
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



r.

__may

(SAS r1 -Tel - 7`)5b4)	 TNh LHnA Obe 1:/70 ^inrlu^t : 5	 Ii H3- 1daS17PNUCESSlhv PACILI-Y U SEh y GUI DL (NASA)

C)	

b P HL AU7 /eMF AU I	 x-6&0 uYd
Uaclas

GJ/b 1 1tiU2U

` NVSA

Technical Memorandum 79584

The LHEA PDP 11/70 Graphics
Processing Facility/ User's Guide

Data Management and Programming Office
Code 664

JULY 1978	 .^4 pct ^P	 ,,^^;

SECOND EDITION

National Aeronautics and
Space Administration
Goddard Space Flight Center

0	 Greenbelt, Maryland 20771

1

i



r

TM 79554
8

^a

i

THE LHEA ?DP 11/70
GRAPHICS PROCESSING FACILITY

USEWS GUIDE

Data 'Management and
Programming Office

Code 664

July 1978

SECOND EDITION	 }

f

ra y	GODDARD SPACE FLIGHT CENTER
Greenbelt, 1laryland.



CONTENTS

Page

1. The PDP 11/70 ...........................................	 1-1

i

I

1.1	 Philosophy ................ 	 ..................... 1-1
1,2	 Operations Management	 ...........	 ................ 1-1

1.2.1 Assignment of the UIC .....	 .	 .......	 ........ 1-1
1.2.2 Disk Space Management ........................ 1-2
1.2.3 Vector General Daily Use Schedule........... 	 ..	 . 1-2
1.2.4 Special Use of the Facilities ..................... 1-2
1.2.5 Preventative and Remedial Maintenance ............. 1-2
1.2.6 Communication to the Users ..................... 1-3
1.2.7 Terminal Use ............................... 1-3

1.3 PDP 11/70 Hardware and Software Overview .............. 1-3
1.3.1 PDP 11/70 Hardware ................................ 1-3
1.3.2 Vector General Graphics Display Hardware........... 1-4
1.3.3 11/70 Software Overview ......... . ........... 1-4

1.4 Terminal Control Conventions ........................ 1-6

2. Starting the PDP 11/70 ................................ 2-1
2.1 Booting .	 ............. ..	 ..............	 2-1
2 .2 Turning I/O Devices On . ... 	 .............. ......... 2 -2
2.3 Signing On	 ................... .......	 .. „ ..... 2-2
2.4 Powering Down ..........._ .........	 .........	 ..	 2-2

3. Files on the PDP 11/70.... ................................ 3-1

A

3.1 Maintenance Using PIP ........................................... 3-1
3.1.1	 Purging..	 ..........	 ...	 ...	 .......... 3-1
3.1.2	 Deleting................................... 3-2
3.1.3	 Renaming .................................. 3-2
3.1.4	 PEP File Transfer . 	 ....	 ......	 ........ 3-3

3.2 Backup of Personal Files	 .....	 ..	 ..........	 .	 . 3-6
3.3 File Creation and Editor ..... 	 ...................	 .. 3-8
3.4 Preparing a FORTRAN Program for Execution ............. 3-12

3.4.1	 FORTRAN Compiler 	 .......................... 3-12
3.4.2	 Task Builder	 .........	 .....	 ....	 .	 ... 3-14

3.5 Indirect Files	 ..........................	 ........ 3-16
3.6 Execution of a Program and Sample Output ................ 3-16
3.7 MCR-Commands, General Information.	 ............ 3-17
3.8 File Dump Utility (DMP) . 	 ...	 .	 ............	 .. 3-20
3.9 File Compare Utility (CMP) .......................... 3-21

PJ3ECFZD1NG eAGE BLA:t-TI NO.T MMES'	 iii



Page

3. 10 Overlays ............................	 3-22
3.10.1 Introduction... _........ .................... 3-22
3.10.2 Structure ............... 	 .............. 3-23
3.10.3 Overlay Degcription Language (ODL) ............. 	 3-25

4. Magnetic Tape.....	 .........	 ...........	 . . . . . . . . . . 4-1
4.1 Mounting and Dismounting Tapes ...................... 4-1

5. Paper;	 Tape............	 .......	 ...........	 ..	 ..... 5-1
5.1	 Loading Hardware ...... 	 ........................ 5-1
5.2	 Paper Tape Reader 	 ............................... 5-1
5.3	 Paper Tape Punch ..	 .............................. 5-2

6. Floppy Disks...	 ..................................... 6-1
6.1	 Loading Hardware .........	 ....................... 6-1
6.2	 Storing Data on the FloAAy ........................... 6-1

7, 7-1iThe	 General Graphics Ditsplay Unit...Vector	 ....... ...
7.1	 Hardware .................	 ........	 ..	 ...... 7-1
7.2	 Programming the Vector General w..	 ............ .....	 . 7-1 }

7.2.1	 Introduction .......... 	 ...	 .	 ................... 7-1
7.2.2	 Programming Ideology ............................. 7-3
7.2.3	 VG Internal Ideology	 ...	 ............	 ..... ,..... 7-3
7.2'.4	 The Vector General Graphics Routines .............. 7-4
7.2.5	 Sample Program on the Vector General ...... 	 .	 ..... 7-20
7.2.6	 Task Building ..... 	 ..............	 .... 7-21
7.2.7 Hints for Programming the Vector General .......... 7-21
7.2.8	 Additional Notes ............................. 7-22
7.2.9	 Hardcopy Procedures..........	 ..........	 .... 7-33

8. Error Messages and Procedures . 	 ...	 .. ...........	 .. 8-1 a
8.1	 Vector General Errors ...	 ...	 ............	 ...	 . 8-1
8.2	 Other Errors	 ................................... 8-3 u

8.2.1	 Utility Errors ............................... 8-3

9. PDP 11/70 Hardware Failures ...................... .... 9-1

iv

f	 ,

•.t



Page

10. IBM 360 - PDP 11/70 Tape Compatibility ................... 10-1

10.1 SOURCE Programs .............................. 10-1
10.2 Transfer of Data Files.........	 ........ 0 .... ...	 10-1

10.2.1 Introduction .................. ..... ..... 10-1
10.2.2 PDP 11 - IBM 360 Conversion Routines ... ... , ... 10-1
10.2.3 IBM 360 Tapes to PDP 11 Format ....... '........ 10-3
10.2.4 PDP 11 Tape to IBM 360 Format ................ 10-8
10.2.5 Card Reader to Disk or Line Printer ............. 10-13

11. Scientific Subroutines Package .......... ...... . . . ....	 11-1

11.1 Introduction, .... 	 ...........	 ...	 11-1
11.2 User Interface ......... .	 ..................	 ... 11-1
11.3 Documentation Available .......................... 11-1

12.	 This section deleted i

13.	 Magnetic Tape Utilities ............................... 13-1

13.1 Introduction ..........	 ...	 ..	 ......	 ... 13-1 5
13.2 Tape Routines	 ................................ 13-1
13.3 Parameter Description to all Routines .................. 13 -2
13.4 Call Descriptions ...... 	 .....	 , .................	 .. 13-4
13.5 Error Messages ..............	 ) .........	 ........ 13-6
13.6 Examples	 .....	 ............	 ....	 ............ 13-9
13.7 TUTILS - General Purpose Tape Utility ................ 13-15

.t

13.7.1	 Capabilities of TUTILS 	 ...................... 13-15
13.7.2	 Sample TUTILS Run ........	 ............	 .. 13-15

14. General Purpose Utilities and Subroutines	 .................. 14-1

14.1 IOPACK - Input/Output Package ..................... 14-1
y

14.1.1	 Sample IOPACK Run ......................	 .. 14-2
14.2 UNBLNIti, - Eliminates Trailing Blanks..... ..... 	 ...... 14-3
14.3 STUFF - Executes MCR Commands from within a Program... 14-3

F

14.4 AECON-ASCII - EBCDIC Conversion Routines............ 14-5
14.5 INITIAL - Initializes Floppy Disks or Magnetic Tapes ...... 14-5
14.6 SRD - Search Directory Utility,	 ..	 ...	 ...... 14-6
14.7 SELECT - Moves Files Selected with the SRD Utility

to UIC	 (222,2221	 ..	 ..	 ..	 ..	 ..	 .	 ..	 .. 14-9 i

INDEY

v



1. The PDP 11/70

It ie the intention of this document to put in one place, those pieces cif informa-
tion that the new user of the LHEA PDP 11/70 facilities needs in order to most
quickly phase in. It is also intended to act as a reference guide for the occasional
user.

All of the information contained in the document is available or has been available
to all users of this facility. However, it is spread throughout six volumes of DEC
manuals and, in some cases, is information other users have gathered and is not
documented elsewhere.

1.1 Philosophy

The Lab for High Energy Astrophysics purchased the DEC PDP 11/70 system in
November, 1970 to.serve as a graphics data processing facility. It is not expected
that the 11/70 will serve as a general purpose computer facility in the manner of
the SACC 360/75 and 360/91. The justification for the use of the LHEA PDP 11/70
has always been, and remains, to provide an interactive graphics capability to be
used in support of the scientific data analysis activities of Lab personnel.

1.2 Operations Management

This section will present some of the more important aspects of management of
the facility which affect the user community. Some items will be presented via
memos issued to the user community in the past. These ,memos follow this
section.

l

1.2.1 Assignment of the UIC

All users sign-on the 11/70 via the use of the Users Identification Code. This
code is assigned to the user by the systems manager and has the form [ xxx, yyy]
where = is the group code and yyy is the user code within the group,



In the LHEA facility, the following convention far group codes is used:

Group Code (octal)	 Group

100	 Gamma, Ray Studies
200	 Cosmic Ray Studies
300	 X-Ray Studies

The user code is assigned in numerical order starting with 100 (8).

1.2.2 Disk Space Management
( See Memo dated 2/28/78, following this section] .

The policy stated in the memo has been changed. The preserve is done every
Tuesday and Friday and the scratch (i.e. purge) is done every other Tuesday pre-
ceeding the preserve.

1.2.3 Vector General Daily Use (SD) Schedule
[See Memo dated 3/31/77, following this section] .

This schedule is currently undergoing revif., . rnid may change. If it is changed,
that information will be communicated all ^zers and recipients of the docu-
ment via memo.

1.2.4 Special Use of the Facilities

So that we might give maximum cooperation to users who wish to use the facility
for demonstrations, special requirements for publication, etc, the system manager
should be contacted well in advance concerning their needs. It is necessary to do
this so we can properly schedule these requirements relative to hardware repairs
and maintenance, and installation of new equipment or software, etc.

y.

1.2.5 Preventive and Remedial Maintenance

Preventive maintenance is performed on the PDP 11/70 by DEC the last Tuesday
of every month, from 0830 to 1200. Remedial maintenance is scheduled by the
system manager on an as-needed basis. Any user who discovers a need for
remedial maintenance should notify the systems manager.	 ,_^



1.2.6 Communication to the Users
See the Memo dated 3/8/77 following this section].

Users will be notified about system related items in two ways. The user emer-
gency notice area is discussed in the referenced memo. Information will also be
made available to the user via the notices printed to the terminal when he signs
on (the HEL command).

1.2.7 Terminal Use
( See the Memo dated January 23, 1978]

1.3 PDP 11/70 Hardware and Software Overview

1.3.1 PDP 11/70 Hardware

The Lab's PDP 11/70 configuration is shown in Figure 1. Remarks about the capa-
bilities of some of these hardware components and the software system follow:

THE UNIBUS The UNIBUS is used to move data between devices in a synchronous
manner. The maximum transfer rate is one million bytes per second.

THE FLOATING POINT PROCESSOR (FPP) - The FPP has its own set of 6
64-bit accumulators used to do both single precision (32 bits) acid double precision
(64 bits) arithmetic. The operation of the FPP is overlapped with the CPU oper-
ation in order to increase throughput. Two double-precision floating point num-
bus can be multiplied in 9 microseconds,

CACHE MEMORY - The cache is a high-speed solid-state memory with 2,048
byte capacity used as a buffer between the CPU registers and main memory.
The cycle time of the cache is 240 nanoseconds. When a memox7 read request
is issued by the CPU, cache is checked to see if the desired information is pres-
ent. If it is present, no memory read is required. When a memory write is ini-
tiated, the information is written to the cache and memory to insure both have
the most up to date data.	 1

THE RPO4 DISK - The single RPO4 disk has a capacity of 88 million bytes and
a single controller can support 8 drives. Data can be transferred in blocks of 2	 j
to 130,712 bytes at a rate of 806,000 bytes-per-second.

3

THE TU16 TAPE DRIVES - These drives are industry compatible, 9 track, dual
density - NRZI 800 bpi and Phase Encoded 1600 bpi - with a speed of 45 ips to
attain a maximum transfer rate of 72,000 characters-per-second.

s

1-3

j



CR11 CARD READER The CE11 reads cards at a rate of up to 300 cards per
minute. This unit does not hive a prmch capability.

HAZ ELTINE TERMINALS The Hazeltine 2000 Video terminals are used as re-
mote terminals to the 11/70. The screen size is 74 characters by 27 lines. 	 .t

The RX-11 Floppy Wsk System

This is a dual floppy disk dri ^ a system using single sided, single density, prefor-
matted diskettes with a storage capacity of 256,256 bytes, or about 450 blocks.

THE VERSATEC — The VERSATEC (Model 1200A) is an electrostatic printer /plotter.
On the 11/70 hardware configuration it is used as a hard copy device to the Vector
General. However, it can act as a printer when necessary.

1.3.2 Vector General Graphics Display Hardware

The VG used with the Labs 11/70 is a model 2D3 with the following hardware
features;

e direct memory access from the CPU

r 21" rectangular; 13" x 14" CRT tube

• .020" spot size	 i

e 32 intensity levels

• 30" x 30" dynamic plot range

• 4096 x 4096 addressable locations

• 2% positioning accuracy

• KBI Alphanumeric Keyboard with 72 keys

• 1'52 Function Keyboard with 32 momentary, 1 interrupt keys

• LP3 light pen with a 3g see response time

Character set of 96 ASCII and 96 special characters 	 H

Section 6 of this guide gives the reader a detailed description of the use of the
VG.	 F

t

1-4



1.3.3 11/70 Software Overview

The operating system used on the LHEA 11,/70 is the most current version (6.2)
of RSX-11D. This is a multiprogrammed, real-time operating system designed
for a wide range of applications. It incorporates the memory management sys-
tem thereby allowing a program to be loaded anywhere in memory without
modification.

The basic program unit executing under RSX-11D is the task, which coiisists of
a program module or a set of program modules. The task is limttied to a size
of 32K words. 1

i
The RSX-11D File System provides support of files on disk volumes. Four levels
of file protection are supported via four levels of access. Both sequential and
random access are supported for block structured and fixed length record files.
Variable length record files can only be processed sequentially. All types of
files can be expanded dynamically.

Console operations for RSX -11D are supported by tasks called the Monitor Console
Routines (MCR). Some operations include;

• Log on and log off

r Mount or dismount peripheral, volumes

• Initialize peripheral volumes 	 si
• Run and schedule tasks

• Assign a logical unit number

• List LUN assignments for an indicated task

The program development and utility functions provided by the system include:

• Peripheral Interchange Program, PIP

• File Transfer Utility, FLX

• File Compare Utility, CMP
AIR

e File Dump Batch, DMP	 3
l	 ;,

e Character Oriented Text Editor, EDIw	 j.
e Task Builder Overlay Linker, TKB

• Single Stream Batch, BATCHI
-	 e Fortran IV Plus, FOR

Also, a scientific subroutines package is available.

1_ 5	 l



1.4 Terminal Control Conventions

The average u9er should be familiar with the following special key functions

(1) TAB Key.

The TAR key automatically moves the cursor to the next tab stop, if any,
whether vertical, horizontal, or diagonal. Tab stops are set automatically
when the display contains both background and i)reground fields. The first
foreground character following a background field is a tab stop. If there are
no tab stops set, the tab key will cause the cursor to move to the lower right
hand corner of the display.

(2) Escape (ESC)_ Key.

Use of this key is optional, depending on communication software being used.
ESC generally is used to generate a program interrupt signal.

(3) Control (CTRL) Key.

The control key is used in conjunction with other character keys to generate
non-printing characters for a number of reasons including security, function
codes, etc. When CTRL is used, it should be depressed and held while the
other required character key is depressed. CTRL sends special codes by
altering the code pattern of the other key used with it.

(4) Line Feed (;LF) Key.

The LF key causes the line feed character to be transmitted Nvhen operating
in standard full or half duplex mode, but has no other effect. It does not move
the cursor down the screen and does not cause the line feed character to be
stored.

A

1

i

(5) Carriage Return (CR) Key,

The CR key moves the cursor back and down to the beginning of the neat
lower line, thereby accomplishing both carriage return and line feed.

(6) Number Key Cluster.

These keys transmit the same code as the numeric keys across the top of
F

f

the keyboard and are provided in an adding machine cluster to facilitate 	 a
entry of numeric data.	 )

t.

}

1-G



(7) Cursor Control Keys.

The HOME krCiy moves the., cursor immediately to the home r031tiOn (first
character position in the top line). The cluster of four arrow keys are
cursor-stepping keys. Each moves the cursor one space in the indicated
direction.

These keys may be pressed in conjunction with the REPEAT key for rapid
cursor movement, cursor positioning with these keys is completely non-
destructive; it will not alter any characters in the display.

KEYS	 FUNCTION

CTRL B	 Start paper tape input. Signals computer to start reading
the tape.

CTRL T	 Terminate paper tape input.

CTRL V	 Deletes "01 of the type-ahead buffer.

CTRL C	 Causes MCR to be activated.

CTRL Z	 Logical End-of-File.

RETURN	 Terminates the current line and causes the system to
priint the prompt for the next command.

RUBOUT Causes the most recently typed character to be deleted
and the cursor if left where it was before the character
was typed.

ALT or ESC	 Terminates MCR. Used when requesting a program that
is to interact with the , operator.

CTRL I	 Causes a horizontal tab. Tab stops are set by the soft-
ware at every eight character position (9, 17 0 25, 33).

N

CTRL K	 Causes a vertical tab of one line. 	 3

CTRL L	 Causes a, form feed to the top of the next page.

CTRL O	 Interrupts system output to the terminal. Successive
pressings cause start and stop.

I i	 1-7



a
CTRL R	 Causes the system to print the current terminal line.

CTRL U	 Cancels the current input line.

CTRL Q (XON)	 Starts output to terminal.

CTRL S (XOFF)	 Stops output-until CTRL Q is typed.



r	 _	

n

ORIGINAL' PACE rg
OF POOR QUALITY

6WISOM :FOAM Nor IR
JYL'/ i07,T OITION.
OA	 /Y,; 141 VIII 10.1 I's

UNITED STATES GOVERNMENT

h	 Memorandum
TO	 DISTRI&UTION DAT=:	 Marvh B, 1977

Mom	 G.A. Muckel
Mary Ann Esfandiari

!us]irt:	 11/70 Update

We would like to inform you of two items:.

f (1) It any user requires 11/70 support ( tame on the machine, software

l	 help, etc.) to support his efforts in preparing for a paper, pre-
sentation, demonstration, etc., please coordinate this request

E	 with either of us as soon as it becomes known to you. This will
enable us to give you maximum cooperation and support.

r	 (2) We have installed a "user emergency" %otice area on the bulletin
board at the computer room entrance. This is the quickest way
we can notify the user community of items that need their immediate
attention (like a corrupted disk, etc.). If, when you enter the

r	 computer room, the red arrow is displayed, read the op sted items.

t'

€	 Thanks very much.

r	 //

eralJMuckel

Mary Ann Isfandiari

GAM:gee

3

a
Y

a	 ^
9

Byy U,S, Savings Bondi Regularly on the Paytou Savings Plan

PRri amING' PAGE BLANK NOT FIL-149D
1-10	 •

i'

R

t

TM

a



ORIGINAL; PAC4'
OF POOR QUALITY

OIA FOUR 440 001 101.11,6

UNITED STATES GOVER.NINIENT

Memorandum
TO	 : DISTRIBUTION

FROM	 G.A. Muckel/M.A. Esfandiari

wyscr; New Daily Use Schedule for V.G.

VATS: March 31,1977

The following schedule for the use of the V.G. will be put into effect
beginning 4/4/77. It will remain in effect on a trail basis until mid-
July unless we find It causes a msioc Problem to some Grou p . We will
attempt to schedule 664's use of the V.G. for system items between
11:00 and 1:00.

SAS COSMIC X-RAY SYSTEM FREE

8:00- 9,00 x

9:00-10:00 X

10:00-11:00 X

11:00-12:00 x

12:00- 1:00 X X

1:00- 2:00 x

2 . 00- 3:00 X

3:00- 4:00 x

4 . 00- 5:00 x

5:00- 6:00 X

After 6:00 X
,d

f

DISTRIBUTION:
P. Serlemitsos /X-ray
D. Thompson/Gamma-ray

t.t T. von Rosenvinge/Cosmic Ray

GAM: gee

r...... Buy U.S. Savings Barlv'r Rigulady on the Pay►oll Savings Plan

f

E

}



ORIGINAL PAGE 19

OF POOR QUALITY

January 23 f 1978

TO:	 All 11/70 Users

FROM:	 G.A. Muc3el
M.A. Esfandiazi

SUBJECT: Terminals on the 11/70

Effective Wednesday, January 25, the following policy is adopted for
terminal use on the PDP-11/70:

(1) The Hazeltines are to be allocated to the research groups as
follows:

2 - X-ray
1 - Cosmic Ray
1	 664- Gamma Ray/Code

t
a

(2) Anyone can use any terminal, but can be bumped by a member of the
"owner" group with 5 minutes ! warning.

(3) One additional Hazeltine will be added to the system in the
near future (within 60 days) to be used as a "free" one on a
first-come-first-serve basis. If any "owned" Hazeltine goes
down, the "free" one will be allocated to the owner group until
all are back in service.

(4) You are reminded that all. VG runs are to be submitted from the
LA36.

This terminal policy will be constantly evaluated and will be adjusted
as needed.

Gerald A. Muckel, Head
Data Mana ement & Pro rammin Offi eg	 4	 4	 c

Mary Ann Esfandiari

1-12

r-'



ORIGINAL, p sL'^ ;
OF POOR QUALITY

February 28, 1978

TO

	

	 F.B. McDonald, Cosmic Ray Group
C.E. Fichtel, Gamma Ray Group
E. Boldt, X-ray Group

FROM:

	

	 G.A. Muckel
M.A. Esiandiari

SUBJECTS PDF 11/70 Disk Space Management

In order to ease the problem of disk space management on the PDP 11/79,
the following action will be taken:

(1) The heads of each research group will name one person to manage
the portion of disk allocated to that group.

(2) The allocation of space is;

Group	 t of Available Space	 Total # Blocks

X- ray	 50	 50000

Cosmic Ray	 25*	 25000

Gamma Ray	 25	 25000

(3) Whenever a group goes over their allocation, the person named
as 11/70 liaison from that group will be"notified. He then has
the immediate responsibility of getting his group's use back
within limits. The report of disk use he gets ,,ill include
the number of blocks being used by each croup member, as well
as the number of blocks used in excess of group allocation.

This policy will become effective as soon as group representative
names are received by us.

if

ti



1 2. Starting the PDP 11/70	 OF POOR QUALITY

2.1 Booting.

The steps for cold-starting the PDP 11/70 are as follows:

(a) Push the START/STOP button on the disk drive, which will begin to
E	 x' activate.:

(b) Press HALT/ENABLE toggle switch on the CPU console down to HALT
i

mode. Turn the key on tae console to the POWER ON position.

(c) Toggle in the octal number 17765000 on the console. That is:

• off off $so s0. 000 000 000

where the dark toggles are up, white are down. Depress the LOAD ADDRESS
toggle and release.

(d) Next, toggle in the disk device number, octal number 7.0 ( a ) on the console.
This is:

0 000 000 000 000 0.00 se$ 000• 3

l

Lift the HALT/ENABLE toggle up to the ENABLE position. Depress the ^f

START toggle and release.
xi

i ' (e) A prompt for the current time is issued on the DEC writer by the PDP. In-
t> put is as follows: DAY (2 digits), Dash (—), MONTH (3 letters), Dash, Year

(2 digits)	 Space, Hours 2 digits in the 24-hour clock s tyle), ColonP	 (	 ^(c), Min- f

utes (2 digits), Colon, Seconds (2 digits) and Carriage Return:

TIM>05-JUL-76	 08:30:0 0 (CR)
j!

ar

4 (f) The grannies package must now be installed by entering the following com-

k mands, turning VG screen on first with the ON/OFF button on lower left of>
the VG unit:

t 3 F^

MCR>VGI(CR).
. i

NOTE: If disk and power are already on, press HALT toggle and start at
Step C. i

I

2-1



_	 "	 a

2.2 Turning I/O Devices On

If the various I/O devices are off, press the START buttons on the Hazeltines
and the ON/OFF button for the line printer. Leave the card reader off until use
is desired.

