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ABSTRACT 

We give a careful derivaiion of the I-dimensional classical scalar "string" 

equation which involves linearization about a horizontal reference or equilib­

rium position. We then derive a model for "small motion" about a nonhorizontal 

reference. The implications of our findings to modeling of flexible antenna 

surfaces such as that in the Maypole Hoop/Column antenna are discussed. 
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I. Introducti on 

The investigations reported herein are motivated by our interest in 

equations governing the antenna surface in large space antennas such as the 

Maypole Hoop/Column configuration depicted in Figure 1. 

Antenna Surface 

Feed Assembly 
(4 Required) 

Hoop 

~~~~~~~~~~~~ 

Fi gure 1 

This antenna consists of a 90ld-plated molybdenum reflective mesh surface 

stretched over a collapsible hoop that supplies the rigidity necessary to 

maintain the outer circular shape of the antenna. Of fundamental interest in 

estimation and control of the antenna are accurate models for the flexible 

membrane-like mesh surface. Important modeling questions include whether one 

can use a simple scalar "membrane" equation or IllUSt a vector system be 

employed. Also, can one use a linear equation (or system of equations), or 
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are nonlinear equations necessary to describe the shape (d.Ynalliic or static) of 

the surface? 

In this preliminary study. we won't provide conclusive answers to these 

questions. But we shall establish some rather pertinent results that suggest 

what the answers will be when fi na 1 models are deri ved. Our approach here is 

as follows. Rather than attempt a full 3-dimensional model for the surface, 

we analyze carefully a l-dimensional flexible "lIlembrane"--i .e., a string. One 

might view this IIstringll as a section of the antenna surface obtained by passing 

a vertical plane through the antenna. 

We begin by using first principles to write down the basic nonlinear 

equations for a string. We then give a careful derivation of a linearization 

about a horizontal equilibrium or reference configuration and point out clearly 

how one arrives at the familiar single scalar wave equation. We next consider 

linearization about a curved equilibrium and it is these findings that we feel 

are rather important with regard to a definitive investigation of a multi­

dimensional model for the Maypole Hoop/Column surface. Our conclusions are 

summarized in the last section of this report. 
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II. Basic Equations Governing an Elastic String in R2 

In this section we formulate the initial-boundary value problem governing 

the two-dimensional motion of an elastic string about its equilibrium position. 

We shall derive the differential equation in strong form, assuming smoothness 

of functions as needed. Our presentation, based on the principle of conser-

vation of linear momentum, follows classical arguments such as those found 

in Weinberger [4 J and Antman [1 J. Following these references, we state 

carefully our assumptions about the string and its configuration. In the latter 

part of our derivation, we shall distinguish between two cases: a string with 

horizontal equilibrium and a string with curved equilibrium. The differences 

are reflected in our formulation for the tension in the string. 

A somewhat analogous derivation under less stringent smoothness can be 

carried out using energy considerations or the Impulse-Momentum Law (a con­

servation principle)--see [1 J. Such an approach yields the state equations 

in weak form and since these will be of interest in our estimation research 

for the Maypole Hoop/Column antenna, a two dimensional analogue (for a stretched 

membrane) will be considered elsewhere. For the present, we consider here 

only derivations that lead to models with equations in strong form. 

