
I NASA
Technical
Paper
21 79

June 1983

NASA

Parallel, Asynchronous
Executive (PAX): System
Concepts, Facilities,
and Architecture

William H. Jones

25th Anniversary
1958-1983

~ NASA
i TP
I 2179
! c.1

LOAW COPY: RETURN TO
AfVX TECHNICAL LrNWY
WRLBND AFB, N.M.

..

”’ NASA
Technical
Paper
21 79

1983

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

-
P TECH LIBRARY KAFB, NM $

Parallel, Asynchronous
Executive (PAX): System
Concepts,. Facilities,
and Architecture

William H. Jones
Lewis Research Center
Cleveland, Ohio

Summary
In the mid-l970’s, the author began the development

of CASPER, a collection of fluid-flow simulation rou-
tines. As development proceeded, it became apparent
that CASPER could be worked on by virtually identical
programs at the same time. A large calculation could be
divided into segments that segregated inputs from
outputs, and logical data-base records could be arranged
into physical mass-storage records that could be
independently read and written. Because of the enormous
computational size of CASPER, the author decided to
implement this idea as the Parallel, Asynchronous
Executive (PAX).

The following features have been accomplished in the
current implementation of PAX:

(1) PAX splits one segment of a calculation into fully
asynchronous, parallel tasks.

(2) PAX manages any number of parallel processors.
(3) PAX manages any serial aspects of the problem,

including those necessary to resolve parallel-processing
conflicts.

(4) PAX provides facilities for error and fault
reporting and recovery.

(5) PAX and its parallel processors can be stopped,
changed, and restarted without loss of position in a com-
putation. Thus programming errors can be repaired
without lossing results calculated before the problem
occurred.

6. PAX provides communications facilities for inter-
action with machine operators.

This report details the fundamental concepts, facilities,
and architecture of PAX. PAX manages the execution of
CASPER (Combined Aerodynamic Structural Dynamic
Problem Emulation Routines), a program to simulate
airflow through arbitrary flow fields. CASPER is not
discussed in this report except to provide examples of
parallel-processing techniques. The current implemen-
tation of PAX is exploratory and experimental. PAX is a
vehicle for pointing the way to fully developed parallel,
asynchronous processing systems.

Introduction
Historically, computing machines have executed a

logically unified task in a step-by-step fashion. As
computer size and speed increased, variously complex
software structures (operating systems) allowed machines
to work on many problems in a quasi-parallel manner;
however, these problems were logically unrelated in that,
as far as the machine was concerned, the output of one
problem did not affect the outputs or inputs of another
problem. Each logically unified problem still had to be
approached in a step-by-step manner, regardless of

whether that serial relationship was actually required by
the problem itself.

This serial structure of computing organization is in
sharp contrast to human organizational structure, which
is parallel and asynchronous. Many average workers can
be organized to form a formidable work force to produce
a product that would take one person thousands of years.
For many valid reasons, rather than change organi-
zational strategy, a new (faster) implementation of an
existing computer architecture usually has been produced
to increase performance to meet new demands (witness
the progress of IBM 360, 370, 370/3033, 370/3081).

In the past few years an extension of serial computing
has appeared in the form of vector processors (as offered
by Control Data Corporation and Cray Research
Corporation), but these still have not broken from the
fundamentally serial approach to logically unified prob-
lems. Certainly these machines have great merit.
Although serial organization constrains machine
architecture, it offers the utmost in algorithmic
flexibility. The problem on the horizon for even these
vector processors is the fact that, sooner or later,
technology will reach a limit beyond which the serial
organization cannot proceed. The vector processors
acknowledge this limit by processing vector commands in
parallel.

PAX attempts to organize a highly parallel,
asynchronous computing environment by using the
human experience as a model. This approach is not
without its difficulties. Chief among these is the fact that
the management system must have a much greater
knowledge of the problem to be managed than has been
required in the past. Simply knowing a memory
requirement, a mass-storage requirement, and a set of
connections to some undefined (in the system’s terms)
user is not adequate to organize many machines to work
in parallel on a common problem. PAX is an attempt to
deal with this organizational problem in a realistic
manner. Two fundamental facts guided initial PAX
design: (1) any parallel, asynchronous processor system
would be subject to random failures of its processing
components and (2) all problems generate some
procedural sequences that must be serialized. Thus the
initial design of PAX went beyond simple parallel
processing to management of real parallel machines and
to features appropriate to a real parallel problem.

PAX is an entry into the well-populated field of highly
parallel computing. Haynes, Lau, Siewiorek, and Mizell
in a recent survey article (ref. 1) identify six classes of
highly parallel computing machines: (1) special-purpose
functional units, (2) associative processors, (3) array
processors, (4) data-flow processors, (5) functional
programming-language processors, and (6) multiple
general-purpose processors. PAX is designed as a
management system for the sixth class of highly parallel

computers. Haynes et al. go on to identify an “extra
hard” class of scientific problems (usually involving
nonlinear, three-dimensional partial differential
equations) and report that there “. . . is a consensus
among the cognoscenti that the best approach to a first
attempt at extra-hard scientific problems is a network of
hundreds or thousands of fairly general-purpose
machines.’’ It is precisely this massive accumulation of
general-purpose machines, each doing similar (yet not
identical) computations that PAX is designed to manage.

In exchange for the increased complexity of PAX, the
user obtains a computational resource that can increase,
without practical bound, to meet the requirements of
very large computational tasks. A worker is added to
PAX simply by increasing the size of the appropriate
tables within PAX. Furthermore, workers are, for the
purposes of PAX, interchangeable: the work done by one
worker can be done by any other worker. Thus, should a
worker fail, PAX is able to allocate a replacement worker
and continue with the problem.

PAX, as implemented on the Lewis Research Center’s
UNIVAC ll00/42 computer, has succeeded in demon-
strating these capabilities. A logically unified problem
(that of airflow through realistic, time-varying flow
fields) has been split by the author into a sequence of
procedures to be executed asynchronously in parallel.
Serial synchronization, where needed, is available. Also,
a considerable level of tolerance to random faults in the
parallel-processing activities has been demonstrated.

This report presents a technical overview of PAX in an
effort to describe what PAX is and what it does in many
situations of importance during parallel processing.
Technical philosophies and choices are presented without
the exhaustive detail of a technical manual.

PAX Overview
Because PAX is a large program (well over 50 000 lines

of Fortran) that deals with many complicated concepts,
this section gives a “big picture” of PAX and its
concepts. The purpose of PAX is to apply many
computers simultaneously to a single problem. The
problem is broken up by the user for PAX into a series of
procedures that follow each other in a step-by-step
manner just as in normal computers. However, each
procedure is broken up by PAX into pieces that are
divided among the available worker processors. A worker
proceeds at its own pace through its assigned work and
reports to PAX when the work is complete. PAX then
assigns it more work.

Usually a procedure contains only one computation.

This computation is a specific algorithm performed over
a large range of index values. It is this range of values
that PAX manages and distributes (in pieces) to various
worker computers. For instance, a procedure might be to
perform an algorithm over the range 1 to 1 million. PAX
breaks that computation into pieces for distribution to
workers. One worker may be told to do the algorithm for
the range 1 to 100 , while the next worker is told to do the
algorithm over the range 101 to 200. When the first
worker reports that it has completed the range 1 to 100,
PAX marks that work as completed and then gives that
worker more work from the uncompleted portion of the
computation, say the range 201 to 300. PAX continues to
distribute work to workers in this fashion until the entire
range 1 to 1 million is completed. Then PAX moves on to
the next procedure in the problem. Appendix A gives
several examples of algorithms that can be executed in
this parallel manner under PAX management.

In most problems the workers must share data both as
inputs to the computations and as the results of the
computation. Something must be done to assure that
individual workers do not conflict with each other in their
access to shared data. PAX does this by placing restric-
tions on the use of data by the algorithms and then by
careful distribution of the work to be done. In most
parallel-processing algorithms the delivery of work by
PAX to a worker carries with it the implicit authority to
read any necessary inputs and to write to shared storage
any generated outputs. No further authorizations are
required for a worker to proceed at its own pace on its
assigned work.

In some cases a worker may recognize that an output
must be made to shared storage that is not allowed by the
work it is given (see third example in appendix A). In this
event the worker sends a message to PAX indicating the
nature of the conflict. PAX then reviews the work that is
in progress and the work to be done and schedules the
new work so that the necessary output occurs without
conflict.

PAX is tolerant of faults. When a worker is given a
piece of work to do, PAX estimates the completion time
of that work. If the worker does not report back to PAX
that the work is done by the time that PAX expects
completion, PAX assumes that the worker has crashed.
PAX then invokes a user-specified method to recover
from the loss of that worker. In most cases the work that
was lost need only be given out to some other worker;
however, PAX has the ability to discard all work done on
the particular procedure in progress at the time of the
fault, execute one or more procedures to recover from the
possible effects of the fault, and then retry the procedure
that experienced the fault.

2

Fundamental Concepts
Basic Units of Work

Three terms and their interrelationships must be
mastered before any understanding of PAX can begin.
These terms are algorithm, execution vector, and task.

An algorithm is simply a formula or method for per-
forming work. For instance, the quadratic equation is an
algorithm that defines the method for computing the
solution of any second-order polynomial equation of one
variable. It is very important to see that the quadratic
equation provides only the method of solution, not the
specifics of the work to be done. A person who
understands the quadratic equation still has no work to
do because he has no specific job to which to apply it
(i.e., no data or parameters).

The execution vector is the counterpart to the
algorithm. It is an ordered n-tuple that specifies the
particulars of the job to be done but does not supply the
method. In the quadratic equation example the execution
vector is the polynomial coefficients of the particular
equation to be solved. Again, a person with only an
execution vector has no work to do because he has no
method to apply to his vector.

The fundamental descriptor of work is the task. A task
is the combination of an algorithm with an execution
vector. This combination provides the worker with a
method and a job to which to apply it. No unit of work
smaller than this fundamental combination is defined by
PAX. In PAX many individual tasks (e.g., many
quadratic solution jobs) may be merged into one large
task description, which is subsequently referred to as a
task.

Nothing more than that discussed immediately above is
implied by the words algorithm, execution vector, and
task. These words simply define method, specification,
and work.

Task Splitting and Associated Algorithmic Constraints

In PAX most tasks describe a large amount of work by
describing exactly one algorithm (always) and many
execution vectors. PAX splits one such large task into
two or more smaller tasks. Each resulting task describes
the same algorithm but uses only a subset of the
execution vectors. The union of these subsets will always
equal the original set of execution vectors so that work
will be conserved. What has been achieved is that two (or
more) distinct pieces of work now exist where only one
had existed before. This ability to split a task allows PAX
to hand out large jobs in piecemeal fashion to workers as
they become available. (In future implementations of

PAX each worker’s assignment could be tailored to the
specific characteristics of that worker if any distinctions
between workers exist.)

The present rules that PAX uses to split tasks provide a
fundamental constraint on the structure of the work that
can be described: the result (or results) of the work must
not depend in any way on the order in which the work is
done. If the execution vectors in the quadratic equation
example consist of a great many polynomial coefficient
groups, the quadratic solutions obtained will not be
affected by which polynomial coefficient group is solved
first and which is solved last. Although this constraint
would appear to be severe, in fact many algorithms of
interest are not restricted by it (e.g., most vector
operations such as element-by-element addition,
subtraction, multiplication, division, and square root).
This constraint also implies that no independent output
of the work may be an input to the work since no
guarantee exists as to the order in which the work is to be
done. For example, no quadratic equation root result
from one execution vector would be allowed as an ele-
ment in another execution vector in the task description.
However, outputs of the work may be inputs to the work
if they occur within the same task at the time of
execution. This condition must be checked for by the
worker at the time of execution.

The parallel-processing nature of PAX arises from the
fact that PAX will split off a task for execution any time
a worker processor reports that it is idle. If there is only
one worker, only serial processing of work occurs;
however, if there are two or more workers, PAX will
deliver work to them whenever they are idle. This allows
two or more workers to be working on individual pieces
of the whole problem at any time.

An additional restriction applies to the work to be done
if two or more workers are sharing data (regardless of
where the shared storage is located). The storage areas to
be written as a result of any two independent execution
vectors must not overlap. This restriction is necessary to
assure that the final result is not dependent on the order
in which the work described by the execution vectors is
done. Note that this overlap is considered at the
independently writable level. If the outputs do not
occupy the same storage, but one cannot be written
without writing the other, they overlap for the purposes
of this restriction. No constraint is placed on read access
to shared storage.

To summarize, the following constraints are imposed
on any computation that is to be performed in parallel
under PAX:

(1) The computation must consist of exactly one
algorithm and a collection of execution vectors.

3

(2) The result of the computation must not depend on
the order of computation (i.e., the order of execution
vector delivery).

(3) No output of the computation may be used as an
imput to a later stage of the computation unless it is
determined (by the worker at the time that the input is
required) that the output has already been produced by
the same task that is to use it as an input.

(4) If output storage areas are to be shared, the storage
areas to be written by any two independent execution
vectors must not overlap.

Granularity of Tasks

Some tasks may only be split at specific points in the
collection of execution vectors that define the range of
work to be done. If this is true, the task is said to be
granular in nature since it is composed of groups, or
granules, containing several execution vectors that
cannot legitimately be separated. (Actually, all tasks are
granular; however, the usual granule is exactly one
execution vector.) PAX allows the user to specify a
granularity for each algorithm that the user defines to
PAX. PAX assumes that all granules for a particular
algorithm are equal in size and allows the user to specify
for each manipulated dimension of the execution vector
both the granule size and the starting position.

This recognition of task granularity allows a slight
modification of the previously stated rule concerning the
overlap of shared output storage areas for independent
execution vectors. When task granularity is used, it is
necessary only that the output areas shared by any two
granules of work not overlap, since PAX will guarantee
that execution vectors from the same work granule will
never be delivered to two independent workers. Since the
worker assigned a particular granule of work will always
work with the most recent shared storage information
(including any new outputs that the worker has made),
one output from the granule cannot accidentally destroy
another output from the same granule.

Types of Work

Most work managed by PAX is computational, the
results being numbers that are meaningful to the user.
Two types of computational work are recognized by
PAX: main computation work and conflict resolution
work. In the quadratic equation example the roots of
each such equation are the meaningful result of the main
computational work.

The management of a parallel-processing system
requires the definition of a different kind of work to
perform management services. These services are for the
maintenance of the user’s computational environment
and the control of the system components by PAX. The
control of user-transparent, shared-data access routines

4

and the connection and disconnection of individual
machines from the PAX system are examples of this
service work.

PAX provides five distinct types of management
service work: worker startup, worker initialization
(precomputation), worker cleanup (postcomputation),
worker hold (unexpected cessation of Computation), and
worker termination. Because each of these types of work
relates to the worker rather than to the computation,
each management task created by PAX is identified as
being for a particular worker.

The user does not have to concern himself with the
creation of management tasks, but only with informing
PAX about the management tasks appropriate to a
particular calculation. PAX will create the management
tasks for each computation at the time that the com-
putation is begun and will create one of each specified
management task for each worker that is active at that
time.

Description of Larger Quantities of Work

The ultimate description of work is the task; however,
a single task description is seldom adequate to define an
entire problem. As shown in figure 1, PAX groups tasks
into collections called procedures. These procedures are
typically made up of one main computational task
(defining a large amount of work) and one or more
management tasks. The various tasks are sequenced to
assure proper operation of management functions. This
sequencing assures, for instance, that a worker is
initialized for the particular computation before the
worker is actually given any computational work. Work
proceeds asynchronously i n parallel within the
procedure. As each worker completes work and becomes
idle, PAX delivers the next appropriate task to the
worker for execution.

Problems are made up of a sequence of procedures
executed in a procedure-by-procedure manner. PAX
allows work to be done on only one procedure at a time.
In this sense problems are still solved in a serial manner

1 Problem

Task Initialize workers

Task Compute I

Procedure

Procedure

I stop

Figure 1. - PAX work description structure.

just as with conventional computers; however, executing
the tasks within a procedure in parallel permits much
more work to be done in less time. The user customizes
each step by defining for PAX the algorithm and the
execution vectors to be processed.

Resolution of Conflicts

In dealing with real-world problems the need
occasionally arises for a worker to generate an output
that is not allowed by the parallel-processing restrictions.
Appendix A contains an example of a linked-list-
processing algorithm that generates such output con-
flicts. PAX calls this circumstance a conflict and provides
workers with a service for its resolution. When PAX’S
internal tables are built, the user describes the nature of
each conflict that might arise and gives it the necessary
details as to acceptable resolution procedures.

When a worker encounters a conflict, it transmits a
message to PAX indicating the conflicted work to be
done (i.e., an algorithm and an execution vector). PAX
uses this information to create a computational task
containing the work whose execution might conflict with
other tasks already in the system. This task, designated a
conflicted task, is scheduled specially to assure that its
execution will not interfere with the execution of other
tasks.

This scheduling occurs by the method selected by the
user from several options available in PAX. The most
common selection is one in which the conflicted task is
executed only after the completion of the main
computational task that contains the point of conflict.
PAX extracts the point of conflict from the supplied
execution vector and constructs the conflicted task. PAX
then inserts the conflicted task into a queue associated
with the main computational task that contains the point
of conflict. The queue head is actually in the description
of the main computational task. Tasks in this queue
cannot be released for execution until the main
computational task is complete. At task completion PAX
checks to see whether any tasks are enqueued in the
conflict queue of the task description and, if such tasks
are encountered, dequeues them and releases them for
execution. Once conflicted tasks are released for execu-
tion, they can run in parallel in the same manner as other
tasks.

Two conflicted tasks can conflict not only with a main
computational task, but also with each other. PAX offers
a user-selectable solution to this problem by serializing
the execution of conflicted tasks that specify the same
point of conflict. When the main computational task is
located, PAX will see whether a conflicted task with the
same point of conflict is already in the conflict queue of
the main task. If so, PAX will queue the new conflicted
task onto the completion of the last such conflicted task
instead of onto the main task. Each succeeding conflicted

task with that conflict point is queued onto the previous
one. Thus conflicted tasks with the same point of conflict
are released individually for execution upon the comple-
tion of the previous task with that conflict point.

Consider as an example of conflict resolution the
manipulation in parallel of a large number of linked lists
for the purpose of removing elements that are linked into
the wrong list and inserting those elements into the right
list (where “right” and “wrong” are not important to
this example). The execution vectors for the work would
be the collection of list identification numbers. After task
building, PAX begins handing out work to each idle
worker, giving it one or more specific linked lists to
process. Each worker receives the implicit authority to
manipulate (unlink, link, etc.) each linked list that it is to
process; however, it does not receive authority to
manipulate other lists since another worker may be
manipulating those lists at the same time. Eventually a
worker encounters an element that does not belong in the
list it is currently processing, and it removes the element
from that list. The worker may check to see whether the
element belongs in a list that it is allowed to manipulate
(by virtue of the list being a part of the assigned task of
the worker) and, if so, the worker inserts the task in the
correct list. However, if the worker is not allowed to
manipulate the correct linked list, a conflict has occurred.
The worker sends PAX a message defining the conflict by
identifying the algorithm to be performed (linked-list
element insertion) and the execution vector specifying the
work (linked-list number and element number).

