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SUMMARY

A procedure is outlined for the numerical solution of the complete elas-

tohydrodynamic lubrication of rectangular contacts incorporating a non-

Newtonian fluid model.	 The approach uses a Newtonian model as long as the

shear stress is less than a liaiiting shear stress. If the shear stress exceeds

o	 the limiting value, the shear stress is set equal to the limiting value. TheM

w	 numerical solution requires the coupled solution, of the pressure, film shape,

and fluid rheology equations from the inlet to the outlet. 	 Isothermal and

no-side-leakage assumptions were imposed in the analysis.

The influence of dimensionless speed 	 U, load	 W, materials	 G, and

sliding velocity U* and limiting-shear-strength proportionality constant y

on dimensionless minimum film thickness	
Hmin	

was investigated.	 Fourteen

cases were used in obtaining the minimum-film-thickness equation for an elas-

tohydrodynamically lubricated rectangular contact incorporating a non-Newtonian

fluid model

H
min - Hmin N{expr-4.9Qx10-y(lJ*)O.t0U0.23(WG213.85

'	 L	 0.71	 0.71.
+ 2.06( 7 - 0.07)] + U*}	 (1 - U*)



where

%in,N ' 3 '
 07 U0.71G0.57W-0.11

Computer plots are also presented that indicate in detail pressure distribu-

tion, film shape, shear stress at the surfaces, and flow throughout the

conjunction.

INTRODUCTION

To obtain a better understanding of the failure mechanism in machine

elements, the next generation of elastohydrodynamic lubrication analysis

should incorporate such effects es

(a) Non-Newtonian fluid

(b) Surface roughness

(c) Temperature

Although a Newtonian solution for elliptical contacts had been obtained by

Hamrock and Dowson (1981), it was felt that a rectangular or line-contact

analysis should be used to incorporate these effects because of their added

complexity. A rectangular or line-contact analysis was performed by Hamrock

and Jacobson (1982). The analysis required the simultaneous solution of the

elasticity and Reynolds equations. the equations were coupled from the inlet

to the outlet assuming isothermal conditions and no side leakage. The re-

sults from Hamrock and Jacobson (1982) are the foundation for the more com-

plicated analysis incorporating non-Newtonian fluid, surface roughness, and

temperature. When considering these effects, the initial pressure profiles

are those obtained from the authors' earlier work.

The present paper considers incorporating a non-Newtonian fluid model

into the theory of elastohydrodynamic lubrication of rectangular contacts.

The geometry of the problem is a roller, rolling and sliding against a plate,
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where the roller length is large as compared with the radius. The lubricant

in an elastohydrodynamic conjunction experiences rapid and verb large pres-

sure variations. a rapid transit time, possible large temperature changes, and

particularly in sliding contacts, high shear rates. The great severity of

these conditions has called into question the normal assumption of New- tonian

behavior. The approach to be used in this paper is to redefine the pressure

and mass flow rate equations depending on how the values of shear stress at

the surfaces compare with the limiting shear stress. The limiting shear

expression used is a semiempirical linear function of pressure.

Gacim and Winer (1981) used a non-Newtonian fluid rheological model in

their elastohydrodynamic lubrication studies. Some limitations of this work

are listed below:

(1) The analysis assumes a non-Newtonian fluid model for the entire

conj uction including the inlet region. The present paper uses a non-

Newtonian fluid model only when the shear stress at the surfaces exceeds the

limiting shear stress.

(2) The Gacim and Winer analysis relies on using a Grubin type of

solution rather than employing a complete solution of the Reynolds, rheology,

and film shape equations as is used in the present paper.

(3) The Gacim and Winer paper assumes that the limiting shear stress is

zero when the fluid pressure is zero. The present paper assumes that the

limiting shear stress is equal to an initial shear strength when the pressure

is zero.

Figure 1 shows the effect of shear stress on shear strain rate for the

present model and that of a Newtonian fluid. From this figure it is observed

that, in the present model, if the Newtonian shear stress exceeds the limit-

ing shear stress, the shear stress is set equal to the limiting shear stress.
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The fluid model is Newtonian except when the shear stress reaches the shear

strength value. At that point, slippage occurs and the shear stress is WAl

to the shear strength.