We consider a string stretched between two pegs (at (0,0) and (t,O) in 

the (x,y) plane), possibly subject to external forces. We suppose the string 

has a nowhere vertical equilibrium position described by the curve E(s)=(xE(s)'YE(s))= 

(s,h(s)), a 2 s 2 f. That is, we let s denote the x-coordinate of a particular 

material point (molecule) when the string is in its equilibrium position. We 

note that each material particle of the string is thus uniquely labeled since 

in its equilibrium position the string is nowhere vertical. We first assume 
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(H2.1): The string is so thin that its croSs section moves as a single 

point; this movement is restricted to the (x,y) plane, 

Then the motion of the string can be described by giving at each time t, the 

displacement or position vector r(s,t) = (x(s,t), y(s,t)) of each material 

point s. We further assume that 

(H2.2): We may regard the string as a continuum, ignoring the fact that it 

is composed of individual molecules. The string has a continuous linear mass 

density p such that for any segment (51' S2)' O 2 sl 2 52 2 l, the mass is 
52 

given by f p(s)ds. 
51 

+ For each t > a and a < 5 < l, let. (s,t) denote the vector force exerted 

on the material segment [0,5) by the material segment [s,l]. Similarly, let 

.-(s,t) denote the force exerted on the segment (s,t] by the segment [a,s]. 

Then the resultant forces on a segment [51' 52] due to the remainder of the 

string is .+(s2,t) + .-(sl,t). Letting F(r,t) = (F1(r,t), F2(r,t)) denote 

the net external force per unit density exerted on the string, we find that 

the net external force on a segment (51' s2) is given by fS2 
p(s)F(r,t)ds. 

51 
The principle of conservation of linear momentum may then be used to write 

the balance equations for a segment (51' 52) 

:3 52 3r at f p(s) at (s,t)ds = 
5, 

.)2 
Continuity arguments (assuming that ~ and F are continuous) can be used to 

3t2 
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argue that T- t 
T • Using this and denoting Tt by just T, we arrive at the 

equation of motion for a segment (sl' s2) 

(2.1) 
s2 a2 

f pes) --f (s,t)ds = 
Sl at 

If we further assume that T is continuously differentiable, we may differentiate 

(2.1) with respect to 52 to obtain 

(2.2) a2r pes) -2 (s,t) = ~ (s,t) + p(s)F(r,t). 
at as 

Turning to the force term T we make the following assumption, which is 

the defining property of a string. 

(H2.3): The force T(S,t) acts in a direction tangent to the displacement 

vector r(s,t) with amplitude T(s,t) called the tension. 

Since r is the displacement vector, the unit tangent vector to the string at 

each point is given by ~~ /1 ~~ I and hence we have 

(2.3) ( ax ay ) 
as'as 

Using this representation of T, we may write equation (2.2) component wise 

as 

(2.4) as ~~l 
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(2.5) as d

Y
] 

+ p(s)F2(x,y,t) . 

In order to use these equations, we wust further specify the tension T(s,t). 

This will be related to the equilibrium or reference position and before 

discussing this, let us complete the formulation of our initial-boundary value 

problem. We assume that in addition to (2.4), (2.5), we have given functions 

f1' f2, gl' g2 specifying the initial conditions 

(2.6) O<s<f. 

We assume further that the ends of the string remain fixed so that the boundary 

conditions are given by 

(2.7) r(O,t) = (0,0), r(e,t) = (f,O), t > o. 

For compatibility between the initial conditions and boundary conditions we 

must, of course, have fi (0) = gi (0) = 0, i = 1,2, and fl (f) = f, f2(f) = O. 

We return now to the tension T(s,t), a specification of which involves 

assumptions on the material properties of the string as well as its equilibrium 

position. We first hypothesize that the string is perfectly elastic, i.e., 

(H2.4): The tension at any material point located at r(s,t) is determined 

