' NASA

" Technical
Paper

2179

June 1983

NASN

[NASA

C TP
: 2179

i c.l
R

E

Parallel, Asynchronous EE= 3
Executive (PAX): System F,g_ 8
Concepts, Facilities, ==

and Architecture
William H. Jones
LOAN COPY: RETURN 10

APEL TECHNICAL LiBHRY
KIATLAND AFB, N.M.

- 25th Anniversary

1958-1983

' NASA
Technical
Paper
2179

1983

NNASNA

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

TECH LIBRARY KAFB, NM

MMRINR RN

00LB0S5?

Parallel, Asynchronous
Executive (PAX): System
Concepts, Facilities,

and Architecture

William H. Jones

Lewis Research Center
Cleveland, Ohio

e

Summary

In the mid-1970’s, the author began the development
of CASPER, a collection of fluid-flow simulation rou-
tines. As development proceeded, it became apparent
that CASPER could be worked on by virtually identical
programs at the same time. A large calculation could be
divided into segments that segregated inputs from
outputs, and logical data-base records could be arranged
into physical mass-storage records that could be
independently read and written. Because of the enormous
computational size of CASPER, the author decided to
implement this idea as the Parallel, Asynchronous
Executive (PAX).

The following features have been accomplished in the
current implementation of PAX:

(1) PAX splits one segment of a calculation into fully
asynchronous, parallel tasks.

(2) PAX manages any number of parallel processors.

(3) PAX manages any serial aspects of the problem,
including those necessary to resolve parallel-processing
conflicts.

(4) PAX provides
reporting and recovery.

(5) PAX and its parallel processors can be stopped,
changed, and restarted without loss of position in a com-
putation. Thus programming errors can be repaired
without lossing results calculated before the problem
occurred.

6. PAX provides communications facilities for inter-
action with machine operators.

This report details the fundamental concepts, facilities,
and architecture of PAX. PAX manages the execution of
CASPER (Combined Aerodynamic Structural Dynamic
Problem Emulation Routines), a program to simulate
airflow through arbitrary flow fields. CASPER is not
discussed in this report except to provide examples of
parallel-processing techniques. The current implemen-
tation of PAX is exploratory and experimental. PAX is a
vehicle for pointing the way to fully developed parallel,
asynchronous processing systems.

facilities for error and fault

Introduction

Historically, computing machines have executed a
logically unified task in a step-by-step fashion. As
computer size and speed increased, variously complex
software structures (operating systems) allowed machines
to work on many problems in a quasi-parallel manner;
however, these problems were logically unrelated in that,
as far as the machine was concerned, the output of one
problem did not affect the outputs or inputs of another
problem. Each logically unified problem still had to be
approached in a step-by-step manner, regardless of

whether that serial relationship was actually required by
the problem itself.

This serial structure of computing organization is in
sharp contrast to human organizational structure, which
is parallel and asynchronous. Many average workers can
be organized to form a formidable work force to produce
a product that would take one person thousands of years.
For many valid reasons, rather than change organi-
zational strategy, a new (faster) implementation of an
existing computer architecture usually has been produced
to increase performance to meet new demands (witness
the progress of IBM 360, 370, 370/3033, 370/3081).

In the past few years an extension of serial computing
has appeared in the form of vector processors (as offered
by Control Data Corporation and Cray Research
Corporation), but these still have not broken from the
fundamentally serial approach to logically unified prob-
lems. Certainly these machines have great merit.
Although serial organization constrains machine
architecture, it offers the utmost in algorithmic
flexibility. The problem on the horizon for even these
vector processors is the fact that, sooner or later,
technology will reach a limit beyond which the serial
organization cannot proceed. The vector processors
acknowledge this limit by processing vector commands in
parallel.

PAX attempts to organize a highly parallel,
asynchronous computing environment by using the
human experience as a model. This approach is not
without its difficulties. Chief among these is the fact that
the management systemm must have a much greater
knowledge of the problem to be managed than has been
required in the past. Simply knowing a memory
requirement, a mass-storage requirement, and a set of
connections to some undefined (in the system’s terms)
user is not adequate to organize many machines to work
in parallel on a common problem. PAX is an attempt to
deal with this organizational problem in a realistic
manner. Two fundamental facts guided initial PAX
design: (1) any parallel, asynchronous processor system
would be subject to random failures of its processing
components and (2) all problems generate some
procedural sequences that must be serialized. Thus the
initial design of PAX went beyond simple parallel
processing to management of real parallel machines and
to features appropriate to a real parallel problem.

PAX is an entry into the well-populated field of highly
parallel computing. Haynes, Lau, Siewiorek, and Mizell
in a recent survey article (ref. 1) identify six classes of
highly parallel computing machines: (1) special-purpose
functional units, (2) associative processors, (3) array
processors, (4) data-flow processors, (5) functional
programming-language processors, and (6) multiple
general-purpose processors. PAX is designed as a
management system for the sixth class of highly parallel

computers. Haynes et al. go on to identify an “‘extra
hard’’ class of scientific problems (usually involving
nonlinear, three-dimensional partial differential
equations) and report that there ‘‘. .. is a consensus
among the cognoscenti that the best approach to a first
attempt at extra-hard scientific problems is a network of
hundreds or thousands of fairly general-purpose
machines.”’ It is precisely this massive accumulation of
general-purpose machines, each doing similar (yet not
identical) computations that PAX is designed to manage.

In exchange for the increased complexity of PAX, the
user obtains a computational resource that can increase,
without practical bound, to meet the requirements of
very large computational tasks. A worker is added to
PAX simply by increasing the size of the appropriate
tables within PAX. Furthermore, workers are, for the
purposes of PAX, interchangeable: the work done by one
worker can be done by any other worker. Thus, should a
worker fail, PAX is able to allocate a replacement worker
and continue with the problem.

PAX, as implemented on the Lewis Research Center’s
UNIVAC 1100/42 computer, has succeeded in demon-
strating these capabilities. A logically unified problem
(that of airflow through realistic, time-varying flow
fields) has been split by the author into a sequence of
procedures to be executed asynchronously in parallel.
Serial synchronization, where needed, is available. Also,
a considerable level of tolerance to random faults in the
parallel-processing activities has been demonstrated.

This report presents a technical overview of PAX in an
effort to describe what PAX is and what it does in many
situations of importance during parallel processing.
Technical philosophies and choices are presented without
the exhaustive detail of a technical manual.

PAX Overview

Because PAX is a large program (well over 50 000 [ines
of Fortran) that deals with many complicated concepts,
this section gives a ‘‘big picture’” of PAX and its
concepts. The purpose of PAX is to apply many
computers simultaneously to a single problem. The
problem is broken up by the user for PAX into a series of
procedures that follow each other in a step-by-step
manner just as in normal computers. However, each
procedure is broken up by PAX into pieces that are
divided among the available worker processors. A worker
proceeds at its own pace through its assigned work and
reports to PAX when the work is complete. PAX then
assigns it more work.

Usually a procedure contains only one computation.

This computation is a specific algorithm performed over
a large range of index values. It is this range of values
that PAX manages and distributes (in pieces) to various
worker computers. For instance, a procedure might be to
perform an algorithm over the range 1 to 1 million. PAX
breaks that computation into pieces for distribution to
workers. One worker may be told to do the algorithm for
the range 1 to 100, while the next worker is told to do the
algorithm over the range 101 to 200. When the first
worker reports that it has completed the range 1 to 100,
PAX marks that work as completed and then gives that
worker more work from the uncompleted portion of the
computation, say the range 201 to 300. PAX continues to
distribute work to workers in this fashion until the entire
range 1 to 1 million is completed. Then PAX moves on to
the next procedure in the problem. Appendix A gives
several examples of algorithms that can be executed in
this parallel manner under PAX management.

In most problems the workers must share data both as
inputs to the computations and as the results of the
computation. Something must be done to assure that
individual workers do not conflict with each other in their
access to shared data. PAX does this by placing restric-
tions on the use of data by the algorithms and then by
careful distribution of the work to be done. In most
parallel-processing algorithms the delivery of work by
PAX to a worker carries with it the implicit authority to
read any necessary inputs and to write to shared storage
any generated outputs. No further authorizations are
required for a worker to proceed at its own pace on its
assigned work.

In some cases a worker may recognize that an output
must be made to shared storage that is not allowed by the
work it is given (see third example in appendix A). In this
event the worker sends a message to PAX indicating the
nature of the conflict. PAX then reviews the work that is
in progress and the work to be done and schedules the
new work so that the necessary output occurs without
conflict.

PAX is tolerant of faults. When a worker is given a
piece of work to do, PAX estimates the completion time
of that work. If the worker does not report back to PAX
that the work is done by the time that PAX expects
completion, PAX assumes that the worker has crashed.
PAX then invokes a user-specified method to recover
from the loss of that worker. In most cases the work that
was lost need only be given out to some other worker;
however, PAX has the ability to discard all work done on
the particular procedure in progress at the time of the
fault, execute one or more procedures to recover from the
possible effects of the fault, and then retry the procedure
that experienced the fault.

Fundamental Concepts

Basic Units of Work

Three terms and their interrelationships must be
mastered before any understanding of PAX can begin.
These terms are algorithm, execution vector, and task.

An algorithm is simply a formula or method for per-
forming work. For instance, the quadratic equation is an
algorithm that defines the method for computing the
solution of any second-order polynomial equation of one
variable. It is very important to see that the quadratic
equation provides only the method of solution, not the
specifics of the work to be done. A person who
understands the quadratic equation still has no work to
do because he has no specific job to which to apply it
(i.e., no data or parameters).

