General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

—

(SASA-TH=T795064) THE LHEA PLP)} '
3 ‘ ‘ ./70 o 4 . b
PROCESSING PACILITY USEKS GUIDE (NASAf.Lu‘\J R

6 p HC AO7/8F AO) Cicu V3D

Unclas
Gis61 28020

NASA

Technical Memorandum 79584

The LHEA PDP 11/70 Graphics
Processing Facility User’s Guide

Data Management and Prograrnming Office
Code 664

- -
s =
-

,,‘:/' \

o /Qmw \
"oy

&y By

JULY 1978 o

SECOND EDITION "N g

>

National Aeronautics and
Soace Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

TM 79584

THE LHEA PDP 11/70
GRAPHICS PROCESSING FACILITY
USER'S GUIDE

Data Management and ‘
Programming Office i
Code 664

it i

July 1978 g
SECOND EDITION -

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

CONTENTS
Page

1- ThePDP11/70o-ncncc-uonn--ao‘oan'-uauuanc---oooao 1"’1

1.1 PhiloSophy « ¢ v v v v v vttt vt sttt e eeossssaiossnnsneees 1-1
1,2 Operaticns Management¢c0 0. B £
1.2,1 AssignmentoftheUIC......... ot e et e e veeees 1-1
1.2,2 Disk Space Management et e e e es 1=2
1.2.3 Vector General Daily Use Schedule. . . « v e v v v v e v v v v v 1-2
1.2.4 Special Use of the Facilities Cer e eses 1=2
1.2,5 Preventative and Remedial Maintenance cee e, 12
1.2,6 CommunicationtotheUsers....... ... Cea i e i 1-3
127 Terminal Use. .« et vt vt vt e v e eeeonas ciees e 1=8
1.3 PDP 11/70 Hardware and Software OVerviewc o v .. 1-3
1.3.1 PDP 11/70 HArdWATe . v o v v v v v v s v c oo v v v nnnvoennes 1-3
1.3.2 Vector General Graphics Display Hardware., 1-4
1.3.3 11/70 Software Overview e re e ch e eee.. 1-4
1.4 Terminal Control Conventions , e s a s e e s s e s e e 1-6
Starting the PDP 11/70. . v v vt vt vt vt tnen st enneonnnnnas 2-1
2.1 Booting et e e e e s e e e et s e e ek e v e e 2=1
2.2 Turning I/O Devices On . v v v v v v v v e v v o v oo v nnsnos e e, 2-2
2.3 SigningOn e e e e e e et st e e 2=2
2.4 Powering DOWN . v v v vt n o vt tv s o v o veonsosoons e e e e 2-2
Files onthe PDP 11/70. . v o v v v v v v v - 15 1
3.1 Maintenance Using PIPt vt vt ot ot oo v e v nononanns oo 3-1
3.1.1 Purging....... b e e e e e e e S 3-1
3.1.2 Deleting. « v v v v v vttt ittt e e e e e 3-2
3.1.3 Renaming. . v v v v vt vt vt oo vt oo o m oot et oseononas 3-2
3.1.4 PIP File Transfer. ¢« c v v v vttt e vt v o v v enen .. 3-3
3.2 Backupof Personal Fileso it vt v n e onwnnns . 3-6
3.3 FileCreationand Editor.ttt nensae. 3-8
3.4 Prepuaring a FORTRAN Program for Execution. e se e e 3-12
3.4.1 FORTRAN Compilert v i it ittt vt oecens e e .. 3-12
3.4.2 Task Builder v vt vt it it it i i sttt et nnn s nn 3-14
3.5 Indirect Files . v v v v v v o v v v oo o c o v v v o vaoas et e e e e 3-16
3.6 Execution of a Program and Sample Qutput. , 3-16
3.7 MCR Commands, General Information.0 v v v evoeo. 3-17
3.8 FileDump Utility (DMP) . v v ¢« v o v ot vt s s s ot s oo onnennss 3-20
3.9 File Compare Utility (CMP). . . . v v vt ot et et v e v et v v un e 3-21

PRECEDING PAGE BLANK NOT EILMEDF iii

3.10 ovérlaYSI'!t.0..0'.!!!00.....0......l..l.ll

3.10.1 Introduction. . . c v ¢ ¢« o e s st e s s s a0 st b e n s e

3.10.2 Stmcture.C.C.Ub.l.o.o...tlnllooo-nw.l

3.10.3 Overlay Description Language (ODL) c . .« v o v v v 0 v

Magnetic Tape.

4.1 Mounting and Dismounting Tapes e e ot v e oo vv oo

Pap&rfrapel..'“..'l lllll @ % & 9 & 8 0 5 0 0D S 0 2 8 o o o 9
5.1 Loading Hardware L I B A A e e D D I D D D I N A 0 & 0 0"
5'2 Paper Tape Reader @ @ 6 4 % o 4 0 0 0 P e 0 0 B 0 P T QT PP 0 Ve
53 Paper Tape Punch v v vt v vttt o v v nevonnnsnsas
Floppy Disksl L L] L] L] » s & ? a & . LN) LI) L BN e o LN * e ¢ 0 L]
6.1 Loading Hardware
6.2 Storing Data on the Floppy.
The Vector General Graphics Display Unit.o 00 v cee
7.1 Hardware *. . L] . e & * B 8 L] L] L] . L[] . . . L[] . L[] . L] - .
7.2 Programming the Vicctor General......... o000, coesne
7.2.1 Introduction......... B T P
7.2.2 Programming Ideology. . . « v v ¢ v v vt v v v vt v v b e
7.2.3 VGInternal Ideology .+ v v v v v v v v v e v e v v v ca e
7.2.4 The Vector General Graphics Routines Cee e i
7.2,5 Sample Program on the Vector General ..,
7.2.6 TaskBuilding........... b o o e s s et ame e dnaae e
7.2.7 Hints for Programming the Vector General vom e
7.2.8 Additicral Notes . . v v e v vt v vt v vt v o nnnns t e e
7.2.9 Hardcopy Procedures........... f s e e s i e w e
Error Messages and Procedures 000 euu e s e s e en
8.1 Vector General ErrorsS. ¢ v« v v ot o oot o v moe v o Ve mae e
8.2 Other Errors v v v v v v eveas c e s e e it e e s e
8.2.1 Utility ErrorsS. v v v v v v v v v v et o6t o v o onnoneonons
PDP 11/70 Hardware Failures. et . .

iv

Page

3-22
3-22
3-23
3-25

i

R R R e SR

Page

10. IBM 360 — PDP 11/70 Tape Compatibility. v v v v v .. cvee.. 10-1
10.1SOURCEPrograms.............. cee e eses 10-1
10.2 Transierof Data Files. c et e e e be s eaeess 10-1

10.2.1 Introduction. e e e e e oo, 10-1
10.2.2 PDP 11 - IBM 360 Conversion Routmes c i e eaees 10-1
10.2.3 IBM 360 Tapes to PDP 11 Format e i e ae. 10-3
10.2,.4 PDP 11 Tapeto IBM 360 Format. +vevv ese... 10-8
10.2.5 Card Reader to Disk or LinePrinter v v v v 0 v 10-13

11. SCientifiCSUbrOutineSPaCkage...........--.--q'--.o.... 11"1

11.1
11.2
11.3

IntrOd\lCtiOD » 4 o 0 s @ ® o 8 0 5 6 6 8 & s 2 e b s e . 8 @ ¢ o s 85 0 s » o a e 11"'1
User Interface LI) ”® 0. L L Y N) o 6 @ & & ¢ o o 9 o o & o e ® & 0 & 0 11-1
Documentation Available s et s e e s s e e e o e s e eeee 11-1

12, This section deleted

13. Magnetic Tape Utilities. v . v v vt v e vt e v o v a s o Gt e i e 13-1
13.1 Introduction. b e ie e e b m s e s e seen e 13-1
13.2 Tape Routines Gttt e e e e e a e s e s s e 13-1
13.3 Parameter Description to all Routines . . v « v v o v v 0 v v v v o v 13-2
13.4 Call Descriptions i e et e e e e 13-4
13.5 Error MesSsageS. . « v o e e o s v 0 s u s e s e s e s e e s s e e n e 13-6
13,6 Examples .. v v vt vt v i et ot i ot sttt et e .. 13-8
13.7 TUTILS -~ General Purpese Tape Utility. v v e v e v o 13-15

13.7.1 Capabilities of TUTILS ¢t c e v e e e i e 13-15
13.7.2 Sample TUTILSRun ,.... i s et s e e e e . 13-15

14. General Purpose Utilities and Subroutines oo v v v v v 14-1

14,1 IOPACK - Input/Output Package . .. v v v v v v v v v oo s v s o v us 14-1

14.1.1 Sample IOPACK RUN . . v v v v vt ot vt v 0t s av on v n o 14-2
14.2 UNBLNK - Eliminates Trailing Blanks.t v v v e o 14-3
14.3 STUFF = Executes MCR Commands from within a Program. ., 14-3
14.4 AECON-ASCII - EBCDIC Conversion Routines. 14-5
14.5 INITIAL - Initializes Floppy Disks or Magnetic Tapes 14-5
14.6 SRD - Search Directory Utility. v v v v v it v v v v v v v 14-6
14.7 SELECT - Moves Files Selected with the SRD Ut111ty

to UIC [222,222] i ittt it it i e nenennnnsnnens 14-9

INDEX

o

Tt SRS S R L SR

R}

R

1. The PDP 11/70

It is the intention of this document to put in one place, those pieces ¢f informa~
tion that the new user of the LHEA PDP 11/70 facilities needs in order to most
quickly phase in. It is also intended to act as a reference guide for the occasional
user.

All of the information contained in the document is available or has been available
to all users of this facility. However, it is spread throughout six volumes of DEC
manuals and, in some cases, is information other users have gathered and is not
documented elsewhere.

1.1 Philosophy

The Lab for High Energy Astrophysics purchased the DEC PDP 11/70 system in
November, 1975 to.serve as a graphics data processing facility. It is not expected
that the 11/70 will serve as a general purpose computer facility in the manner of
the SACC 360/75 and 360/91. The justification for the use of the LHEA PDP 11/70
has always been, and remains, to provide an interactive graphics capability to be
used in support of the scientific data analysis activities of Lab personnel.

1.2 Operations Management

This section will present some of the more important aspects of management of
the facility which affect the user community. Some items will be presented via
memos issued to the user community in the past. These memos follow this
section,

1.2.1 Assignment of the UIC
All users sign-on the 11/70 via the use of the Users Identification Code. This

code is assigned to the user by the systems manager and has the form [xxx, yyy]
where xxx is the group code and yyy is the user code within the group.

1-1

In the LHEA facility, the following convention for group codes is used:

Group Code (octal) Group
100 Gammgy, Ray Studies
290 Cosmic Ray Studies "
300 X-Ray Studies

The user code is assigned in numerical order starting with 100 (8)+

1.2.2 Disk Space Management
[See Memo dated 2/28/78, following this section].

The policy stated in the memo has been changed. The preserve is done every

Tuesday and Friday and the scratch (i.e.purge) is done every other Tuesday pre-
ceeding the preserve.

1.2.3 Vector General Daily Use (SD) Schedule

[See Memo dated 3/31/77, following this section]. -

This schedule is currently undergoing revis :+ vmd may change. If it is changed,
that information will be communicated i:; all :1sers and recipients of the docu-
ment via memo.

1.2.4 Special Use of the Facilities

So that we might give maximum cooperation to users who wish to use the facility
for demonstrations, special requirements for publication, etc, the system manager
should be contacted well in advance concerning their needs. It is necessary to do
this so we can properly schedule these requirements relative to hardware repairs
and maintenance, and installation of new equipment or software, etc.

1.2.5 Preventive and Remedial Maintenance

Preventive maintenance is performed on the PDP 11/70 by DEC the last Tuesday
of every month, from 0830 to 1200. Remedial maintenance is scheduled by the
system manager on an as-needed basis. Any user who discovers a need for
remedial maintenance should notify the systems manager.

et
i

1.2.6 Communication to the Users
[See the Memo dated 3/8/77 following this section].

Users will be notified about system related items in two ways. The user emer-
gency notice area is discussed in the referenced memo. Information will also be
made available to the user via the notices printed to the terminal when he signs
on (the HEL command).

1.2,7 Terminal Use
{See the Memo dated January 23, 1978]

1.3 PDP 11/70 Hardware and Software Overview

1.3.1 PDP 11/70 Hardware

The Lab's PDP 11/70 configuration is shown in Figure 1. Remarks about the capa-
bilities of some of these hardware components and the software system follow:

THE UNIBUS ~ The UNIBUS is used to move data between devices in a synchronous
manner. The maximum transfer rate is one million bytes per second.

THE FLOATING POINT PROCESSOR (FPP) — The FPP has its own set of 6
64-bit accumulators used to do both single precision (32 bits) and double precision
(64 bits) arithmetic. The operation of the FPP is overlapped with the CPU oper-
ation in order to increase throughput. Two double-precision floating point num-
bus can be multiplied in 9 microseconds,

CACHE MEMORY -~ The cache is a high-speed solid-state memory with 2,048
byte capacity used as a buffer between the CPU registers and main memory.

The cycle time of the cache is 240 nanoseconds. When a memory read request
is issued by the CPU, cache is checked to see if the desired informaiion is pres-
ent. If it is present, no memory read is required. When a memory write is ini-
tiated, the information is written to the cache and memory to insure both have
the most up to date data.

THE RPO4 DISK - The single RPO4 disk has a capacity of 88 million bytes and
a single controller can support 8 drives. Data can be transferred in blocks of 2
to 130,712 bytes at a rate of 806,000 bytes-per-second.

THE TU16 TAPE DRIVES - These drives are industry compatible, 9 track, dual
density — NRZI 800 bpi and Phase Encoded 1600 bpi — with a speed of 45 ips to
attain a maximum transfer rate of 72,000 characters-per-second.

1-3

CR11 CARD READER ~ The CR11 reads cards at a rate of up to 300 cards per
minute. This unit does not have a punch capability,

HAZELTINE TERMINALS -~ The Hazeltine 2000 Video terminals are used as re-
mote terminals to the 11/70. The screex size is 74 characters by 27 lines. “

The RX-11 Floppy Disk System

This is a dual floppy disk dri: 2 system using single sided, single density, prefor-
matted diskettes with a storage capacity of 256,256 bytes, or about 450 blocks,

THE VERSATEC - The VERSATEC (Model 12004) is an electrostatic printer/plotter.
On the 11/70 hardware configuration it is used as a hard copy device to the Vector
General. However, it can act as a printer when necessary.

1.3.2 Vector General Graphics Display Hardware

The VG used with the Labs 11/70 is a model 2D3 with the following hardware
features:

direct memory access from the CPU

21" rectangular; 13" X 14'' CRT tube

.020" spot size

32 intensity levels

30" x 30" dynamic plot range

4096 x 4096 addressable locations

2% positioning accuracy

KB1 Alphanumeric Keyboard with 72 keys

FS2 Function Keyboard with 32 momentary, 1 interrupt keys

LP3 light pen with a 3u sec response time

Character set of 96 ASCII and 96 special characters "

Section 6 of this guide gives the reader a detailed description of the use of the
VG. .

1-4

1.3.3 11/70 Software Overview
The operating system used on the LHEA 11/70 is the most current version (6.2)
‘of RSX-11D. This is a multi-programmed, real-time operating system designed
for a wide range of applications. It incorporates the memory management sys-
tem thereby allowing a program to be loaded anywhere in memory without
modification. ,

The basic program unit executing under RSX-11D is the task, which consists of
a program module or a Set of program modules. The task is limiied to a size
of 32K words.

The RSX-11D File System provides support of files on disk volumes. Four levels |

of file protection are supported via four levels of access. Both sequential and
random access are supported for block structured and fixed length record files.
Variable length record files can only be processed sequentially. All types of
files can be expanded dynamically.

Console operations for REX-11D are supported by tasks calledthe Monitor Console
Routines (MCR). Some operations include:

Log on and log off

‘Mount or dismount peripheral volumes
Initialize peripherszl volumes

Run and schedule tasks

Assign a logical unit number

List LUN assignments for an indicated task

The program development and utility functions provided by the system include:
e DPeripheral Interchange Program, PIP
e File Transfer Utility, FLX

File Compare Utility, CMP

File Dump Batch, DMP

Character Oriented Text Editor, EDI

Task Builder Overlay Linker, TKB

Single Stream Batch, BATCH

Fortran IV Plus, FOR

Also, a scientific subroutines package is available.

1-5

hatedwy

e e o g e <t g 400 g s

1.4 Terminal Control Conventions

The average user should be familiar with the following special key functions:

(1)

@)

@)

4

(5)

(6)

TAB Key.

The TAB key automatically moves the cursor to the next tab stop, if any,
whether vertical, horizontal, or diagonal. Tab stops are set automatically
when the display contains both backgzound and foreground fields. The first
foreground character following a background field i{s a tab stop. If there are
no tab stops set, the tab key will cause the cursor to move to the lower right
hand corner of the display. '

Escape (ESC) Key,

Use of this key is optional, depending on communication software being used.
ESC generally is used to generate a program interrupt signal.

Control (CTRL) Key.

The control key is used in conjunction with other character keys to generate i
non-printing characters for a number of ressons including security, functior
codes, etc. When CTRL is used, it should be depressed anc held while the

other required character key is depressed. CTRL sends special codes by
altering the code pattern of the other key used with it.

Line Feed (LF) Key.

- The LF key causes the line feed character to be transmitted when operating

in standard full or half duplex mode, but has no other effect. It does not mova
the cursor down the scraen and does not cause the line feed character to be
stored. ‘

Carriage Return (CR) Key.

The CR key moves the cursor back and down to the beginning of the next “
lower line, thereby accomplishing both carriage return and line feed.

Number Key Cluster.

These keys transmit the same code as the numeric keys across the top of
the keyboard and are provided in an adding machine cluster to facilitate
entry of numeric data. £}

(7) Cursor Control Keys.

The HOME k&» moves the cursor immediately to the home position (first
cnaracter position in the top line). The cluster of four arrow keys are
cursor-stepping keys. Each moves the cursor one space in the indicated

cdirection.

These keys may he pressed in conjunction with the REPEAT key for rapid
cursor movement. Cursor positioning with these keys is completely non-
destructive; it will not alter any characters in the display.

KEYS

CTRL B

CTRL T
CTRL V
'CTRL ¢
CTRL Z

RETURN

RUBOUT

ALT or ESC

CTRLI

CTRLK
CTRL L

CTRL O

FUNCTION

the tape.

Terminate paper tape input.

Deletes !l of the type-2head buffer.
Causes MCR to be activated.
Legical End-of-File.

Terminates the current line and causes the system to
print the prompt for the next command.

Causes the most recently typed character to be deleted
and the cursor if left where it was before the character

was typed.

Terminates MCR. Used when requesting a program that
is to interact with the operator.

Causes a horizontal tab. Tab stops are set by the soft-
ware at every eight character position (9, 17, 25, 33).

Causes a vertical tab of one line.
Causes a form feed to the top of the next page.

Interrupts system output to the terminal. Successive
pressings cause start and stop.

1-7

CTRL R
CTRL U
CTRL Q (XON)

CTRL S (XOFF)

Causes the system te print the current terminal line.
Cancels the current input line.
Starts output to terminal.

Stops output until CTRL Q is typed.

1-8

\

ORIGINAL PACE IS
OF POOR QUALITY

QFTIGNAL FORM NG, 10
JULY 167y EBITION
GSA PPML (48 CPA) 101 1,0

UNITED STATES GOVERNMENT
Memorandum

10 DISTRIEUTION DATR: March 8, 1977

FROM : G.A., Muckel
Mary Ann Esfandiari

SUBJRCT: 11/70 Update

We would like o inform you of two itaems:

(1) If any user requires 11/70 support (time on the machine, software
help, etc.) to sypport his efforts in preparing for a paper, pre-
sencation, demonstration, etc., please coordinate this request
with either of us as soon as it becomas knowm to you. This will
enable us to give you maximum cooperation and support.

(2) We have installed a '"user emergency' wnotice area on the bulletin
board at the computer room entrance. This is the quickest way
we can notify the user community of. items that need their immediace
attention (like a corrupted disk, etc.). If, when you enter the
computer room, the red arrow is displayed. read the posted items.

¥

Thanks very much.

! A 7% /“é‘
‘/\ﬁzld /Muckel

AR v A
//,3--/.; (-‘/",Lv vat
!
V4

Miry Ann Esfandiari

GAM: gee

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

PRECEDING PAGE BLANK NOT FILMEDR

1-10

TO ! DISTRIBUTION DATE: March 31, 1977
FROM : GQAI “uck.l/“u“. E‘t.ndiﬂri
SUBJECT: New Daily Use Schedule for V.G.
- The following schedule for the use of the V.G. will be put into effece
beginning 4/4/77. It will remain in effect on a trail basis uncil mid-
July unless we find it causes a major problem to some group. We will
attempt to schedule 664's use of the V.G. for systen icems between
11:00 and 1:00.
SAS COSMIC | X-RAY SYSTEM FREE
8:00- 9:00 X
9:00~10:00 X '
10:00-11:00 X
11:00-12:00 X X
12:00- 1:00 X X
1:00~ 2:00 X
2:00- 3:00 X
3:00- 4:00 X
4:00~- 5:00 X
5:00- 6:00 X
Aftar 6:00 X
DISTRIBUTION:
P. Serlemitsos/X-ray
- D. Thompson/Gauma-ray
(':b T, von Rosenvinge/Cosmic Ray
A
! GAM:gee
ﬂ,,!;, .
Lw'ina Buy U.S. Suvings Bouds Ragularly on the Payroll Savings Plan

LN

ORIGINAL PAcy
V w1y
QIA PPMR (41 GPR) 101010,8 OF POOR QUAL’TY

UNITED STATES GOVERNMENT

Memorandum

’,

1-11

ORIGINAL PAGE I8
OF POOR QUALITY

January 23, 1978

TO: All 11/70 Users

FROM: G.A. Muciiel
M.2. Esfandiari

SUBJECT: Terminals on the 11/70

Effective Wednesday, January 25, the following policy is adopted for
terminal use on the PDP-11/70:

(1) The Hazeltines are to be allocated to the research groups as
follows:

2 - X-ray
1 - Cosmic Ray
1 - Gamma Ray/Ccde 664

(2) Anyone can use any terminal, but can be bumped by a member of the
"owner" group with 5 minutes' warning.

(3) One additional Hazeltine will be added tc the system in the
near future (within 60 days) to be used as a "free"one on a
first-come-first-serve basis. If any "owned" Hazeltine goes
down, the "free" one will be allocated to the owner group until
all are back in service.

(4) You are reminded that all VG runs are to be submitted from the
LA3J6.

This terminal policy will be constantly evaluated and will be adjusted
as needed.

.
VA
. . Ye

+
.-

Gerild A. Muckel, Head
Data Management & Programming Office

.

‘Mary Ann Esfandiaii

1-12

[

ORIGINAL PAGE 1g
OF POOR QUALITY

February 28, 1978

T0: F.B. McDonald, Cosmic Ray Group
.B. Fichtel, Gamma Ray Group
E. Boldt, X-ray Group

FROM: G.A. Muckel
M.A. Esf{andiari

SUBJECT: PDP 11/70 Disk Space Management
In order to ease the problem of disk space management on the PDP 11/70,
the following action will be taken:

(1) The heads of each résearch group will naime one person to manage
the portion of disk allocated to that group.

(2) The allocation of space is:

Group s of Availab;g Space Total # Blocks
X-ray 50 50000
Cosmic Ray 25 25000
Gamma Ray ‘ 25 25000

(3) whenever s group goes over their allocation, the person named
as 11/70 liaison from that group will be notified. He then has
the immediate responsibility of getting his group's use back
within limits. The report of disk use he gets will include
the number of blocks being used by each group member, as well
as the number of blocks used in excess of group allocation.