by the elongation or local stretching per unit length of the string with 

respect to its equilibrium position. 
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The local stretching per unit l~ngth of the string at any time is given 

by 

I :~ I = 1 im 
1

6r = 1 im ~ (6X)2 + (6y)2 

6S+ ° 6S 
6S-~ ° 6S 

(2.8) 

= J(;~ (S,t))2 + (~ )2 as (s,t) 

whereas the local stretching per unit length with respect to its equilibrium 

is given by 

(2.9) 

where E(s) = (xE(s), YE(s)) is the equilibrium position for the string. 

Consider first the case of an elastic string with horizontal equilibrium. 

In this case, the variable 5 actually measures arc length since E(s) = (5,0) 

and the elongation in (2.9) reduces to 

For the more general case of a nowhere vertical nonhorizontal or curved 

equilibrium given by E(s) = (5, h(s)) we find 
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In either case, the hypotheses (H2.4) implies the existence of a function 

t that relates the tension T(s,t} to e(s,t}. In this case, we assume that t 

also depends on the particular material point s (i.e., we do not require 

uniform "stiffness" in the string--a generality that is of some importance 

in our investigations of nonuniform structures such as antenna surfaces with 

webbing to partially distribute the loads). Thus we have 

(2.12) T(s,t) = t(e(s,t),s) 

where the value t(e,s) describes the elastic property of the string with 

elongation e at s. 

In summary, our string satisfies the equations of motion 

(2.13) p(s)xtt = ~')s [\[(e(s,t)~ ~:J + p(s)F1(x,y,t) , 
.1 2 + 2 \} Xs y s 

(2. 14) () _ a [t(e(s,t),S) 
p s Ytt - as 

~ 2 + 2 Xs Ys 
~J as + p(S)F2(x,y,t) , 

where e is given by (2.10) or (2.11). Appropriate initial and boundary con­

ditions are given by (2.6), (2.7) 

In the next section we shall turn to a linearization theory for this 

system of nonlinear equations. For further comments on these equations them-

selves, the interested reader is referred to [1 ], [2], [3 ]. 
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III. Linearization About a Horizontal Equilibrium 

The system of nonlinear equations (2.13), (2.14) derived in the previous 

section is difficult to solve whether one considers horizontal or curved 

equilibrium positions as reference in determining the tension. In this 

section we show how, in the case of a horizontal equilibrium, one can approxi­

mate this system by a scalar linear equation for small amplitude, essentially 

transverse (i.e., in the y-direction) motions of the string. This approxi­

mation is formal in the sense that while we state precisely our approximation 

hypotheses, we shall not argue that solutions to our linear equation do indeed 

approximate solutions of the nonlinear system (2.13), (2.14). 

We consider linearization about a horizontal equilibrium E(s) = 

(xE(s), YE(s» = (s,O). We assume that p is continuous and both t and Fare 

twice continuously differentiable in all arguments. We further assume: 

(H3.1): The net external force in the x direction acts at any time simply to 

restore the string to its equilibrium position. 

We observe that this assumption implies in particular that F1(xE(s),y,t) = ° 
for ° ~ s ~ f, all y and t, or in this case F1(x,y,t) = 0. Our fundamental 

small amplitude assumption is embodied as: 

(H3.2): The motion of the string consists of small movements about the 

equilibrium E. Specifically, the Illotion can be described by 

(3.1) x(s,t) = s + ~(s,t) 

(3.2) y(s,t) = n(s,t) 

where ~,n and their derivatives are small. 
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We further assume that ~ is small relative to n, or that the motion is 

essentially transverse. More precisely, we hypothesize 

(H3.3): For all t > 0 and O2 s 2 i, we have 1~{s,t)1 « In{s,t)1 and 

furthermore both ~ and all its derivatives are negligibly small. 

Finally we also assume 

(H3.4): The string is never vertical so that ~~ (s,t) + 0 for 0 2 s 2 i, 