2.3 Signing On

To sign on the Hazeltines, press CTRL and Key C simultaneously to get an
MCR> response. Then type in HEL [X Yl where [X Y) is your UIC (User
Identification Code). The computer will respond with anther MCR>, unless a
typing mistake occurred. In this case, start the procedure again.

2.4 Powering Down

To power down the PAP, follow this procedure:

1. After making sure that no one is presently using the computer, turn all Hazel-
tine CRT's off by depressing the POWER switch. Turn the Vector General
screen off by pressing the switch to the OFF position.

2. Stop the computer by depressing the HALT toggle on the CPU and then pressing
the START/STOP button on the disk drive.

3. Turn the CPU off by turning the key to the POWER OFF position.

NOTE: Line printer, DEC writer and card reader power switches should not be
touched as these are controlled by the power key on the CPU console.



9.

F

G

3. Files on the PDP 11/70	 ORIGINAL iPlaGE IS
.

3.1 Maintenance using PIP	
OF POOR DUALITY

The PDP 11/70 provides each user with their, own UIC- [ggg,nnn] . The first number,
ggg, in your UIC indicates the group in which you work. The present scheme is:
100 gamma-ray, 200 — cosmic ray, and 300 — X-ray astronomy. The second
number is your identification within that group. These numbers are assigned in se-
quence beginning with the number 100(8)

Use of wild cards in the output file specifiers is restricted. For the following
PIP functions, the output file specifier may not have any wildcards

(a) Copying a single file from device to device
(b) Concatenating files to a specified file
(c) Appending to an existing file
(d) Updating (rewriting) an existing file
(e) Listing a directory

When a list of files is to be copied, the output file specifier must be *.*;* or
aefault.

In all cases in which wildcards are allowed in the output file specifier, the wild-
card UIC form [*, j is used ' to indicate that the output UIC is to be the same as
the input UIC

3.1.1 Purging

Although there are no restrictions on the number and size of files that users can
maintain under their UIC, all users should perform periodic clean-up operatJ,7.-s.
At the beginning of each EDIT session and upon execution of the EDT cornmanci
TOF a new version is created of a pre-existing source file. A new version is
also created each time a compilation or task build is performed.. A command
to PIP such a- the following gets rid of all but the latest version of all files

(1) PIP *.*/PU

Variations on this include purging all but the latest two versions

(2) MCR> PIP * */PU:2

3-1



and purging all but the latest in data (.DAT) files

(3) MCR>PIP *.DAT/PU

3.1.2 Deleting

To delete all files of a particular kind, the switch /DE is used. Some examples: 	 a

(1) Deleting all data files (all versions):

MCR>PIP *.DAT;*/DE

(2) Deleting all Source, Object and Task files called PROG:

MCR> PIP PROG .*;*/DE

For those who are reluctant to purge their old files, every two weeks a general
disk purge is done of all files but the latest two versions = This is necessary to
avoid disk overrun. A packed disk slows down I/O time because of fragmenta-
tion. It takes longer to reirieve a file in This way. Also, since the task builder
requires a contiguous file, a full disk can make its job more difficult. (See
section 1.3).Y

I

3.1.3 Renaming

If the bi-weekly disk purge interferes greatly with your file scheme or if you
want to rename files for any reason, you can rename the files you don't want
purged. This can be done using PIP and the /RE switch. In addition, with the
/NV switch, the renamed file can be forced to have a version number which is
one greater than the latest version of the previously existing file. Some examples:

(1) -Rename PROG.FTN to PROGI .FTN

a	 MCR>PIP PROGI.FTN=PROG.FTN/RE

O Rename PROG.FTN;3 to PROGI.FTN;4 	 }

-	 MCR>PIP PROGI.FTN/RE/NV=PROG.FTN;3

4

3-2



I}i

3.1.4 PIP File Transfer

Frequently, it is necessary to transfer files from someone else's UIC to your
own or vice versa. Or, you might have files on a magtape that you want to put
in your disk, space. This is accomplished easily with PIP. The general com-
mand consists of: OUTFILE=INFILE (no switches since copy is the PIP default).
The "OUTFILE" is the file specifier of the file you want to copy TO and the
"INFILE" is the file specifier of the file you want to copy FROM.

Some examples:

(1) Copy all files called FORT from UIC = 1111,121 to UIC = [110,101-

MCR>PIP (110,10] = [111,121 FORT.*;*

If no version is specified, the latest is assumed.

(2) Copy the latest version of FILE FORT.DAT from UIC = (30,301 to
UIC = (40,401 —

MCR>PIP [40,401= (30,301 FORT.DAT

(3) If you wanted to copy this to (50,501 changing the name to SAMP.DAT:

MCR> PIP [50,501 SAMP.r,- ,AT= [40,401 FORT.DAT

There are two restrictions. First, no wild cards (asterisks) are permitted in
the output file name. Second, if an output file is specified, there may be only
one input file.

Copying to or from tapes is basically the same procedure, only the input or out-
put device would be MMO: or MM1: Also, the tape would have to be mounted
beforehand. In transferring files from one UIC to another, the owning UIC of the
file as well as its protection is preserved. In order to assure that the file(s)
transferred into your disk is/are owned by you, the following PIP command is
needed following the transfer;

All data files were transferred into your UIC:
[100,1501 from UIC:[200,3001 —

MCR>PIP [100,150]*.DAT;*/PR/FO

The /PR switch allows you to change the protection of a file if you wish. The
/FO switch allows you to set file ownership to the UIC specified.

3-3

i



There are four categories of file protection:

1. System – Specifies what categories of access system accounts are allowed
to tFe-7ile.

2. Member – Specifies what categories of access the member has allowed
himself.

3. Group – Specif i es what categories of access othel , members in the same
Fr—oup have.

4. World – Specifies what categories of access.have been given all other ac-Fo—unts not covered.

For each category the user can specify whether that category can Read, Write,
Extend or Delete the file. The default access rights are:

HWED for System and Member
RWE for Group
R for World

The format of the command to alter protection of a file is as follows:

infile/PR /SY (:RWED] /OW [:RWED]
[ /GR [:RWED I I [ /WO [:RWED /FO

where /SY is the system subswitch
/OW is the number subswitch
/GR is the group subswitch
/WO is the world subswitch

for example, to change the protection of a file so that world has RWED privleges:

MCR> PIP PROG.FTN;3/PR/WO:RW'ED

if any of the above subswitches are present and no value is given then no privleges
are granted for that category.

For example,

MCR>PIP FILE. FTN; 10/P]R/OW:RWE /GR:RWE/WO

sets the protection so owner and group have RWE privleges and world is denied
all access.

3-4

----------

4



i

Another feature of PIP is the /LI switch. This provides a directory "listing of a
UIC with the following information:

(1) File name, type, version.

(2) Number of blocks used (decimal)
i	 t

(3) File Code:

(Null) — non contiguous.

C Contiguous.

L — Locked.

(4) Creation date szd time.

(5) Totals line, indicating total # of files and blocks used.

Some examples:

(1) Obtain a directory listing of UIC [150,150) on the line printer —

MCR>PIP LP:=[150,150]/LI

(2) Specify only FORTRAN files —

MCR> PIP LP:= [150,150] *,FTN/LI

(3) A /FU switch yields more detailed information on a UIC, e.g.,:

MCR> PIP LP:=[ 150,1501 /FU

come additional PIP switches Include: 	 a

/B L:n

This subswitch specifies the number of contiguous blocks to be allocated to the
output file, where n is an octal or decimal value. This is useful for copying a
contiguous file and changing its size.

3_5
i
3



/CO

This subswitch specifies that the output file be contiguous. Whop copying contig-
uous files (.TSI) from magnetic tape, both /CO and /BL:n must be specified be-
cause PIP canna, determine the length of the input file when it allocates file space.
(Space is allocated before copying begins.)

/B9: n

This switch defines the block size for magnetic tapes. It allows you to write big-
ger blocks onto magnetic tape. It can appear on the input or output file specifier.
If the blocksize specified is smaller than the actual blocksize, an I/O error occurs.

/R W

This rewind switch allows you to rewind a magnetic tape. It can be applied to
both input and output specifiers. However, if specified on the output side it
erases the tape. When applied to the input specifier, /FtW rewinds the gape be-
fore opening the input file. This can be used to save search time. If you know
a file is behind the tapes current position, /RW rewinds the tape before search-
ing for the file. This saves the time that otherwise would have been taken to
search for the file between the current position and the end of the tape.

Presented here are the most frequently used switches to PIP. Additional infor-
mation may be found in Chapter 2 of the Utilities Procedures Manual. PIP's
error messages may be found in the "Error" section of the manual.

3.2 Backup of Personal Files

Due to the occasional problems that have occurred Nvith the disk and the fact that
the system is not protected against commands that can wipe out whole libraries,
it is suggested strongly that you back up your UIC library on a periodic basis
convenient to you. If you do occasional work a weekly basis might be suitable.
However, for those who make major changes to their files on a daily basis, a
weekly back-up might not be sufficient.

There are two methods you can use to back up your disk files, FLX and PIP.
The following are some considerations in determining which method is best for
you:

(1) ,FLX cannot handle large data files. (f 100 blocks).

3-6



V

ORIGINAL PAGE i
OF POOR QUALITY

(2) FLh works well with source files and other files (.OBJ and .TSK) of
reasonable size (<100 blocks).

(3) FLX is faster than PIP and uses less tape.

(4) FLX doesn't copy multiple versions of a file and the one that it does
copy may not be the latest version.

(5) FLX only recognizes 6-character data names, not 9.

(6) PIP can handle any files.

(7) PIP copies everything in your library (all versions of all files).

PROCEDURES:

Using FLY.: Backup.

(1) MCR>MOU MM0:/CHA=(FOR)
(2) MCR>FLX MMO:/ZE
(3) MCR>FLX MMO: [Your UIC) /DO=DBO: [Your UIC ]*.*/RS
(4) MCR>FLX LP:=MM0-.(Your UIC) *.* /LI (directory listing)
(5) MCR>DMO MMO:

Restoring.

(1) MCR>MOU VIM0-./CHA=(FOR]
(2) MCR>FLX DBO:/RS/UI=MMO:[Your UIC) *.*/DO
(3) MCR>DMO MMO:

Using PIP: Back-up.

(1) MCR>INI MMO:Volume Name (User Provided)
(2) MCR>NIOU MMO:Volume Name
(3) MCR>PIP MMO,-[Your UIC)=DBO:(Your UIC) *.*;
(4) MCR>PIP LPs=MMO:[Your UIC)*.*;*/LI (directory listing)

r	(5) MICR>DMO MMO:

`	 Restoring.

(1) MCR>MOU MMO-.Volume Name
(2) MCR> PIP DBO: ( Your UIC) =MMO: (Your UIC)
(3) MCR>DMO MMO:

3-? t



x
a

Task files (TSK) backed up on tape using FLX or PIP do not retain their con-
tiguous status when restored to the disk. Therefore, in order to make runable
versions of your programs after they have been restored to disk, you must use
PIP to create contiguous disk images for each task file. For example, MCR>PIP
FILENAME.TSK/CO-FILENAME.TSK. Each file has to be done individually since
PIP does not allow wild Lards in the destination.

A time-consuming, but space-saving way to transfer contiguous (.TSK) files using.
PIP from magnetic tape would be to specify both the /CO and /BL:n together on	 A
the output file.

For example,

MCR>PIP DBO: [Your UIC) /CO/BL:n=MMO: f Your UIC] PROG.TSK ;15

Each file must be done individually.

3.3 File Creation and Editor

Creating data files or sources programs on the PDP is done'through the use d:
the Line Text Editor Utility. This is Cone by entering the following response to
the MCR_prompt:

MCR>EDI FILENAME.TYPE

The Editor will respond with:

CREATING NEW FILE
INPUT	 1

The Editor is now in input mode and,, the user can begin entering his source code
following each line with a (CR). Al?. source files should be "typed" as FTN
(FORTRAN) or MAC (MACRO).

i
The Editor is capable of operating in two control modes:

(1) _EDIT MODE (Command Mode)
(2) INPUT MODE (Text Mode)

To go from Input Mode to Edit Mode, the user types a Double (CR). To go from
the Edit Mode into the Input Mode, the user types the Insert Command (I), fol-
lowed by a (CR).	 i

t

3-8



ORIGINAL PAGE l
CP POOR QUALITY

Edit 'Mode is characterized by an asterisk (*) as a prompt. EDI acts upon con-
trol words and data strings to open and close files; to bring in lines of text froin
an open file; to change, delete or replace information in an open file; or to insert
single or multiple lines ,anywhere in a file. Files that are introduced to the Editor
from the card reader shoidd have the program BLANK run on them first to re-
move the trailing blanks.

Within Edit Mode there are two modes of accessing and ma!,dpulating lines of text.
These modes are:

(1) Line-by-line Mode.

This allows the user to access lines of text one line at a time. It has the
disadvantage that once a line is edited and written to the output file, it
can only be accessed again by the user issuing a TOP command which
places the pointer at the top of the file. However, it does have the ad-
vantage that when a search is being done, the whole file is searched and
not just a block (80 lines), as in Block-edit Mode.

(2) Block-edit Mode.

This is the default editing mode. To use Line-by-line Edit Mode, it is
necessary to issue the :BLOCK OFF command. In this mode, 80 lines
are made available for editing. However, EDI commands are executed
only with respect to the current block. Lines of text can be referenced
forward and backward without issuing a TOP command.

EDIT COMMANDS

COMMAND	 l	 FORMAT	 I	 DESCRIPTION

E
F

BOTTOM OR END BO	 Set current line to last line in
END	 file or block buffer. The com-

mands are equivalent. s	 ,

`	 CHANGE	 [n]C /STRING-1/	 Replace String-1 with String-2
f	 STRING-2	 n times in the current line.

3-g
.	 r

ADD & PRINT 	 AP [STRING]	 Append [STRING] to current
line and print new line.

BLOCK ON/OFF	 BL ON or BL OFF	 Switch editing modes.



ORIGINAL CAGE IS
OF POOR QUALITY

EDIT COMMANDS (Continued)

r

aj

]

COMMAND FORMAT DESCRIPTION

DELETE D [n] or Delete current line and next n-1
D (-nl lines if n is (+); delete n lines

preceeding current line if n is
(-n) block:-edit only.

EXIT EX Close files, name output file and
EDI exits.

INSERT I [STRING] Enter [STRING] following cur-
rent line or enable input mode
If [STRING] not specified.

KILL KILL Input and output file are closed.

LOCATE (n] L (STRING] Locate n-th occurrence of
STRING.

RETYPE RETYPE STRING Replace current line with string
or delete current line if string
i's null

RENEW REN [n] Write current block to output
file and read new block from

Iinput file.

SAVE SA [n] [ filespec] Saves current line and next n-1
lines in specified file.	 If file not
specified, lines ere saved under
SAVE.TMP.

TAB TA ON or	 A
Turn on or off automatic tabbing

TA OFF If TAB ON, all lines moved over
8 spaces.

TOP OF FILE TOF Return to top of input file and
save all pages previously edited.
This command creates a new
version of your file.

PRINT P [n] Print current line and next n-1



EDIT COMMANDS (Continued)

COMMAND	 FORMAT	 DESCRIPTION

OLD PAGE	 OL n	 Return to TOF and read Page n
into block buffer.

w	 I
PAGE LOCATE	 [n]PL (STRING)	 Search successive blocks for the

nt h occurrence of string.

UNSAVE	 UNS [ filespec J	 Insert all lines from specified file
following current line. If no file
is specified, default file is SAVE
. TMP.

In many cases with the EDI commands the user must identify a string of charac-
ters to be located and/or changed. To reduce the number of terminal entries,
the following special string constructs might be very useful.

Case 1. Stringl ... String2

Any string that starts with stringl, continues with any number of inter-
vening characters, and ends with the first occurrence of string2.

Case 2. ... string

Any string that starts at the beginning of the current line and ends with
the first occurrence of string.

Case 3. string ...
t

The first string that starts with string and. ends at the end of the current
line

Case 4.

The entire current line.	 '.

i^

}

3-11
i	 .



1

}

ORIGINAL PAGE I
OF POOR QUALITY

3.4 Preparing a FORTRAN Program for Execution

3.4.1 FORTRAN Compiler

Once a source file has been created, it is necessary to submit It to the compiler
and task builder before it becomes a runable veraion (.TSIq. The general pro-
cedure for source files is depicted below in Figure 1. Three characters above a
box indicate how that operation is evoked via MCR and the three characters be-
low a box are the output file extension type from that operation.

USER
LIBRARIES

SYSTEM	 I
LIBRARIES

FOR	 TKB	 RUN	 a.

	

SOURCE	 COMPILER	
OBJECT	 TASK	 TASK	 EXECUTING

	

PROGRAM	 MODULE	 BUILDER	 i TASK

FTN	 .OBJ	 TSK

	

LISTING	 MAP

	

.LST	 .MAP

Figure 1

The Compiler produces relocatable object, modules from FORTRAN Source pro-
grams. The general format of the command line to the FORTRAN Compiler is:

ri

MCR>FOR OUTPUT FILES LIST=INPUT FILES LIST	 u

_A maximum of two output files can be specified: The Object Module File and the 	
#	

''
Listing File. Multiple input files may be specified. The default type for these is
FORTRAN (,FTN). The Listing File can be omitted from the command line. {

Some examples: 	 t

f

(1) Compile PROGI.FTN with Listing File:

MCR>FOR PROGI,PROG1=PROGl

1
Gfi

ii	 3-12



Output: PROG1.OBJ
PROG1.LST

(2) Compile PROG1.FTN without Listing File, but produce listing on LP:

IvICR>FOR PROG1,LP:=PROG1

(3) Compile PROG1.F"IIN without listing:

MCR,',,.V'OR PROG1=PROGI

Some useful compiler switdes:
	 if

SWITCH	 DESCRIPTION

/CK	 Checks all, array references to make sure they are within the
array address bounds specified by the program.

ICO:N	 Allows a maximum of N continuation lines in the program.
Default is 10. Not to exceed 99.

Specifies listing options; 0-4N43
N=O - Minimal Listing File: diagnostic messages and program

section summary.
N=1 - Source listing and program section summary. 	 ij
N=2 - Source listing, program section summary and storage map

(DEFAULT).
N=3 - Source listing, assembly code, program section summary

and storage map.

/TR	 Controls the amount of extra core included in the com, piled
output for use by the OTS (Object Time System) during error
traceback.

/TR:BLOCKS	 Traceback information is compiled for subroutine and func-
tion entries and for selected source statements. The source
statements are initial statements in sequences called blocks.
(Refer to Page 4-6 of FORTRAN IV-Plus User's Guide for
more information.)

3-13



3.4.2 Task Builder

The Task Builder is a system program that links relocatable object modules to
create a task image. It is the last step before the source program becomes
Tunable. The object modules can come from user specified input files, user
libraries or system libraries. References to symbols defined in one module and
referenced in other modules are resolved with the Task Builder. Any remaining
unresolved symbols are searched for in the system object library:

DBO: [1,1] SYSLIB.OLB

The format of the command line to the task builder is similar to the compiler,
For example:

MCR>TKB OUTFILE=INFILE

The first output file specifies the Task Image File (.TSK). A second file may be
specified if a memory allocation map is desired. Lastly, a third file is the Sym-
bol Definition File. The Memory Allocation File (.MAP-) contains information
about the size and location of components within the task. The Symbol Definition
File (.STB) contains the global symbol definitions in the task and their virtual or 	 j
relocatable addresses in a format suitable for re-processing by the Task Builder.
The input files are combined to form a single executable task image.	 i

i
An number of input files may be specified.Any p y p The Task Builder prompts for input
until it receives the terminating sequence, "//". This instructs the task builder
to stop accepting input, build the task, and return to the MCR level.

3
As with the FORTRAN Compiler, there are some switches which might be useful
to FORTRAN programmers:

i
(1) /SH on the MAP file will produce an abbreviated form of the Memory Alloca-

Lion MAP.
i

(2) /LB when specified with an input file, specifies that the file is a library of
relocatable  object modules.

(3) /14IP on an input file specifies that the file is an overlay description file. It
must be the only input file specified.

(4) /CR on memory allocation file produces a global cross reference.
i



The task builder has the additional feature of prompting for options after
(.Aash) is typed. Options are used to specify the characteris -t-icsof the task being
built. Some commonly used options are:

(1) ASG: Logical unit numbers assigned to physical devices:

ASG=DEV1:Nl:N9" :... DEV2:Ml:M2:...

Defaults are:

ASG=DBO:1:2:3:4, T1:5, LP:6

(2) COMMON: All system global common blocks referenced must be specified:

COMMON=NAME:ACCESS

Those using the Vector General Graphics package must include the following
line in their TKB:

L

COIVIMON=VGCOM:RW:6

This allows READ/WRITE access to the display list.

(3) LIBR:, All shared libraries referenced must have this option:

LIBR=NAME:ACCESS

All users should include the following line to reduce their Task Image File:

LIBR=SYSRES:RO

Since the Task Builder accepts indirect command files, this is the most con-
venient way to build your program. A file of type CMD is created using the
Editor. This is then, submitted to the Task Builder:

MCR>TKB @PROG1

The Sample File PROGI.ClVID:

PROG1=PROGI

-ROLIBR=SYSRES.
COMMON=VGCOM.:.RW:6
ASG--MMgf!I.MM1!2



3.5 Indirect Files

An indirect file is a file containing a sequence of comman lines that can be inter-
preted by a single task such as a utility or the Task Builder. They are extremely
useful when submitting the same sequence as a very similar sequence of com-
mands to a task or utility.

The command string contained in the indirect file are executed when the indirect
file is invoked. For example, to perform a series of PIP commands, an indirect
file might look like:

{
DBO:=MMO: (11,141 *.FTN
LP:=*.FTN/LI
PROG.FTN;20/DE

To invoke such an indirect file, enter the command

MCR>PIP @PIPCMDS.CMD

PIP is then invoked and accesses the full PIP CMDS.CMD which contain the above
sequence of commands. PIP executes the commands and returns control to MCR. 4

3.6 Executing a Program

MCR?RUN (50,50} FROG (esc key)

SAMPLE: A FORTRAN program called PROGR.FTN
r

?f

lisi
j

k

3-16

f



MCR>For PROGR wPROGR	 Creates PROGR.OBJ
(mot)

MCR>TKB @PROGR	 Creates PROGR,TSK

where PROGR.CMD contains

PROGR=PROGR

LIBR-SYSRES:RO	 j
ASG=TI: S ,LP : 6

(wait)
€	 MCR>RUN PROM (hit esc key) - Executes PROGR.TSK

(	 3.7 MICR Commands, General Information

A. Default LUNs:

DB0: 1-4	 (refers to the system disk)
TI : 5	 (Terminals)
LP : 6	 (Line printer)

i
B. File Specifiers:

ti	 DEV:	 _ Physical device on which the volume containing the de-
sired file is mounted.

r	 [ UFD]	 User File Directory containing the desired file.
FILENAME = The name of the file. Up to 9 alphanumeric characters

k	

in length.
.TYPL	 File type, e.g. ,FTN or .OBJ.
;VERSION = An octal number used to differentiate analog versions of

a file. Version numbers can range from 1 to 377. 	 i

Some Useful MCR Commands:

(1) Abort Command:

Function: Allows user to terminate the execution of tasks which have been
	initiated from that terminal.	 +

Format: MCR > ABO TASKNAME

3-17

INA



(2) Active Task List Command:

Function: Enables the terminal user to obtain a list of the tasks active
within the system, along with status information on this partic-
ular task,

Format: MCR>ACT (TASKNAMEI [S`VITCH(s)]

Switches; /FU - Full listing. Task name must be specified.
ALL All active tasks listed.

(3) BYE Command:

Function: Allows user to log off system.

Format: MCR>BYE

(4) SYS Command.

Function: Allows user to see all the active tasks in the system.

Format: MCR>SYS /ATL

(5) * Dismount Volume Command.

Function: Allows user to logically dismount a previously mounted volume.

Format: MCR>DMO DEV: [volume label]

(6) HELLO Command.

Function• Allows user to log onto a terminal

Format: MCR>HEL [UICI

a

a	

^

i
i



(7) Logical Unit Numbers Command.

Function: Lists on the user's terminal the physical device units and cor-
responding logical unit numbers for an indicated task.

Format: MCR > LUN TASKNAME [, TASKNAME, 	 .1

(S) Mount Command.

Function: Allows a user to make a selected volume visible to the system,

Format: MCR>MOU DEV: [volume label] [/Switches]

Switches: /CHA =[FOR]
Not an RSX-11D structured volume - foreign.