The execution vector is the counterpart to the
algorithm. It is an ordered n-tuple that specifies the
particulars of the job to be done but does not supply the
method. In the quadratic equation example the execution
vector is the polynomial coefficients of the particular
equation to be solved. Again, a person with only an
execution vector has no work to do because he has no
method to apply to his vector.

The fundamental descriptor of work is the task. A task
is the combination of an algorithm with an execution
vector. This combination provides the worker with a
method and a job to which to apply it. No unit of work
smaller than this fundamental combination is defined by
PAX. In PAX many individual tasks (e.g., many
quadratic solution jobs) may be merged into one large
task description, which is subsequently referred to as a
task.

Nothing more than that discussed immediately above is
implied by the words algorithm, execution vector, and
task. These words simply define method, specification,
and work.

Task Splitting and Associated Algorithmic Constraints

In PAX most tasks describe a large amount of work by
describing exactly one algorithm (always) and many
execution vectors. PAX splits one such large task into
two or more smaller tasks. Each resulting task describes
the same algorithm but uses only a subset of the
execution vectors. The union of these subsets will aiways
equal the original set of execution vectors so that work
will be conserved. What has been achieved is that two (or
more) distinct pieces of work now exist where only one

_had existed before. This ability to split a task allows PAX
to hand out large jobs in piecemeal fashion to workers as
they become available. (In future implementations of

PAX each worker’s assignment could be tailored to the
specific characteristics of that worker if any distinctions
between workers exist.)

The present rules that PAX uses to split tasks provide a
fundamental constraint on the structure of the work that
can be described: the result (or results) of the work must
not depend in any way on the order in which the work is
done. If the execution vectors in the quadratic equation
example consist of a great many polynomial coefficient
groups, the quadratic solutions obtained will not be
affected by which polynomial coefficient group is solved
first and which is solved last. Although this constraint
would appear to be severe, in fact many algorithms of
interest are not restricted by it (e.g., most vector
operations such as element-by-element addition,
subtraction, multiplication, division, and square root).
This constraint also implies that no independent output
of the work may be an input to the work since no
guarantee exists as to the order in which the work is to be
done. For example, no quadratic equation root result
from one execution vector would be allowed as an ele-
ment in another execution vector in the task description.
However, outputs of the work may be inputs to the work
if they occur within the same task at the time of
execution. This condition must be checked for by the
worker at the time of execution.

The parallel-processing nature of PAX arises from the
fact that PAX will split off a task for execution any time
a worker processor reports that it is idle. If there is only
one worker, only serial processing of work occurs;
however, if there are two or more workers, PAX will
deliver work to them whenever they are idle. This allows
two or more workers to be working on individual pieces
of the whole problem at any time.

An additional restriction applies to the work to be done
if two or more workers are sharing data (regardless of
where the shared storage is located). The storage areas to
be written as a result of any two independent execution
vectors must not overlap. This restriction is necessary to
assure that the final result is not dependent on the order
in which the work described by the execution vectors is
done. Note that this overlap is considered at the
independently writable level. If the outputs do not
occupy the same storage, but one cannot be written
without writing the other, they overlap for the purposes
of this restriction. No constraint is placed on read access
to shared storage.

To summarize, the following constraints are imposed
on any computation that is to be performed in paraliel
under PAX:

(1) The computation must consist of exactly one
algorithm and a collection of execution vectors.

)

(2) The result of the computation must not depend on
the order of computation (i.e., the order of execution
vector delivery).

(3) No output of the computation may be used as an
imput to a later stage of the computation unless it is
determined (by the worker at the time that the input is
required) that the output has already been produced by
the same task that is to use it as an input.

(4) If output storage areas are to be shared, the storage
areas to be written by any two independent execution
vectors must not overlap.

Granularity of Tasks

Some tasks may only be split at specific points in the
collection of execution vectors that define the range of
work to be done. If this is true, the task is said to be
granular in nature since it is composed of groups, or
granules, containing several execution vectors that
cannot legitimately be separated. (Actually, all tasks are
granular; however, the usual granule is exactly one
execution vector.) PAX allows the user to specify a
granularity for each algorithm that the user defines to
PAX. PAX assumes that all granules for a particular
algorithm are equal in size and allows the user to specify
for each manipulated dimension of the execution vector
both the granule size and the starting position.

This recognition of task granularity allows a slight
modification of the previously stated rule concerning the
overlap of shared output storage areas for independent
execution vectors. When task granularity is used, it is
necessary only that the output areas shared by any two
granules of work not overlap, since PAX will guarantee
that execution vectors from the same work granule will
never be delivered to two independent workers. Since the
worker assigned a particular granule of work will always
work with the most recent shared storage information
(including any new outputs that the worker has made),
one output from the granule cannot accidentally destroy
another output from the same granule.

Types of Work

Most work managed by PAX is computational, the
results being numbers that are meaningful to the user.
Two types of computational work are recognized by
PAX: main computation work and conflict resolution
work. In the quadratic equation example the roots of
each such equation are the meaningful result of the main
computational work.

The management of a parallel-processing system
requires the definition of a different kind of work to
perform management services. These services are for the
maintenance of the user’s computational environment
and the control of the system components by PAX. The
control of user-transparent, shared-data access routines

4

and the connection and disconnection of individual
machines from the PAX system are examples of this
service work.

PAX provides five distinct types of management
service work: worker startup, worker initialization
(precomputation), worker cleanup (postcomputation),
worker hold (unexpected cessation of computation), and
worker termination. Because each of these types of work
relates to the worker rather than to the computation,
each management task created by PAX is identified as
being for a particular worker.

The user does not have to concern himself with the
creation of management tasks, but only with informing
PAX about the management tasks appropriate to a
particular calculation. PAX will create the management
tasks for each computation at the time that the com-
putation is begun and will create one of each specified
management task for each worker that is active at that
time.

Description of Larger Quantities of Work

The ultimate description of work is the task; however,
a single task description is seldom adequate to define an
entire problem. As shown in figure 1, PAX groups tasks
into collections called procedures. These procedures are
typically made up of one main computational task
(defining a large amount of work) and one or more
management tasks. The various tasks are sequenced to
assure proper operation of management functions. This
sequencing assures, for instance, that a worker is
initialized for the particular computation before the
worker is actually given any computational work. Work
proceeds asynchronously in parallel within the
procedure. As each worker completes work and becomes
idle, PAX delivers the next appropriate task to the
worker for execution.

Problems are made up of a sequence of procedures
executed in a procedure-by-procedure manner. PAX
allows work to be done on only one procedure at a time.
In this sense problems are still solved in a serial manner

Problem Stfrt
Pracedure '
| Task: Initialize workers |
| Task: Compute]
l Task:_Clean up workers]
-
LProcedure l
—
Procedure
—
Stop

Figure 1. ~ PAX work description structure,

just as with conventional computers; however, executing
the tasks within a procedure in parallel permits much
more work to be done in less time. The user customizes
each step by defining for PAX the algorithm and the
execution vectors to be processed.

Resolution of Conflicts

In dealing with real-world problems the need
occasionally arises for a worker to generate an output
that is not allowed by the parallel-processing restrictions.
Appendix A contains an example of a linked-list-
processing algorithm that generates such output con-
flicts. PAX calls this circumstance a conflict and provides
workers with a service for its resolution. When PAX'’s
internal tables are built, the user describes the nature of
each conflict that might arise and gives it the necessary
details as to acceptable resolution procedures.

When a worker encounters a conflict, it transmits a
message to PAX indicating the conflicted work to be
done (i.e., an algorithm and an execution vector). PAX
uses this information to create a computational task
containing the work whose execution might conflict with
other tasks already in the system. This task, designated a
conflicted task, is scheduled specially to assure that its
execution will not interfere with the execution of other
tasks.

This scheduling occurs by the method selected by the
user from several options available in PAX. The most
common selection is one in which the conflicted task is
executed only after the completion of the main
computational task that contains the point of conflict.
PAX extracts the point of conflict from the supplied
execution vector and constructs the conflicted task. PAX
then inserts the conflicted task into a queue associated
with the main computational task that contains the point
of conflict. The queue head is actually in the description
of the main computational task. Tasks in this queue
cannot be released for execution until the main
computational task is complete. At task completion PAX
checks to see whether any tasks are enqueued in the
conflict queue of the task description and, if such tasks
are encountered, dequeues them and releases them for
execution. Once conflicted tasks are released for execu-
tion, they can run in parallel in the same manner as other
tasks.

Two conflicted tasks can conflict not only with a main
computational task, but also with each other. PAX offers
a user-selectable solution to this problem by serializing
the execution of conflicted tasks that specify the same
point of conflict. When the main computational task is
located, PAX will see whether a conflicted task with the
same point of conflict is already in the conflict queue of
the main task. If so, PAX will queue the new conflicted
task onto the completion of the last such conflicted task
instead of onto the main task. Each succeeding conflicted

task with that conflict point is queued onto the previous
one. Thus conflicted tasks with the same point of conflict
are released individually for execution upon the comple-
tion of the previous task with that conflict point.

Consider as an example of conflict resolution the
manipulation in parallel of a large number of linked lists
for the purpose of removing elements that are linked into
the wrong list and inserting those elements into the right
list (where “‘right’’ and ‘‘wrong’’ are not important to
this example). The execution vectors for the work would
be the collection of list identification numbers. After task
building, PAX begins handing out work to each idle
worker, giving it one or more specific linked lists to
process. Each worker receives the implicit authority to
manipulate (unlink, link, etc.) each linked list that it is to
process; however, it does not receive authority to
manipulate other lists since another worker may be
manipulating those lists at the same time. Eventually a
worker encounters an element that does not belong in the
list it is currently processing, and it removes the element
from that list. The worker may check to see whether the
element belongs in a list that it is allowed to manipulate
(by virtue of the list being a part of the assigned task of
the worker) and, if so, the worker inserts the task in the
correct list. However, if the worker is not allowed to
manipulate the correct linked list, a conflict has occurred.
The worker sends PAX a message defining the conflict by
identifying the algorithm to be performed (linked-list
element insertion) and the execution vector specifying the
work (linked-list number and element number).