t > o. 

The implication of this last hypothesis is that we may invoke the implicit 

function theorem with (3.1) to solve for s = s{x,t). We can therefore express 

n of (3.2) as a function of (x,t) which we shall denote hereafter as v. That 

is, we have 

(3.3) v(x,t) = v(x(s,t),t) = n(s{x,t),t) = n(s,t) . 

In connection with this new function for the transverse motion, we make one 

final assumption which will be needed in the linearization below. 

(H3.5): The function v given in (3.3) satisfies I ~~ I < 1 for 0 < x < .e - -
and t > O. 

Before proceeding with our derivation, we note that while (H3.4) and the use 

of the implicit function theorem in defining v may appear rather pedantic as 

opposed to assuming ~ = 0 so that s = x, this latter assumption is certainly 

less desirable from a physical viewpoint. 
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Returning to consider equations (2.13), (2.14), we shall continue our 

deliberations under the following linearization principles: 

I (Small motion): We neglect terms that are quadratic or of higher degree 

in ~, n and their derivatives. 

II (Transverse motion): We neglect terms which are linear in ~ and its 

derivatives. 

From (3.1) (3.2), we have at once that Xtt = ~tt and Ytt = ntt. But since 

Fl = ° and ~tt is negligible, we see that equation (2.13) itself only involves 

negligible terms and thus can be ignored in a linearization. So we consider 

the terms in (2.14). Since F2 is C2, we expand it about (x,O) using Taylor's 

theorem to obtain 

(3.4) 

If, furthermore, we assume p is Cl , we have 

p(s) = p(x) + O(~). 

We thus may rewrite (2.14) as 

(3.5) p ( x ) n = l [ '[ ( e , s ) l!lJ + p ( x){ F2 ( x, ° , t) + a:y2 (x, 0, t) n } 
tt as .1 2 2 as a 

V Xs + y S 

Using the chain rule and (3.3), we find 

2 +O(cj>+n). 
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l!l.=~~ 
as ax as 

l!l=~~+~ 
at ax at at 
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But. since x = s + ~, this last equation can be written 

(3.7) 

Furthermore, the first term in the right side of equation (3.5) is the same 

as (using (3.6)) 

l [ t(e,s) 
ax V 2 

1 + v x 

which, in view of our assumptions, will be approximated by 

2. [ t(e,s) 
ax ~ 2 

1 + v x 

ax . lY.] 

Finally, we turn to an approximation of t(e,s). 
'\.. 

First, let e denote the 

elongation e expressed in terms of (x,t). That is, 

e (x, t) = e (s , t) = ~ ~ ~ 1 + v~ - 1. 

2 
ax a'" ( 2)J/2 Vx 1 4 Using the fact that - = + ~ and 1 + v = + - - - v + we as as x 2 4 x 

find 
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~(X,t) 
2 

Vx 4 = "'s + - 1 v + ---
'I' 2 - '4 x 

(3.8) 

where we have used (H3.3) and (H3.5) in making this approximation. 

(3.9) 

In a similar manner we arrive at the approximation 
2 

1 Vx 
:t 1 - 2" 

~r-l-+-v=2 
x 

while a Taylor's expansion for ~ yields (s=x-</» 

(3.10) ~(~,s) = ~(O,x) + ~! (O,x)~ + ~~ (O,x)~ + {higher order terms}. 

Combining (3.8), (3.9) and (3.10), we thus obtain 

2 i 
a [~(e,s) ~J ",2- fr{ ( ) a~ ( ) Vx (l __ x_) ~J ax .1 2 ax '" ax ~ ~ O,x + ae O,x -2-} 2 ax 

V 1 + v x 

2 
a ~ a~ ( ) ( v x aVJ ~ ax 0ir{0,x) + {ae a,x - ~ O,x)} -2- ) ax ' 

where again we have used (H3.5) to drop terms of degree four or higher in vx. 

Using this latter approximation with (3.7) in (3.5), we find the approximating 

(nonlinear) equation 

(3. 11) 

3 

p(x)vtt = aax ~(O,x)vx + {;! (O,x) - ~(O,x)} V~ ] 

ft aF2 J + p{x) ~2{x,0,t) + a)I {x,O,t)v . 
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Finally, if we use (H3.5) to neglect nonlinear terms we have our linear 

equation 

(3.12) p (x) v t t = aax ~ ( 0 , x) :~ ] + p ( x) [F 2 ( x , 0 , t) + a;y2 (x, 0, t) v ] 

for small amplitude transverse motion of a string about a horizontal equilibrium. 

Recalling (2.6), (2.7), we note that inital conditions 

(3.13) 
o < x < l 

and boundary conditions 

(3.14) v(O,t) = v(l,t) = 0 

must be used in solving (3.12), where (H3.2) imposes a smallness assumption on 