Besides the dimensionless load, speed, and materials parameters that were

found to have an influence on film thickness in the authors' earlier paper

(Hamrock and J uobson, 1982), when non-Newtonian effects are considered, two

additional parameters were found to influence the minimum film thickness,

namely:

(1) Sliding velocity

(2) Limiting-shear-strength proportionality constant

Fourteen cases were used in obtaining a fully flooded film thickness

equation when considering non-Newtonian effects of the li quid. Besides the

film thickness calculations that were made, calculations of the force com-

ponents, shear forces, coefficient of friction, and center of pressure were

also performed. Computer plots are presented that indicate pressure distri-

bution, lubricant film shape, flow, and shear stresses within the conjunction.

SYMBOLS

B	 1/n

b	 semiwidth of Hertzian contact, R $W /R, m

b	 b/n, m

E	 modulus of elasticity, N /m2

E'	 effective elastic modulus, 2/[(1 - v 2)IE a+ (i - vb) /E bb, Nim2

dimensionless shear force

f	 shear force per unit length, N/m

6	 dimensionless materials parameter, *E'

H	 dimensionless film thickness, h/R

Hmin	 dimensionless minimum film thickness, hmin/R
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'Rnin	 dimensionless minimum film thickness obtained from
least-squares fit of data

%in,N dimensionless minimum film thickness obtained from
least-squares fit of data while assuming a Newtonian fluid
model

h	 film thickness, m

hmin	 minimum film thickness, n:

m	 dimensionless distance from inlet to the center of Hertzian
contact

n	 number of nodes in semiaxis of contact

P	 dimensionless pressure, p/E'

p	 pressure, N/m2

Q	 dimensionless mass flow per unit length, q/o0usR

q	 mass flow per unit length, kg/(s•m)

R	 effective radius in x direction, m

r	 curvature radius, m

S	 geometrical separation, m

U	 dimensionless speed parameter, n0us/E'R

U	 dimensionless velocity, u/us

U*	 dimensionless sliding velocity, ud/us
ORIGINAL PAGE 19

u	 velocity in direction of motion, m/s 	 OF POOR QUALITY

ud	velocity difference, (ua - ub )/2, m/s

us	velocity sum, (ua + ub )/2, m/s

It	 (^nin - Hmin)100/4nin

V3	 (u - v) 100/u

W	 dimensionless load pai

w 
	 load per unit length,

X	 dimensionless coordini



} r

x
	

coordinate in direction of motion, m 	
FINAL PAGE 18
OF POOR QUALITY

z
	

dimensionless coordinate in direction of film, z/h

coordinate in direction of film thickness, mz

pressure—viscosity coefficient of lubricant, m2 /Na

limiting—shear—strength proportionality constantY

elastic deformation, ma

coefficient of determinationc

absolute viscosity at gage pressure, N s/m2n

dimensionless viscosity, n/n0n

no	 viscosity at atmospheric pressure, N s/m2

P	 coefficient of friction

V	 Poisson's ratio

o	 lubricant density, kg/m3

p	 dimensionless density, p/po

Po
	

density at atmospheric pressure, kg/m3

T
	

shear stress, N/m2

T
	

dimensionless shear stress, T /E'

T
	

shear stress ratio, T /TL

TL
	

limiting shear stress, N/m2

TL
	 dimensionless limiting shear stress,TL/E'

To
	

dimensionless initial shear stress constant

Subscripts:

a

b

x

z

solid a

solid b

coordinate in direction c

coordinate in direction c
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THEORY

The non-Newtonian approach will be to consider the flow conditions at the

surfaces. The flow has two components, the flow due to velocity (Couette) and

•	 the flow due to the pressure gradient (Poiseuille).

In figure 2 we attempt to explain the velocity of the fluid for the five

distinct zones that might exist in an elastohydrodynamic conjunction when non-

Newtonian effects of the lubricant are considered. In each zone the velocity

of the top surface is greater than that of the bottom surface. To better

indicate the difference between the zones, values of ua and ub will be

kept constant for each zone. In figure 2(a), zone 0, the normal Newtonian

zone, the shear stresses at the surfaces are less than the limiting shear

stress, and no slippage of the fluid at the surfaces occurs. In figure 2(a),

zone 1, the Newtonian shear stress at the top surface is larger than the

E
limitiny shear stress and slippage occurs at the top (faster) surface. In

figure 2(a), zone 3, the shear stresses at both the top and bottom surfaces
s

are outside the limiting range(Ta < - TL and
 't

and 	 ^^) and slippage occurs at

4	 both surfaces, but the slippage velocity is less than the velocity at the sur-

faces. In figure 2(b), zone 2, the Newtonian shear stress at the bottom sur-

face is larger than the limiting shear stress, and slippage occurs at the

bottom (slower) surface. In figure 2(b), zone 4, the same sort of situation is

present as in zone 3 with the exception that the fluid slippage is greater than

the surface velocity.