PAX responds to this message by creating a conflicted-
task description. Based on its own internal tables (as
filled in by the user), PAX determines that the linked-list
insertion must occur after the main processing of the
target linked list is complete. PAX then locates the task
that includes the main processing of the target linked list
and checks to see whether a linked-list insertion for the
same target list is already queued onto the task. If so,
PAX enqueues the newly created insertion task onto the
previous insertion task for that particular list; otherwise,
PAX enqueues the new task directly onto the main list-
processing task. When the main task completes, the
insertion task will no longer conflict with it. PAX detects
the enqueued insertion task, dequeues it, and releases it
for execution. The third example in appendix A explores
this linked-list manipulation in more detail.

Worker/Procedure Synchronization

During actual parallel operations PAX is usually
unaware of the exact state of the procedure under
computation. Specifically the location of the most recent
valid copy of shared data is usually unknown to PAX
since workers may buffer shared data in their own local
memory areas. This is in full accord with the design of
PAX; however, at certain times (e.g., the release of a

5

managed worker from further use or the release of a
conflicted task for execution) PAX must know the
explicit state of the procedure to assure that all necessary
components of the procedure and its algorithmic results
are properly retained and protected. Thus PAX currently
defines a procedure and a worker to be “synchronized”
when

(1) The assigned worker has all appropriate
background information for executing all pertinent
computational tasks

(2) The assigned worker knows the actual location of
the most recent valid copy of all required input to any
pertinent task

(3) PAX knows the actual location of the most recent
valid copy of all generated output of all tasks assigned to
the worker

If these conditions are not met, a worker could either
proceed on a task with incorrect input data or be
detached from PAX while in possession of the only valid
copy of output data. Clearly such conditions cannot be
accepted. Therefore only when a worker is synchronized
with a procedure according to the preceding conditions
may that worker begin an assignment or be detached
after completing an assignment. Furthermore, if such an
illegal transition does occur, PAX detects it and institutes
appropriate fault recovery mechanisms to restore the
problem to an uncorrupted state.

\

Exceptional Conditions: Faults and Errors

One of the most difficult problems in computing is
responding to the unexpected. In conventional systems
exceptional events frequently invoke a response that
appears catastrophic from the user’s point of view. Often
the response is for the entire system to cease operation.
The PAX design recognized that unexpected events, such
as the failure of an individual worker, would be likely
and that a catastrophic response would be unacceptable
because of both the anticipated cost of the system and the
computations to be performed on it. Thus PAX design
includes facilities for the user to specify responses that
permit the recovery of his computational product from
the most likely failures of the system. Two reporting
mechanisms are implemented in PAX: the error and the
fault. The error mechanism is for use by the user and is to
report algorithmic anomalies that only the user can anti-
cipate and detect. The fault mechanism is used by PAX
for reporting unexpected events in the operation of PAX
components and reflects those things that are within the
(automated) understanding of the management program.

PAX defines an error as an exceptional event that
occurs because of the combination of algorithm, execu-
tion vector, and input data. An error may require
remedial action in a procedure-wide context, possibly
including recovery through remedial computation. Thus
all PAX computational management facilities are

available for servicing errors. Furthermore, because error
recovery may have ramifications across the entire
procedure, explicit knowledge concerning the
appropriate error recovery action must be supplied to
PAX for each possible error. The explicit error handling
instructions obviate the need for a specific error state.
The user must separately identify to PAX any changes in
state (e.g., from executable to nonexecutable) that may
be associated with a particular error.

The user may include in his code some specific checks
on the progress or validity of his computation (e.g., for
convergence difficulties or unexpected results). When
defining a procedure to the PAX system the user must
specify each of the possible errors and the desired
response from PAX to each one. Then if an error is
detected, the corresponding response instructs PAX to
halt, to retry, or to take other appropriate action in an
orderly manner.

PAX and its workers report difficulties through the
fault mechanism. Faults are exceptional events related to
the internal operations of PAX and its workers. Faults
are independent of the actual algorithm, execution
vector, and input data being executed. The uncontrolled
termination of a worker is the most important of all
faults recognized by PAX. Because PAX design calls for
complete recovery from such faults, PAX requires
extensive information from the user (much as for errors)
to define acceptable recovery mechanisms for each
procedure should a fault occur during the execution of
that procedure. The current implementation of PAX
detects and recovers from worker-failure faults, and
similar methods could be used to recover from other
faults possible in actual parallel, asynchronous machines.

Facilities
PAX offers a number of facilities for the control of

overall problem computation, for the management of
serial and parallel procedural computation, and for the
interaction of parallel processors and procedures with
their management. Because of the potential cost of
terminating computations after obtaining only
intermediate results, an extensive facility for suspending
operation and making necessary corrections without loss
of computational position is also provided.

PAX Control Language

The fundamental facility for computational control is
the PAX control stream. This stream of PAX control
codes is constructed by the PAX Control Language
Assembler, PCLASM. A sample of this language is
provided in listing 1. This language is structured like an
assembly language. PAX fetches control codes from the
stream produced by this language and executes the
procedures identified by those codes.

6

As an example, refer to listing 1, page 3, lines 39 to 41.
On line 39 the mnemonic TEDM has been translated to
the hexadecimal code 000000010, which tells PAX to
enter its dispatching mode. When PAX enters the
dispatching mode, it requires more information to
identify and specify the parallel procedure to be
dispatched to the workers. This information is provided
by the mnemonic DVCOR on line 39 as well as as by the
mnemonics on lines 40 and 41. DVCOR is translated to a
(default) value of hexadecimal 000000006, which
corresponds in PAX’s internal tables to the algorithm
defined in listing 2 (and discussed at greater length in
appendix A). Line 40 identifies a single required
argument (to be appended to internally generated
execution vector components) through an addressing
mode code (DASSM, hexadecimal 000000003) and
addressing data (VCORF, hexadecimal 000000085,
derived by adding hexadecimal control section offset
000000013 from page 2, line 24, and the hexadecimal base
address of 000000072 for control section 0003 from page
13). Finally line 41 terminates argument processing with
the control code hexadecimal 000000000.

The listing reveals a higher level on which PAX can be
viewed. If the reader were not aware of all of the parallel-
processing capabilities of PAX, he might deduce that
PAX was a simple, step-by-step computer with a very
high-level instruction set (e.g., instructions that solve the
Navier-Stokes equations, as on page 5 , line 6 , of listing
1). This is a key observation to understanding the bigger
PAX picture because the user can define, in effect, a
superinstruction set (i.e., procedures) and use it in a
simple step-by-step solution.

The control-code stream facility draws added impor-
tance from the fact that it is an integral part of PAX’s
fault tolerance capabilities. PAX understands the
control-code stream structure and is able dynamically to
create and insert control-code sequences of its own for
error and fault recovery and for certain system
management procedures. The error and fault recovery
control-code streams for each procedure must be
installed in PAX by the user. Such sequences must
define, at a minimum, the operations necessary to
recover from the unexpected, procedure-asynchronous
termination of a worker. Should such an event occur,
PAX uses the supplied codes to alter its control code
stream and provides the necessary linkages back to the
original procedure that experienced the error or fault.

PAX Commands

PAX may receive commands to modify or report its
operating state asynchronously with respect to
computational operations. PAX commands serve an
entirely different purpose from that of the PAX control
language. The PAX control language defines the
problem, which is independent of the time of execution

or of checkpoint and restart occurrences. The PAX
commands have no influence at all on the problem. They
are concerned solely with events such as checkpointing,
stopping, and restarting. Although a variety of different
functions are (or might be) served by this facility, its
principal use is to direct PAX to an orderly halt. These
commands are currently entered through the UNIVAC
systems console; however, this is not an architectural
constraint of PAX.

Although a considerable number of systems console
commands are currently honored by PAX, the following
examples should give the reader the general flavor of the
facility:

(1) PAX may be ordered to bring parallel computing
operations to a close at any time by issuing a STOP
console command. This directs PAX to cease the
dispatching of further computational work and to
perform a complete problem checkpoint-and-exit process
when the work that is currently under way completes.

(2) PAX may be ordered to adjust the average running
time of tasks split for parallel execution by issuing the

CONFIGURE TASK.TARGET.TIME time.value.pairs

console command. This command directs PAX to change
to the indicated value the desired execution time value
maintained internally by PAX. When PAX splits off a
task for execution, this target execution time is used in
conjunction with running-time history tables for the
algorithm to estimate how much of the parent task
should be split off to make a task of reasonable duration.

(3) The wall clock running time of PAX can be
specified by issuing the

SET.RUNTIME time.value.pairs

console command. This command directs PAX to set an
internal timer that operates based on wall clock (rather
than program execution clock) time. When the time
expires, PAX will internally issue a STOP command.

The command facility does not require that command
execution proceed immediately to a logical conclusion at
the time of initial command execution. A command may
suspend itself pending the occurrence of one or more
enabling events (e.g., a timer timeout, the return of all
workers to idle, or the receipt of a countervailing
command). This capability is necessary since the PAX
parallel-processing facilities are needed to perform an
orderly shutdown of workers. In such a shutdown
sequence the change of state inhibits PAX from
dispatching any further computational work but allows it
to process the completions of outstanding work and to
manage the synchronization of workers with the
procedure so that those workers can be detached from the
problem.

Since command interpretation may be suspended, a
command priority structure is provided. This facility
allows the PAX system builder to resolve potential
conflicts that might occur in interleaved interpretation of
commands.

PAX-Worker Interaction Facility

PAX and its workers interact on a dynamic basis by
exchanging messages through a shared data area.
Currently PAX transmits only one type of message to
direct an individual worker to execute a task.

The workers may transmit the following messages to
PAX:

(1) The worker is ready to begin task execution.
(2) The worker has successfully completed a task that

it was directed to perform.
(3) The worker has encountered an error condition

while executing its task.
(4) The worker needs more time to complete its

assigned task.
(5) The worker has identified a condition requiring

operations outside the limit of its authority and thus
requests that PAX manage a task identified in the
message to effect these operations.

(6) The worker has identified a change-of-task state.
Currently the only defined transition is to a nonexecuting
condition.

(7) The worker is on the verge of unconditionally
ceasing operation.
A worker is under no constraint in regard to the messages
that it can send at any time. Thus PAX is prepared to
handle even inconvenient message sequences such as the
transmission of a processor termination message in
response to a PAX message to perform a computational
task.

Error and Event Logging

As might be expected, the debugging of parallel,
asynchronous operations can be very challenging. PAX
provides an error and event logging facility for the
purpose of tracking and diagnosing PAX operational
experience. Each error that is detected, whether by PAX
or by a worker, is noted and logged. Also, PAX notes
and logs a number of significant events and changes of
state that occur within its own boundaries. Information
defining the precise geneology of each such error or event
may, optionally, be recorded in the log entries for
enhanced diagnostic use.

Error and Fault Recovery

PAX provides extensive error and fault recovery
mechanisms. The entire computational management
facilities of PAX are available for this purpose so that
parallel, asynchronous computational procedures can be

used to recover from errors and faults. Invoking such
recovery procedures is optional for errors; however,
PAX must be provided with appropriate information for
handling PAX system faults. The most likely of these
faults is the uncontrolled termination of a worker. Fault
recovery options range from simple reassignment of the
worker’s task to rejection of all computational results
from the entire procedure followed by a recovery
sequence (of other procedures) and subsequent
reexecution of the procedure during which the fault
occurred. When each procedure is defined by the user to
PAX, information regarding the desired error and fault
recovery options must be provided. For example, this
information might include a complete computational
sequence, potentially involving parallel computations, to
reconstruct lost relationships in shared data. Under these
circumstances PAX would dynamically insert the
supplied control language codes into its own control
stream and begin executing them. The end of the
recovery-code sequence is made by PAX to restart the
computational procedure in which the error or fault
occurred. This recovery mechanism can be extended to
any practical depth should additional errors or faults be
encountered during a recovery sequence.

The error and fault detection and recovery mechanisms
keep track of the number of times errors and faults have
occurred both in particular tasks and in the procedure.
Should errors recur and exceed a preset numerical limit,
PAX will bring to an orderly halt all work on the problem
and await the user’s intervention. PAX does not provide
any new solutions to the problem of detecting errors,
particularly the infinite loop problem. PAX’S error
counting mechanisms are intended to limit the spread of
such problems rather than to diagnose and correct them;
however, future versions of PAX may extend the logic to
measure and compare worker productivity in order to
detect infinite loops as they execute.

The most probable fault in a real parallel machine is
the unexpected failure of a managed processor. As the
number of processors increases, the probability of
encountering such a failure during the operation of a
problem rises, presumably in a linear manner. Because of
the high cost anticipated of operating such a machine, it
is essential that the PAX design not respond to such
events by discarding the computational product produced
up to the fault point. Simple checkpointing of previous
computational results is a possible alternative, but
experience gained in implementing a real parallel problem
suggests that such checkpointing requires more time and
resources than do recovery methods based on the true
needs of individual procedures.

Checkpoint and Restart Facility

PAX offers its own checkpoint and restart facility
because a number of independent but logically unified

8

processes may be executing under PAX at any time. The
checkpoint sequence occurs whenever PAX is ordered to
halt. Such an order may be delivered to PAX from the
UNIVAC systems console, from the PAX control
language stream, or from within PAX itself.

The checkpoint and restart facility separates problem-
specific information (i.e., information that describes the
current state of the problem work to be done) from code
and data relating to the management and operation of
PAX and its workers. All PAX starts begin by loading
the problem-specific data from a known, permanent
place. Data relating solely to PAX’S internal operations
and arrangement are not loaded from any checkpoint file
but are, instead, accepted as supplied in PAX’S own
program load image.

This selective reloading of data during the PAX start
sequence allows PAX to be highly tolerant of alterations,
particularly to its own code and that of its workers. In
this way bugs can be corrected without loss of position in
a current problem. Additionally careful adjustments to
the current problem state or the data base supporting
such a problem can be made while PAX is halted without
loss of position in the problem.

Architecture
The following discussion details architectural points of

PAX as it is simulated on the Lewis Research Center’s
UNIVAC 1100/42 system. Although the current imple-
mentation is not intended for a real parallel,
asynchronous machine system, most of the
organizational aspects will still apply in a real system.

The current PAX implementation is constrained by the
fact that PAX has no authority regarding the allocation
of resources within its host environment. In particular,
worker components can be placed temporarily in a
nonexecutable state by UNIVAC’s EXEC VI11 operating
system without the knowledge of PAX. This situation
causes difficulties in that PAX misinterprets the absence
of activity from the worker to be an unscheduled
termination rather than a temporary suspension of that
worker.

Labor-Management Architecture

The principal architectural division in PAX is the
labor-management division. The management function
(i.e., the definition, direction, interaction, and manage-
ment of a problem) is contained within the formal
boundary of PAX (fig. 2). All parallel, asynchronous
computation is performed by the workers. PAX and its
workers are connected by a communications facility
through which messages can be passed to direct the
actions of the workers and to report the results of such
action and the status of the workers.

~

7”
*L j

The architecture also defines an access path for PAX
and all of the workers to a shared source of data. This
shared source of data is optional since some meaningful
parallel-processing problems do not require shared data.
These problems are usually not input data intensive.

Some serial computation is performed within the
formal boundaries of PAX. This architecture simplifies
internal PAX design and is appropriate when PAX is a
single-user system. When multiuser architecture is
approached, this concept may well be revised since PAX
would be likely to have more pressing management duties
that would be given precedence over the execution of
serial tasks for a particular user.

PAX Management Architecture

PAX has six internal components (fig. 3):
(1) The shared executive-data area (EXDA) is the

internal binding among the other five components of
PAX. All data defining the current operating state of
PAX and the current state of the computational problem
under consideration are contained in the EXDA. Also, all
internal communications between PAX components are
routed through the EXDA.

(2) The overall manager (OM) provides all basic
management decisions and directions.

(3) The external listener (EL) waits for messages from
workers or other software entities that have access to the
(PAX) interprocessor communications path. When such
messages are received, the EL performs some error
checking and message transformation and queues an
appropriate message to the OM.

(4) The anticoma activity (AC) serves as a timer for
PAX. It periodically scans the expected completion times
of any outstanding work in the PAX system and notifies
the OM of any overdue events. This activity prevents the

Communications

Parallel asynchronous executive (PAX)
Functions:

Serial processing

Figure 2 - PAX labor-management architecture.

9

Corn - ni tions "- """"" 1 I Parallel. asynchronous executive (PAX)
1 I

I I
I 1

I

: _I" I
I

External listener I
I I Anticoma

I
1 executive

I Shared-

u data area

I
I
I
I
I
I
I
I
I
I
I
I

Figure 3. - PAX management architecture.

OM from drifting off into a comatose state in the event
that all of the workers fail (e.g., an unexpected infinite
loop occurs in a parallel procedure).

(5) The Systems Console Communicator (CC)
provides an error checking and message translating
intermediary between the OM and the UNIVAC systems
console. Full bidirectional conversations initiated by
either party may be carried on between the OM and the
UNIVAC systems console.

(6) The Systems Console Listener (CL) waits for an
indication from the UNIVAC systems console that it
desires a conversation with the OM. In this event the CL
so informs the OM, which then responds through the CC.

Overall Manager Architecture

The internal arrangement of the OM is depicted in
figure 4. After the PAX startup sequence has completed,
control passes to the PAX control-stream interpreter.
This interpreter fetches the codes produced by the PAX
Control Language Assembler (or dynamically created by
PAX itself) and directs control to an appropriate PAX
action effector. A specific action effector is dedicated to
each PAX control code and is responsible for carrying
out the desired action. Between control-code fetches, the
control stream interpreter checks to see whether any PAX
command messages are waiting. If such a message is
waiting, control is diverted to the PAX Command
Message Interpreter (CMI) to process the command.
Normally, control returns then to the control-stream
interpreter; however, on the appropriate command,
control may pass to the exit sequence module from which
a normal exit occurs.

1 Startup sequence module I

PAX control-stream interpreter

Command message
interpreter

Parallel, asynchronous procedure
management (dispatcher)

PAX action effector

Figure 4. - PAX overall manager architecture.

From a control-stream context PAX can be viewed as a
virtual machine. The control codes supplied in the stream
designate actions to be performed by the PAX virtual
machine, each action being completed before the next is
begun. Some actions performed by the PAX virtual
machine are procedures that are split into segments that
operate in parallel; however, in the control-stream sense,
they still appear as single actions designated by a single
code. Thus a parallel, asynchronous procedure does not
differ from any other action when considered from the
control-stream perspective; however, internally the
parallel, asynchronous procedure management action
effector (also referred to as the dispatcher) is very
different from other action effectors. The principal
difference is that it checks for the presence of command
messages and, if such a message is present, transfers
control to the CMI. Upon completion (or suspension) of
message interpretation, control transfers back to the
dispatcher. The other principal difference is that the
dispatcher's actions consist not of computation but of
message generation, receipt, and processing.

Parallel, Asynchronous Procedure Management
Architecture

Figure 5 depicts the general organization of the
dispatcher portion of the OM. Upon transfer of control
to the dispatcher an initialization sequence is performed
(1) to establish the status of each authorized worker and
(2) to construct the necessary internal task descriptions to
effect the requested parallel procedure.

Once initialization is complete, a specific process of
handling messages and dispatching work is begun. The
priority of dispatcher attention is as follows:

(1) Any waiting command message is interpreted by a
temporary transfer of control to the CMI.