f2 and g2 if one is to expect the solution of (3.12) to approximate the actual 

motion of our string. 

We note in passing that the above derivation reveals that the tension 

function tr (see (3.8), (3.10)) is an even function of the IIstrain ll Vx (see 

[3] for an analysis in which this fact plays a role). 
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IV. Linearization About a Curved Equilibrium 

In this section we consider a linearization of (2.13), (2. 14)·to describe 

small amplitude motion about a curved equilibrium. We recall the notation for 

Section II where we defined a nonhorizonta1, nonvertica1 equilibrium E(s) = 

(xE(s), YE(s)) = (s,h(s)) and defined the elongation (see (2.11)) by 

(4.1) e(s,t) = Jx~ + Y~ - ~ 1 + h' (s)2 . 

We make the same smoothness assumption of sections II and III. For obvious 

reasons, analogues to (H3.1) and (H3.3) are not made. However we do make an 

assumption of small amplitude motion analogous to (H3.2). Specifically we 

assume 

(H4.l): The motion of the string consists of small movements about the 

equilibrium E. More precisely, the motion can be described by 

(4.2) x(s,t) = xE(s) + ~(s,t) = s + ~(s,t) 

(4.3) y(s,t) = YE(s) + n(S,t) = h(s) + n(s,t) , 

where ~, n and their derivatives are small. 

Our method consists of substituting (4.2), (4.3) into (2.13), (2.14), expanding 

various tenns using Taylor's theorem and neglecting tenns of higher order than 

first in ~, n and their derivatives. Thus, we again use the "small motion" 

linearization principle I stated in Section III. Our basic linearization 

hypothesis {the analogue of (H3.5)) will involve a "smallness" criterion on 

dYE dYE ' 
~, n wi th respect to - = - = h . dXE ds 
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We proceed by expanding Fl , F2 of (2.13), (2.14). In view of (4.2), (4.3) 

we have for i = 1,2 

aF. aF. 
(4.4) F;(x,y,t) ~ Fi(s,h(s),t) + a) (s,h(s),t)~ + ay' (s,h(s),t)n 

Furthermore, from (4.2), (4.3) it follows that Xtt = ~tt' Ytt = ntt and it 

only remains to approximate the first terms in the right sides of (2.13) and 

(2.14). For this we shall invoke the linearization assumption: 

(H4.2): The functions h, ~, n of (4.2), (4.3) satisfy 

2 2-~ We shall use this assumption to derive approximations for e(s,t) and (x + y) . s S 
J? J? To do this, we make use of Taylor's expansions for (1+p)2 and (1+pf2 where 

p is a quadratic in two variables. More precisely, suppose p(rl ,r2) is a 

quadratic polynomial in two real variables r l , r2 which satisfies p(O,O) = O. 

Then for (rl ,r2) near (0,0) with Ip(rl ,r2)1 < 1, we have 

(4.5) 

A simple application of (4.5) yields the following results: If A and Bare 
2 2 two constants and q(r l ,r2) = A(rl + r2 + 2rl + 2Br2), then q(O,O) = ° and for 

all r l , r2 such that Iq(r"r2)1 < 1, we have 

(4.6) 
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We turn to e of (4.1) which, in view of (4.2), (4.3) can be written 

(4.7) 

I 2 -1 I 

where we have used (4.6) with A = (1 + (h )) ,B = h , r l = tP s ' r2 = ns . 

In a similar manner, use of (4.6) yields, 

(4.8) 

Finally, in view of (4.7) we have 

~(e,s) = ~(O,s) + ~! (O,s)e + O(e2) 

(4.9) 

where we have defined K = K(s) = 1 + h'(s)2 and L = L(s) = h'(s). With this 

notation we may rewrite (4.8) as 

(4. 10) 
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Turning to (2.13) and using (4.9), (4.10) and ~~ = 1 + CPs' we find 

(4.11) 

= ~l(s) + ~2(s)CP + ~3(S)n + O(cp2 + n2) 
5 5 5 5 

Hence, combining (4.11) and (4.4), we approximate (2.13) by 

where 

~l(s) 
-k = t(O,s)K 2(5) 

= ~~ (0,S)K- 1(s)L(S) - t(O,S)K- 3/ 2(s)L(s) 

(4.13) 
~4(s,t) = p(s)F1(s,h(s),t) 

aF 1 
~5(s,t) = p(s) ~ (s,h(s),t) 

aF 1 
~6(s,t) = p(s) ~ (s,h(s),t) . 
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In a similar manner, using ~ = hl(s} + ns = L(s} + ns ' we find 

t(e,s} 

vx~ + Y~ 

(4.14) 

+ 0(",2 + 2} 'l's ns . 

Hence our approximation for (2.l4) is given by 