The relevant equations for the five distinct zones that can occur in an

elastohydrodynamic lubrication contact when non-Newtonian effects are con-

sidered are developed next. Before we define these relevant equations for the
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five zones, we need to define the dimensionless limiting shear strength. For

most materials the shear strength varies linearly with pressure over wide

pressure ranges, and there normally is a certain shear strength even at zero 	 i

pressure. It is written as
i	 -

TL - TO + YP 	 C1)

where

To dimensionless initial shear strength

Y	 limiting-shear-strength proportionality constant

Jacobson (1970) found values of 70 for a rang± of fluids to be

between 140-5 and 1x10'4 . For the results given in that paper TO

was assol"d to be 9x10-5 . Bair and Winer (1979) found y to be between 0.05

and 0.10 for a complete range of natural and synthetic lubricating oils.

Tevaarwerk (1976) used similar values of y in his traction :studies. In the

present paper we consider a range of y between 0.04 and 0.10.

Zone 0

The Newtonian model gives 1. < < L and T b < < L . In this zone the

rheological model is a Newtonian fluid and no slippage occurs at either sur-

face. The velocity distribution across the lubricant film for this situation

is depicted in figures 2(a) and (b), zone 0. The velocity, the velocity

gradient across the film, and the shear stress at the surfaces can be written

directly from Hamrock and Oowson (1981) as

s
I

i
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U . z2 z̀^j d + ub(h - z) ♦ uaz	 ORIGINAL PAGE IS
n	 x	 h	 OF POOR QUALITY

du (2z - h) d	 ua - ub
-Z	

+ —_

d	 h dd	
(ua - ub)n

l b ` (`) z•0 ` n Ca—z) z-0 ` -
-1 dZ + _T_

(u - u )n

T a ` (t )z-h ` n /daz)z`h ` z R + -T-

Letting

X. x fib. 8W, p.0, n. IL H a h I r + —, G W.

0	 0	 a	 b

E ^ -

	

 2	
U-n0us u lua+ub	 u .ua-ub U^u

1 - v 1 - vb 	 s i^— d —'2—' 	
7S

	

a	
.

--Tb

(2)

(3)

(4)

(5)

U*- TS - U^Ub . P - f r . 1 b- T . s a
s	 a	 b

5) can be written in dimensionless form as

+ H2
	

Z(Z — 1}dA
4^u

w
z -Ti , W -I

equations (2) to

M
	

U - 1 - U*0 - 2Z)

(6)

(7)

2

2UU n H
Flk

dP

	

t b` —H - a	 aX

	

2UU n + H	 d P
t an - H	 3	 71

{

(8)

(9)

(10)
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Since this 1s zone 0, the Newtonian model gives t o < iL and ib < V

The dimensionless mass flow per unit length and its gradient set equal to

zero give

_	 1
• o—S-R •pH UQ	 dZ•oH 1-1	 (11)

C	 /

	

0 s	 1	 24-11

dQ/dX - 0 gives

	

 F7WdX
(_03 

mil- 24U	 a (_,H)	 (12)
n

The second term on the right side of equation (11) is the Poiseuille or

pressure term. For a Newtonian fluid equation (12) is the familiar Reynolds

equation when side leakage is neglected. This equation will be referred to

as the pressure equation since it will change for the respective zones.

Zone 1

The Newtonian model for zone 1 gives IIt al > t^ and I t b I < TL.

The velocity distribution across the film that exists in this zone is shown in

figure 2(a), Slippage occurs at the top surface so that the velocity at the

fluid-solid boundary is denoted by ua . This implies that in this zone the

velocity, the velocity gradient, and the shear stresses can be directly

obtained from equations (2) to (5) with the substitution for ua

with ua , the slip velocity. Making use of the non-Newtonian model discussed

earlier leads to the observation that, since to > tL, then JTa)

Is set equal to c L . Solving for this slip velocity at surface a, we get

u - u + T ^ h - 
h? d	

(13)a	 b	 n	 2n

ff

fY

10
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(15)

(16)

Making use of this equation, we can write the dimensionless velocity,

velocity gradient, and shear stress at the bottom surface as

U.H2ZI-2 ^ ♦1 -U*
♦ tLHI

	

4_4 ;779	 nU

^^H2 Z - 1 _(^d^P ♦ L^

	

2nU ^p	 u

H	 dP
T b' T L - 7 TN aX

The dimensionless mass flow rate per unit length and the pressure equation for

this zone can be written as

Q	 •;H 1-U* ♦ TLH- 	 Q0	 (17)
C	 /d s	 2nU ^nU

	d 
7H  

dP . 6L.;rW 1-U* d cH) + 1 d	 TL(18)
  *	 jUn	 T

The nonunity terms in parentheses in e quation (17) are the Poiseuille terms.