/DENS = 800 or 1600
Specifies density of tape.

(9) Password Command:

Function: Allows user to change or create a password for his UFD.

Format: MCR> PWD [UIC 1
The following message is printed:

PASSWORD>

The user now types in his password; maximum of 6 characters

(10) QUE Command.

Function: Print queued files on LP

Format: MCR>QUE FILENAME.TYPE
x

(11) Resume Command.

Function: Allows user to continue execution of a previously suspended t xsk.

Format MCR >RES TASKNAME



f

4 (12) Run Command.

Function: Allows user to initiate execution of a particular task.
Format: MCR>RUN P ILENAME

(13) Terminal Status Command.

Function: Indicates which terminals are in use.
Format: MCR> WHO

3.8 File Dump Utility (DMP)

The File Dump Utility is very useful when an ASCII or octal dump of a file is
needed. DMP runs in either one. of two modes:

(1) File Mode:

In File Mode, one input file is specified and all, or a specified range of
Virtual Blocks of the named file are dumped. Virtual Blocks refers to the
blocks of data in a file.

(2) Device Mode:	 .w

In Device Mode, only the device is specified and a specified range of Logical
Blocks are dumped. Logical blocks refers to the actual 512-byte blocks on
the disk.

To clarify the difference between Virtual and Logical blocks on a device, con-
sider the following illustration:

LB = Logical Block	 VB - Virtual Block

LB 1 LB 2 LB 3 LB 4 LB 5 LB 6 1	 LB 7 LB 8
VB 1 VB 2 VB 3

File 1

The first block of file 1 begins in LB 4. With respect to File 1, that block is known
as VB 1, Subsequent blocks of that file are known as VB 2 and VB 3. However,
with respect to the device, those blocks that contain File 1 are known as LB 4,
LB 5 and LB 6.

DMP can handle physical records up to 2048 byte in length.	 H

DMP Switches:

SWITCH	 DESCRIPTION

/AS '	 Data dumped in ASCII Mode. 	 f
/BL:N:M

	

	 Specifies the first (N) through the last (M) logical or Virtual
Blocks to be dumped.

3-20

l

Y

k	 ^t



Notes

(1) When the /BL:N:M switch is specified in File Mode, it specifies the range
of Virtual blocks to be dumped.

(2) The /gL:N :M switch is required in Device Mode. When specified in this
mode it is the Logical Blocks to be dumped.

/BY

	

	 Specifies that the data should be dumped in byte octal format.
The default is Word Mode .Octal Format.

/HD

	

	 Optional parameter to be used in File Mode. It causes the file
header -to be dumped.

Note: If just the file header portion is desired, the user can specify /HD/BL:O.

/LC	 Specifies that the data be dumped in decimal word format.

/RC	 Specifies that the data be dumped a record at a time.

/LB

	

	 Logical block. This switch gives the 'user only the starting block
number and a contiguous or noncontiguous indication for the file.

3.9 File Compare Utility (CMP)

This utility allows you to compare two ASCII source files. The comparison is
done line-by-line to determine whether parallel records are identical. Some of
the features are:

(1) Generate a listing showing the differences between the two files.

(2) Generate a listing in the form of one list with differences marked by change
bars.

CMP also provides switches that allow you to control compare processing.

The format for specifying the CMP command line is;

outfile [/sw , ..I=infilel [/sw] ,infile2 [/sw ...I

where outfile represents the file specification for the output file, infile 1
represents the input file specification for the file to be compared to infile 2



and infile 2 represents the file specification for the input file to be compared
to Infile 1 and /sw represents the switches applied.

Switches

/BL

	

	 specifies that blank lines in both fires be included in compare
processing

/CB Specifies that CMP list infile 2 with change bars in the form of
exclamation marks (I) applied to each line that does not have a
corresponding line in infilel.

/Co	 Specifies that comments be included in compare processing

/DI	 Specifies that CMP print the differences between the two files.

/FF

	

	 Specifies that records consisting of a single form-feed character
be included in compare processing

/LI;n

	

	 Specifies that a number of lines (n) must be identical before CMP
recognizes a match. Default is 3.

3.10 Overlays

3.10.1 Introduction

The maximum size program that a user can create on the 11/70 is 32K (words).
However, there is an overlay capability to reduce the memory requirements of a
task. In utilizing this the user would divide his task into a series of segments
consisting of;

(1) A single root segment - always in memory.

(2) Any number of overlay segments which share memory with one another.

However, care must be exercised in doing this, and not 
all

 programs are suitable
for overlaying. All segments that overlay each other must be logically independent;
i.e., none of the components of one segment can reference any of the components
of the other segment. In addition to this consideration, is the general now of con-
trol within the user task. A task that moves sequentially through a set of modules
is well suited to the use of overlay structure. However, a program that jumps
back and forth between modules and passes data between them would riot.-

3-22

a

I



s
9

ORIGINAL; IAA(,p̂ i
OF POOR QUALITY	 t

u am Structure

The amount of storage required for the task is determined by the length of the
root segment plus the length of the longest overlay segment. This is illustrated
below with a root segment called TASK and 3 modules A, B and C

Without Overlays;

—24200

— 23000

—16000

—10000

0

With Overlays. A, B, or C and TASK represent core at any one time:

— 16000

r

— 10000



11	
1'

i

{

i

i

I
iI

ORIGINAL PAM 13
OF POOR QUALITY

If' "A" could be further divided up into segments, then storage could be reduced
even more. This is illustrated below. "All was broken down into two independent
modules, Al and A2. A2 was further broken down into A21 and A22. "B" was
divided into two independent modules, B1 and B2.

A22

81Al
A21

82

A2

AO 8o

TASK

This scheme gives rise to the task builder language for representing an overlay.
This structure can best be illustrated as a tree, as follows;

	

A21	 A22

Al	
'	

A
I
2	 81	 82

	

AU	 SO	 C-I
TASK

The tree has a root, Task, and three main branches, AO, BO and C. It also has
six leaves, Al, A21, A22, B1, B2 and C. The tree has as many paths as it has
leaves. One path up may be defined as:

TASK-AO-A2-A22

Understanding the tree and its paths is important to understanding the overlay
loadinrt mechanism and the resolution of global symbols.



. ^ 9

Loading Mechanism:

Modules can call other modules that exist on the same path. 	 TASK is common
to all modules, so it can call and be called by every module, Module A2 can call
A21 wad A22, but A2 cannot call Al.

Resolution of Global Symbols in a Multi-segment Task:
l

Basically, the task builder performs the same aotivities in resolving global sym-
bols for a multi-segment task as it does for a single-segment task. However, in
a multi-segment task, a module can only referenoe a global symbol that is de-
fined on a path that passes through the segment to which the module belongs. Two
global symbols can be defined with the same name as long , as the definitions are
on separate paths.

Resolution of P-sections in a Multi-segment Task:

A program section, or P-section, is the basic unit of memory , for the task. A
FORTRAN source language program is translated into an object module consist-
ing of P-sections. The object module produced by compiling a typical FORTRAN '1
program consists of a P-•section containing the code generated by the compiler, }{
a P-section for each common block defined in the FORTRAN program, and a set
of P-sections required by the object time system. These sections are divided

'	 up into local (LCL) or global (GBL). it

Local P-sections with the same name can appear in any number of segments.
ii

{	 1

Storage is allocated for each local P-section in the segment in which it is de-
clared. However, when a global P-section is defined in several overlay seg-
ments along a common path, the Task Builder allocates all storage for the P-
section in the overlay segment closest to the root. FORTRAN common blocks i

are translated into Global P-sections with the overlay attribute.

3.10.3 Overlay Description Language (ODL)

The Task Builder provides a language that allows the user to describe the Over-
lay Structure or Tree. It contains 5 directives. There must be only one .ROOTt
Directive and one .END Directive. .ROOT tells the Task Builder where to start
building the Tree and the .END tells the Task Builder where the input ends.

The arguments of the .ROOT Directive make use of two operators to express 14
concatenation and overlaying. A pair of parentheses delimits a group of seo-{
ments that start at the same location in Memory. The maximum number of
nested parentheses cannot exceed 32.

3-25
;

j



w
iI

ORIGINAL PAW IS
OF POOR QUALITY

Operators

(A) The "-" indicates the concatenation of storage or moving vertically in the
Block Storage Diagram (see figure below).

(B) The "," appearing within parentheses indicates the overlaying of storage or
moving horizontally in the Block Storage Diagram.

t,t

. ;

Z I 	Z 
I^ 1

Y	 ZI
X

TREE

Y

Z^
Z 

Z

X

BLOCK STORAGE DIAGRAM

The following .ODL file would describe the above Tree;

.ROOT X-(Y,Z-(ZI,Z,))

.END

Starting with the inner parentheses, Z I and Z2 appear horizontally (Z i , Z,) in
the Block Storage Diagram and therefore share storage. Z appears vertically
(Z-(Z t ,Z 2 ) in the Block Storage Diagram with respect to Z, and Z 2 and so indi-
cates the concatenation of storage. Y and Z appear horizontally (Y,Z) and there-
fore share storage. X appears vertically with respect to Y and Z (X-(Y',Z))
and are concatenated.

Some overlay structures are complicated. The .FCTR directive allows the user
to build large Trees and represent them systematically. Basically, it allows the

s	 user to extend the tree description beyond a single line. The following example 	
r

illustrates its use:

'	 3-26



ORIGINAL PACT
OF POOR QUA11*ry

A21	 A-22

Al	 A!	 BI	 02

AD	 so	 C

CENTER

.ROOT CENTER -(ACTR,BCTR,C)
ACTR: XCTR A0-(A1tA2-(A21,A22))
BCTR: XCTR BO-(B1,B2)

.END

The decision to use the FCTR directive is based on considerations of space,
style and readability of a. complex ODL file.

Thal ,PSECT directive allows the placement of a Global P-section to be specified
diroctly. The name of the P-section and its attributes are given in the .PSECT
directive. Then the name can be used explicitly in the definition of the Tree to
indicate the segment In which the P-section is to be allocated. The following
example shows how the allocation of a global common block is forced into the
Root Segment:

XSECT DATA5, RSV, GBL, REL, OVR
.ROOT CENTER-DATA5-(ACTR,BCTR,C)

ACTE: XCTR A0-(A1,A2-(A21,A222))
BCTR: FCTR BO-(B1.,&2)

END

In addition to the overlaying capabilities mentioned above, the Task Builder
allows the specification of more than one Tree within, the overlay structure.
Further informi,,,.tion can be obtained by reading the "Task Builder Manual,"
Pages 5-10,

Finally, to build the task with all overlay structure the user types..

MCR TKB F ILE N.AME=FILE,,%;AwrE /,Nrp

The switch INIP tells the Task Builder that there is only one input file, F ILE-
NAME.ODL, and this file contains an overlay description for the task.

3-27



4. Magnetic Tape

4.1 Mounting and Dismounting Tapes

Looking at Figure 1, the empty reel is above the knob upon which your tape is
mounted. The tape reel is pushed onto the lower knob, and the knob is turned
clockwise to tighten. At this point, the four switches on the control panel on the
lower left should be pressed to OFF LINE, STOP, between LOAD and BE REL
(this is the BRAKE position) and FWD.

After tightening the tape reel, press BE EEL to release the brake. Thread tape
clockwise around reel, according to the illustration. It is wound clockwise around
the empty reel, enough wound to tighten the tape so that turning the empty reel
moves the full reel. The load point must be on the full reel sic,e of the read head.
Now press LOAD and wait until the LOAD light is on. Then press START and the
tape will move to the load point as indicated by the LD PT light. Press ON LINE
and the tape is mounted and ready.

To rewind to the load point or reverse, the ON LINE/OFF button must be at the
OFF LINE position. The tape will automatically stop at the load point.

To dismount the tape, put drive OFF LINE and press REV. Then press the START
button. When tape is off the top reel, press BE EEL and finish,, winding tape by 	 ,P,
hand. Put on BRAKE position and turn knob counter-clockwise to loosen the reel.
It can now be removed.



g::B

LP'a
LOAD REEL

HERE

ORIGINAL PACE IS
OF POOR QUALITY

TAPE DRIVE

R^

TAPE GOES HERE

RWR LOAD RDY 0
PT

ENO
PT

FILE
PRO

LpINE SEL W FWD REV RE'

ON LINE	 START

w

OFF LINE	 STOP
LOAD	 FWD

BRAKED REW

I	 UNIT

SELECT

EIR REL	 REV

Figure 1

4-2



Y

5. Paper Tape

5.1 Loading, Hardware

The paper tape assembly consists of one punch, and one reader. Both may be
used simultaneously if desired.

If the paper tape is correctly loaded, tape from the punch comes out folded, with
arrows showing direction of the beginning of the tape.

The paper tape reader must be loaded with the arrows pointing right to left, and
the feed sprocket firmly in the row of feed holes along the tape. The knob above
the light is turned clockwise to raise the foot, which keeps the tape aligned. When
tape is loaded, the foot is lowered by turning the knob counter-clockwise. Make
sure the control tape is under the plate at the scan light.

5.2 Paper Tape Reader

If it is desired to read data into an array during a FORTRAN program from the
paper tape reader, subroutine [2,751 PTREAD must be used.

Call PTREAD(LUN,A,LEN,IOST). "LUN is the logical unit number assigned to the
reader, "A" is the array to receive the data, "LEN" is the number of bytes to be
readln, and "IOST" is the returned error code..

It is the user's responsibility to make sure "LEN" does not exceed the maximum
dimension of "A." Otherwise, a data overrun in core will result.

When positioning the paper tape on the reader, keep in mind that it always reads
first and moves second. The first byte to be read should be in line with the light

	 s

detector. However, the user can do his own checking for null characters to pass
through the leader (NULL = 0).

5-1

z

READS A SOURCE TAPE INTO A FILE 'TEMPI

LOGICAL*1 A(8000),B(2000)
	

! 5000 BLOCKS
CALL PTREAD(3,A,8000,IOST)

	
READ TAPE

K=1
DO 30 I=1, 8000
	

! WEED NULLS
IF(AW.EQ.0)G0 TO 30
B(K)=A(I)
K=K+1



1

1

...

30

100
200

CONTINUE
LEN=K-1
CALL ASSIGN(4,'TEMP',4)
WRITE (4200)(B(K),K=5,LEN)
FORMAT(I5)
FORMAT(104A1)
STOP
END

I READ TO 'TEMP,1
11-4 ARE LEAD->IN CHARS.
1 FROM PUNCH

It

5.3 Paper Tape Punch

The punch may be called from PIP or via a FORTRAN routine called PTPNCH.

FROM PIP:	 MCR >PIP PP:=FILENAME

FROM FORTRAN,	 CALL PTPNCH(LUN, FILENAME, LEN)

LUN	 = logical unit device of punch.
FILENAME = hollerith string or character array. The character array

must be LOGICAL*1.	
l

LEST	 = length of hollerith string or character array.

NOTE: Using PIP to punch a tape, four control characters are punched at the
beginning of the tape, preceeding the data.



6. Floppy Disks

6.1 Loading, Hardware

The Floppy disk drives are located to the right of the TU16 Magtape drives.
Dust covers have been placed over the slots to keep the read/write heads dust
free. To load a floppy in the drive, lift the dust cover, slide the floppy disk into
the slot with the small hole and the elongated opening toward the drive. The
small square tag should be on the right top as you insert the floppy. See Figure 1.

6.2 Storing Data on the Floppy

Floppy disks are used as auxiliary storage on the PDP 11/70`. Their advantage
is that they are faster than magtape and provide quick and easy access to data.
Floppy disks can only be used as Files-11 devices. Thus to access them they
must be initialized as Files-11 (Run [2,,75] INITIAL) and then PIP'ed onto or
written to with Fortran I/O statements. For example, to prepare and write data
into a Floppy:

MCR > RUN [2,75] INITIAL$

(INITIAL completes)

MCR > MOU DXO: volume name (specified in INITIAL)

MCR > PIP DXO [ UIC] = [UIC] DATA.DAT,DATA.FTN

The maximum capacity of each floppy is 470. blocks.

r

}



FRONT

TOP
VIEW

ORIGINAL PAGE IS
OF POOR QUALITY

digits! I rxo

DXO
	

DXI

Figure 1. Disk Guide

6-2



.

7. The Vector General Graphics Display Unit

7.1 Hardware

The Vector General consists of a screen, alpha-numeric keyboard, function key-
board, and a light pen. The intensity, focus and scale can be chang-bd qy the cor-
responding knobs on the right-hand side of the VG unit. Do no£ adjust the thresh-
old knob. Detailed description of the hardware features maybe found in Section
1.3.2.

7.2 Programming the Vector General

7,2.1 Introduction

The programming for the Vector General is done by calling special VG subrou-
tines from within a FORTRAN program. These subroutines perform all the
graphics work. There are four basic steps to graphics programming:

(1) CALL GINIT - readies the VG screen for use.

(2) Graphics Subroutines - perform the drawings.

(3) CALL GRUN - displays the drawings.

(4) CALL GTERM - ends the VG screen use.

The following pages describe in detail each of the subroutines in the graphics
package. Programming ideology is presented first, followed by each subroutine.
A sample program and task build sample then follow, which the reader is advised
to study. Also included is a list of typical mistakes made by VG programmers

{-	 which cause programs to run incorrectly or to not run at all, and some hints for
greater efficiency.

Interaction with the Vector General is accomplished with three hardware devices

$.r
as follows:

1. Function keyboard - The routine RQATN is called to suspend the execution
of the program and activate certain buttons as defined in the arguments. When
one of these buttons is depressed, control is returned to the users program
with information concerning the light penned portion of the display in the RQATN
parameter list. (see RQATN)

r^
t	

7-1

.I



4

2. Light pen — The routine RQATN is called to suspend the execution of the pro-
gram until the light pen is pressed against the screen, pointed at a display section,
which had been created as a light-pennable element. Control is returned to the
user's program with information concerning the light penned portion of the dis-
play in the RQATN parameter list. (see RQATN)

3. Alpha: numeric keyboard — In using this device, several steps must be taken
in the Fortran code.

a. Call to TEXT to create a character string with a key. (see TEXT)
b. Call to ICURS to display blinking cursor. (see ICURS)
c. Call to RQATN to suspend program while user types in characters from key-

board. (see RQATN)
d. Call to RDCHR to read the character string into an array.

Notes and Conventions:

1. "ACTIVE" element - an element whose associated pictures are currently
displayed.

2. "INACTIVE" element — an element %ihlch has been created but which has
been inactivated from display with OMIT or GHALT.

3. The t 'beam" the hardware component which draws every display. It re-
mains positioned where the last display of that element was drawn.

4. A "negative" intensity means an intensity valuebeneath 0, which is the aver-
age brightness. Thus an intensity value of -16 is actually a near-zero in-
tensity level.

5. All arguments to the routines which are enclosed in brackets [) are optional.
If the value is omitted, commas must mark its place if further arguments
are to be specified.

6. byte — LOGICAL*1, one byte
I*2 — INTEGER *2, 2 byte integer
I*4 — INTEGER*4, 4 byte integer
R*4 — REAL*4, 4 byte real number
R*S — REAL*8, 8 byte real number

7. "Display list" — The list of all Vector General display instructions in the
running program. It consists of integer numbers arranged in order of ele-
ment number which the Vector General handler decodes to generate all dis-
plays. It is stored in the 4K common global area called VGCOM, as speci
fled in the task build.

1

R

1

3

a

7-2



i	 I

f

,F

4

"w	 Each picture to be displayed consists of a set of logically connected primitives
called elements. Each element is identified by a unique munber ranging from 1
to 249 each of which causes the reloading of all relevant hardware registers;
(e.g., intensity, X, Y, delta X, delta Y, light pen sensitivity, picture scale and co-
ordinate scale. Elements are created by calling INIT, SINIT or COPY. These are
then updated by referencing the element number in the other subroutine calls. a

t^

w	 The VEjctor General Graphics Subroutine package consists of a set of FORTRAN-
callable subroutines which build display instructions and pass control informa-
tion to the device handler. The device handler builds the display file and controls
the refresh rate. It also services interrupts and passes information back to the
user.	 Communication between the user package and the device handler is ac-
complished through the use of a 4K global common area named VGCOM and global

r	 event Flags 41 and 42. a

The user package places in common area VGCOM control information followed j
by display instructions. When this is completed, Event Flag 66 is set which
causes the handler to process the stored information. The user package then
waits on Event Flag 56 which the handler sets on completion.

7.2.2 Programming Ideology

The programming ideology operates with the concr119 of 'elements." An "element"
is a list of characteristics such as the intensity level, or whether or not to blink. {
It is an intangible set of parameters by which an entire display Nvill be drawn.

Each element is created by INIT, SINIT or COPY routines with an element num-
ber, and the consequent display takes on all the characteristics as defined by the
element. Once an element has been defined by INIT, SINIT, or COPY, any num-
ber of displays associated with the element may be created. Nothing may be
drawn without previously defining the element number. A maximum of 249 such
parameter sets may be defined, Element Numbers 1 to 249.

7.2.3 VG Internal Ideology

The Vector General Graphics Display Unit consists of a Vector General 2D CRT
equipped with an alphanumeric keyboard, 32 key program function keyboard and
a light sensitive pen. The CRT screen is 12 inches by 12 inches addressable from
-2048 to +2047 in both the X and Y axes.

7-3



The display file is built in a 12K shared global common area named VGCOM.
The first word is used for communications with the hardcopy task. VGCOMM
is a short NIACRO-11 routira that brings the shared global common into core
when the handler is loaded and removes it when the handler terminates. Addi-
tionally, VGCOMM acts as a monitor for running hardcopy routines when called
by the handler. The active display file contains contiguous display instructions.
When an instruction or instructions are added to an element, all elements after
it are relocated the appropriate number of words and the new instructions are
added to the end of the element. All updates to the display file are performed
between refresh cycles. No refreshing is allowed until the updates are completed.

7.2.4 The Vector General Graphics Routines

A. Initiating and Termi rating Routines

(1) CALL GINIT:

This routine initializes the display areas and resets all tables. Processing
Is stopped and HALT mode is entered. This routine must be the first graphics
routine called. It may be called to create other displays by reinitializing, but	 4

only after GTERIA has been called.

(2) CALL GTERM:
9

This routine terminates the use of the CRT and all elements associated with
it. It should be called when use of the CRT is no longer needed. If it is not
called, the user program will terminate, yet the active display will continue
to appear on the screen. Depress the "SPECtt and t 'FS" keys simultaneously
to clear the display if a task ends without calling GTERM.

(3) CALL GRUN:

This routine causes the CRT to display the current active elements It must

R be called to start the display since GINIT puts the display into a HALT mode.
GRUN need be called only once after GINIT or GHALT has been called.
CAUTION: There must be at least one active element before GRUN may be
called.

(4) CALL GHALT:

'

	

	 This routine puts the display into a HALT state and the CRT will no longer
display the active elements. It is useful when major changes are being made
to the display since the display must be hatted in order to perform updates.

7-4



The following arguments are used commonly by many of the wbroutines-,

ELEM	 - The name of the element referred to Is In the subroutine call. 1*2
Range is 1 to 249.

LP	 - Light pen sensitivity option. 0- not light pen sensitive, 1- light pen
sensitive.	 1*2,

INTENS - The value of the intensity register for a particular element (range is
-16 to +15).	 1*2.	 Default Is 0, Nvh1ch Is medium intensity.

BLINK	 If value is a 1, the entire element will blink. it value Is a 0, the ele-
ment will not blink. 1*2. 	 Default is to not blink.

PS	 Picture scale value for the element ranging from -2048 to 2047. 1*2.
Default is 2047.	 See section 7.2.5, note M

CS	 - Coordinate scale value for the element ranging from -2048 to 2047.
1*2.	 Default is 2047.	 See section 7,2,5, note #6.

IDISPL	 - 1* 92 variable returned. This is the d1uplacement Into the display list
of instructions for the element. If a light penable element is used,
RQATN subroutine can indicate which element is light penned, See
section 7.2.5, note, #3 for formulae for each subroutine containing
MISPL.

B. Element-creating Routiutr s

(1)	 Call INIT(r,,LEM,[LP]I[INTENSI,[BLINI<lt[PSit
[CSjjXj,[YjjDXj,[J)YD

The INIT subroutine causes the creation of an element mid sets all the

characteristics of that element: It

X	 - 1*2 initial horizontal coordinate of the beam.
Y	 - 1*2 initial vertical coordinate of the beam.
DX - 1*2, Initial increment value. See Note 2.
DY - 1*2, initial increment value. See Note 2.