This policy will become effective as soon as group representative
names are received by us.

1-13

S A AL g T e i T

2. Starting the PDP 11/70 F POOR QuaLry

2.1 Booting.

——— a———

The steps for cold-starting the PDP 11/70 are as follows:

(a) Push the START/STOP button on the disk drive, which will begin to
activate.

« vy

(b) Press HALT/ENABLE toggle switch on the CPU console down to HALT
mode. Turn the key on the console to the POWER ON position.

(c) Toggle in the octal number 17765000 on the console. That is:
0 000 000 000 000 000 000 000

where the dark toggles are up, white are down. Depress the LOAD ADDRESS
toggle and release.

(d) Next, toggle in the disk device number. octal number 70,5, on the console.
This is:

0 000 000 000 000 000 eee® 000.

Lift the HALT/ENABLE toggle up to the ENABLE position. Depress the
START toggle and release. - ‘

(e) A prompt for the current time is issued on the DEC writer by the PDP. In-
put is as follows: DAY (2 digits), Dash (=), MONTH (3 letters), Dash, Year
(2 digits), Space, Hours (2 digits in the 24~hour clock style), Colon (:), Min-
utes (2 digits), Colon, Seconds (2 digits) and Carriage Return:

TIM>05-JUL~76 08:30:0 0(CR)

(f) The graphics package must now be installed by entering the following com-
mands, turning VG screen on first with the ON/OFF button on lower left of
the VG unit:

MCR>VGI(CR).

NOTE: If disk and power are already on, press HALT toggle and start at
Step C.

2-1

2.2 Turning I/0 Devrices On

If the various I/0 devices are off, press the START buttons on the Hazeltines
and the ON/OFF button for the line printer. Leave the card reader off until use
is desired.

2.3 Signing On

To sign on the Hazeltines, press CTRL and Key C simultaneously to get an
MCR> response. Then type in HEL [X Y] where [X Y] is your UIC (User
Identification Code). The computer will respond with another MCR>, unless a
typing mistake occurred. In this case, start the procedure again.

2.4 Powering Down

To power down the PDP, follow this procedure:

1. After making sure that no one is presently using the computer, turn all Hazel-
tine CRT's off by depressing the POWER switch. Turn the Vector General
screen off by pressing the switch to the OFF position.

2. Stop the computer by depressing the HALT toggle on the CPU and then pressing
the START/STOP button on the disk drive.

3. Turn the CPU off by turning the key to the POWER OFF position.

NOTE: Line printer, DEC writer and card reader power switches should not be
touched as these are controlled by the power key on the CPU console.

[]
U
[V]

e
3

3. Files on the PDP 11/70 ORIGINAL PAGE i
OF POOR QUALITY

3.1 Malintenance using PIP

The PDP 11/70 provides each user with their own UIC- [ggg,nnn]. The first number,

ggg, in your UIC indicates the group in which you work. The present scheme is:
100 - gamma-ray, 200 — cosmic ray, and 300 — X-~ray astronomy. The second

number is your identification within that group. These numbers are assigned in se-

quence beginning with the number 100<8) ;

Use of wild cards in the output file specifiers is restricted. For the following
PIP functions, the output file specifier may not have any wildcards:

(a) Copying a single file from device to device
(b) Concatenating files to a specified file

(c) Appending to an existing file

(d) Updating (rewriting) an existing file

(e) Listing a directory

When a list of files is to be copied, the output file specifier must be * *;* or
default.

In all cases in which wildcards are allowed in the output file specifier, the wild-
card UIC form [*,*] is used to indicate that the output UIC is to be the same as
the input UIC.

3.1.1 Purging

Although there are no restrictions on the number and size of files that users can

maiitain under their UIC, all users should perform periodic clean-up operati-..s.

At the beginning of each EDIT session and upon execution of the EDI command

TOF a new version is created of a pre-existing source file. A new version is

also created each time a compilation or task build is performed. A command

‘to PIP such as the following gets rid of all but the latest version of all files
(1) PIP * */PU

Variations on this include purging all but the latest two versions

(2) MCR>PIP *,*/PU:2

3-1

=5 T

PR o SR e BN AR I Sl S AL A " SRS S e

p AR

and purging all but the latest in data (.DAT) files

(3) MCR?>PIP *,DAT/PU

3.1.2 Deleting
To delete all files of a particular kind, the switch /DE is used. Some examples:
(1) Deleting all data files (all versions):
MCR>PIP * ,DAT;*/DE
(2) Deleting all Source, Object and Task files called PROG:
MCR>PIP PROG .*;*/DE
For those who are reluctant to purge their old files, every two weeks a general
disk purge is done of all files but the latest two versions, .This is necessary to
avoid disk overrun. A packed disk slows down I/0 time because of fragmenta-
tion. It takes longer to retrieve a file in this way. Also, since the task builder
requires a contiguous file, a full disk can make its job more difficult. (See
section 1.3).
3.1.3 Renaming e
If the bi-weekly disk purge interferes greatly with your file scheme or if you
want to rename files for any reason, you can rename the files you don't want
purged. This can be done using PIP and the /RE switch. In addition, with the
/NV switch, the renamed file can be forced to have a version number which is
one greater than the latest version of the previously existing file. Some examples:
(1) Rename PROG.FTN to PROGL1.FTN
MCR>PIP PROGL.FTN=PROG.FTN/RE
{2) Rename PROG.FTN;3 to PROG1.FTN;4

MCR>PIP PROG1.FTN/RE/NV=PROG.FTN;3

E2

P

3.1.4 PIP File Transfer

Frequently, it is necessary to transfer files from someone else's UIC to your
own or vice versa. Or, you might have files on a magtape that you want to put

in your disk space. This is accomplished easily with PIP, The general com-~
mand consists of: OUTFILE=INFILE (no switches since copy is the PIP default).
The "OUTFILE" is the file specifier of the file you want to copy TO and the
"INFILE" {s the file specifier of the file you want to copy FROM.

Some examples:
(1) Copy all files called FORT from UIC = (111,12] to UIC = [110,10]-
MCR>PIP (110,10]=[111,12] FORT *;*
If no version is specified, the latest is assumed.

(2) Copy the latest version of FILE FORT.DAT from UIC = (30,30} to
UIC = (40,40] -

MCR>PIP [40,40]=(30,30] FORT.DAT
(3) If y::u wanted to copy this to [50,50] changing the name to SAMP,DAT:

MCR>PIP (50,50] SAMP.I">AT=[40,40] FORT.DAT
‘There are two restrictions, First, no wild cards (asterisks) are permitted in
the output file name. Second, if an output file is specified, there may be only
one input file.
Copying to or from tapes is basically the same procedure, only the input or out-
put device would be MMO: or MM1: Also, the tape would have to be mounted
beforehand. In transferring files from one UIC to another, the owning UIC of the
file as well as its protection is preserved. In order to assure that the file(s)
transferred into your disk is/are owned by you, the following PIP command is

reeded following the transfer:

All data files were transferred into your UIC:
(100,150] from UIC:(200,300] -

MCR>PIP {100,150)* . DAT;*/PR/FO

The /PR switch allows you to change the protection of a file if you wish. The
- /FO switch allows you to set file ownership to the UIC specified.

3-3

There are four categories of file protection:

1. System - Specifies what categories of access system accounts are allowed

to the file.

2. Member -~ Specifies what categories of access the member has allowed
himself.

3. Group - Specifies what categor:.es of access othexr members in the same
group have.

4. World - Specifies what categories of access have been given all other ac-
counts not covered.

For each category the user can specify whether that category can Read, Write,
Extend or Delete the file. The default access rights are:

RWED for System and Member

RWE for Group
R for World

The format of the command to alter protection of a file is as follows:

infile/PR(/SY [:RWED]] [/OW [:RWED]]
{/GR(:RWEDI]][/WO[:RWED]] [/FO]

where /SY is the system subswitch
/OW is the number subswitch
/GR is the group subswitch
/WO is the world subswitch
for example, to change the protection of a file so that world has RWED privleges:

MCR> PIP PROG.FTN;3/PR/WO:RWED

If any of the above subswitches are present and no value is given then no prwleges
are granted for that category.

For example,

MCR>PIP FILE.FTN;10/PR/OW;:RWE/GR:RWE /WO

sets the protection so owner and group have RWE privleges and world is denied
all access.

FE

Another feature of PIP is the /LI switch. This provides a direciory listing of a
UIC with the following information:

(1) File name, type, version.
(2) Number of blocks used (decimal).
(3) File Code:
(Null) — non contiguous.
C - Contiguous,
L - Locked.
(4) Creation date and time.
(5) Totals line, indicating total # of files and blocks used.
Some examples:
(1) Obtain a directory listing of UIC [150,150] on the line printer -
MCR>PIP LP:=[150,150] /LI
(2) Specify only FORTRAN files —
MCR> PIP LP:=(150,150] *,FTN/LI
(3) A /FU switch yields more detailed information on a UIC, é.g.,:
MCR> PIP LP:=[150,150] /FU
fome additional PIP switches include: '
/BL:n
This subswitch specifies the number of contiguous blocks to be allocated to the

output file, where n is an octal or decimal value. This is useful for copying a
contiguous file and changing its size.

/co .
This subswitch specifies that the output {ile be contiguous. Whon copying contig-
uous files (.TSK) from magnetic tape, both /CO and /BL:n must be apecified be-
cause PIP cannct determine the length of the input file when it allocates file space.
(Space is allocated before copying begins.)

/BS:n

This switch defines the block size for magnetic tapes. It aliows you to write big-
ger blocks onto magnetic tape. It can appear on the input or output file specifier.
If the blocksize specified is smaller than the actual blocksize, an I/O error occurs.

/RW

This rewind switch allows you to rewind a magnetic tape. It can be applied to
both input and output specifiers., However, if specified on the output side it
erases the tape. When applied to the input specifier, /RW rewinds the tape be-
fore opening the input file. This can be used to save search time, If you know
a file is behind the tapes current position, /RW rewinds the tape before search-
ing for the file. This saves the time that otherwise would have been taken to
search for the file between the current position and the end of the tape.

Presented here are the most frequently used switches to PIP. Additional infor-

mation may be found in Chapter 2 of the Utilities Procedures Manual. PIP's
&eror messages may be found in the "Error' section of the manual.

3.2 Backup of Personal Files

Due to the occasional problems that have occurred with the disk and the fact that
the system is not protected against commands that can wipe out whole libraries,
it is suggested strongly that you back up your UIC library on a periodic basis
convenient to you. If you do occasional work a weekly basis might be suitable.
However, for those who make major changes to their files on a daily basis, a
weekly back-up might not be sufficient.

There are two methods you can use to back up your disk files, FLX and PIP.
The following are some considerations in determining which method is best for
you:

(1) FLX cannot handle large data files. (=100 blocks).

3-6

(2)

(3)
(4)

()
(6)
(M

ORIGINAL PAGE IS
OF POOR QUALITY

FLX works well with source files and other files (.OBJ and .TSK) of
reasonable size (<100 blocks).

FLX is faster than PIP and uses less tape,

FLX doesn't copy multiple versions of a file and the one that it does
copy may not be the latest version.

FLX only recognizes 6~-character data names, rot 9.
PIP can handle any {iles,

PIP coples everything in your library (all versions of all files).

PROCEDURES:

Using FLX: Back-up.

(1)
(2)
(%)
(4)
(5)

MCR>MOU MMg:/CHA=[FOR]

MCR>FLX MM#@:/ZE

MCR>FLX MM@:[Your UIC]/DO=DB@:[Your UIC]*.*/RS
MCR>FLX LP:=MM¢: [Your UIC] *,*/LI (directory ustmg)
MCR>DMO MM¢:

Restoring.

(1)
(2)
(3)

MCR>MOU MM@:/CHA=[FOR]
MCR>FLX DB#:/RS/UI=MM#:[Your UIC)*.*/DO
MCR>DMO MMJ§:

Using PIP: Back-up.

(1)
(2)
(3)
4
(5)

MCR>INI MM@:Volume Name (User Provided)

MCR>MOU MM#:Volume Name

MCR >PIP MM{:[Your UIC]=DB#:{ Your U{C] * *

MCR>PIP LP:=MM§:[Your UIC]* *;*/LI (diructory listing)
MCR>DMO MM§#:

Restoring.

(1)
(2)
(3)

MCR>MOU MM§:Volume Name
MCR>PIP DBf:[Your UIC]=MM@:[Your UIC]| *,%;*
MCR>DMO MM¢:

3-7

Task files (,TSK) backed up on tape using FLX or PIP do not retain their con-
tiguous status when restored to the disk. Therefore, in order to make runable
versions of your programs after they have been restored to disk, you must use
PIP to create contiguous disk images for each task file. For example, MCR>PIP
FILENAME.TSK/CO=FILENAME.TSK. Each file has to be done individually since
PIP does not allow wild cards in the destination,

A time-consuming, but space-saving way to transfer contiguous (.TSK) files using
PIP from magnetic tape would be to specify both the /CO and /BL:n together on
the output file.

For example,

MCR>PIP DB@:{ Your UIC] /CO/BL:n=MM4:[Your UIC] PROG.TSK;15

Each file must be done individually.

3.3 File Creation and Editor

Creating data files or sources programs or the PDP is done through the use ¢.
the Line Text Editor Utility, This is done by entering ithe following response to
the MCR prompt:

MCR>EDI FILENAME,.TYPE
The Editor will respond with:

CREATING NEW FILE
INPUT

The Editor is now in input mode and the user can begin entering his source code
following each line with a (CR). All source files should be "typed' as FTN
(FORTRAN) or MAC (MACRO).

The Editor is capable of operating in two control modes:

(1) EDIT MODE (Command Mode)
(2) INPUT MODE (Text Mode)

To go from Input Mode to Edit Mode, the user types a Double (CR). To go from

the Edit Mode into the Input Mode, the user types the Insert Command (I}, fol-
lowed by a (CR).

3-8

)

ORIGINAL PAGE IS
OF POOR QUALITY

Edit Mode is characterized by an asterisk (*) as a prompt. EDI acts upon con-
trol words and data strings to open and close files; to bring in lines of text from
an open file; to change, delete or replace information in an oven fils; or to insert
single or multiple lines anywhere in a file. Files that are introduced to the Editor
from the card reader shoiild have the program BLANK run on them first to re-
move the trailing blanks,

Within Edit Mode there are two modes of accessing and mardpulating lines of text.
These modes are:

4

@)

Line-by-line Mode.

This allows the user to access lines of text one line at a time. It has the
disadvantage that once a line is edited and written to the output file, it
can only be accessed again by the user issuing a TOP command which
places the pointer at the top of the file. However, it does have the ad-
vantage that when a search is being done, the whole file is searched and
not just a block (80 lines), as in Block-edit Mode.

Block-edit Mode.

This is the default editing mode. To use Line~by-line Edit Mode, it is
necessary to issue the BLOCK OFF command. In this mode, 80 lines

are made available for editing. However, EDI commands are executed
only with respect to the current block. Lines of text can be referenced
forward and backward without issuing a TOP command.

EDIT COMMANDS

COMMAND FORMAT DESCRIPTION
ADD & PRINT AP [STRING] Append [STRING] to current
line and print new line.
BLOCK ON/OFF BL ON or BL OFF Switch editing modes.
BOTTOM OR END | BO Set current line to last line in
END | file or block buffer. The com-
mands are equivalent.
CHANGE (n]C /STRING-1/ Replace String-1 with String-2

S’lfRING-2 n times in the current line.

3-9

COMMAND

ORIGINAL PAGE IS
OF POOR QUALITY

EDIT COMMANDS (Continued)

FORMAT

DESCRIPTION

DELETE

D [n] or
D (-n]

Delete current line and next n-1
lines if n is (+); delete n lines
preceeding current line if n is

EXIT

EX

(=). (=n) block=-edit only.

Close files, name output file and
EDI exits.

INSERT

I [STRING]

Enter [STRING] following cur-
rent line or enable input mode
if [STRING] not specified.

KILL

KILL

Input and output file are closed.

LOCATE

{n]L [STRING]

Locate n-th occurrence of
STRING.

RETYPE

RETYPE STRING

Replace current line with string
or delete current line if string
is null.

RENEW

REN [n]

Write current block to output
file and read new block from
input file.

SAVE

SA [n] [filespec]

Saves current line and next n-1
lines in specified file. If file not
specified, lines are saved under
SAVE.TMP.

TAB

TA ON or &
TA OFF

Turn on or off automatic¢ tabbing.
If TAB ON, all lines moved over
8 spaces.

TOP OF FILE

TOF

Return to top of input file and
save all pages previously edited.
This command creates a new
version of your file.

PRINT

P [n]

3-10

Print current line and next n-1
lines.

EDIT COMMANDS (Continued)

COMMAND FORMAT DESCRIPTION

OLD PAGE OL n Return to TOF and read Page n
into block buffer.

PAGE LOCATE (n]PL (STRING) Search successive blocks for the
nth occurrence of string.

UNSAVE ’ UNS [filespec] Insert all lines from specified file
following current line. If no file

is specified, default file is SAVE
.TMP,

In many cases with the EDI commands the user must identify a string of charac-
ters to be located and/or changed. To reduce the number of terminal entries,
the following special string constructs might be very useful.

Case 1. Stringl ... String2

Any string that starts with stringl, continues with any number of inter-
vening characters, and ends with the first occurrence of string2.

Case 2. ... string

Any string that starts at the beginning of the current line and ends with
the first occurrence of string.

Case 3. string ...

The first string that starts with string and ends at the end of the current
line. '

Case 4. ...

The entire current line.

3-11

o

g -

i o SO AT it ST

ORIGINAL PAGE [&
OF POOR QUALITY

3.4 Preparing a FORTRAN Program for Execution

3.4.1 FORTRAN Compiler

Once a source file has been created, it is necessary to submit it to the compiler
and task builder before it becomes a runable version (.TSK). The general pro-
cedure for source files is depicted below in Figure 1. Three characters above a
box indicate how that operation is evoked via MCR and the three characters be-
low a box are the output file extension type from that operation.

(Tonans

LIBRARIES

SYSTEM

LIBRARIES
FOR TKB y RUN
SOURCE | 0BJECT TASK | TASK EXECUTING
PROGRAM °°MP'LE“""'< MODULE BUILDER |\ IMAGE TASK
.FTN 08J l - TSK
ST | MAP
Figure 1)

The Compiler produces relocatable object modules from FORTRAN Source pro-
grams. The general format of the command line to the FORTRAN Compiler is:

MCR>FCR OUTPUT FILES LIST=INPUT FILES LIST
A maximum of two output files can be specified: The Object Module File and the
Listing File. Multiple input files may be specified. The default type for these is
FORTRAN (.FTN). The Listing File can be omitted from the command line.
Some examples:

(1) Compile PROGL,FTN with Listing File:

MCR>FOR PROG1,PROG1=PROG1

3-12

RTINS et

bt
i

Output: PROG1.0BJ
PROG1,LST

(2) Compile PROGL.FTN without Listing File, but produce listing on LP:
MCR>FOR PROG1,LP:=PROG1

(3) Compile PROG1.FTN without listing:
MCR>{fOR PROG1=PROG1

Some uszful compiler switches:

SWITCH DESCRIPTION
/CK Checks all array references to make sure they are within the

array address bounds specified by the program.

/CO:N Allows a maximum of N continuation lines in the program.
Default is 10. Not to exceed 99.

/LI:N Specifies listing options; 0<N<3

N=0 - Minimal Listing File: diagnostic messages and program
section summary.

=1 - Source listing and program section summary. Lo
N=2 - Source listing, program section summary and storage map
(DEFAULT).

N=3 - Source listing, assembly code, program section summary
and storage map.

/TR Controls the amount of extra core included in the compiled
output for use by the OTS (Object Time System) during error
traceback.

/TR:BLOCKS - Traceback information is compiled for subroutine and func-

tion entries and for selected source statements. The source
statements are initial statements in sequences called blocks.

(Refer to Page 4-6 of FORTRAN IV-Plus User's Guide for
more information.)

3-13

nfogme pgraaing b Aok

N o

3.4.2 Task Builder

The Task Builder is a system program that links relocatable object modules to
create a task image. It is the last step before the source program becomes
runable. The object modules can come from user specified input files, user
libraries or system libraries. References to symbols defined in one module and
referenced in other modules are resolved with the Task Builder. Any remaining
unresolved symbols are searched for in the system object library:

DBO:[1,1]SYSLIB.OLB

The format of the command line to the task builder is similar to the compiler.
For example:

MCR>TKB OUTFILE=INFILE

The first output file specifies the Task Image File (.TSK). A second file may be
specified if a memory allocation map is desired. Lastly, a third file is the Sym-
bol Definition File. The Memory Allocation File (,MAP) contains information

about the size and location of components within the task. The Symbol Definition
File (.STB) contains the global symbol definitions in the task and their virtual or

relocatable addresses in a format suitable for re-processing by the Task Builder.

The input files are combined to form a single executable task image.

Any number of input files may be specified. The Task Builder prompts for input
until it receives the terminating sequence, ''//". This instructs the task builder
to stop accepting input, build the task, and return to the MCR level.

As with the FORTRAN Compiler, there are some switches which might be useful
to FORTRAN programmers:

(1) /SH on the MAP file will produce an abbreviated form of the Memory Alloca-
tion MAP. '

(2) /LB when specified with an input file, specifies that the file is a library of
relocatable object modules.

(3) /MP on an input file specifies that the file is an overlay description file. It
must be the only input file specified.

(4) /CR on memory allocation file produces a global cross reference.

3-14

e

P
' 4

The task builder has the additional feature of prompting for options after a /"
(blash) is typed. Options are used to specify the characteristics of the task being
built; Some commonly used options are:

(1)

ASG: Logical unit numbers assigned to physical devices:
ASG=DEV1:N1:N2:... , DEV2:M1:M2:...
Defaults are:

ASG=DB#:1:2:3:4, T1:5, LP:6

(2) COMMON: All system global common blocks referenced must be specified:

3

COMMON=NAME:ACCESS

Those using the Vector General Graphics package must include the following
line in their TKB:

COMMON=VGCOM:RW:6
This allows READ/WRITE access to the display list.

LIBR: All shared libraries referenced must have this option:

LIBR=NAME:ACCESS
All users should include the following line to reduce their Task Image File:
LIBR=SYSRES:RO

Since the Task Builder accepts indirect command files, this is the most con-
venient way to build your program. A file of type .CMD is created using the
Editor. This is then submitted to the Task Builder:

MCR>TKB @PROG1
The Sample File PROG1.CMD:

PROG1=PROG1

/

LIBR=SYSRES:RO
COMMON=VGCOM:RW:6
ASG=MM{d:1,MM1:2

//

3-15

3.5 Indirect Files

An indirect file is a file containing a sequence of comman lines that can be inter-
preted by a single task such as a utility or the Task Builder. They are extremely
useful when submitting the same sequence as a very similar sequence of com-
mands to a task or utility,

The command string contained in the indirect file are executed when the indirect
file is invoked. For example, to perform a series of PIP commands, an indirect
file might look like:

DB@:=MMg:[11,14] *,FTN
LP:=*.FTN/LI
PROG.FTN;20/DE
To invoke such an indirect file, enter the command

MCR>PIP @PIPCMDS,CMD

PIP is then invoked and accesses the full PIP CMDS.CMD which contain the above
sequence of commands. PIP executes the commands and returns control to MCR.

