

ik " Yixe1 = 2 by (du/de) | oy (A.45)

With the help of the equations (A.44) and (A.45) the fictitious

fx fly f2y
displacements "X *YNx -1 and iX - 1 are eliminated from

the equation (A. ) and the resulting ordinary differential equa-
tion for line X - 1 is |

2

2 2
(4w _ 1/d27)4(C1/12 b)) (-30 wyy . g+ 32

2R -1

2
2wy d G2 ) [y gty

d L] .
ol A R U B e el UL L)
(€y/6 hy) Gu/ds) |y (A.46)

Similar procedure is followed to vwrite the ordinary differ-

ential equations for lines NX + 1 through n.
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APPENDIX B

Application of the Recurrence Relation Method For

y=Directional Lines

As shown in Figure 4, the presence of crack divides the
face V into two faces, namely face V(a) and V(b), respectively.
The face V(b) is a traction free surface. All the y-lines starting
from this face will satisfy the follewing boundary condition.
Oyy vy = 0 (B.1)
On the face V(a), all the prescribed v-displacemsnts are zero.
Hence, the y-dirsctional linex starting from this face will

satisfy,

v - 0 (B.2)

V(a)

Using the stress -~ displacement relation equation (B.1l) can be

teduced to

( dv/dy) lV(b) - - Tl_’-'\', (du/dx + dw/dz )V(b)

(3.3)

The eouations (B.2) and (B.3) can be assembled into &

vector form by fcllowing the sequence of ordering of the y-direc-
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]
tional lines. The sssemble. vectors ars vl:k end vl:; . The
bector V at face V can be written as follem,
-
[ ]
vl,u
]
1.k
e R
v, = vl.k (B.4)
e
vJ..n
. ’ Zaxl

. A
wherevluandvlu represents the unknown part of the wvector.

» »
To get the remaining boundary conditions the trzction condition at
face IT 1s used. In the case of tensile loading we have an applied

C at the face, as shown in Figuve 2. Using the stress-displace-

ments relation, we can write

(dv/dy)l N fu +V) G- 2\»)}
(1-v)
T Ty (duidx 4+ dwide) (.5)

The equations (B.5) are again assembled into a vector form

and are written as

g
v = l+v) (1 -2v
n,k E 1=V

TV (wsw) o (.6

™3 complate vector at face II can now be written as
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vn’“ M
v =
n (8.7)
vn.k

Where, Vn . represents the unknown part of the vector. Following
]
the recurrence relation msethod, an equation similar to the equa-

tion (3.96) is written below

Vn = Dn Vl +Fn (8.8)

The evalutation of matrix D y and l"u is described in Chapter
2. For convenience matrix D a and vector Fn is partitioned and the

equation (B.8) can be rewritten as

Y
 J
vl,u
v ' 8
n,u B3 B12 Bi3 B | V1,x 1
- " +
Y,k B, Bz Ba3 Byl | Vik 8,
- (3.9)
L l,u
Where order of various matrices is
v L . e
vn,u mx1 Vl’u a xl Vl,k mxl
]
" 1]
vn,k mxl vl,k (H')xl Vl " (m-m )x1
B 1 ] 1]
1 XA 813 Bom
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812 ax(a-n ) 816 ux(w-n )

822 n(ﬂ') Bz " lx(.--')
vhere -' = NZx NXC
The equation (B.9) is expanded as,

11}
Vak "B Viu B2V *t BV *

Bas V1,0 * 62

The above equation could be rearranged as

* 1]
Yax © [521 th.] “Lu +["”22‘ 823] Y1k

.0 1.k
+ 82
or
L ' ﬁ
vl sU -1 vlok ;
S [321 324] o,k ” [522 B23] " |
l,u 1,k
)
- BZJ (B.10)

With the help of (B.10) all the unknowns in the vector Vl
can be determined. Once the complete vector Vl is known, using

the recurrence relation method displacement v and ; are obtained
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at all the grid points.