(2)	 Call SINIT(,E LEX, CLP I , EINTENS I	 BLINX 1,

MODE X1, Y1, X2, Y2, 1LX1jLY1jU.X1,[UY1)

The SINIT routine is very similar to the INIT routine except that it uses the
defaults for PS, CS, x- O Y, DY, DY (which can be changed by use of GUNGE



routine). The SINIT routine defines the size and position of a particular
element with respect to the boundaries on the screen.

The screen is the total space which may be addressed. SINIT allows the
user to create a rectangular area which is a subset of the total screen.

SINIT also allows the user to define the data type of the X and Y positions
and to scale them to appear on the screen.

MODE: Data type of all X and Y coordinates for this particular element —

1 = byte
2 I*2
3 = I*4
4 = Real *4
5= Real *8

G
A

X1, Yl constants or variables of the type indicated by the mode for the X and Y
coordinates of the lower left corner of the element. These coordinate
values must be less than the coordinate values used to represent the
upper right corner of the element. They may be any number within proper;
bounds of their mode. If mode 1, 3, or 5 was specified, then a variable of
proper type must be used.

X2, Y2 constants or variables of the type indicated by the mode for the X and Y
coordinate of the upper right corner of the element. These coordinate
values must be greater than the coordinate values used to represent the
lower left corner of the element. They may be any number within proper
bounds of their mode. If mode 1, 3, or 5 was specified, then a variable of
proper type must be used.

LX, LY 1*2 constants or variables representing the X and Y coordinates that
correspond to the lower left corner of the screen. Default-2048,
-2048.

UX, L7Y are I*2 constants or variables representin g the X and Y coordinates
that correspond to the upper right corner of the screen (must be
greater than the lower left coordinate). Default 2047, 2047.

x



uA

!N

p

I

ORIGINAL PAOC IS
OF POOR QUALITY

(S) CALL COPY(ELEM 2,EL'EM 1, I LP I , [ INTENS I ,
[BLINKI,[PSI, (CS) 1X1, [Y1,[DX1,IDY1)

COPY is used to create a new element by duplicating an existing one. The
arguments are similar to the INIT subroutine. If an argument is specified,
it's value replaces that of the original element.

ELEM 2 = I*2, the element # being created.
ELEM 1= I*2, element # being copied.

EXAMPLE:

Suppose Element 1 is active and it creates:

f	

e

The CALL COPY (2,1,,,,,1024,,,1000,1000) is made, resulting in:

s•

r

NOTE: COPY also copies all scaling information. When changing the new
s	 element, make sure proper arguments are used.

s
I.:	 Jl

E

{

`t	 3

7-7

8 e



s

C. Graphics Dra,,,ving Routines

Index: Below is a table of routines possible to achieve the desired display or
effect. Groups in () must be used together

Display or Effect	 Possible Routines to Call

1 or more characters 	 TEXT

1 or more line segments	 PLINE, PLOT, (SETVM, VECT, VECTT)

tracking cross	 PENTRK

read from screen	 (TEXT,ICURS)

Move an image on screen

	

	 CHNGE, changing DX and/or DY
(RESET, then draw at new coords)

Remove image from screen	 OMIT, DELMT, RESET

position the beam	 POSH, INIT with X and Y, CHNGE with Y and Y

to light pen a display or piece (INIT, SINIT, CHNGE or COPY so that element
of a display	 is light-pennable, RQATN with Attention Code 34)

(1) CALL CHNGE(ELEM, [LPI , [ INTENS j , (BLINK), 	 i
[PSI,[CS1,[X),[Y),[DXI,[DY1) 	 1

Subroutine CHNGE is used to modify the attributes of an element without
affecting the contents of the element. Arguments are like INIT.

If an argument is omitted, its value is not changed.

EXAMPLE;

Suppose an element is created by the instruction
l`

CALL INIT (1).

Then, other calls are used to create an image in Element 1 so that there is
a picture on the screen, centered at (0,0), scale defaults to 2048.



n

ORIGINAL PAGE 1S
OF POOR QUALITY

8
Then the instruction is executed:

CALL CHNGE {1,,,,, 1024,,,10041000),

This changes the CS to 1024 (half scale) and the DX, DY to 1000,1000. The
resulting picture is:

It's 1/2 the size and centered at (1000,1000) rather than (0,0). Thus, the picture
created full-scale and centered, was moved and shrunk in any manner. Subse-
quent calls to change DX and DY actually move the picture to the new coordinates.

iC

(2) CALL DELMT(ELEM)
i

This routine erases an element and all images generated by it from the
screen. The element # is no longer in use, and may be recreated by the
uss of INIT, SINIT or COPY.

I
An element which has an active cursor on it (by use of the ICURS command)
cannot be deleted until the cursor has been removed (RCURS).

(3) CALL ICURS(Key 1 (,Key 21 (,Key 3)] ...)

The ICURS routine is used to insert a CURSOR into a text image on the
screen. The cursor is a symbol represented on the screen as a blinking
dash beneath a character. It marks the position on the screen at which the
nest character typed on the keyboard will appear. The FS key will space
the cursor to the neat character in the text string, and the BS key will

3

- 3

11	

-



move the cursor to the previous character in the text string. The FS key
has no effect when the cursor is under the last character in the text string
and similarly for the BS key when at the start of the text string. The
key is used to move from one text string to another.

Note: Only one cursor may appear on the screen at any given time.

The -► key is used to move from one text string to another. Calling
Arguments:

Key # — I*2 variable or constant. This is the number which was asso
cisted with a text string in a previous call to text (see Call TEXT
Description) .

EXAMPLE:

LOGICAL*1 TEST(5)
DATA TEST/'T,' 'E,' 'S,' 'T',Y/
CALL INIT(1)
CALL TEXT(1, TEST, -1000,0,2,5)
CALL TEXT(2, I THIS ',1000,-100,2,7)
CALL ICURS(5,7)

_r	The first TEXT command causes a key of 5 to be associated with the text
array TEST. The second command causes a key of 7 to be associated with
the test string THIS.

A cursor now appears under the first T of 'TEST'. If the user presses the
-► key, the cursor will jump to the T of THIS, and if is pressed again it
will jump back to the first T of TEST. The RDCHR subroutine is used to
read the text from the screen.

(4) CALL INCLD(ELEM)

Activates an element which had been inactivated by a call to OMIT.

(5) CALL OMIT(ELEM)
(

Removes the element and its associated images from the screen. However,
the element is not lost nor is it changed. It is inactive. The INCLD sub-

'	 routine will allow the element to be active again. 	 i

f	 f_.,, ^	 h

4

7-10



(6) CALL PENTRK(ELEM,YRET,YRE' , _ ,

The PENTRK subroutine is used to display a light pen tracking cross which
can be moved around the screen by use of the light pen. When the PENTRK
routine is invok d, a tracking cross will appear on the screen and function
keys 0 and 31 will be lit. Function Key 0 is used to change the pen tracking
speed from fast mode to slow mode and back again. Function Key 31 is used
to indicate the end of light pen tracking and the position of the tracking cross
will be returned to the user.

ELEM	 - Element number to get scaling formulae from. If no scal-
ing is desired, set ELEM to zero

XRET, YRET - Variables must be the same type as the element mode. It
Is returned to the user the X, Y coordinate of the tracking
cross when Function Key 31 was pressed.

X,Y - Variables or constants of same type as element mode or
Integer*2 if elem is set to zero, the initial position of the
tracking cross.

NOTE: PENTRK sets the PS and CS to full scale. If the element that is
being used for scaling does not have the PS and CS also set to full scale,
there will be a discrepancy between the X,Y returned from PENTRK and the
actual X,Y of that element.

(7) CALL P LINE (ELEM,TYPE,X,Y, (IDISPL] )

Subroutine PLINE creates a visual vector on the screen from the current
X, Y position of the beam to the X, Y value specified in the calling argument.

ff

TYPE - see reference to Subroutine PLOT.

X, Y coordinates of the end points of the vectors in the same mode as
the element.

9



•	 M ^	 I

(S) CALL PLOT (ELEM,TYPE,XARRAY,YARRAY,COUNT,[IDISPL]) 	 j

PLOT creates a. graphic image that displays one or more connected line
segments.

TYPE	 - Type of line (I*2)
0 - solid
1 = dashed
2 = dotted
3 = end points
4 = dash-dot-dash

XARRAY, - Array name in proper mode for this element. These X and Y
YARRAY	 arrays contain the coordinates of the points that will be con-

nected to form the image.

COUNT - I*2 constant or variable which is the number of line segments
produced by this call plus one. This is less than or equal to
the dimension of XARRAY and YARRAY.

(9) CALL POSN(ELEM,X,Y, [IDISPL ])

This subroutine POSH is used to position the beam to a particular location
on the screen. It is used prim. arily with the PLINE routine to generate line
segments from one point to another.

X,Y - X,Y coordinates in proper mode for the element. The position on the
screen the beam will be moved to. This move will not generate any visual
image on, the screen.

(10) CALL RCURS

This subroutine removes the cursor from the screen.

(11) CALL RDCHR(KEY,TEXTARR-AY,NUM)

The RDCHR subroutine causes the transfer of a text string from the display
image buffer into an array. The data is placed in the array at 2 characters
per word.



I
E

The system functions ENCODE and DECODE are used profusely with this
routine. See Section 6.2.5 for detail.

KEY	 I*2. This is the key of the text string to read.

TEXT	 - Name of an array whose dimension is greater than or
ARRAY

	

	 equal to the number of characters (bytes) to be read. The text
string is returned in this array.

NUM	 - I*2 variable. The number of characters in the text string is
returned in this variable.

NOTE: The PDP-11 FORTRAN has two functions, ENCODE and DECODE,
to change data to and from alphanumeric formats. See additional notes at
end of chapter for detailed examples.

(12) CALL RESET(ELEM,LIDISPL])

The RESET subroutine removes displays created `vith an element. If reset
is called with only 1 argument, the element will contain no IDISPL display-
able images; that is, it will be identical to a call INIT or SINIT. IF IDISPL
was used to create a part of the display, that display part and all displays
in that element created after it will be deleted. See Section 6.2.5, Note #3
for discussion of IDISPL.

(13)CALL RKEY(KEY 1, (KEY 21. . .

This subroutine is used to disassociate a text string from a key. The reason
for this routine is to help conserve keys, since the user- has a limit of 20 text

.

	

	 string keys that may be used at any one time. The key numbers in the argu-
ment list need not be in order, nor may the number of keys exceed 20.

KEY 1, - I*2 variables or constants which were associated with text
KEY 2,	 strings in TEXT commands.
etc:

r NOTE: A key cannot be removed if it has been called in an ICURS routine
and an RCURS has not been issued. In this case, the key is considered ac-
tive and will remain associated with the text string.



(14) CALL RQ,,.TN(ICODE,L4RRAY,ATTNCODE,IATTNCODE ... 1)

The RQATN subroutine allows the user to wait for a response from the
graphics operator. When the RQATN routine is called, the subroutine will
wait until one of the specified attention devices is activated and will return
the device number,

	

ICODE	 - I*2 variable which is returned to the user to indicate the device
number which caused the wait to be terminated.

IARRAY - I*2 array name dimensioned to 20. Upon return from the
RQATN subroutine, this array will contain the following
information:

IARRAY
SUBSCRIPT CONTENTS

	1 	 Element number of the light pen hit.
I

	

2	 Offset of instruction from start of element when light pen
interrupted, used with IDISPL.

	

3	 X location in screen coordinates of light pen hit.

	

4	 Y location in screen coordinates of light pen hit.

	

5	 PS of element light pen hit was detected on.

	

6	 CS of element light pen hit was detected on.

DX of element at light pen hit 	 p
q

	

S	 DY of element at light pen hit.

	

9	 Program Interrupt Register ar time of light pen hit.

	

10	 Mode Control Register at time of light pen hit.	 .

	

11	 Last character entered on keyboard.
f	 nC

a

	12	 Which of Function Keys 0-15 was depressed at time of return.
Bit 15 (most significant) is set if Function Key 0 was depressed,
bit 14 is set if Function Key 1 was depressed, etc.	 a

{

7-14



t

IARRAY
SUBSCRIPT CONTENTS

13	 Which of Function Keys 16-31 was depressed at time of re-
turn. But 15 (most significant) is set if Function Key was de-
pressed, bit 14 is set if Function Key 17 was depressed, etc,

14	 Character which the light pen was pointed at when light pen
interrupted.

t

15	 Reserved.

16	 Reserved.

	

17, 18	 X Coordinate of light pen hit in scaled mode of the element.
If Real*4, Real*8, or I*4, both 17 and 18 are used. If I*2,
only 18 is used.

	

19,20	 Y coordinate of light pen hit in scaled mode of the element.
If Real*4, Real*8, or I*4, both 19 and 20 are used. If I*2,
only 20 is used.

NOTE: See Additional Notes, Section 7.2.5 #3 for detail on retrieving scaled
coordinates and using IDISPL.

ATTENCODE - I*2 variable or constant. Code of attention device to wait for.

1 = Function Key 0

2 = Function Key 1
}

i
I
i

32 = Function Key 31

33 End of sequence character (usually carriage return)

34 = Light Pen	
l35 = Clock

P

When ATTENCODE is 35, the next argwnent is the number of 8.3 millisecond
E	 clock ticks to wait. This next argument is mandatory,

i
7-15

a
a

W _:	 i



^i4. Dt p .. . yam'

EXAMPLE is

To call a halt in the program until function key 5 is pressed:

CALL RQATN(ICODE,IARRAY06)

EXAMPLE 2:

To halt until either a display is light-penned or function key g is pressed,
whichever occurs first:

CALL RQATN(ICODE,IARRAY,9,34)

EXAMPLE 3:

To halt for 200 clock ticks or until function key 23 is pressed whichever
occurs first:

CALL RQATN(ICODE,IARRAY,24,35,200)

In



EXAMPLE 4:

To specify the range of codes 5, 6, 7, 8, 9 and 10, use the arguments 5, -10.
For example, to wait for Function Keys 1, 3, 5, 6, 7, 8, 9, 10, 17, 18 19,
20, and 1200 clock ticks use the following calls

0ALL RQATN(ICDDEA,IRRAY,2,4,6,-11,18,-21,35,1200)

(15) CALL SETVM(ELEM,TYPE,VECT MODE,IXJ,[YIjINCR),(M])

This subroutine is used to set the vector type for the VECT routine.
Detailed description of VECT MODE is in additional notes in Section
6.2.5 #4.

TYPE	 - Reference subroutine PLOT.

VECT MODE - 1*2 vector mode type:
0 = relative
1 = relative auto X
2 = relative auto Y
4 absolute
5 absolute auto X
6 absolute auto Y
8 = relative compact
9 = relative compact auto X

10 = relative compact auto Y

X, Y	 - Starting position (for relative types) of the image. Must bi:,,
in proper mode for this element.

INCR	 - Increment fox, auto X or auto Y. This is the increment that
the appropriatf, coordinate will be stepped by. Must be in
the proper anode for the element.

b



M

	

	 Used for relative  compact mode. If M - 0, no scale mode;
if 1, scaled mode.

NOTE: See additional Notes, Section 6.2.5 #4 for application. 	 j

I

(;i6) CALL STEOS(ICHAR)

This routine is used to set the end of order sequence character (the charac-
ter which when pressed will cause the RQATN routine to return with a code
of 33). The default is the carriage return character (CR).

ICHAR - I*2 number or variable set to the ASCII code of the character
which is to be the end of order sequence (EOS) character. If
all characters are to be EOS characters, set ICHAR to a -1. 	 i

EXAMPLE: To change the EOS character to an ASCII code of 101 octal
('A')'

Call STEOS(65)

(17) CALL TEXT(ELEM#,TEXT,X,Y,[SIZE ],[KEY],[IDISPL))

The TEXT subroutine creates text images in the element. The X and Y
values determine where on the screen the test will be started. The first
character is a9ntered at (X In Characters produced may be of 4 sizes and
of two orientations, vertical and horizontal.

i
The system functions ENCODE and DECODE are very often used with this
routine. See Section 6.2.5 #1 for detail.	 B

m

TEXT	 - is a variable, array name or hollerith string of the charac-
ters to be displayed. The characters in the string text must
be packed 1 character per byte. The text is terminated
when a byte of zero is encountered or a byte of Octal 024. See
Section 6.2.5 #5 for a chart of possible characters to draw. -

X, Y are variables or constants in the proper mode for this element
representing the X and Y coordinates of the center of the first
character.

t
	 i

a

7-13



SIZE - 1*2. Is a variable defining the size and orientation of the text.
Values:
1 = smallest character, horizontal orientation.

-1 = smallest character, vertical orientation.
2 = 1.5* smallest character, horizontal.

-2 - 1.6* smallest character, vertical.
3 = 2* smallest character, horizontal.

-3 = 2* smallest character, vertical.
4' = 4* smallest character, horizontal.

-4 = 4* smallest character, vertical.
Default is size 3.

CHAR COL/	 LINES/	 COL/	 LINES/
SIZE LIN	 PAGE	 CHAR	 -CHAR

1 120	 60	 34	 68
2 81	 41	 50	 100
3 60	 30	 68	 136
4 32	 16	 128	 256

KEY - 1*2 variable or constant representing a number associated with
this string of text for cursor control. Key must range from 1
to 250 and must be unique (no 2 texts can have the same key).
See Section 6.2.5 #3 for discussion of IDISPL.

(18) CALL VECT(VIJV21, (OPERATION])

V1, V2 - V1, V2 take on different meanings, depending on the
vector mode specified in SETVM.

If the mode was 0, 4 or 8 (relative, absolute, relative compact),
V1 and V2 are the X and Y coordinates in the appropriate scaling.
In the relative compact form V1, V2 are converted to screen co-
ordinates and treated as described in the discussion.

0.

If the mode was Auto X (1, 5 or 9), V1 is the Y coordinate value
in the proper mode for element. V2 is optional and if used will
cause ',he increment to be changed. It also must be in the proper
mode for the element specified in the SETVM call.

If the mode was Auto Y (2, 6 or 10), V1 is the X coordinate and V2
changes the increment. Identical to above.

7-19



Y

	

r	

C

U mode is 9 or 10, V1 is DX, V2 is DY, both are needed.
If omitted they will default to zero.

OPERATION - I*2, if OPERATION is a 1	 a draw command will be
issued to draw a vector from i;'t previous X, Y to the current
X, Y. If operation is a 2, the beam will be moved to the X, Y
value, but no draw will be performed.

NOTE: See Additional Notes in Section 7.2.5, #4 for application.

(19) CALL VECTT( IDISPL` )
P	 .

This subroutine is used to terminate the SETVM instruction and place the
created image in the appropriate element.

NOTE: See Additional Notes in Section 7.2.5, #4 for application.

7.2.5 SAMPLE PROGRAM ON THE VECTOR GENERAL

DIMENSION IR(20),IX(5),IY(5) 	 !ARRAYS FOR RQATN, PLOT 	 j
DATA IX/-100,-100,100,100,-100/ r	a
DATA IY/-100,100,100,-100,-100/
CALL GINIT	 ! INITIALIZE VG SCREEN
CALL INIT(1)	 ! CREATE ELEMENT #1.
C
C I WILL WRITE "EXAMPLE" AT THE
C MIDDLE LEFT OF THE SCREEN OF CHARACTER SIZE 2.
C

CALL TEXT (1, 1 EXATi1PLE',-500,0,2) }
CALL GRLsA'

C I WILL DRAW A SQUARE IN THE CENTER OF THE
C SCREEN. THE COORDINATES OF THE VERTICES ARE:
C	 (-100,-100) (-100,100) (100,100) (100,-100)	 n
C THE HORIZONTAL COORDINATES ARE HELD IN IX.
C THE VERTICAL COORDINATES ARE HELD IN IY.
C THE DIMENSIONS ARE 5 IN ORDER TO CLOSE THE 	 !g
C SQUARE. NOTE THAT THE FIRST AND LAST COORDINATES
C ARE THE SAME.
C

CALL PLOT(1,0,IX,IY,5)

C I WANT TO LOOK AT THE PICTURE UNTIL I 	 .
C PRESS KEY 4. SO HALT THE PROGRAM:

7-20



x
a

CALL RQATN(IC,IR,4)
p	 CALL GTERM	 ! END USE OF VG

STOP
END

7.2.6 Task building

The task building commands must include the 4K common area VGCOM. Thus,
a typical task build is:

1

TKB
A

NAME= NAME

LIBR=SYRES:RO
'	 COMMON=VGCOM:RW:6

ASG- TI:5

7.2.7 Hints for Programming the VG

The following is a list of commonly occurring software errors and several sug-
gestions to increase efficiency.

1.	 Call GRUN properly.
^d

If GRUN is called before a display is set up, or if it is not called -at all, the
program will not run but will inhibit the use of the VG, even if the program is
aborted. GRUN may be called any number of times, but must appear after
every GINIT or GHALT.

2.	 Call GTERM at end of program.

If GTERM is not called, the program stops, leaving the picture on the screen.

3.	 Cali GINIT at the beginning.

If GINIT is not called before any other graphics routine, the program will
automatically abort with no error messages appearing. Also, if GINIT is
called again within the same program, GTERM must precede it. f

r	 4.	 Don't call RQATN until after GRUN has been called. t.

Otherwise, no image will appear and no function key will light. The VG will
be inhibited, even if the program is aborted.

kk

1	 7-21
i. it



f

5. If a curve plot of some sort is desired where either axis is incremented at
a constant rate, use the SETVM, VECT, and VECTT routines to conserve
buffer are a.

6. If a "moving" picture effect is desired,, a CHNGE call within a DO loop may
be made, changing DX and DY each time. The displays in the element follow
the DX,DY changes.

7. If an array of data are to be plotted, one may use IDISPL with the light pen
to distinguish points rather than returning coordinates in RQATN. This
is almost essential if roundoff of coordinate values allows two points the
same value.

7.2.8 Additional Notes

(1) ENCODE, DECODE:

ENCODE (c,f,b{ERR=5)) (LIST)

DECODE (c,f,b [ERR=51) (LIST )

(See Volume 3 of RSX-11D Fortran Language Reference Manual, Page 5-29,
for explanation of these requirements.)

The formats for ENCODE and DECODE are exactly like a WRITE and READ
format, respectively. Format such as (lX,I2) is valid as long as the total
number of spaces is added to c.

EXAMPLES:	 e4	 g

(a) Want NUM=214 to be displayed on the screen.

Coder LOGICAL*1 A(4)
DATA A/4*0/
NUM=214	 y
ENCODE(3,100,A)NUM
CALL INIT(1)	

{

CALL TEXT(1,A,0,0,1)
100	 FORMAT(I3)

NOTE': The fourth array subscript = 0 so TEXT will end the display
string. See TEXT..

7-22



(b) You have read a number 3.2 from the screen which had been displayed
with TEXT, and had KEY=1 associated with it, into a LOGICAL*1 array
A(3) with RDCHR. Now you want to decode it.

LOGICAL*1 A(4)
DECODE (3, 100,A)ENUM

100	 FORMAT(F3.1)

NOTE: A(4) = 0 for TEXT to end.

(c) Use other than LOGICAL*1 arrays to ENCODE and DECODE into
another array.

DIMENSION I(12),J(3)
DATA J/316,1,9260/
ENCODE (3,100,1)J(3)
DECODE (3, 100,I)J(3)

100	 FORMAT(I4)
RESULT: I(1)='9',I(2)='2',I(3)='6',I(4)='0'

(d) Use DECODE to pick characters from within an array to form numbers.

LOGICAL*1 TEST(10)
DATA TEST/ t l t , 1 2 1 , 1 3 1 , 1 4 t 115101610171 l ist sygiflov/

DECODE (1, 100, TEST) NUM1
DECODE(3,200,TESI)NUM2
DECODE (4,3 00, TEST) NUM3
DEC ODE(7,400, TEST) NUM4
DECODE (10, 5 00, TEST) NUM5

100	 FORMAT(Il)
200 FORMAT(M)
300	 FORMAT(2X,I2)
400	 FORMAT(4X,I3)
500	 FORMAT(9X,I1)

RESULT: NUM1=1, NUM2=123, NUM3=34, NUM4=567, NUM5=0.

(e) Want to ENCODE a real number,

LOGICAL*1 A(7)
RNUM=16.1237
ENCODE(7,100,A)RNUM

100	 FORMAT(F7.4)
'PrQTTT.Fr- AM= fit A 19 ► = W A on— I f vrrri



(f) Use ENCODE to write a number.

LOGICAL*1 TEST(6)
DATA TEST/'X',' =1,4*1 I/

NUM=2142
ENCODE (5,100, TEST) NUM	

I%

100	 FORMAT(2X,I4)

RESULT: If printed in character format, TEST would be X = 2142.
Notice how 2X erased the 'X' and '=' data in TEST.