3.6 Executing a Program

MCR>RUN (50,50} PROG (esc key)

SAMPLE: A FORTRAN program called PROGR.FTN

3-16

e
s 4
sy

MCR>For PROGR=PROGR - Creates PROGR.,OBJ
(wait)
MCR>TKB @PROGR - Creates PROGR,TSK

where PROGR.CMD contains:

PROGR=PROGR

/
LIBR=SYSRES:RO
ASG=TI:5,LP:6

//

(wait)
MCR>RUN PROGR (hit esc key) - Executes PROGR,TSK

3.7 MCR Commands, General Information

A, Defaunlt LUNs:

DB@: 1-4 (refers to the system disk)
T : 5 (Terminals)
LP : 6 (Line printer)

B. File Specifiers:

DEV: = Physical device on which the volume containing the de-
sired file is mounted.

[UFD] = User File Directory containing the desired file.

FILENAME = The name of the file. Up to 9 alphanumeric characters
in length. ‘

TYPE = File type, e.g. .FTN or .OBJ.

iVERSION = An octal number used to differentiate analog versions of
a file. Version numbers can range from 1 to 377.

Some Useful MCR Commands:

(1) Abort Command:

Function: Allows user to terminate the execution of tasks which have been
initiated from that terminal.

Format: MCR>ABO TASKNAME

3-17

(2)

3

(4)

6)

(6)

Active Task List Command:

Function: Enables the terminal user to obtain a list of the tasks active
within the system, along with status information on this partic-
ular task,

Format;: MCR>ACT (TASKNAME] [SWITCH(s)]

Switches; /FU - Full listing. Task name must be specified.
/ALL - All active tasks listed.

BYE Command:

Function: Allows user to log off system.
Format: MCR>BYE

SYS Command.

Function: Allows user to see all the active tasks in the system.

Format: MCR>SYS /ATL

Dismount Volume Command.

Function: Allows user to logically dismount a previously mounted volume.
Format: MCR>DMO DEV:([volume label]

HELLO Command.

Function: Allows user to log onto a terminal.

Format: MCR>HEL [UIC]

3-18

pEoTS

st
H 4

(M

(8

@)

Logical Unit Numbers Command.

Function: Lists on the user's terminal the physical device units and cor-
responding logical unit numbers for an indicated task.

Format: MCR>LUN TASKNAME [,TASKNAME, . . .]

Mount Command.

Function: Allows a user to make a selected volume visible to the system,
Format: MCR>MOU DEV:[volume label] [/Switches]
Switches: /CHA =(FOR]
Not an RSX-11D structured volume - foreign.
/DENS = 800 or 1600
Specifies density of tape.

Password Command,

Function: Allows user to change or create a password for his UFD.

Format: MCR>PWD [UIC]
The following message is printed:

PASSWORD>

The user now types in his password; maximum of 6 characters

(10) QUE Command.

Function: Print queued files on LP.

Format: MCR>QUE FILENAME.TYPE

(11) Resume Command.

Function: Allows user to continue execution of a previously suspended task.

Format: MCR>RES TASKNAME

3-19

A e o N SR breria <t e e

s

(12) Run Command. ¢

Function: Allows user to initiate execution of a particular task.
Format: MCR>RUN FILENAME ‘

(13) Terminal Status Command.

Function: Indicates which terminals are in use.
Format: MCR>WHO

3.8 File Dump Utility (DMP)

The File Dump Utility is very useful when an ASCII or octal dump of a file is
needed, DMP runs in either one of two modes:

(1) File Mode:

In File Mode, one input file is specified and all, or a specified range of
Virtual Blocks of the named file are dumped. Virtual Blocks refers to the
blocks of data in a file.

(2) Device Mode:

In Device Mode, only the device is specified and a specified range of Logical
Blocks are dumped. Logical blocks refers to the actual 512-byte blocks on
the disk.

To clarify the difference between Virtual and Logical blocks on a device, con-
sider the following illustration:

LB = Logical Block VB = Virtual Block

LB1 LB 2 LB 3 LB 4 LB 5 LB 6 ILB7 LB 8
VB 1 VB 2 VB 3

N
File 1
The first block of file 1 begins in LB 4. With respect to File 1, that block is known
as VB 1, Subsequent blocks of that file are known as VB 2 and VB 3. However,
with respect to the device, those blocks that contain File 1 are known as LB 4,
LB 5 and LB 6,
DMP can handle physical records up to 2048 byte in length. .

DMP Switches:
SWITCH DESCRIPTION

/AS Data dumped in ASCII Mode. {

/BL:N:M Specifies the first (N) through the ‘Iast (M) logical or Virtual
Blocks to be dumped.

3-20

Notes:

(1) When the /BL:N:M switch is specified in File Mode, it specifies the range
of Virtual blocks to be dumped. .

(2) The /BL:N:M switch is required in Device Mode. When specified in this
. mode it is the Logical Blocks to be dumped.

/BY Specifies that the data should be dumped in byte octal format.
The default is Word Mode Octal Format.

/HD Optional parameter to be used in File Mode. It causes the file
header to be dumped.,

Note: If just the file header portion is desired, the user can specify /HD/BL:0.

/DC Specifies that the data be dumped in decimal word format.
/RC Specifies that the data be dumped a record at a time.
/LB Logical block. This switch gives the user only the starting block

number and a ceatiguous or noncontiguous indication for the file.

3.9 File Compare Utility (CMP)

This utility allaws you to compare two ASCII source files. The comparison is
done line-by-line to determine whether parallel records are identical. Some of
the features are:

(1) Generate a listing showing the differences between the two files.

(2) Generate a listing in the form of one list with differences marked by change
bars.

CMP also provides switches that allow you to control compare processing.
The format for specifying the CMP command line is:
outfile[/sw . . .]=infilel[/sw],infile2(/sw . . .]

where outfile represents the file specification for the output file, infile 1
represents the input file specification for the file to be compared to infile 2

3-21

and infile 2 represents the file specification for the input file to be compared
to infile 1 and /sw represents the switches applied. .

Switches .
/BL specifies that blank lines in both files be included in compare

processing
/CB Specifies that CMP list infile 2 with change bars in the form of

exclamation marks (!) applied to each line that does not have a
corresponding line in infilel.

/CO Specifies that comments be jncluded in compare processing
/DI Specifies that CMP print the differences between the two files.
/FF Specifies that records consisting of a single form-feed character

be included in compare processing

/LL:n Specifies that a number of lines (n) must be identical before CMP
recognizes a match. Default is 3.

K=
e

3.10 Overlays

3.10.1 Introduction

The maximum size program that a user can create on the 11/70 is 32K (words).
However, there is an overlay capability to reduce the memory requirements of a
task. In utilizing this the user would divide his task into a series of segments
consisting of:

(1) A single root segment — always in memory.

(2) Any number of overlay segments which share meméry with one another.

However, care must be exercised in doing this, and not all programs are suitable *
for overlaying. All segments that overlay each other must be logically independent;
i.e., none of the components of one segment can reference any of the components .

of the other segment. In addition to this consideration, is the general flow of ¢on-

trol within the user task. A task that moves sequentially through a set of modules

is well suited to the use of overlay structure. However, a program that jumps

back and forth between modules and passes data between them would not. iw?

3-22

ORIGINAL PAGE 1y
3.10.2 Structure QUALITY

The amount of storage required for the task is determined by the length of the
rcot segment plus the length of the longest overlay segment. This is illustrated
below with a root segment called TASK and 3 modules A, B and C:

Without Overlays:

~ 24200
c

- 23000
]

~ 16000
A

— 10000

TASK
— 0

With Overlays. A, B, or C and TASK represent core at any one time:

- 16000

- — 10000

TASK

3-23

0 i b e e

= ORIGINAL PAGE IS
OF POOR QUALITY

If A" could be further divided up into segments, then storage could be reduced
‘even more. This is illustrated below. ""A" was broken down into two independent
modules, A1 and A2. A2 was further broken down into A21 and A22, "B' was
divided into two independent modules, Bl and B2.

A
A1 2
Al 81

82

A2

Ad 80

TASK

This scheme gives rise to the task builder language for representing an overlay
This structure can best be illustrated as a tree, as follows:

A21 A22
Al A2 81 B2
l_.T_J
AU ‘B0 » c
L l | |
TASK

The tree has a root, Task, and three main branches, A0, B0 and C. It also has
six leaves, Al, A21, A22, Bl, B2 and C. The tree has as many paths as it has
leaves. One path up may be defined as:

TASK-A0-A2-A22,

Understanding the tree and its paths is important to understanding the overlay
loading mechanism and the resolution of global symbols.

3-24

Loading ! Mechanism:

Modules can call other modules that exist on the same path, TASK is common
to all modules, so it can call and be called by every module, Module A2 can call
A21 and A22, but A2 cannot call Al.

Resolution of Global Symbols in & Multi-segment Task:

Basically, the task builder performs the same agtivities in resolving global sym-
bols for a multi-segment task as it does for a single-segment task., However, in
a multi-segment task, a module can only referéence a global symbol that is de-

fined on a path that passes through the segment to which the module belongs. Two

global symbols can be defined with the same name as long as the definitions are
on separate paths.

Resolution of P-sections in a Multi-segment Task:

A program section, or P-section, is the basic unit of memory for the task. A

FORTRAN source language program is translated into an object module consist-

ing of P-sections. The object module produced by compiling a typical FORTRAN
program consisis of a P-section containing the code generated by the compiler,

" a P-section for each common block defined in the FORTRAN program, and a set

of P-sections required by the object time system. These sections are divided

up into local (LCL) or global (GBL).

Local P-sections with the same name can appear in any number of segments.

Storage is allocated for each local P-section in the segment in which it is de-
clared. However, when a global P-section is defined in several overlay seg-

ments along a common path, the Task Builder allocates all storage for the P-
section in the overlay segment closest to the root. FORTRAN common blocks
are translated into Global P-sections with the overlay attribute.

3.10.3 Overlay Description Language (ODL)

‘The Task Fuilder provides a language that allows the user to describe the Over-
lay Structure or Tree. It contains 5 directives. There must be only one .ROOT
Directive and one .END Directive. .ROOT tells the Task Builder where to start
building the Tree and the .END tells the Task Builder where the input ends.

The arguments of the ,ROOT Directive make use of two operators to express
concatenation and overlaying. A pair of parentheses delimits a group of seg-
ments that start at the same location in Memory. The maximum number of
nested parentheses cannot exceed 32.

3-25

RTINS

ORIGINAL PAGE IS
OF POOR QUALITY

Operators:

(A) The "-" indicates the concatenation of storage or moving vertically in the
Block Storage Diagram (see figure below).

(B) The "," appearing within parentheses indicates the overlaying of storage or
moving horizontally in the Block Storzge Diagram.

11

e ————
Z
1 z2
2, Z, Y
% rd
| | z
|
X
TREE ‘ X

BLOCK STORAGE DIAGRAM

The following .ODL file would describe the above Tree:

ROOT X~(¥,Z-(Z,,Z,))
.END

Starting with the inner parentheses, Z; and Z, appear horizontally (Z,, Z,) in
the Block Storage Diagram and therefore share storage. Z appears vertically
(Z-(Z,,Z,) in the Block Storage Diagram with respect to Z, and Z, and so indi-
cates the concatenation of storage. Y and Z appear horizontally (Y,Z) and there-
fore share storage. X appears vertically with respect to Y and 2 (X-(VY,2))

and are concatenated,

Some overlay structures are complicated. The .FCTR directive allows the user
to build large Trees and represent them systematically. Basically, it allows the
user to extend the tree description beyond a single line. The following example
illustrates its use:

3-26

e

g

A A22

&
[=)
b

CENTER

.ROOT CENTER-(ACTR,BCTR,C)
ACTR; .FCTR AO-(A1,A2-(A21,A22))
BCTR: .FCTR BO0-(Bl,B2)

.END

The decision to use the ,FCTR directive {s based on considerations of space,
style and readability of a complex ODL file.

Tha .PSECT directive allows the placement of a Global P-section to be speocified
dirvctly. The name of the P-section and its attributes are given in the ,PSECT
directive. Then the name can be used explicitly in the definition of the Tree to
indicate the segment in which the P-section is to be allocated. The following
example shows how the allocation of a global common block is forced into the
Root Segment:

PSECT DATAS, RW, GBL, REL, OVR
ROOT CENTER-DATAB-(ACTR,BCTR,C)
ACTR: .FCTR A0-(Al,A2-(A21,A22))
BCTR: .FCTR BO0-(Bl,B2)
.END

In addition to the overlaying capabilitias mentioned above, the Task Builder
allows the specification of more than one Tree within the overlay structure.
Further information can be obtained by reading the "Task Builder Manual,"
Pages 5-10.

Finally, to build the task with an overlay structure the user types:

MCR>TKB FILENAME=FILENAME/MP

The switch MP tells the Task Builder that there is only one input file, FILE-
NAME.ODL, and this file contains an overlay description for the task.

4. Magnetic Tape

4.1 Mounting and Dismounting Tapes

Looking at Figure 1, the empty reel is above the knob upon which your tape is
mounted. The tape reel is pushed onto the iower knob, and the knob is turned

. clockwise to tighten. At this point, the four switches on the control panel on the
lower left should be pressed to OFF LINE, STOP, between LOAD and BR REL
(this is the BRAKE position) and FWD.

After tightening the tape reel, press BR REL to release the brake. Thread tape
clockwise around reel, according to the illustration. It is wound clockwise around
the empty reel, enough wound to tighten the tape so that turning the empty reel
moves the full reel. The load point must be on the full reel sice of the read head.
Now press LOAD and wait until the LOAD light is on. Then press START and the
tape will move to the load point as indicated by the LD PT light. Press ON LINE
and the tape is mounted and ready.

To rewind to the load point or reverse, the ON LINE/OFF button must be at the
OFF LINE position. The tape will automatically stop at the load point.

To dismount the tape, put drive OFF LINE and press REV. Then press the START
button. When tape is off the top reel, press BR REL and finish: winding tape by
hand. Put on BRAKE position and turn knob counter-clockwise to loosen the reel.
It can now be removed.

ORIGINAL PAGE 18
OF POOR QUALITY

TAPE DRIVE

~ %

LOAD REEL!

HERE

,TAPE GOES HERE

r
|

punfioss]frox]

% BEE
e[Jfwe] rwo] e][re

OFF LINE
ams)] REW
UNIT
SELECT
BR. REL. REV
Figure 1

5. Paper Tape

5.1 Loading, Hardware

The paper tape assembly consists of one punch, and one reader. Both may be
used simultaneously if desired.

If the paper tape is correctly loaded, tape from the punch comes out folded, with
arrows showing direction of the beginning of the tape. ,

The paper tape reader must be loaded with the arrows pointing right to left, and
the feed sprocket firmly in the row of feed holes along the tape. The knob above
the light is turned clockwise to raise the foot, which keeps the tape aligned. When
tape is loaded, the foot is lowered by turning the knob counter-clockwise. Make
sure the control tape is under the plate at the scan light.

5.2 Paper Tape Reader

If 1f is 'désired to read data into an array during a FORTRAN prograxn: from the
paper tape reader, subroutine (2,75] PTREAD must be used.

Call PTREAD(LUN,A,LEN,IOST). "LUN is the logical unit number assigned to the
reader, "A" is the array to receive the data, "LEN'" is the number of bytes to be
réad i, and "IOST" is the returned error code.

It is the user's responsibility to make sure "LEN" does not exceed the maximum
dimension of "A." Otherwise, a data overrun in core will result.

When positioning the paper tape on the reader, keep in mind that it always reads
first and moves second. The first byte to be read should be in line with the light
detector. However, the user can do his own checking for null characters to pass
through the leader (NULL = 0).

READS A SOURCE TAPE INTC A FILE 'TEMP'

LOGICAL*1 A(8000),B(2000) ! 8000 BLOCKS
CALL PTREAD(3,A,8000,I0ST) ! READ TAPE
K=1

DO 30 I=1,8000 ! WEED NULLS
IF(A(D).EQ.0)GO TO 30

B(K)=A(I)

K=K+1

5-1

P

30 CONTINUE
LEN=K-1
CALL ASSIGN(4,'TEMP',4) ! READ TO 'TEMP.'
WRITE (4,200)(B(K),K=5,LEN) | 1-4 ARE LEAD-IN CHARS.
100 FORMAT(I5) | FROM PUNCH
200 FORMAT!(104A1)
STOP
END

5.3 Paper Tape Punch

The punch may be called from PIP or via a FORTRAN routine called PTPNCH.

FROM PIP: MCR>PIP PP:=FILENAME
FROM FORTRAN: CALL PTPNCH(LUN,FILENAME,LEN)
LUN = Jogical unit device of punch.

FILENAME = hollerith string or character array. The character array
must be LOGICAL*1,
LEN = length of hollerith string or character array.

NOTE: Using PIP to punch a tape; four control characters are punched at the
beginning of the tape, preceeding the data.

AR,

ALY
oy ¥

6. Floppy Disks

6.1 Loading, Hardware

The Floppy disk drives are located to the right of the TU16 Magtape drives,

Dust covers have been placed over the slots to keep the read/write heads dust
free. To load a floppy in the drive, lift the dust cover, slide the floppy disk into
the slot with the small hole and the elongated opening toward tlie drive. The
small square tag should be on the right top as you insert the floppy. See Figure 1.

6.2 Storing Data on the Floppy

Floppy disks are used as auxiliary storage on the PDP 11/70. Their advantage
is that they are faster than magtape and provide quick and easy access to data.,
Floppy disks can only be used as Files-11 devices. Thus to access them they
must be initialized as Files-11 (Run (2,75] INITIAL) and then PIP'ed onto or
written to with Fortran I/O statements. For example, to prepare and write data
into a Floppy:

MCR > RUN (2,75] INITIAL$

(INITIAL completes)
MCR > MOU DXO: volume name (specified in INITIAL)
MCR > PIP DXO [UIC] = (UIC] DATA.DAT ,DATA.FTN

The maximum capacity of each floppy is 470. blocks.

6-1

ORIGINAL PAGE IS

OF POOR QUALITY

DX

0

DX

tal {rxo

d

Figure 1. Disk Guide

ol

7. The Vector General Graphics Display Unit

7.1 Hardware

The Vector General consists of a screen, alpha~numeric keyboprd function key-
board, and a light pen. The intensity, focus and scale can be chaniéd by the cor-

responding knobs on the right-hand side of the VG unit. Do Do nof adjust the thresh-
old knob., Detailed description of the hardware features may be found in Section
1.3.2.

7.2 Programming the Vector General

7.2.1 Introduction

The programming for the Vector General is done by calling special VG subrou-
tines from within a FORTRAN program. These subroutines perform all the
graphics work. Theie are four basic steps to graphics programming:

(1) CALL GINIT - readies the VG screen for use.
(2) Graphics Subroutines — perform the drawings.
(3) CALL GRUN - displays the drawings.

(4) CALL GTERM - ends the VG screen use.

The following pages describe in detail each of the subroutines in the graphics
package. Programming ideology is presented first, followed by each subroutine.
A sample program and task build sample then follow, which the reader is advised
to study. Also included is a list of typical mistakes made by VG programriers
which cause programs to run incorrectly or to not run at all, and some hints for
greater efficiency.

Interaction with the Vector General is accomplished with three hardware devices
as follows:

1, Function keyboard — The routine RQATN is called to suspend the execution
of the program and activate certain buttons as defined in the arguments. When
one of these buttons is depressed, control is returned to the user's program
with information concerning the light penned portion of the display in the RQATN
parameter list. (see RQATN)

2. Light pen — The routine RQATN is called to suspend the execution of the pro-
gram until the light pen is pressed against the screen, pointed at a display section
which had been created as a light-pennable element. Control is returned to the
user's program with information concerning the light penned portion of the dis-
play in the RQATN parameter list, (see RRATN)

3. Alpha-numeric keyboard — In using this device, several steps must be taken
in the fortran code.

a. Call to TEXT to create a character string with a key. (see TEXT)

b. Call to ICURS to display blinking cursor. (see ICURS)

c. Call to RQATN to suspend program while user types in characters from key-
board. (see RQATN)

d. Call to RDCHR to read the character string into an &rray.

Notes and Conventions:

1. "ACTIVE" element -~ an element whose associated pictures are currently
displayed.

2. "INACTIVE'" element — an element which has been created but whfcl; has
been inactivated from display with OMIT or GHALT.

3. The "beam' ~ the hardware component which draws every display. It re-
mains positioned where the last display of that element was drawn.

4. A 'megative' intensity means an intensity valuebeneath 0, which is the aver-
age brightness. Thus an intensity value of -16 is actually a near-zero in-
tensity level.

5. All arguments to the routines which are enclosed in brackets [] are optional.
If the value is omitted, commas must mark its place if further arguments
are to be specified.

6. byte - LOGICAL*1, one byte
[*2 - INTEGER*2, 2 byte integsr
I*4¢ ~ INTEGER*4, 4 byte integer
R*4 - REAL*4, 4 byte real number
R*8 - REAILX*8, 8 byte real number

7. "Display list'" - The list of all Vector General display instructions in the
running program, It consists of integer numbers arranged in order of ele-
ment number which the Vector General handler decodes to generate all dis-
plays. It is stored in the 4K common global area called VGCOM, as speci-
fied in the task build.

%

7-2

Each picture to be displayed consists of a set of logically connected primitives
called elements, Each element is identified by a unique number ranging from 1
to 249 each of which causes the reloading of all relevant hardware registers
(e.g., intensity, X, Y, delta X, delta Y, light pen sensitivity, picture scale and co-
ordinate scale. Elements are created by calling INIT, SINIT or COPY. These are
then updated by referencing the element number in the other subroutine calls.

The Ve¢ctor General Graphics Subroutine package consists of a set of FORTRAN-~
callable subroutines which build display instructions and pass control informa-
tion to the device handler. The device handler builds the display file and controls
the refresh rate. It also services interrupts and passes information back to the
user. Communication between the user package and the device handler is ac-
complished through the use of a 4K global common area named VGCOM and global
event Flags 41 and 42.

The user package places in common area VGCOM control information followed
by display instructions. When this is completed, Event Flag 55 is set which
causes the handler to process the stored information. The user package then
waits on Event Flag 56 which the handler sets on completion.

7.2.2 Programming Ideology

The programming ideology operates with the concsgi of "elements." An Melement"
is a list of characteristics such as the intensity level, or whether or not to blink.
It is an intangible set of parameters by which an entire display will be drawn.

Each element is created by INIT, SINIT, or COPY routines with an element num-
ber, and the consequent display takes on all the characteristics as defined by the
element. Once an element has been defined by INIT, SINIT, or COPY, any num-
ber of displays associated with the element may be created. Nothing may be
drawn without previously defining the element number. A maximum of 249 such
parameter sets may be defined, Element Numbers 1 to 249.

7.2.3 VG Internal Ideology

The Vector General Graphics Display Unit consists of a Vector General 2D CRT
equipped with an alphanumeric keyboard, 32 key program function keyboard and

a light sensitive pen. The CRT screen is 12 inches by 12 inches addressable from
-2048 to +2047 in both the X and Y axes.

The display file is built in a 12K shared global common area named VGCOM.

The first word is used for communications with the hardcopy task, VGCOMM

is a short MACRO-11 routir2 that brings the shared global common into core
when the handler is loaded and removes it when the handler terminates. Addi-
tionally, VGCOMM acts as a monitor for running hardcopy routines when called
by the handler. The active display file contains contiguous display instructions.
When arn instruction or instructions are added to an element, all elements after

it are relocated the appropriate number of words and the new instructions are
added to the end of the element. All updates to the display file are performed
between refresh cycles. No refreshing is allowed until the updates are completed.

7.2.4 The Vector General Graphics Routines

A. Initiating and Terminating Routines

(1) CALL GINIT:

This routine initializes the display areas and resets all tables. Processing

is stopped and HALT mode is entered. This routine must ke the first graphics
routine called. It may be called to create other displays by reinitializing, but
only after GTERM has been called. '

(2) CALL GTERM:

This routine terminates the use of the CRT and all elements associated with
it. It should be called when use of the CRT is no longer needed. If it is not

called, the user program will terminate, yet the active display will continue

to appear on the screen. Depress the "SPEC'" and "FS'" keys simultaneously
to clear the display if a task ends without calling GTERM.