In the sbsence of normal stresses at face II of the spaci-
man, the equation (B.5) needs to be modified by setting ¢ equal
to zero. Another thing which deserves attention at this point is
the adjustment of equation (B.9) for the situation in which curved
crack front is present. In such cases the lines are divided in
two sets. The first set satisfies the boundary condition given
by the equation (B.1). Total number of these lines is given by
NFREE. The second set of lines satisfy the equation (B.2) at its
starting boundary and total number of such lines is given by NFIX.
Once again the governing equation is similar to the equation (B.9)
but now the vector vl can not be partitioned as showm in the
equation (B.9). The distribution of the known and unknown ele-
ments of vector V1 is dependent upon the way it is decided to
fix particular grid point on face V, which in turn depends upon
the shape of the curved crack front. To solve this new matrix
equation, the vector Vl is rearranged so that it could be writ-
ten as in the equation (B.9). Now m' is no longer equal to
NZxNXC, but its new value is equal to NFREE. The change in the
arrangement of Vl vector requires a rearrangement of D n matrix to
maintain the same original equations. This is achieved by inter-
changing the columns in Dn matrix. For example, if vy is inter-
changed by vy in V, vector, then the column i in matrix Dn will
be replaced by its j th colum while in the place of column j the

elements of column i will be placed. This adjustment gives rise
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to a modified D and V, vector. The adventage of this procedure

1

is that after this rearrangement, exactly the same procedure can

be followed as explained before for the straight crack. Once the
] .

modified vector V 1 is known, with the help of information for

each individual grid point on face v the vector V. is constructed.

1
l?mny it is used to obtain solutions for v and v for all the
grid points using the equation (2.91) of the recurrence relation

sethod.
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APPENDIX C

Derivation Of The Differential Equations For

y-Directional Lines For Shear Loading

The y-directional lines whose equations are directly affected
by the shear loading are 1, 2, .....NZ and NZ + 1, N2 + 2, ....2 N2,

The shear stress o yx at face 1V is

Oxlv = - (y) (C.1)

vhere T(y) is expressed as

wy) = 4t (y/h) (1-y/h) (€.2)

T is the maximum value of shearing stress at y = h/2, and
h is the semi length of the specimen as shown in Figure 1(b).

Using the stress-displacement relation, the equation (C.1l)

can be written as

{(Bulay) + (av/B!O} w " - w(y)/6 (C.3)

G is the shear modulus of the material. Using the procedure
followed to reduce the second Navier - Cauchy equation to an
ordinary differential equation, the modified equation for the

line 1 is written as
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f’-zov +6v

2 2 2
(d vlldy ) +(c1/1z h 1 vy N Nz + 1~

1 2

- 2 - fls f2sz
“Vanz e 1" Va4 1] HGA2B - v 16 v PR30y

1

. d * L ]
+ 16 vz—v3]-c2 -39—(“4-“) 1 (C.4)

Due to symmetry

and

The aquation (C.3) can be expanded for line 1 in the follow-

ing manner,

fx
Vi Yz 4+ - —%%— - 1y
2 hx 1 G

or

fx

v v g K2 hx)[(du/dy) y + (TN/e)] (€.6)

fx flz f2z

Elimination of fictitious lines Vi v vy and vy from

equation (C.4) with the help of equations (C.5) and (C.6) leads to

(@%v /ey®) + (12 02y [- 20 v, +17 v

Nz+1t

1

b v ]+(C1/12h§)[-30v

Nz +1 7 VaNz 4+ 1 1




B g v

202 ORIGINAL PAGE IS
DE POOR QuALITY

2v,-2v,] "¢, gy (u+wv) ; -11(,/6 b, )x
(du/dy) | =(11 C,/6 h_ ) (T(y)/G) .7

In a similar manner equations for lines 2 through NZ can be
mcdified. A comparison of equation (C,7) with the equation (2.3Q)
shows that the two equations are nearly the same except the addi-
tional term of -(11 01/6 hx)(r(y)/G) which appears due to a non-
zero prescribed shearing stress axy' The modified equations for
line 2 though NZ also include the additional term -(11 01/6 hx\
(t(y)/G). Other terms for these equations remain the same as before.

The equation for line NZ + 1 is written as

2 2 2 flz £22
@V 4 /HC 12 0 )= v ry + 16T
2
=30 vy 1 F 16 Vgt Vg 4 3 1H(C/12 0 )x

fx
=V T 416 vy =30 v, g H 16 Vo L) Vang 4 1]
c, —3— (;; + ;v) (C.8)
2 dy NZ + 1 ' *
Due to symmetry of v displacements
£2z -
Nz + 1 YNz + 2
flz -
Nz + 1 VNZ + 3 (C.9)

On substituting the equations (C.6) and (C.9) into the equa-

il
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tion (C.8) leads to the following ordinary differential equation

for the y-directional line NZ + 1,

2 2 2
(dvnz+1/dy )+(c1/12 hz)['-30sz+1 +

) 2
32 Nz + 2 7 2V 4+ 3] +(C1/12 h Y[ 16 v, -

N Vyy 41 ¥ 16 Vo 41 T Vanz 419

= Cy s Wy L+ (C/6h) (duldy)) + (C/6b) (x(¥)/6)

(C.10)

Once again the difference between equation. (C.10) and the
one used in section 2.2.2 is only the additional term (01/6 hx)x
(t(y)/G) ,appearing due to the prescription of a non-zero shearing

stress. The equations for lines NZ + 2 through 2NZ will also have

this additional term of (Cl/6 hx) (t(y)/G).