(2) RQATN:

Formats for retrieving coordinates in scaled mode:

INT*2,LOG*1 X cooed=IRRAY(13), Y cooed=IRRAY(20)

INT*4	 INTEGER*4 IX,IY
DIMENSION IRRAY(20)
EQUIVALENCE (IX,RRAY(17)),(IY,IRRAY(19))
Then X cooed=IX, Y coord=IY

REAL*4	 DIMENSION IRRAY(20)	 _+
EQUIVALENCE (X,IRRAY(17)),(Y,IRRAY(19))
Then X coord=X, Y coord=Y

REAL*8	 REAL*8 X,Y
DIMENSION IRRAY(20)
EQUIVALENCE (X,IRRAY(17)),(Y,IRRAY(19))
Then X coord=X, Y cooed=Y

(3) Using IDISPL:
3

When an element is created, it occupies a storage area of its own in the dis-
play list. Each subsequent call using the element is stored together, thus each
display has its own position. The variable IDISPL records that offset from
the first instruction, and if the element is light penable, RQATN may be used
to differentiate displays.

Y	

;`'
Given the RQATN array nanze as IR, dimensioned at 20, then IR(2) returns a
number used with IDISPL to calculate the particular image light penned. How-
ever IR(2)-IDISPL varies depending on which command was used to create the
display light penned.

7-24



z

--

ORIGINAL' PAGE IS
OF POOR QUALITY

IR(2) - IDISPL(words)	 EACH FURTHER CALL(words)

2	 3
4

3
4	 5
6 in compact modes
7 is non-compact

modes

ROUTINE

PLINE
PLOT
POSN
TEXT

; 	 VEC TT

IAISPL EX. 1

A square is drawn with element 1, by calls to POSN then PLINE. The coordinates
of the vertices are: (-100,100), (-100,-100), (100,-100), and (100,100). A solid
line is drawn.

CALL INIT(1,1)
CALL POSN(1,-100,100,IDISPLI)
CALL PLINE(1,0,-100,-100,IDISPL2)
CALL PLINE(1,0,100,-100,IDISPL3)
CALL PLINE(1,0,100,100,MISPL4)
CALL PLINE(1,0,-100,100,IDISPL6)
CALL GRUN

RESULT:

(100,-100) 	 _(100'-100)
ii

VALUES:

IDISPL1	 15 (INIT took 1st 14)
MISPL2	 18
MISPL3	 21
IDISPL4	 24
IDISPL5	 27

If RQATN was called next and IR(20) is RQATN array, the value of IR(2) is as
follows;

7-25



kS
6

IDISPL of Vector that was hit	 IR(2)

IDISPL	 no image
IDISP2	 20
IDISP3	 23
IDISP4	 26
IDISP5	 29

Notice that IR(2)-IDISPL = 2 as in the chart.

IDISPL example 2

Points will be displayed using IX(10), IY(10) to hold the coordinates. A call
to TEXT with IX, IY will place an IX" in the appropriate position. For example,
if IX(2) = 1000 and IY(2) = -500, an 'X' will be drawn at (1000,-500). The initial
displacement of the first TEXT command is recorded in IDISPL. Then using
the light pen, the point number hit by the light pen will be calculated.

k

CALL INIT(2,1)
IDISPL=O
DO 10 I=1,10
CALL TEXT(2,'X',IX(I),IY(I),1,,,ISPL)
IF(IEQ.1) IDISPL=SPL

10 CONTINUE

Result: 10 IXI I s at various places on the screen.

The first 'X' has IDISPL=15 (INIT takes 1st 14). If RQATN is now called with
RQATN array IR(20), IR(2) returns the displacement +4 of the character light
penned. Since each text instruction takes 5 words, a formula to find the point
number would be (IR(2)-IDISPL+1)/5. Thus: The first character if light penned is:

M (2)=19
(19-15+1)/5 15

The second character if light penned is:

IR(2) = 24 IDISPL=15
(24-15+1)/5=2	 r

Note: IR(2) starts at IDISPL+4. Since each command generates 5 words, IR(2)
increases by 5 with each point light penned.

t	
^

7-26



p^I

Since PLOT and VECTT cause multiple drawings with one commend, a formula
for computing the point number drawn within each call is:

PLOT: (M(2)-IDISPL-2)/2
VECTT: (IR(2)-IDISPL-5)/2 	 non-compact types

(IR(2)-IDISPL-5) 	 compact types

where IDISPL is returned in PLOT and VECTT.

(4) SETVM, VECT, VECTT

SETVM, VECT, VECTT subroutines are used together to create vectors or
end point plots. They produce the same thing as the PLOT routine, but allow
full usage of all plotting capabilities offered by the Vector General controller
hardware.

The following paragraphs explain the features offered by these three sub-
routines. The reader may want to reference the VG Manual #VG 101056
"Graphics Display Unit" for more information.

There are 9 Vector modes offered by the Vector General Hardware:

(1) Absolute: The actual coordinate value of each X and Y is used. It draws a
line from the previous X,Y position to the specified X,Y position. (VECT
MODE = 4):

(2) Absolute Auto X: The actual coordinate value for each Y is used, but it steps
the X value by a specified increment before each draw or move. Notice that
display space usage is decreased since only the Y coordinate is needed.
(VECT MODE = 5).

(3) Absolute Auto Y: This is the same as absolute auto X, only the X and Y
coordinates are reversed. (VECT MODE = 6).

(4) Relative: Each X,Y coordinate is assumed to be OX and AY from the last
coordinates, so a line is drawn from the last position — say, X',Y' to X'+X,
Y'+Y, where X, Y are the input X and Y. Hence, each vector is relative to
the previous one. (VECT MODE = 0)

(5) Relative Auto X: The Y coordinate is used as a AY adding it to the last Y
position, but the X is incremented by a specified increment before each draw

x.
or move. (VECT MODE = 1).



(6) Relative Auto Y: This mode is similar to relative auto X, but the Y is auto-
incremented and the X is relative.	 (VECT MODE = 2).

(7) Relative Compact Mode: This mode is used exactly like the relative mode
described in (4) above; however, the data words are compacted to reduce
apace and increase performance. There are two types of compact modes:
no scaling and scaling. In the no scaling mode, the coordinates must be in
the range -64 to 63. In the scaling mode, the coordinates must be in the

Rw range -2048 to 2047; however, only the high order 7 bits of the number arew
used. That is to say, suppose the number was 1271, which is 010011110111
in binary, the lower 5 binary digits are 10111. Hence, this number is the
same as 1248. In fact, any numbers between 1248 and 1279 are the same
as 1248. In this mode space and performance are gained, but precision or
large stepping is lost. (VECT MODE = 7) .

(8) Relative Compact Mode, Auto X: In this mode the X value is stepped by a
G constant increment (-2048 to 2047), but the Y value is in the compact mode

form as explained before. (VECT MODE = 8).

(9) Relative Compact_Mode, Auto Y: This mode is similar to the relative com-
pact auto X mode, but the Y is incremented and the X is in compact form.
(VECT MODE = 9).

C j

C THIS IS AN EXAMPLE OF USE OF THE SETVM,VECT,VECTT
C ROUTINES. NOTE THAT NO GRAPHICS COMMAND MAY BE
C CALLED AFTER SETVM EXCEPT VECT AND VECTT. ONCE VECTT
C IS CALLED, GRAPHICS COMMANDS MAY BE RESUMED,
C

T DIMENSION M(20)
CALL GINIT	 IINITIALIZE VG
CALL INIT(1)	 !CREATE ELEM #1
CALL INIT(2)
CALL TEXT(2,' THIS IS THE SETVM,VECT,VECTT SEQUENCE',

-200,200,1)	 IWRITE ON VG
CALL GRUN	 I DISPLAY THE TEXT

C
C SETVM IS CALLED WITH MODE 5 AND INCREMENTS OF 50.
C THE INITIAL POSITION IS -1500,-1500 AND
C SOLID LINES WILL BE DRAWN.
C

7-28



ORIG INAL PAGE 19
OF POOR QUALITY

CALL SETV1A(1,0,5,-1500;- 1500,50)
DO 10 I=1500,3000,100	 !LOOP TO DRAW SEGMENTS
R-FLOATI(I)
ICOORD=1500*COS(R)	 I CALCULATE COORD
CALL VECT(ICOORD)

10 CONTINUE
j	 CALL V'ECTT(IDISPL)	 !TERMINATE SEQUENCE

CALL CHNGE(1,,,,1000,1000)	 !CHANGE SCALE TO FIT ON PAGE
CALL RQATN (IC,IR , 2)	 (OTHER GRAPHICS COMMANDS

C

	

	 IMAY BE CALLED
CALL GTERM

{	 STOP
{	 END

RESULT:

F."
i
E_ i

THIS IS THE SETVM, VECT, VECTT SEQUENCE

r

NOTE: The following is a sample task builder file for a graphics program.
The common statement must be included.

VECT=VEC''

COMMON=VGCOM:RW:
LIgR=,SYSRES:RO
^^	 I

(5) This table lists the possible characters one can draw on the Vector General.

r
They may be drawn as follows:

CALL INIT(1)
ICHAR=" 354	 (draws a X, 11 means octal)
CALL TEXT (1,ICHAR,0,0,1)'



ORIGINAV PAGE V
OF POOR QUALIT'

(5) The picture scale and coordinate scale values (PC CS respectively) are
factors used in computing the size and orientation of an element's displays.
They differ from each other only by their position in the formulae:

X'=PS/2 047* (C S/2047*X+DX )
Y'=PS/2047 *(C S/2047* Y+DY)

X%Y' - new coordinates
X,Y - old coordinates

DX,DY - increments of position of the center of the programmable area of
elements

Thus, the numbers DX and DY are added to the CS scaled coordinates be-
fore the picture is scaled with PS. Note that if DX and DY are zero (default
values), PS and CS are identical.

The following program exemplifies the use of PS and CS.

PURPOSE:

Draw 2 boxes:

Box 1: CS = 1024, PS = 2048, DX = DY = 1000
Box 2: CS = 2048, PS = 1024, DX = DY = 1000

CODE:

i

a

i

q a
s

DIMENSION IR(20), IX(5), IY(5)
DATA IX, IY/-500,-500,500,500,-500,-500,500,500,-500,-50o/
CA LL GINIT
CALL INIT (1)
CALL INIT(2, , , 1)
CALL PLOT (1, 0, IX, IY, 5)
CALL GRUN
CALL RQATN(IC, IR, 3) 	 n
CALL CHNGE(1, 0, 0, , 2 04 7, 1024, , , 1000,1000)
CALL TEXT(1,'R 1 , 1000, 1000, 1)
CALL RQATN(IC, IR, 2)
CALL PLOT (2, 0, IX, IY, 5)
CALL CHNGE(2,0,0,, 1024,2047,,, 1000,1000)
CALL TEXT(2,'T1,1000,1000,1)
CALL RQATN(IC,IR,4)
CALL GTERM
STOP
END

7-30



1250,250)	 (250,750)

Note 2:

ORIGINAI; PAGE PS

0' POOR QUALITY

RESULT: No change formula is
1*(1*COORD+DX)

R11500,1600)

The 1st square's cocrds are
50,1250)	 changed via

1*(.5*C00RD+1000)

The 2nd square's coords are
changed via:
.5*(1*COORD+1000)

0,1250)	 The net effective difference is
that the DX or DY is scaled when
PS is changed, but is not scaled
when CS is changed. Thus the
second square was moved only

500 (half scat.)) from (0,0) whereas
the first squa2t was inoved 1000
from (0,0).

As can be seen in the above note, DX and DY are used to compute the center of
the element with respect to the screen's center. They are scaled with the dis -

play only by PS. DX and DY are increments of a change to the center of the
element. Thus, if DX=100 and PS is changed to half scale (1024), the element is
centered 50 away from (0,0). However if CS had seen changed to half scale, it
would be centered at 100 away from (0,0).

a

k^

7-31



IIphR•
0.41,3061.11.41	 0.41,3061.

He.
tiuprr

"IlkLeff	 "Ilk	 >"'vluulydlrml.,l M•Y.

1D 130400	 275 .$Mt plwr.
bE 117060	 210:	 -0 ,-hit 01-C
or 127400	 2TT 011

CO I40400 300
Zc

Of care
t.up'ncrtp 1

Ct 116101	 341	 d A.hit rare
C2 111

641
000	 302	 - n .Mt op. te.

C3 400	 '•w0	 J. CghR Sprc
C4 112000	 304	 4 Domewo
CS 14,400	 1as E6hn.twe
ce 143000	 3d4 ♦ r.hit ep.1
CT 1124"	 407 • a bit	 ..v

C! I"M 3t0 * "shopper
CS 1444"	 111 1 0118We
CA .115040.	 312	 o. 1 gkft.lwc
CIS 141400	 312	 11 K skit q e
CC 249" 311	 A Lshit swe
CD 146M	 313 Mchn owe
CC 1410"	 3111

14740 317	 fl̂
Cr

Olinpe
DO 100060	 120	 11 p.hR.pve
01 160400	 321	 A gIhhsp•s
D2 1110"	 322	 J' R san
D3 131400	 371 SsMlspvc
04 1310".	 324	 • Tthft we
D{. 1574"	 326	 t V.hD.ac
D4 .133000	 328	 f YehR oprc
DT 1511" 127 A W:kiteprc
as 164000	 336	 f Khll+Pc
Do 154440	 331 1`rhIt.p•c
DA $511000	 312	 - z/Mtswe
Do 115101	 310	 L I	 lace
DC 161040 134 • .pee
00 1004"	 138: ► I	 .t►r
OF 1!7000	 33d	 l.uperl ^	 spec
or 157400	 137 •	 rrup.r) .Ire
EO Moon	 740 ,-, it 01%dpec

I bilakln4)
C1 1404"	 34t	 S A	 $pre
C1 UIOOO	 342	 0 0	 gave

C3 10t400	 343	 • C	 spe0.
E4 II M0 I"	 b D	 gwc
F4 M2400 14S	 C C	 g	 0
E8 163"0	 140	 IS F	 61i,r
E7 1434"	 347	 7 0	 *we
ES IWOO 300 A 11	 sl.eu
C0 144400	 304	 t 1	 owe
CA. 157Mo 152 11	 .arc
F.A. 1634"	 3537.	 Isup.r) K	 .pee
EC 1616"	 101	 h L	 rtwe
ED 141,4".	 351.	 p M	 ep.e
EE Into"	 380	 V N	 tar
EF 147400	 3S7	 W n	 .pre
F9 170000	 349	 fi p	 spec
Fl 170401	 :161	 10 q	 lave
F2 MOW 742	 p 1.	 sewc
F3 1714"	 340	 e 6	 .pcc

rl Mono 164 T T	 spec
r5 172400	 147	 3 It	 spec
re .171000	 3441	 0 Y	 eW,
F7 173401	 107 W	 6p1!c

F. IT4M0 310	 1 x	 $pee
r9 t744"	 071	 e- Y	 19er
FA ITSOno	 172	 ♦ t	 tlwu
I's 173400	 7T3	 r I.pv.ho
re 114001	 174 \of-,vehh
FD 1-,4400	 3-,3	 i I+p1'c OhlF
Fe 171040 AIR °("Fp 1 .p•c .hftF'.

11,400	 377	 I^ DI:L	 eft
•0 (p.dYu	 306	 r 110:77

• 1 101440	 1401	 0 novel 4

"t 1410110	 264'1	 I- nom. IIIAI
•1  20:1	 1. n14r1

I
:001404

d 0.0"	 ..04	 2 • "me) e-
Yntr .. • . ,pl I.nal. •p.u0l. vh:,,av,pr+

'• ctrl and 4p.e and.. A-,t l'.I^,_

k

,l

ORIGINAL PAGE 111

0E POOR QUALIY'Y

ASCII CHARACTER CODES

Ned mul Chorneuf	 \urµnurlC
LLO	 RMM. tA•nendhr	 K.Mmr4MYmlyd	 KcYs.

061400 OM NI'Llien,11'ed)	 0 dri
0"400 001 .40	 A ctrl
0011p1	 002 O1:C	 Ildrl
001400	 005 rMc	 Cnrl
012000 001 MT	 Octrl
"Im 001 AKq 	r. art
001000	 000 ACK	 rnrl
00300	 007 IIKL	 "	 agrl

040"T
M	 In

004100	 011 K11L ► ,anl l ctrl
1""4 012 L ► 	 Lr
0"440 0" V T14e0, n y l Krlrl
00404,11,	 014 crow, left 	 Ltorl
004140 01{ NLMR. Lr I LT
0410"	 016 !C	 opm,11 Netrl
"7440 017 N.	 DsOoredl aarl
0114040 010 IlLkliparsdi Petri
0104"	 Olt DCi l -Lr	 I q ctrl
011000	 022 DCS ( •3z 	 1 R art
0114" 023 DC11 HE	 I Ictrl
012000	 024 DC4Itorn	 ITcerl
OMOO 023 MAN rlfllnr.dI Vetri
440000 026 SYK+44norel	 Sctrl
0134"	 017 C To OcnorZ Wet 
014040 030 CAN pen-W) xcirl
014400	 02' CM	 fl40omill YLtrl
0100"	 032 SCS (lORnrcd) Zciri
0134" 913 ESC il8nnn01 t ctrl
WOOS 034 F	 Ilfnor.dl	 ctrl
'II ow	 05 0 03	 00047.141 I ctrl
017000	 021 RS	 ncnoradl	 ctrl
011400	 037 L'S	 f19n.rad)

070000	 040 Spa.

	 ;-bar

0241". 041. I	 1 PhD
0210" 012 2 @Wt

0214N`"1"0220"	 041
3:Wt

!	 4 shit
012M0	 041 rR	

1WMIND -0N i	 6YMI
0724"	 041 '	 1 W
0240^,	 060 1	 I.hft
0214"	 011 /	 0 shit
020000	 052 :.tMt
025440 033 i thft

024000	 054
024400	 OS1 -	 -
01740 0 r.
02740	 017

020060	 040 1	 0

03010 011
1	 1

0010"	 061 2	 2
0311" .013 31
0320"	 004 4	 1
022100	 066. 3	 S

0010" 0" 0	 1
023400	

no?
T	 7

024000	 070 4	 1

034400	 071 0	 9
033000	 011 1
015400	 072 t	 I
4:10000 . 	1114 <	 , rhft
01,1400	 417 • .hit
:027"0	 074 r	 ghlt
0117 phi	 1177 $hit
44410!14	 lib n

04040	 1ol A	 A.hit
n4t41n0	 tn2 R	 a	 It
0414M	 103' C	 Cshn
041 on	 I9 l)	 D.Mt
0124110	 105 F	 haft
041OM	 104 F	 P.M
041 NM	 107 0	 0 ehfl
0440M	 110 N	 111.1

(144400111 1	 1 eft
041040	 112 1	 4 sWI
04341"	 112 K	 K phfi
040001	 114 L	 L1It
441;100	 It.1 al	 11.401.
n4;ro14	 114 \	 %.hit
0474, n.h1,
150n4n	 !94 p	 p.hfi

\$phi•

INc Orla1	 Chanelrr Nunit-mv
L+(t	 RIO. avner6Mr Ke1'IwIrA

ppm1101 K„Y.

!I 4{0400	 .121	 Q QOMI
32 OIIOM	 t22	 R R.MI
33 CAMS	 122	 5 It Phil
14. 0120"	 124	 T TIMt
1{ 0124M	 l:l	 V C.Mt	 .
11 011004	 .120	 Y V $hit
77 13400.	 .27W W.hR
54 040064	 130	 x x shit
31 064400	 131.	 1' YIMt
SA "loon	 132	 2 z eh0
0I 050100	 III	 I I
IC 040000	 131	 \ \
a0 0110/40 pf	

n
^.

!E 011040	 134

pu la,"trtptl
Sr 0271"	 137	 ;y-bcr1po

j	 50 010000 	 1a f^hn
1	 Yf .0404"	 111	 1 A

Al 0010"	 11!	 b ^

43 01 1400	 143	 C C	 I

N 0IM	 0 D	
t

'	 41 002400	 141	 o C
" 064000	 144	 ( r
47 043400	 141	 c a

O0 .  150	 h N	 t

04 01:41,4000	 111	 1 i
6A 0"0"	 101	 J 4

i	 0111. 04140	 103	 k K
4C 040400	 154	 1 L	

I

fD 0"100	 11!	 M 31.
YC. 0"000	 110	 n N
6r 001100	 1ST	 0 0

TO 010000	 160	 p p

71 07040	 1111	 q Q
13 071000	 142 . 	r R

73 ott140	 143	 . 3

74 012000	 164	 l T
`	 10 01240	 140.	 u L'
I	 TO 013004	 100	 e V

t7 073400	 14T	 w W
f	 71 074001	 110	 4 x	 i

i 0 074404	 171	 Y' Y
7A 071000	 "1	 1 z

71! 016400	 173	 ( 10M
7C 07400	 174 butt
70 070100	 111	 ? low,
TE 077000	 176. -shit
7r 077400	 177	 del DEL
'0.9r 100000- 200- 1 • Noul .••Ywe)

117400	 23T

AO 1200110	 240	 q pp4LU tare

AI 20400	 ut	 + 1.Mtsp.c
A2 121 040 	 212	 II' 2.Nupec
A l 121440 213	 +rJ1 34hit.pvc
M. ""30" IN	 L. 1sM etwc
AS 122400 :M	 v' 3 h(t We

ILtint.redl
AS 111140 	 216	 f R 6MUV0
A7 123400	 240	 >+ . s h7i gpsc
Ad 124040	 230	 a .thfI spae

}	 AO 121400	 21:	 a 9 $hitttrc.
AA 123440	 212	 10bunscrl pll 1
AS 125400	 271	 +

AC 120000	 274	 IS , spec
AD 130410	 233	 n • We
Al. 1270"	 234	 >f spec

AF 127400	 277	 1 spec
00 110	 240	 0S d rp'c
DI

nM
I10MO	 207 1 apre

B2 1310" .292	 V 2.Ipc
03 Ill IM	 203 1 spec
64. 137000	 204	 f 4 spre
Its 132400	 200	 A .I Owe

an 110000	 240	 a ,1.p,c
n7 MiM 240 t gp , cEl

I0400n	 270	 'j •.p.e
on I144n9	 2m	 n 0-4p•r
RA I13MI)	 1 2	

itt • nuv dml pv

BR 113444	 271	 X
11 1' 1300110	 210



I

7.2.9 Tardcopy Procedure

The entire hardcopy procedure consists of 4 basic steps:

(1) User depresses appropriate keys.
(2) Creation of PARAM.BIN and VECT1. BIN files.
(3) User initiates CPY.
(4) CPY generates hardcopy from above files.

Step 1 is accomplished by depressing SPEC and BS on the Vector General key-
board simultaneously while the desired picture is on the screen. A message,
"HARDCP--STOP," will be printed on the decwriter. As soon as this is printed,
the user may request another hardcopy using the SPEC/BS keys. Steps 3-4 are
accomplished by typing CPY and pressing esc key on the decwriter. The output
time depends on the complexity of the picture; CPY will eventually produce the
final hardcopy on the Versatec.



.4
8. 'Error Messages and Procedures

8.1 VG Errors
Errors may occur which relate only to calls made to the Vector General. These
errors will be reported in the following form:

VECTOR GENERAL ERROR NUMBER
{	 The program name where the error occurred, an error number 73 and trace-

backs then follow. The error numbers reported are outlined below.

ERRORS IN GRAPHICS
^k

t
Vt

ERROR NUMBER EXPLANATION j

6 No more room exists in the display Buffer to receive
this operation or any others. Room must be created
by deleting or resetting elements or parts of elements.

8 COMMON=VGCOM : RW:G was not specifiedin the task ti
build file. Non-existent error numbers may follow
this error.

t0 Tried to delete a non-existent element with DELMT.

12 Tried to activate ari element that was already active with ;t
ry

INC L"D.

14 Tried to INCLD a non-existent element.

16 Tried to OMIT a non-existent element

17 Called GRUN before any elements were active or
existent.

18 Tried to OMIT an element that is already inactive.
f

20 Tried to CHNGE a non-existent element.
1 ^^

a

22
s

Either a COPY of a non-existent element or a COPY
to create an existent element was made.

y

24 Tried to PLOT or TEXT with a non-existent element. ;a

28 .Tried to ICURS an invalid key number. 2t

29 Tried to RESET a non-existent element.
F

8-1
i^



30 . Tried to ICURS a non-existent key

32 Tried to RKEY a non-existent key

33 Tried to RESET an element which has an active cursor
within it.

34 Tried to RKEY a key which has been activated by
ICURS. RECURS must first be called.

38 Tried to INIT an existent element.

39 Tried to DELMT an element which has an active cursor
within it. RECURS must first be called.

42 Tried to create a key with 20 others in existance.	 The
maximum number of keys is 20. Use RKEY to remove
any unneeded key.