(3) CALL GRUN:

This routine causes the CRT to display the current active elements. It must
be called to start the display since GINIT puts the display into a HALT mode.
GRUN need be called only once after GINIT or GHALT has been called.
CAUTION: There must be at least one active element before GRUN may be
called. .

(4) CALL GHALT:
This routine puts the display into a HALT state and the CRT will no longer

dispiay the active elements. It is useful when major changes are being made
to the display since the display must be halted in order to perform updates.

7-4

The following arguments are used commonly by many of the subroutines:

ELEM - The name of the element referred to is in the subroutine call., I*2
Range is 1 to 249,

L? - Light pen sensitivity option. 0= not light pen sensitive, 1= light pen
sensitive, I¥2,

INTENS - The value of the intensity register for a particular element (range is
=16 to +15). I*2. Default is 0, which is medium intensity.

BLINK - If value is a 1, the entive element will blink. If value is a 0, the ele~
ment will not blink, 1*2, Default is to not blink.

PS - Picture scale value for the element ranging from -2048 to 2047, I*2,
Default is 2047, See section 7.2.5, note #8.

Cs = Coordinate scale value for the element ranging from -2048 to 2047,
I*2. Default is 2047. See section 7.2.5, note #6,

IDISPL -~ I*2 variable returned. This is the displacement into the display list
of instructions for the element, If a light penable element is used,
RQATN subroutine can indicate which element is light penned. See
saction 7.2.5, note #3 for formulae for each subroutine containing
IDISPL.

B. Element-creating Routit:s

(1) Call INIT(ELEM,[LP),[INTENS], [BLINK],[PS],
(cs),(x],(¥],[DX]), (DY)

The INIT subroutine causes the creation of an element and sets all the
characteristios of that element:

X - I*2 initial horizontal coordinate of the beam,

Y - I*2 initial vertical coordinate of the beam.

DX ~ I¥3, initial increment value. See Note 2. »
DY - I%2, initial inocrement value, See Note 2.

(2) Call SINIT(ELEM,[LP],[INTENS],[BLINK],
MODE, X1, Y1, X2, Y2, [LX],[LY] [ux],[uY])

The SINIT routine is very similar to the INIT routine except that it uses the
defaults for PS, CS, X, ¥, DX, DY (which can be changed by use of CHNGE

~

7-5

routine)., The SINIT routine defines the size and position of a particular
element with respect to the boundaries on the screen.

The screen is the total space which may be addressed. SINIT allows the .
user to create a rectangular area which is a subset of the total screen.

SINIT also allows the user to define the data type of the X and Y positions
and to scale them to appear on the screen.

MODE: Data type of all X and Y coordinates for this particular element -

1 = byte

2 =1*%2

3 =1*4

4 = Real *4
5 = Real *8

X1, Y1 constants or variables of the type indicated by the mode for the X and Y
coordinates of the lower left corner of the element. These coordinate
values must be less than the coordinate values used to represent the
upper right corner of the element. They may be any number within proper i T
bounds of their mode. If mode 1, 3, or 5 was specified, then a variable of
proper type must be used.

X2, Y2 constants or variables of the type indicated by the mode for the X and Y
coordinate of the upper right corner of the element. These coordinate
values must be greater than the coordinate values used to represent the
lower left corner of the element. They may be any number within proper
bounds of their mode. If mode 1, 3, or 5 was specified, then a variable of
proper type must be used.

LX, LY [*2 constants or variables representing the X and Y coordinates that
correspond to the lower left corner of the screen. Default -2048,

UX, UY are I*2 constants or variables representing the X and Y coordinates -
that correspond to the upper right corner of the screen (must be
greater than the lower left coordinate). Default 2047, 2047,

e
/ s
Qe

7-6

ORIGINAL PAGE s
OF POOR QUALITY

(3) CALL COPY(ELEM 2,ELEM 1,(LP],[INTENS],
(BLINK], [PS},(CS],[X],[Y],[DX],[DYI)

COPY is used to create a new element by duplicating an existing one. The
arguments are similar to the INIT subroutine. If an argument is specified,
. it's value replaces that of the original element.

ELEM 2= I*2, the element # being created.
ELEM i=1I*2, element # being copied.

EXAMPLE:

Suppose Element 1 is active and it creates:

A

The CALL COPY (2,1,,,,,1024,,,1000,1000) is made, resultihg in:

=

NOTE: COPY also copies all scaling information. When changing the new
element, make sure proper arguments are used.

Rkt

7-7

C. Graphics Draiwing Routines

Index: Below is a table of routines possible to achieve the desired displa); or
effect. Groups in () must be used together

Display or Effect Possible Routines to Call

1 or more characters TEXT

1 or more line segments PLINE, PLOT, (SETVM, VEdT, VECTT)
tracking cross PENTRK

read from screen (TEXT,ICURS)

Move an image on screen CHNGE, changing DX and/or DY

(RESET, then draw at new coords)
" Remove image from screen OMIT, DELMT, RESET
position the beam POSN, INIT with X and Y, CHNGE with X and Y

to light pen a display or piece (INIT, SINIT, CHNGE or COPY so that element
of a display is light-pennable, RQATN with Attention Code 34)

(1) CALL CHNGE(ELEM,[LP],[INTENS], [BLINK],
[ps],[cs],(x],[Y],[DX],[DY))

Subroutine CHNGE is used to modify the attributes of an element without
affecting the contents of the element. Arguments are like INIT.

If an argument is omitted, its value is not changed.

EXAMPLE:

Suppose an element is created by the instruction
CALL INIT (1).

Then, other calls are used to create an image in Element 1 so that there is
a picture on the screen, centered at (0,0), scale defaults to 2048,

ORIGINAL PAGE IS
OF POOR QUALITY

Then the instruction is executed:
CALL CHNGE (1,,,,, 1024,,,1000,1000).

This changes the CS to 1024 (half scale) and the DX, DY to 1000,1000. The
resulting picture is:

It's 1/2 the size and centered at (1000,1000) rather than (0,0). Thus, the picture
created full-scale and centered, was moved and shrunk in any manner. Subse-

quent calls to change DX and DY actually move the picture to the new coordinates.

(2) CALL DELMT(ELEM)

@)

This routine erases an element and all images generated by it from the

screen. The element # is no longer in use, and may be recreated by the
usz of INIT, SINIT or COPY,

An element which has an active cursor on it (by use of the ICURS command)
cannot be deleted until the cursor has been removed (RCURS).

CALL ICURS(Key 1(,Key 2] [,Key 3)]...)

The ICURS routine is used to insert a CURSOR into a text image on the
screen. The cursor is a symbol represented on the screen as a blinking
dash beneath a character. It marks the position on the screen at which the
next character typed on the keyboard will appear. The FS key will space
the cursor to the next character in the text string, and the BS key will

7-9

o P

I SRR

i R R T

e

(4

(5)

move the cursor to the previous character in the text string. The FS key

has no effect when the cursor is under the last character in the text string

and similarly for the BS key when at the start of the text string. The -«

key is used to move from one text string to another, .

Note: Only one cursor may appear on the screen at any given time.

The -+ key is used to move from one text string to another. Calling
Arguments:

Key # - I*2 variable or constant. This is the number which was asso-
cisted with a text string in a previous call to text (see Call TEXT
Description).

EXAMPLE:

LOGICAL*1 TEST(5)

DATA TEST/'T,' 'E,' 's,’ 'T', 4/
CALL INIT(1)

CALL TEXT(1,TEST,-1000,0,2,5)
CALL TEXT(2, 'THIS',1000,-100,2,7)
CALL ICURS(5,7)

The first TEXT command causes a key of 5 to be associated with the text

array TEST. The second command causes a key of 7 to be associated with
the text string THIS.

A cursor now appears under the first T of 'TEST'. If the user presses the
-+ key, the cursor will jump to the T of THIS, and if - is pressed again it
will jump back to the first T of TEST. The RDCHR subroutine is used to
read the text from the screen.

CALL INCLD(ELEM)

Activates an element which had been inactivated by a call to OMIT.
CALL OMIT(ELEM) |
Removes the element and its associated images from the screen. However, *

the element is not lost nor is it changed. It is inactive. The INCLD sub-
routine will allow the element to be active again.

7-10

EnS

(6) CALL PENTRK(ELEM,XRET,YRET,[X,Y])

(D

The PENTRK subroutine is used to display a light pen tracking cross which
can be moved around the screen by use of the light pen. When the PENTRK
routine is invokad, a tracking cross will appear on the screen and function
keys 0 and 31 will be lit. Function Key 0 is used to change the pen tracking
speed from fast mode to slow mode and back again. Function Key 31 is used
to indicate the end of light pen tracking and the position of the tracking cross
will be returned to the user.

ELEM - Element number to get scaling formulae from. If no scal-
ing is desired, set ELEM to zero

XRET, YRET - Variables must be the same type as the element mode. It
is returned to the user the X, Y coordinate of the tracking
cross when Function Key 31 was pressed.

X, Y - Variables or constants of same type as element mode or
Integer*2 if elem is set to zero, the initial position of the
tracking cross.

NOTE: PENTRK sets the PS and CS to full scale. If the element that is
being used for scaling does not have the PS and CS also set to full scale,
there will be a discrepancy between the X,Y returned from PENTRK and the

actual X,Y of that element.

CALL PLINE(ELEM,TYPE,X,Y,[IDISPL])

Subroutine PLINE creates a visual veétor on the screen from the current
X, Y position of the beam to the X, Y value specified in the calling argument.

TYPE - see reference to Subroutine PLOT.

X, Y = coordinates of the end points of the vectors in the same mode as
the element. ‘

7-11

(8

(9

CALL PLOT(ELEM,TYPE _XARRAY,YARRAY,COUNT,(IDISPL])

PLOT creates a graphic image that displays one or more connected line
segments.

TYPE - Type of line (I*2)
0 = solid
1 = dashed
2 = dotted
3 = end points
4 = dash-dot-dash

XARRAY, - Array name in proper mode for this element. These X and Y
YARRAY arrays contain the coordinates of the points that will be con-
nected to form the image.

COUNT - I*2 constant or variable which is the number of line segments
produced by this call plus one. This is less than or equal to
the dimension of XARRAY and YARRAY.

CALL POSN(ELEM,X,Y,(IDISPL])

This subroutine POSN is used to position the beam to a particular location
on the screen. It is used primarily with the PLINE routine to generate line
segments from one point to another.

X,Y - X,Y coordinates in proper mode for the element. The position on the
screen the beam will be moved to, This move will not generate any visual
image on the screen.

(10) CALL RCURS

This subroutine removes.the cursor from the screen.

(11) CALL RDCHR(KEY,TEXTARRAY,NUM)

The RDCHR subroutine causes the transfer of a text string from the display
image buffer into an array. The data is placed in the array at 2 characters
per word.

7-12

STE
&
s

v

-

The system functions ENCODE and DECODE are used profusely with this
routine. See Section 6.2.5 for detail.

KEY - I*2. This is the key of the text string to read.

TEXT - Name of an array whose dimension is greater than or
ARRAY equal to the number of characters (bytes) to be read. The text
string is returned in this array.

NUM - I*2 variable, The number of characters in the text string is
returned in this variable.

NOTE: The PDP-11 FORTRAN has twn functions, ENCODE and DECODE,
to change data to and from alphanumeric formats. See additional notes at
end of chapter for detailed examples.

(12) CALL RESET(ELEM,[IDISPL])

The RESET subroutine removes displays created with an element. If reset
is called with only 1 argument, the element will contain no IDISPL display-
able images; that is, it will be identical to a call INIT or SINIT. IF IDISPL
was used to create a part of the display, that display part and all displays
in that element created after it will be deleted. See Section 6.2.5, Note #3
for discussion of IDISPL.

(13) CALL RKEY(KEY 1,[KEY 2l...)

This subroutine is used to disassociate a text striig from a key. The reason
for this routine is to help conserve keys, since the user has a limit of 20 text
string keys that may be used at any one time. The key numbers in the argu-
ment list need not be in order, nor may the number of keys exceed 20.

KEY 1, - I*2 variables or constants which were associated with text
KEY 2, strings in TEXT commands.
ete.

NOTE: A key cannot be removed if it has been called in an ICURS routine
and an RCURS has not been issued. In this case, the key is considered ac-
tive and will remain associated with the text string.

7-13

(14) CALL RQATN(ICODE,JARRAY ,ATTNCODE,[ATTNCODE. . .])

The RQATN subroutine allows the user to wait for a responge from the

graphics operator. When the RQATN routine is called, the subroutine will

wait until one of the specified attention devices is activated and will return -
the device number.

ICODE - I*2 variable which is returned to the user to indicate the device
number which caused the wait to be terminated,

IARRAY - I*2 array name dimensioned to 20. Upon return from the
RQATN subroutine, this array will contain the following

information:
IARRAY
SUBSCRIPT CONTENTS
1 Element number of the light pen hit.
2 Offset of instruction from start of element when light pen

lnterrupted used with IDISPL.

3 X location in screen coordinates of light pen hit.

4 Y location in screen coordinates of light pen hit.

5 PS of element light pen hit was detected on.

6 CS of element light pen hit was detected on.

7 DX of element at light pen hit

8 DY of element at light pen hit.

9 Program Interrupt Register ac time of light pen hit.
10 Mode Control Register at time of iight pen hit. .
11 Last character entered on keyboard. .
12 Which of Function Keys 0- 15 was depressed at time of return.

Bit 15 (most significant) is set if Function Key 0 was depressed,
N _bit 14 is set if Function Key 1 was depressed, etc.

7-14

ot 355

o

i b

e

IARRAY
SUBSCRIPT CONTENTS

4

13 Which of Function Keys 16-31 was depressed at time of re-
turn. But 15 (most significant) is set if Function Key was de-
pressed, bit 14 is set if Function Key 17 was depressed, ete,

14 Character which the light pen was pointed at when light pen
interrupted.
15 Reserved.
16 Reserved.
17, 18 X Coordinate of light pen hit in scaled mode of the element.

If Real*4, Real*8, or I*4, both 17 and 18 are used. If I*2,
only 18 is used.

19, 20 Y coordinate of light pen hit in scaled mode of the element.
If Real*4, Real*8, or I*4, both 19 and 20 are used. If I*2,
only 20 is used.

NOTE: See Additional Notés, Section 7.2.5 #3 for detail on retrieving scaled
coordinates and using IDISPL.

ATTENCODE - 1*2 variable or constant. Code of attention device to wait for.

1 = Function Key 0
2 = Function Key 1

52 = Function Key 31

33 = End of sequence character (usually carriage return)
34 = Light Pen

35 = Clock

When ATTENCODE is 35, the next argwment is the number of 8.3 millisecond
clock ticks to wait. This next argument is mandatory.

7-15

EXAMPLE 1:

To call a halt in the program until function key 5 is pressed:
CALL RQATN(ICODE,IARRAY,6)

EXAMPLE 2:

To halt until either a display is light-penned or function key 8 is pressed,
whichever occurs first:

CALL RQATN(ICODE,IARRAY,9,34)
EXAMPLE 3: '

To halt for 200 clock ticks or until function key 23 is pressed whichever
occurs first:

CALL RQATN(ICODE,IARRAY ,24,35,200)

7-16

AT
it I
R

EXAMPLE 4:

To specify the range of codes 5, 6, 7, 8, 9 and 10, use the arguments 5, -10.
For example, to wait for Function Keys 1, 3, 5, 6, 7, 8, 9, 10, 17, 18, 19,
20, and 1200 clock ticks use the following call:

CALL RQATN(ICDDEA,IRRAY,2,4,6,-11,18, -21, 35,1200)
(15) CALL SETVM(ELEM,TYPE,VECT MODE,[X]},(Y],[INCR],(M])

This subroutine is used to set the vector type for the VECT routine.
Detailed description of VECT MODE is in additional notes in Section
6.205 #4.

TYPE - Reference subroutine PLOT,

VECT MODE - I*2 vector mode type:
0 = relative
1 = relative auto X
2 = relative auto Y
4 = absolute
5 = absolute auto X
6 = absolute auto Y
8 = relative compact
9 = relative compact auto X
10 = relative compact auto Y

X, Y - Starting position (for relative types) of the image. Must b
in proper mode for this element.

INCR - Increment fop auto X or auto Y. This is the increment that

the appropriats coordinate will be stepped by. Must be in
the proper mode for the element.

7-17

M - Used for relative compact mode. If M = 0, no scale mode;
if 1, scaled mode,

NOTE: See Additional Notes, Section 6.2.5 #4 for applicatioa.

(i6) CALL STEOS(ICHAR)

This routine is used to set the end of order sequence character (the charac-
ter which when pressed will cause the RQATN routine to return with a code
of 33), The default is the carriage return character (CR).

ICHAR - I*2 number or variable set to the ASCII code of the character
which {s to be the end of order sequence (EOS) character. If
all characters are to be EOS characters, set ICHAR to a -1,

EXAMPLE: To change the EOS character to an ASCII code of 101 octal
(lA'):

Call STEOS(65)
(1) CALL TEXT(ELEM#,TEXT X,Y,[SIZE],[KEY],[IDISPL])

The TEX: subroutine creates text images in the element. The Xand Y
values determine where on the screen the text will be started. The first
character is centered at (X,Y). Characters produced may be of 4 sizes and
of two orientstions, vertical and horizontal.

The system functions ENCODE and DECODE are very often used with this
routine. See Section 6.2.5 #1 for detail.

TEXT - i{s a variable, array name or hollerith string of the charac-
ters to be displayed. The characters in the string text must
be packed 1 character per byte. The text is terminated
when a byte of zero is encountered or a byte of Octal 024. See
Section 6.2.5 #5 for a chart of possible characters to draw.

X, Y - are variables or constants in the proper mode for this element

representing the X and Y coordinates of the center of the first
character.

7-18

SIZE - [*2, Is a variable defining the size and orientation of the text.
Values:
1 = smallest character, horizontal orientation.
-1 = smallest character, vertical orientation.
2 = 1.5 smallest character, horizontal.
-2 = 1, 5% smallest character, vertical,
3 = 2% gmallest character, horizontal.
-3 = 2% smallest character, vertical.
4'= 4* gmallest character, horizontal.
-4 = 4* gmallest character, vertical.
Default is size 3.
CHAR COL/ LINES/ COL/ LINES/
SIZE LIN PAGE CHAR CHAR
1 120 60 34 68
2 81 41 50 100
3 60 30 68 136
4 32 16 128 256
KEY - I*2 variable or constant representing a number associated with

this string of text for cursor control. Key must range from 1
to 250 and must be unique (no 2 texts can have the same key).
See Section 6.2.5 #3 for discussion of IDISPL.

(18) CALL VECT(VI,[v2], (OPERATION])

V1, V2 - V1, V2 take on different meanings, depending on the
vector mode specified in SETVM.

If the mode was 0, 4 or 8 (relative, absolute, relative compact),
V1 and V2 are the X and Y coordinates in the appropriate scaling,
In the relative compact form V1, V2 are converted to screen co-
ordinates and treated as described in the discussion.

If the mode was Auto X (1, 5 or 9), V1 is the Y coordinate value
in the proner mode for element. V2 is optional and if used will

cause ‘he increment to be changed. It also must be in the proper

mode for the element specified in the SETVM call.

If the mode was Auto Y (2, 6 or 10), V1 is the X coordinate and V2
changes the increment. Identical to above.

7-19

T

If mode is 9 or 10, V1 is DX, V2 is DY, both are neaded.
If omitted they will default to zero,

OPERATION - I*2, if OPERATION is a 1 (ixf: WUt) a draw command will be
issued to draw a vector from ii:. previous X, Y to the current
X, Y. If operation is a 2, the beam will be moved to the X, Y
value, but no draw will be performed.

NOTE: See Additional Notes in Section 7.2.5, #4 for applicaticn.
(19) CALL VECTT(IDISPL')

This subroutine is used to terminate the SETVM instruction and place the
created image in the appropriate element,

NOTE: See Additional Notes in Section 7.2.5, #4 for application.

7.2,5 SAMPLE PROGRAM ON THE VECTOR GENERAL

DIMENSION IR(20),IX(5),IY(5) IARRAYS FOR RQATN, PLOT
DATA IX/-100,-100,100,100,-100/ '

DATA 1Y/-100,100,100,-100,~100/ ,

CALL GINIT ! INITIALIZE VG SCREEN
CALL INIT(1) ! CREATE ELEMENT #1.

I WILL WRITE "EXAMPLE" AT THE
MIDDLE LEFT OF THE SCREEN OF CHARACTER SIZE 2.

o NoNoNe

CALL TEXT(1,'EXAMPLE',-500,0,2)

CALL GRU

I WILL DRAW A SQUARE IN THE CENTER OF THE

SCREEN. THE COORDINATES OF THE VERTICES ARE;:
(=100,-100) (~100,100) (100,100) (100,-100)

THE HORIZONTAL COORDINATES ARE HELD IN IX.

THE VERTICAL COORDINATES ARE HELD IN IY.

THE DIMENSIONS ARE 5 IN ORDER TO CLOSE THE
SQUARE. NOTE THAT THE FIRST AND LAST COORDINATES
ARE THE SAME.

oNoRoNoRoNeoNoNe Ny

CALL PLOT(1,0,IX,IY,5)

I WANT TO LOOK AT THE PICTURE UNTIL I
PRESS KEY 4. SO HALT THE PROGRAM:

aa

7-20

o

,mﬁm\
i ¥

CALL RQATN(IC,IR,4)

CALL GTERM !END USE OF VG
STOP
END

7.2.6 Task building

The task building commands must include the 4K common area VGCOM. Thus,
a typical task build is;

TKB

NAME=NAME

/

LIBR=SYRES:RO
COMMON=VGCOM:RW:6
ASG=TI:5

//

7.2.7 Hjnts for Programming the VG

The following is a list of commonly occurring software errors and several sug-
gestions to increase efficiency.

1. Call GRUN properly.

If GRUN is called before a display is set up, or if it is not called at all, the
program will not run but will inhibit the use of the VG, even if the program is
aborted. GRUN may be called any number of times, but must appear after
every GINIT or GHALT.

2. Call GTERM at end of program.
If GTERM is not called, the program stops, leaving the picture on the screen.
3. Cali GINIT at the beginning.
If GINIT is not called before any other graphics routine, the program will
automatically abort with no error messages appearing. Also, if GINIT is
called again within the same program, GTERM must precede it.

4, Don't call RQATN until after GRUN has been called.

Otherwise, no image will appear and no function key will light. The VG will
be inhibited, even if the program is aborted.

5.

If a curve plot of some sost is desired where either axis is incremented at
a constant rate, use the SETVM, VECT, and VECTT routines to conserve
buffer area.

If a "moving" picture effect is desired, a CHNGE call within a DO loop may
be made, changing DX and DY each time. The displays in the element follow
the DX,DY changes.

If an array of data are to be plotted, one may use IDISPL with the light pen
to distinguish points rather than returning coordinates in RQATN. This
is almost essential if roundoff of coordinate values allows two points the
same value.

7.2.8 Additional Notes

(1) ENCODE, DECODE:

ENCODE (c,f,b{ERR=5]) [LIST]
DECODE (c,f,b [ERR=5]) [LIST]

(See Volume 3 of RSX~11D Fortran Language Reference Manual, Page 5-29,
for explanation of these requirements.)

The formats for ENCODE and DECODE are exactly like a WRITE and READ
format, respectively. Format such as (1X,I2) is valid as long as the total
number of spaces is added to c.