Equation (18) is referred to as the pressure e quation but also can be vicied

as the Reynolds equation for a non-Newtonian fluid when conditions in zone 1

prevail.

Zone 2

The Newtonian model for zone 2 gives s a < TL and tb > SL.

The velocity distribution across the film that exists in this zone is shown

in figure 2(b). Slippage occurs at the bottom surface (slower moving

surface) so that the velocity at the fluid-solid boundary is denoted by

11
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ub. This implies that in thi: zone the velocity, the velocity gradient.

and the shear stresses can be written directly f.-am equations (2) to (5) with

the substitution for u  with ub. Since the Newtonian'model gives

tb > 7L .  the shear stress at surface b Is set equal to :7L . Solving

for the slip velocity at surface b, we get

ub ^ ua_ T nh d 	 (19j
^ x

Making use of this equation, we can write the dimensionless velocity,

velocity gradient, and shear stress at the top surface as

U^H212 1	 ,rdP	 * - I - Z)H

nU	 nU

dU ZH2 w dP TLH	
(21)

dZ 2nU	 nU

` a - t L `
 'H

 'ZQ M	
(22)

Note that, in order to be in zone 2. I-T aI< tL . From equation (22) we

observe that this is only possible if dP/o X is negative. Likewise, in

tone 1, Itbl < : L . From equation (16) we observe that this is only

possible if dP/dX is positive.

The dimensionless mass flow rate per unit length and the appropriate

pressure equation for this zone can be written as

;H
	i H	 2

IV2nU 6nU

ORIGINAL PAGE !S
OF POOL QUALM	
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-̂oj 4jj'LH2  OF POOR QUALITY
dpH3 dP	

JLW
	 * d	 l d M--	 = 6U 	 (1 + U	 (24)

n	 n
The nonunity terms in the parentheses in equation (23) afire the Poiseuille terms.

Zone 3

The Newtonian model for zone 3 gives sa > IL and equation (16) gives

I b < -t U . Figure 2(a) shows the velocity distribution across the lubricant

film. Slippage occurs at both the top and bottom surfaces, and the slip

velocity is less than the velocity of the slow surface (surface b). In this

zone the velocity, the velocity gradient, and the shear stresses can be written

directly from equations (2) to (5) with the substitution for u  with

ua and ub with ub . Since the Newtonian model gives i a > iL , the shear

stress at the top surface, surface a, is set equal to TL and since

equation (16) gives T b < --T L , the shear stress at surface b is set equal

to  ̂L . From these equations we find that u a = ub. The dimensionless

velocity gradient can be written as

A	 H(Z 2 - Z)— 	ua
U	 + Ua 	 (25)

nu	 us

dU	 HT L (2Z - 1)
G _ _ (26)

nU

The dimensionless mass flow rate per unit length and the appropriate pressure

equation can be written as

Q•pH i - u s - u a-
 
iL	 (27)

	

u s 	 6-nu

dr4	 WW TL	 (28)dX ` ^w H

Tt,^ nonunity terms in parentheses in equation (27) are the Poiseuille terms.

13
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	The Newtonian model for zone 4 gives i b > i L and equation (22) gives	 i

s a < -s L. Figure 2(b) shows the velocity distribution across the lubricant

film. Slippage accurs at both the top and bottom surfaces. The difference

between zone 3 and zone 4 is that in zone 3 the slip velocity is less than the

slower surface velocity and in zone 4 the slip velocity is greater than the

faster surface velocity. In zone 4 the velocity, the velocity gradient, and

shear stresses can be written directly from equations (2) to (5) with

the substitution for u  with ua and ub with ub . Since equation (22)

gives i
a
 < -t^, the shear stress at surface a is set equal to -i L; and

since the Newtonian model gives 7b > i L
, the shear stress at surface b is set

equal to i L . The dimensionless velocity, velocity gradient, mass flow, and

pressure can be directly written from the e quations developed in zone 3

(eqs. (25) to (28)) if ,L
 is substituted for i L . Note that in

order to be in zone 3 from eauation (28), the pressure gradient must be

positive; and in order to be in zone 4, the pressure gradient must be

negative.