PAX responds to this message by creating a conflicted-
task description. Based on its own internal tables (as
filled in by the user), PAX determines that the linked-list
insertion must occur after the main processing of the
target linked list is complete. PAX then locates the task
that includes the main processing of the target linked list
and checks to see whether a linked-list insertion for the
same target list is already queued onto the task. If so,
PAX enqueues the newly created insertion task onto the
previous insertion task for that particular list; otherwise,
PAX enqueues the new task directly onto the main list-
processing task. When the main task completes, the
insertion task will no longer conflict with it. PAX detects
the enqueued insertion task, dequeues it, and releases it
for execution. The third example in appendix A explores
this linked-list manipulation in more detail.

Worker/Procedure Synchronization

During actual parallel operations PAX is usually
unaware of the exact state of the procedure under
computation. Specifically the location of the most recent
valid copy of shared data is usually unknown to PAX
since workers may buffer shared data in their own local
memory areas. This is in full accord with the design of
PAX; however, at certain times (e.g., the release of a

5

managed worker from further use or the release of a
conflicted task for executian) PAX must know the
explicit state of the procedure to assure that all necessary
components of the procedure and its algorithmic results
are properly retained and protected. Thus PAX currently
defines a procedure and a worker to be ‘‘synchronized’’
when

(1) The assigned worker has all appropriate
background information for executing all pertinent
computational tasks

(2) The assigned worker knows the actual location of
the most recent valid copy of all required input to any
pertinent task

(3) PAX knows the actual location of the most recent
valid copy of all generated output of all tasks assigned to
the worker

If these conditions are not met, a worker could either
proceed on a task with incorrect input data or be
detached from PAX while in possession of the only valid
copy of output data. Clearly such conditions cannot be
accepted. Therefore only when a worker is synchronized
with a procedure according to the preceding conditions
may that worker begin an assignment or be detached
after completing an assignment. Furthermore, if such an
illegal transition does occur, PAX detects it and institutes
appropriate fault recovery mechanisms to restore the
problem to an uncorrupted state.

Exceptional Conditions: Faults and Errors

One of the most difficult problems in computing is
responding to the unexpected. In conventional systems
exceptional events frequently invoke a response that
appears catastrophic from the user’s point of view. Often
the response is for the entire system to cease operation.
The PAX design recognized that unexpected events, such
as the failure of an individual worker, would be likely
and that a catastrophic response would be unacceptable
because of both the anticipated cost of the system and the
computations to be performed on it. Thus PAX design
includes facilities for the user to specify responses that
permit the recovery of his computational product from
the most likely failures of the system. Two reporting
mechanisms are implemented in PAX: the error and the
fault. The error mechanism is for use by the user and is to
report algorithmic anomalies that only the user can anti-
cipate and detect. The fault mechanism is used by PAX
for reporting unexpected events in the operation of PAX
components and reflects those things that are within the
(automated) understanding of the management program.

PAX defines an error as an exceptional event that
occurs because of the combination of algorithm, execu-
tion vector, and input data. An error may require
remedial action in a procedure-wide context, possibly
including recovery through remedial computation. Thus
all PAX computational management facilities are

6

available for servicing errors. Furthermore, because error
recovery may have ramifications across the entire
procedure, explicit knowledge concerning the
appropriate error recovery action must be supplied to
PAX for each possible error. The explicit error handling
instructions obviate the need for a specific error state.
The user must separately identify to PAX any changes in
state (e.g., from executable to nonexecutable) that may
be associated with a particular error.

The user may include in his code some specific checks
on the progress or validity of his computation (e.g., for
convergence difficulties or unexpected results). When
defining a procedure to the PAX system the user must
specify each of the possible errors and the desired
response from PAX to each one. Then if an error is
detected, the corresponding response instructs PAX to
halt, to retry, or to take other appropriate action in an
orderly manner.

PAX and its workers report difficulties through the
fault mechanism. Faults are exceptional events related to
the internal operations of PAX and its workers. Faults
are independent of the actual algorithm, execution
vector, and input data being executed. The uncontrolled
termination of a worker is the most important of all
faults recognized by PAX. Because PAX design calls for
complete recovery from such faults, PAX requires
extensive information from the user (much as for errors)
to define acceptable recovery mechanisms for each
procedure should a fault occur during the execution of
that procedure. The current implementation of PAX
detects and recovers from worker-failure faults, and
similar methods could be used to recover from other
faults possible in actual parallel, asynchronous machines.

Facilities

PAX offers a number of facilities for the control of
overall problem computation, for the management of
serial and parallel procedural computation, and for the
interaction of parallel processors and procedures with
their management. Because of the potential cost of
terminating computations after obtaining only
intermediate results, an extensive facility for suspending
operation and making necessary corrections without loss
of computational position is also provided.

PAX Control Language

The fundamental facility for computational control is
the PAX control stream. This stream of PAX control
codes is constructed by the PAX Control Language
Assembler, PCLASM. A sample of this language is
provided in listing 1. This language is structured like an
assembly language. PAX fetches control codes from the
stream produced by this language and executes the
procedures identified by those codes.

As an example, refer to listing 1, page 3, lines 39 to 41.
On line 39 the mnemonic TEDM has been translated to
the hexadecimal code 000000010, which tells PAX to
enter its dispatching mode. When PAX enters the
dispatching mode, it requires more information to
identify and specify the parallel procedure to be
dispatched to the workers. This information is provided
by the mnemonic DVCOR on line 39 as well as as by the
mnemonics on lines 40 and 41. DVCOR s translated to a
(default) value of hexadecimal 000000006, which
corresponds in PAX’s internal tables to the algorithm
defined in listing 2 (and discussed at greater length in
appendix A). Line 40 identifies a single required
argument (to be appended to internally generated
execution vector components) through an addressing
mode code (DASSM, hexadecimal 000000003) and
addressing data (VCORF, hexadecimal 000000085,
derived by adding hexadecimal control section offset
000000013 from page 2, line 24, and the hexadecimal base
address of 000000072 for control section 0003 from page
13). Finally line 41 terminates argument processing with
the control code hexadecimal 000000000.

The listing reveals a higher level on which PAX can be
viewed. If the reader were not aware of all of the parallel-
processing capabilities of PAX, he might deduce that
PAX was a simple, step-by-step computer with a very
high-level instruction set (e.g., instructions that solve the
Navier-Stokes equations, as on page 5, line 6, of listing
1). This is a key observation to understanding the bigger
PAX picture because the user can define, in effect, a
superinstruction set (i.e., procedures) and use it in a
simple step-by-step solution.

The control-code stream facility draws added impor-
tance from the fact that it is an integral part of PAX’s
fault tolerance capabilities. PAX understands the
control-code stream structure and is able dynamically to
create and insert control-code sequences of its own for
error and fault recovery and for certain system
management procedures. The error and fault recovery
control-code streams for each procedure must be
installed in PAX by the user. Such sequences must
define, at a minimum, the operations necessary to
recover from the unexpected, procedure-asynchronous
termination of a worker. Should such an event occur,
PAX uses the supplied codes to alter its control code
stream and provides the necessary linkages back to the
original procedure that experienced the error or fault.

PAX Commands

PAX may receive commands to modify or report its
operating state asynchronously with respect to
computational operations. PAX commands serve an
entirely different purpose from that of the PAX control
language. The PAX control language defines the
problem, which is independent of the time of execution

or of checkpoint and restart occurrences. The PAX
commands have no influence at all on the problem. They
are concerned solely with events such as checkpointing,
stopping, and restarting. Although a variety of different
functions are (or might be) served by this facility, its
principal use is to direct PAX to an orderly halt. These
commands are currently entered through the UNIVAC
systems console; however, this is not an architectural
constraint of PAX.

Although a considerable number of systems console
commands are currently honored by PAX, the following
examples should give the reader the general flavor of the
facility:

(1) PAX may be ordered to bring parallel computing
operations to a close at any time by issuing a STOP
console command. This directs PAX to cease the
dispatching of further computational work and to
perform a complete problem checkpoint-and-exit process
when the work that is currently under way completes.

(2) PAX may be ordered to adjust the average running
time of tasks split for parallel execution by issuing the

CONFIGURE TASK.TARGET.TIME time.value.pairs

console command. This command directs PAX to change
to the indicated value the desired execution time value
maintained internally by PAX. When PAX splits off a
task for execution, this target execution time is used in
conjunction with running-time history tables for the
algorithm to estimate how much of the parent task
should be split off to make a task of reasonable duration.

(3) The wall clock running time of PAX can be
specified by issuing the

SET.RUNTIME time.value.pairs

console command. This command directs PAX to set an
internal timer that operates based on wall clock (rather
than program execution clock) time. When the time
expires, PAX will internally issue a STOP command.

The command facility does not require that command
execution proceed immediately to a logical conclusion at
the time of initial command execution. A command may
suspend itself pending the occurrence of one or more
enabling events (e.g., a timer timeout, the return of all
workers to idle, or the receipt of a countervailing
command). This capability is necessary since the PAX
parallel-processing facilities are needed to perform an
orderly shutdown of workers. In such a shutdown
sequence the change of state inhibits PAX from
dispatching any further computational work but allows it
to process the completions of outstanding work and to
manage the synchronization of workers with the
procedure so that those workers can be detached from the
problem.

iz

SR

Since command interpretation may be suspended, a
command priority structure is provided. This facility
allows the PAX system builder to resolve potential
conflicts that might occur in interleaved interpretation of

commands.