EXAMPLES:

" (2) Want NUM=214 to be displayed on the screen.

Code: LOGICAL*1 A(4)
DATA A/4*0/
NUM=214
ENCODE(3,100,A)NUM
CALL INIT(1)

CALL TEXT(1,A,0,0,1)

100 FORMAT(I3)

NOTE: The fourth array subscript = 0 so TEXT will end the display
string. See TEXT.

7-22

(b) You have read a number 3.2 from the screen which had been displayed
with TEXT, and had KEY=1 associated with it, into a LOGICAL*1 array
A(3) with RDCHR. Now you want to decode it.

(c)

(d)

(e)

100

LOGICAL*1 A(4)
DECODE(3,100,A)RNUM
FORMAT(F3.1)

NOTE: A(4) = 0 for TEXT to end.

Use other than LOGICAL*1 arrays to ENCODE and DECODE into
another array.

100

DIMENSION I1(12),J(3)

DATA J/316,1,9260/

ENCODE(3,100,1)J(3)

DECODE(3,100,1)J(3)

FORMAT {14)

RESULT: I(1)="'9',1(2)="2',1(3)="6',1(4)="'0'

Use DECODE to pick characters from within an array to form numbers.

100
200
300
400
500

LOGICAL*1 TEST(10)
DATA TEST/'I','2','3' 14! ,15','6' RUANREY ’vgt’vov/
DECODE(1,100, TEST)NUM1
DECODE(3,200,TEST)NUM2
DECODE 4,300, TEST)NUM3
DECODE(7,400, TEST)NUM4
DECODE(10,500, TEST)NUMS5
FORMAT(I1)

FORMAT(I3)

FORMAT(2X,12)
FORMAT(4X,I3)
FORMAT(9X,11)

RESULT: NUM1l=1, NUM2=123, NUM3=34, NUM4=567, NUM5=0.

Want to ENCODE a real number,

100

LOGICAL*1 A(7)

RNUM=16.1237

ENCODE(7,100,A)RNUM

FORMAT (F7.4)

RESULT: A(1)="1',A(2)="6',A(3)=".", ETC.

7-23

(f) Use ENCODE to write a number,

LOGICAL*1 TEST(6)

DATA TEST/'X','='d%t t/

NUM=2142

ENCODE(5,100,TEST)NUM
100 FORMAT(2X,14)

RESULT: If printed in character format, TEST would be X = 2142.
Notice how 2X erased the 'X' and '=' data in TEST.

(2) RQATN:
Formats for retrieving coordinates in scaled mode:
INT*2,LOG*1 X coord=IRRAY(18), Y coord=IRRAY(20)

INT*4 INTEGER*4 IX,IY
DIMENSION IRRAY(20)
EQUIVALENCE (IX,IRRAY(17)),(IY,IRRAY(19))
Then X coord=IX, Y coord=IY

REAL*4 DIMENSION IRRAY(20)
EQUIVALENCE (X,IRRAY(17)),(Y, IRRAY(IQ))
Then X coord=X, Y coord=Y

REAL*8 REAL*8 X,Y
DIMENSION IRRAY(20)
EQUIVALENCE (X,IRRAY(17)),(Y,IJRRAY(19))
Then X coord=X, Y coord=Y

(3) Using IDISPL:

When an element is created, it occupies a storage area of its own in the dis-
play list. Each subsequent call using the element is stored together, thus each
display has its own position. The variable IDISPL records that offset from
the first instruction, and if the element is light penable, RQATN may be used
to differentiate displays.

Given the RQATN array name as IR, dimensioned at 20, then IR(2) returns a
number used with IDISPL to calculate the particular image light penned. How-
ever IR(2)-IDISPL varies depending on which command was used to create the
display light penned.

i

Nt

et

ORIGINAL PAGE IS
OF POOR QUALITY

ROQUTINE IR(2) - IDISPL(words) EACH FURTHER CALIL{words)
PLINE 2 3
PLOT 4 -
POSN - 3
TEXT 4 5
VECTT 6 in compact modes -
7 in non-compact
modes
IDISPL EX. 1

A square is drawn with element 1, by calls to POSN then PLINE. The coordinates
of the vertices are: (~100,100), (-100,-100), (100,-100), and (100,100). A solid
line is drawn.

CALL INIT(1,1)

CALL POSN(1,-100,100,IDISPL1)
CALL PLINE(1,0,-100,-100,IDISPL2)
CALL PLINE(1,0,100,-100,IDISPL3)
CALL PLINE(1,0,100,100,IDISPL4)
CALL PLINE(1,0,-100,100,IDISPL3)

‘CALL GRUN

RESULT: (~100,100) (100,100)
(~100,-100) (100,-100)

VALUES:

IDISPL1 15 (INIT took 1st 14)

IDISPL2 18

IDISPL3 21

IDISPL4 24

IDISPL5 27

If RQATN was called next and IR(20) is RQATN array, the value of IR(2) is as
follows:

7-25

IDISPL of Vector that was hit IR(2)

IDISP1 no image
IDISP2 20
IDISP3 23
IDISP4 26
IDISPS 29

Notice that IR(2)-IDISPL = 2 as in the chart.

IDISPL example 2

Points will be displayed using IX(10), IY(10) to hold the coordinates. A call

to TEXT with IX, IY will place an 'X' in the appropriate position. For example,
if IX(2) = 1000 and IY¥(2) = -500, an 'X' will be drawn at (1000,-500). The initial
displacement of the first TEXT command is recorded in IDISPL. Then using
the light pen, the point number hit by the light pen will be calculated.

CALL INIT(2,1)
IDISPL=0
DO 10 I=1,10 .
CALL TEXT(2,'X"IX(D,IY(D,1,,,ISPL)
1F(IEQ. 1) IDISPL=SPL

10 CONTINUE '

Result: 10 'X''s at various places on the screen.

The first 'X' has IDISPL~=15 (INIT takes 1st 14). If RQATN is now called with
RQATN array IR(20), IR(2) returns the displacement +4 of the character light
penned. Since each text instruction takes 5 words, a formula to find the point

number would be (IR(2)-IDISPL+1)/5. Thus: The first character if light penned is:

IR(2)=19 IDISPL=15
(19-15+1)/5 = 1

The second character if light penned is:

IR(2) =24 IDISPL=15
(24-15+1)/5=2

Note: IR(2) starts at IDISPL+4. Since each command generates 5 words, IR(2)
increases by 5 with each point light penned.

7-26

.,

Since PLOT and VECTT cause multiple drawings with one command, a formula
for computing the point number drawn within each call is:

4

PLOT: (IR(2)-IDISPL-2)/2 ,
VECTT: (IR(2)-IDISPL-5)/2 non-compact types
(IR(2) -IDISPL-~5) compact types

where IDISPL is returned in PLOT and VECTT.

SETVM, VECT, VECTT

SETVM, VECT, VECTT subroutires are used together to create vectors or
end point plots. They produce the same thing as the PLOT routine, but allow
full usage of zll plotting capabilities offered by the Vector General controller
hardware.

The following paragraphs explain the features offered by these three sub-
routines. The reader may want to reference the VG Manual #VG 101056

_"Graphics Display Unit" for more information.

There are 9 Vector modes offered by the Vector General Hardware:

(1)

(2)

(3

(4)

(5)

Absolute: The actual coordinate value of each X and Y is used. It draws a
line from the previous X,Y position to the specified X,Y position. (VECT
MODE = 4);——

Absolute Auto X: The actual coordinate value for each Y is used, but it steps
the X value by a specified increment before each draw or move. Notice that
display space usage is decreased since only the Y coordinate is needed.
(VECT MODE = 5).

Absolute Auto Y: This is the same as absolute auto X, only the X and Y
coordinates are reversed. (VECT MODE = 6),

Relative: Each X,Y coordinate is assumed to be AX and AY from the last
coordinates, so a line is drawn from the last position - say, X', Y' to X'+X,
Y'+Y, where X, Y are the input X and Y. Hence, each vector is relative to
the previous one. (VECT MODE = 0).

Relative Auto X: The Y coordinate is used as a AY adding it to the last Y
position, but the X is incremented by a specified increment before each draw
or move. (VECT MODE = 1).

T-27

(6) Relative Auto Y: This mode is similar to relative auto X, but the Y is auto-
incremented and the X is relative. (VECT MODE = 2).

(7 Relative Compact Mode: This mode is used exactly like the relative mode
described in (4) above; however, the data words are compacted to reduce
space and increase performance. There are two types of compact modes:
no scaling and scaling. In the no scaling mode, the coordinates must be in
the range -64 to 63. In the scaling mode, the coordinates must be in the
range -2048 to 2047; however, only the high order 7 bits of the number are
used. That is to say, suppose the number was 1271, which is 010011110111
in binary, the lower 5 binary digits are 10111. Hence, this number is the
same as 1248, In fact, any numbers between 1248 and 1279 are the same
as 1248, In this mode space and performance are gained, but precision or
large stepping is lost, (VECT MODE = 7).

(8) Relative Compact Mode, Auto X: In this mode the X value is stepped by a
constant increment (-2048 to 2047), but the Y value is in the compact mode
form as explained before. (VECT MODE = 8).

(9) Relative Compact Mode, Auto Y: This mode is similar to the relative com-
pact auto X mode, but the Y is incremented and the X is in compact form.
(VECT MODE = 9).

c
C THIS IS AN EXAMPLE OF USE OF THE SETVM,VECT,VECTT
€ ROUTINES., NOTE THAT NO GRAPHICS COMMAND MAY BE
C CALLED AFTER SETVM EXCEPT VECT AND VECTT. ONCE VECTT
C IS CALLED, GRAPHICS COMMANDS MAY BE RESUMED.
C .
DIMENSION IR(20)
CALL GINIT INITIALIZE VG
CALL INIT(1) ‘ ICREATE ELEM #1
CALL INIT(2) |
CALL TEXT(2,' THIS IS THE SETVM,VECT,VECTT SEQUENCE!,
* -200,200,1) IWRITE ON VG
CALL GRUN IDISPLAY THE TEXT
o)
C SETVM IS CALLED WITH MODE 5 AND INCREMENTS OF 50,
C THE INITIAL POSITION IS -1500,-1500 AND
C SOLID LINES WILL BE DRAWN.
c)

7-28

e
s

SR

RN

ORIGINAL PAGE IS
OF POOR QUALITY

CALL SETVM(1,0,5,~1500,~1500,50)

DO 10 I=1500,3000,100 ILOOP TO DRAW SEGMENTS
R=FLOATII)
ICOORD=1500*COS(R) ICALCULATE COORD
CALL VECT(ICOORD)
10 CONTINUE
CALL VECTT(IDISPL) ITERMINATE SEQUENCE
CALL CHNGE(},,,,1000,1000) ICHANGE SCALE TO FIT ON PAGE
CALL RQATN(IC,IR,2) !OTHER GRAPHICS COMMANDS
C IMAY BE CALLED
CALL GTERM
STOP
END
RESULT:
THIS IS THE SETVM, VECT, VECTT SEQUENCE
NOTE: The following is a sample task builder file for a graphics program.
The common statement must be included.
VECT=VECT
/
COMMON=VGCOM:RW:6
LIBR=SYSRES:RO
//
(5) This table lists the possible characters one can draw on the Vector General.

They may be drawn as follows:

CALL INIT(1)
ICHAR="'354 (draws a A,'"' means octal)
CALL TEXT(1,ICHAR,0,0,1)

ORIGINAL PAGE 1S
OF POOR QUALITY

(6) The picture scale and coordinate scale values (PC,CS respectively) are
factors used in computing the size and orientation of an element's displays.
They differ from each other only by their position in the formulae:

X'=PS/2047*(CS/2047*X+DX)
Y'=PS/204T*(CS/2047*Y+DY)

X', Y' - new coordinates
X,Y - old coordinates

DX, DY - increments of position of the center of the programmable area of
elements

Thus, the numbers DX and DY are added to the CS scaled coordinates be-
fore the picture is scaled with PS, Note that if DX and DY are zero (default
values), PS and CS are identical.

The following prbgr:im exemplifies the use of PS and CS.

Weavss s

PURPOSE:
Draw 2 boxes:

~_ Box1l: CS=1024, PS=2048, DX = DY = 1000
Box 2: CS= 2048, PS= 1024, DX = DY = 1000

CODE:

DIMENSION IR(20), IX(5), IY(5)
DATA IX, IY/-500,-500,500,500,-500,-500,500,500,~500,-500/
CALL GINIT
CALL INIT(1)
CALL INIT(2,,,1)
CALL PLOT(1, 0, IX, IY, 5)
CALL GRUN
CALL RQATN(IC, IR, 3)
CALL CHNGE(1,0, 0, , 2047, 1024, , , 1000, 1000)
CALL TEXT(1,'R',1000, 1000, 1)
CALL RQATN(IC, IR, 2)
CALL PLOT(2, 0, IX,IY, 5)
CALL CHNGE(@2,0,0,,1024,2047,,, 1000,1000)
CALL TEXT(2,'T',1000,1000,1)
CALL RQATN(IC,IR,4)
CALL GTERM
STOP
END
7-30

.

g

ORIGINAL PAGE |
RIGINAL paGE 19
OF POOR QuALITY

. RESULT:
: R(1500,1500)
(750,12501 (1250,1250)
T(1000,1p00)
(250,750)
R 1750,1250)
(250,250) 1250,750)
Note 2:

No change formula is
1*(1*COORD+DX)

The 1st square's coords are
changed via:
1*(.5*COORD+1000)

The 2nd square's coords are
changed via:
.5%(1*COORD+1000)

The net effective difference is

that the DX .or DY is scaled when
PS is changed, but is not scaled
when CS is changed. Thus the
second square was moved only

500 (half sca:)) from (0,0) whereas
the first squuze was imoved 1000
from (0,0).

As can be seen in the above note, DX and DY are used to compute the center of
the element with respect to the screen's center. They are scaled with the dis-
play only by PS. DX and DY are increments of a change to the center of the
element. Thus, if DX=100 and PS is changed to half scale (1024), the element is
centered 50 away from (0,0). However if CS had seen changed to half scale, it
would be centered at 100 away from (0,0).

7-31

ASCIll CHARACTER CODES

ORIGINAL PAGE IS
OF POOR QUALITY

e Alphae Aighae
Tl A LR VW o S
VAo £ , bwne Kevhoagrt ¢ GOCENOE g
Kymiml Keys " nish Symim| Reyn Her Lot Risk Fymind m:,inmul
- e
02 001009 202 TN * Batel HEE o - Son - bl g it
01 001M 00 ETX * Cetel 30 otze0 12 A 2t s i
U4 082000 004 ENT " Darl 6 e iy e e R e
o8 neIws %08 ENG ' Eetrl W otme 1% v b gy
“ fochondie B Eart i ” e 124V Vann c1 140400 207 Y AeMispre
“ qwe ;e Ak v e i 53400, 127 W Wehtt cz 141000 307 = BaMiap
n g0 w1 oK o " gmoo 130 X Xobt €3 t41400 Gey Cubopre
R R B om 131 2 Toh & e g el
' i 2000 1 ;
oo Nty @ omew R S
:g m Ol FFitap, lefh) Letrl . D osedoe 138 l\ i ' ¢ Mo 207 o B oM apee
Q! 9 ~
o owme e 5t neered var o T et LS reme iy regtatd
or 007408 MT ST Heored) Dot sr 087400 137 :-T- - ' ¢ vooes 213 ¥ y e
:: 010008 920 DLE fimored) Petel | 7] 060000 149 Jabecripy Tewn ¢ cc': :::m g:"l . i:::::r:
01040 031 OCI{eLP }Qetrl 1 060400 141 8 A cc tason 3§ A a4
12 011000 022 DC3{«SZ) Actel : 2 001000 142 b » , c " e
H Shioee 022 2 ; ! X D tess00 s (] Mok apwe
Bopem i o omEE o f] @ mmag o
s 052400 028 NAK ugnared) U'ctel ! .
18 413000 026 3YN n;mrmll{"«rl : :: :go‘g: ::: ¢ : ‘ g: H""’“ oo oo
1 01340 037 ETB ignared) Wetrl ' o 063400 147 x G : D2 oL Pfvidiedd
1e 014000 030 CAN pgnored) Xctel ;) 064000 150 b H ' 0 e 1 o Pt
1® 014400 01 EM Jignored) ¥ ctrl ; “ as400 181 | : . 159000 o1 @ ol
1A 018000 037 SUD figrored) Zorl A des000 132) ‘.' ; g: shi0 338 | Hiiratd
» Di360 933 £5C ilgnored) (ctel i 4. 08¢0 133 Kk K] 135000 38 et
:g «;::& ga; £8 ammored ctrl sC 0ss000 184 ! L b 11?3 gz; { \‘{::m::c
. 35 03 ugnered | ol) 06ee0 155 m M H 08 184000 bt
1E 017000 03¢ RS usmored) ctrl 114 067000 186 n N ! D o il
; e 191 4 - : 3 18400 M ~ Y shR spee
om0 0 Spwe o ambar % otomo 18 b H De e L Fantim
1 oreke oa | 1 onn " orew0 s q Q ¢ D 1sm0n 34 @ L
22 021000 C4z 2 oMt oo 071000 182 ¢ 1] ‘ on :wm pisig progd
13 031400 043 © 2 eht 1] 0740 163 s s oE :rm progs L
n by . . v 338 T jeuper) S Apee
3 omwo oo 4 e PN e e ¥ DY i aa C uper) o
% 02000 046 4 5 it 178 ariens 14k v v Bl e e epee
27 033600 ner ¢ T8 ; 7” 073400 197 v v fpllakingy ;
0 024008 180 ([y i M omawe 170 x X H jreriedii i 3
28 024400 081) 9 ohit . 1 074400 171 p v : £ i S e
2 G 1) ook i fraen 1y Y : £3 141400 43 ¥ C apec
2 osos Mz i o orse 2 z ' Ed 142000 4 § D apec
2 susion 081 3 shit [78400 173 | Iohft] S 182400 345 € E e
I o , ; 1 076000 174 \oht] 103000 348 P roade
" o e - - : i 078400 178 .) Jont E7 160400 347 7 G e
o omme , I 011000 176 ahit ES 104000 380 4 W owper
e owe o7 , r om0 i1 el pEL] E9 10a00 2§ [T
% Sleem o4 [} H 309F 100000- 200- (*Note) +**Note} ; EA 185000 182 \ Jd o apee
8 Q0 o8t ; -‘. i 1:1400 237 EB 185400 333 7 fruper) K e
b SN0 0w 2 : : » 130000 240 0 Ipaty epac EC 168000 184) L oepee
n e 4 2 M J2000 241 4 1 st spec ED 1M400 383 M apee
” e a3 : A2 121000 242 2 shitepec EE 147000 as4 vV N e
il Ms o 3 s . ,\: 13“00 243 3 st spec ; EF 187400 387 W 0 fove
37 033400 067 7 1 ' :: o 5: v 3 onh e A Jrooo0 am T P e
o e a1 ! : 2 5 uhitapec ' ro 170400 381 © [- T
Y 03400 01 90 9 YoAe 121000 48 rared) : 5 i w2 B
34 038000 012 1 : A 120 2w ¥ f::f:::: : o e HE e
W edsem 091 ; T A ttwen 230 € + shitapme 200 308 5 o
AC 04000 N7y < o ohft A9 133400 23 =@ > ahfiape ! re H0%0 3 o v
je 7 ' : e pec F6 173000 de o Vo oapec
Bommm . M M mmamgesw T on mmam v B
AP MtEe s ohis aC - 120000 234 € X ' b oo & 3t
s R T S a AD 126400 193 W ooy A A T e
40400 101 A Ashit AE 127000 o3 B e i L o
32 o4 102 B B AF 137400 287 . e FB 1700 a7 o Tapu shtt
41 041400 193 © Cshf (1] 130000 260 R o o B il
" il Cunt 8 1ataoe B0 o i} upee] 178400 378 o4 1apee ahst
5 e 1o ot o lfuc‘.m :ql L lspvc FE 177000 378 “teuperd . ppee nhft
1B 04d000 108 F ¥ shit B3 1itiso 'ﬁ) Ko A PRL
- niren 10t A B o ':‘ﬂ“M ;';v‘ - lnp;'v: o fudid 0 oy 3
W d4wen L0 H 1 ohit BS 13w W8 A ol s laadda Lo ot
" fei0 111 1 1 watt pA— ape u Wlne e naey HOY
W 043000 142 4 13ntt B mono ma 3 W ape 3 R e =
Wm0 Msm 1l K K +ht 07 1 207 2 T we * P2y e
W quom U3, Lshe . ; . < aper ‘
ha S mm: :n ::::322 ik \ﬁ 3 Jpew Note- ¢ ptional special vharacties
W a0 N X ohe BA fusnen %2 ¢ il o etrl and specand - AR TN
$F M 13T et S fenwedory o F P
30 Asonge {0 p P ahft -1 fasdon . %33 x 1 dpeg
B 13RN0 274 e— s sl spey

7-32

T

7.2.9 Hardcopy Procedure
The entire hardcopy procedure consists of 4 basic steps:

(1) User depresses appropriate keys.

(2) Creation of PARAM.BIN and VECT1, BiN files,
(3) User initiates CPY,

(4) CPY generates hardcopy from above files.

Step 1 is accomplished by depressing SPEC and BS on the Vector General key-
board simultaneously while the desired picture is on the screen. A message,
"HARDCP--STOP," will ke printed on the decwriter. As soon as this is printed,
the user may request another hardcopy using the SPEC/BS keys. Steps 3-4 are
accomplished by typing CPY and pressing esc key on the decwriter. The output
time depends on the complexity of the picture; CPY will eventually produce the
final hardcopy on the Versatec.

7-33

- e et 41 s il St

ks B B o f Rt .

o kg

8. Error Messages and Procedures

8.1 VG Errors

Errors may occur which relate only to calls made to the Vector General. These
errors will be reported in the following form:

VECTOR GENERAL ERROR NUMBER
The program name where the error occurred, an error number 73 and trace-

ERROR NUMBER

6

10

12

14
16

17

18
20

22

24
28

29

_backs then follow. The error numbers reported are outlined below.

ERRORS IN GRAPHICS
EXPLANATION

No more room exists in the display Buffer to receive
this operation or any others. Room must be created
by deleting or resetting elements or parts of elements.

COMMON=VGCOM:RW:6 was not specified in the task
build file. Non-existent error numbers may follow
this error.

Tried to delete a non-existent element with DELMT.

" Tried to activate an element that was already active with

INCLD.
Tried to INCLD a non-existent element.
Tried to OMIT a non-existent element

Called GRUN before any elements were active or
existent.

Tried to OMIT an element that is already inactive.
Tried to CHNGE a non-existent element.

Either a COPY of a non-existent element or a COPY
to create an existent element was made.

Tried to PLOT or TEXT with a non-existent element.
Tried to ICURS an invalid key number.

Tried to RESET a non-existent element.

8-1

e r e v— it

30 .

32

33

34

38

39

43

47

50

60

62

64

66

67

72

73

74

Tvied to ICURS a non-existent key
Tried to RKEY a non-existent key

Tried to RESET an element which has an active cursor
within it.

Tried to RKEY a key which has been activated by
ICURS. RECURS must first be called.

Tried to INIT an existent element.

Tried to DELMT an element which has an active cursor
within it. RECURS must first be cailed.

Tried to create a key with 20 others in existance., The
maximum number of keys ts 20. Use RKEY to remove
any unneeded key.

Tried to create a key which already éxists.

Tried to RKEY an invalid or non-existent key.

RQATN has no arguments or invalid arguments.

Hardware error in function keys. If this occurs ex-
cessively contact Code 664 personnel.

PS and CS are too small causing a display which would
burn the screen. Thus, the call is rejected.