(2) Any messages received from workers are handled
by an internal segment of the dispatcher.

10

Initialization and task >

Command message interpreter

I Worker message handler
Message and work
detector and prior-
ity scheduler I I Conflicted-task effectors

I 7 Task information transmitter

I 1 Exit sequence

Figure 5. - Parallel, asynchronous procedure management architecture
(dispatcher).

(3) Any read-to-run conflicted tasks that, instead of
being distributed to workers, are to be executed by PAX
are executed in an internal segment of the dispatcher.

(4) If ready-to-execute parallel tasks and idle workers
exist, appropriate task execution messages are made up
and transmitted to the workers by an internal segment of
the dispatcher.
If none of these conditions exist, the dispatcher issues an
activity suspension request on behalf of the OM and
awaits the arrival of either a command or a parallel
processor message.

The dispatcher action effector also offers an alter-
native initialization sequence, which allows reentry of a
suspended parallel procedure. This initialization skips the
problem-related task-building operations and, instead,
simply accepts the task descriptions already in the various
PAX task queues. Parallel processor management
functions and maintenance-task building proceed
normally in this situation. This architectural feature
allows PAX to suspend parallel operations in
midprocedure and to resume those operations at a later
time. This ability is necessary to satisfy checkpoint/stop
requests (on command or on internal error) in a timely
manner.

As noted in item 4 in the list of priorities, the
dispatcher is responsible for matching waiting tasks to
available workers and transmitting appropriate messages
to such workers to effect the tasks. To perform this
action, the dispatcher splits such tasks (if possible) into
tasks of manageable size. The dispatcher maintains tables
in the EXDA for use in establishing the number of
execution vectors that will lead to a task of reasonable
duration.

The response of the dispatcher to errors and faults
arising from executing tasks is important to the overall
success of PAX. The following options are available to
the dispatcher, one of which must be selected by the user
(currently, at PAX build time) for each dispatchable
task:

(1) PAX may be ordered to checkpoint and stop
immediately.

(2) The error may be noted and ignored. Faults (e.g.,
the unconditional termination of a processor that is
unsynchronized with the problem) may not be ignored.

(3) The task generating the error or fault may be
placed in the waiting task queue for reexecution by the
next available appropriate worker.

(4) The entire procedure generating the error or fault
may be reexecuted.

(5) The procedure generating the error or fault may be
discarded in the most expeditious manner possible. Then
a user-specified series of procedures may be inserted into
the PAX control stream and executed in order to perform
such remedial actions as are necessary to return the
problem to a known state. Upon successful completion of
the reconstruction, control will transfer to the faulting
procedure, which will be freshly initialized and executed.

PAX maintains statistics on the occurrence of errors
(on a task basis) and faults (on a processor basis) and
does not allow limitless repetition of errors or faults.
Repeated errors from a particular task will eventually
force a checkpoint and stop of the problem. Repeated
faults from a particular processor will cause PAX to
remove that processor from use and deliver it to an
architecturally defined (but not currently implemented)
maintenance facility. If PAX removes such a processor
from use, it will attempt to obtain a replacement and, in
any event, will continue on with the problem with
whatever resources remain. If all parallel processor
resources are exhausted, PAX will checkpoint and stop
the problem and itself.

Worker Architecture

The architecture of a PAX worker is shown in figure 6.
(Note that “worker” is used here in a conceptual sense

Communications

n
‘ I I - Worker lccal management

-t 1

I I
I
I

+”.! Algorithm effector ‘ 2 I Algorithm effector 9
4 Algorith’m effector

I
Environmental services I

U
Figure 6. -Worker architecture.

and, for PAX’S purposes, may mean one of many
processes on an individual worker computer.) A worker
is controlled by a simple management program that
receives and transmits messages and transfers control to
algorithm effectors. The algorithm effectors periodically
transfer control to a progress estimator (an
environmental service) that may transmit a request for
more execution time to PAX if necessary. Several other
services are available to algorithm effectors for the
transmission of other requests to PAX.

The worker cycle is simply this:
(1) The worker receives a message to execute a task.
(2) The worker executes the appropriate algorithm as

specified by the supplied execution vector (or vectors).
(3) Various PAX facility requests (for conflicted tasks,

etc.) are transmitted to PAX as appropriate.
(4) A task completion message is transmitted to PAX

on completion of algorithm execution.
No ability to query the worker during task execution is

defined within PAX architecture. This relieves PAX of
the burden of periodically querying a (potentially) very
large number of workers and simplifies worker design
and implementation; however, it also means that fault
detection must become a passive process since PAX
cannot query a supposedly busy worker to determine its
progress or its health. This architecture could be changed
in future implementations. Current experience shows that
an algorithm with an infinite loop can easily consume all
available PAX system resources through the passive fault
detection mechanism. The mechanism is as follows:

(1) After a reasonable period of time, PAX declares
the worker executing the infinite loop to have faulted.

(2) PAX institutes the appropriate recovery
procedures, including the addition of a replacement
worker. Eventually, the task containing the infinite loop
is assigned to another worker.

(3) While the worker that was originally assigned the
task containing the infinite loop continues to work
diligently at its assigned task, a second worker attempts
to execute the infinite loop and is eventually faulted by
PAX.

(4) Steps 1 to 3 repeat until all workers are executing
the infinite loop and PAX is halted for lack of worker
resources.
As can be seen, the addition of some sort of
asynchronous query facility is highly desirable.

Concluding Remarks
A software operating system (PAX) has been

developed to demonstrate the feasibility of applying
many independent processors to a single, logically unified
problem. Results indicate that a real parallel,
asynchronous processing system can be defined,
implemented, and brought to bear on large
computational problems. This system will allow the man-
month rule to apply to a wide range of computational
problems that fall within the restrictions set forth in this
report. Thus a problem (operating under this system) that
could be solved in 2 months by 20 computers might be
solved in 2 days by 600 computers. This man-month rule
may be followed without practical engineering limit.

PAX has achieved the following:
(1) Appl i ed s eve ra l comput ing p rocesses

simultaneously to a single, logically unified problem
(CASPER)

(2) Resolved most parallel-processor conflicts by
careful work assignment

(3) Resolved by means of worker requests to PAX any
conflicts not resolved by work assignment

(4) Provided fault isolation and recovery mechanisms
to meet the problems of an actual parallel, asynchronous
processing machine
As with all such research efforts, much work remains to
be done (as delineated in appendix B). The limitations of
the reported work are the result of imperfect vision
during the design phase and do not represent long-term
imperfections of the overall concept. The reported work
is a solid base of learning from which a second generation
of parallel, asynchronous process management can be
designed and implemented for a truly parallel,
asynchronous machine.

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio, February 28, 1983

Reference
1 . Haynes, L. S.; et al.: A Survey of Highly Parallel Computing.

Computer, vol. 15, no. 1, Jan. 1982, pp. 9-24.

12

Appendix A
Parallel-Process Examples

PAX was designed and implemented in response to the
needs of CASPER (Combined Aerodynamic Structural
Dynamic Problem Emulation Routines), a method for
simulating the unsteady viscous flow of air through real,
time-varying flow fields. CASPER simulates such airflow
by creating a vast population of Lagrangian aerodynamic
elements. It applies various algorithms to known prop-
erties of an aeroelement to calculate other properties for
it. For instance, the velocity and position of an
aeroelement and its nearest neighbor elements are used to
establish the velocity field gradients for the aeroelement.
Then (in a subsequent computational procedure) these
velocity gradients can be used with the Navier-Stokes
equation to produce aeroelement accelerations. Although
this report does not offer a detailed exploration of the
mathematics and methods of CASPER, it provides some
examples of parallel processing as applied to CASPER.

Simple Parallel Process

In CASPER, the volume of each aeroelement is
estimated on the basis of its proximity to each of its
nearest neighbor aeroelements. This estimate is not
necessarily accurate in an absolute sense, but it is
consistent on an element-to-element basis. During
individual volume estimation a running total of all such
individual volumes is maintained. By comparing the final
total of individual aeroelement volumes to the actual
volume known to be occupied by all aeroelements, a
multiplicative correction factor can be obtained and
applied to each aeroelement.

Listing 2 illustrates how the volume correction factor
can be applied in a simple parallel, asynchronous process.
The subroutine VCOR multiplies each aeroelement
volume by the correction factor and places the result in a
scratch location associated with the aeroelement. The
estimated volume of each aeroelement is obtained from a
shared data area through a call to the Fortran function V
(line 24 of listing 2). Write access to each aeroelement’s
scratch location is through the Fortran subroutine
STAESC (line 25 of listing 2). The correction factor is
supplied to VCOR as the subroutine argument VL. The
algorithm’s execution vector is the aeroelement
identification (the DO-LOOP index of line 22) and the
volume correction factor VL.

PAX delivers many individual execution vectors to
each worker executing this subroutine by supplying a
range of aeroelement identifications (IL to IH, supplied
in the argument list) and a single correction factor VL,
shared by all aeroelements. This arrangement is typical of
execution vector manipulations by PAX. Many execution

vectors contain components that do not vary from task to
task and thus are ignored in work scheduling. PAX
distributes work according to the parts of an execution
vector that distinguish a specific piece of work from all
other pieces of work. These components of the execution
vector are manipulated as ranges of values rather than as
individual values.

This example is simple, but it illustrates the advisability
of input and output segregation in algorithm design for
parallel processing. In VCOR the corrected volume result
is placed in a scratch location for later (post-parallel-
procedure) use in a subsequent aeroelement volume up-
date procedure. The alternative would have been to make
in-place correction of each aeroelement’s volume. The
selected approach has the distinct advantage that, should
an unsynchronized worker failure occur during this
procedure, the shared data base can be recovered merely
by reexecuting the parallel task (or tasks) placed under
suspicion by that failure since the input data can safely be
assumed to be uncorrupted. If the algorithm had stored
the corrected volume result back into the shared volume
location for the aeroelement, such a failure would have
left PAX uncertain as to the state (corrected or
uncorrected) of each suspect volume. In such an event
recovery procedures would have to include the
reestimation of aeroelement volumes from other
uncorrupted data.

Parallel Process with a Conditional Algorithm

Listing 3 illustrates a parallel process that requires
conditional branches within the algorithm. Subroutine
MOVEL moves aeroelements through space by inte-
grating velocity and acceleration, subject to the
constraint that no physical boundary shall be violated.
The conditional branch occurs when a boundary is
violated. In this event the algorithm must locate the point
of violation and provide an alteration of course at that
point. Not all aeroelements will require such an
alteration, nor will the same boundaries affect each
aeroelement (whether or not a violation occurs).

CASPER supplies this algorithm with an initial
position (line 192, function reference X) and velocity (line
193, function reference U) for each aeroelement, as well
as an acceleration (line 194, function reference A). The
acceleration is previously calculated with the Navier-
Stokes equation and is presumed to be constant for the
time period over which the positions are to be calculated.
CASPER describes real shapes as a concatenation of
truncated functions F of space and time. A boundary is
the locus of all points such that F is zero. The volume

13

contained by such a boundary is the locus of all points in
space-time such that F is less than zero. To reduce
computational load, CASPER identifies zones in space
(in this example through the subroutine call TSTZN at
line 334) for which particular subsets (identified through
function references IPZBL and ZBL, lines 338, 340, and
343) of the concatenation of functions F apply. Thus the
need to check positions in space-time against all functions
in the concatenation is eliminated.

The key conditional branch occurs at line 208 of the
listing. The internal subroutine YNM has just returned in
the variable SVMIN the smallest surface function value
for the appropriate subset of the functions F at the
current position of the aeroelement in space-time. If the
value of SVMIN is zero or negative, a boundary violation
is occurring at that point in space-time and corrective
action (beginning at line 250 of listing 3) must be taken.
This corrective action consists of (1) identifying the point
in space-time just short of boundary violation for use in
the next normal boundary violation test (lines 206 to 208)
and (2) setting a flag to indicate that a boundary bounce
operation must occur if the normal boundary violation
test shows no violation. The subroutine inspects the
boundary bounce flag at line 209 of listing 3 and, if so
directed, applies an angle-of-incidence-equals-angle-of-
reflection rule to the aeroelement’s path by adjusting the
aeroelement’s velocity vector (lines 210 to 230, especially
line 224, listing 3). The angle-of-incidence-equals-angle-
of-reflection rule is given as a first approximation to
aeroelement behavior, but almost any other rule could
easily be inserted in this code.

It is important to note the highly conditional and (from
the algorithmic design viewpoint) unpredictable nature of
this parallel process. Each aeroelement is checked against
only a subset of the boundary functions, and the subset
may change in midflight for any particular aeroelement.
An aeroelement may or may not violate one or more of
the boundary functions, and a course modification code
must be applied only if such a violation occurs. Parallel
processing is ideal for handling these conditional clauses
because the algorithm is executed independently for each
aeroelement by a traditional serial machine in which
conditional branches do not carry any particular penalty.
The power of parallel processing arises from the fact that
this algorithm can be split by aeroelement identification
(ID) range (i.e., worker N sets aeroelement ID’S running
from ILn to IHn while worker M sets aeroelement ID’S
running from ILm to IHm, etc.) into many tasks to run
on many individual machines. Such splitting is possible
because the inputs (aeroelement initial position, initial
velocity, and acceleration) are segregated from the
outputs (aeroelement final position and final velocity,
which are both placed in aeroelement scratch locations)
and because shared outputs (aeroelement scratch
locations) are mapped on a one-to-one basis by the
execution vector (aeroelement ID’S).

Parallel-Process-Generated, Shared-Access Conflicts

Listing 4 illustrates a parallel process that generates
shared-data-access conflicts. CASPER maintains a
linked list for each flow zone of all of the aeroelements
that are actually resident in that flow zone. As
aeroelements move through space, they may move to
another flow zone. Thus CASPER must periodically
search through each flow zone list to assure that it
contains only aeroelements that are actually resident in
that flow zone. The purposes of the subroutine RES02
are (1) to search through the linked list of each flow zone
in the range IZL to IZH for aeroelements that do not
reside in that flow zone, (2) to remove each offending
aeroelement from that list, and (3) to link each such
aeroelement into the list of the proper flow zone. The
need for PAX conflict resolution services arises from the
fact that PAX grants authority to the worker to
manipulate lists only in the assigned range IZL to IZH.
Although this authority is sufficient to allow an
individual worker to remove an offending aeroelement
from a list it is searching, it does not necessarily permit
the worker to place that aeroelement in the correct list
since that list may lie outside the range IZL to IZH.

To link an offending aeroelement into its correct list,
the subroutine first checks to see whether the targeted list
is within its range of authority (lines 165 and 166). If so,
relinking proceeds without communication with PAX;
otherwise the aeroelement is linked into a local list for
later transmission to PAX in a conflicted-task request.
To reduce computational load, these local lists are
maintained by target list number so that PAX will not
have to perform any further sorting. Also, these local
lists are held until either (1) the parallel process comes to
an end and must report completion to PAX or (2) no
more local list room is available and a new list must be
accommodated. Lines 184 to 187 are associated with the
former condition, with line 186 invoking the tether (local
list) flush subroutine TETHF.

The tether flush routine (listing 5) illustrates the
conflicted-task request procedure. The target list number
(flow zone ID in variable J, lines 31 and 35) and first
aeroelement ID in the local list (variable I, lines 29 and
34) are passed to the PAX conflicted-task request
routine, REQSAF, on a stack that also contains
appropriate argument control codes. The requester’s ID
(parameter OURID) and request number (literal
argument to REQSAF) are provided in the actual call on
line 47 to the request subroutine. REQSAF, a worker
environmental service (fig. 6), provides the interface to
the PAX/parallel processor communications facility by
constructing and transmitting the appropriate message to
PAX. A shared-data-base flush of local buffers must
precede the call to the request routine, to assure that
PAX will be able to access the most recent information
placed by the executing process in various aeroelement

14

linkage slots. Also, listing 4 and 5 do not show that
storage locations associated with the first aeroelement in
each local list contain the ID number of the last
aeroelement and the number of aeroelements in the local
list. This information is needed to execute the conflicted
task.

The example of listing 4 illustrates the need for the
PAX parallel-process fault recovery features. Consider
what would happen if that parallel process should
unexpectedly terminate (e.g., by a hardware failure)
while sorting through lists as directed. In this event some
offending aeroelements might remain linked in local lists
with no reference to them from any of the shared lists.
Alternatively, if the termination occurred during the
unlinking or relinking (lines 152 to 154 and lines 167 to
177, respectively) of an aeroelement, the integrity of the
shared list would be compromised. Clearly such

difficulties cannot be corrected by simply rerunning the
process on another processor.

In response to this, PAX offers its extensive recovery
capabilities. In this case the choice was to reconstruct the
shared linked lists to assure list integrity and cornplete-
ness, by discarding the work of the existing parallel
procedure and instituting a new parallel procedure. The
reconstruction procedure links every aeroelement into
some legal shared linked list without regard to the
correctness of the selected list. This reestablishes the
integrity of the shared data structure so that the parallel
sorting procedure will produce correct results when it is
subsequently reexecuted. In this way the computational
product managed by PAX can be preserved despite the
otherwise catastrophic failure of one or more of PAX’S
managed components.

1s

Appendix B
Suggestions for Further Work

As with most research projects, more work remains to
be done. This initial exploration has suggested a number
of possible improvements to current PAX design that
would facilitate its use for a real parallel, asynchronous
processing machine. These improvements-adjustments
to existing PAX software strategies and desirable
selections for PAX hardware environments-are
discussed in this appendix.

Software Improvements

Initial PAX design did not account for parallel shared-
data storage (i.e., the storing of logically related data
across many mass storage units), nor did it provide for
recovery from mass-storage-unit failures. Since future
implementations will undoubtedly require such parallel
storage, fault recovery schemes must be defined for the
failure of individual mass-storage units. Recovery
procedures for mass-storage-unit failure would be
specified by the user in a manner similar to that for
processor unit failure. It would be desirable not to
burden the user with the problem of fielding shared-data-
access failures. Thus one (or more) layers of shared-data-
access services, including the ability to identify and report
to PAX such data access failures, must be provided in the
PAX system environment.

Intelligent shared-data-base controllers might be desir-
able to field requests from workers for data access. These
controllers could add two valuable design features. First,
they could handle data-base-unit failure as mentioned in
the preceding paragraph. Second, they could provide a
dynamic redirection facility to the shared data base to
ease the local buffer flushing loads that may be
encountered in an improved system. This feature might
work by having each data requester inform the controller
if the data access is to include data modification rights. If
this is the case, the shared-data-base controller could
redirect subsequent requests for the particular data
directly to the controller for the local buffer of the most
recent (potentially) modifying requester. Thus the last
processor to modify the data would transmit that data
directly to the new requester, saving the intermediate
transmission to the shared-data-base controller. Care
must be taken to account for the fact that the new
requester may also be a modifying requester. Also, it is
possible that in some cases a data request message might
not represent a sufficiently smaller transmission load
than the requested data itself. If so, a shared-data-base
controller might well be a needless complication.