PAX-Worker Interaction Facility

PAX and its workers interact on a dynamic basis by
exchanging messages through a shared data area.
Currently PAX transmits only one type of message to
direct an individual worker to execute a task.

The workers may transmit the following messages to
PAX:

(1) The worker is ready to begin task execution.

(2) The worker has successfully completed a task that
it was directed to perform.

(3) The worker has encountered an error condition
while executing its task.

(4) The worker needs more time to complete its
assigned task.

(5) The worker has identified a condition requiring
operations outside the limit of its authority and thus
requests that PAX manage a task identified in the
message to effect these operations.

(6) The worker has identified a change-of-task state.
Currently the only defined transition is to a nonexecuting
condition.

(7) The worker is on the verge of unconditionally

ceasing operation.
A worker is under no constraint in regard to the messages
that it can send at any time. Thus PAX is prepared to
handle even inconvenient message sequences such as the
transmission of a processor termination message in
response to a PAX message to perform a computational
task.

Error and Event Logging

As might be expected, the debugging of parallel,
asynchronous operations can be very challenging. PAX
provides an error and event logging facility for the
purpose of tracking and diagnosing PAX operational
experience. Each error that is detected, whether by PAX
or by a worker, is noted and logged. Also, PAX notes
and logs a number of significant events and changes of
state that occur within its own boundaries. Information
defining the precise geneology of each such error or event
may, optionally, be recorded in the log entries for
enhanced diagnostic use.

Error and Fault Recovery

PAX provides extensive error and fault recovery
mechanisms. The entire computational management
facilities of PAX are available for this purpose so that
parallel, asynchronous computational procedures can be

used to recover from errors and faults. Invoking such
recovery procedures is optional for errors; however,
PAX must be provided with appropriate information for
handling PAX system faults. The most likely of these
faults is the uncontrolled termination of a worker. Fault
recovery options range from simple reassignment of the
worker’s task to rejection of all computational results
from the entire procedure followed by a recovery
sequence (of other procedures) and subsequent
reexecution of the procedure during which the fault
occurred. When each procedure is defined by the user to
PAX, information regarding the desired error and fault
recovery options must be provided. For example, this
information might include a complete computational
sequence, potentially involving parallel computations, to
reconstruct lost relationships in shared data. Under these
circumstances PAX would dynamically insert the
supplied control language codes into its own control
stream and begin executing them. The end of the
recovery-code sequence is made by PAX to restart the
computational procedure in which the error or fault
occurred. This recovery mechanism can be extended to
any practical depth should additional errors or faults be
encountered during a recovery sequence.

The error and fault detection and recovery mechanisms
keep track of the number of times errors and faults have
occurred both in particular tasks and in the procedure.
Should errors recur and exceed a preset numerical limit,
PAX will bring to an orderly halt all work on the problem
and await the user’s intervention. PAX does not provide
any new solutions to the problem of detecting errors,
particularly the infinite loop problem. PAX’s error
counting mechanisms are intended to limit the spread of
such problems rather than to diagnose and correct them;
however, future versions of PAX may extend the logic to
measure and compare worker productivity in order to
detect infinite loops as they execute.

The most probable fault in a real parallel machine is
the unexpected failure of a managed processor. As the
number of processors increases, the probability of
encountering such a failure during the operation of a
problem rises, presumably in a linear manner. Because of
the high cost anticipated of operating such a machine, it
is essential that the PAX design not respond to such
events by discarding the computational product produced
up to the fault point. Simple checkpointing of previous
computational results is a possible alternative, but
experience gained in implementing a real parallel problem
suggests that such checkpointing requires more time and
resources than do recovery methods based on the true
needs of individual procedures.

Checkpoint and Restart Facility

PAX offers its own checkpoint and restart facility
because a number of independent but logically unified

processes may be executing under PAX at any time. The
checkpoint sequence occurs whenever PAX is ordered to
halt. Such an order may be delivered to PAX from the
UNIVAC systems console, from the PAX control
language stream, or from within PAX itself.

The checkpoint and restart facility separates problem-
specific information (i.e., information that describes the
current state of the problem work to be done) from code
and data relating to the management and operation of
PAX and its workers. All PAX starts begin by loading
the problem-specific data from a known, permanent
place. Data relating solely to PAX’s internal operations
and arrangement are not loaded from any checkpoint file
but are, instead, accepted as supplied in PAX’s own
program load image.

This selective reloading of data during the PAX start
sequence allows PAX to be highly tolerant of alterations,
particularly to its own code and that of its workers. In
this way bugs can be corrected without loss of position in
a current problem. Additionally careful adjustments to
the current problem state or the data base supporting
such a problem can be made while PAX is halted without
loss of position in the problem.

Architecture

The following discussion details architectural points of
PAX as it is simulated on the Lewis Research Center’s
UNIVAC 1100/42 system. Although the current imple-
mentation is not intended for a real parallel,
asynchronous machine system, most of the
organizational aspects will still apply in a real system.

The current PAX implementation is constrained by the
fact that PAX has no authority regarding the allocation
of resources within its host environment. In particular,
worker components can be placed temporarily in a
nonexecutable state by UNIVAC’s EXEC VIII operating
system without the knowledge of PAX. This situation
causes difficulties in that PAX misinterprets the absence
of activity from the worker to be an unscheduled
termination rather than a temporary suspension of that
worker.

Labor-Management Architecture

The principal architectural division in PAX is the
labor-management division. The management function
(i.e., the definition, direction, interaction, and manage-
ment of a problem) is contained within the formal
boundary of PAX (fig. 2). All parallel, asynchronous
computation is performed by the workers. PAX and its
workers are connected by a communications facility
through which messages can be passed to direct the
actions of the workers and to report the results of such
action and the status of the workers.

The architecture also defines an access path for PAX
and all of the workers to a shared source of data. This
shared source of data is optional since some meaningful
parallel-processing problems do not require shared data.
These problems are usually not input data intensive.

Some serial computation is performed within the
formal boundaries of PAX. This architecture simplifies
internal PAX design and is appropriate when PAX is a
single-user system. When multiuser architecture is
approached, this concept may well be revised since PAX
would be likely to have more pressing management duties
that would be given precedence over the execution of
serial tasks for a particular user.

PAX Management Architecture

PAX has six internal components (fig. 3):

(1) The shared executive-data area (EXDA) is the
internal binding among the other five components of
PAX. All data defining the current operating state of
PAX and the current state of the computational problem
under consideration are contained in the EXDA. Also, all
internal communications between PAX components are
routed through the EXDA.

(2) The overall manager (OM) provides all basic
management decisions and directions.

(3) The external listener (EL) waits for messages from
workers or other software entities that have access to the
(PAX) interprocessor communications path. When such
messages are received, the EL performs some error
checking and message transformation and queues an
appropriate message to the OM.

(4) The anticoma activity (AC) serves as a timer for
PAX. It periodically scans the expected completion times
of any outstanding work in the PAX system and notifies
the OM of any overdue events. This activity prevents the

Communications

—

Parallel asynchronous executive (PAX)
Functions:

" Labor management

Serial processing

Worker

<-—» Function:
Parallel, asynchronous labor

Shared data
base (optional)

I
-— Worker — -
L |

Figure 2. - PAX labor-management architecture.

L

Communications
Parailel, asynchronous executive (PAX) _|
[

|

Overall manager

l

External listener

UL

Shared-
executive
data area

Anticoma

Systems console
communicator

—[]

Systems console
listener i

l UNIVAC systems console I

Figure 3. - PAX management architecture.

OM from drifting off into a comatose state in the event
that all of the workers fail (e.g., an unexpected infinite
loop occurs in a parallel procedure).

(5) The Systems Console Communicator (CC)
provides an error checking and message translating
intermediary between the OM and the UNIVAC systems
console. Full bidirectional conversations initiated by
either party may be carried on between the OM and the
UNIVAC systems console.

(6) The Systems Console Listener (CL) waits for an
indication from the UNIVAC systems console that it
desires a conversation with the OM. In this event the CL
so informs the OM, which then responds through the CC.

Overall Manager Architecture

The internal arrangement of the OM is depicted in
figure 4. After the PAX startup sequence has completed,
control passes to the PAX control-stream interpreter.
This interpreter fetches the codes produced by the PAX
Control Language Assembler (or dynamically created by
PAX itself) and directs control to an appropriate PAX
action effector. A specific action effector is dedicated to
each PAX control code and is responsible for carrying
out the desired action. Between control-code fetches, the
control stream interpreter checks to see whether any PAX
command messages are waiting. If such a message is
waiting, control is diverted to the PAX Command
Message Interpreter (CMI) to process the command.
Normally, control returns then to the control-stream
interpreter; however, on the appropriate command,
control may pass to the exit sequence module from which
a normal exit occurs.