Argument problem in POSN, INIT, COPY, or CHNGE.
Argument problem in PLINE.

Argument problem in COPY.

Someone else is using the Vector General, GTERM
has not been called previous to the call to GINIT,
VGI was not installed, or VG is off.

COMMON=VGCOM:EW:6 was not included in task build.

VECTT was called before either SETVM or VECT.

8-2

e

i
i
¥
H
H

78
79
80
82
84
85
86
87
88

92

9

100

113

120

160

8,2 Other Errors

8.2.1 Utility Errors

Argument problem in STEQS.

Argument problem in PENTRK.

Argument problem in ICURS.

Argument problem in RKEY,

Argument problem in RDCHR.

Argument problem in SETVM,

Argument problem in PLOT.

VECT was called before SETVM.

Argument problem in RESET.

Argument problem in TEXT.

Argument problem in RQATN. .

Argument problem in PENTRK or SINIT.

Element called is non-existent. Graphics package may
be destroyed and VGI may need to be restarted. This
error is serious,

A function key is stuck. The key number is reported.
Gently lift up on it. The key may also have been
pressed down too long.

Tried to create an element number greater than 249.

Key called for in RDCHR could not he found.

Most errors encountered by the RSX-11D operating system utilities are reported
to the user via a standard format. This consists of three characters identifying
the utility, followed by the error message on the same line.

8-3

A. PIP Error Messages .
Presented here are some of the most frequently encountered PIP messages.

For more detail or additional messages constlt pages 2-29 through 2-36 of the

Utility Procedures Manual. .

1. PIP -- BAD USE OF WILD CARDS IN DESTINATION FILE NAME

PIPhas strict rules concerning the use of wild cards '"*" in the destination. The
user has used it illegally. Check Chapter 3 of this manual for the proper use of
wild cards.

2. PIP -- OPEN FAILURE ON OUTPUT FILE

This usually means the file being accessed is locked. Issue the PIP command
with the /UN switch. For example:

MCR>PIP PROG.FTN;25/UN

If this doesn't rectify the problem then there is the possibility of a privilege
violation or parity error. Also, the file being accessed may rot exist under the
users UIC.

3. PIP -- OUTPUT FILE ALREADY EXISTS — NOT SUPERSEDED

An output file of the same name, type and version as the file already exists.
This usually occurs when the user attempts to transfer files to tape or another
UIC which already has those files on it. By using the /SU switch, the user can
replace the old files on the output device with the new input files of the su.ne
name, type and version.

B. FLX Error Messages
Presented here are some of the most frequently encountered FLX messages.

For more detail or additional messages consult page 3-18 through 3-25 of the
Utility Procedures Manual.

1. FLX -- FILE ALREADY EXISTS

A file of the same name and type already exists on the output device. Since there
is no supersede switch with FLX, the user must specify a new or corrected file-
name, or use PIP instead.

”“‘N
3 L

2. FLX --+ IN VERSION NUMBER NOT ALLOWED

Wild cards are not allowed in the version number field of a file specifier. All
version numbers must be explicitly specified.

C. DMP Error Messages

DMP Error Messages may be found on pages 4-4 through 4-6 of the Utllity
Procedures Manual.

D. Editor ERROR Messages

Presented here are some of the most frequently encountered EDITOR messages
from some of the four classes of errors. These four classes are:

(a) Command Level informational and error messages (Pages 5-50 toc 5-54 of
the Utility Procedures Manual)

(b) File access warning messages (Pages 5-54 to 5-55 of the above manual)

(c) Error Messages that result in Restartmg the editing session (Pages 5-55 to
5-57 of the above manual)

(d) Fatal error messages that result in EDI closing all files and terminating its
execution. (Pages 5-57 to 5-60 of the above manual)

All messages from class (a) are designed to be helpful to the user. They also
indicate errors with the previous command and are followed by a prompt for a
new command.

For example, if a delete command encounters an end-of-buffer in block made
the following message is issued:

’[.‘EDI -- *EOB*]
(Notice the prompt for a new command, '*'
Frequently encountered messages in this class include:
[EDI -~ BUFFER CAPACITY EXCEEDED BY]

offending line
(LINE DELETED)]

8-5

Files not created by the EDITOR cause this message to be printed.

To rectify the situaticn, the following five step procedure is suggested:

1. Start the editing session by specifying a filename that does not correspond
to any file in the current directory. This causes the EDITOR to open a
new file and prompt for input.

2. Enter edit mode (type CR)

3. Using the size command, reduce the number of lines read into each buffer.

For example:
*SIZE 50

4. Use the kill command to terminate the creation of {he file.

5. Now enter the name of the desired file when the EDITOR prumpts for a
new file specification.

[EDI -~ CREATING NEW FILE] i

The input file specified does not exist so EDI has created a new file with
the name specified.

[EDI -- NO MATCH]

A change command has specified a string to be changed that is not the cur-
rent line.

[EDI -- *EOF*]
The user has read the end-of-file on the input file.

(EDI -- *EOB*]

The end-of-buffer has been reached. The current line pointer now points
to the end of the buffer. If new lines are added at this point they will be
inserted after the last line of the buffer.)

Messages in class (b) indicate that the user is attempting to access directories,
files or devices that'are not present in the system. After each message EDI

()

8-6

returns to the command mode and waits for input. However, some errors in
this class should not occur. If they do, consult the system manager. These
messages are:

[EDI -- DEVICE NOT READY]

(EDI -~ FILE ALREADY OPEN]

[EDI ~- RENAME NAME ALREALY IN USE]
[EDI -- WRITE ATTEMPT TO LOCKED UNIT]
[(EDI -- BAD FILE NAME}

The third class of errors, (c), are caused by conditions encountered by EDI that
make it impossible to continue the current editing session. EDI closes all open
files (with the exception of the secondary input file), reinitializes, and then
prompts for the next file to be edited.

Frequently encountered messages in this class are:
(EDI -~ FILE IS ACCESSED FOR WRITE]

The input file is currently being written by another task:. Wait for the file to be
written and then retry the command.

[EDI -- PRIVILEGE VIOLATION]

This usually means that the UIC under which EDI is running does not possess
the necessary privileges to access the specified directory.

In this class there also are messages which indicate failure in the EDITOR and
should not occur. Consult the system manager if you encounter any of the fol-
lowing

{EDI -- BAD DIRECTORY SYNTAX]

(EDI -- DUPLICATE ENTRY IN DIRECTORY]

(EDI -- ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE]
[EDI -~ ILLEGAL RECORD NUMBER — FILE NOT USABLE]

The last class of error messages (d) are considered fatal and result in the
EDITOR closing all files and terminating its execution. They represent system
end ware error conditions which make it impossible for EDI to continue after last
message is followed by the exit message. :

8-7

For example:

(EDI -- FILE HEADER CHECKSUM ERROR]
(EDI -~ EXIT]

Some other messages in this class are:

{EDI -~ FILE PROCESSOR DEVICE READ ERROR]
(EDI ~- PARITY ERROR ON DEVICE]

Please contact the system manager if any messages in this class occur as they
may indicate serious hardware malfunctions. Additionally, if the message:

TASK . .. EDI TERMINATED

appears please notify the system manager..

E. CMP Error Messages

Error messages associated with the Compare Utility may be found on pages 12-6
and 12-7 of the Utilities Procedures Manual.

F. CREF Error Messages

Messages associated with the cross-reference processor .nay be found on pages
D-5 through D-8 of the Utilities Procedures Manual,

- G. Task Builder Error Messages

Presented here are some of the most frequently uncountered error messages of
the Task Builder. Additional messages may be found on pages A-1 through A-10
of the Task Builder Reference Manual.

MODULE module-name MULTIPLY DEFINES SYMBOL symbol-name

A symbol within the user program has been defined more than once.

ALLOCATION FAILURE ON FILE file-name.

Not enough contiguous space on the disk is available to build the task. Please
check with the system manager if this occurs.

number UNDEFINED SYMBOLS SEGMENT seg-name

The user has an undefined symbol in this program that the task builder couldn't
resolve after checking all system tables.

8-8

.

PliasoN

AR
e,

H. MCR Error Messages

Error messages from MCR commands may be found in alphabetical order (of
MCR command) on pages A-11 through A-56 of the User's Guide.

-

I. System Standard Error Messages

All negative errors can be looked up on pages N-1 to N-3 of the Users Guide.
These are standard errors occurring on any device or command.

J. Fortran IV Plus Compiler Errors

Fortran compiler errors may be found on pages C-1 through C-11 of the Fortran
IV Plus User's Guide. Of these, the compiler distinguishes three classes of
source program errors.

1. F - Fatal Errors which must be corrected before the program can be
compiled. (no .OBJ file produced)

2. E' - Errors which should be corrected. (.OBJ file produced)

3. W - Warning messages are issued for statements using non-standard,
though accepted, syntax, and for statements corrected by the com-
piler. However, these statements may not have the intended result
before execution. (These are produced only when the /WR switch is
used)

K. Fortran (Run-time) Error Messages

Fortran error messages found on pages C-15 through C-22 of the Fortran IV
Plus, User's Guide are non-recoverable and cause your task to exit.

8-9

P

9, PDP 11/70 Hardware Failures

Due to the fact that the PDP 11/70 does not have an operator present, it becomes
necessary for users to be informed on what to do in the case of hardware failures,
In general, this is just a matter of recoxrding information so that appropriate de-
cisions can be made at a later time based on this information,

When peripheral devices fail (such as the Hazeltines, card reader or tape drives)
there is not much that can be done until normai working hours. It is best to in-
form others of a malfunctioning piece of equipment by leaving a note. Also, a
note describing the circumstances under which the failure occurred must be left
for the system manager.

Total failures of the PDP Central Processing Unit is termed a 'crash'. A crash
always accompanied by a message on the decwriter such as:

Crash -- Cont with scratch on MMO:

There are several information gathering steps to be taken at this point that will
help in determining why that crash occurred. Without changing any console
switches, mount a tape on drive MMO:. Next, depress the CONT switch on the
console, This will initiate a system utility, Core Dump Analyzer, to dump the
contents of core at the time of the crash to tape. The Core Dump Analyzer is
complete when the tape remains stationary and the console lights are fixed.
When this has occurred, hit the HALT switch. Rewind and dismount the tape.
Leave it on the system manager’'s desk.

The next step is to examine the following registers by toggling in their address,
hitting the LOAD ADRS switch, then the EXAM switch. When the EXAM switch
is pressed, the contents of that register should appear in the console lights.
Record the octal number reflected in the console lights for each register ex-
amined. This information should be given to the system manager.

Registers Type

17776714 RP04

17776740 RP04

17776742 RP04

17777744 Memory

17777740 - Lower Address (mem)
17777742 High Address (mem)
17777766 CPU

17776710 RF04

9-1

Occassionally, a system freeze-up will occur, This is not accompanied by a
message on the decwriter and is recognized only by the ""frozen' console lights
and no system response. This is not considered a traceable hardware error and
the only action taken should be a reboot, However, if this situation occurs fre-
quently, the system manager should be informed immediately.

Note that all unusual system activity or responses should be reported immediately

to the system manager. This aids in trouble shooting hardware problems before
they cause serious damage to the computer.

9-2

10. IBM 360/PDP 11/70 Tape Compatibility

10.1 SOURCE Programs

Source tapes generated on IBM machines use the Extended Binary Coded Deci~
mal Interchange Code (EBCDIC) for the representation of characters., DEC
machines, however, use American Standard Code for Information Interchange
(ASCII) for characters codes. Three utility programs are available for easy
interchange of information of these 8 bit codes on the 11/70 through the use of
mag tapes,

[2,75) TUTILS (Tape Utilities) is used to print an EBCDIC source tape on the
line printer.to ¢reate an ASCII tape froni an EBCDIC source tape, and to ac-
complish the reverse. Since source tapes, no matter what code they are written
in, contain characters in sequential order, no swapping of bytes is performed.
For more detailed information on these programs, please refer to Section 13.

10.2 Transfer of Data Files

10.2.1 Introduction

There has developed a need for algorithms for conferting data on an IBM 360~
generated mag tape to recognizable PDP-11 format and algorithms for generat-

ing IBM-360 mag tapes on the PDP-11. This need originatss from the difference,
in byte addressing between the two computers. The problem applies to any °
INTEGER*2, INTEGER*4, REAL*4, REAL*8 or COMPLEX*8 variable, For a
detailed description of the differences, refer to GSFC Technical Note #75-001,
""Magnetic Tape Formats and Information Exchange Considerations."” The examples
in this section use tape processing subroutines which are explained in Section 11.1.

10.2.2 PDP11-IBM 340 Consersion Routines
(A) TPDPFS (To PDP From Single) — converts an IBM single-precision floating-
point quantity to a PDP single-precision floating-goint quantity, TPDPFS

requires one or two arguments.

CALL TPDPFS(INQ([,0UTQ])

(1) INQ - specifies the variable to be converted.

(2) [,OUTQ] - specifies the destination of the variable. If omitted, the
quantity is returned as a function value.

10-1

(B)

(€)

(D)

TPDPFD (To PDP From Double) - converts an IBM double-precision floating-

point quantity to a PDP double-precision floating-point quantity. TPDPFD

requires one or two arguments:

CALL TPDPFD(INQ [,0UTQ])

(1) INQ ~ specifies the variable to be converted.

(2) [,OUTQ]) - specifies the destination of the converted variable. If omitted,
the quantity is returned as a function value,

TIBMFS (To IBM From Single) - converts a PDP single-precision floating-
point quantity to an IBM single-precision floating-point quantity. TIBMFS
requires two arguments:

CALL TIBMFS(INQ,OUTQ)

(1) INQ ~ specifies the variable to be converted.

(2) OUTQ - specifies the destination of the converted variable.

TIBMFD (To IBM from Double) ~ converts a PDP double-precision floating-

point quantity to an IBM double-precision floating-point quantity. TIBMFD
requires two arguments.

CALL TIBMFD(INQ,OUTQ)

(1) INQ - specifies the variable to be converted.

(2) OUTRQ - specifies the desgination of the converted variaktle.

Some of the variables used in the examples which follow are:

(A) BUFF ~ Address of Data Area

(B) LEN - Length of Block to be Read from Tape
(C) TDAT - Halfword for INTEGER*4 Value
(D) SDAT - REAL*4 Parts of CSDAT

10-2 C - o—

ORIGINAL PAGE IS
OF POOR QUALITY

10,2, IBM 3G¢ Tape to PDP Format

() INTEGER¥2

0 a0 1%
S
8 1510 1

THE BYTES ARE SWAPPED

To retriave the correct INTEGER*2 data value from a 360-generated mag
tapa, SWABI s called.

EXAMPLE 1: Assume the first two bytes of BUFEF are an IBM 360
INTEGER*2 variable. We wish to convert these bytes to a PDP recog-~
nizable INTEGER*2 variable, The result appears in the variable I2DAT
as follows:

LOGICAL*L BUFF(100), IVSN(6)
INTEGER*2 I2DAT

DATA IVSN/'I!, INY, 1Bt 1y*, T, 1 1/
EQUIVALENCE (BUFF(1), I2DAT)
CALL MOUNT (5, IVSN, 1, 'NL', 1600)
CALL DCB(BUFT, 5, 100, 100, 'FB")
CALL FREAD(BUFF, 5, LR, IOST)
CALL SWABI (I2DAT, 2)

[CONTINUE PROGRAM)

CALL DISMNT(5)
STOP
END

10-3

ORIGINAL PAGE 19

(B) INTEGER*4 OF FOOR UALITY

24

BYTES ARE SWAPPED

To retrieve the correct INTEGER*4 data value from a 360-generated mag
tape, halfwords must be swapped following the call to SWABI.

EXAMPLE 2: Assume the first four bytes of BUFF are an IBM 360
INTEGER*4 variable. We wish to convert these bytes to a PDP recog-
nizable INTEGER*4 variable. The result appears in the variable I4DAT
as follows:

LOGICAL*1 BUFF(100), IVSN(6)
INTEGER*2 TDAT(2),K

INTEGER*4 I4DAT

DATA IVSN/IIV, IN', 'PY, U, T l/
EQUIVALENCE (BUFF(1),I4DAT), (TDAT(1), I4DAT)
CALL MOUNT(4, IVSN, 1, 'NL', 1600)
CALL DCB(BUFF, 4, 100, 100, 'FB')
CALL FREAD(BUTF, 4, LR, IOST)
K=TDAT(1)

TDAT(1)=TDAT(2)

TDAT(2)=K

CALL SWABI(I4DAT, 4)

[CONTINUE PROGRAM]

CALL DISMNT(4)

STOP
END

10-4

e s

ORIGINAL PAGE 8
OF POOR QUALITY

(C) REAL*4
0 718 15[16 23[24 3
BYTES ARE SWAPPED
8 ' 15F 7124 31]i6 23
TPOPFS

PERFORMS FLOATING POINT CONVERSION

To retrieve the correct REAL*4 data value from a 360-generated mag
tape, SWABI is first called, followed by the calling of TPDPFS.

EXAMPLE 3: Assume the first four bytes of BUFF are an IBM 360 REAL*4
variable. We wish to convert these bytes to a PDP recognizable REAL*4

varizble. The result appears in the varjiable R4DAT in the following program:

LOGICAL*1 BUFF(100),IVSN(6)
REAL*4 R4DAT

DATA IVSN/IIt, 1N’l’ 'P', g, ', ! l/
EQUIVALENCE(BUFF(1),R4DAT)
CALL MOUNT(3,IVSN, 1, 'NL', 1600)
CALL DCB(BUFF, 3, 100, 100, 'FB')
CALL FREAD(BUFF, 3, LR, IOST) .
CALL SWABI(R4DAT, 4)

CALL TPDPFS(R4DAT, R4DAT)

[CONTINUE PROGRAM]

CALL DISMNT(3)
STOP
END

10-5

s

jpiergraeT eSS o e B T SR SR B

ORIGINAL PAGE 1S

(D) REAL*S

OF POOR QUALITY

0 8. 1516

28

24 j 2 55156

63

><wes ARE SWAPPED

8 15F 7124

31

163263

55

TPOPFD

PERFORMS FLUATING POINT CONVERSION

To retrieve the correct REAL*8 data value from a 360-generated mag
tape, SWABI is first called, followed by the calling of TPDPFD.

EXAMPLE 4: Assume the first eight bytes of BUFF are an IBM 360 REAL*8
variable. We wish to convert these bytes to a PDP recognizable REAL*8
variable. The result appears in the variable RSDAT in the following program:

LOGICAL*1 BUFF(100), IVSN(6)
REAL*8 RS8DAT

DATA IVSN/'I', th, VPI’ vUv’ 'T', ! l/
EQUIVALENCE(BUFF(1), RSDAT)
CALL MOUNT(2, IVSN, 1, 'NL', IDEN)
CALL DCB(BUFF, 2, 100, 100, 'FB')
CALL FREAD (BUFF, 2, LR, IOST)
CALL SWABI(RS8DAT,8)

CALL TPDPFD(R8DAT, R8DAT)

(CONTINUE PROGRAM]

CALL DISMNT(2)
STOP
END

10-6

/.Wl‘-

T S

S

ORIGINAL PAGE 15

F POOR QuALITY
(E) COMPLEX*S

REAL PART , IMAGINARY PART
0 7[0 1518 } 5 Vi) ssl’ss' ' 11

BYTES ARE SWAPPED

SR S O S

CALL TPOPFS (TWICE)
FOR FLOATING PRINT CONVERSION

~~d

- T

To retrieve the correct COMPLEX*S data value from a 360-generated mag
tape, the whole value is treated as two (2) REAL¥4 values. Again, SWABI
is first called, followed by the calling of TPDPFS.

EXAMPLE 5: Assume the first eight bytes of BUFF are an IBM 360 COM-
PLEX*S variakle. We wish to convert these bytes to a PDP recognizable
COMPLEX*S variable. The result appears in the variable C8DAT in the
following program;

LOGICAL*1 BUFF(100), IVSN(6)

REAL™ SDAT(2)

COMPLEX*8 CSDAT

DATA IVSN/T', 'N', 'P!, 'O, ', ' Y/
EQUIVALENCE(BUFF(1), CSDAT), (BUFF(1), SDAT(1))
CALL MOUNT(1, IVSN, 1, 'NL', IDEN)

CALL DCB(BUFF, 1, 100, 100, 'FB")

CALL FREAD(BUFF, 1, LR, IOST)

CALL SWABI (SDAT, 8)

CALL TPDPFS(SDAT(1), SDAT(1))

CALL TPDPFS(SDAT(2), SDAT(2))

o]

C THE COMPEX*S VALUE IS NOW CONVERTED AND
C CAN BE REFERRED TO AS CSDAT

(CONTINUE PROGRAM)

CALL DISMNT(1)
STOF

N
END 10-7

ORIGINAL PAGE I8

OF POOR QUALITY

10.2.4 PDP 11 Tape to IBM 360 Tape Format

(A) INTEGER*2

.

15

THE BYTES ARE SWAPPED

To generate the correct INTEGER*2 value onto a 360 mag tape, SWABI is

called.

EXAMPLE 1: Assume the variable I2DAT is a PDP-11 INTEGER*2 variable
which 1s to be converted to an IBM recognizable INTEGER*2 variable. After
converting, the result appears in the variatile I2DAT and is then written to a

mag tape.

LOGICAL*1 BUFF(100), IVSN(6)
INTEGER*2 I12DAT

DATA IVSN/'I', 'N', 'P!, U, T, v/
EQUIVALENCE(BUFF(1), I2DAT))
CALL MOUNT(S, IVSN, 1, 'NL', 1600)
CALL DCB(BUFF, 5, 100, 100, 'FB")

°

.

(CONTINUE PROGRAM]

CALL SWABI{I2DAT, 2)

CALL FWRITE(BUFF, 5, LEN, IOST)
CALL DISMNT(5)

STOP

END

10-8

i

ORIGINAL' paGE IS

(B) INTEGER*4

2 31|16 23 8 o 7

]

BYTES ARE SWAPPED

To generate the correct INTEGER*4 value onto a 360 mag tape, halfwords
must be swapped following the calling of SWABI.

EXAMPLE 2: Assume the variabls I4DAT is a PDP-11 INTEGER*4 variable
which is to be converted to an IB¥ recognizable INTEGER*4 variable. After
converting, the result appears in the variable I4DAT and is written to a mag
tape.

LOGICAL*1 BUFF(100), IVSN(6)

INTEGER*2 TDAT(2),K

INTEGER*4 I4DAT

DATA IVSN/!I" 'N', |pc’ lU!’ lTi' ' v/
EQUIVALENCE (BUFF(1),I4DAT),(TDAT(1),][4DAT)
CALL MOUNT(3, IVSN, 1, 'NL!, 1600)

CALL DCB(BUFF, 3, 100, 100, 'FB")

(CONTINUE PROGRAM]

K=TDAT(1)

TDAT(1)=TDAT(2)

TDAT(2)=K

CALL SWABI(I4DAT,4)

CALL FWRITE(BUFF,3,LEN,IOST)
CALL DISMNT(3)

STOP

END

10-9

ORIGINAL PAGE 1§
OF POOR QUALITY

(C) REAL*4
] 1510 N4 e 23
><vres ARE swma><
0 7ls‘ ‘ “15[16 23[24 31
TIBMFS

PERFORNS FLOATING POINT CONVERSION

To generate the correct REAL*4 value onto a 360 mag tape, TIBMFS is first
called, followed by a call to SWABI.

EXAMPLE 3: Assume the variable R4DAT is a PDP-11 REAL*4 variable
which is to be converted to an IBM recognizable REAL*4 varieble. After
-~converting, the result appears in the variable R4DAT and is written to a

mag tape.