Introduc¢ing the matrix notation, all the ordinary differen-

tial equations along the y-directional lines are expressed in the

< 63 - () (s o o)

dy

form

mx1 : mxm mxl mx1 mx]

(C.1ll)
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APPENDIX D
Three Dimensional J-Integral

The definition of J-integral presented in this appendix is
taken from reference (37). Consider the section of three dimen-
sional crack front shown in Figure 47. The surfaces, Sl’ S2 and
83 surrounds the crack front. The component J, of the general

J-integral vector 3 is given as
Jx - j-F (Wdy - gij nj Yy x dsj)

:S (0iz u:'_’x)/.z ds (D.1)
2 + 83 )

where 1 = 1, 2, 3 and " is a circular path as shown in Figure
47. W is strain energy density, oij is stress tensor and uy is
referred to as displacement vector.

In two dimensional plane stress problems ¢ z becomes zero

i
and the equation for Jx becomes the same as given by Rice (27). 1In
the case of plane strain problem ozz is not zero but its variation
through the thickness is zero. Therefore, the surface integral

term (rops from the equation (D.l) and once again the equation for

Jx becomes the same as given by Rice (27).
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APPENDIX E

Description And Listing Of The Computer Programs

In this appendix a description of the computer programs used
in the present study is given. A complete listing of all these
programs including subprograms is attached at the back of the
thesis. In writing the various programs a strict modular approach
was followed. This has helped in writing many subprograms which
are commonly shared by several main programs.

The program was divided into five main programs. This was
done to divide one commlete run into several small runs. This was
done to safeguard against the failure of computer system . The
schematic representation of the computer program MAIN1 is shown
in Figure 48. This program is employed to evaluate the various
matrices needed for the x-directional calculations. At the end of
the computer program run, all these matrices are stored on the
virtual disc storage. Computer programs MAIN2 and MAIN3 whose
schematic representation are given in Figures 49-50, are also used
to calculate different matrices used for y and z-directional cal-
culations. The outputs from these programs are also saved on the

virtual disc storage.

A dynamic storage allocation scheme was used for all the
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programs, Consequently whenever there was a change in the number
of grid lines, only the DIMENSION statements in the main programs,
need to be modified. Due to the serious round cff error problcm,
all the calculations for the x-direction were performed in
double-double precision (128 bit word size). For the other two
directions the double precision was sufficient,

The computer program MAING is used to obtain the elastic
solution for different cases. The subroutines UDISP, CCV, and
WDISP perform the calculation for x, y and z-directional lines,
respectively. In the case of tensile loading subroutine CCV was
replaced by subroutine CVDISP. The subroutine OUTPUT ig used to
print the results for the displacements and their derivatives.

The normal and shear stresses are calculated with the help of sub-
routines STRESS, SHEAXY, SHEAYZ. The sffective stress at each
grid point can be computed by using subroutine EFTRES. The output
from the program MAIN4 was also stored on the virtual disc.

Four virtual tapes are needed to run the program MAIN4, The
stored matrices which were originally calculated by programs MAINI,
MAIN2 and MAIN3 are read info three sequential virtual tapes. The
fourth virtual tape is needed to write the output of program
MAIN4 on the virtual disc.

Program MAIN5 is used for the elastic-plastic stress analy-
sis. 1ts schematic vepresentation is shown in Figure 52, There
are many subroutines which are shared by this program with the

program MAIN4, Due to the addition of plastic strain terms many
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old subroutines were modified. Note the presence of new subpro-

" grams PUDISP, PCCV and PWDISP, used to perform calculations for

the x, y, and z-directional lines, respectively. This program uses
five virtual tapes. Three tapes are utilized to read the different
matrices generated by the programs MAIN1, MAIN2, and MAIN3. The
remaining other two virtual tapes are used to read and write the
solution, at the beginning and at the end of the increment.

This format of programming provided considerable flexibility
and a very good protection in case of computer systems failure
during the execution of the program. In case of a system failure,
only the solution for the current increment is lost, whizh can be

recomputed by using the stored solution for the previous increment.
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