[Startup sequence module |

'

I I
|_ PAX control-stream interpreter
Command message
__l interpreter
Parallel, asynchronous procedure
L management (dispatcher) -
T
__I. PAX action effector Exit-sequence
L module
-j_. ! PAX action effector

Figure 4. - PAX overall manager architecture,

From a control-stream context PAX can be viewed as a
virtual machine. The control codes supplied in the stream
designate actions to be performed by the PAX virtual
machine, each action being completed before the next is
begun. Some actions performed by the PAX virtual
machine are procedures that are split into segments that
operate in parallel; however, in the control-stream sense,
they still appear as single actions designated by a single
code. Thus a parallel, asynchronous procedure does not
differ from any other action when considered from the
control-stream perspective; however, internally the
parallel, asynchronous procedure management action
effector (also referred to as the dispatcher) is very
different from other action effectors. The principal
difference is that it checks for the presence of command
messages and, if such a message is present, transfers
control to the CMI. Upon completion (or suspension) of
message interpretation, control transfers back to the
dispatcher. The other principal difference is that the
dispatcher’s actions consist not of computation but of
message generation, receipt, and processing.

Parallel, Asynchronous Procedure Management
Architecture

Figure 5 depicts the general organization of the
dispatcher portion of the OM. Upon transfer of control
to the dispatcher an initialization sequence is performed
(1) to establish the status of each authorized worker and
(2) to construct the necessary internal task descriptions to
effect the requested parallel procedure.

Once initialization is complete, a specific process of
handling messages and dispatching work is begun. The
priority of dispatcher attention is as follows:

(1) Any waiting command message is interpreted by a
temporary transfer of control to the CMI.

(2) Any messages received from workers are handled
by an internal segment of the dispatcher.

Initiajization and task
construction Command message interpreter

_§ —

| Worker message handler
T

Message and work

detector and prior- e o o
ity scheduler i Conflicted-task effectors
T

J

l Exit sequence

J‘—__’I Task information transmitter

Figure 5. - Parallel, asynchronous procedure management architecture
(dispatcher).

(3) Any read-to-run conflicted tasks that, instead of
being distributed to workers, are to be executed by PAX
are executed in an internal segment of the dispatcher.

(4) If ready-to-execute parallel tasks and idle workers

exist, appropriate task execution messages are made up
and transmitted to the workers by an internal segment of
the dispatcher.
If none of these conditions exist, the dispatcher issues an
activity suspension request on behalf of the OM and
awaits the arrival of either a command or a parallel
processor message.

The dispatcher action effector also offers an alter-
native initialization sequence, which allows reentry of a
suspended parallel procedure. This initialization skips the
problem-related task-building operations and, instead,
simply accepts the task descriptions already in the various
PAX task queues. Parallel processor management
functions and maintenance-task building proceed
normally in this situation. This architectural feature
allows PAX to suspend parallel operations in
midprocedure and to resume those operations at a later
time. This ability is necessary to satisfy checkpoint/stop
requests (on command or on internal error) in a timely
manner.

As noted in item 4 in the list of priorities, the
dispatcher is responsible for matching waiting tasks to
available workers and transmitting appropriate messages
to such workers to effect the tasks. To perform this
action, the dispatcher splits such tasks (if possible) into
tasks of manageable size. The dispatcher maintains tables
in the EXDA for use in establishing the number of
execution vectors that will lead to a task of reasonable
duration.

The response of the dispatcher to errors and faults
arising from executing tasks is important to the overall
success of PAX. The following options are available to
the dispatcher, one of which must be selected by the user
(currently, at PAX build time) for each dispatchable
task:

(1) PAX may be ordered to checkpoint and stop
immediately.

(2) The error may be noted and ignored. Faults (e.g.,
the unconditional termination of a processor that is
unsynchronized with the problem) may not be ignored.

(3) The task generating the error or fault may be
placed in the waiting task queue for reexecution by the
next available appropriate worker.

(4) The entire procedure generating the error or fault
may be reexecuted.

(5) The procedure generating the error or fault may be
discarded in the most expeditious manner possible. Then
a user-specified series of procedures may be inserted into
the PAX control stream and executed in order to perform
such remedial actions as are necessary to return the
problem to a known state. Upon successful completion of
the reconstruction, control will transfer to the faulting
procedure, which will be freshly initialized and executed.

PAX maintains statistics on the occurrence of errors
(on a task basis) and faults (on a processor basis) and
does not allow limitless repetition of errors or faults.
Repeated errors from a particular task will eventually
force a checkpoint and stop of the problem. Repeated
faults from a particular processor will cause PAX to
remove that processor from use and deliver it to an
architecturally defined (but not currently implemented)
maintenance facility. If PAX removes such a processor
from use, it will attempt to obtain a replacement and, in
any event, will continue on with the problem with
whatever resources remain. If all parallel processor
resources are exhausted, PAX will checkpoint and stop
the problem and itself.

Worker Architecture

The architecture of a PAX worker is shown in figure 6.
(Note that ‘“‘worker’’ is used here in a conceptual sense

Communications

Worker local management]

r " 1
- Algorithm effector ;—l
-~ Algorithm effector [P

I : Y
I—-»' Algorithm effector ﬁ-——l

| I— 1 1

¥ . .
— ___Environmental services I

L

Figure 6. - Worker architecture.

11

.

and, for PAX’s purposes, may mean one of many
processes on an individual worker computer.) A worker
is controlled by a simple management program that
receives and transmits messages and transfers control to
algorithm effectors. The algorithm effectors periodically
transfer control to a progress estimator (an
environmental service) that may transmit a request for
more execution time to PAX if necessary. Several other
services are available to algorithm effectors for the
transmission of other requests to PAX.

The worker cycle is simply this:

(1) The worker receives a message to execute a task.

(2) The worker executes the appropriate algorithm as
specified by the supplied execution vector (or vectors).

(3) Various PAX facility requests (for conflicted tasks,
etc.) are transmitted to PAX as appropriate.

(4) A task completion message is transmitted to PAX
on completion of algorithm execution.

No ability to query the worker during task execution is
defined within PAX architecture. This relieves PAX of
the burden of periodically querying a (potentially) very
large number of workers and simplifies worker design
and implementation; however, it also means that fault
detection must become a passive process since PAX
cannot query a supposedly busy worker to determine its
progress or its health. This architecture could be changed
in future implementations. Current experience shows that
an algorithm with an infinite loop can easily consume all
available PAX system resources through the passive fault
detection mechanism. The mechanism is as follows:

(1) After a reasonable period of time, PAX declares
the worker executing the infinite loop to have faulted.

(2) PAX institutes the appropriate recovery
procedures, including the addition of a replacement
worker. Eventually, the task containing the infinite loop
is assigned to another worker.

(3) While the worker that was originally assigned the
task containing the infinite loop continues to work
diligently at its assigned task, a second worker attempts
to execute the infinite loop and is eventually faulted by
PAX.

(4) Steps 1 to 3 repeat until all workers are executing
the infinite loop and PAX is halted for lack of worker
resources.

As can be seen, the addition of some sort of
asynchronous query facility is highly desirable.

12

Concluding Remarks

A software operating system (PAX) has been
developed to demonstrate the feasibility of applying
many independent processors to a single, logically unified
problem. Results indicate that a real parallel,
asynchronous processing system can be defined,
implemented, and brought to bear on large
computational problems. This system will allow the man-
month rule to apply to a wide range of computational
problems that fall within the restrictions set forth in this
report. Thus a problem (operating under this system) that
could be solved in 2 months by 20 computers might be
solved in 2 days by 600 computers. This man-month rule
may be followed without practical engineering limit.

PAX has achieved the following:

(1) Applied several computing processes
simultaneously to a single, logically unified problem
(CASPER)

(2) Resolved most parallel-processor conflicts by
careful work assignment

(3) Resolved by means of worker requests to PAX any
conflicts not resolved by work assignment

(4) Provided fault isolation and recovery mechanisms
to meet the problems of an actual parallel, asynchronous
processing machine
As with all such research efforts, much work remains to
be done (as delineated in appendix B). The limitations of
the reported work are the result of imperfect vision
during the design phase and do not represent long-term
imperfections of the overall concept. The reported work
is a solid base of learning from which a second generation
of parallel, asynchronous process management can be
designed and implemented for a truly parallel,
asynchronous machine.

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio, February 28, 1983

Reference

1. Haynes, L. S.; et al.: A Survey of Highly Parallel Computing.
Computer, vol. 15, no. 1, Jan. 1982, pp. 9-24.

Appendix A
Parallel-Process Examples

PAX was designed and implemented in response to the
needs of CASPER (Combined Aerodynamic Structural
Dynamic Problem Emulation Routines), a method for
simulating the unsteady viscous flow of air through real,
time-varying flow fields. CASPER simulates such airflow
by creating a vast population of Lagrangian aerodynamic
elements. It applies various algorithms to known prop-
erties of an aeroelement to calculate other properties for
it. For instance, the velocity and position of an
aeroelement and its nearest neighbor elements are used to
establish the velocity field gradients for the aeroelement.
Then (in a subsequent computational procedure) these
velocity gradients can be used with the Navier-Stokes
equation to produce aeroelement accelerations. Although
this report does not offer a detailed exploration of the
mathematics and methods of CASPER, it provides some
examples of parallel processing as applied to CASPER.

Simple Parallel Process

In CASPER, the volume of each aeroelement is
estimated on the basis of its proximity to each of its
nearest neighbor aeroelements. This estimate is not
necessarily accurate in an absolute sense, but it is
consistent on an element-to-element basis. During
individual volume estimation a running total of all such
individual volumes is maintained. By comparing the final
total of individual aeroelement volumes to the actual
volume known to be occupied by all aeroelements, a
multiplicative correction factor can be obtained and
applied to each aeroelement.

Listing 2 illustrates how the volume correction factor
can be applied in a simple parallel, asynchronous process.
The subroutine VCOR multiplies each aeroelement
volume by the correction factor and places the result in a
scratch location associated with the aeroelement. The
estimated volume of each aeroelement is obtained from a
shared data area through a call to the Fortran function V
(line 24 of listing 2). Write access to each aeroelement’s
scratch location is through the Fortran subroutine
STAESC (line 25 of listing 2). The correction factor is
supplied to VCOR as the subroutine argument VL. The
algorithm’s execution vector is the aeroelement
identification (the DO-LOOP index of line 22) and the
volume correction factor VL.