43 Tried to create a key which already exists.

47 Tried to RKEY an invalid or non-existent key.

50 RQATN has no arguments or invalid arguments.

60 Hardware error in function keys. If this occurs ex-
cessively contact Code 664 personnel.

62 PS and CS are too small causing a display which would
burn the screen.	 Thus, the call is rejected.

64 Argument problem in POSN, INIT, COPY, or CHNGE.

66 Argument problem in PLINE.

67 Argument problem in COPY.

72 Someone else is "sin the Vector General GTERM

a

1

i

9

g
has not been called previous to the call to GINIT,
VGI was not installed, or VG is off.

73	 COMMON=VGCOM:RW:6 was not included in task build.
K

74	 VECTT was called before either SETVM or VECT.

8-2



Argument problem in.ST C&

Argument problem in PENTRK.

Argument problem in ICURS.

Argument problem in RKEY.

Argument problem in RDCHR.

Argument problem in SETVM.

Argument problem in PLOT.

VECT was called before SETVM.

Argument problem in RESET.

Argument problem in TEXT.

Argument problem in RQATN.

Argument problem in PENTRK or SINIT.

Element called is non-existent. Graphics package may
be destroyed and VGI may need to be restarted. This
error is serious.

A function key is stuck. The key number is reported.
Gently lift up on it. The key may also have been
pressed down too long.

Tried to create an element number greater than 249.

Key called for in RDCHR could not be found.

F
8.2 Other Errors

8.2.1 Utility Errors

Most errors encountered by the RSX-11D operating system utilities are reported
to the user via a standard format. This consists of three characters identifying
the utility, followed by the error message on the same line.

8-4

LI

^i

f

I	 6
	

7B

79

80

82

84

85

86

87

88

92

94

99

100

113

120

160



A. PIP Error Messages
.

Presented here are some of the most frequently encountered PIP messages.
For more detail or additional messages consult pages 2-29 through 2-36 of the
Utility Procedures Manual.

1. PIP -- BAD USE OF WILD CARDS IN DESTINATION FILE NAME

PIP has strict rules concerning the use of wild cards "*' t in the destination. The
user has used it illegally. Check Chapter 3 of this manual for the proper use of
wild cards.

2. PIP -- OPEN FAILURE ON OUTPUT FILE

This usually means the file being accessed is locked. Issue the PIP command
with the /UN switch. For example:

MCR>PIP PROG.FTN;25/UN

If this doesn't rectify the problem then there is the possibility of a privilege
violation or parity error. Also, the file being accessed may not exist under the
users UIC.

3. PIP -- OUTPUT FILE ALREADY EXISTS — NOT SUPERSEDED

An output file of the same name, type and version as the file already exists.
This usually occurs when the user attempts to transfer files to tape or another
UIC which already has those files on it. By using the /SU switch, the user can
replace the old files on the output device with the new input files of the sLL ne
name, type and version.

B. FLX Error Messages

Presented here are some of the most frequently encountered FLX messages.
For more detail or additional messages consult page 3-18 through 3-25 of the
Utility Procedures Manual.

1. FLX -- FILE ALREADY EXISTS

A file of the same name and type already exists on the output device. Since there
is no supersede switch with FLX, the user must specify a new or corrected file-
name, or use PIP instead.

8-4



41

2. FLX -- 7N VER6ION NUMBER NOT -ALLOWED

Wild cards are not allowed in the version number field of a file specifier. All
version numbers must be explicitly specified.

C. DMP Error Messages

DMP Error Messages may be found on pages 4-4 through 4-6 of the Utility
Procedures Manual.

D. Editor ERROR Messages

Presented here are some of the most frequently encountered EDITOR messages
from some of the four classes of errors. These four classes are:

(a) Command Level informational and error messages (Pages 5-50 to 5-54 of
the Utility Procedures Manual)

(b) File access warning messages (Pages 5-54 to 5-55 of the above manual)

(c) Error Messages that result in Restarting the editing session (Pages 5-55 to
5-57 of the above manual)

(d) Fatal error messages that result in EDI closing all files and terminating its
execution.. (Pages 5-57 to 5-60 of the above manual)

All messages from class (a) are designed to be helpful to the user. They also
indicate errors with the previous command and are followed by a prompt for a
new command.

For example, if a delete command encounters an end-of-buffer in block made
the following message is issued:

[EDI -- *EOB*]

(Notice the prompt for a new command,

Frequently encountered messages in this class included

[EDT -- BUFFER CAPACITY EXCEEDED BY]
offending line
(LINE LIELETEDj

`z

t	 `,

F	 f

P	
.F

^; s

k je

ft

r *°

^J1

^.p

t.

o-

a-5

a



Files not created by the EDITOR cause this message to be printed.

To rectify the situation, the following five step procedure is suggested:

1. Start the editing session by specifying a filename that does not correspond
to any file in the current directory. This causes the EDITOR to open a
new file and prompt for input.

2. Enter edit mode (type CR)

3. Using the size command, reduce the number of lines read into each buffer.

For example;

*SIZE 50

4. Use the kill command to terminate the creation of the file.

r

5. Now enter the name of the desired file when the EDITOR pr.,mpts for n
new file specification.

[EDI CREATING NEW FILE] 	 t f ^ }

The input file specified does not exist so EDI has created a new file with
the name specified.

[EDI - NO MATCH]

A change command has specified a string to be changed that is not the cur-
rent line.

[EDI -- *EOF*]

The user has read the end-of-file on the input file.

[EDI -- *EOB*]

The end-of-buffer has been reached. The current line pointer now points
to the end of the buffer. If new lines are added at this point they will be
inserted after the last line of the buffer.

x.
Messages in class (b) indicate that the user is attempting to access directories,
files or devices that - are not present in the system. After each message EDI

8-6



returns to the command mode and waits for input. However, some errors in
this class should not occur. If they do, consult the system manager. These
messages are:

[EDI -- DEVICE NOT READY]
[EDI -- FILE ALREADY OPEN]
[EDI -- RENAME NAME ALREADY IN USE]
[EDI -- WRITE ATTEMPT TO LOCKED UNIT]
[EDI -- BAD FILE NAME]

J

The third class of errors, (c), are caused by conditions encountered by EDI that
make it impossible to continue the current editing session. EDI closes all open
files (with the exception of the secondary input file), reinitializes, and then
prompts for the next file to be edited.

Frequently encountered messages in this class are:

[EDI -- FILE IS ACCESSED FOR WRITE]

The input file is currently being written by another task. Wait for the file to be
-	 written and then retry the command.

[EDI -- PRIVILEGE VIOLATION]
Y.

This usually means that the UIC under which EDI is running does not possess
the necessary privileges to access the specified directory.

In this class there also are messages which indicate failure in the EDITOR and
should not occur. Consult the system manager if you encounter any of the fol-
lowing

,[EDI -- BAD DIRECTORY SYNTAX]
[EDI -- DUPLICATE ENTRY IN DIRECTORY]
[EDI -- ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE)
[EDI -- ILLEGAL RECORD NUMBER - FILE NOT USABLE]

•

	

	 The last class of error messages (d) are considered fatal and result in the
EDITOR closing all files and terminating its execution. They represent system

N;
end ware error conditions which make it impossible for EDI to continue after last
message is followed by the exit message.

x

i

i
8-7



For example:

(EDI -- FILE HEADER, CHECKSUM ERROR]
(EDI -- EXIT]

—

P

Some other messages in this class are:

(EDI -- FILE PROCESSOR DEVICE READ ERROR]
(EDI -- PARITY ERROR ON DEVICE)

Please contact Cie system manager if any messages in this class occur as they
may indicate serious hardware malfunctions. Additionally, if the message:

TASK ... EDI TERMINATED

appears please notify the system manager.,

E. CMP Error Messages

Error messages associated with the Compare Utility may be found on pages 12-6
and 12-7 of the Utilities Procedures Manual.

F. CREF Error Messages

I	 Messages associated with the cross-reference processor:nay be found on pages
E	 D-5 through D-8 of the Utilities Procedures Manual.
{

K G. Task Builder Error Messages
1

Presented here are some of the most frequently uncountered error messages of
the Task Builder. Additional messages may be found on pages A-1 through A-10

f	
of the Task Builder Reference Manual.

f	 MODULE module-name MULTIPLY DEFINES SYMBOL symbol-name
F
e

A symbol within the user program has been defined more than once.

ALLOCATION FAILURE ON FILE file-name.

Not enough contiguous space on the disk is available to build the task. Please
check with the system manager if this occurs.

number UNDEFINED SYMBOLS SEGMENT seg-name

The user has an undefined symbol in this program that the task builder couldn't
resolve after checking all system tables.

8-8



°	 H. MCR Error Messages

F ,

Error messages from MCR commands may be sound in alphabetical order (of
MCR command) on pages A-11 through A-56 of the User's Guide.

I. System Standard Error Messages

All negative errors can be looked up on pages N-1 to N-3 of the Users Guide.
These are standard errors occurring on any device or command.

J. Fortran IV Plus Compiler Errors

Fortran compiler errors may be found on pages C-1 through C-11 of the Fortran
IV Plus User's Guide. Of these, the compiler distinguishes three classes of
source program errors.

1. F - Fatal Errors which must be corrected before the program can be
compiled. (no .OBJ file produced)

2. E' - Errors which should be corrected. (.OBJ file produced)

3. W

	

	 Warning messages are issued for statements using non-standard,
though accepted, syntax, and for statements corrected by the com-
piler. However, these statements may not have the intended result

before execution. (These are produced only when the /WR switch is
used)

K. Fortran (Run-time) Error Messages

Fortran error messages found on (rages C-15 through C-22 of the FortranIV

4	 Plus, User's Guide are non-recoverable and cause your task to exit.
{

8-9



9-1

R. t

9. PDP 11/70 'Hardware Failures

Due to the fact that the PDP 11/70 does not have an aperator present, it :becomes	 1

necessary for users to be informed on what to do in the reuse of hardware failures. 	 i
In general, this is just a matter of recording information so that appropriate de-
cisions can be made at a later time based on this information.,

When peripheral devices fail (such as the Hazeltines, card reader or tape drives)
there is not much that can be done until normal working hours. It is best to in-
form others of a malfunctioning piece of equipment by leaving a note. Also, a
note describing the circumstances under which the failure occurred must be left
for the system manager.

Total failures of the PDP Central Processing Unit is termed a "crash". A gash
always accompanied by a message on the decwriter such as:

Crash -- Cont with scratch on MMO:

There are several information gathering steps to be taken at this point that will
help in determining why that crash occurred. Without changing any console
switches, mount a tape on drive MMO:. Next, depress the CONT switch on the
console. This will initiate a system utility, Core Dump Analyzer, to dump the	 {
contents of core at the time of the crash to tape. The Core Dump Analyzer is
complete when the tape remains stationary and the console lights are fixed.	 {
When this has occurred, hit the HALT switch. Rewind and dismount the tape.	 l
Leave it on the system manager's desk.

The next step is to examine the following registers by toggling in their address,
hitting the LOAD ADRS switch, then the EXAM switch. When the EXAM switch
is pressed, the contents of that register should appear in the console lights.
Record the octal number reflected in the console lights for each register ex-
amined. This information should be given to the system manager.

F	 Registers	 Type

17776714	 RPO4
17776740	 RPO4
17776742	 RPO4
.17777744	 Memory	 j
17777740	 Lower Address (mem)
17777742	 High Address (mem)
17777766	 CPU
17776710	 RPO4



Occassionally, a system freeze-up will occur. This is not accompanied by a
message on the decwriter and is recognized only by the "frozen" console lights
and no system response. This is not considered a traceable hardware error and
the only action taken should be a reboot. However, if this situation occurs fre-
quently, the system manager should be informed immediately. 	 A

Note that all unusual system activity or responses should be reported immediately
to the system manager. This aids in trouble shooting hardware problems before
they cause serious damage to the computer.

I

i



10. IBM 360/PDP 11/70 Tape Compatibility

10.1 SOURCE Programs

Source tapes generated on IBM machines use the Extended Binary Coded Deci-
mal Interchange Code (EBCDIC) for the representation of characters. DEC
machines, however, use American Standard Code for Information Interchange
(ASCII) for characters codes. Three utility programs are available for easy
interchange of information of these 8 bit codes on the 11/70 through the use of
nag tapes,

12.751 TUTILS (Tape Utilities) is used to print an EBCDIC source tape on the
line printer.to create, an ASCII tape frorn an EBCDIC source tape, and to ac-
complish the reverse. Since source tapes, no matter what code they are written
in, contain characters in sequential order, no swapping of bytes is performed.
For more detailed information on these programs, please refer to Section 13.

10.2 Transfer of Data Files

10.2.1 Introduction

There has developed a need for algorithms for cotaferting data on an IBM 360-
generated mag tape to recognizable PDP-11 format and algorithms for generat-
ing IBM-360 mag tapes on the PDP-11. This need originates from the difference,
in byte addressing between the two computers. The problem applies to any '
INTEGER*2, INTEGER*4, REAL*4, REAL*8 or COMPLEX*8 variable. For a
detailed description of the differences, refer to GSFC Technical Note #75-001,

`	 "Magnetic Tape Formats and Information Exchange Considerations." The examples
in this section use tape processing subroutines which are explained in Section 11.1.

10.2.2 PDP11-IBM 30 CpT ersion Routines

(A) TPDPFS (To PDP From Single) — converts an IBM single-precision floating
point quantity to a PDP single-precision floating-point quantity. TPDPFS
requires one or two arguments.

GALL TPDPFS(INQ (,OUTQ] )
i

(1) INQ - specifies the variable to be converted.

(2) (,OUTQ] - specifies the destination of the variable. If omitted, the
quantity is returned as a function value.

10-1



r
r

(B) TPDPFD (To PDP From Double) - convents an IBM double-precision floatin
point quantity  to a PDP double-precision floating-point quantity. TPDPFD
requires one or two arguments:

i'r	 1

)i	 ^CALL TPDPFD(INQ (,OUTQ I)

(1) INQ spec fies the variable to be converted.

(2) (,OUTQ) specifies the destination of the converted variable. If omitted,
the quantity is returned as a, function value.

(C) TIBMFS (To IBM From Single) - converts a PDP single-precision floating-
point quantity to an IBM single-precision floating-point quantity. TIBMFS
-requires two arguments:

CALL TIBMFS(INQ,OU TQ)

(1) INQ specifies the variable to be converted.

(2) OUTQ - specifies the destination of the converted variable.

(D) TIBMFD (To IBM from Double) - converts a PDP double-precision floating-
point quantity to an IBM double-precision floating-point quantity. TlBMFD
requires two arguments.

CALL TIBMFD(INQ,OUTQ)

(1) INQ - specifies the variable to be converted.

(2) OUTQ --specifies the desgination of the converted variable.

Some of the variables used in the examples which follow are:

(A) BUFF - Address of Data Area
(B) LEN Length of Block to be Read from Tape
(C) TDAT - Halfword for INTEGER*4 Value



i

I

ORIGINAL 'AGE 19
OF POOR QUALITY

i	 10.3,3 MA-1 360 Tape to I'DP Format

(A) INTEGE11*2

J
Q	 7 S	 15

j	
8	 15 0	 7

THE BYTES ARE SWAPPED

i

`,Co retrieve, the, correct [NTEGER1*2 data valued from a 360-generated mug
tapes, SWA,131 is called.

EXAMPLE 1; Assume the first two bytos of BUFV area rui IBM 3( 0
1NT.EGE7 tZ 'rvariable. '(Vey Nvisii to convert these bytes to a PDP recog-
nizable 1NTEGE,11*2 variable, They rusult appears in they variable 123DAT
is follows;

LOGIC:X L*1 EUF x'(100), IVSN(G)	 !!

INTEGER*2 121DiVr
DATA TVSN,'I ► , ► N' 0 Ipt } ► U ► tT ► ' r t

EQUIVALENCE (BUFF(1), I2DA'. )
CALL MOUND (5, IVSN, 1, 'NL I , 1000)
CALL :DCB(SLt1+F, 5, 100, 100, 'FBI) 	 1
CALL T`.r; ,AD(1 UFF, 5, LR, IOST)
CALL SNV.iWI (2DAT, 2)

( CONTINUE, ,0t^;1LMMI

CALL, DISivINT(5)
$Top
END

}



(B) INT-EGER*4

	
ORIGNAL ^U^lR.,i'^Y()f pooR 

a
	

16
	

I

HALF WORDS	 ARE SWAPPED

-T 	 'I F-8	 7
BYTES ARE SWAPPED

To retrieve the correct INTEGER* d., data value from a 360-ge-nerated mag
tape, halfwords must be swapped following the call to SWABI.

EXAMPLE 2: Assume the first four bytes of BUFF are an IBM 360
INTEGER*4 variable. We wish to convert these bytes to a PDP recog-
nizable INTEGER*4 variable. The result appears in the variable 14DAT
as follows:

LOGICAL*1 BUFF(100), IVSN(6)
INTEGER*2 TDAT(2),K
INTEGF-R*4 I4DAT
DATA IVSN/ II I , I N', IPI, IUI IT? I I/

EQUIVALENCE (BUFF (1),14DAT), (TDAT(l), 14DAT)
CALL MOUNT(4, IVSN, 1, INL I , 1600)
CALL DCB (BUFF , 4, 100, 100, ?FBI)
CALL FREAD(BUFF, 4, LR, IOST)
K=TDAT(l)
TDAT(1)=TDAT(2)
TDAT(2)=K
CALL SWABI(I4DAT, 4)

[CONTINUE • PROGRAM]

CALL DISMNT(4)
STOP
END

10-4



r

C ,^

ORIGINAU PAGE '11.

OF POOR QUALITY

(C) REAL*4

TPDPFS

PERFORMS FLOATING POINT CONVERSION

To retrieve the correct REAL*4 data value from a 360-generated mag
tape, SWABI is first called, followed by the calling of TPDPFS.

EXAMPLE 3: Assume the first four bytes of BUFF are an IBM 360 REAL*4
variable. We wish to convert these bytes to a PDP recognizable REAL*4
variable. The result appears in the variable R4DAT in the following program:

LOGICAL*1 BUFF(100),IVSN(6)
REAL*4 R4DAT
DATA IVSN/'I', "N', 'P', 'U', 'T', ' '/	 I

EQUIVALENCE(BUFF(1),R4DAT)
CALL MOUNT(3,IVSN, 1, 'NL', 1600)
CALL DCB(BUFF, 3, 100, 100, 'FBI)
CALL FREAD(BUFF, 3, LR, IOST) 	 l
CALL SWABI(R.4DAT, 4)
CALL TPDPFS(R4DAT, R4DAT)

[CONTINUE PROGRAM

CALL DISMNT(3)
STOP
END

t

10-5



ORIGINAL PAGE IS
OF POOR QUALITY

(D) REAL*8

TPOPFO
PERFORMS FLOATING POINT CONVERSION

To retrieve the correct REAL*8 data value from a 860-generated mag
k	

tape, SWABI is first called, followed by the calling of TPDPFD.

EXAMPLE 4: Assume the first eight bytes of BUFF are an IBM 360 REAL*8	 if
variable. We wish to convert these bytes to a PDP recognizable REAL*8
variable. The result appears in the variable RSDAT in the following program:

LOGICAL*1 BUFF(100), IVSN(6)
REAL*8 R8DAT
DATA IVSN/'I', 'N', 'P', 'U', 'T', ' '/	 ii
EQUIVALENCE(BUFF(1), R8DAT)
CALL MOUNT(2, IVSN, 1, INV, MEN)	 1
CALL DCB(BUFF, 2, 100, 100, 'FBI)
CALL FREAD (BUFF, 2, LR, IOST)!
CALL SWABI(R8DAT,8)
CALL TPDPFD(R8DAT, R8DAT)

( CONTINUE PROGRAM]
4J

CALL DISMNT(2)
STOP

j	 END



I

RE SWo

(E) COMP E $

REALPART

0	 18	 _1516

{

1fiY1IGINAA
	

M

OF POOR QUALITY

IMAGINARY PANT

t^:

n45 	 58 156	

_

gA

Pll

F

}

b

i

CALL TPOPFS (TWICE)
FOR FLOATING PO I NT CONVERSION

To retrieve the correct COMPLEl'* 8 data value from a. 360-generated mag
tape, the whole value Is treated as two (2) REAL*4 values. Again, SWABI
Is first called, followed by the calling of TPDPFS.

EXAMPLE 5: Assume the first. 6iglif bytes of BUFF are m IBM 360 CON)-
PL•EX*8 variable. We %wish to convert these bytes to it PDP recognizable
CONIPLEI'*8 variable. The result appears in the variable CSDAT in the
following program:

LOGICA1*1 BUFF(100), IVS'(0)
REAL*4 SD.AT(2)
C0IVIPLEX*8 C8DAT
DATA IVSN/'I I , IN', tpt , IUt, IT', r I/
EQUIVA.LENCE(BUFF(1), CSDAT), (BUFF((), SDAT(1)
CALL NIOUNT(1, IVSN, 1, INL', IDEN)
CALL DCB(BUFF, 1, 100, 100, 'FBI)
CALL FREAD(BUFF, 1, LR, IOST)
CALL SNVABI (SDAT, s)
CALL TPDPFS(SDAT(1), SDAT(1))
CALL TPDPFS(SDA.T(?), SDAT(2)j

^frd^

C
C THE COIMPEN*8 VALUE IS NOW CON'V'ERTED AND
C CAN BE REFERRED TO AS C8DAT

(CONTINWE PROGRAM)
R

1

o
CALL DISMNT(1)
STOP
END

10-7

F



^^ y g

ORIGINAL PAGE IS
OF POOR QUALITY

10.2,4 PDP 11 Tape to IBM 360 Tape Format

(A) INTEGER*2

fo	 7 8	 15

THE BYTES ARE SWAPPED

To generate the correct INTEGER*2 value onto a 360 mag tape, SWABI is
called.

EXAMPLE 1: Assume the variable I2DAT is a PDP-11 INTEGER*2 variable
which is to be converted to an IBM recognizable INTEGER*2 variable. After
converting, the result appears in the varia` o I2DAT and is then written to a
mag tape.

LOGICAL*1 BUFF(100), IVSN(6)
INTEGER*2 I2DAT
DATA IVSN/ II', I N'. IP', fU r , 'T', ' I/
EQUIVALENCE(BUFF(1), I2DAT))
CALL MOUNT(5, IVSN, 1, 'NL', 1600)
CALL DCB(BUFF, 5, 100, 100, 'FBI)

(CONTINUE PROGRAM]
f

CALL SWABI(I2DAT, 2)
CALL FWRITE(BUFF, 5, LEN, IOST) 	 i
CALL DISNINT(5)
STOPt	

END
P

1	 10-8



(B) IN. TEGFR*4

ORIGINAL PAGE tS
OF POOR QUALITY

r

r,

E

BYTES ARE SWAPPED

To generate the correct INTEGER *4 value onto a 360 mag tape, halfwords
must be swapped following the calling of SWABI.	 a

EXAMPLE 2: Assume the variaba ,^ 14DAT is a PDP-11 INTEGER*4 variable
which is to be converted to an IBsvI recognizable INTEGER *4 variable. After
converting, the result appears in the variable I4DAT and is written to a mag
tape.	

i

LOGICAL*1 BUFF(100), IVSN(6)
INTEGER*2 TDAT(2),K
INTEGER*4 I4DAT
BATA IVSN/'I': 'N', 'PI, 'U ' I T 1 9 ' '/
EQUIVALENCE (BUFF ( 1),I4DAT), ( TDAT ( 1),I4DAT)

-f	CALL MOUNT (3, IVSN, 1, 'NL', 1600)
CALL DCB(BUFF, 3 100, 100, 'FBI)

a

1

[CONTINUE PROGRAM s

k

K=TDAT(1)
TDAT(1)=TDAT(2)
TDAT(2)=K	 i
CALL SWABI (I4DAT,4)
CALL FWRITE (BUFF ,3,LEN,IOST)
CALL DISMNT(3)
STOP

'	 END
f

10-0



k -

	

	
ORIGINAL PA01 12
OF POOR QUALITY

(C) REAL*4

	

1510
	

31116	 23

><BYTES ARE SWAPPED a

0	 79	 1616	 2324	 31

k

	

	 TIBMFS	 J
PERFORMS FLOATING POINT CONVERSION

I
To generate the correct REAL*4 value onto a 360 mag tape, TIBMFS is first
called, followed by a call to SWABI.

EXAMPLE 3: Assume the variable R4DAT is a PDP-11 REAL*4 variable
which is to be converted to an IBM recognizable REAL*4 variable. After

I	 - °	 --converting, the result appears in the variable R4DAT and is written to a
mag tape.