As mentioned in the main body of this report, an
asynchronous worker status facility would be useful to

16

avoid long latencies by PAX in assessing the health of a
particular worker. Since PAX would presumably be
implemented as a superexecutive over existing operating
systems, it should not be difficult to provide a mechanism
for the local machine operating system to report the
operating statistics for a particular process. The con-
sumption by a particular process of system resources
(memory, processor, and input/output) should be a
reasonable first measure in determining process health.
The local operating system could also report any process
state transitions (e.g., from “competing for resources’’
to “blocked for lack of local resources”) to PAX in order
to eliminate unnecessary health queries and erroneous
health determinations by PAX.

The definition of a worker “personality” may be
advisable to allow PAX to manage nonhomogeneous
parallel processors (or, more easily, a family of com-
puters with identical architecture but differing in
computational speed). This ability would be especially
useful when massive parallel-processing facilities are not
affordable on a full-time basis. An organization with
occasional need for such supercomputing may be able to
get it by using the computing power that it normally
applies to other needs, such as shop management,
accounting, business computation, and office
automation. Although computers currently in place may
not be entirely appropriate for management by PAX, a
family of computers might be selected that would serve
well both as PAX workers and as computers for various
other needs.

Finally PAX capabilities were limited unnecessarily in
this version by the decision to make PAX a single-
problem environment. The next PAX design should
allow more than one parallel problem to be managed and
executed concurrently in order to increase and even out
the utilization of the entire conglomerated machine.
Although a single parallel problem could keep each
parallel processor busy if several logical workers are
assigned to it, periods of severe inactivity may be
expected as the problem goes through changes of state,
either in an internal sense (e.g., extensive serial
operations for crucial problem-management decisions or
for fault recovery) or in an external sense (e.g., being
checkpointed). Thus having several parallel problem
streams in progress would be desirable to fill in the gaps.

Certain advantages would be available in exchange for
the increased complexity of the multiproblem archi-
tecture. The health and characteristics of processes in one
problem may provide information useful in determining
the health of processes in another problem. For instance,
if a process in problem A is overdue for completion when

I

a process in problem B running on the same physical
machine has completed in record time, PAX could
conclude either (1) that the A process is healthy but has
been squeezed out of its share of the machine resources
by the B process or (2) that the B process demonstrates
that the physical machine is healthy but the A process
either is looping or has crashed.

Beyond these conceptual adjustments to PAX, a
number of practical concerns should be considered in
future designs. These include the management,
maintenance, and alternative utilization of the large
number of machines that would be associated with a real
PAX implementation. A facility for PAX to turn a
suspect machine and appropriate symptom messages over
to a diagnostic and maintenance complex could be
valuable because of the large number of machines that
might be used by PAX. Furthermore it might be
financially desirable for PAX to be able to release an
operator-selected machine from parallel-processing
duties for use in other operations (e.g., to operate a test
facility or to provide business processing services during
normal business hours). Another useful feature might be
a dynamically specified limit on the level of parallel-
processing activity for a particular machine, so that
machines that are not fully utilized for some other nec-
essary activity such as word processing may simultan-
eously participate in parallel-processing problems.

Hardware Improvements

It is the author's view that PAX will require much less
hardware development than most other supercomputer
schemes. Indeed a principal goal of any PAX implemen-
tation should be to keep hardware components straight-
forward, reliable, and inexpensive and thus avoid the
difficulties of ultra-high-performance electronics usually
associated with supercomputers. Off-the-shelf computer
components appropriate for a PAX implementation are
now available in quantity at relatively low cost. The
author believes that an entirely satisfactory PAX
implementation could be produced with off-the-shelf
components currently in production by any of several
manufacturers.

A thoughtful review of the concepts outlined in this
report should convince the reader that the most difficult
hardware problem will be communications. In particular,
for shared-data-intensive problems the communications
link between the workers and the mass-storage units will
be the pace-setting path, since all data to be used must
filter through the data-access communications path.
Thus the performance of the communications link must
be matched to the performance of the mass-storage units,
with due consideration given to the relative shared-data
intensity of the problems to be solved.

Communications hardware is available off the shelf
that approximates the performance of some midrange

~ F;
*,L

mass-storage units (1 million to 10 million bitslsec).
Higher performance communications options are
available; however, such hardware may leave the
developer spending more for communications units than
for the mass-storage and processing units that are being
linked together. Some manufacturers are beginning to
offer communications hardware using fiber-optic
technology that may considerably improve this situation
and allow the effective use of high-performance disks in
shared-data-intensive problems.

Careful PAX implementation can render the resulting
software product relatively insensitive to future improve-
ments and upgrades in communications technology. A
natural dividing line in PAX design occurs between PAX
and its communications services. Thus future
improvements in communications technology can be
incorporated into the hardware with minimal software
difficulty.

Aside from communications technology the
communications speed problem can also be approached
from the context of communications topology. Each
candidate topology offers a trade-off between commu-
nications equipment cost and communications speed.
This subject has been treated in great detail elsewhere and
need not be explored here. It is sufficient to note that,
again, careful design can make PAX insensitive to
communications topology so that PAX implementations
can be tailored to meet the requirements of particular
parallel problems. With the topological tailoring
approach, useful PAX systems should be configurable
with off-the-shelf hardware out to economic limits
determined by the trade-off between performance and
cost.

The selection of a computing unit for a PAX
implementation is less critical than the definition of
communications methods; however, implementation will
be easier if certain features are provided. First, the
candidate machine should have a large address space, at
least 232 bytes. The existing PAX software is large and
will certainly expand in any new implementation.
Furthermore a great deal of information must be
maintained on a dynamic basis to define the current state
of a parallel problem. The amount of this information
will grow as more worker processors are added to a PAX
implementation since separate information must be
maintained about each parallel process that is in execu-
tion. Additionally, certain PAX management schemes
may retain information beyond the minimum necessary
for parallel-process management (e.g., the exact history
associated with each task of a parallel procedure). All of
this could combine to increase the size of PAX
significantly. Thus any candidate machine must facilitate
the use of such large amounts of information.

The accessing of large amounts of data by workers and
the distribution of that data across many physical storage
units also dictate that the selected computing unit provide

17 -

~ ~~ ~

some means of translating a user data reference by index
number (e.g., by a reference in the manner of a Fortran
array) into the necessary information to locate and
retrieve that data from its shared-storage location. The
author is unaware of any machine that offers such a
feature as a standard part of its operation; however, a
number of machines provide user-writable control stores
in their processors. With such a feature a machine
instruction might be devised (along with appropriate data
structures) to facilitate such a translation of information.
In particular, machines that implement a virtual
addressing feature and offer a writable control store
would be highly desirable since presumably they would
have the hardware necessary to ease the translation from
an index group through a logical address to a physical or
mass-storage location. This feature becomes more impor-
tant as a problem becomes more shared-data intensive.
The author’s experience with the aerodynamics
computations suggests that the address translation
feature is very important.

Another key point in selecting a PAX worker machine
is the longevity of its architecture. The development of
PAX software for a real system will be a large project. It
would be unfortunate if, as PAX reached practical
application, the selected machine disappeared from the
marketplace because its architecture was out of date. It
would also be undesirable if PAX were forced into

unending rewrites to use features of an expanding archi-
tecture. Therefore one should select an architecture that
is not expected to grow, having started out with all of the
appropriate features to make a good, flexible, fully
integrated computer system. Only the capabilities of the
machines designed to the architecture should grow, for
example, in terms of either increased speed or decreased
physical size. Architectural stability will allow PAX to
use the latest technology without extensive software
changes.

Final considerations here in selecting a computing unit
are its reliability and maintainability. PAX design recog-
nizes the inevitability of worker failures, especially within
a large community of machines. Although PAX can
accommodate these failures without catastrophic results,
too many such failures would set a premature limit on the
expansion size of the system when it spent more time
accommodating failures than computing useful results.
Furthermore worker downtime would be minimized if
most machine problems could be identified automatically
by some maintenance complex associated with PAX. The
computing unit should thus have some capabilities for
self-diagnosis and remote diagnosis. These features are
available to varying degrees on some machines on the
market today. Although this diagnosis feature is not
required by PAX design, it strongly affects the
practicality of maintaining a parallel-processing machine.

18

PAX CONTROL CODE ASSEMBLER -- X 0 1 . 0 0 A 10 AUG 81 19 JUL 1 9 8 2 1 0 : 2 9 : 3 3 . 9 7 8

2 0002
1 0001

3 0003
4 0004
5 0005
6 0006
7 0007
8 0008

i t
i PAX-CASPER CONTROL LANGUAGE
i
i FlOO DUCT WORK AIRFLOW
i
i AUTHOR W I L L I A H HENRY JONES
i XO1-00 19 FEB 81
i -

Listing 1. - PAX control language stream.

PAGE 1

P A X CONTROL CODE ASSEMBLER -- XO1.OOA 10 AUG 81 19 JUL 1982 10:29:33.978 PAGE 2

1 oooc
2 OOOD
3 OOOE
4 OOOF
5 0010
6 0011
7 0012
8 0013
9 0 0 1 4

10 0015
11 0016
12 0017
13 0018
14 0019
15 OOiA
16 0010
17 OOlC
18 OO1D
19 OO1E

21 0420
20 OOlF

22 0021
23 0022
2 4 0023
25 0 0 2 4

27 0026
26 0025

28 0027

000000000
000000001
000000002
000000003
000000004
000000005
000000006

000000008
000000007

OOOOOOOOA
000000009

000000000
ooooooooc

OOOOOOOOE

000000010
OOOOOOOOF

00000001 1
000000012
000000013
000000014

000000016
000000015

000000017

oooooooon

000000001
000000004
000000005

000000003
000000005

000000003
000000004
000000005
000010000
000000052

C61724748
40COOOOOO

000000000
OOOOOOOOA

40COOOOOO
000000000
000000000
49D460000
40COOOOOO
000000000

000040000
000000000

436AAE147

~ ~ E B D B ~ R ~

.PSECT SDCITAI D I RWI LCLI RELI CON
i t
i WORKING CONTROL DATA

CTRL1: .WORD
i-

CTRL2: .WORD
CNTR1: .UORD
CNTRP: .WORD
FZIDL : .WORD
I n I : t WORD
IDE: . UOKD
IDU: UORD
I S I Z E : +WORD
NZN: *WORD

HtiDAST: .FLT
GDAST: < F1.T

CURTIM: *FLT
NINC: +WORD
FVHRBP: .VORD
PAW:
OHEGA: .FLT

FLT

VOLA: eFLT
WREST: .FLT
VCORF: nFLT
PHLOW: .b!ORD
PHHIGH: +WORD
IBDZ: + bIURD
GASCOH: .FLT

1 i RELOCATION SUBROUTINES TU NORMAL MOUE
4 i SORT EXHAUST AND UN-USED TO INLET WITH XREF
5 i RELOCATION COUNTER

3
5 i RELOCATION LOOP COUNT

3 i INLET ZONE I D
4 i EXHAUST ZONE I D
5 i UNUSED ZONE I D
6 5 5 3 6 i NUHBER OF AEROELEflENTS

i FULLOVING III LIST C A N ALSO BE A 3 wnm STRING

a2
XllO.0001 i TIHE INCREMENT
-XD0.0001 i HINUS TIHE INCREMENT
1 .0 i CURRENT TlME
10
0

i NUHBER OF TIHE SUB-INCREHENTS
i F-V HISTORY POINTER

1 .o
0 . 0

i PREVIOUS SOLID ANGLE AVERAGE
i SOLID ANGLE ACCUMULATOR

0 . 0 i AEROELEMENT VOLUME ACCUHULATOR
34560040 i VOLUHE O F PRORLEH LESS INLET AND EXHAUST

0
1 * o i VOLUHE ESTIMATE CORRECTION FACTOR

i SPECIAL RANGE LOW L I M I T
0 i SPECIAL RANGE H I G H L I M I T
262144 i I B D Z N H I G H L I H I T
53.34 i GAS CONSTANT FOR A IR

i NUMBER UF FLOW ZONES

Listing 1. - Continued.

PAX CON

1 002B
2 002c
3 002D
4 002E
5 002F
6 0030
7 0031
8 0032
9 0033

10 0034
11 0035
12 0036
13 0037
14 0038
15 0039
16 003.4
17 0036
18 003C

20 003E
19 003D

21 003F
22 0040
23 0041
24 0042
25 0043
26 0044
27 0045
28 0046
29 0047
30 0048
31 0049
32 004A
33 004%
34 004C
35 004D
36 004E
37 004F
38 0050
39 0051
40 0052
41 0053
42 0054
43 0055
44 0056
45 0057
46 0058
47 0059
48 005A
49 005B
50 005C

ITROL CODE A

000000000

000000003
000000002

000000006
000000009
OOOOOOOOB
OOOOOOOOD
OOOOOOOOF
000000010
000000012
000000013

000000017
000000015

000000018
00000001A
00000001c
OOOOOOOlD
000000020
000000022
000000024
000000026
000000027
000000029
00000002B
00000002c

000000030
00000002E

000000032
000000034

000000038
000000036

00000003A
00000003C
00000003E
00000003F
000000041
000000043
000000044
000000046
000000047
00000004A

00000004F
00000004D

000000051
000000053
000000054

SSEMBLER --

000000001
OOOOOOOOE
000000006

000000001
OOOOOOOOD

000000002
000000013
OOOOOOOOE
000000010
000000000
000000001

OOOOOOOOE
000000002

000000010
000000003
000000000
OOOOOOOlE

000000003
000000010

000000005
000000000
000000010
000000005

000000001
000000000

000000002
000000002
000000012
000000002

000000012
000000002

000000012
000000013

000000010
OOOOOOOOE

000000003
000000000
000000010
000000000
000000006
OOOOOOOOD

000000002
000000001

000000013
OOOOOOOOE
000000010

X O l * O O A 10 AUG 81

OOOOOOOOF

000000001 000000074
000000001 0000000A0
00000000B
000000072
OOOOOOOOD

000000003

000000001
000000080

000000009
000000080

000000002 ooooooooc
000000004
000000081
ooooooooc

000000001
OOOOOOOOH

ooooooooc
000000072
000000084
O O O O O O O O B
000000085
000000081
ooooooooc
OOOOOOOOE
O O O O O O O O D

000000006
000000085

000000007

000000001 000000074
000000001 0000000E4

000000072
OOOOOOOOD

OOOOOOOOD

00000000A

19 JUL 1982 10:29:33.978 PAGE 3

i t
i THIS CODE DOES ELEMENT RELOCATION (I F CNTRl I S ZERO) AND RECYCLING.

+PSECT JRECYLt It RW, LCL, RELt CON

RECYL: TIEA
i -

TEEA
T T S T
TBNE
TIEA
TENL
TEf l I
TEEA

RECYL1: TEDM

TIEA
TENL
TEEA
‘TEDM

TCLRF
TEDM

TEDM

TIEA
TENL
TENL

TENL
TES I

TESI
TENL

TEMI
TESI

TEEA
TEDM

TEDM

T T S T
TBNE
TIEA
TENL
TEMI
TEEA

RECYL2: TEDM

EEXHST

MDFR,CNTRl
MDFRtRECYLl
EREL2
CTRLl
XFZIDL

DFNBZN
DASEA
EMIGRl
PUHRBP

DflIGR2
DASSMtPUHRBP
DASEA
MDDFPXOMEGA
DUOL
DASSM P PAU
DASSItXOtlEGA
D4SE.4
DUSUM
DASSItXUOLA
DASEA
EREL3
CTRLl
UREST
XUOLA
UCORF
PAU
XOMEGA
X I S I Z E
XFZIDL

DUCOR
DASSMtUCORF
D4SEA
DUCORA
DASEA
MDFRtCNTRl
MDFRPRECYL~
EREL4
CTRLl
XFZIDL

DRHOPR

; ALUAYS GIVE USER n SHOT A’r IT
i
i RELOCATE AEROELEMENTS TO INLET ?

i YESt DO SO NOU
i NO

i
i

i FIND NEAREST NEIGHBORS FOR ALL, REGARDLESS
i

i BUMP PRESSURE-VOLUME HISTORY R I N G BUFFER
i

; POINTER
;
i REVISE EACH ELEMENT’S POINTER UITH RESULT
i
i
i SOLID ANCiLE ACCUMULATOR

i ACCUMULATE SOLID ANGLES
i ESTIMATE AEROELEMENT UDLUflES AND

i

i SUM UP AEROELEMENT VOLUME ESTIMATES
i
i
i COMPUTE AEROELEMENT VOLUME ESTfflATE
i CORRECTIUN FACTOR AND AVERAGE SOLID
i ANGLE
i
i
i
i
i
i
i
i CORRECT ALL VOLUME ESTIMATES
i
i
i RESULT COPY-BACK
i
i ASSIGN NEU INLET MASSES ?
i NO
i YES
i
i
i
i COMPUTE PRESSURES AND DENSITIES FOR ALL

P

Listing 1. - Continued.

w

PAX CONTROL CODE ASSEMBLER -- X O l r O O A 10 AUG 8 1

1 OOSD
2 OOSE
3 005F
4 0060
5 0061
6 0062
7 0063
0 0064
9 0065

10 0066
11 0067
12 006s

14 006A
13 0069

15 0068
-16 006C
17 006D
18 OO6E
19 006F

000000056
000000057
00000005A
00000005D
00000009F
000000061
000000063
000000065
000000066
000000060
00000006A
00000006C
00000006E
00000006F
000000071
000000073
000000075
000000076
000000079

000000000
000000006
00000000D
000000001
000000012
000000002
000000002
OOOOOOOOE
000000010
000000003
000000003
000000005
000000000
000000010
000000003
000000003
000000000
000000010
000000005

000000001
000000001
OOOOOOOOE
00000000F
000000086
000000007

000000000
000000006
000000087
OOOOOOOOF

000000005
00000007C
00000007D

OOOOOOOOB
000000001

19 JUL 1982 10:29:33.978

000000074 TTST
OOOOOOOFF TBNE

T I E A
T E S I
TENL
TENL
TEEA
TEDM

R.ECYL3: TEDM

000000000 TEDM
000000112 T JMP

DASEA
MDFR,CNTRl
MDFRpRECYL3
ESUPHR
X I D I
FHLOU
PHHIGH

DPRSHI
DASSMvPHLOW
DASSMvPHHIGH
D A S S I r X I D I
DASEA
DFWRC
DASSMpGDAST
DASSMvMGDAST
DASEA
DINTFPDASEA
MDFRIS,TOKES

PAGE 4

i
i PLAIN-JANE HISTORY FOR INLET ?
; NO
i YES, GET IHLET ZONE RANGE L I M I T S

i
i
i
i SET THE HISTORY FOR EACH INLET AEROELEMENT
i
i
i

i FOWER OF COklPRESSION FOR ALL
i

i
i

i INTERPOLATION M A T R I C I E S FOR ALL
i

i JUMP TO NEXT SECTION

v

Listing 1. - Continued.

PAX CONTROL CODE ASSEMBLER -- X01.00A 10 AUG 81 19 JUL 1982 10:29:33+978 PAGE 5

2 0074
1 0073

3 0075
4 0076
5 0077

i t
i THIS SECTION CALCULATES AEROELEMENT ACCELERhTIUNS V I A THE COMPLETE
i NAVIER-STOKES EQUATION.
i-

+PSECT *STOKE, 1 9 R U I LCLI RELI CON

6 0078 000000000 000000010 OOOOOOOOC 000000000 STOKES: TEIIM DSTOKlPDASEA ;
7 0079 000000003 000000010 OOOOOOOOD 000000000
8 007A 000000006 000000005 000000001 000000121

TEDfl DSTOK2rD4SEA i
TJMP MI IFR~UORK i GO ON TO UORK FLOU

Listing 1. - Continued.