I

Density, Viscosity, and Film Shape E quations	 !

The equations that define velocity, velocity gradient, shear stress, flow,

and pressure for the five zones have been defined. Before proceeding, however,

the dimensionless density, viscosity, and film shape need to be expressed. For

a comparable change in pressure the density change is small as compared with

the viscosity change. However, very high pressure exists in elastohydrodynamic

films, and the li quid can no longer be considered as an incompressible medium.

From Dowson and Higginson (1966) the dimensionless density can be written as

(29)

0
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where E' is expressed in gigapascals.

{	 The effects of pressure on viscosity can be written as

where

a pressure-viscosity coefficient of lubricant, m2/N

n0 viscosity at atmospheric conditions, N s/m2

The film shape equation can be written from Hamrock and Jacobson (1982)

in dimensionless form as

['X2 (b') 
+ EPiDJ	 (31)

i

where

i . k - i + 1

D R b[(X - B)ln(X - B) 2 - (X + B)ln(X + B) 2 + 4B(1 - In b)]

and

b	 semiwidth of the Hertzian contact, R 	 W/,r

B	 1/n
n number of nodes in semiaxis of contact

The last term in equation (31) represents the elastic deformation at a

point x due to the contribution of various rectangular areas of uniform

pressure in the conjunction.

Having defined density, viscosity, and film shape, we can return to the

solution of the mass flow and pressure equations for the five zones. The first

step is to rewrite these equations by finite difference approximations which

rely on the fact that a function can be represented with sufficient accuracy

over a small range by a quadratic expression. Standard finite ctntral-

difference representation was used, and a procedure similar to that given in

Hamrock and Jacobson (1982) was followed. Figure 3 shows the flow chart of the

pressure loop in the computer program used to evaluate the mass flow and pres-
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sure from the inlet to the outlet. In this figure the procedure used in

evaluating zone Q, the Newtonian model, was quite similar to that used in

Hamrock and Jacobson ( 1982). A similar procedure was used in evaluating the

other zones.

Having defined the pressure from the inlet to the outlet for the non-

Newtonian fluid model, we can evaluate the force components, the shear forces,

and the coefficient of friction. The relevant expressions are presented in

Hamrock and Jacobson (1982) and are not repeated here.

I

f
RESULTS

..	 AGE 15
Ql!ALITY

Din:cnsionless Grouping
i

i
From the variables of the numerical analysis the following dimensionless

groups can be defined:

(1) Dimensionless film thickness: H =

(2) Dimensionless load parameter: W = wz
wz

(3) Dimensionless speed parameter: U = n ^

(4) Dimensionless materials parameter: G = aE'

(5) Dimensionless sliding velocity: U . ud - ua + b
^s 

ua U 

(6) Limiting-shear-strength proportionality constant: Y

The first four groups were used for the Newtonian rluid analysis in Hamrock and

Jacobson (1982). The dimensionless film thickness for a rectangular contact with 	 1

a non-Newtonian fluid can be written as

H
min ` hmin,Nf(U*.y.U.W.G) 	 (32)	

t
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The dimensionless minimum film thickness for a Newtonian fluid as obtained from

Ramrock and Jacobson (1982) can be written as

Hmin,N ' 3.07 
UO.71GO.57w-0.11
	

(33)

In the present analysis the dimensionless parameters U* and y were varied

and the effect on the minimum film thickness was studied.

Pressure and Film Profiles

Representative variations of dimensionless pressure, film thickness, shear

stress distribution, and mass flow are shown in figures 4 ti 6. In these

figures the inlet region is to the left and the outlet region is to the right.

Figure 4 shows the variation of dimensionless pressure and film thickness on

the X axis for four dimensionless sliding velocities. The Hertzian pressure is

also shown in this figure. The characteristic pressure spike is clearly

evident for each dimensionless sliding velocity, but the spike diminishes as

the sliding velocity increases. Also clearly evident for each sliding velocity

is the parallel film shape through the central part of the contact, with a

minimum film thickness occurring near the outlet of the contact. As the dimen-

sionless sliding velocity increases, the central parallel film thickness

decreases more than the minimum film thickness decreases. As a result the nip

decreases with increasing sliding velocity, where the nip is that portion of

the film shape from the tip of the pressure spike to the outlet of the

conjunction.