LOGICAL*1 BUFF(100), IVSN(6)
REAL*4 R4DAT
EQUIVALENCE (BUFF(1),R4DAT)
DATA IVSN/'I 4 , 'N', 'P', 'U', 'T', ' '/

't

	

	 CALL MOUNT(2°IVSN1,'NL',1600)
CALL DCB(BUFF,2,100,100,'FB')

[CONTINUE . PROGRAM]

CALL SWABI(R4DAT,4)
CALL TIBMFS(R4DAT,R4DAT)
CALL FWRrrE(BUFF,N,LEN,IOST)
CALL DISMNT(2)
STOP
END

,t

10-10



ORIGINAL PAGE IS
OF POOR QUALITY

(D) RÈ AL*8

TIBMFO
PERFORMS FLOATING POINT CONVERSION

To generate the correct REAL*8 value onto a 360 mag tape, TIBMFD is
first called, followed by a call to SWABI.

EXAMPLE 4: Assume the variable MAT is a PDP-11 REAL*8 variable
which is to be converted to an IBM recognizable REAL*8 variable. After
converting, the result appears in the variable R8DAT and is written to a
mag tape.

LOGICAL*1 BUFF(100), IVSN(6)
REAL*8 R8DAT	 I
DATA IVSN/'I', 'N', 'P', 'U', 'T', ' '/
EQUIVALENCE (BUFF(1),RSDAT)
CALL MOUNT(3,IVSN,16'NL1,1600)
CALL DCB(BUFF,3,100,100,'FB')

(CONTINUE PROGRAM]

r:

k	
CALL SWABI(R8DAT,8)
CALL TIBMFD(R8DAT,R8DAT)
CALL DISMNT(3)
STOP
END

E,

1

i

10-11
4

c

^ rw

t
f 	 :'

{S



IL

oRIGINAL PAGE IS
OF pooR QUALITY(E) ^COMPLEX*8

IMAOINARY PARTHEAL PART

IE SWI

CALL TIBMFS MMCE

FOR FLOATING POINT CONVERSION

To generate the correct COIVIPLE.X*8 value onto a 360 mag tape, the who:IE
value is treated as two (2) DEAL*4 values. Again, TIBIAFS is first called
followed by a cull to S`VABL

EXAMPLE b: Assum p, tie variable C8DAT is a PDP -11 COMPLEX*8 vari-
able which is to be converted to an IBM recognizable COMPLEX*8 variable.
After converting, the result appears Jx the variable C8DAT and is written
to a mag tape.

LOGICAL *1 BUFF(100), IVSN(6)
REr1L*4 SDAT(2)
COMPLEX*8 CSDAT
DATA IVSN/'I', t N r , 'P I t 'UI I 'Tv I f +/
EQUIVALENCE (BUFF(1), C8DAT), (BUFF(1)SDAT(1)
CALL MOUNT(4,1VSZ-,i,1,'NLt,1600)
CALL DCB (BUFF, 4, 100, 1000'FB')

[CONTINUE PROGRAM]

CALL SWABI(SDAT,S)
CALL TIBMFS(SDAT(1),SDAT(1))
CALL TIB1MFS(SDAT(3),SDAT(2))
CALL F` RITE(BUFF,N,LEN,IOST)

C
C THE CORRECT -COMPLEX"*$ VALUE IS
C NOW WRITTEN ONTO TAPE AS C8DAT	 -x
C

CALL DISIINT(4)
STOP
END	 10-12



20.2.5 Care, Rek .der to Disk

Filok can be tr ,,derred to the disk via the card reader.
R

To create a disk file from a deck of-cards:

1. Place deck in card reader with an E-O-F card behind the deck.

2. Press the RESET button on the card reader to get the blower started.

3. MCR> PIT? filename.typ = CR:.

4. RUN (2,751 UNBLNK
to eliminate the trailing blanks at the end of each 80 byte record.

To list a deck of cards on the LP:

Perform 1. & 2 of the previous example.

z..
	 3. NCR > PIP LP,:. filename.typ

i."



11. Scientific Subroutines Package

11.1 Introduction

This Scientific Subroutines Package (SSP) is DEC's RT-11 SSP installed undo.
RSK --11D operating system. The only changes made in implementing this SV".l
under RSX--11D were in the sample programs provided by DEC.

11.2 User Interface

All routines have been compiled and are available in .OBJ form. Any subroutine
in the SSP can be linked to your calling routine by adding the SSP routine name
to the TKB input file list as

MCR>TKB
TKB >Yourname-Yourname, [2,105] SSPnamel,SSPname2,...

For example, to link in the SSP analysis of variance routine, I ANOVAI
F	 ,

I
MCR >TKB
TKB > MyprovwMyprog, [2,105] ANOVA

114-3 "Documentation Available

9
1. Several copies of the DEC manual 11RT-11 FORTRAN SSP REFERENCE

MANUAL" are available for loan and a copy is on file in the computer room.
a

2. The file [2,105] SSP.DOC contains the introductory comment block of all the
SSP routines. This file contains the calling sequence, method used, etc. for
each routine in the SSP and can be printed via:

MCR>PIP LP;=[2,1051 SSP.DOC

or

MCR>QUE [2,105] SSP.DOC

Note that the file is 740 blocks long and takes 15 minutes to print.

3. Source listings of any routines may be printed as follov a.

MCR>PIP LP:-[2,105] SSPname.FOR



For example, to print the source to 'ANOVA'

MCR>PIP Lip:-[2,105]ANOVA.FOR

i
^,	 I

r
H

I



ai

3
t

4!

t



13. Magnetic Tape Utilities

13.1 Introduction

A set of Fortran I/O routines have been developed for the PDP 11/70 similar in
nature to those available in the IBM 360 FTIO package. This new package oper-
ates under the &K-11D version 6.2 operating system with any number of dual
density 9-track tape drives. Its main purpose is to read IBM unformatted binary
tapes (NL or SL) in both the variable block and fixed block format. Unblocking
of records is provided for in either format. It is the users responsibility to per-
form the necessary byte adjustments to make a 360 generated tape compatible
with the 11/70.

The routines are additionally capable of reading and writing 11/70 generated
tapes which are 360 compatible. These tapes ran only be written in the fixed
block format.

An extensive error message capability is also provided.

All tapes handled by this package must be classified as foreign volumes. All
non-foreign volumes are assumed to have the ANSI standard format. Link into
[2,75] FTIO2 at task build time to use this package.

I

13.2 Routines

A. DCB	 Sets up data control block--must immediately follow the call
to mount.

3
S

1

B. FREAD	 Reads logical blocks.
e

C. FWRITE	 Writes Logical blocks.
a

D. FPOSN	 Positions to a specified file or writes EOF mark.

E. MOUNT	 Mount a specified volume.

F. DISMNT	 Dismount a specified volume.

G. SWABI	 Swap a specified number of bytes

¢	 a



13.3 Parmiiater Description to till Routines

Note that all references to FB or VB refer to the IBM 360 IRECFM I parameter
In the JCL.

FR - Fixed Block Records
VB =Variable Block Records

Note; All arguments tire 1*2 except those that refer to addresses.

N	 - Logical unit number (User specified)

IVSN

	

	 Address of volume serial number (six byte ASCII code
left-Justified blank filled)

NF

	

	 Parameter whin.1i contains the file number to be processed
next on the specified unit.

LEN

	

	 Number of bytes to write. This must be an even number > or
equal to 14 bytes, The maximum record size is 65535. ,

ADR = Address of data area where bytes are to be swapped.

NUXB - Number of bytes to be swapped. Even numbers only.

LABEL - Describes the type of volume to process

LABEL - I NL I ► NL Tape
LABEL - 'SL' SL Tape

10	 - Describes the next type of 1/0 operation on the specified unit

10 - IR I Read operation
10 - 'W t Write operation
(The I WI operation Is only used for writing L, OF marks)

MODE - Type of tape you are processing. Choices are 'FBI and 'VB'.

A

	

	 Address of data area. This parameter is specified in the call
to FRZAD and is the d,, -.'.t area Into which records or blocks
are read. Data area A should be as large as your largest un-
blocked record. The size of this region Is specified In the



0

LR - Parameter returned to user which indicates the number of
bytes read In the last read operation.

IOST - Status of read or write operation. Positive numbern indicate
success. Negative numbers indicate either an EOF or error.

IOST - -10 is an EOF

All other errors are listed in Appendix I of the 1/0 operations
references manual.

BUFF Address of data area. This parameter is specified in the call
to DCB. This data area must be large enough to contain your
largest block.

When unblocking occurs, the first call to FREAD reads the
data block from the tape into data area BUFF and unblocks
the first record into data area A. Subsequent calls to FREAD
unblocks the rest of the data, record.by record, into area A
until all data is unblocked. Now an additional call to FREAD
will read in a new block into BUFF and again unblock the first
record into area A.

When unblocking is not desired, data area BUFF should be the
same area as data area A.

When 'VB' is specified Ithe size of this region should include
space for the block descriptor word and the record descriptor
words which are nested in all VAM 360 variable block tapes.

The size of this region is specified in the EBM 360 Job control
language parameter blksize, and inthe blksize parameter In the
call to DCB.

BLKSIZE Size of your largest block.

LRECL Length of your largest record. This number should equal the
blksize if you are not unblock4ng your tape.

IDEN Density of your tape. Choices are 800 and 1600.

13-3)

. ..............



f^

13.4 Call Descriptions

A. CALL Mount (N, IVSN, NF, LABEL,, IDEN)

This routine determines if any of the tape drives are available. If one is
available the routine logically connects the tape drive to the user task and
then suspends the calling task until the user continues his task with the
command

'MCR > CON TASKNA ,ME'.

Appropriate error messages are given for such cases as no tape drives be-
ing available.

For each call to this routine there should be a final call to DISMNT on the
same unit.

B. CALL DCB (BUFF, N, BLKSIZE, LRECL, MEN, MODE)

This routine sets up the data control information for all FTIO calls on a
particular unit. If you are Wng simultaneous processing on two different
units you would need two calls to DCB. This routine must follow the call to
MOUNT. In general, the order should be a call to MOUNT followed by a call
to DCB, then all subsequent FTIO calls.

NOTE: When you are doing a write operation (Call FWRRTE) the only valid
value for the parameter mode if FB. Additionally, the BLKSIZE and LRECL
arguments should be equal. See Example 4.

C. CALL FPOSN (IO,N,NF)

This routine positions the tape on unit N to the beginning of the file specified
by NF.

When processing an NL tape the following apply:

1. When an End-of-File is detected during a read operation on an NL tape
and the next sequential file is to be read, it is not necessary to call
FPOSN to position to the nest file; just continue calls to FREAD.

2. To close out a file following calls to FWIRTE (or FPOSN), Call FPOSN
with the write option, in the 1:0 parameter. This writes an end-of-file
and positions the tape such that subsequent calls to FWRITE generatei	
the file NF.	 (::

13-4



k

For example to write an End-of--File after File 3 on an NL tape:

CALL FPOSN('W',3,4)

3. To write an End-of-Volume, the user would CALL FPSON with the write
option twice. For example, to write an End-of-Volume after two files
have been written:

'`ALL FPOSN('W',2,3)
CALL FPOSN('W',2,4)

When processing an SL tape the following apply:

1. When an SL tape is being, read, and an 'End-of-File is detected, it is
necessary to call FPOSN to insure that the tape is at the beginning of the
next file to be read.

2. Presently, PDP 11/70 'FTIO does not process the SL volume, header or
. trailer labels.

D. CALL FREAD(A, N, LR, IOST)

This routines reads 11/70 FTIO generated tapes as well as FB and VB tapes
generated on the IBM 360. This routine is called each time a new block or
record is desired.

E. CALL FWRITE(BUFF, N, LEN, IOST)

This routine writes the number of bytes in data area A onto the Unit N.

F. CALL DISMNT(N)

This routine rewinds the specified volume to the load point and logically
disconnects the tape drive from the user task. The calling task is then
suspended until the user continues his task via the:

MCR > CON TASKNAME COMMAND.

i	 1



M

0, Call SWABI(ADR,NLTM)
e

This routine swaps the number of bytes (NUMB) located in the data region	 j
adr.

13.5 Error Messages

NOTE: All errors abort the task

Error Number	 Reacon

	

1	 Incorrect number of arguments in call to MOUNT

	

2'	 ** Time out on attempt to read device directory

	

3	 All drives are in use

	

4	 ** Drive not located in table

**	5 	 Mount-insufficient pool nodes. STUFI'

	8 	 ** Mount-partition too small (STUFF) 	 r

	

12	 Logical unit number specified is inconsistent- mount

	

13	 Incorrect number of arguments in call to DISMNT

	

14	 Logical unit number specified is inconsistent-DISMNT

	

15	 ** Insufficient pool nodes (STUFF)-DISMNT,

	

16	 *' Partition too small (STUFF)-DISMNT

	

17	 Incorrect number of arguments in call to FPOSN

	

20	 Invalid "NF" specification in call to FPOSN 	 l

	

21	 Inconsistent logical unit number in call to FPOSN

	

22	 Invalid 1110 11 specification in call to FPOSN
{

	

23	 Illegal to specify a "W" in the 1110" parameter when tape
is SL

13-6



I_

Error Number Reason

24 Incorrect number of arguments in call to FREAD

25 Invalid logical unit number specified in call to FREAD

26 Data overrun - FREAD. Buffer too small for amount of
data read.	 Some data is lost.

27 Number of bytes read does not agree with blocksize
specified-FREAD

30 An odd number of bytes has been specified. Only an even
number is acceptable - FREAD

31 ** Number of bytes read does not agree with. BDW on IBM
TAPE -FREAD

32 The record just read is larger than the MAXSIZE specified
in LRECL - FREAD

33 Incorrect number of arguments in call to DCB

34 Inconsistent logical unit number specified in CALL to DCB

35 Invalid density specification in CALL to DCB

36 Invalid mode specification in call to DCB

37 BLKSIZE must be a multiple of LRECL in FB tapes - DCB

40 Incorrect number of arguments in call to rewind

41 Inconsistent logical unit number in call to rewind

42 Incorrect number of arguments in call to FWRITE

43 Invalid logical unit number in call to FVNTRITE

44 Cannot write SL tapes

45 Incorrect number of arguments in call to SKIPREC

50 ** Drive has become allocated

13-7

c.	 _

5



r

r

Error Number	 Reason

51	 Invalid label specification in call to MOUNT

54	 Incorrect number of arguments in call to SKIP

55	 Incorrect number of arguments in call to SWABI

NOTE; Asteriks before an error indicate possible hardware errors. Please
contact system manager if, any of these errors occur.

13.6 Examples

The following programs are examples of how to use the FTIO package,

1. The first sample program reads the first file of an IBM 360 variable block
tape and outputs the records.

Each block is 382 words or 764 bytes and is composed of 15 records per
block which vary in size from a minimum of 20 bytes to a maximum of 80
bytes.

C---- > Declare variables

IMPLICIT INTEGER(A.-Z)
LOGICAL 1lVSN(6)
INTEGER*2 LR, RKRD(40), BLK(382)

C
C-----> Set up data for tape label
C

DATA IVSN/ T T t ,'At ,'P t ,'0','6 t -,' '/

C

C------> Now call MOUNT.
C-----> The logicalunit number chosen is 4
C------> and the tape is NL.

G	
^
mt



C------ >
C------>
C---- >
C------>
C----->

`	 C ------>
C

.:W

Now call DCB to set up the internal data area
for FREAD.
Note that the array blk is the data area into which
the block will be read before unblocking
occurs. Also note that 80 is the size
of the largest record.

CALL DCB(BLK,4,764,80,'VB1)
C
C------ > Now call FREAD to get the individual records
C------ > If the number of FREAD calls exceeds the
C------ > number of records within that block, a new
C ------ > block will be read in automatically provided
C------ >  another block exists on the tape.
C------> The third paremeter, LR, will tell you how many
C------> bytes were read in the last call to FREAD.
C
10	 Continue

Call FREAD(R1%..RD04,LR4O0T)
IF(IOST .EQ. -10) Go to 200
WRITE(6,70) LR

70 FORMAT(1H0,1LR=1,I5)
C
C------> _SAP the bytes in the data region RKRD
C
C

CALL SWABI(RKRD,LR)
C------> Get the number of words.
C

L=LR/2
C
C-----:> Now write otnt the record just READ
C

WRITE(6,20) (RkRD(I)J--11I,)
20 FORMAT(4(10I7/ /))

WRITE (6,30)
30 FORMAT(101, 'END OF RECORD')'

Go to 10
C

` C------> Dismount the tape on logical unit 4
C

t 200 Continue
w	 } CALL DISMNT(4)

4 STOP
END

13-9



f ORIGmAL PAGE 19

OF pOOR QUALITY

2. The second program reads the first .file of an IBM 360 fixed block tape with
. 800 byte blocks and unblocks It at a record length of 80 bytes.

E
C-----> Declare variables
C

IMPLICIT INTEGER(A-Z)
' LOGICAL*1 IVSN(6)

INTEGER*2 LR, REC(40), DAT(400) 1,
C

C----+--> Set up data for tape label

DATA IVSN/'I','N','P','U','T','
C

` C------> Call MOUNT with logical unit number 5
C------> The tape is SL

C
C

CALL MOUNT (5,IVSN,1,'SL',1600)
r C

s^

C ^----=> Call DCB to set up the internal data 7

' C -----> For FREAD.
C------> DAT is the data area into which 4
C------> The block is read before unblocking
C------> into records occurs.C

CALL DCB(DAT ,5,800,80,'FB')
.r C

C------> Now call TREAD to get the records of 80 bytes.
C

' 10 Continue
` CALL FREAD(REC,5,LR,IOST)

IF(IOST .EQ. -10) go to 700
WRITE (6,100) LR

'	 100 FORMAT ( IHO,'LR=1,I5) L

C

j

-__C---	 > SWAP bytes
I

A
V

i

CALL SWABI(REC,LR)
C

CC------> Get the number of words.
C

L=LR/?
s

C------> Write out the record_

13-10 tl



ORIGINAL PAGE IS
OF POOR QUALITY

C
WRITE(6l200) (REC(I),I=11L)

200.	 FORMAT(4(10I7/ /))
WRITE (6 ,300)

300:	 FORMAT(10111END OF RECORD')
*  Go to 10C 

C------> Dismount the tape on logical unit 5
C

`	 700	 Continue
CALL DISMNT(5)
STOP
END

3. This program reads the second file of an IBM 360 fixed block tape and outputs
to the user the whole block without unblocking.

The BLOCKSIZE is 800 bytes,

C	 C------> Declare VariablesC

z	 IMPLICIT INTEGER(A-Z)
i	 LOGICAL*1 IVSN(6)

INTEGER*2 LR, BLOCK(400)
C
C------> Set up data for tape label
C

DATA IVSN /1D1+1A1,1T1,1A1,11115'/
C
C------> Call mount with logical unit nq ber 5
C------z Tape is NL
G

r	 CALL MOUNT(5 IVSN 2 'XV 16001
C
C------> Call DCB to set up internal data

` C-----'-> For FREAD
G	 .' C------> Note that the third and fourth parameters

C------> are identical, meaning that the blocksize'
C------> and record size are the same. This indicates`
C------> to FTIO that no unblocking is to occur.
C

CALL DCB(BL0CK,5,800,800,1FB1)k .
C.

13-11	 ,s



ORIGINAL PAM 13
OF POOR _QUALITY

f'

i
C-----> Now call FREAD to read the block.
C------> It is not necessary to set up an additional
C------> Data area when unblocking is not desired.
C
10 Continue

CALL FR,EAD(BLOCK,5,LR,IOST)
IF(IOST .EQ. -10) go to 800
WRITE (6,S0) LR

80 FORMAT ( 1H0,'LR-',I5)
C
C-----> Swap the bytes in the data region
C

CALL SWABI(BLOCK,LR)
C
C
C------> Get the number of words.
C

=J.,R/2
C------> Write out the block
C

WRITE (6,55) (BLOCK(I) ,I-1,L)
55 FORMAT (4(10I7/ /))

WRITE(6,78)
78 FORMAT( 1 010 'END OF RECORD')

Go to 10
C
C------> Dismount the tape on logical unit 5
C
800 Continue

CALL DISMNT(5)
STOP
END

4. This program writes a PDP tape with a blocksize of 800 bytes. Two files,
each with only one record, are written and an end-of-volume is placed after
the last file.
Tape density is 1600 BPI.

C-- --> Declare variables
C

IMPLICIT INTEGER(A-Z)
LOGICAL* 1 IVSN(6)
INTEGER*2 INDAT(400)

'_	 13-12

of

^r



C
C------> Set tip data for tape label
C

DATA IVSN/ 10 1 , I U I , I T', I P I , 'U t , ITI/
C

C------> Call MOUNT with logical unit number 3 to file 1,
C------> Tape is NL
C

CALL MOUNT (3,IVSN, 1, INL 1 , 1600)
C

C------> Call DCB to set up data block information
C

CALL DCB(INDAT,3,800,800,'FBI)
C

C------> Set up data ,block to be written
C

DO 100 1--- 1,400
INDAT(I)= 5

100 Continue
C

C------> Now write the data out to tape
C

CALL FWRITE(INDAT,3,800,IOST)
C

C------> Write an End-of-File Mark
C

CALL FPOSN(IWI,3,2)
C

C------> Generate some more data

DO 200 I=1,400
INDAT(I)=6

Z. v U	 Continue
C

C------>  Write this data into file 2

CALL FWRITE(INDA 3,800,1 z:i.1:)

C
C------>  Now write an End-of-Volume mart.;

CALL FPOSN('WI,3,3)

CALL FPOSN(IWI,3,4)

ry (!^" fsOF
QUALIry



c^	
r.

1

i

C------> Dismount the tape
C

CALL DISMNT(3)
C

STOP
END

ORIGINAL IIACr G
OF POOR QUALITY

5. This program operates on a PDP 11/70 IO FTIO generated tape which has
three files on it. Each block is 800 bytes in length. Unblocking of records is
not desired.

The program first positions to file 3 via the call to MOUNT. It then reads
the first record of file 3 and then positions to the beginning of file 2. Finally,
it reads the first record of file 2 and terminates.

C------> Declare variables
C

IMPLICIT INTEGER (A-Z)
LOGICAL*1 IVSN(6)
INTEGER*2 DATA(400)

C
C------> Set up data for tape label
C

DATA IVSN/'O','U','T','PI,'U','T'/
C
C------> Cali MOUNT with logical uii.x number 5 to file 3.
C

CALL MOUNT (5,IVSN,3,'NL',1600)
C
C------> Set up DCB
C

CALL DCB(DATA,5,300,900,'FB')
C

E	 C------> Read dataF
C

CALL FREAD(DATA,5,LR,IOST)
C'
C------ > Now position to the second file
C

CALL FPOSN(!R',5,2)
_C

C------ > Now read this file	
.

C
CALL FRE AD(DATA, 5, LR, IOST)

13-14



ORIGINAL Pmr, 6S
OF POOR QUALITY

C------> Dismount the unit
C

CALL DISMNT(5)
STOP
END

13.7 TUTILS - General Purpose Tape Utilities

13.7.1 Capabilities of TUTILS

TUTILS is a collection of subroutines which performs various tasks using m Ag-
netic tape. It copies from one tape to another, converting from EBCDIC to ASCII
or vice versa. TUTILS dumps any tape to the line printer, whether it is ASCII
or EBCDIC source, or data which can be dumped in octal or hexadwcimal. A very
useful function is that which reads a tape and reports on record sizes, file sizes,
and the number of files on a tape. This function, contained in TUTILS, requires
only the label and density of the tape. TUTILS also can write an end of volume
after any file on a tape, and can label a tape with either a standard label or a "no
label" label, both of which are required by the IBM 360 on a new tape.

13.7.2 Sample Run

Note that the $ is printed when the (ESC) key is used on the 11/70.

The other functions available but not used in this exninple are designed to be
self-explanatory at run time.

Run [2,76] TUTILS$

This multipurpose tape utility will perform the following routines:

1. Copy a tape to another tape with option to convert from ASCII or EBCDIC.
Can be used to merge tapes.

2. Analyze a tape, revealing record sizes, number of records, and number of 	 {
files. i

3. Create a listing of an ASCII or EBCDIC source tape.
a

4. Dump a tape in octal or hexadecimal.

13-15



5. Label a tape "standard" or "No Label".

G. Write an end of volume on a tape.

7. Exit TUTILS.

Enter the number of the desir-,d routine.

7

TUTILS -- STOP-

F



	

e_	 f

a

ORIGINAL PAGI IS
E	 OF POOP QUALITY

14. General Purpose Utilities and Subroutines

This chapter contains utilities written by Code 664 personnel. All of these pro
w

grams are under the UIC of (2,75].