PAX CONTROL CODE ASSEMELER -- XOleOOA 10 AUG 8 1

1 007E

3 0080
2 007F

4 0081
5 0082
6 0083
7 0084
8 0085

10 0087
9 0086

11 0008
12 0089
13 008A
1 4 0080

000000000
000000003
000000006

OOOOOOOOE
000000009

OOOOOOOOE
000000010
000000012
0000000 13

oooooooon

000000010
000000010
000000010

000000003
000000010

000000000
000000010
000000003
000000000
000000005

OOOOOOOOE
OOOOOOOOF
000000010

00000007C
00000001 1

000000012
OQ000007C

000000001

19 JUL 1982 10:29 :33+978 PAGE 6

e PSECT
i t
i THIS SECTION
i-

000000000 UORK: TEDH
000000000 TEDH
000000000 TEDH

TEDH

TEnH

00000013D TJHP

JlJORKr I I RWr LCLr RELr CON

CALCULATES THE INTERELEHENT FLOW OF WORK.

DWRKArDASEA
DWRKDIDASEA
DlJRKE r DASEA

DASStlrGnAST
DIdRKF

DASEA
DNRKG
DASSHrGDAST
DASEA
MIlFRr OUTPUT

i I N I T I A L I Z E THE DATA BASE
i POWER OF DISTORTION - PHASE 1
i POWER O F DlSTORTION - PHASE 2
i HEAT TRANSFER BETWEEN RECIPROCATING
i NEAREST NEIGHBORS

i ACCUHULATE ALL HEAT TRANSFER CONTRIBUTIONS
i

i A N D ADJUST AERUELEHENT TEHPERATURES.
i
I

Listing 1. - Continued.

PAX CONTROL CODE ASSEMBLER -- X O 1 . O O A 10 AUG 81 19 JUL 1 9 8 2 1 0 : 2 9 : 3 3 . 9 7 8 PAGE 7

1 008F ,PSECT SOUTF'U, I P R b J p LCLP RELp CON
2 0090 i t
3 0091 i DATA OUTPUT
4 0092 i -
5 0093 000000000 000000005 000000001 000000146 OUTPUT: TJl lF MDFR~MOVE i NO OUTPUT AT T H I S T I M E

Listing 1. - Continued.

P A X CONTROL CODE ASSEMBLER -- X O 1 . O O A 10 AUG 81 19 JUL 1Y82 10:29:33.978 PAGE

1 0097
2 0098
3 0099

5 009B
4 009A

6 009C
7 009D
8 009E
9 009F

10 O O A O
1 1 00A1
1 2 00A2
13 00A3
14 O O A 4

000000000
000000002
000000004
000000006
000000008
000000009
ooooooooc
OOOOOOOOF
00000001 1

000000010
000000003
000000003
000000003
000000000
000000010
O O O O O O O l D
000000001
000000005

000000013
00000007E
00000007C
00000007F

000000014
000000001
00000007E
000000001

8

+PSECT MOVELr I I R l J p LCLr REL, CON
i t
i THIS SECTION MOUES THE AEROELEMENTS BRSED UPON THE CALCULATED
i ACCELERATIONS.

MOVE: TEDM DMOVEL
i -

i DO ELEMENT M O T I O N
DASSMrCURTIM i
DASSMrGDAST i
DASSMpNINC I

DASEA i
000000000
00000007C TADDF MDFRIGDAST i BUMP CURRENT TIME

MDFRICURTIM
000000160 TJMP flDFRpSORT

i
i

TEDM DMOVL2rDASEA i RESULT COPY-BACK

Listing 1. - Continued.

PAX CONTROL CODE ASSEMBLER -- X01.00A 10 AUG 81 19 JUL 1Y82 10:29:33.978 PAGE 9

1
2
3
4

6
7
8
9

10
11

13
12

1 5
14

16
17
18
19

21
2 0

2 2
23
24
25
26

r

00A8

O O A A
00A9

O O A C
O O A B

O O A D
OOAE

OOBO
OOAF

OOBl
00R2
00B3
00B4

00R6
00B5

00B7
00B8
00B9
OOBA

OOBC
OOBB

OOBD
OOBE

ooco
OOBF

O O C l

000000000

0 0 0 0 0 0 0 0 5
000000003

000000008
OOOOOOOOB
OOOOOOOOE
00000001 1

000000016
000000013

000000018
O O O O O O O l A
00000001c
O O O O O O O l D
000000020
000000022

000000026
000000024

000000029
000000027

00000002A

000000019
000000001
000000016
OOOOOOOOA
000000008
000000019
000000001

000000001
000000019

000000001
000000013
OOOOOOOOE
000000010

000000003
000000010

000000000
000000006

OOOOOOOOE
000000001

000000005

000000000

000000001
000000073

000000001
000000001
000000001
000000074

000000073
000000000

000000003
00000000tl

000000015
000000016
000000073
O O O O O O O O D

000000005

000000001

000000004

000000074
000000178
000000173
000000075

000000001

000000000

000000090

,PSECT % S O R T 9 11 RlJv LCLI HELP CON
i t
i THIS SECTION DECREMENTS THE AEROELEMENT RELOCATION COUNTER FOR THE
i NEXT PASS. I F THE RESULT I S ZERO, CTRL2 I S SET TO 4 TO CAUSE GENERATION
i OF THE FLOU ZONE RESIDENT AEROELEMENT CROSS REFERENCE INFORMATION.
i -
SORT: TMOV M I M D I ~ ; ASSUME a RELOCATION P A S S

MDFRvCTRL2 I

TDEC MLlFR~CNTRl i SHALL blE RELOCATE ?
TBEfl MDFR I SORT2 i YES
TBGT MIlFRISORTl i NO, S T I L L I N WAIT LOOP
T M O V MDFRICNTR? i El01 RE- IN IT IAL IZE COUNTER T O BEGIN

MDFRvCNTRl i ANOTHER WAIT LOOP
S O R T 1 : T M O V

SORT2: TIER
TEMI
TEEA
TEtlM
TEDM

TIEA
TEEA
TJMP

M I M D r l
MDFK' I CTRL2
ERES07
XFZIt lL

DRES02
DASSMICTRL~
D A S H 1 I XFZIDL
DASEf!
EDHHF

MDFRIRECYL

i TURN OFF CROSS-REFERENCE REQUEST

i ZAP CROSS-REFERENCE CONTROLS, REGARDLESS
i

i I N H I B I T REIIUNDANT SORT CHECKS
i DO THE SORT
i

I

I

I

I

i FLUSH CROSS-REFERENCE RESULTS

i LOOP BACK
I

Listing 1. - Continued.

P A X CONTROL CODE ASSEflBLER -- XO1.OOA

1 OOC5
2 OOC6

4 OOC8
3 OOC7

5 OOC9
6 OOCA
7 OOCB
8 oocc

10 OOCE
9 OOCD

11 OOCF
12 OODO
13 OODl
14 00D2
15 00D3
16 00D4
17 00D5
18 0006
19 00D7
20 00D8
21 00D9
22 OODA
23 OODB
24 OODC

OOOOOOOOB

ooooooooc

OOOOOOOOD

OOOOOOOOE

OOOOOOOOF

000000010

00000001 1

000000012

000000013

000000065

OOOOOOOOB
000000083
ooooooooc
000000082
OOOOOOOOD
000000076
OOOOOOOOE
00000007A
OOOOOOOOF
000000077
000000010
000000078
00000001 1
000000079
000000012
000000088
000000013
000000089
000000065
00000007E

10 AUG 81 19 J U L 1982 10:29:33+978

eF'SECT .$ABS.
it
i I N I T I A L I Z E I N D I R E C T P O I N T E R S

XUOLA

XOflEGA

X F Z I D L
.WORD F Z I D L
X I S I Z E
.WORD I S I Z E
X I D I
.WORD IIJI

.WORD U O L n

6 WORD OHEGA

X I D E
.WORD IDE
X I D U
.WORD 1nu
XBDZNS
*WORD I B D Z
XGASCO
,WORD GASCON
101
.WORD C U R T I H

i
i
i
i

i
i
i
i
i
i

i
i
i
i
i
i
i

I

I

I

PAGE 10

Listing 1. - Continued.

PAX CONTROL CODE ASSEMBLER -- X O 1 . O O A 1 0 AUG 8 1

1 OOEO

3 0 0 E 2
2 OOEl

4 0 0 E 3 000000090

19 JUL 1 9 8 2 10:29:33*978

i t
i END OF PROGRAH
i-

.END HECYL i

PAGE 11

Listing I . - Continued.

h,
W

w
0

P A X CONTROL CODE ASSEMBLER -- X O 1 . O O A 10 AUG 81

0003 CNTR1 000000074 R
0003 CTRL2 000000073 R
0000 D A S M I 000000006 RD
0000 DINTF OOOOOOOOB RD
0000 DPRSHI 000000008 R D
0000 DRHOPR O O O O O O O O A RD
0000 DVCORA 000000007 RD
0000 DWRKD OOOOOOOOF RD
0000 EDEBF 0 0 0 0 0 0 0 0 5 RD
0000 EREL3 O O O O O O O O C RD
0003 FZIDL 000000076 R
0003 I B D Z 000000088 R
0003 IS IZE 00000007A R
0003 MGDAST 00000007D R
0003 NINC 00000007F R

0004 RECYL 000000090 R
0003 PAV 000000081 R

0009 SORT2 000000178 R
0000 REL $ X X t S S $ * $ R

0003 VREST 000000084 R
0000 XGASCO 000000013 RD
0000 X I S I Z E OOOOOOOOE R D
0000 SOUTPU $ t $ $ t t S X t R
0000 SWORK t S S $ S $ $ $ $ R

0003 CNTR2 000000075 R
0003 C U R T I M 00000007E R
0000 D A S S I 000000005 R D
0000 DHIGR2 000000009 R D
0000 DF'WRC 000000005 RD

0000 DVOL 000000004 R I I
0000 D S T O K 1 OOOOOOOOC R D

0000 DldRKE 000000010 R D
0000 EEXHST OOOOOOOOF RIJ
0000 EREL4 0000000OD R D
0003 G A S C O N 000000089 R

0000 LCL *ttt*$*t* R
0003 IUE 000000078 R

0000 M I M D 000000000 RD
0003 NZN 00000007H R
0003 PHHIGH 000000087 R
0004 RECYLl O O O O O O O A O R
0000 RW S * t t * t * S * R
0005 STOKES 000000112 R
0006 WORK 000000121 R
0000 XIDE 000000010 R D
0000 XOHEGA O O O O O O O O C R D
0000 SRECYL $t$$$$$$$ R
0000 t $ l c t $ S $ t $ R

19 JUL 1982 10 :29 :33 .978

Listing 1. -

0000 CON S t t X t X S t X R
0000 n S t $ S $ S t * * R
0000 DhSSM 000000003 R D
0000 DMOUEL 000000013 R D
0000 IlRESOl O O O O O O O l S RLI
0000 DSTOK2 O O O O O O O O D R D

0000 DWRKF 000000011 R D
0000 EMIGRl 000000001 R D
0000 ERESU7 000000003 RD
0003 GDAST 00000007C R
0003 I D 1 000000077 R

0008 HOVE 000000196 R
0003 OtlEGh 000000082 R
0003 FHLOlJ 000000086 R
0004 RECYL2 0000000E4 R
0009 SORT 000000160 R
0003 VCORF 000000085 R
0000 XBDZHS 000000012 R D
0000 XIDI OOOOOOOOF R D
0000 XVOLA OOOOOOOOB R D
0000 $SORT $ S t $ $ S $ t t R

0000 IIUSUH oooooooo~ R n

0000 MDIIF o o o o o o o o ~ R r I

0000 +$ABS+ $ $ $ t S S S X $ R

Continued.

PAGE 12

0003 CTRLl 000000072 R
0000 DASEA 000000000 RD
0000 DFNBZN 000000003 R D
0000 DHOVL2 000000014 RD
0000 DKESOP 000000016 R D

0000 DblRKA 00000000E RD
0000 D V C O R 000000006 R D

0000 EREL2 O O O O O O O O H R D
0000 ESUPHR OOOOOOOOE R D
0000 I S * * * $ * t * t R
0003 I D U 000000079 R
0000 HDFR 000000001 RD
0000 MOVEL $ $ * $ * $ X $ $ R
0007 OUTPUT 00000013D R
0003 PUHRBP 000000080 R
0004 RECYL3 OOOOOOOFF R
0009 S O R T 1 000000173 R
0003 VOLA 000000083 R
0000 XFZIDL OOOOOOOOD RD
0000 X I D U 000000011 R D
0000 S D A T A $$$$$$t$$ R
0000 $STOKE t t $ S t $ $ S t R

0000 DWRKG 000000012 R D

PAX CONTROL CODE ASSEflRLER -- X O 1 , O O A 10 AUG 81 19 JUL 1982 10:29:33*978

SSSSSSSS PROGRAH SECTION TABLE S S $ $ t S $ S

0004 CRECYL 000000090 00000007C
0005 CSTOKE 000000112 000000009
0006 %UORK 000000121 000000016

0008 HOVEL 000000146 000000014
0009 CSORT 000000160 00000002D

0007 SOUTPU oooooo13n oooooooo3

0001 .CABS. 000000000 000000066 (
0002 .CREL* 00000006C 000000000 (

0.
108,

102 .) 11 RIJ LCL
0 .) I RW LCL

0003 %DATA 000000072 000000018 (114. 24.) D HW LCL

) I HU LCL
) I RW LCL

) I RW LCL
) I RIJ LCL
) I RW LCL
) I RW LCL

ERROR REPORTS FOR 1 9 JUL 1982 A T 10:34:33.344

SSS NO ERRORS TO REPORT $ S t

ABS
REL
RE L

REL
REL

REL
HEL
HEL
REL

CON
CON
CON

CON
CON

CON
CON

CON
CON

FAGE 13

Listing 1. - Concluded.

w
N

BFOR,HS CASPERl*'JCORD
FOR 4R1 E -01/13/83-14:03:10 (1,)
>BEOF

SUBROUTINE 'JCOR ENTRS POINT 000051

STORAGE USED: CODE(1) 000070i DATA(0) 000015i BLANK COMIION(2) 000000

EXTERNAL REFERENCES (BLOCK, NANE)

0003 CHXLH
0004 CHKTIH
0005 u
0006 STAESC
0007 NERF.3)

STORAGE ASSIGNHENT (BLOCK, TYPE, RELATIVE LOCATION, NAKE)

0001 000017 116G 0001 0000.10 20L 0000 I 0000011 I
0000 000005 INJFI 0000 I 000000 IS 0000 R 000003 R

00101 it SUEROUTINE 'JCOR (IL,IH,VL)
00101 2 t ct
00101 3t c
00101 41: c UCOR t t O t t Y A SUBROUTINE FOR CASFER LYtYYt
00101 5 t c AUTHOR UILLIAM HENRY JONES
00101 6f C uo1-00 02 FEB 79
00101 7 t c
00101 B t c

0000 I 000001 ID
0005 R 000000 U

13200010
13200020
13200030
13200040
13200050
13200060

UOl-OOA 08 FEB 80 SEPARATES INPUTS AND OUTPUT
13200070

0000 I 000002 IE

000000
000000
000000
000000
000000
000000
000000
000000

Listing 2 - Simple parallel computation,

00101
00101
00101
00101
00101
00101
00101
00103
00104
00105
00107
001 11
00112
00115
00120
00121
00122
00124
00125
END FOR
>

91
lot
llt
12:
13t
14t
15t
16%
178
189
198
201
21t
22t
23t
248
258
26t
27f

C
C
C
C
C
C
C-

17

19
20

DESCRIPTION ttttt?

APPLIES A SUPPLIED MULTIPLICATIVE CORRECTION TO THE VOLUME
ESTIHATES OF ALL AEROELEHENTS IN THE RANGE 'IL' TO 'IH'.

INTEGER IL,IH,IS,ID,IE
REAL ULpR
DATA ID/132/
DATA IE/l/
CALL CHKLH (IL~IHFISSIU~IE) F CHECK AEROELEHENT RANGE
IF (IS) 17920917 F VALID RANGE ?
DO 19 I=IL,IHtIS F YES7 APPLY CORRECTION
CALL CHKTIN (ILrIHpI) F KEEP AN EYE ON THE TIHE
R=VLOV(I) e
CALL STAESC (IIR) F RESULT TO SCRATCH SLOT
RETURN e
END

13200080
13200090
13200100
13200110
13200120
13200130
13200140
13200150
13200160
13200170
13200180
13200190
13200200
13200210

13200220

13200240
13200250

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000006
000010
000017
000024
000031
000040
000067

Listing 2. - Concluded.

W
w

PFORPMS CASPER9+MOUELD
FOR 4R1 E -01/13/83-14:04:09 (6r)
MEOF

SUBROUTINE MOUEL ENTRY POINT 0005%

STORAGE USED: CODE(1) 001015i DATA(0) 000172i BLANK COHNON(2) 000000

COMMON BLOCKS:

0003 NZNC 000001
0004 IDUC 000001

EXTERNAL REFERENCES (BLOCK, NAME)

0005 FZ
0006 STAT
0007 ZBL
0010 IPZBL
0011 IPLZN
0012 LZN
0013 CHKLH
0014 CHKTIM
0015 STIAES
0016 X
0017 U
0020 A
0021 STS
0022 GRDBD
0023 SURFVE
0024 STSTAT
0025 ERROR2
0026 TSTZN

Listing 3. - Parallel computation with coordinated algorithm.

0027 TSTBDT
0030 SQRT
0031 NERR3S

STORAGE ASSIGNHENT (BLOCK, TYPE, RELATIVE LOCATION, NANE)

0001 000147 lOlL
0001 000137 1656
0001 000227 2236
0001 000666 29L
0001 000310 3500L
0001 000425 3760L
0001 000747 41L
0020 R 000000 A
0000 R 000024 GB
0004 I 000000 IDU
0000 000121 INJPS
0000 I 000055 I1
0000 I 000100 N
0003 I 000000 NZN
0000 R 000073 TA
0000 R 000071 TN
0000 R 000027 UL
0000 R 000020 XA

00101 it
00101 2:
00101 3 t
00101 41
00101 S t
00101 6 t
00101 7t

0001 000263 l06L
0001 000202 2066
0001 000242 2326
0001 000351 3016
0001 000335 3570L
0001 000436 37901.
0001 000603 4116
0000 R 000001 AL
0000 I 000057 I
0000 I 000075 IE3F
0011 I 000000 IPLZN
0000 I 000072 J
0000 I 000101 NA
0006 I 000000 STAT
0000 R 000054 TE
0000 R 000074 TQ
0000 R 000037 UN
0000 R 000004 XL

0001 000200 107L
0001 000212 2156
0001 000251 2376
0001 000361 3106
0001 000346 3600L
0001 000440 3800L
0001 000751 42L
0000 R 000066 P
0000 I 000104 ID
0000 I 000056 IFZ
0010 I 000000 IPZBL
0000 I 000065 K
0000 I 000102 NB
0000 R 000105 SV
0000 R 000052 TINC
0000 R 000061 TS
0000 R 000033 UQ
0000 R 000014 XN

0001 000035 1366
0001 000501 219L
0001 000301 2536
0001 000417 3316
0001 000410 3710L
0001 000454 3840L
0001 000706 4366
0000 R 000067 C
0000 I 000063 IDB
0000 000134 INJPS
0000 I 000000 IS
0012 I 000000 LZH
0000 I 000103 NC
0000 R 000064 SUHIN
0000 R 000053 TINCSQ
0017 R 000000 U
0000 R 000047 VBO
0000 R 000010 XQ

0001 000055 1446
0001 000535 221L
0001 000027 2796L
0001 000431 3416
0001 000305 3736
0001 000470 38801.
0001 000757 45L
0005 I 000000 FZ
0000 I 000076 IDHIN
0000 000126 INJPS
0000 I 000106 IT
0000 I 000077 N
0000 I 000070 NNN
0000 R 000060 T
0000 R 000062 TLEFT
0000 R 000043 UA
0016 R 000000 X
0007 R 000000 ZEL

000000
000000
000000
000000
000000
000000
000000

Listing 3. - Continued.