PAX delivers many individual execution vectors to
each worker executing this subroutine by supplying a
range of aeroeclement identifications (IL to IH, supplied
in the argument list) and a single correction factor VL,
shared by all aeroelements. This arrangement is typical of
execution vector manipulations by PAX. Many execution

vectors contain components that do not vary from task to
task and thus are ignored in work scheduling. PAX
distributes work according to the parts of an execution
vector that distinguish a specific piece of work from all
other pieces of work. These components of the execution
vector are manipulated as ranges of values rather than as
individual values.

This example is simple, but it illustrates the advisability
of input and output segregation in algorithm design for
parallel processing. In VCOR the corrected volume result
is placed in a scratch location for later (post-parallel-
procedure) use in a subsequent aeroelement volume up-
date procedure. The alternative would have been to make
in-place correction of each aeroelement’s volume. The
selected approach has the distinct advantage that, should
an unsynchronized worker failure occur during this
procedure, the shared data base can be recovered merely
by reexecuting the parallel task (or tasks) placed under
suspicion by that failure since the input data can safely be
assumed to be uncorrupted. If the algorithm had stored
the corrected volume result back into the shared volume
location for the aeroelement, such a failure would have
left PAX uncertain as to the state (corrected or
uncorrected) of each suspect volume. In such an event
recovery procedures would have to include the
reestimation of aeroelement volumes from other
uncorrupted data.

Parallel Process with a Conditional Algorithm

Listing 3 illustrates a parallel process that requires
conditional branches within the algorithm. Subroutine
MOVEL moves aeroelements through space by inte-
grating velocity and acceleration, subject to the
constraint that no physical boundary shall be violated.
The conditional branch occurs when a boundary is
violated. In this event the algorithm must locate the point
of violation and provide an alteration of course at that
point. Not all aeroclements will require such an
alteration, nor will the same boundaries affect each
aeroelement (whether or not a violation occurs).

CASPER supplies this algorithm with an initial
position (line 192, function reference X) and velocity (line
193, function reference U) for each aeroelement, as well
as an acceleration (line 194, function reference A). The
acceleration is previously calculated with the Navier-
Stokes equation and is presumed to be constant for the
time period over which the positions are to be calculated.
CASPER describes real shapes as a concatenation of
truncated functions F of space and time. A boundary is
the locus of all points such that F is zero. The volume

13

contained by such a boundary is the locus of all points in
space-time such that F is less than zero. To reduce
computational load, CASPER identifies zones in space
(in this example through the subroutine call TSTZN at
line 334) for which particular subsets (identified through
function references IPZBL and ZBL, lines 338, 340, and
343) of the concatenation of functions F apply. Thus the
need to check positions in space-time against all functions
in the concatenation is eliminated.

The key conditional branch occurs at line 208 of the
listing. The internal subroutine YNM has just returned in
the variable SVMIN the smallest surface function value
for the appropriate subset of the functions F at the
current position of the aeroelement in space-time. If the
value of SVMIN is zero or negative, a boundary violation
is occurring at that point in space-time and corrective
action (beginning at line 250 of listing 3) must be taken.
This corrective action consists of (1) identifying the point
in space-time just short of boundary violation for use in
the next normal boundary violation test (lines 206 to 208)
and (2) setting a flag to indicate that a boundary bounce
operation must occur if the normal boundary violation
test shows no violation. The subroutine inspects the
boundary bounce flag at line 209 of listing 3 and, if so
directed, applies an angle-of-incidence-equals-angle-of-
reflection rule to the aeroelement’s path by adjusting the
aeroelement’s velocity vector (lines 210 to 230, especially
line 224, listing 3). The angle-of-incidence-equals-angle-
of-reflection rule is given as a first approximation to
aeroelement behavior, but almost any other rule could
easily be inserted in this code.

It is important to note the highly conditional and (from
the algorithmic design viewpoint) unpredictable nature of
this parallel process. Each aeroelement is checked against
only a subset of the boundary functions, and the subset
may change in midflight for any particular aeroelement.
An aeroelement may or may not violate one or more of
the boundary functions, and a course modification code
must be applied only if such a violation occurs. Parallel
processing is ideal for handling these conditional clauses
because the algorithm is executed independently for each
aeroelement by a traditional serial machine in which
conditional branches do not carry any particular penalty.
The power of parallel processing arises from the fact that
this algorithm can be split by aeroelement identification
(ID) range (i.e., worker N sets aeroelement ID’s running
from ILn to IHn while worker M sets aeroelement ID’s
running from ILm to IHm, etc.) into many tasks to run
on many individual machines. Such splitting is possible
because the inputs (aeroelement initial position, initial
velocity, and acceleration) are segregated from the
outputs (aeroelement final position and final velocity,
which are both placed in aeroelement scratch locations)
and because shared outputs (aeroelement scratch
locations) are mapped on a one-to-one basis by the
execution vector (aeroelement ID’s).

14

Parallel-Process-Generated, Shared-Access Conflicts

Listing 4 illustrates a parallel process that generates
shared-data-access conflicts. CASPER maintains a
linked list for each flow zone of all of the aeroelements
that are actually resident in that flow zone. As
aeroelements move through space, they may move to
another flow zone. Thus CASPER must periodically
search through each flow zone list to assure that it
contains only aeroelements that are actually resident in
that flow zone. The purposes of the subroutine RESO2
are (1) to search through the linked list of each flow zone
in the range IZL to IZH for aeroelements that do not
reside in that flow zone, (2) to remove each offending
aeroelement from that list, and (3) to link each such
aeroelement into the list of the proper flow zone. The
need for PAX conflict resolution services arises from the
fact that PAX grants authority to the worker to
manipulate lists only in the assigned range IZL to IZH.
Although this authority is sufficient to allow an
individual worker to remove an offending aeroelement
from a list it is searching, it does not necessarily permit
the worker to place that aeroelement in the correct list
since that list may lie outside the range IZL to IZH.

To link an offending aeroelement into its correct list,
the subroutine first checks to see whether the targeted list
is within its range of authority (lines 165 and 166). If so,
relinking proceeds without communication with PAX;
otherwise the aeroelement is linked into a local list for
later transmission to PAX in a conflicted-task request.
To reduce computational load, these local lists are
maintained by target list number so that PAX will not
have to perform any further sorting. Also, these local
lists are held until either (1) the paraliel process comes to
an end and must report completion to PAX or (2) no
more local list room is available and a new list must be
accommodated. Lines 184 to 187 are associated with the
former condition, with line 186 invoking the tether (local
list) flush subroutine TETHF.

The tether flush routine (listing 5) illustrates the
conflicted-task request procedure. The target list number
(flow zone ID in variable J, lines 31 and 35) and first
aeroelement ID in the local list (variable I, lines 29 and
34) are passed to the PAX conflicted-task request
routine, REQSAF, on a stack that also contains
appropriate argument control codes. The requester’s ID
(parameter OURID) and request number (literal
argument to REQSAF) are provided in the actual call on
line 47 to the request subroutine. REQSAF, a worker
environmental service (fig. 6), provides the interface to
the PAX/parallel processor communications facility by
constructing and transmitting the appropriate message to
PAX. A shared-data-base flush of local buffers must
precede the call to the request routine, to assure that
PAX will be able to access the most recent information
placed by the executing process in various aeroelement

linkage slots. Also, listing 4 and 5 do not show that
storage locations associated with the first aeroelement in
each local list contain the ID number of the last
aeroelement and the number of aeroelements in the local

list. This information is needed to execute the conflicted

task.

The example of listing 4 illustrates the need for the
PAX parallel-process fault recovery features. Consider
what would happen if that parallel process should
unexpectedly terminate (e.g., by a hardware failure)
while sorting through lists as directed. In this event some
offending aeroelements might remain linked in local lists
with no reference to them from any of the shared lists.
Alternatively, if the termination occurred during the
unlinking or relinking (lines 152 to 154 and lines 167 to
177, respectively) of an aeroelement, the integrity of the
shared list would be compromised. Clearly such

difficulties cannot be corrected by simply rerunning the
process on another processor.

In response to this, PAX offers its extensive recovery
capabilities. In this case the choice was to reconstruct the
shared linked lists to assure list integrity and complete-
ness, by discarding the work of the existing parallel
procedure and instituting a new parallel procedure. The
reconstruction procedure links every aeroelement into
some legal shared linked list without regard to the
correctness of the selected list. This reestablishes the
integrity of the shared data structure so that the paratlel
sorting procedure will produce correct results when it is
subsequently reexecuted. In this way the computational
product managed by PAX can be preserved despite the
otherwise catastrophic failure of one or more of PAX’s
managed components.

15

By

Appendix B
Suggestions for Further Work

As with most research projects, more work remains to
be done. This initial exploration has suggested a number
of possible improvements to current PAX design that
would facilitate its use for a real parallel, asynchronous
processing machine. These improvements—adjustments
to existing PAX software strategies and desirable
selections for PAX hardware environments—are
discussed in this appendix.

Software Improvements

Initial PAX design did not account for parallel shared-
data storage (i.e., the storing of logically related data
across many mass storage units), nor did it provide for
recovery from mass-storage-unit failures. Since future
implementations will undoubtedly require such parallel
storage, fault recovery schemes must be defined for the
failure of individual mass-storage units. Recovery
procedures for mass-storage-unit failure would be
specified by the user in a manner similar to that for
processor unit failure. It would be desirable not to
burden the user with the problem of fielding shared-data-
access failures. Thus one (or more) layers of shared-data-
access services, including the ability to identify and report
to PAX such data access failures, must be provided in the
PAX system environment.