1

14.1 IOPACK - Input/Output Package

IOPACK is ,* comprehensive input/output utility package designed to facilitate file
transfer capabilities for any feasible combination of I/O devices. In, addition,

F	 blocking capabilities, as well as mode translation (ASCII or EBCDIC) are provided.I

k	 The following matrix representation depicts the various devices supported for
`	 data transfer by IOPACK.*

TO:	 ASCII tape	 EBCDIC tape	 Disk	 TI	 LP	 PTP
FROMka'

ASCII	 x	 x	 x	 x	 x	 x
TAPE

EBCDIC	 x	 X	 x	 x	 x	 x

tape
;l

DISK	 x	 x	 x	 x	 x	 x l

CR	 X	 x	 x	 x	 x	 x	 k'
{

II

TI	 x	 X	 X	 x	 x	 x

PTR	 x	 x	 x	 x	 x	 x
uk'

^

The program writes all operating instructions to the terminal, whereby the user 	 F
p	

}imakes his/her requests interactively. Any read/write device errors or charac-
ter mode translation errors are displayed on the terminal.

a

Once the user has specified an output device, as well as an output record length,
he/she may transfer as many files from as many different input devices as he/she

	

M	 desires.

^i
*TI is the user's terminal, LP is the line printer, PTP is the _paper tape punch,
CR is the card reader, and PT'R is the ,paper tape reader.

i

14-1



ORIGINAL PAGE IS
OF POOR QUALITY

The instructions displayed on the user's terminal are designed to be self-explana-
tory. Additional information concerning IOPACK may be found under the following
data set name: [ 2,75] IOPACK.DOC,

The following page depicts a successful run of IOPACK. Problem Definition:

Copy a disk source file to paper tape .. An echo of the input file is to be directed
to the line printer,

.
14. 1.1 Sample IOPACK Run,

** File Copy Utilities ***

Enter responses in free format, with multiple parameters separated by commas.

Any I/O errors will be outputted to the terminal

*** Input device specifications ***

Enter device code:
(Device codes are: TAPE=1 or 2,CR=3, DB0=4 or 8, TI=5, LP=6,
Paper tape-Reader:? or Punch:9)
4

Enter source data set name: 4
WRITE.FTN

Unit 4 is assigned to data set_WRITE.FTN

Enter physical record length
80

** Output Device Specifications ***

Enter Device Code:
(Device codes are: Tape=1 or 2,CR=3,DBO=4 or 8,TI=5,LP=6,
Paper tape=Reader:7 or Punch:9)
9

Enter physical length of output records (mustbe a divisor of the input physical
record length)
80

14-2



f

Enter .1 if echo print of input to LP Is desired.
Enter 0 if echo is not desired.
1

Input file from LUN 4 copied to output file on LUN 9

•	 Do you wish to copy more files to the same output device with the same output
record length?
(1=yes,0eno)
0
IOPACK -- STOP

14.2 UNBLNK - Eliminates Trailing Blanks

When data are transferred from the card reader to the disk the whole 80 byte
record is transferred regardless of the trailing blanks. Use UNBLNK to elim-
inate all unnecessary trailing blanks, thereby reducing your file size on disk.
A sample run follows;

MCR > RUN [2,75] UNBLNK$
^	 INPUT FILE?

TEST.FTN
END OF FILE. 3 LINES CONVERTED.
UNBLNK -- STOP

14.3 STUFF - Executes MCR Commands from Fortran

STUFF is a Fortran callable subroutine that provides an interface to the MCR
task. It provides the capability of executing an MCR command from within a
user program.

Calling Sequence:
I:

CALL STUFF (ILUN, IBUF, [ISIZE], [IEFN], [IPRI], [ISTAT')

ILUN	 is an integer specifying the logical unit number previously
y assigned to device SM: via TIM or the call assign subroutine.

IBUF	 is an array containing or character string specifying the MCR
F ;	 command to be executed.

Y max_

E

Y

}

14-3



F

t

f	

_`

Any vana M+,R command may be specified. The programmer
must bear in mind that the MCR command tasks will run under
the same UIC as that of the calling task and that they will be
subject to the privilege status of the associated (TI) terminal

ISIZE is an integer specifying the length in bytes of the MCR com-
mand in IBUF; this cannot exceed 80. If omitted, the string
in IBUF is assumed to be terminated by a null (octal 0) byte.
(If IBUF is a character string, Fortran provides this null byte.)

IEFN

	

	 is an integer specifying the event flag to be set when this
STUFF request completes. If omitted, no event flag will be
set.

IPRI

	

	 is an integer specifying QIO request priority. If omitted, the
priority of the task itself is used.

ISTAT

	

	 is a 2-word integer array to receive status from SM. If
omitted, no status is returned. There are two categories of
error codes:

Category One is identified by a zero in the first status word.	
w

This indicates an error in processing the MCR command. The
following are possible codes in the second word:
-1 or -6 - invalid MCR command specification
-2;	 - MCR command task not installed

Category Two is identified by a non-zero in the first status
word. This indicates successful completion or an error in
requesting the task. The possible codes are:
+1 -- successful request completion (MCR completed)
0 -- successful request completion (MCR initiated)
-1 -- insufficient pool nodes available (6 required)
-3	 partition too small for task

In general, if the second status word is non-negative, the STUFF succeeded.

NOTE: SM must be assigned a LUN via TKB or the CALL ASSIGN Statement.
Also in the TKB, STUFF must be referenced. Sample TKB command
tile:

PROG-PROG, [11,21 STUFF

f

14-4



ASC=SM: I,TI:5,LP:6
UBR-SYSRES:RO
it

14,4 AECON -- ASCII-EBCDIC Conversion Routine

AECON is a Fortran callable subroutine that converts character arrays from
f	 ASCII to EBCDIC or EBCDIC to ASCII.
f

r	 Calling Sequence:

CALL AECON(MOLIE,A,LEN,IERR)
i

MODE	 is a positive or negative integer <0 is EBCDIC to ASCII
>0 is ASCII to EBCDIC

A	 address of array to be converted

LEN	 integer specifying length (in bytes) or array

IERR	 number of conversion errors (returned to user)

Subroutine AECON is located in UIC (2,75].

14.5 INITIAL - Initializes Floppy Disks or Magnetic Tapes

The INITIAL program is used to prepare floppy disks or magnetic tapes for use.
It creates a Files-11 device that can subsequently be used under PIP.

MCR > RUN (2,75]INITIAL$

This program will prepare a magnetic tape or floppy disc for use with PIP.
CTRL Z will exit program.

Type tape for tape, floppy for floppy >Floppy
Type 0 for DX0: or 1 for DY1:,UIC for floppy, a zero to six character volume

Y	 for floppy
Example:: 0 , (2 ,104] ,BOB
0 [300, 222 ],TOM
Put floppy in drive now and hit return
MOUNT-**VOLUME INFORMATION**



i

ORIGINAL PAGE Is
OF POOR QUALITY

DEVICE	 =DX0
CLASS	 =FILE 11
LABEL	 =TOM
UIC	 =(l,ll
ACCESS	 =[RWED,RWED,RWED,RWED]
CHARAC	 =(

F11ACP -- DX0: ** DISMOUNT COMPLETE **

** FLOPPY NOW READY FOR USE *****

INITIAL -- STOP

ON

14.6 SRD - Search Directory Utility

SRD is an RSX-11D utility that allows a User File Directory to be sorted in
alphabetic order, to be selected according to version, date, file type, or charac-
ters within the file name. Files may also be selectively deleted, sorted and then
written back in the order specified. With the last option, a PIP listing would then
reveal the new ordered directory.

To invoke the SRD utility on the PDP 11/70 type:

MCR> SRD <CR>

SRD will then prompt for input:

SRD>

The format of the command line is:

[OUTFILE=] [UIC) [/SW]

All fields are optional. 'Responding to the SRD prompt with a null line causes
the currelit UFD to be outputted in alphabetical order by type first, to the list-
in¢ device.

The default order on the files is to sort on the type field first, then byname.
The latest version always appears first.

it

f

tl

14-6



yr

SMtCH OPTIONS:

1. NAME: /NA

With this switch the directory from the specified UIC is listed In alphabetical
order.

e.g. SRD > LP:- [100,*]  /NA

2. SELECT VERSION: ' /SV

eog. SRD > LP:= [300,771 ISV

The listing of file names in directory [300,771 is restricted only to the highest
version.

3. DATE:	 /DA:DD-MMM-YY

This switch allows selection of files only created on the specified day. If no
dr,te is specified, the current date is used.

Su6switches for date selection are:

A. BEFORE:	 /BE:DD-MMM-YY
B. AFTER:	 /AF:DD-MMM-YY

When one of these options are used, it causes the listing to include files
created before, after or on the specified date. For example, to list all files
in alphabetical order that were created on or before March 1, 1978:

SRD >LP:- [11,111] /NA/BE:01-MAR-78

4. SELECT:	 /SE:NAME.TYP

This switch allows file names to be selected based on a sub-set string match.
For example, to select all files with a 'MI as the first character in the name
regardless of the rest of the name:

SRD > LP:= [1,361 /SE:M

With this switch, it is also possible to select files with only certain charac-
ters in the file name field. For example, the following option would select

V,
If	

any file with a name starting with IRI havihg any characters in the 2nd and
3rd position and a 7 in the 4th position.

14-7

LdA

P



SRD >L'P:= [2,44] /SE:R? ?7 f

A subswitch for /SE is NE which causes the files selected to be those that do
not match. For example,

SRD >LP:=[2,44) /SE:S/NE

selects all files that do not start with ► S'.

5. 'HIGHER OR SAME VERSION:	 /HV:N

This switch can be used to cause SRD to list only files that have a version
higher or equal to a specified value. For example,

SRD > LP:= [2,44 ] /HV:10

will create a listing of files with version 10(octal) or higher only.

6. SELECTIVE DELETE	 /SD

This option causes SRD to list the selected files to the listing device. The
user can then enter'Y' if the file is to be deleted. Any other response causes
SRD to proceed without deleting the file. For example,

SRD > /DA/SD:RTK

causes SRD to select all the files created on the current date with the first
three charact,,erc in the name 'RTK_' to be listed for selective deletion.

The subswitch /DE may be applied to /SD to cause all those files selected to
be deleted. For example,

SRD> /BE: 1-JAN-78/SD/DE

will delete all files created on or before Jan 1, 1978. Note that entering
CTRL/Z will terminate the selection and return to the SRD prompt. e

7. FULL LISTING:	 /FU : N
t

This is the same as the PIP switch and can be used with all of the above
options. It creates a full listing.

14-8 s



A,

8. WRITE BACK: /WE

This option causes SRD to write the directory back to the disk in the order
specified. This not only orders the directory, but compresses it. It reduces
search time by the File Control Processor if the directory has had a lot of
files deleted. For example,

SRD> [2,55) /-LI/WB/NA

causes SRD to read the directory, sort it by name, and write it back without
generating a listing. Write access to the directory is required.

NOTE: Since /WB rewrites your directory, be sure that you have adequate
backups in case a failure occurs. Also, note that the SRD utility only
reorders and listings directories for quick access. No actual move-
ment of files takes place.

14.7 SELECT - Moves files selected with the SRD utility.to UIC [022,222]

This program was developed as onr of the steps in a multi-step process to aid
users of the PDP 11/70 in selecting and removing certain files from the. main
disk on the computer. Basically, the process consists of three steps:

1. Use the SRD utility to create a file DIRECTORY.LST- (default filename under
utility SRD) that Contains all the selected filenames to be rolled off the disk.

2. Run the SELECT program to transfer all the files in DIRECTORY.LST to 	 }
UIC=[222,222]. **Note that UIC [222,222) must be empty before starting.

-	 3. Use PIP or FLX to output those files in UIC [222,222) to auxiliary storage
'	 media (tape, floppies, etc..)
i

For example, to roll off all files created before or on date June 15, 1978;

1. first create DIRECTORY.LST using SRD
'.	 MCR> SRD <CR>

SRD >[300,333}= [300,333]/BE:15-NN-78

SRD> CNTRL Z

{

'	 __ 14-9



E

2. now run SELECT to move those Files to UT^ 122202221

MCR>RUN SELECT$
IS UIC [222,222] CLEAR? (Y or N)
Y <CR>

SELECT--STOP

3. finally run INITIAL to initialize a tape or floppy and then PIP them onto
the media.

MCR> HE  [2,75]

MCR > RUN INITIAL$

INITIAL - STOP

MCR> MOU MMx:labelname

MCR > PIP ZdNh:= [222,222]

4t



Ofi PO 00 QUALITY

IBM to PDP 10-1
ICURS,CALL (VG) 7-9,7-11
Ideology (VG) 7-2
INCLD,CALL (VG) 7-12
Indirect files 3-19
INIT,CALL (VG) 7-2,7-707-9,7-10
Initializing Tapes and Floppy Disks

(INITIAL) 14-9
Initiating and Terminating VG

Programs 7-4
Integer*2 10-1
IOP AC K 14-1

{ Logical blocks 3-21
Logical Unit Numbers

default 3 -17
I! task builder options 3-21
w LUN (MCR) 3-19

Magnetic Tape
hardware 4-1
on-line 4-1
off-line 4-1

Magnetic Tape Utilities l
analysis (TUTILS) 13-11
conversion routines (IBM-PDP) 10-1
Copy
IOPACK 14-1.
TUTILS 13-11
foreign tape input/output (FTIO) 13-1

Maintenance
11/70 1-2
files 3-1
preventative 1-2

Management
operations 1-1

1 disk space 1-2
MCR 1-5	 1

° errors o-9
Member (file ownership) 3-4
Memos

VG daily use schedule 1-4
Terminals on 11/70 1-12
Disk space Management 1-13

F MOU (MCR 3-19

,7



ABO (MCR) 3-17
AECON, CALL 14-8
ASCII 10-1,14-1,14-8

character codes 7-31
Backup

System Disk (preserve) 1-2
Files 3-6
using PIP 3=7
using FLX 3-7

t Booting 2-1
BYE (T-VICR) 3-18
Calling Routines

r
Vector General 7-4
FTIO 13-2

Card Reader 10-13
UNBLNK data into a file 14-13
Transferring data into a file 10-13

E,
CHNGE, CALL (VG) 7-9$7-10
CMP 8-8
Commands

EDITOR 3-9
MCR 3-17

Command File
Task Builder 3-15, 3-17

Compatibility
IBM 360 to PDP 11/770 10-1
PDP 11/70 to IBM 360 10-1

Compiler
;i Fortran 3-12

Errors 8-9
Complex*8 10-1 +
Configuration of PDP 11/70 1-9
Control Conventions Terminals 1-6
Conversion

IBM 860 to PDP 11 10-1
PDP 11 to IBM 360 10-2

Coordinate Scale 7-5
COPY, CALL (VG) 7-2,7-8
Crash 9-1
Creation

of files 3-8
of elements on VG 7-7 J

E^ CREF(CROSS REFERENCE) 8-8

`^ A 1



Daily Use Schedule (VG) 1-11
DCB,CALL (FTIO) 13-2,13-4
DECODE,CALL 7-14,7-19,7-23
Default logical unit numbers 3-17
Deleting files 3-2
DELMT,CALL (VG) 7-9,7-11
Disk Space

management 1-2,1-13
RPO-': 1-3

DISMNT,CALL (FTIO) 13-2,13-4
DMO (MCR) 3-18
DMP 3-20

switches 3-20
errors 8-5

Drawing Routines (VG) 7-9
EBCDIC 10-1,14-1,14-8
EDI 3-8

errors 8-5
Elements

on Vector General 7-1
creating on VG 7-7

ENCODE,CALL 7-14,7-19,7-23
Errors

CMP 8-8
CREF 8-8
DMP 8-5
EDI 8-5
Fortran 8-9
FLX 8-4
FTIO 13-6
PIP 8-4
VG 8-1

Execution of Fortran program 3-12
I"ailures (Hardware) 9-1
Files

comparing (C1VIP) 8-8
creation 3-8
deleting 3-2
dumping files (DMP) 3-20
editing 3-9
indirect 3-16
maintenance 3-1
ownership 3-4

n -,

n
,a

I
a



A

purging '3-1
renaming 3-2

F
F

` specifiers 3-17
transfering 3-3

Floppy Disks
hardware 6-1
storing data 6-1

FLX 3-6
errors 8-4

Foreign Tape INput/Output (FTIO) 13-1
routines 13-2

t errors 13-6
a

Fortran
compiler 3-12
compiler switches 3-13
programs 3-12
errors 8-9

` FPOSN,CALL (FTIO) 13-2013-4
` FREAD,CALL (FTIO) 13-2,13-4

FTIO 13-1
routines, 13-3
arguments 13-3
examples 13-7
errors 13-6

Function Keys (VG) 7-117-2
FWRITE,CALL (FTIO) 13-2,13-5
GHALT,CALL (VG) 7-4
GINIT,CALL (VG) 7-1,7-4,7-22
GRAPHICS (see Vector General)
Group Ownership 3-4
GRUN,CALL (VG) 7-1,7-4,7-22
GTERM,CALL (VG) 7-1,7-.4,7-22
Haardcopy 7-3,7-32
Hardware

11/70 1-3
failures 9-1
floppy disks 6-1
magnetic toe
^	

p 4-1
paper tape 5-1
Vector General 1-4,7-1

` Hazeltines (see Terminals)
HEL (MCR) 3-18
Hints on programming the VG 7-22

^r
A3

f
:f



MOUNT,CALL (FTIO) 13-2,13-4
ODL 3-25
OMIT,CALL (VG) 7-9,7-12
Operations

11/70 1-1
Options 9

Task Builder 3-15
Overlays 3-22 l

overlay descriptor language (ODL) 3-25
root segment 3-22 j
tree structure 3-22'
task building 3-27

Overview
11/70 1-4

Paper Tape
k

h

hardware 5-1
reader 5-1
ptnch 5-2

PDP to IBM 10-2
PDP 11/70 (see Hardware, Booting, etc.)

`	 PENTRK,CALL (VG) 7-9,7-12
Philosophy

LHEA Graphics Processing Facility 1•-1
Picture Scale on VG 7-5
PIP 3-1

errors 8-4
PLINE,CALL (VG) 7-9,7-12
PLOT,CALL (VG) 7-9,7-13
POSN,CALL (VG) 7-9,7-13 if

Powering Down (11/70) 2-2
Preserve 1-2
Programming (VG ) 7-1

4Purging files 3-1
P`VD (MICR) 3--19
RCURS,CALL (VG) 7-13 }
RDCHR,CALL (VG) 7-13

3i

Reader
Paper Tape 5-1 G

Card 10-13
Reading Magnetic Tapes 13-1
Real *4 (*8) 10-1
Renaming files 3-2
RES (MGR) 3-19 x

}

Yq

E
d



RESET,CALL (VG) 7-9.7-14
RXEY,CALL (VG) 7-14
Root Segment (Overlay) 3-22
RPO4 (See Disk)
RQATN,CALL (VG) 7-15,7-17,7-18,7-22
RUN (MGR) 3-20
Scale

Picture (PS) 7-5
Coordinate (CS) 7-5

Scientific Subroutines Package 11-1
Task Building 11-1
documentation 11-1

SELECT 14-15
SETVM,CALL (VG) 7-9,7-1807-22,7-28
Sign off 3-18
Sign on 2-2,3-18
SINIT,CALL (VG) 7-2,7-7
Software

overview of 11/70 1-4
Space

on disk 1-2,1-13
Specifiers (file) 3-17
SRD 14-10
Starting the PDP 11/70 (see Booting)
Storing data

on floppies 6-1
on tape 13-1
on disk 3-8

STUFF,CALL 14-4
task building 14-7

SWABI,CALL (FTIO) 13-2,13-5
Switches

Fortran compiler 3-13
Task builder 3-14

SYS (MCR) 3-18
System (file ownership) 3-4
System Standard Errors 8-9
Tape

Magnetic 13-1
Paper 5-1

Task Builder
errors 8-8
options 3-15

Loam



4

ORIGINAL PAGE IS

F

	 OF POOR QUALITY,
i

overlays
scientific subroutines
switches
Vector General

Terminals
use of
special control keys

TEXT,CALL (VG)
TIB MFD, CALL
TIBMFS,CALL
TPDPFD,CALL
TPDPFS,CALL
Transfer

files
tapes (PDP-IBH)

Tree structure (overlays)
TUTILS
UIC
UNBLNK
Utilities

DMP
CMP
PIP
FLX
magnetic tape

VECT,CALL (VG)
Vector General

daily use schedule
drawing routines
hardcopy
hardware
hints for programming the VG
programming
task building

VECTT,CALL (VG)
VECTT,CALL (VG)
Versatec

hardcopy for VG
VGCOM
VGCOMM
V,,xtual Blocks
WHO (MCR)

3-27
11-1
3-14
7-22

1-3,1-12
1-6
7-9,7-11,7-19

10-2
10-2
10-2
10-1

3-3
10-1
3-23
10-1,13-11
1-1,1-2
14-3

3-20
3-21
3-1
3-6
13-1,14-1
7-9,7-20,7-22,7 -28

1-11
7-9
7-3,7-32
1-4,7-1
7-22
7-1
7-22
7--9,7-20,7-22,7-28
7-9,7-20,7-22,7-28

7-3,7-32
7-3
7-3
3-20
3-20

R

1


	GeneralDisclaimer.pdf
	0051A02.pdf
	0051A03.pdf
	0051A04.pdf
	0051A05.pdf
	0051A06.pdf
	0051A07.pdf
	0051A08.pdf
	0051A09.pdf
	0051A10.pdf
	0051A11.pdf
	0051A12.pdf
	0051A13.pdf
	0051A14.pdf
	0051B01.pdf
	0051B02.pdf
	0051B03.pdf
	0051B04.pdf
	0051B05.pdf
	0051B06.pdf
	0051B07.pdf
	0051B08.pdf
	0051B09.pdf
	0051B10.pdf
	0051B11.pdf
	0051B12.pdf
	0051B13.pdf
	0051B14.pdf
	0051C01.pdf
	0051C02.pdf
	0051C03.pdf
	0051C04.pdf
	0051C05.pdf
	0051C06.pdf
	0051C07.pdf
	0051C08.pdf
	0051C09.pdf
	0051C10.pdf
	0051C11.pdf
	0051C12.pdf
	0051C13.pdf
	0051C14.pdf
	0051D01.pdf
	0051D02.pdf
	0051D03.pdf
	0051D04.pdf
	0051D05.pdf
	0051D06.pdf
	0051D07.pdf
	0051D08.pdf
	0051D09.pdf
	0051D10.pdf
	0051D11.pdf
	0051D12.pdf
	0051D13.pdf
	0051D14.pdf
	0051E01.pdf
	0051E02.pdf
	0051E03.pdf
	0051E04.pdf
	0051E05.pdf
	0051E06.pdf
	0051E07.pdf
	0051E08.pdf
	0051E09.pdf
	0051E10.pdf
	0051E11.pdf
	0051E12.pdf
	0051E13.pdf
	0051E14.pdf
	0051F01.pdf
	0051F02.pdf
	0051F03.pdf
	0051F04.pdf
	0051F05.pdf
	0051F06.pdf
	0051F07.pdf
	0051F08.pdf
	0051F09.pdf
	0051F10.pdf
	0051F11.pdf
	0051F12.pdf
	0051F13.pdf
	0051F14.pdf
	0051G01.pdf
	0051G02.pdf
	0051G03.pdf
	0051G04.pdf
	0051G05.pdf
	0051G06.pdf
	0051G07.pdf
	0051G08.pdf
	0051G09.pdf
	0051G10.pdf
	0051G11.pdf
	0051G12.pdf
	0051G13.pdf
	0051G14.pdf
	0052A02.pdf
	0052A03.pdf
	0052A04.pdf
	0052A05.pdf
	0052A06.pdf
	0052A07.pdf
	0052A08.pdf
	0052A09.pdf
	0052A10.pdf
	0052A11.pdf
	0052A12.pdf
	0052A13.pdf
	0052A14.pdf
	0052B01.pdf
	0052B02.pdf
	0052B03.pdf
	0052B04.pdf
	0052B05.pdf
	0052B06.pdf
	0052B07.pdf
	0052B08.pdf
	0052B09.pdf
	0052B10.pdf
	0052B11.pdf
	0052B12.pdf
	0052B13.pdf
	0052B14.pdf
	0052C01.pdf
	0052C02.pdf
	0052C03.pdf
	0052C04.pdf
	0052C05.pdf
	0052C06.pdf
	0052C07.pdf
	0052C08.pdf
	0052C09.pdf
	0052C10.pdf
	0052C11.pdf
	0052C12.pdf
	0052C13.pdf
	0052C14.pdf
	0052D01.pdf
	0052D02.pdf
	0052D03.pdf
	0052D04.pdf
	0052D05.pdf
	0052D06.pdf
	0052D07.pdf