W m

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
OOlOf
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

81
9 t

10:
11%
1 2 t
138
14t
1 5 t
16s
178
188
1 9 t
2 0 t
21:
228
23t
24s
2%
2 6 t
2 7 t
2 8 t
298
308
3 1 t
32s
3 3 t
3 4 t
35s
3 6 t
3 7 t
3 8 t
3 9 t
408

428
438

4 1 t

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE HOVEL (ILIIH,CURTIH,GUAST,HIHC)

HOVEL tttttt A SUEROUTINE FOR CASPER tttttt
AUTHOR U I L L I R H HEHRY JOHES
uo2-00 14 APR 77
uo2-01 22 JUH 77
vo2-02 26 JUL 77
VO2-03 22 SEP 77
VO2-04 22 SEP 77
vo2-05 26 SEP 77
UO2-06 01 JUH 78
V02-07 16 JUH 78
vo2-08 29 AUG 78
UO2-081 13 FEE 79
V02-08B 09 MAR 79
002-08C 13 FEE 80 INPUTIOUTPUT SEGREGATION
V02-08D 15 SEP 80 FUNCTION TYPE STATENEHTS
002-O8E 28 SEP 81 HOUING BOUNDARIES
U02-08F 06 JAN 83 BAD POSITION IHTEGRATXON

ARGUMENTS I H CASPER 'CACHE' MEMORY t S t 9 t t

ARGUNEHT TYPE DIHENSION DESCRIPTION

X REAL 1 TO I S I Z E AEROELEMENT POSITION
1 TO 3 COORUINATES

"-""" """"- "_""" """""""""-

U REAL 1 TO I S I Z E AEROELEHENT VELOCITIES
1 TO 3

A REAL 1 TO I S I Z E AEROELEHENT ACCELERATIONS
1 TO 3

901140010
90100030
90100040
90100050
90100060
90100070
90110071
90120072
90130073
90140074
90150075
90160076
90170077
90180078
901A0079
901B0080

U02-08E
V02-OBF
90100090
90180094
90180096
90100100
90180110
90100120
90100130
90100140
90100150
90100160
90100170
90100180
90100190
90100200

FZ INTEGER 1 TO I S I Z E AEROELEHEHT FLOU ZONE 90100210
HUNBERS (BY AEROELEHEHT) 90100220

Listing 3. - Continued.

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000.
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

449
45%
468
47t
488
49 i
sot
5 l t
52%
53t
548
55t
56t
57t
588
591:
60s
61t
628
63t
6 4 t
658
66t
67t
68:
691:
70%
711:
72$
731:
74t
75t
76t
77t
788
798

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

90100230
STAT INTEGER 1 TO ISIZE AEROELEHENT STATUS LIST 90100240

90100360
ZBL INTEGER 1 TO ZBLSZ BOUNDARY LIST BY FLOW ZONES90100370

90100380
IPZBL INTEGER 1 TO NZN ZBL CONTROL PARANETERS LIST90100390

1 TO 2 (X r l) = STARTING POINT 90100400
(X12) 2 STRING LENGTH 90100410

90100420
90100560

ARGUHENTS PASSED IN SUBROUTINE CALL SSStSS 90180562
90180564

ARGUHENT TSPE DINENSION DESCRIPTION 90180566
90180568

IL INTEGER SCALAR AEROELEHENT ID LOH LIMIT 901A0569
901A0570

IH INTEGER SCALAR AEROELEHENT ID HIGH LIHIT 901A0571
901AO572

CURTIM REAL SCALAR CURRENT OPENING TIHE 901A0573
901110574

GDAST REAL SCALAR BASIC TIHE INCREHENT 901110575
90180576

NINC INTEGER SCALAR NUMBER OF TIME SUE- 90180578
INCREHENTS 90180580

90180582
90180584

""""_ """"_ -"""" """""""""

RESULT LOCATIONS tXtf8P

LOCATION CONTENTS

AESCRA FINAL FLOW ZONE ID OF AEROELEHENT
""""_ """~""""""""-

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

Listing 3. - Continued.

W
00

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

808
81*
82t
831:
849
851:
86t
871:
881:
891:
90t
9 1t
92%
93t
941:
95t
968
97t
981:
99t
1001:
lOlt
1021:
103$
104t
1 05t

107X
i08t
109t
1101:
1111:
1121:
113*
1141:
115t

lobm

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DESCRIPTION ?%??St 90180586
9018018

MOVEL I S A SUBROUTINE UHICH, GIVEN THE POSITION, VELOCITY, AND 90100590
ACCELERATION OF INDIVIDUAL AEROELENENTS AS HELL AS A DEFINIT ION 90100600
OF THE BOUNDARIES AND FLOW ZONES OF THE AIRFLOW VOLUI4Ev U I L L 90100610
REPOSITION THOSE AEROELENENTS THAT ARE NOT RESTRICTED TO OTHER 90100620

ACCORDING TO THE CLASSIC INTEGRATION OF CONSTANTLY ACCELERATING 90100640

90100660
DURING SUCH RELOCATION EACH APPROPRIATE BOUNDARY I S CHECKED FOR 90100670

DETECTED THE FOINT OF VIOLATION I S FOUND AND THE AEROELEHENT I S 90100690

BOUNDARY VIOLATION DETECTION A SUB-INCREKENTAL T I H E STEP I S 90100710

PARABOLIC HOTION FROM X T TO X @ TtGDAST INTO NIHC ECIUAL STEPS 90100730
AND CHECK FOR BOUNDARY VIOLATIONS AT EACH OF THE INTERNEDIATE 90100740
POSITIONS, THUS LOMERING THE PROBABILITY OF AEROELEHENTS 'PASSING 90100750
THROUGH' THIN BOUNDARIES SUCH AS LEADING AND TRAIL ING EDGES OF 90100760

PRESET LAUS OF NOTION (E.G. - BOUNDARY ELEHENTS FIXED I H SPACE) 90100630

HOTION, 90100650

POTENTIAL VIOLATIONS E'f THE AEROELENENT, I F SUCH A VIOLATION I S 90100680

ELASTICALLY BOUNCED OFF THE BOUNDARY AT THAT LOCATION+ TO ENHANCE90100700

SPECIFYABLE BY THE INTEGER ARGUHENT NINC, THIS (J ILL DIVIDE THE 90100720

AIRFOILS, 90100770
V02-08E

THE BOUNDARY BOUNCING PROCESS I S A SIHFLE REFLECTION ALGORITHI1, V02-08E
I ~ E I , ANGLE OF INCIDENCE EQUALS ANGLE OF REFLECTION, TO DO THIS, V02-08E
THE VELOCITY VECTOR FOR THE AEROELEHENT I S ADJUSTED AT THE TIKE V02-08E
OF BOUNCE TO GIVE THE APPROPRIATE I N I T I A L D I R E C T I O N + THE V02-08E
ACCELERATION OF THE AEROELEHENT I S NOT ADJUSTED. TO ACCOUNT V02-08E
FOR SITUATIONS WHERE THE AEROELEHENT I S NOT NOVING AND I S H I T V02-08E
BY A HOVING BOUNDARY, THE AEROELEKEHT VELOCITY IS FIRST CONVERTED V02-08E
TO A VELOCITY RELATIVE TO THE BOUNDARYr ADJUSTED FOR THE BOUNCE, V02-08E
AND THEN CONVERTED BACK TO VELOCITY RELATIVE TO THE STATIONfiRY V02-ORE
REFERENCE FRANE, V02-08E

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

Listing 3. - Continued.

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

1161: C
1171: C
1181: c
1191: C
1201: c
121: c
122t c
123t C
1241: C
1251: c
1261: C
127X C
1281: c
1291: C
1301: C
1311: C
1321: C
133X C
1348 C
135X C
1361: C
1371: C
1388 C
1391: C
1401: C
141X C
1421: C
1431: C
1441: C
1451: C
1461: C
1471: C
1481: C
149X C
150t C
1511: c

90100780
SELECTED VARIABLES I N THE ARGUHENT L IST, NOTABLY LZN, ZBL, EDZN, 90100830
AND NEIZN, ARE PASSED WITH COHTROL PARAHETER L I S T S I N DYHAHICALLY 90100840

CONTROL PARAHETERS CONSIST OF A STARTING FOINT L I S T AND A STRING 90100860

ARRAYS ARE ARRANGED SUCH THAT THE SUB-ARRAY RUNS FROH 1 TO THE 90100890
STRING LENGTH AND THE FIRST ELENENT I S AT THE STARTING POINT PLUS 90100900
1. THUS9 FOR LZN, THE J TH ELEHENT OF THE I TH FLOU ZONE L I S T 90100910
UOULD BE LZN(IPLZN(1 rl)tJ) AND THE LENGTH OF THE I TH FLOU ZONE 90100920

90100940
90100950
90100960
90100970
90100980
90100990
90101000
90102500

REQUIRED SUBROUTINES OOtXXS 90182510
90182512

401 A U I R I 90182514
402 X 90182516
404 U 90182518
406 A 90182520

417 STSTAT 416 STAT 90182522
421 STFZ 420 FZ 90182524

470 F U I R I 90182534
471 ZBL 90182536
475 H U I R I 476 I P Z B L 90182538
91 1 nRRn 912 TSTZH 90182540

90182542
90182544

ERRORS REPORTED OStO1:X 90182546
90182548

1 NEITHER RESULT OF BOUNDARY SURFACE FINDER WAS 90182550

VARIABLE ARRAY FORH, AS NOTED I N THE ARGUHENT DESCRIPTIONS, THE 90100850

LENGTH L I S T , THESE WNAHICALLY VARIABLE 90180870

L I S T UOULD BE I P L Z N (I t 2) e 90100930

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

Listing 3. - Continued.

w
W

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00103
00104
00105
00106
00107
00110
00111
00112
00113
00114
00 115
00116
00117
00120
00121
00122
00123
00124
00125
00126
00127
00130
00131
00134
00135

1521:
1531:
1541:
1551:
1561:
1571:
1581:
159:
1601:
1611:
1621:
1631:
1645:
1651:
1661:
1671:
1681:
1691:
170:
1711:
172X
1731:
1741r
1751:
176s
1771:
1781:
1791:
1801:
1811:
1821:
1831:
1841:
1851:
1861:
1871:

C SAFE (901X3870), 90182552
c 2 BOUNDARY SURFACE FINDER SETUP PUSHED '0' RACK 90182554
C BEYOND ZERO TIHE WITHOUT FINDING A SAFE POSITIOI4 90182556
C (901%3348)+ 90182558
c 3 AN AEROELEt4ENT FLOU PATH #AS FOUND THAT LEkDS TO 90162560
C BOUNDARY VIOLATION UITHOUT CROSSING A LEGITINATE 901A2565
C ACTIVE BOUNDARY+ 901A2570
c 4 THE BOUNDARY INTERCEPT LOCATOR FAILED TO LOCK ON 901132575
C TO AN EXISTING ACTIVE BOUHDARY* 90162580
C 901A2585
C- 90162590

INTEGER IL9IHrIS 901112595
INTEGER FZ9STAT9EIPLZH~ST~EMOD~STPl9ELZH9DLZN
CONNON /NZNC/NZN 90102620
COKtiON /IDUC/IDU 90182630
REAL CURTIHrGDAST 90182670
INTEGER NINC 90182680
REAL AL(3)9XL(4)9X0(4)r%N(4)9XA(4)rGB(3) UO2-08F
REAL UL(4)9UR(4)rUN(4)9UA(4) V02-08F
REAL VRO(3) V02-08E
DEFINE EZBL(I)-ZBL(I) 90112715
DEFINE DZBL(I t J)~EZBL(IPZBL(I IL)+J) 90112720
DEFINE EIPLZN(I9J)~IPLZH(I9J) 90112725
DEFINE ST(I)-EIPLZN(FZ(I)rl) 90112730
DEFINE NU(I)LEIPLZII(FZ(I),~~ 90112740
DEFINE ENOD(IIJ)=NOD(I~J) 90112745
DEFINE STP1(I)~EIfLZN(EHO~~FZ(I)~l~Zl~~~l~~) 90112750
DEFINE ELZN(I)=LZH(I) 90112755
DEFINE DLZN(I)-ELZN(ST(I)tNU(I)) 90112760
TINC=GDAST/NINC @CALC SUB-INCREEIENT 90102770
TINCSO=0~5YTIHC?TINC W A L C 1/2 SRUARE SUR-IHCREHEHT90112780
TE~O.OOlXTINC @TOLERANCE OF BOUNCES IN TIHE 90132785
CALL CHKLH (IL9IH9IS990195) e GO CHECK AEROELEMEHT RANGE 901~2790
IF (IS) 27969279492796 @ VALID RAEIOE ? 901A2792

2794 RETURN e NO 90162794
2796 DO 221 Il.;ILvIHrIS @ IN RANGE AEROELEHEHT LOOP 901A2796

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000004
000007
000012
000021
000023
000027

Listing 3. - Continued.

00140
00141
00142
00143
00146
00147
00150
00151
00152
00153
00155
00160
00163
00164
00167
00170
00171
00172
00173
00174
00175
00200
00203
00204
00205
00210
00212
00213
00214
00217
00221
00222
00225
00226
00230
00231

1881:
189%
1901:
1911:
192X
1931:
1941:
1951:

197*
1981:
1991:
2001:
2011:
2021:
2031:
2041:
20%
2061:
2071:
208%
2091:
2101:
2111:
212%

2141:
2151:
216#
217X
2181:
219*
220%
2211:
2221:
2231:

1961:

2131:

201

2820
2830

101

106
105

107
108

204

205

CALL CHKTIH (I L P I H ? I l) e KEEP AN EYE ON THE TIHE
IFZ=FZ(I l) e LOCALIZE
CALL STIAES (I l r I F Z) e OUTPUT IN CASE OF A SKIP
DO 201 1 ~ 1 ~ 3 e LOCALIZE
XL(I).X(IlPI) e ORIGINAL FOSITION
U L (I) 4 (I l r I) e ORIGINAL VELOCITY
AL(I)=A(I lP I) e ACCELERATION
CALL STS (I ~ P I P X L (I)) e OUTPUT POSITION AHD VELOCITY
CALL STS (I l r I t 3 r U L (I)) P I N CASE OF A SKIP
CONTINUE e
I F (AND(STAT(I1)?2St9)) 221~28209221 SKIP I F SPECIAL
I F (IFZ-IDU) 2830,221,2830 e SKIP IF IN THE DOG HOUSE
XL(4):CURTIH e
DO 219 I=lrNINC BSTART TIEIE SUB-INCREHENT LOOP90102890
T=TINC @SET TIHE SPAN 90102860
TS=TINCSQ @SET 1/2 SQUARE TIHE SPAN 90102870

IDB=-l @SET BOUNDARY NO-VI0 FLAG ,90102890
CALL SFC (XLPULPT) e POSITION AT END OF SPAN vo2-ORF
CALL INN (XL) e GO CHECK ALL BOUNDARIES 901~2930
I F (SVHIH) 1 0 6 ~ 1 0 6 ~ 1 0 4 e 106 ON BOUNDARY VIOLATION 901~2940
I F (I D R) 2 1 9 ~ 1 0 5 ~ 1 0 5 FCHK FOR PENDING BOUNCE 90103070
CALL GRDBD (XL P IDP P GB) eROUNCE - GET GRADIENT 901A3080
CALL SURFVE (X L ~ I D B ? V B O P J ~ O ~) @ GET SURFACE VELOCITY V02-08E
DO 108 K-193 e GET VELOCITY OF AEROELEHEHT vo1-oBE
UL(K)=UL(K)-UAO(K) e RELATIVE TO SURFACE V02-08E
B=O. 0 ecLR ACCUHULATOR 90103090
c-0.0 PCLR ACCUElULATOR 90103100
DO 204 K ~ l r 3 FACCUI’IULATE LENGTH SRUARED 90103110
B 4 t G B (K) 9$2 e OF GRADIENT VECTOR 90103120

DO 205 K::lr3 eLooP TO 90103140
GE(K).BLGB(K) e NORNALIZE GRADIEHT 90103150
C=CtGB(K)SUL(K) e ACCUNULATE DOT PROD VELOCTY90103160
c=2 I ooc @ADJUST CONSTANT FOR BOUNCE 90103170
DO 206 K = 1 ~ 3 PBOUNCE! VELOCITY ANGLE INCID~90103180

TLEFTzO 0 @SET TIHE REHAINIHG SUR-IHC 90102880

R=l,O/SRRT(E) IFAST DIVIDE LENGTH OF GRAD 90133130

000039
000042
000046
000055
000055
000062
000067
000074
000103
000117
000117
000127
000132
000137
000137
000141
000143
000144
000147
000153
000156
000161
000164
000171
000202
000202
000205
000206
000212
000212
000216
000227
000227
000231
000235
000242

Listing 3. - Continued.

R

00234
00236
00241
00243
00244
00245
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00246
00247
00250
00251
00252
00255
00256
00260
00261
00262
00263

2243
2253
2263
2273
228):
2293
2303
2313
2323
2333
2343
2353
2361:
2373
2388
2393
2403
2413
2423
2433
2443

2463
2473
2403
2493
2503
2513
2523
2533
2543
2593
2563
2573
2583
2593

2453

206

208

c t
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C-

UL(K)-UL(K)-CtGB(K)
DO 208 K.2193
UL(K)=UL(K)tVBO(K)
T=TLEFT

IDB.-l
GO TO 101

TLEFT=O e 0

e EQUALS AHGLE OF REFLECTION 90103190
e AEROELEHENT VELOCITY RELA- u02-O~E
e TIUE TO STATIONARY FRRHE u02-O~E
@SET TINE SPAN FOR REST OF 90103200
PCLR REHAINIHG TIHE 90103220
@WIPE OUT PENDING BOUNCE 90103230
eJHP BACK - FINISH SUE-IHCREHT90103240

THE FOLLOWING SECTION I S ENTERED UHEN A BOUNDARY I S VIOLATED,
I T BACKS THE PARTICLE UP ALONG ITS PATH TO LOCATE THE POINT

LOCATED TO UITHIN TOLERANCE 'TE' THE I D OF THE BOUNDARY
ABOUT TO BE VIOLATED I S LOADED INTO 'IDB' AHD THE TIHE I S
SUBDIVIDED TO CAUSE 1 STEP JUST TO THE BOUNDARY FOLLOUED BY

AT YHICH I T FIRST PENETRATES A BOUNDARY* UHEN THIS POINT I S

A BOUNCE AND A STEP TO THE EHD OF THE TIKE SUB-IHCREHENT.