(4. 15) 

where 

(4.16) 

-k :: t(O,s}K 2(S} L(s} 

:: ~~ (O,S}K-'(S}L(S) - t(O,S}K- 3/ 2(s}L(S} 

:: t(O,s)[K- 1Z (s) + K- 3/ 2(s)L2(s)] + ~~ (O,S)K- 1(S)L2(s) 

Y4(S,t) : p(s)F2(s,h(s),t) 

aF2 Y5(s,t) :: p(s) :D< (s,h(s},t) 

aF 2 Y6(s,t) :: p(s) ~ (s,h(s),t) 

For static problems, the model equations (4.12), (4.15) take the 

form 



.. 
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(4. 17) 

(4.18) 

We note that we thus have a coupled set of linear equations. Furthermore, 

even in the case where the tension function t is not dependent upon the spatial 

variables s (i.e., t = t(e)), the coefficients ~i' Yi' i = 1,2,3, are spatially 

varying. Finally, we observe that in the event that (¢,n) = (0,0) is a 

solution to (4.17), (4.18), we have the relationships 

(4.19) 

(4.20) 

which are conditions on t, E, and F in order that the equilibrium E be a 

steady state solution. 
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Our discussions above have been limited to the planar Illotion of a one 

dimensional elastic body (i.e., a "string") for which we have derived, on the 

basis of fundamental laws of physics, equations for small amplitude motion 

about an equilibrium or reference position. Our emphasis has been on the 

differences between the equations for motion about a horizontal reference 

position and those for motion about a nonhorizontal, nonvertical reference 

position. As we have noted in the introduction, while the relationship 

between our considerations here and those needed for large flexible space 

structures (of more than one dimension) may appear somewhat tenuous, we 

believe that our findings are indicative of what one might expect in a full 

modeling attempt for flexible structures such as the Maypole Hoop/Column 

antenna mesh surface. 

In summary we have the following conclusions. 

(i) For a horizontal equilibrium or reference position, the small amplitude 

motion of a string with essentially transverse external forces is approximately 

described by a single scalar linear partial differential equation (the classi­

cal wave equation in the absence of external forces). 

(ii) For a curved (nonhorizontal) equilibrium or reference position, the 

small amplitude motion can be approximated by a coupled system of linear 

partial differential equations. The linearization assumption involves (see 

(H.42)) the magnitudes of the slopes of the displacements relative to the 

equilibrium or reference position. Hence for "small amplitude motion", a 

linear model ;s probably adequate even for structures with substantial curva­

ture in their reference position. In general, the coupled system of equations 
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cannot be reduced to a single equation unless additional nontrivial assumptions 

are made. Included in such assumptions are: (a) the elastic body is· inexten­

sible; or (b) the motion is essentially normal to the reference position at 

every point (or some other stringent assumption on the direction of the motion); 

or (c) the curved equilibrium position is essentially horizontal. 

These findings suggest several rather important points in regard to 

modeling surfaces such as that depicted in Figure 1. First, unless the equi­

librium curvature of the surface is small, one should not expect small pertur­

bations about the reference to be described (in the steady state) by a sing1e 

Poisson1s equation 

t..v + kv = f. 

Rather a system of equations will be required to describe the displacements. 

Secondly, since these equations will in general represent a linearization about 

a curved surface, measurements or observations of displacement should be made 

relative to the reference position. If the measurements are made in any other 

manner, non1inearities may be important and it may be necessary to employ non­

linear partial differential equations to describe the motions. 
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