Intelligent shared-data-base controllers might be desir-
able to field requests from workers for data access. These
controllers could add two valuable design features. First,
they could handle data-base-unit failure as mentioned in
the preceding paragraph. Second, they could provide a
dynamic redirection facility to the shared data base to
ease the local buffer flushing loads that may be
encountered in an improved system. This feature might
work by having each data requester inform the controller
if the data access is to include data modification rights. If
this is the case, the shared-data-base controller could
redirect subsequent requests for the particular data
directly to the controller for the local buffer of the most
recent (potentially) modifying requester. Thus the last
processor to modify the data would transmit that data
directly to the new requester, saving the intermediate
transmission to the shared-data-base controller. Care
must be taken to account for the fact that the new
requester may also be a modifying requester. Also, it is
possible that in some cases a data request message might
not represent a sufficiently smaller transmission load
than the requested data itself. If so, a shared-data-base
controller might well be a needless complication.

As mentioned in the main body of this report, an
asynchronous worker status facility would be useful to

16

avoid long latencies by PAX in assessing the health of a
particular worker. Since PAX would presumably be
implemented as a superexecutive over existing operating
systems, it should not be difficult to provide a mechanism
for the local machine operating system to report the
operating statistics for a particular process. The con-
sumption by a particular process of system resources
(memory, processor, and input/output) should be a
reasonable first measure in determining process health.
The local operating system could also report any process
state transitions (e.g., from ‘‘competing for resources’’
to ““blocked for lack of local resources’’) to PAX in order
to eliminate unnecessary health queries and erroneous
health determinations by PAX.

The definition of a worker ‘‘personality’’ may be
advisable to allow PAX to manage nonhomogeneous
parallel processors (or, more easily, a family of com-
puters with identical architecture but differing in
computational speed). This ability would be especially
useful when massive parallel-processing facilities are not
affordable on a full-time basis. An organization with
occasional need for such supercomputing may be able to
get it by using the computing power that it normally
applies to other needs, such as shop management,
accounting, business computation, and office
automation. Although computers currently in place may
not be entirely appropriate for management by PAX, a
family of computers might be selected that would serve
well both as PAX workers and as computers for various
other needs.

Finally PAX capabilities were limited unnecessarily in
this version by the decision to make PAX a single-
problem environment. The next PAX design should
allow more than one parallel problem to be managed and
executed concurrently in order to increase and even out
the utilization of the entire conglomerated machine.
Although a single parallel problem could keep each
parallel processor busy if several logical workers are
assigned to it, periods of severe inactivity may be
expected as the problem goes through changes of state,
either in an internal sense (e.g., extensive serial
operations for crucial problem-management decisions or
for fault recovery) or in an external sense (e.g., being
checkpointed). Thus having several parallel problem
streams in progress would be desirable to fill in the gaps.

Certain advantages would be available in exchange for
the increased complexity of the multiproblem archi-
tecture. The health and characteristics of processes in one
problem may provide information useful in determining
the health of processes in another problem. For instance,
if a process in problem A is overdue for completion when

a process in problem B running on the same physical
machine has completed in record time, PAX could
conclude either (1) that the A process is healthy but has
been squeezed out of its share of the machine resources
by the B process or (2) that the B process demonstrates
that the physical machine is healthy but the A process
either is looping or has crashed.

Beyond these conceptual adjustments to PAX, a
number of practical concerns should be considered in
future designs. These include the management,
maintenance, and alternative utilization of the large
number of machines that would be associated with a real
PAX implementation. A facility for PAX to turn a
suspect machine and appropriate symptom messages Over
to a diagnostic and maintenance complex could be
valuable because of the large number of machines that
might be used by PAX. Furthermore it might be
financially desirable for PAX to be able to release an
operator-selected machine from parallel-processing
duties for use in other operations (e.g., to operate a test
facility or to provide business processing services during
normal business hours). Another useful feature might be
a dynamically specified limit on the level of parallel-
processing activity for a particular machine, so that
machines that are not fully utilized for some other nec-
essary activity such as word processing may simultan-
eously participate in parallel-processing problems.

Hardware Improvements

It is the author’s view that PAX will require much less
hardware development than most other supercomputer
schemes. Indeed a principal goal of any PAX implemen-
tation should be to keep hardware components straight-
forward, reliable, and inexpensive and thus avoid the
difficulties of ultra-high-performance electronics usually
associated with supercomputers. Off-the-shelf computer
components appropriate for a PAX implementation are
now available in quantity at relatively low cost. The
author believes that an entirely satisfactory PAX
implementation could be produced with off-the-shelf
components currently in production by any of several
manufacturers.

A thoughtful review of the concepts outlined in this
report should convince the reader that the most difficult
hardware problem will be communications. In particular,
for shared-data-intensive problems the communications
link between the workers and the mass-storage units will
be the pace-setting path, since all data to be used must
filter through the data-access communications path.
Thus the performance of the communications link must
be matched to the performance of the mass-storage units,
with due consideration given to the relative shared-data
intensity of the problems to be solved.

Communications hardware is available off the shelf
that approximates the performance of some midrange

mass-storage units (1 million to 10 million bits/sec).
Higher performance communications options are
available; however, such hardware may leave the
developer spending more for communications units than
for the mass-storage and processing units that are being
linked together. Some manufacturers are beginning to
offer communications hardware using fiber-optic
technology that may considerably improve this situation
and allow the effective use of high-performance disks in
shared-data-intensive problems.

Careful PAX implementation can render the resulting
software product relatively insensitive to future improve-
ments and upgrades in communications technology. A
natural dividing line in PAX design occurs between PAX
and its communications services. Thus future
improvements in communications technology can be
incorporated into the hardware with minimal software
difficulty.

Aside from communications technology the
communications speed problem can also be approached
from the context of communications topology. Each
candidate topology offers a trade-off between commu-
nications equipment cost and communications speed.
This subject has been treated in great detail elsewhere and
need not be explored here. It is sufficient to note that,
again, careful design can make PAX insensitive to
communications topology so that PAX implementations
can be tailored to meet the requirements of particular
parallel problems. With the topological tailoring
approach, useful PAX systems should be configurable
with off-the-shelf hardware out to economic limits
determined by the trade-off between performance and
cost.

The selection of a computing unit for a PAX
implementation is less critical than the definition of
communications methods; however, implementation will
be easier if certain features are provided. First, the
candidate machine should have a large address space, at
least 232 bytes. The existing PAX software is large and
will certainly expand in any new implementation.
Furthermore a great deal of information must be
maintained on a dynamic basis to define the current state
of a parallel problem. The amount of this information
will grow as more worker processors are added to a PAX
implementation since separate information must be
maintained about each parallel process that is in execu-
tion. Additionally, certain PAX management schemes
may retain information beyond the minimum necessary

for parallel-process management (e.g., the exact history .

associated with each task of a parallel procedure). All of
this could combine to increase the size of PAX
significantly. Thus any candidate machine must facilitate
the use of such large amounts of information.

The accessing of large amounts of data by workers and
the distribution of that data across many physical storage
units also dictate that the selected computing unit provide

17

some means of translating a user data reference by index
number (e.g., by a reference in the manner of a Fortran
array) into the necessary information to locate and
retrieve that data from its shared-storage location. The
author is unaware of any machine that offers such a
feature as a standard part of its operation; however, a
number of machines provide user-writable control stores
in their processors. With such a feature a machine
instruction might be devised (along with appropriate data
structures) to facilitate such a translation of information.
In particular, machines that implement a virtual
addressing feature and offer a writable control store
would be highly desirable since presumably they would
have the hardware necessary to ease the translation from
an index group through a logical address to a physical or
mass-storage location. This feature becomes more impor-
tant as a problem becomes more shared-data intensive.
The author’s experience with the aerodynamics
computations suggests that the address translation
feature is very important.

Another key point in selecting a PAX worker machine
is the longevity of its architecture. The development of
PAX software for a real system will be a large project. It
would be unfortunate if, as PAX reached practical
application, the selected machine disappeared from the
marketplace because its architecture was out of date. It
would also be undesirable if PAX were forced into

18

unending rewrites to use features of an expanding archi-
tecture. Therefore one should select an architecture that
is not expected to grow, having started out with all of the
appropriate features to make a good, flexible, fully
integrated computer system. Only the capabilities of the
machines designed to the architecture should grow, for
example, in terms of either increased speed or decreased
physical size. Architectural stability will allow PAX to
use the latest technology without extensive software
changes.

Final considerations here in selecting a computing unit
are its reliability and maintainability. PAX design recog-
nizes the inevitability of worker failures, especially within
a large community of machines. Although PAX can
accommodate these failures without catastrophic results,
too many such failures would set a premature limit on the
expansion size of the system when it spent more time
accommodating failures than computing useful results.
Furthermore worker downtime would be minimized if
most machine problems could be identified automatically
by some maintenance complex associated with PAX. The
computing unit should thus have some capabilities for
self-diagnosis and remote diagnosis. These features are
available to varying degrees on some machines on the
market today. Although this diagnosis feature is not
required by PAX design, it strongly affects the
practicality of maintaining a parallel-processing machine.

61

PAX CONTROL CODE ASSEMBLER -- X01.00A

DN DN

0001
0002
0003
0004
0005
0006
0007
0008

10 AUG 81 19 JUL 1982

-+

X01-00

. ws W e W wy S

Listing 1. - PAX control language stream.