I N LOCATING THE NEAR-VIOLATIOH POINT ALL BOUNDARIES I H THE
HANDATORY FLOW ZONE AND I N THE AEROELENENT'S FLOW ZONE OF
RESIDENCE ARE CHECKED TO PRODUCE A VIOLATION/NO-VIOLATION
DECISION+ THIS DECISION SHOULD BE BASED ON AT LEAST ONE
BOUNDARY EVALUATIOH THAT DID NOT TRUNCATE, I F THIS I S NOT
THE CASE ERROR 13 I S REPORTED, A PROPER CASPER PROELEH
SETUP HAY NOT HAVE ANY AEROELEHENT FLOU PATH THAT CROSSES
FROH A NOM-VIOLATION AREA TO A VIOLATION AREA UITHOUT
CROSSING A DEFINED BOUNDARY SURFACE.

106 NNN=OR(STAT(Il)r2t38)
CALL STSTAT (I l rNNN)
TN=T

UN(J)=UL(J)
3480 XN(J)=XL(J)

TAs-T
3500 CALL SPC (XLrULrTA)

CALL YNH (XL)
I F (SVHIN) 3530r3530r3600

DO 3480 J ~ l r 4

e SET HANDATORY SIFT BIT

e N IHPLIES A POINT IN
e VIOLATION
e

e XL BACK TO ORIGIHAL SPOT
e
e CHECK BOUNDARIES HERE
e NOH-VIOLATIHG ?

e

e

Listing 3. - Continued.

90113250
90143260
901133270
901A3280
901A3290
901A3300
901113310
901A3320
901A3330
901A3340
901113350
901A3360
901A3370
901A3380
901A3390
90163400
901113410
901A3420
90163430
901A3440
90113450
901143460
901133470
VO2-08F
901A3480
90143490
V02-08F
901A3510
901A3520

000242
000251
000251
000254
000256
000257
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000261
000263
000270
000274
000301
000301
000302
000305
000310
000314
000317

00266
00271
00272
00273
GO274
00275
00276
00277
00300
00303
00304
00306
00307
00312
00315
00316
00317
00320
00323
00324
00327
00330
00333
00334
00336
00337
00340
00343
00344
00346
00350
00353
00354
00355
00356
00361

260t
2613
2623
2633
2643
2653
2663
267t
2683
2693
2703
2713

2733
2743
275t
2763
277s
278t
2793
2803
2813
2823
283$
2843
2853
2863
2873
2883
2893
2903
2913
2923
2933
2943
2953

2723

3530 IF (XL(4)) 3570,3570~3540 e NO^ CAN YE BACK UP FURTHER ~ 0 1 1 3 5 3 0
3540 TN::TN-TA e KEEP TRACK OF TINE SPANS 901~3540

T=T-TA e 901A3550
GO TO 3500 e GO BACK IT UP 90113560

3570 CALL ERROR2 (9 0 1 ~ 2) e CAH'T SHAKE BOUHDRRY 90113570
CALL STIAES (I l r I D U) e THIS TURKEY GOES TO SHEOL
GO TO 221 e 901A3590

3600 T Q z O e O e Q INPLIES A POINT NOT IN 90113600
DO 3620 J-1,4 e VIOLATION 90113610
UQ(J)=UL(J) e V02-08F

3620 XQ(J):XL(J) e 901A3620
IE3F=O e ERROR 3 ABORT FLAG 90113630
DD 3790 J = l ~ l 5 e BISECTION LOOP 90113640
IF (ABS(TN-TR)-TE) 3800~3660~3660 e CLOSE ENOUGH ? 90163650

3660 TA~O,53(THtTQ) e NO^ BISECT AGAIN 90113660
CALL SPC (X A P U A ~ T A) e FIND THAT POINT IN SPACE u02-08~
CALL YNH (X I) e TEST THE BOUNDARIES 90113680
I F (IDNIN) 3710~3710~3700 e DID ALL TRUNCATE 90143690

3700 IE3F-IDtlIN e NO, FLAG AH ACTIVE BOUNDARY 901~3700
3710 I F (SUNIN) 376093760,3720
3720 TO-TA

DO 3740 K z l r 4
UQ(K)-UA(K)

3740 X Q (X) = X A (K)
GO TO 3790

3760 TN=TA
DO 3780 K=l r4
UN(K)=UA(K)

3780 XN(K)=XA(K)
3790 CONTINUE
3800 IF (IE3F) 3810,3810~3840
3810 CALL ERROR2 (901r3)

CALL STIAES (I1,IDU)
GO TO 221

3840 I F (IDHIN) 3850~3850~3880
3850 CALL ERROR2 (9 0 1 ~ 4)

listing 3. -

e A NON-VIOLATING POINT ?
e YES REPLACE Q POIHT

e
e
e
e
e
e
e COHSTRUCTIOH PROBLEH 7

e YES^ REPORT IT
e FORGET THIS GUY

e ALGORITH~I DIDN'T TRACK
e YES^ VERY ODD

e

e

@ NO, REPLACE N POINT

e

Continued.

901A3710
901A3720
90113730
VO1-O8F
90113740
90113750
90113760
90113770
V02-08F
901A3780
901A3790
901113800
90113810

90113830
90113840
90113850

000322
000325
000330
000333
000335
000340
000344
000346
000351
000351
000352
000355
000361
000361
000367
000373
000400
000403
000406
000410
000412
000417
000417
000420
000423
000425
000431
000431
000432
000440
000440
000442
000446
000452
000454
000456

00362
00363
00364
00365
00366
00367
00370
00372
00375
00376
00400
00401
00403
00404
00404
00404
00404
00404
00407
00410
00413
00414
00416
00417
00420
00420
00420
00420
00420
00420
00420
00420
00420
00423
00423
00423

2961:
2971:
2981:
2993
300:
3013
3028
303t
3045
305t
3061:
3078
3088
309$
310t
311t
3128
313t
3148
3151:
316s
3178
318%
319t
3201:
3211:
322t
3231:
3241:
325%
3263
3278
3281:
329t
330t
3313

CALL STIAES (I1,IDU) e INTO THE BLACK HOLE WITH HIK
GO TO 221 e 901R3870

3880 1DB:IDHIN e BOUNCE OFF THIS BOUNDARY 901~3880
TLEFT-TLEFTtT-TQ e TINE TO GO AFTER BOUNCE 901~3890
T=TQ e TIHE TO BOUHCE 901A3920
GO TO 101 @TRY SHORTER TINE SPAN 90103960

219 CONTINUE FEND TIHE SUR-INCREHENT LOOP 90103970
DO 220 Ir .1~3 e RECORD HEY POSITION AND
CALL STS (I l r I , X L (I)) e VELOCITY RESULTS IN

220 CALL STS (I l t I t 3 , U L (I)) e ASSIGNED SLOTS
CALL STIAES (I l r I F Z) e RECORD FINAL FLOU ZONE

221 CONTINUE @END ELENENT BY ELENENT LOOP 90104010
RETURN 90104140
SUBROUTIHE SFC (YrZ,TI) e V02-08F

c t 901A4160
C LOADS VECTOR Y YITH AEROELEHENT POSITION AT TINE ‘ T I ’ RELATIVE 90164170
C TO ‘XL’. CALCULATES VELOCITY AT Y AND PLACES I T I N ZI V02-08F
C- 901A4190

REAL Y(4)rZ(3) ,TI e “02-08F
DO 13 N z 1 ~ 3 901b4210
Y(N)-XL(N)t(TItUL(N))t(OI’JSTI~TI*AL(N)) V02-08F

13 Z(N).UL(N)t(TItAL(N)) VO2-08F
Y(4)=XL(4) tTI 901R4230
RETURN 90164240
SUBROUTINE YHH (Y) 901A5000

c t 901A5010
C 1) IDENTIFIES FLOW ZONE OF SPACE-TIHE POINT ‘ Y ’ AND UPDATES 901A5020
C FLOU ZONE OF AEROELENENT ’11’ I F NECESSARY. 901A5030
C 2) CHECKS ALL APPROPRIATE BOUNDARIES TO PRODUCE ‘IDHIN’/‘SVI4IH’* 901A5010
C DOES NOT CONSIDER FOR ‘IDI.IIN’/’SVMIN‘ BOUNDARIES THAT ARE 901A5050
C SAFE BY TRUNCATION, 9QlA5060
C 3) DISCONTINUES SEARCH I F ‘BVHIN’ GOES NEGATIVE, 9011%070
C- 901A5080

REAL Y(4) 901A5090
c t
C CAUTION O t t THIS ROUTINE DOES NOT DETECT THE ’ZONE NOT FOUND‘

000462
000466
000470
000471
000475
000477
000505
000505
000505
000514
000530
000536
000536
000567
000567
000567
000567
000567
000567
000567
000603
00061 1
000616
000621
000652
000652
000652
000692
000652
000652
000652
000652
000652
000652
000652
000652

Listing 3. - Continued.

0027 NERR2$
0030 MUDUS
0031 NI02$
0032 NIO1$
0033 NERR3$

STORAGE ASSIGNHENT (ELOCK, TSFE, RELATIVE LDCATIOH, NAl'iE)

0001 000763 1L
0001 000070 117L
0001 000207 134L
0001 000251 145L
0001 000364 1BlL
0001 000415 189L
0001 000146 2106
0001 000526 228L
0001 000621 300L
0001 000727 330L
0001 000732 6L
0006 I 000000 FZ
0000 I 000003 IE
0000 I 000012 IHN
0013 I 000000 IPLZN
0000 I 000010 IYE
0003 I 000001 HXTETH

0001 000034 107L
0000 000026 119F
0001 000224 139L
0001 000264 148L
0001 000365 182L
0001 000760 2L
0001 000171 2246
0001 000212 231G
0001 000667 308L
0001 000540 3560
0001 001022 99SL
0000 I 000005 I
0000 I 000025 IEQ
0000 I 000007 IHO
0000 I 000016 IPO
0000 I 000015 IZC
0003 I 000000 NTETH

0001 000053 llOL
0001 000124 122L
0001 000235 14OL
0001 000061 l52G
0001 000371 184L
0001 000134 201G
0001 000516 225L
0001 000547 253L
0001 000675 325L
0001 000753 4L
0000 000100 997F
0000 I 000021 IC
0000 I 000022 IEZ
0000 I 000014 IHS
0000 I 000017 IP1
0000 I 000004 IZS
0004 I 000000 NZN

00101 1: SUBROUTINE RES02 (IZL~IZH,IOF,IDL)
00101 2% ct
00101 3: c
00101 4: C RES02 tttOtt A SUBROUTINE FOR CASPER tStttt
00101 5% c AUTHOR UILLIAH HENRY JONES
00101 6 t C wo1-00 19 FEE 80

0001 000057 lllL
0000 000051 123F
0001 000243 142L
0001 000335 175L
0001 000377 186L
0001 000450 205L
0001 000522 226L
0001 000563 276L
0001 000702 326L
0001 000624 4026
0001 000774 999L
0000 I 000020 ICH
0003 I 000003 IHEAD
0000 000132 IHJPI
0000 I 000024 IF2
0000 I 000023 J

0001 000063 115L
0001 000140 124L
0001 000246 144L
0001 000350 179L
0001 000404 187L
0001 000470 209L
0001 000524 227L
0001 000755 3L
0000 000057 328F
0001 000735 5L
0005 I 000000 ELNK
0000 I 000006 IDA
0000 I 000011 IHO
0000 I 000000 IOC
0000 I 000013 ISE
0003 I 000002 LXTETH

000003
000003
000003
000003
000003
000003

Listing 4. - Continued.

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

7 1
81:
9x
lot
131:
128
131:
14*
1st
16 t
171:
18 t
198
20%
21s
221:
231:
24s
25s
268
271:
2 8 t
29%
30t
311:
3 2 t
331:
34t
35%
36t
371:
381:
39t
408
411:
42*

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

UO1-OOA 15 SEP 80 FUNCTION TYPE STATEHENTS
VO1-008 04 JUN 82 DEN0 AND DEBUG HSGS 1002V01-00B
UO1-OOC 13 JUL 82 TYPO vo1-ooc

DESCRIPTION SS00tt

THIS ROUTINE PERFORHS THE FLOW ZONE AEROELEHENT LINKAGE

ZONE'S RESIDENT AEROELEHENT LINKAGE LOOKING FOR AEROELEHENTS

THAT ARE FOUND ARE REHOUED FROH THAT FLOW ZONE'S LINKAGE AND
CONSIGNED TO THE LINKAGE OF THE FLOU ZONE OF UHICH THEY &RE

PURIFICATION PASS. THIS PROCESS SEARCHES THROUGH EACH FLOU

THAT ARE NOT RESIDENT I N THAT FLOU ZONE, ANY SUCH AEROELEHENTS

A RESIDENT,

CONSIGNNENT TO TIiE FLOW ZONE FOLLOIJS ONE OF TbI0 PROCEDURES.
I F THE DESTINATION FLOU ZONE I S I N RANGE, THE AEROELEHENT I S

I F THE FLOU ZONE I S NOT I N RANGEr THE AEROELEHENT I S TETHERED

LINKAGE I S REPORTED TO PAX FOR LINKING IHTO THE DESTINATION

IHHEDIATELY LINKED INTO THE TAIL OF THhT FLOW ZONE'S LINKAGE,

I N 13 LOCAL LINKAGE, AT AN APPROPRIATE TIHE THIS LOCAL

LINKAGE,

SOHE OPTIONAL REPORTS FOR CROSS REFERENCING PURPOSES NAY BE
REQUESTED AS SPECIFIED EELOU,

I OF REPORT

1 NO ADDITIONAL INFORtiATION I S REPORTED
""" """"""""""~"~"""

2 FOR I EQUAL TO 1, 2, OR 3, I F THE FLDW ZONE OF
RESIDENCE FOR A PARTICULAR AEROELENENT I S THE
SAEiE AS IDL(I) , THEN THAT AEROELEHENT'S I D IS
APPENDED TO A LIST THAT I S ULTItlATELY ASSOCIATED
UITH IDL(1) I H A REPORT TO PAX.

000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003

Listing 4. - Continued.

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
OOlOi
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

438 c
448 c
45t c

478 c
48$ C
49$ c
50: c
51t c
521 c
53t c
541: c
5 5 t c
56s C
57% c
581: C
59s c
6 0 t C
611: C
621 C
63s c
64$ C
65% C
661: C
671: C
6 8 t C
69$ C
708 C
718 C
721 C
731: c
74$ c
75s c
7 6 t C
778 c
78$ C

46a c

3 FOR I EQUAL TO 1, 2r OR 39 I F THE FLOU ZONE OF
RESIDENCE FOR A PARTICULAR AEROELEHENT I S THE
SAME I S I D L (I) ? THEH THAT AEROELEHENT'S I D I S
APPENDED TO A LIST THAT I S ULTIHATELY ASSOCIATED
UITH IDL(1) IN A REPORT TO PAXI

4 THE SAME AS 3, ADDITIONAL ACTION I S TAKEN. THE
FLOW ZONE OF RESIDENCE FOR THE AEROELENENT I S
CHANGED TO IDL(1) AND LINKAGE PURIFICATION PROCEEDS
ON THE REVISED VALUE,

GENERAL DATA BASE POStPt

IPLZN(~ 4) LINKAGE HEAD POINTER
IPLZN(9 5) LINKAGE COUNT
IPLZN(96) LINKAGE TAIL POINTER

ELNK(9 1) NEXT ELEHENT POINTER
ELM(r2) FOR THIS ROUTINE ONLY, FOR HEAD ELENENT

ONLY? ORIGINAL LINKAGE COUNT BEFORE
PURIFICATIONi OTHERYISEr SCRATCH

ELNK(13) SCRATCH

COHNON TETHER DATA BASE t S t 0 7 t

LTETH NUHBER OF TETHER HERDS
NTETH NUHBER OF HIGHEST TETHER HEAD IN USE
WATETH NUHBER OF LONGEST TETHER HEM I N USE
LXTETH LENGTH OF LONGEST TETHER I N USE
IHEAD(1,) FLOU ZONE I D ASSOCIATED WITH TETHER
IHEAD(2r 1 POINTER TO FIRST ELEHENT IN TETHER
IHEAD(3r) LENGTH OF TETHER

ELM(P I) POINTER TO NEXT ELEEIENT

Listing 4. - Continued.

000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003

00101
00101
00101
00101
00101
00103
00104
00105
001 11
00114
00115
00116
00117
00120
00123
00126
00131
00134
00135
00140
00141
00144
00147
00150
00151
00154
00156
00157
00160
00161
00174
00174
00175
00176
00205
00206

7 9 t c
8 0 t C
818 C
8 2 t C
83: c-
8 4 t
85:
868
87:
88t
89t
908
9 1 t
92:
93t 101
948 102
9 5 t 103
9 6 t 104
978
988 106
998 107

100s 108
lOlt 109
102t 110
1038 111
104t 114
105t 115
1068
1078 117
1088
1098 119
1 l o t
lllt
112: 122
113: 123
114: 124

ELNK(r2) LENGTH OF TETHER (FIRST ELEHENT ONLY)
ELM(93) POINTER TO LAST ELEHENT (FIRST ELEMENT ONLY)

PARAHETER OURID-982
PARAHETER IOCHX=100
INCLUDE TETHP
INCLUDE PGSDEF e U01-00B
INTEGER IOC(3)tIDL(3)rELNK,FZ

IE.1
CALL TETHI
I F (I Z L) 1,1,101 e ERROR CHECK FLOU ZONE
I F (IZL-NZN) 1 0 2 ~ 1 0 2 r l e RANGE LIHITS
I F (I Z H) 292,103 e
I F (IZH-NZN) 104,104~2 e
IZS-1 @ SET FLOU ZONE STEP
I F (IZH-IZL) 106,107,107 e DIRECTION
IZS=-1 e
I F (IOP) 3,39108 e ERROR CHECK OPTION
I F (IOP-4) 1099109~3 @ SELECTION
GO TO ~ 1 1 ~ ~ 1 1 0 ~ 1 1 1 ~ 1 1 1 ~ ~ 1 0 P e OPTION BRANCH
CALL STKCHG (391) e (O P ~ ASK FOR 3 STACKS
DO 114 1 4 9 3 e (0 ~ 2 3 4) IHIT COUNTS LIST
IOC(I)=O e
CONTINUE e
CALL TOGSY (PGSDNOtPGSBUG,$117,)L24) e DEMO OR DEBUG OM ? U01-00B
CALL TIHPR ~ I D A ~ I H O ~ I Y E ~ I H O ~ I H N ~ I S E ~ I ~ S ~ B YES, GET TIHE U01-00B
URITE (6,119) IZL~IZH~IDA~IMO~I'IE~IHO,IHNIISE~INS e U01-00B
FORHAT (~ H O I ' J X ~ ~ O H C A S P E R ~ ~ R E S O ~ D (UHO) -- RANGE r 1 8 ~ 4 H TO ~18913H UO1-OOC

1ACCEPTED OM rJ2rlX,A4rJ4,4H AT ,2(J291H:)rJ2rlH.,J3) @ U01-00R

COHNON /NzNc/nzN

CALL TOGSU (PGSBUG,$122,$124) e DEBUG ON ? u01-008
YRITE (6,123) 10P1(1DL(I)rI : l r3) @ YES U01-00B
FORHAT (1H ,7X96HIOP I' rI697H IDL = ,3(18)) B u01-00B
CONTINUE e UOI-00B

000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000005
000007
000012
000015
000020
000023
000025
000031
000034
000036
000041
000053
000061
000061
000063
000063
000070
000100
000116
000116
000116
000124
000140
000140

Listing 4. - Continued.