LOGICAL*1 BUFF(100), IVSN(6)
REAL*4 R4DAT

EQUIVALENCE (BUFF(1),R4DAT)
DATA IVSN/'I‘, 'N', vpv’ an’ tTv’ { l/
CALL MOUNT(2,IVSN,1,'NL',1600)
CALL DCB(BUFF,2,100,100,'FB")

[CONTINUE PROGRAM]

CALL SWABI(R4DAT,4)

CALL TIBMFS(R4DAT,R4DAT)
CALL FWRITE(BUFF,N,LEN,IOST)
CALL DISMNT(2)

STOP |

END

P

f;v 3

10-10

(D) REAL*8

ORIGINAL FAGE IS

OF POOR QUALITY

8 15|o Ttt

k)|

16 J Z 6343 55

<<
0

7|0

BYTES ARE SYWASPED
e

23

24

TIBMFD

PERFORMS FLOATING POINT CONVERSION

To generate the correct REAL*8 value onto a 360 mag tape, TIBMFD is
first called, followed by a call to SWABI.

EXAMPLE 4: Assume the variable R8DAT is a PDP-ll, REAL*S variable
which is to be converted to an IBM recognizable REAL*8 variable. After
converting, the result appears in the variable R8DAT and {s written to a

mag tape.

LOGICAL*1 BUFF(100), IVSN(6)
REAL*S RSDAT '
DATA IVSN/'', 'N', 'P!, 'U!, 'T!, 1 1/
EQUIVALENCE (BUFF(1),R8DAT)
CALL MOUNT(3,IVSN,1,'NL',1600)
CALL DCB(BUFF,3,100,100,'FB')

[CONTINUE PROGRAM]

CALL SWABI(RS8DAT,8)

CALL TIBMFD(RSDAT,R8DAT)
CALL DISMNT(3)

STOP

END

10-11

ORIGINAL PAGE IS

(E) COMPLEX*$ OF POOR QUALITY
~ REALPART . IMAGINARY PART
s ‘ 1s|o - 7F4 ; g‘“"ﬁré 83[48 5

aaoaao

BYTES ARE SWAPPED

CALL TIBMFS {TWICE
FOR FLOATING POINT CONVERSION

To generate the correct COMPLEX*S value onto a 360 mag tape, the whole
value is traated as two (2) REAL*4 values. Again, TIBMFS is first called
followed by a call to SWABI.

EXAMPLE 5: Assumg@ the variable CSDAT is a PDP-11 COMPLEX*8 vari-
able which is to be converted to an IBM recognizable COMPLEX*8 variable.
After converting, the result appears in the variable CS8DAT and is written
to a mag tape.

LOGICAL*1L BUFF(100), IVSN({6)

REAL*4 SDAT(2)

COMPLEX*S CSDAT

DATA IVSN/'T', IN!, 'Pt, U, 1T, 1/
EQUIVALENCE (BUFF(1), C8DAT), (BUFF(1)SDAT(1)
CALL MOUNT(4,1VSN, 1, 'NL!',1600)

CALL DCB (BUFF,4, 100, 100, 'FB')

[CONTINUE PROGRAM]

»

CALL SWABI(SDAT,8)

CALL TIBMFS(SDAT(1),SDAT(1))
CALL TIBMFS(SDAT(2),SDAT(2))
CALL FWRITE(BUFF,N,LEN,IOST)

THE CORRECT -COMPLEX*8 VALUE IS
NOW WRITTEN ONTO TAPE AS CSDAT

CALL DISMNT(4)
STOP
END 10-12

FA—

10.2.,5 Card Rerder to Disk

Files can be tranisferred to the disk x"ia the card reader.

To create a disk file from a deck of cards:
1. Place deck in card reader with an E-O-F card behind the deck.
2, Press the RESET button on the card reader to get the blower started.
3. MCR> PIP filename.typ = CR:

4. RUN [2,75] UNBLNK
to eliminate the trailing blanks at the end of each 80 byte record.

To list a deck of cards on the LP:
Perform 1. & 2 of the previzus example.

3. MCR > PIP LP:; = filename.typ .

10-13

11, Scientific Subroutines Paclga;g_g

11,1 Introduction

This Scientific Subroutines Package (8SP) is DEC's RT~11 SSP installed undey
RSX~-11D operating system. The only changes made in implementing this S&%:
under RSX-11D were in the sumple programs provided by DEC.

11.2 User Interface

All routines have been compiled and are available in .OBJ form. Any subroutine
in the SSP can be linked tc your calling routine by adding the SSP routine name
to the TKB input file list as:

MCR>TKB '
TKB >Yourname=Yourname,[2,105] SSPnamel,SSPname2,...

For example, to link in the SSP analysis of variance routine,"ANOVA';
MCR >TKB .
TKB>Myprog=Myprog, (2,105] ANOVA

14,8 'chumentation Available

1. Several copies of the DEC manual "RT-11 FORTRAN SSP REFERENCE
MANUAL" are available for loan and a copy is on file in the computer room.

2. The file [2,105] SSP.DOC contains the introductory comment block of all the
SSP routines. This file contains the calling sequence, method used, etc. for
each routine in the SSP and can be printed via:

MCR>PIP LP:=[2,105] SSP.DOC
or
MCR>QUE [2,105] SSP.DOC

Note that the file is 740 blocks long and takes 15 minutes to print.
3. Source listings of any routines may be printed as follows.

MCR>PIP LP:=(2,105] SSPname.FOR

11-1

For example, to print the source to '"ANOVA!,

MCR >PIP LP:=(2,105] ANOVA.FOR

11-2

Section 12 deleted

12-1

i

13. Magnetic Tape Utilities

13.1 Introduction

A set of Fortran I/0 routines have been developed for the PDP 11/70 similar in
nature to those available in the IBM 360 FTIO package. This new package oper-
ates under the RSX~11D version 6.2 operating system with any number of dual
density 9-track tape drives, Its main purpose is to read IBM unformatted binary
tapes (NL or SL) in both the variable biock and fixed block format. Unblocking
of records is provided for in either format. It is the users responsibility to per-
form the necessary byte adjustments to make a 360 generated tape compatible
with the 11/70.

The routines are additionally capable of reading and writing 11/70 generated
tapes which are 360 compatible. These tapes san only be written in the fixed
block format.

An extensive error message capability is also provided.

All tapes handled by this package must be classified as foreign volumes. All
non-foreign volumes are assumed to have the ANSI standard format, Link into
[2,75] FTIO2 at task build time to use this package.

13.2 Routines

A. DCB Sets up data control block--must immediately follow the call
to mount.

B. FREAD Reads logical blocks.

C. FWRITE Writes Logical blocks.

D. FPOSN Positions to a specified file or writes EOF mark.
E. MOUNT Mount a specified volume.

F. DISMNT Dismount a specified volume.

G. SWABI Swap a specified number of bytes

13-1

13.8 Parmmeter Description to all Routines

Note that all references to FB or VB refer to the IBM 360 'RECFM' parameter

in the JCL.

FB = Fixed Biock Records
VB = Variable Block Records

Note: All arguments are I*2 except those that refer to addresses.

N

IVSN

NF

LEN

ADR
NUMB

LABEL

10

MODE

A

= Logical unit number (User specified)

= Address of volume serial number (six byte ASCII code
left-justified blank filled)

= Parameter whizh contains the file number to be processed
next on the specified unit,

= Number of bytas to write, This must be an even number > or

equal to 14 bytes, The maximum record siza is 65535,

= Address of data area wheve bytes are to be swapped.
= Number of bytes to be swapped. Even numbers only.
= Describes the type of volume to process

LABEL = 'NL' -+ NL Tape
LABEL = 'SL' - SL Tape

= Describes the next type ol I/0 operation on the specified unit

IO = 'R' - Read operation
IO = '"W' -+ Write operation
(The 'W' operation is only used for writing EOF marks)

= Type of tape you are processing. Choices are 'FB' and 'VB'.

= Address of data avea. This parameter is specified in the call
to FREAD and is the d..1 area into which records or blocks
are read. Data area A should be as large as your largest un-
blocked record. The size of this region is specified in the
'LRECL!' parameter in the call to DCB,

13-2

e

LR

IOST

BUFF

= Parameter returned to user which indicates the number of

bytes read in the last read operation.

= Status of read or write operation. Positive humbers indicate

success. Negative numbers indicate either an EOF or error.
I10ST = -10 is an EOF

All other errors are listed in Appendix I of the I/0 operations
references manual.

Address of data area. This parameter is specified in the call
to DCB. This data area must be large enough to contain your
largest block.

When unblocking occurs, the first call to FREAD reads the
data block from the tape into data area BUFF and unblocks
the first record into data area A. Subsequent calls to FREAD
unblocks the rest of the data, record by record, into area A
until all data is unblocked. Now an additional call to FREAD
will read in a new block into BUFF and again unblock the first
record into area A,

When unblocking is not desired, data area BUFF should be the
same area as data area A,

When 'VB! is specified the size of this region should include
space for the block descriptm word and the record descriptor
words which are nested in all I3M 360 variable block tapes.

The size of this region is specified in the IBM 360 job control
language parameter blksize, and inthe blksize parameter in the
call to DCB.

BLKSIZE = Size of your largest block.

LRECL = Length of your largest record. This number should equal the

IDEN

blksize if you are not unblocking your tape.

= Density of your tape. Choices are 800 and 1600.

13-3

s S e v

AN oy

13.4 9_511 Descriptions

A.

CALL Mount (N,IVSN,NF, LABEL, IDEN)

This routine determines if any of the tape drives are available. If one is
available the routine logically connects the tape drive to the user task and
then suspends the calling task until the user continues his task witn the
command:

'MCR > CON TASKNAME'.

Appropriate error messages are given for such cases as no tape drives be-
ing available.

For each call to this routine there should be a final call to DISMNT on the
same unit.

CALL DCB(BUFF, N, BLKSIZE, LRECL, IDEN, MODE)

This routine sets up the data control information for all FTIO calls on a
particular unit. If you are doing simultaneous processing on two different
units you would need two calls to DCB. This routine must follow the call to
MOUNT. In general, the order should be a call to MOUNT followed by a call
to DCB, then all subsequent FTIO calls.

NOTE: When you are doing a write operation (Call FWRITE) the only valid

value for the parameter mode if FB. Additionally, the BLKSIZE and LRECL

arguments should be equal. See Example 4.
CALL FPOSN(IO,N,NF)

This routine positions the tape on unit N to the beginning of the file specified
by NF.

When processing an NL tape the following apply:

1. When an End-of-File is detected during a read cperation on an NL tape
and the next sequential file is to be read, it is not necessary to call
FPOSN to position to the next file; just continue calls to FREAD.

2. To close out a file following calls to FWIRTE (or FPOSN), Call FPOSN
with the write option in the IO parameter. This writes an end-of-file
and positions the tape such that subsequent calls to FWRITE generate
the file NF.

13-4

()

For example to write an End-of-File after File 3 on an NL tape:
CALL FPOSN('W',3,4)

3. To write an End-of-Volume, the user would CALL FPSON with the write
option twice. For example, to write an End-of-Volume after two files
have been written'

CALL FPOSN('W',2,3) .
CALL FPOSN('W',2,4)

When processing an SL tape the fcllowing apply:
1, When an SL tape is being read, and an End-of-File is detected, it is

necessary to call FPOSN to insure that the tape is at the beginning of the
next file to be read.

2. Presently, PDP 11/7¢ FTIO does not process the SL volume, header or
- trailer labels.

D. CALL FREAD(A,N,LR,IOST)

This routines reads 11/70 FTIO generated tapes as well as FB and VB tapes
generated on the IBM 360. This routine is called each time a new block or
record is desired.

E. CALL FWRITE(BUFF,N,LEN,IOST)
This routine writes the number of bytes in data area A onto the Unit N.

F. CALL DISMNT(N)
This routine rewinds the specified volume to the load point and logically
disconnects the tape drive from the user task. The calling task is then

suspended until the user continues his task via the:

- MCR > CON TASKNAME COMMAND,

13-5

G. Call SWABI(ADR,NUMB)

This routine swaps the number of bytes (NUMB) located in the data region

adr,

13.5 Error Messag_e_s

NOTE: All errors abort the task

[
Error Number

1

2

13

14

15

16

17

20

21

22

23

Reason
Incorrect number of arguments in call to MOUNT
** Time out on attempt to read device directory
All drives are in use
** Drive not located in table
** Mount-insufficient pool nodes (STUFF)
** Mount-partition too small (STUFF) iy
Logical unit number specified is inconsistent-mount
Incorrect number of arguments in call to DISMNT
- Logical unit number specified is inconsistent-DISMNT
** Insufficient pool nodes (STUFF)-DISMNT
** Partition too small (STUFF)-DISMNT -
Incorrect number of arguments in call to FPOSN
Invalid "NF" specification in call to FPOSN
Inconsistent logical unit number in call to FPOSN
I.nvalid "IO" specification in call to FPOSN

Illegal to specify a "W" in the ""10" parameter when tape
is SL -

AT,
Wt

13-6

Error Number

24

25

26

217

30

31

32

33

34

35

36

37

40

41

42

43

44

45

50

=%

ok

Reason
Incorrect number of arguments in call to FREAD
Invalid logical unit number specified in call to FREAD

Data overrun - FREAD, Buffer too small for amount of
data read. Some data is lost.

Number of bytes read does not agree with blocksize
specified~-FREAD

An odd number of bytes has been specified. Only an even
number is acceptable - FREAD

Number of bytes read does not agree with BDW on IBM
TAPE-FREAD

The record just read is larger than the MAXSIZE specified
in LRECL - FREAD

Incorrect number of arguments in call to DCB

Inconsistent logical unit number specified in CALL to DCB

Invalid density specification in CALL to DCB -

Invalid mode specification in call to DCB ’
BLKSIZE must be a multiple of LRECL in FB tapes - bCB
Incorrect number of arguments in call to rewind
Ingonsisteht logical unit number in call to rewind
Incorrect number of arguments in call to FWRITE

Invalid logical unit number in call to FWRITE

Cannot write SL tapes

Incorrect number of arguments in call to SKIPREC

Drive has become allocated

13-7

Error Number w
51 Invalid label specification in call to MOUNT
54 Incorrect number of arguments in call to SKIP
55 Incorrect number of arguments in call to SWABI

NOTE: Asteriks before an error indicate possible hardware errors. Please
contact system manager if any of these errors occur,

13.6 Examples

The following programs are examples of how to use the FTIO package.

1. The first sample program reads the first file of an IBM 360 variable block
tape and outputs the records.

Each block is 382 words or 764 bytes and is composed of 15 records per
block which vary in size from a minimum of 20 bytes to a maximum of 80
bytes.

Crmmmas > Declare variables

IMPLICIT INTEGER(A-Z)
LOGICAL*1 IVSN(6)
INTEGER*2 LR, RKRD(40), BLK(382)

C
Commmms > Set up data for tape label
C

DATA NSN/rTv,vAv’vpv’vov'va,v '/
Cc
Comems > Now call MOUNT.
Commmna > 'The logical unit number chosen is 4
Cromeaa > and the tape is NL.

CALL MOUNT(4,IVSN,1,'NL',1600)
C

13-8

o
ST—

.

C----==> Now call DCB to set up the internal data area
Ce=~~-=> for FREAD.

C------> Note that the array blk is the data area into which
C----==> the block will be read before unblocking
C=-~====> occurs. Also note that 80 is the size
Commmas > of the largest record.
C
CALL DCB(BLK,4,764,80,'VB')
C
C--~--=> Now call FREAD to get the individual records

C--~-=~=> If the number of FREAD calls exceeds the
C=--~---=> number of records within that block, a new

C~=---=> block will be read in automatically provided
C-~---=> another block exists on the tape.

Cmmmm=a > The third paremeter, LR, wi!l tell you how many
C-----=> bytes were read in the last call to FREAD.

C

10 Continue
‘ -~~Call FREAD(RKRD,4,LR,IOST)
IF(IOST .EQ. -10) Go to 200
WRITE(6,70) LR

70 FORMAT(1HO,'LR=',I5)
C
C-=---=>_SWAP the bytes in the data region RKRD
C
C
CALL SWABI(RKRD,LR)
Commeas > Get the number of words.
C
L=LR/2
o] :
Commew ~> Now write out the record just READ
C
WRITE(6,20) (EKRD(T),J=1,L)
20 FORMAT(4(1017/ /)) '
WRITE (6,30)
30 FORMAT('0', 'END OF RECORD")
Go to 10 '
Cc
C-----=> Dismount the tape on logical unit 4
C .
200 Continue
CALL DISMNT(4)
STOP
END

13-9

ORIGINAL PAGE 1S
OF POOR QUALITY

2. The second program reads the first file of an IBM 360 fixed block tape with
800 byte blocks and unblocks it at a record length of 80 bytes.

Commana > Declare variables

IMPLICIT INTEGER(A-Z)
LOGICAL*1 IVSN(6)

INTEGER*2 LR, REC(40), DAT(400)
Set up data for tape label

DATA IVSN/'I','N','P','U','T',' v/

Call MOUNT with logical unit number 5
The tape is SL

CALL MOUNT(5,IVSN,1,'SL',1600)

Call DCB to set up the internal data

For FREAD.

DAT is the data area into which

The block is read before unblocking

into records occurs.

CALL DCB(DAT,5,800,80,'FB')

Now call FREAD to get the records of §0 bytes.

Continue
CALL FREAD(REC,5,LR,IOST)

- IF(IOST .EQ. -10) go to 700

 WRITE(6,100) LR

FORMAT(1HO,'LR=',I5)
SWAP bytes

CALL SWABI(REC,LR)
Get the number of words.

L=LR/2
Write out the record

13-10

Fy

ot i g s s ~

PRI AT S LI e~ Sy Porar Py

R——

ORIGINAL PAGE IS
OF POOR QUALITY

WRITX(6,200) (REC(I),I=1,L)
FORMAT(4(1017/ /))
WRITE(6,300)

FORMAT('0','END OF RECORD’)
Go to 10

Dismount the tape on logical unit 5

Continue

CALL DISMNT(5)
STOP

END

3. This program reads the second file of an IBM 360 fixed block tape and outputs
to the user the whole block without unblocking.

The BLOCKSIZE is 800 bytes. o

C
C

g

——ommad

PSR I

Declare Variables

IMPLICIT INTEGER(A-Z)
LOGICAL*1 IVSN(6)

INTEGER*2 LR, BLOCK(400)

Set up data for tape label

DATA IVSN/'D','A','T',’A','1\','5'/

Call mount with logical unit nizmber 5
Tape is NL

CALL MOUNT(5,IVSN,2,'NL',1600)

Call DCB to set up internal data

For FREAD

Note that the third and fourth parameters

are identical, meaning that the blocksize

and record size are the same. This indicates
to FTIO that no unblocking is to occur,

CALL DCB(BL{CK,5,800,800,'FB')

13-11

ORIGINAL PAGE IS
OF POOR QUALITY

()
Commmas > Now call FREAD to read the block.
Covemee > It is not necessary to set up an additional
Crmmmna > Data area when unblocking is not desired.
C
10 Continue ' i
CALL FREAD(BLOCK,5,LR,IOST)
IF(IOST .EQ. -10) go to 800 :
WRITE(6,80) LR
80 FORMAT(1HO0,'LR=',I5)
C
Commmma > Swap the bytes in the data region
C
CALL SWABI(BLOCK,LR)
C
C
Cmwmmmm- > Get the number of words.
Cc
L=LR/2
Commmme= > Write out the block
C
WRITE(6,55) (BLOCK(I),I=1,L) i)
55 FORMAT(4(1017/ /)) e
WRITE(6,78)
78 FORMAT('0', 'END OF RECORD!)
. Go to 10
Cc
Commmem > Dismount the tape on logical unit 5
C
800 Continue
CALL DISMNT(5)
STOP
END
4, This program writes a PDP tape with a blocksize of 800 bytes. Tweo files,

each with only one record, are written and an end-of-volume is placed after

the last file.

Tape density is 1604 BPI. .
Crmeee > Declare variables ' »
& ,

IMPLICIT INTEGER(A-Z)
LOGICAL*1 IVSN(6)
INTEGER*2 INDAT(400) g Eﬁ’;

13-12

Foa

ORICINAL PAGLS

OF POOR (o 18
POOR QuALITy
C
Crmmmm > Set up data for tape label
C
DATA IVSN/!O','U!, T, P!, Ut ' T/
C
Commm > Call MOUNT with logical unit number 3 tc file 1
Coeeomm > Tape is NL
C
CALL MOUNT(3,IVSN,1,'NL’',1600)
C
Cmmmeus > Call DCB to set up data block information
C
CALL DCB(INDAT,3,800,800,'FB")
C
Commmme > Set up data block to be written
C
DO 100 I=1,400
INDAT(I)= 5
100 Continue
C
Cmmmmmss > Now write the data out to tape
C
CALL FWRITE(INDAT,3,800,I0ST)
C
C-mmmee > Write an End-of-File Mark
C
CALL FPOSN(‘W',3,2)
C
Commmes > Generate some more data
DO 200 I=1,400
INDAT(I)=6
200 Continue
C
Cmmmmm > Write this data into file 2
CALL FWRITE(INDAT,3,800,I0ST)
C
Commems > Now write an End-of-Volume mark
CALL FPOSN('W',3,3)
CALL FPOSN('W',3,4)
C

13-13

ORIGINAL PAGE 15
OF POOR QUALITY

Commeas > Dismount the tape
Cc

CALL DISMNT(3)
C

STOP

END

5. This program operates on a PDP 11/70 10 FTIO generated tape which has
three files on it. Each block is 800 bytes in length. Unblocking of records is
not desired.

The program first positions to file 3 via the call to MOUNT, It then reads
the first record of file 3 and then positions to the beginning of file 2. Finally,
it reads the first record of file 2 and terminates.

Commmmm > Declare variables

C
IMPLICIT INTEGER (A-Z)
LOGICAL¥*1 IVSN(6)
INTEGER*2 DATA(400)

C
Covemea > Set up data for tape label
C
N DATA IVSN/'Q','U','T!,'P','U’,'TY/
C
Commme= > Call MOUNT with logical unit number 5 to file 3.
p .
CALL MOUNT(5,lVSN,3,'NL',1600)
C
Commmm > Set up DCB
C
CALL DCB(DATA,5,800,800,'FB')
C
Cremmma > Read data
C
CALL FREAD(DATA,5,LR,IOST)
C
Crwmm > Now position to the second file
C
CALL FPOSN('R',5,2)
c _
Commm= > Now read this file
C

CALL FREAD(DATA,5,LR,IOST)

13~14

ORIGINAL PAGE |s
OF POOR QUALITY

Commmm > Dismount the unit
C
CALL DISMNT(5)
STOP
END

13.7 TUTILS - General Purpose Tape Utilities

13.7.1 Capabilities of TUTILS

TUTILS is a collection of subroutines which performs various tasks using mag-
netic tape. It copies from one tape to another, converting from EBCDIC to ASCII
or vice versa., TUTILS dumps any tape to the line printer, whether it is ASCII

or EBCDIC source, or data which can be dumped in octal or hexadicimal. A very
useful function is that which reads a tape and reports on record sizes, file sizes,
and the number of files on a tape. This function, contained in TUTILS, requires
only the label and density of the tape. TUTILS also can write an end of volume

after any file on a tape, and can label a tape with either a standard label or a ''no
label' label, both of which are required by the IBM 360 on a new tape.

13.7.2 Sample Run

Note that the $ is printed when the (ESC) key is used on the 11/70.

The other functions available but not used in this example are designed to be
self-explanatory at run time.

Run [2,76] TUTILSS$
This multipurpose tape utility will perform the following routines:

1. Copy a tape to another tape with option to convert from ASCH or EBCDIC.
Can be used to merge tapes.

2. Analyze a tape, revealing record sizes, number of records, and number of
files.

3. Create a listing of an ASCII or EBCDIC source tape.

4. Dump a tape in octal or hexadecimal.

13-15

5. Label a tape "standard" or "No Label".
6. Write an end of volume on a tape.

7. Exit TUTILS,

Enter the number of the desirad routine.