Variation of Shear Stress	 I

1he shear stress ratio is defined as the shear stress divided by the

	 i

limiting shear stress. Variations of the shear stress ratio at the top 	
I
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(i a ) and bottom (i b ) 
surfaces on the X axis are shown in figure 5 for the

four dimensionless sliding velocities given in figure 4. Recall that the top

surface (surface a) is moving with a greater velocity than the bottom surface

(surface b). For the condition of no sliding (U* - 0) zone 0, the Newtonian

model, is valid for the entire conjunction, and the shear stress ratio of the

top surface i a is symmetrical to the shear stress ratio of the bottom

surface i b about the zero axis. From equations (9) and (10) this effect

is clearly evident. In these equations the first term on the right is set

equal to zero since U* - 0, and the only remaining effect is the pressure

gradient. There is a difference in sign for the different surfaces. For

sliding velocities U* of 0.01 and 0.02 zones 1 and 2 appear at the tip of the

spike and zone 0, the Newtonian model, occurs elsewhere. For U* - 0.04 the

zone allocation going from the inlet to the outlet (left to right) is zone 0 to

zone 1, to zone 2, back to zone 0; then in the spike zones 1 and 2 reoccur.

Zones 3 and 4 do not occur in the final results for figure 5, but these zones

are used to derive a converged solution. For the higher load cases, however,

zones 3 and 4 do appear in the final converged solution.

The shear stress ratio in the inlet up to the beginning of the Hertzian

contact is quite similar for all four sliding velocities. From the beginning

of the Hertzian contact to the tip of the pressure spike there is substantial

change in the shear stress ratio from U* - 0 to U* - 0.04. As the dimen-

sionless sliding velocity increases, the shear stress ratio increases until

for U* - 0.04 there is a large region where the shear stress is equal to the

limiting shear stress. From figure 4 we found that the pressure spike de-

creases with increasing sliding velocity. The result of this is clearly

18



evident in figure 5, where from the tip of the pressure spike to the exit the

shear stress ratio at the top surface I a becomes less negative with in-
creasing dimensionless sliding velocity. The effect of using the non-Newtonian

model is quite significant for the largest dimensionless sliding velocity in

figure 5.

Flow Results

A typical variation of dimensionless flow and the Poiseuille flow terms

on the X axis is shown in figure 6. Since there was very little difference

for the various sliding velocities, a typical result is shown. Equations (11),

(17), (23), and (27) define the dimensionless mass flow rate for the five zones

considered. The Poiseuille flow term in these equations is the term or terms

other than the unity in the parentheses on the right side of these equations.

From figure 6 we find the flow to be constant throughout the contact. Great

care was taken to assure that this was maintained for all the results pre-

sented. As in the authors' earlier publication (Hamrock and Jacobson, 1982)

slight adjustments in pressure profile were necessary in the inlet region to

assure a constant flow. The Poiseuille term approaches unity at the inlet, is

near zero from the beginning of the Hertzian contact to the location of the

pressure spike, and is negative from the pressure spike to the outlet.

Effect on Coefficient of Friction

Figure 7 shows the effect of dimensionless sliding velocity U* on the

coefficient of friction v for three dimensionless loads. For higher loads

the asymptotic value of the coefficient of friction is reached at lower dimen-

sionless sliding velocities. The dimensionless sliding velocity given in this

I
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figure can be equated to the conventional sliding velocity in percent by

i
	

multiplying the value of U* by 200. For example U* • 0.03 corresponds to

a conventional 6 percent sliding speed. The results for a Newtonian fluid

are shown in this figure with dashed lines. The asymptotic value of the co-

efficient of friction is between 0.07 and 0.08 for a limiting-shear-strength

proportionality constant y of 0.07.

Influence of Sliding Velocity

Cases 1 to 6 of table I show the effect of six values of dimensionless

sliding velocity U* on dimensionless minimum film thickness for constant

values of the other dimensionless parameters. From these results it is ob-

served that as the sliding velocity is increased the minimum film thickness

decreases. However, the influence of sliding velocity was found to be not

simply a function of minimum film thickness but had to be coupled with the

dimensionless speed, load, and materials parameters. Table I also shows these

results. The resulting relationship is

Hmin	 1 - 4.0140-9(U*)0.60U0.23(WG2)3.85
	

(34)

Rmin,N

The influence of the maximum pressure is represented in this equation by the

grouping WG2 . The coefficient of determination c was also calculated for

these results. The value of c reflects the fit of the data to the resulting

equation: unity representing a perfect fit, and zero the worse possible fit.