00207
00212
00213
00214
00217
00220
00223
00226
00227
00230
00233
00234
00237
00241
00242
00243
00244
00245
00246
00247
00250
00253
00254
00255
00256
00257
00262
00263
00264
00265
00266
00267
00270
00271
00274
00275

1158
116t
1178
1188
1191
120t
1218
122t
1238
1248
123
1268
127f
128:
129t
130t
131t
132t
133s
134t
135t
136t
1378
1388
139t
140%
1418
142t
143t
144:
145:
1468
1478
1481
1498
1508

129

131

134

137

139
140

142

144
145
146

148

151

175
176

DO 229 IZC:IZL,IZH9IZS
IPO=O
I F l - I P L Z H (I Z C ~ 4)
I F (I P 1) 228,2289129
ICH;ELNI<(IP~P~)
I F (ICH) 5r228~131
DO 227 I C Z l r I C H
IEZ=FZ(IP1)
GO TO (17~,134,134r134),1OP
DO 137 1 ~ 1 9 3
J=I
I F (I E Z - I D L (1)) 137,1399137
CONTINUE
GO TO 175
GO TO (17~,144~142r140)~IOP
I E Z - I D L (1)
CALL STFZ (I P l r I E Z)

GO TO 145
J=1

CALL STKSET (J)
I F (I O C (J)) 6,14691'18
CALL SPSHI (0)
CALL SFSHI (0)
CALL SPSHI (I P 1)
I O C (J) = I O C (J) t l
I F (IOC(J) - IOCtM) 175,151r151
CALL SFSHI (- IOC(J))
CALL SPSHI (I O C (J))
CALL SPSHI (I D L (J))
CALL SPSHI (2)
CALL SPSHI (I O C (J) t 6)
CALL REQSAF (OURIDr2)
IOC(J)=O
I F (IEZ- IZC) 179r176~179
I P O = I P l
I P l - ; E L N K (I P O ~ l)

e
e CURRENT ELEHEHT POINTER
e IS THERE AN ELEHENT ?
e YES, GET COUNT

e YES
e GET ELEHENT'S FLOU ZONE
e BRANCH BY OPTION
e (0~234)
e
e FLOU ZONES HATCH ?
e NO

e

e

e

e NEED END-OF-ARGS ?
e YES
e
e ID ON TO STACK
e KEEP ID COUNT
e ENOUGH TO REPORT ?
e YES CODE FOR LITERAL STRING

e ZONE OF ASSOCIATION

e STACK DEPTH

e NONE ON STRCK NOU
e IS IT IN THE RIGHT ZONE ?
e YES, STEP TO NEXT

P FREUIOUS ELENENT POINTER

P LEGAL COUNT ?

P TOTAL HISS

P (OP4) REVISE FLOU ZONE

P (OP34) INTERPRET AS I D L (1)

P (OP2) GET RIGHT STACK

COUNT OF I D S

P TlJO SINGLE LITERALS

e

P

Listing 4. - Continued.

000140
000146
000147
000134
000156
000163
000165
000171
000175
000212
000212
000214
000222
000222
000224
000235
000236
000243
000244
000246
000251
000235
000260
000264
000271
000274
000277
000304
000311
000316
000321
000327
000333
000335
000337
000341

00276
00277
00300
00301
00304
00305
00310
00311
00312
00313
00314
00317
00320
00321
00322
00325
00330
00331
00334
00335
00336
00337
00340
00341
00342
00343
00344
00345
00346
00347
00350
00352
00353
00355
00360
00363

151:
1521
1538
154s
15%
156i
157%
1588
159t
1608
161t
1628
163t
164t
165t
1668
1678
1688
1698
1708
1718
1728
173t
174t
1758
1761:
177:
1788
179t
180t
181t

1831
1848
185s
1868

1821:

179

181
182
183
184

186
187
188
189

201
202

204
205

209

225
226
227
228
229

252

GO TO 227
CALL STELNK (IPlr2~0)
IP2=ELNK(IPlrl)
IF (IP2) 181r182~182
IP2=0
IF (IF01 183,184,186
IPO=O
CALL STIPLZ (1ZCr4~1P2)
GO TO 187
CALL STELNK (IP091,IP2)
IF (IP2) 181,1889189
CALL STIPLZ (IZCt6,IPO)
I=IPLZH(IZC,5)-1
CALL STIPLZ (IZCv591)
IF (IEZ-IZL) 22592019201
IF (IEZ-IZH) 20292029225
I-IPLZN(IEZr6)
IF (1) 204~205r209
I=O
CALL STIPLZ (IEZr4rIPl)
CALL STIPLZ (IEZfZwl)
CALL STIPLZ (IEU,69IPl)
GO TO 226
CALL STELNK (191~IPl)
CALL STIPLZ (IEZ96rIPl)
I-IPLZN(IEZ95)tl
CALL STIPLZ (IEZpSrI)
GO TO 226
CALL TETHA (IPlrIEZ)
IP1-IP2
CONTINUE
CALL CHKTIH (IZLrIZHrIZC)
CONTINUE
DO 253 1-lrLTETH
IF (IHEAD(2rI)) 253,25392'32
CALL TETHF (I)

e
e NO, ZAP ORIGINAL COUNT SLOT
e PULL FROH LINKAGE

e

e
e NEW LINKAGE HEAD
e
e JOINT IN LINKAGE HIDDLE
e
e OHE LESS ELEHENT

e IS CORRECT ZONE IN RANGE T

e
e

e NEW LINKAGE TAIL

e
e
I? YES, POINT TO ITS TAIL
e IS THERE AN OLD TAIL ?
e

e

e
e YES, ADD THIS TO TAIL
e
e
e TETHER ELEHEHT LOCALLY
e EHD OF ELEHENT LOOP
e END OF ZOHE LOOP
e FLUSH ANY RESIDUAL TETHERS
e

@ NO9 START A WHOLE NEW LINK

e

e
e
P ADJUST NEAT ELEEIENT POINTER

e KEEP A N EYE ON THE TIHE

e

000346
000390
000354
000361
000364
000365
000367
000371
000375
000377
000404
000407
000415
000422
000427
000433
000437
000444
000446
000450
000454
000461
000466
000470
000474
000501
000507
000514
000516
000522
000526
000526
000540
000540
000540
000543

Listing 4. - Continued.

00364
00366
00367
00372
00373
00374
00375
00376
00377
00400
00401
00404
00407
00410
00411
00412
00413
00414
00415
00416
00420
00421
00422
00423
00434
00434
00435
00435
00435
00435
00436
00437
00440
00441
00442
00443

1871:
1881:
1891:
1902:
1912:
1921:
1931:
1941:
1951:
1961:
1971:
1981:
1991:
2001:
2011:
2021:
203X
2041:
205$
2061:
2071:
2081:
2091:
2101:
2111:
2121:
2131:
2141:
2152:
216#
2171:
2181:
2191:
220t
2218
2221:

253

276
277

300

302

308

325
326

328

330
c t
C
C-
b
5

4
3

CONTINUE e
GO TO (329,30Or276r276),10P P BRANCH BY OPTIONS
I F (I O C (1)) 32593251277 P (OF34) - ANY TU REPORT ?

CALL SFSHI (IOC(1)) e COUNT OF IDS
CALL SFSHI (I D L (1)) e ZONE OF ASSOCIATION
CALL SPSHI (2) @ TWO SINGLE LITERALS
CALL SPSHI (I O C (1) t b) P STACK DEPTH
CALL RERSAF (OURID92) P TRANSKIT
GO TO 325 e
DO 308 J~1,3 e (O W) LOOK RT EACH
I F (I O C (J)) 300,308,302 @ ANY TO REPORT ?
CALL STKSET (J) e YES, GET RIGHT STACK
CALL SPSHI (-1OCcJ)) P
CALL SFSHI (IOC(J)) e
CALL SPSHI (I D L (J)) P
CALL SFSHI (2) e
CALL SFSHI (I O C (J) t b) P
CALL RERSAF (OURIDr2) e
IOC(J):O P
CALL STKOLD e BACK TO ORIGINAL STACKS

CALL'SPSHI (-1oc(1)) P '(ESP L I T , STRING CODE

CALL TOGSW (PGSnNOtPGSRUG~$326~$330) P NEED CLOSING iJESSAGE ? VOl-OOR
CALL TIHFR ~ I ~ A ~ I I 4 O ~ I ~ E ~ I H O ~ I H N , I S E ~ I ~ S ~ E YES u01-00B
WRITE (6,328) I D A r I N O ~ I ~ ~ E ~ I H O ~ I H N ~ I S E , I N S V01-00B
FORtiAT (1H ,5X,49HCASPER9.RES02rI (DHO) -- SUCCESSFUL COMPLETION OH'J01-00B

1 r J 2 9 1 X y A 4 r J 4 ~ 4 H AT r2(J2rlH:),J2,1H,rJ3) P , VO1-OOB
RETURN @ DONE VO1-OOE

ERROR REFORTING

I E = I E t l P OPTIOH COUNT WAS NEGATIVE
I E = I E t l P ELENENT COUNT ILLEGAL FOR FLOW ZONE
I E = I E t l P ERR 4 NOT USED
GO TO (3~4r3r3)tIOP P TO OLD STACK CONFIGURATION ?
CALL STKOLD e YES
I E = I E t l P ILLEGAL OPTIONS SELECTED

Listing 4. - Continued.

000551
0003rs1
000563
000565
000572
000575
000602
000605
000613
000617
000624
000624
000627
000632
000637
000644
0006'31
000654
000662
000667
000672
000675
000702
000712
000727
000727
000727
000727
000727
000727
000732
000735
000737
000741
000753
000755

00444
00445
00446
00447
00450
00451
00463
00463
00464
00465
END FOR
>

2233
2243
2253
2263
2273
2283
2293
2303
2313
2328

2 I E = I E t l e FLOU ZONE HIGH LIHIT OUT OF RANGE
1 CONTINUE e FLOU ZONE LOW L I t m OUT OF RAHGE

CALL ERROR2 (OURIDfIE) @
CALL TOGSU (P G S D N O ~ P G S B U G V ~ ~ ~ ~ ,) ~ ~ ' ~) P NEED A NESSAGE ? WO1-OOF

999 CALL TIHPR ~ I D A ~ I l i O ~ I Y E ~ I H O ~ I H N 1 I S E ~ I ~ S ~ I? YES V01-00B
URITE (6 ~ 9 9 7) I E ~ I ~ A ~ I N O ~ I ' ~ E ~ I H O ~ I N N I I S E ~ 1 ~ I S @ w01-008

997 FORHAT (1H ,~XV~OHCASPER~,RES~~D tDl40) -- ERROR 7J3r4H ON ,J2,1!i,AU01-00B

995 RETURN @ DONE BADLY w01-00B
14rJ494H AT ~2(J2,1H:),J2~1H*,J3) P w01-008

END e

000760
000763
000763
000766
000774
001004
001022
001022
001022
001103

Listing 4. - Concluded.

@FOR,HS CASFER9*TETHFD
FOR 4Rl E -01/13/83-14:18:09 (31)
>PEOF

SUEROUTINE TETHF ENTRY FOINT 000161

STORAGE USED: CODE(1) 000166i tIATA(0) 000073; FLANK COliHON(?) 000000

COHHON BLOCKS:

0003 TETHC 000437

EXTERNAL REFERENCES (BLOCK7 NANE)

0004 ELNK
0005 TOGSU
0006 TIMFR
0007 SPSHI
0010 DEAF
0011 REOSAF
0012 ERROR2
0013 WALKB
0014 NYDUb
0015 NI026
0016 NERR3J

STORAGE ASSIGNIiENT (FLOCK7 TYPE7 RELATIVE LOCATIONP I4AfiE)

0001 000072 108L 0000 000034 109F 0001 000124 ilOL 0001 000133 lllL 0001 000137 ii2L
0001 000147 115L 0001 000151 ll6L GOO1 000010 95L 0000 000014 97F 0001 000035 99L
0004 I 000000 ELNK 0000 I 000007 I 0000 I OOOOGO IDA 0003 I 000003 IHEAn 0000 I 000043 IHO
0000 I 000004 IHN 0000 I 000001 Ill0 0000 I 000006 111s 0000 000065 INJPJ 0000 I 000005 ISE

Listing 5. - Conflicted-task request routine.

0000 I 000002 IYE
0000 I 000013 M

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00103
00104
00110
00113
00114
00115
00116
00127
00127
00130
00131
00132

1%
28
31:
4t.
5 t
61:
71:
81:
9%

10%
11x
1 2 t
131:
14%
15t
16%
1 7 t
18%
198
208
2 1 t
221:
2 3 t
24$
251:
26X
27$
28$
29$
30%

c t
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C-

95

97

99

0000 I 000010 J 0000 1 000011 K 0000 I 000012 L
0003 I 000001 MXTETH 0003 I 000000 NTETH

SUBROUTINE TETHF (I F)

TETHF 1: tXStY A SUEROUTIHE FOR COSPER L O t t Y O
AUTHOR WILLIRM HENRY JONES
uo1-00 19 FEE 80
V01-00A 04 JUN 82 DEBUG NESSAGES 1002v01-00A
VO1-OOE 29 JUH 82 TYFO 1005V01-00B

1007 VO1-OOC 14 JUL 82 DATA EASE FLUSH ADDED uo1-ooc

DESCRIPTION t P t 1 : X Y

TRANSHITS THE INFORIiATIOH OF TETHER ' IF ' TO PAX AND RE-INITIALIZES
THE TETHER DATA.

PARANETER OUHIU-979 e CASPER CATALOG ID
INCLUDE TETHF P
INCLUDE PGSDEF e uo1-OOA
INTEGER ELNK e u01-00A
CALL TOGSU (F G S B U G P $ ~ ~ P $ ~ ~) e DEBUG ON ? V01-00A
CALL TIHPR ~IUA~IIIOPIYEPIHOPIHH,ISE,IHS~ e YES9 NOTE THE TII4E V01-00A
URITE (6997) IDA,It~O~I'~E~IHO~IMN,ISEIIMS @ PRINT HEADING HSG u01-00A
FORMAT (lHOrSX,41HCASFER9,TETHFII (RUG) -- FLUSH II4UOKED 014 ,J2,1XPUOl-OOA

1R4rJ4~4H AT P ~ (J ~ P ~ H :) P J ~ P ~ H * ~ J ~) P V01-00A
CONTINUE e vo1-OOA
I.IHEAD(~PIF) P POINT TO ELEMENT
I F (I) 1 1 1 ~ 1 1 1 ~ 1 0 2 P I S THERE A H ELEI'IENT f

0003 I 000002 LXTETH

000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000010
000020
000035
000035
000035
000035
000036

Listing 5. - Continued.

:
3

00135
00136
00137
00140
00141
00142
00143
00144
00145
00144
00147
00150
00160
00160
00161
00162
00163
00164
00165
00166
00167
00170
00171
00172
00173
00174
00175
END FOR
>

318
328
338
34s
35%
361:
37:
38:
398
40$
418
42s
43:
448
45t
468
478
48:
49t
50t
51*
52%
53t
54t
55:
568
571:

102

108

109

110

111
112

115
116

JzIHEID(lr1P) e YES, GET FLOW ZONE It1
CALL SFSHI (0) e
CALL SPSHI (0) e
CALL SFSHI (11 e ELEHENT POINTER
CALL SPSHI (J) e FLOW ZONE
CALL SFSHI (2) e
CALL SFSHI (5) e
CALL TOGSW (FGSBUGvt108~~110) e DEBUG OH ? U01-00A
K4LNK(I I 1) e YES, GET HERD ELEHENT'S UOI-OOB
LzELNK(I92) e INFO u01-00E
H=ELNK(It3) e U01-00R
URITE (6,109) I P ~ I ~ J v K r L ~ M e uo1-ooF.
FORHAT (1H r7X116HFLUSHING TETHER ,16,4X~13HHEAtl ELENENT ~18rrlX~10V01-00A

lHFLOW ZONE vI8~/rlH 99X97HELNli 2 r3(112~2X)) B U01-00A
CONTINUE e U01-00A
CALL DEAF e ASSURE SHARING OF DATA uo1-ooc
CALL REllSAF (OURIDrl) P
GO TO 112 e
CALL ERROR2 (OURIDr1) e IS ERROR TO FLUSH NOTHING

IHEAD(2,IF):O P
IHEAD(3,IF)=O e
CALL TOGSY (PGSBUGr$115,tll61 e DEBUG ON ? VOI-OOA
CALL YALKR e YES, CONCLUDE WITH UF,LKBACK UOI-OOA
CONTINUE e V01-00A
RETURN e
END e

IHEAD(l,IF)-O e ZAP HEAD

000040
000092
000045
000050
000053
000056
000061
000064
000072
000076
000103
000110
000124
000124
000124
000124
000125
000131
000133
000137
000137
000140
000141
000147
000151
000151
000165

Listing 5. - Concluded.

. .. . - ~ ~ "-
3. Recipient's Catalog No.

. . ..

5. Report Date

PARALLEL, ASYNCHRONOUS EXECUTIVE (PAX): SYSTEM
6. Performing Organization Code CONCEPTS, FACILITIES, AND ARCHITECTURE

June 1983

.~

1 1 505-40-6A
~~ ~. I

7. Author(s)
- "_ - ~ " . _" - 7.8 -Performing Organization Report No. -1

William H. Jones

9. Performing Organization Name and Address
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

11. Contract or Grant No.

-~ 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Paper

National Aeronautics and Space Administration
Washington, D. C. 20546

14. Sponsoring Agency Code

15. Supplementary Notes "--I
16. Abstract

The Parallel, Asynchronous Executive (PAX) is a software 'operating system simulation that allows many
computers to work on a single problem at the same time. PAX is currently implemented on a UMVAC
1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers.
Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has
achieved the following: (1) applied several computing processes simultaneously to a single, logically
unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved
by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault
isolation and recovery mechanisms to meet theproblems of an actual parallel, asynchronous processing
machine. Additionally, one real-life problem h a s been constructed for the PAX environment. This is
CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is
not discussed i n t h i s report except to provide examples of parallel-processing techniques.

17. Key Words (Suggested by Author(sJ) I 18. Distribution Statement

Parallel processing
Distributed processing
Fault tolerant processing
Parallel, asynchronous processing

Unclassified - unlimited
STAR Category 62

I
19. Security Classif. (of this report) 22. Price' 21. No. of Pages 20. Security Classif. (of this page)

Unclassified A04 59 Unclassified

* For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA-Langl ey , 1983