7
TUTILS -- STOP

13-16

ORIGINAL PAGE
OF POOR QUALITY

14. General Purpose Utilities and Subroutines

This chapter contains utilities written by Code 664 personnel. All of these pro-
grams are under the UIC of [2,75].

14,1 IOPACK - Input/Output Package

IOPACK is r comprehensive input/output utility package designed to facilitate file
transfer capabilities for any feasible combination of I/O devices. In addition,
blocking capabilities, as well as mode translation (ASCII or EBCDIC) are provided.

The following matrix representaiion depicts the various devices supported for
data transfer by IOPACK.*

TO: ASCII tape EBCDIC tape Disk TI LP PTP
FROM
ASCII X X X X X X
TAPE . ,
EBCDIC X X X X X X
tape
DISK X X X X X X
CR X X X X X X
TI X X X X X X
PTR X X X X X X

The program writes all operating instructions to the terminal, whereby the user
makes his/her requests interactively. Any read/write device errors or charac-
ter mode translation errors are displayed on the terminal.

Once the user has specified an output device, as well as an output record length,
he/she may transfer as many files from as many different input devices as he/she
desires.

*TI is the user's terminal, LP is the line printer, PTP is the paper tape punch,
CR is the card reader, and PTR is the paper tape reader,.

14-1

ORIGINAL PAGE IS
OF POOR QUALITY

The instructions displayed on the user's terminal are designed to be self-explana-
tory. Additional information concerning IOPACK may be found under the following
data set name: [2,75] IOPACK.DOC,

The following page depicts a successful run of IOPACK. Problem Definition:

Copy a disk source file to paper tape. An echo of the input file is to be directed -
to the line printer,

14.1,1 Sample IOPACK Rup,

wxx File Copy Utilities ***

Enter responses in free format, with multiple parameters separated by commas.

Any I/0 errors will be outputted to the terminal

¥ Input device specifications ***

Enter device code: e
(Device codes are: TAPE=1 or 2,CR=3, DB0=4 or 8,TI=5, LP=6, "B
 Paper tape=Reader:7 or Punch:9)

4

Enter source data set name: 4
WRITE.FTN

Unit 4 is assigned to data set WRITE.FTN

Enter physical record length
80

*** Output Device Specifications ***

Enter Device Code:

(Device codes are: Tape=1 or 2,CR=3,DBO=4 or 8,TI<5,LP=6, ~
Paper tape=Reacer:7 or Punch:9)

9

Enter physical length of output records (must be a divisor of the input physical

record length)
80

14-2

g R

. Enter 1 if echo print of input to LP is desired.

Enter 0 if echo is not desired.
1

Ihput file from LUN 4 copied to output file on LUN 9

Do you wish to copy more files to the same output device with the same output
record length?

(1=yes,0=no)

0

IOPACK -~ STOP

14.2 UNBLNK - Eliminates Trailing Blanks

When data are transferred from the card reader to the disk the whole 80 byte
record is transferred regardless of the trailing blanks. Use UNBLNK to elim-
inate all unnecessary trailing blanks, thereby reducing your file size on disk.
A sample run follows:

MCR > RUN [2,75] UNBLNK$
INPUT FILE?
TEST.FTN ;

END OF FILE. 3 LINES CONVERTED,
UNBLNK -- STOP

14.3 STUFF - Executes MCR Commands from Fortran

STUFF is a Fortran callable subroutine that provides an interface to the MCR
task. It provides the capability of executing an MCR command from within a
user program.

Calling Sequence:

CALL STUFF (ILUN, IBUF, [ISIZE], [IEFN], [IPRI], [ISTAT)

ILUN is an integer specifying the logical unit number previously
assigned to device SM: via TKB or the call assign subroutine.

IBUF is an array containing or character string specifying the MCR
command to be executed.

14-3

Any vidlid MGR command may be specified. The programmer
must bear in mind that the MCR command tasks will run under
the same UIC s that of the calling task and that they will be
subject to the privilege status of the associated (TI) terminal.

ISIZE is an integer specifying the length in bytes of the MCR com-
mand in IBUF; this cannot exceed 80. If omitted, the string >
in IBUF is assumed to be terminated by a null (octal 0) byte.
(If IBUF is a character string, Fortran provides this null byte.)

IEFN is an integer specifying the event flag to be set when this
STUFF request completes. If omitted, no event flag will be
set.

IPRI is an integer specifying QIO request priority. If omitted, the

priority of the task itself is used.

ISTAT is a 2-word integer array to receive status from SM. If
omitted, no status is returned. There are two categories of
error codes:

LD,
e

Category One is identified by a zero in the first status word.
This indicates an error in processing the MCR command. The
following are possible codes in the second word:

-1 or -6 - invalid MCR command specification

-2 - MCR command task not installed

Category Two is identified by a non-zero in the first status
word. This indicates successful completion or an error in
requesting the task. The possible codes are:

+1 -- successful request completion (MCR completed)

0 ~- successful request completion (MCR initiated)

-1 -- insufficient pool nodes available (6 required)

-3 -~ partition too small for task -

In general, if the second status word is non-negative, the STUFF succeeded.

NOTE: SM must be assigned a LUN via TKB or the CALL ASSIGN Statement.
Also in the TKB, STUFF must be referenced. Sample TKB command
tile:

PROG=PROG, [11,2] STUFF
/ -~
i)

14-4

" ASG=SM:1,TI:5,LP:6
UBR=SYSRES:RO
//

14.4 AECON -- ASCII-EBCDIC Conversion Routine

AECON is a Fortran callable subroutine that converts character arrays from
ASCI to EBCDIC or EBCDIC to ASCII.

Calling Sequence:
CALL AECON(MODE,A,LEN,IERR)

MODE is a positive or negative integer <0 is EBCDIC to ASCII
>0 is ASCII to EBCDIC

A address of array to be converted

LEN integer specifying length (in bytes) or array

IERR number of conversion errors (returned to user)

Subroutine AECON is located in UIC {2,75].

14.5 INITIAL - Initializes Floppy Disks or Magnetic Tapes

The INITIAL program is used to prepare floppy disks or magnetic tapes for use.
It creates a Files-11 device that can subsequently be used under PIP.

MCR > RUN [2,75]INITIAL$

This program will prepare a magnetic tape or floppy disc for use with PIP.
CTRL Z will exit program.

Type tape for tape, floppy for floppy >Floppy

Type 0 for DX0: or 1 for DX1:,UIC for floppy, a zero to six character volume
for floppy

Example:: 0,[2,104] ,BOB

0,[300,222],TOM

Put floppy in drive now and hit return

MOUNT-**VOLUME INFORMATION **

14-5

SRS TR,

0

L % R e o Bk SN

ORIGINAL PAGE IS
OF POOR QUALITY -

()

DEVICE =DX0
CLASS =FILE 11
LABEL =TOM
vIC =(1,1]
ACCESS =[RWED,RWED,RWED,RWED] "
CHARAC =(]
F11ACP -- DX0: ** DISMOUNT COMPLETE ** .

waiok FLOPPY NOW READY FOR USE *#%#%#

INITIAL -~ STOP

14.6 SRD - Search Directory Utility

SRD is an RSX-11D utility that allows a User File Directory to be sorted in
alphabetic order, to be selected according to version, date, file type, or charac- .
ters within the file name. Files may also be selectively deleted, sorted and then
written back in the order specified. With the last option, a PIP listing would then
reveal the new ordered directory. ‘

P
L

To invoke the SRD utility on the PDP 11/70 type: £
MCR > SRD <CR>

SRD will then prompt for input:
SRD>

The format of the command line is:
[oUTFILE=] [UIC] [/SW]

All fields are optional. 'R_esponding to the SRD prompt with a null line causes

the current UFD to be outputted in alphabetical order by type first, to the list-

ing device.

The default order on the files is to sort on the type field first, then by name,
The latest version always appears first,

14-€

1.

3.

SWITCH OPTIONS:

NAME: /NA

With this switch the directory from the specified UIC is listed in alphabetical
order,

e.g. SRD>LP:=[100,*]/NA
SELECT VERSION: /SV
e.g. SRD>LP:=[300,77]/SV

The listing of file names in directory [300,77] is restricted only to the highest
version,

DATE: /DA:DD-MMM-YY

This switch allows selection of files only created on the specified day. If no
drte is specified, the current date is used.

Subswitches for date selection are:

A. BEFORE: /BE:DD-MMM-YY
B. AFTER: /AF:DD-MMM-YY

When one of these options are used, it causes the listing to include files
created before, after or on the specified date. For example, to list all files
in alphabetical order that were created on or before March 1, 1978:

SRD >LP:=(11,111] /NA/BE:01-MAR-78
SELECT: /SE:NAME.TYP
This switch allows file names to be selected based on a sub-set string match.
For example, to select all files with a 'M' as the first character in the name
regardless of the rest of the name:

SRD > LP:=[1,36] /SE:M
With this switch, it is aleo possible to select files with only certain charac-
ters in the file name field. For example, the following option would select

any file with a name starting with 'R' having any characters in the 2nd and
3rd position and a 7 in the 4th position.

14-7

7.

SRD > L'P:=(2,44] /SE:R??7.%

A subswitch for /SE is NE which causes the files selected to be those that do
not match. For example,

SRD >LP:=(2,44] /SE:S/NE
selects all files that do not start with 'S'.
HIGHER OR SAME VERSION: /HV:N

This switch can be used to cause SRD to list only files tiiat have a version
higher or equal to a specified value. For example,

SRD > LP:=(2,44] /HV:10
will create a listing of files with version 10(octal) or higher only.
SELECTIVE DELETE /SD
This option causes SRD to list the selected files to the listing device. The
user can then enter'Y' if the file is to be deleted. Any other response causes
SRD to proceed without deleting the file. For example,

SRD > /DA/SD:RTK

causes SRD to select all the files created on the current date with the first ,
three characters in the name 'RTK' to be listed for selective deletion.

The subswitch /DE may be applied to /SD to cause all those files selected to
be deleted. For example,

SRD> /BE:1-JAN-78/SD/DE

will delete all files created on or before Jan 1, 1978. Note that entering
CTRL/Z will terminate the selection and return to the SRD prompt.

FULL LISTING: /FU :N

This is the same as the PIP switch and can be used with all of the above
options. It creates a full listing,

14-8

()

8. WRITE BACK: /WB

This option causes SRD to write the directory back to the disk in the order
specified. This not only orders the directory, but compresses it. It reduces
search time by the File Control Processor if the directory has had a lot of
files deleted. For example,

SRD> [2,55] /-L1/WB/NA

causes SRD to read the directory, sort it by name, and write it back without
generating a listing, Write access to the directory is required.

NOTE: B8ince /WB rewrites your directory, be sure that you have adequate
backups in case a failure occurs. Also, note that the SRD utility only
reorders and listings directories for quick access. No actual move-
ment of files takes place,

14.7 SELECT - Moves files selected with the SRD utility.to UIC [222,222]

This program was developed as on¢ of the steps in a multi-step process to aid
users of the PDP 11/70 in selecting and removing certain files from the main
disk on the computer. Basically, the process consists of three steps:

1. Use the SRD utility to create a file DIRECTORY.LST (default filename under
utility SRD) that sontains all the selected filenames to be rolled off the disk.

2. Run the SELECT program to transfer all the files in DIRECTORY.LST to
UlC=[222,222]. **Note that UIC [222,222] must be empty before starting.

3. Use PIP or FLX to output those files in UIC [222,222] to auxiliary storage
media (tape, floppies, etc..)

For example, to roll off all files created before or on date June 15, 1978:
1. first create DIRECTORY.LST using SRD
MCR > SRD <CR>
SRD>[300,333) = [300,333]} /BE:15-JUN-78

SRD> CNTRL 2Z

14-9

2. now run SELECT to move those files to UI{ [222,222)
MCR>RUN SELECT§
IS UIC [222,222] CLEAR? (Y or N)
Y <CR>
SELECT-STOP

3. finally run INITIAL to initialize a tape or floppy and then PIP them onto
the media.

MCR > HEL [2,75]

MCR > RUN INITIALS

INITIAL - STOP

MCR > MOU MMx:labelname

¥

.

MCR > PIP MMx:= [222,222] * *;*

()

14-10

Lo

IBM to PDP
ICURS,CALL (VG)
Ideology (VG)
INCLD,CALL (VG)
Indirect files
INIT,CALL (VG)
Initializing Tapes and Floppy Disks
(INITIAL)
Initiating and Terminating VG
Programs
Integer*2
IOPACK
Logical blocks
Logical Unit Numbers
default
task builder options
LUN (MCR)
Muagnetic Tape
hardware
oi-line
off-line
Magnetic Tape Utilities
analysis (TUTILS)
conversion routines (IBM-PDP)
Copy
IOPACK
TUTILS
foreign tape input/output (FTIO)
Maintenance
11/70
files
preventative
Management
operations
disk space
MCR
errors
Member (file ownership)
Memos
VG daily use schedule
Terminals on 11/70
Disk space Management
MOU (MCR

s d “L—J ﬁ & 3
OF POOR quaLiry

10-1

7-9,7-11

7-2

7-12

3-16
7-2,7-7,7-9,7-10

14-~9

0 W

ABO (MCR)
AECON,CALL
ASCII
character codes
Backup
System Disk (preserve)
Files
using PIP
using FLX
Booting
BYE (MCR)
Calling Routines
Vector General
FTIO
Card Reader
UNBLNK data into a file
Transferring data into a file
CHNGE,CALL (VG)
CMP
Commands
EDITOR
MCR
Command File
Task Builder
Compatibility
IBM 360 to PDP 11/70
PDP 11/70 to IBM 360
Compiler
Fortran
Errors
Complex*8
Configuration of PDP 11/70
Control Conventions Terminals
Conversion
IBM 360 to PDP 11
PDP 11 to IBM 360
Coordinate Scale
COPY,CALL (VG)
Crash
Creation
of files
of elements on VG
CREF(CROSS REFERENCE)

INDEX

Al

3-17
14-8
10-1,14-1,14-8
7-31

Daily Use Schedule (VG)
DCB,CALL (FTIO)
DECODE,CALL
Default logical unit numbers
Deleting files
DELMT,CALL (VG)
Disk Space

management

RPQ4
DISMNT,CALL (FTIO)
DMO (MCR)
DMP

switches

errors
Drawing Routines (VG)
EBCDIC
EDI

errors
Elements

on Vector General

creating on VG
ENCODE,CALL
Errors

CMP

CREF

DMP

EDI

Fortran

FLX

FTIO

PIP

VG

Execution of Fortran program

Failures (Hardware)
Files
comparing (CMP)
creation
deleting
dumping files (DMP)
editing
indirect
maintenance
ownership

s

1-11
13-2,13-4
7-14,7-19,7-23
3-17

3-2

7-9,7-11

1-2,1-13
1-3

13-2,13-4
3-18

3-20

3-20

8-5

7-9
10-1,14-1,14-8
3-8

8-5

7-1
7-7
7-14,7-19,7-23

| S]
o ©

i
(3]

LI}
= o U

€ Lo G0 QO p-+ 0D G0 Q0 Q0 G0 QO
[I - I

[l ol o |
(%] »

LRSI
WO NN 00
(o=l

| B
(o2}

wcococlowmwm

1
=

purging
renaming
specifiers
transfering
Floppy Disks
hardware
storing data
FLX
errors
Foreign Tape INput/Output (FTIO)
routines
errors
Fortran
compiler
compiler switches
programs
errors
FPOSN,CALL (FTIO)
FREAD,CALL (FTIO)
FTIO
routines,
arguments
examples
errors
Function Keys (VGQG)
FWRITE,CALL (FTIO)
GHALT,CALL (VG)
GINIT,CALL (VG)
GRAPHICS (see Vector General)
Group Ownership
GRUN,CALL (VG)
GTERM,CALL (VG)
Hardcopy
Hardware
11/70
failures
floppy disks
magnetic tape
paper tape
Vector General
Hazeltines (see Terminals)
HEL (MCR)
Hints on programming the VG

13-2,13-4
13-1

13-3

13-3

13-7

13-6
7-1,7-2
13-2,13-5
7-4
7-1,7-4,7-22

3-4
7-1,7-4,7-22
7-1,7-4,7-22
7-3,7-32

A3

MOUNT,CALL (FTIO) 13=2,13=4¢
ODL 3-25
OoMIT,CALL (VG) 7-9,7-12
Operations '

11/70 1-1
Options

Task Builder 3-15
Overlays 3-22

overlay descriptor language (ODL) 3-25

root segment 3-22

tree structure 3-22

task building 3-27
Overview

11/70 1-4
Paper Tape

hardware 5-1

reader 5-1

punch 5-2
PDP to IBM 10-2
PDP 11/70 (see Hardware, Booting, etc.)
PENTRK,CALL (VG) 7-9,7-12
Philosophy

LHEA Graphics Processing Facility 1-1
Picture Scale on VG 7-5
PIP 3-1

errors 8-4
PLINE,CALL (VG) 7-9,7-12
PLOT,CALL (VG) 7-9,7-13
POSN,CALL (VG) 7-9,7-13
Powering Down (11/70) 2-2
Preserve 1-2
Programming (VG) 7-1
Purging files 3-1
PWD (MCR) 3-19
RCURS,CALL (VG) 7-13
RDCHR,CALL (VG) 7-13
Reader

Paper Tape 5-1

Card 10-13
Reading Magnetic Tapes 13-1
Real *4 (*8) 10-1
Renaming files 3-2
RES (MCR) 3-19

At

RESET,CALL (VG)
RKEY,CALL (VG)
Root Segment (Overlay)
RPQ4 (See Disk)
RQATN,CALL (VG)
RUN (MCR)
Scale
Picture (PS)
Coordinate (CS)
Scientific Subroutines Package
Task Building
documentation
SELECT
SETVM,CALL (VG)
Sign off
Sign on
SINIT,CALL (VG)
Software
overview of 11/70
Space
on disk
Specifiers (file)
SRD

Starting the PDP 11/70 (see Booting)

Storing data

on floppies

on tape

- on disk

STUFF,CALL

task building
SWABI,CALL (FTIO)
Switches

Fortran compiler

Task builder
SYS (MCR)
System (file ownership)
System Standard Errors
Tape

Magnetic

Paper
Task Builder

errors

options

7-9,7-14
7-14
3-22

7-15,7-17,7-18,7-22

3-20

7-5
7-5
11-1
11-1
11-1
14-15

7-9,7-18,7-22,7-28

3-18
2-2,3-18
7-2,1-7

1-4

1-2,1-13
3-17
14-10

6-1
13-1
3-8
14-4
14-7

13-2,13-5

3-13
3-14
3-18
3-4
8-9

13-1
5-~1

8-8
3-15

s gon e ivmrar b k| nimg T

overlays

scientific subroutines

switches '

Vector General
Terminals

use of

special control keys
TEXT,CALL (VG)
TIBMFD,CALL
TIBMFS,CALL
TPDPFD,CALL
TPDPFS,CALL
Transfer

files

tapes (PDP-IBH)
Tree structure (overlays)
TUTILS
UIC
UNBLNK
Utilities

DMP

CMP

PIP

FLX

magnetic tape
VECT,CALL (VG)
Vector General

daily use schedule

drawing routines

hardcopy

hardware

kints for programming the VG

programming

task building
VECTT,CALL (VG)
VECTT,CALL (VG)
Versatec

hardcopy for VG
VGCOM
VGCOMM
V:itual Blocks
WHO (MCR)

ORIGINAL PAGE IS
OF POOR QUALITY,

3-27
11-1
3-14
7-22

1-3,1-12

1-6
7-9,7-11,7-19
10-2

10-2

10-2

10-1

3-3
10-1

3-23
10-1,13-11
1-1,1-2
14-3

" 3=20

3-21

3~-1

3-6

13-1,14-1
7-9,7-20,7-22,7-28

7-9,7-20,7-22,7-28
7-9,7-20,7-22,7-28

7-3,7-32
7-3 ‘
7-3

3-20

3-20

oo

SR,

N ety

	GeneralDisclaimer.pdf
	0051A02.pdf
	0051A03.pdf
	0051A04.pdf
	0051A05.pdf
	0051A06.pdf
	0051A07.pdf
	0051A08.pdf
	0051A09.pdf
	0051A10.pdf
	0051A11.pdf
	0051A12.pdf
	0051A13.pdf
	0051A14.pdf
	0051B01.pdf
	0051B02.pdf
	0051B03.pdf
	0051B04.pdf
	0051B05.pdf
	0051B06.pdf
	0051B07.pdf
	0051B08.pdf
	0051B09.pdf
	0051B10.pdf
	0051B11.pdf
	0051B12.pdf
	0051B13.pdf
	0051B14.pdf
	0051C01.pdf
	0051C02.pdf
	0051C03.pdf
	0051C04.pdf
	0051C05.pdf
	0051C06.pdf
	0051C07.pdf
	0051C08.pdf
	0051C09.pdf
	0051C10.pdf
	0051C11.pdf
	0051C12.pdf
	0051C13.pdf
	0051C14.pdf
	0051D01.pdf
	0051D02.pdf
	0051D03.pdf
	0051D04.pdf
	0051D05.pdf
	0051D06.pdf
	0051D07.pdf
	0051D08.pdf
	0051D09.pdf
	0051D10.pdf
	0051D11.pdf
	0051D12.pdf
	0051D13.pdf
	0051D14.pdf
	0051E01.pdf
	0051E02.pdf
	0051E03.pdf
	0051E04.pdf
	0051E05.pdf
	0051E06.pdf
	0051E07.pdf
	0051E08.pdf
	0051E09.pdf
	0051E10.pdf
	0051E11.pdf
	0051E12.pdf
	0051E13.pdf
	0051E14.pdf
	0051F01.pdf
	0051F02.pdf
	0051F03.pdf
	0051F04.pdf
	0051F05.pdf
	0051F06.pdf
	0051F07.pdf
	0051F08.pdf
	0051F09.pdf
	0051F10.pdf
	0051F11.pdf
	0051F12.pdf
	0051F13.pdf
	0051F14.pdf
	0051G01.pdf
	0051G02.pdf
	0051G03.pdf
	0051G04.pdf
	0051G05.pdf
	0051G06.pdf
	0051G07.pdf
	0051G08.pdf
	0051G09.pdf
	0051G10.pdf
	0051G11.pdf
	0051G12.pdf
	0051G13.pdf
	0051G14.pdf
	0052A02.pdf
	0052A03.pdf
	0052A04.pdf
	0052A05.pdf
	0052A06.pdf
	0052A07.pdf
	0052A08.pdf
	0052A09.pdf
	0052A10.pdf
	0052A11.pdf
	0052A12.pdf
	0052A13.pdf
	0052A14.pdf
	0052B01.pdf
	0052B02.pdf
	0052B03.pdf
	0052B04.pdf
	0052B05.pdf
	0052B06.pdf
	0052B07.pdf
	0052B08.pdf
	0052B09.pdf
	0052B10.pdf
	0052B11.pdf
	0052B12.pdf
	0052B13.pdf
	0052B14.pdf
	0052C01.pdf
	0052C02.pdf
	0052C03.pdf
	0052C04.pdf
	0052C05.pdf
	0052C06.pdf
	0052C07.pdf
	0052C08.pdf
	0052C09.pdf
	0052C10.pdf
	0052C11.pdf
	0052C12.pdf
	0052C13.pdf
	0052C14.pdf
	0052D01.pdf
	0052D02.pdf
	0052D03.pdf
	0052D04.pdf
	0052D05.pdf
	0052D06.pdf
	0052D07.pdf