The coefficient of determination for these results was 0.9990, which is

excellent.
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Influence of Limiting Shear Strength

Cases 9 and 10 of table I show the influence of the limiting-shear-

strength proportionality constant y on dimensionless film thickness for

constant values of the other dimensionless parameters. From these three cases

covering the complete range of natural and synthetic lubricating fluids, the

following relationship was found:

Hmin	
1 + 2.06(y - 0.07)
	

(35)

"min,N

The coefficient of determination was found to be 0.9995, which is excellent.

Minimum Film Thickness

The proportionality equations ( 34) and ( 35) have established how the non-

Newtonian fluid rheological model affects the minimum film thickness for low

sliding speeds. At high sliding speeds the oil film thickness is mainly

governed by the velocity of the slower surface. The reason for this is that

the shear strength is reached at the faster surface and the oil velocity is

given by the slower surface. This phenomenon occurs in the inlet of the con-

junction. The high-sliding-speed cases have not been numerically computed

because of numerical instability. For the film thickness equation to accommo-

date these high-sliding-speed situations, the film thickness equation had to be

modified as indicated below.

_	 _	 3.85

Hmin ` Hmin,N lexp [ 4.09x10-9
(U*)0.60^0.23(WG2 )	 + 2.06(y - 0.07)]

+ U f -71(1 - U*) 0.71	 (36)

PAGE 19
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This dimensionless minimum-isothermal-film thickness formula is foi dully

flooded rectangular lubricated contacts incorporating non-Newtonian rheological

effects. Asymptotically this equation gives the minimum film thickness at high

pressures (>1 6Pa as equal to zero if one of the surfaces is stationary.

Table I gives the fourteen cases used in evaluating equation (36). In

this table %in ,
 the minimum film thickness obtained from equation (36),

corresponds to the minimum film thickness obtained from the non-Newtonian

elastohydrodynamic lubrication theory developed earlier. The minimum-

film-thickness equation obtaine! from Hamrock and Jacobson (1982) for the

Newtonian elastohydrodynamically lubricated rectangular contact is denoted

by Hmin,N and is given in equation (33). The ratios Hmin/%in,N

and Rminfikin,N are also given in table I. The percentage difference

between Hmin and Ftmin is expressed by V1, which is defined as

V1	
Amin - Amin 100

min

In table I the values of V 1 are within •1.0 percent.

Coefficient of Friction

(37)
i

OR;G!NAL' PAGE IS
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The values of the coefficient of friction for the 14 cases studied are

given in table I. Making use of these results, we can write an approximate

formula for the coefficient of friction as

3.32
0.67x10 

6(U*)0.81U0.26(W2)	
when 

P1 
10.8 y	 (38)

If the coefficent of friction 
1 

is greater than 0.8 Y , the following

approximate expression should be used:

u
v . 0.80 Y ♦ 0.021 tanh 1̂ - 0.80	 when U1 > 0.8 Y

22
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This coefficient of friction is mainly determined by the shear strength of

the lubricant. The percentage difference between v and v is expressed

by V^. where

V3 	
100)

	
(40)

In table II the values of V3 are within +9 percent. Equation ( 39) was

derived from eight calculations of the coefficient of friction with sliding

velocities up to 20 percent and different V values. In these calculations

the pressure distributions from the lower sliding velocities were used.

CONCLUSIONS

A procedure for the numerical solution of the complete elastohydrodynamic

lubrication of rectangular contacts incorporating a non-Newtonian rheological

model is outlined. The approach uses a Newtonian model as long as the shear

stress is less than the limiting shear stress. If the shear stress exceeds the

limiting shear stress, the shear stress is set e qual to the limiting shear

stress. The limiting shear stress is expressed as a semiempirical linear

function of pressure. The numerical solution therefore requires the coupled

solution of the pressure, film shape, and fluid rheology equations from the

inlet to the outlet without making any assumptions other than neglecting side

leakage.

By using the procedures outline in the analysis the influence of the

dimensionless speed U, load W. and materials G parameters, dimensionless

sliding velocity U*, and limiting shear-strength proportionality constant y

on minimum film thickness Nmin has been investigated. Fourteen cases were

used to generate the minimum film-thickness equation for an elastohydro-

dynamically lubricated rectangular contact incorporating a non-Newtonian

rheological model:

a
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u' + 2.06(Y 0.07)]
38

A
min ' "min,N (expC-4.0740-9(0*)0.6000.23(wG2)

	 _

+ U*1 0.71 0 _ 0„)0.11

The minimum-film-thickness equation obtained for an elostohydrodynamically

lubricated rectangular contact incorporating a Newtonian fluid Theology model

Iwas developed by the authors in an earlier publication (Hamrock and Jacobson,

1982) where

H	 • 3.07 U0.71G0.57w-0.11
min,N

Besides the dimensionless film thickness formula, formulas for the coefficient

of friction were developed.

3.32
v 1 • 0.61x10-6

(U*)0.81U0.26(NG
2 )	 for v l < 0.8 Y

v
y . 0.080 Y + 0.021 tanh 1̂ - 0.80	 for v l > 0.8 Y

Computer plots are presented that indicate in detail pressure distribution,

film shape, shear stresses at the surface, and mass flow throughout the con-

junction. The characteristic pressure spike is clearly evident for each of the

sliding velocities, but the spike diminishes as the sliding velocity increases.

Also clearly evident in the computer plots is the parallel film shape through

the central part of the contact, with a minimum occurring near the outlet of

the contact. The central parallel film thickness decreases more than the

minimum film thickness decreases with increasing sliding velocity. The result

of this is that the nip decreases with increasing sliding velocity, where the

nip is that portion of the film shape from the location of the pressure spike

to the outlet of the conjunction. The computer plots of the shear stress at

the surfaces indicate that as the sliding velocity increases these stresses

approach or equal the limiting shear stress. A sample computer plot of the
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thesis, Cambridge, England.

flow shows that it is constant throughout the conjunction. The effect of

sliding velocity on coefficient of friction for various loads indicates that

as the load increases, the limiting value of the coefficient of fricton is

reached for a much tower value of sliding velocity.

National Aeronautics and Space Administration

Lewis Research Center	
GRIGINAI. PAGE 19
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Cleveland, Ohio 44135, December 23, 1982
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ê

Y
V

N
N

A
 S

 
^
O

w

r
^

O
	

1 1 O
.rO

 1
 1

 1
0
0
0
 1

O

s
c
 Im

p

y
^
 
Y
	

Q
	

Q
 
Q

m o

III - ft IR
II H

I M- Ia
r
	

.^	
.r...^	

wr

Msop

e>!'

e
N

•
'"A

ffw
^

p ^
p n

p X
. i
m

1►
ti .wr wrwn er i R

 R
 ti R M

 M
 w

 N

J
	

N
 
Y

 
y

^^{rM
s
 ^

Q
R

R
	

g
1
0
0
0
0
0
1

0
N

O
R

a
i lM

M
^

i Y

z
b

1/r^1 .qr1 X87
 Q $

O

r

&
Meg

a
l
l

M
M

rr

b
l
i l

t

ew2=: m+
r
r
r
r
w



ORIGINAL PAGE IS
OF POOR QUALITY

TABLE II. - EFFECT OF DIMENSIONLESS PARAMETERS ON
DIMENSIONLESS CENTER OF PRESSURE

Case Dimension- Dimension- Difference, Coefficient Coefficient Difference,
less center less center V2, of friction, of friction V3,
of pressure, of pressure percent from least- percent
Xcp from least- squares fit,

squares fit,

Xcp

1 -0.1487 -0.1487 0 0.00054 ------ --___
2 - .1480 - .1469 - .71 .01227 0.01250 1.87
3 - .1430 - .1452 1.52 .02015 .02191 8.73
4 - .1384 - .^;i' 2.35 .03613 .03842 6.34
5 - .1361 - .13u1 1.49 .05309 .05336 .51
6 - .1346 - .1346 0 .06316 .06403 1.38
7 - .1912 - .1912 0 .00081 ---- --^-
8 - .1845 - .1730 - 9.48 .03479 .03210 -7.73
9 - .1360 - .1417 4.16 .03618 .03534 -2.32

10 - .1383 - .1417 2.46 .03592 .03842 6.96
11 - .1810 - .1810 0 .00202
12 - .1841 - .1753 -4.79 .04678 .04655 - .49
13 - .0971 - .0971 0 .00087 ----- ----
14 - .0973 - .0960 -1.34 .04744 .04441 -6.39
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Figure 7. - Coefficient of friction as a function of lad and dimen-
stontess sliding velocity. Dimensionless speed parameter U. x-11
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strength proportionality constant y, 4 W.
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