10:29:33.978

FAX-CASFER CONTROL LANGUAGE
F100 DUCT WORK AIRFLOW

AUTHOR WILLIAM HENRY JONES

19 FEB 81

(174

PAX CONTROL CODE ASSEMBLER -- X01,00A 10 AUG 81 19 JUL 1982 10:29:323.978 FAGE 2

1 000C +PSECT $DATA, D» RWs LCLs RELs CON

2 000D it

3 000E i WORKING CONTROL DATA

4 000F i

5 0010 000000000 000000001 CTRL1: LWORD 1 i RELOCATION SUEROUTINES TO NORMAL MODE

6 0011 000000001 000000004 CTRL2: JWORD 4 # SORT EXHAUST AND UN-USED TO INLET WITH XREF
7 0012 000000002 000000005 CNTRi: L WORD] i RELOCATION COUNTER

8 0013 000000003 000000005 CNTR2: JWORD S i RELOCATION LOOP COUNT

9 0014 000000004 000000003 FZIDL: +WORD 3 # FOLLOWING ID' LIST CAN ALSO BE A 3 WORD STRING
10 0013 000000005 000000003 IDI¢ +WORD 3 F INLET ZONE ID

11 0016 000000006 000000004 IDE: +WORD 4 i EXHAUST ZONE II

12 0017 000000007 000000005 IDU: «WORD 5 3 UNUSED ZONE ID

13 0018 000000008 000010000 ISIZE: .WORD 65536 i NUMBER OF AEROELEMENTS

14 0019 000000009 000000052 NZN?$ +WORD 82 # NUMBER OF FLOW ZONES

15 001A 000000004 39ESBDBBE?7 GDAST: FLT AN0.,0001 3 TIME INCREMENT

16 001B 00000000B C&1724748 MGDAST? JFLT -%ZD0.0001 7 MINUS TIME INCREMENT

17 001C 00000000C 40C000000 CURTIM?! FLT 1.0 i CURRENT TIME

18 001D 000000000 00000000A NINC! +WORD 10 # NUMBER OF TIME SUB-INCREMENTS

19 001E 00000000E 000000000 FVHRBF?! ,WORD 0 3 P-V HISTORY FOINTER
20 001F 00000000F 40C000000 PAV? +FLT 1.0 i FREVIOUS SOLID ANGLE AVERAGE
21 0020 000000010 000000000 OMEGA: .FLT 0.0 i SOLID ANGLE ACCUMULATOR
22 0021 000000011 000000000 VOLA? +FLT 0.0 i AEROELEMENT VOLUME ACCUMULATOR
23 0022 000000012 49D460000 VREST: FLT 345600.0 i VOLUME OF FROBRLEM LESS INLET AND EXHAUST
24 0023 000000013 40£000000 VCORF?! LFLT 1.0 # VOLUME ESTIMATE CORRECTION FACTOR
25 0024 000000014 000000000 FHLOW: L WORD 0 3 SFECIAL RANGE LOW LIMIT
26 0025 000000015 000000000 PHHIGH: .WORD 0 i SPECIAL RANGE HIGH LIMIT
27 0026 000000016 000040000 IEDZ: «WORL 262144 5 IBIZN HIGH LIMIT
28 0027 000000017 434AAE147 GASCOM! JFLT 53.34 # GAS CONSTANT FOR AIR

Listing 1. - Continued.

PAX CONTROL CODE ASSEMBRLER -~

002B
002C
002D
002E
002F
0030
0031
0032
0033
10 0034
11 0035
12 0034
13 0037
14 0038
15 0039
16 003A
17 003B
18 003C
19 002D
20 003E
21 003F
22 0040
23 0041
24 0042
25 0043
26 0044
27 0045
28 0044
29 0047
30 0048
31 0049
32 0044
33 004B
34 004C
35 004D
36 004E
37 004F
38 0050
39 0051
40 0052
41 0053
42 0054
43 0055
44 0054
45 0057
46 0058
47 0059
48 005A
49 005B
50 005C

VNONOCCUDWNR

| 4

000000000
000000002
000000003
000000006
000000009
000000008
060000000D
00000000F
000000010
000000012
000000013
000000015
000000017
000000018
000000014
00000001C
00000001D
000000020
000000022
000000024
000000026
000000027
000000029
00000002B
000006002C
00000002E
000000030
000000032
000000034
000000035
000000038
00000003A
00000003C
00000003E
00000003F
000000041
000000043
000000044
000000046
000000047
0060000044
00000004D
00000004F
000000051
000000053
000000054

000000001
00000000E
000000006
00000000D
000000001
000000002
000000013
00000000E
000000010
000000000
000000001
000000002
00000000E
000000010
000000003
000000000
00000001E
000000010
000000003
000000005
000000000
000000010
000000005
000000000
000000001
000000002
000000002
000000012
000000002
000000002
000000012
000000012
000000013
00000000E
000000010
000000003
000000000
000000010
000000000
000000006
000000000
000000001
000000002
000000013
00000000E
000000010

X01.004A

00000000F

000000001
000000001
00000000R
000000072
00000000D

000000003

000000001
000000080

000000009
000000080

000000002
000000004
000000081
00000000C

000000001
00000000k

00000000C
000000072
000000084
00000000B
000000085
000000081
00000000C
00000000E
00000000D

000000004
000000085

000000007

000000001
000000001
00000000D
000000072
00000000D

000000004

10 AUG B1

000000074
0000000A0

00000000C

000000074
0000000E4

19 JuL 1982

+PSECT

it

10:29:33.978

$RECYL,

I, RW»

LCL»

PAGE 3

REL» CON

i THIS CODE DOES ELEMENT RELOCATION (IF CNTR1 IS ZERO) AND RECYCLING.

.
RECYL: TIEA
TEEA
TTST
TBNE

TIEA

RECYL1! TEDM
TIEA
TENL
TEEA
TEDM

TCLRF
TEDM

TEDM

TIEA
TENL
TENL
TESI
TENL
TENL
TESI
TESI
TEMI
TEEA
TEDM

TEDM

TTST
TBNE
TIEA
TENL
TEMI
TEEA

RECYL2! TEDM

EEXHST

MDFRyCNTR1
MDFRsRECYL1
EREL2

CTRLL
XFZIDL

DFNBZN
DASEA

EMIGR1
PVHRBP

DMIGR2
DASSMs FUHRBF
DASEA
MDRDF » XOMEGA
bvoL

DASSMI PAV
DASSI s XOMEGA
DASER

DVSUH
DASSIsXVOLA
DASEA

EREL3

CTRL1

UREST

XVOLA

VCORF

PAV

XDMEGA
XISIZE
XFZIDL

DVCOR
DASSM»VCORF
DASEA
DVUCORA
DASEA
MDFRsCNTR1
MUOFR»RECYL2
EREL4

CTRL1
XFZIDL

DRHOPR

Listing 1. - Continued.

W R WP WP L WP e WP s WP gy W R M W WP wp W s WP s NS W WS e WP s WS s W WP WE s WE W W W WE W WP ws Uh W WP we W

ALWAYS GIVE USER A SHOT AT IT
RELOCATE AEROELEMENTS TO INLET ?

NO

YES, DO SO NOW

FIND NEAREST NEIGHBORS FOR ALL» REGARDLESS

BUMF FRESSURE-VOLUME HISTORY RING BUFFER
POINTER

REVISE EACH ELEMENT’S POINTER WITH RESULT
SOLID ANGLE ACCUMULATOR

ESTIMATE AEROELEMENT VDLUMES AND
ACCUMULATE SOLID ANGLES

SUM UP AEROELEMENT VOLUME ESTIMATES

COMPUTE AEROELEMENT VOLUME ESTIMATE
CORRECTION FACTOR AND AVERAGE SOLID
ANGLE

CORRECT ALL VOLUME ESTIMATES

RESULT COPY-BACK
ASSIGN NEW INLET MASSES 7

NO
YES

COMPUTE PRESSURES AND DENSITIES FOR ALL

e d
)

[44

PAX CONTROL CODE ASSEMBLER -- X01.004

VONOADWN -

b gl M el b g P P
CONOCUSLN-O

(Joi-11]
003E
005F
0060
0061
0062
0063
0064
0045
0066
0067
0068
0069
0064
004B
006C
004D
004E
006F

000000034
000000057
000000054
000000051
00000005F
000000061
000000043
000000065
000000046
000000048
00000006A
00000006C
000000056E
00000006F
000000071
000000073
000000075
000000076
000000079

000000000
000000006
00000000D
000000001
000000012
000000002
000000002
00000000E
000000010
000000003
000000003
000000005
000000000
000000010
000000003
000000003
000000000
000000010
000000005

000000001
000000001
00000000E
00000000F
000000086
000000087

000000008
000000086
000000087
00000000F

000000005
00000007C
000000070

00000000B
000000001

10 AUG 81

000000074
0000000FF

000000000
000000112

19 Jut 1982

TTST
TBNE
TIEA
TESI
TENL
TENL
TEEA
TEDM

RECYL3?! TEDM

TEDM
TJHP

10:129:33.978

DASEA
MBFR»CNTR1
MDFR!RECYL3
ESUFHR

XIDI

FHLOW
FHHIGH

DPRSHI
DASSH,PHLOW
DASSMsPHHIGH
DASSI»XIRI
DASEA

DFPWRC
DASSM»GDAST
DASSM»MGDAST
DASEA
DINTFsDASEA
MOFRsSTOKES

Listing 1. - Continued.

e WE Wb W ar W W NP W WD WP W W WP wr WP wp WP g

FAGE 4

FLAIN-JANE HISTORY FOR INLET 7
ND
YES» GET INLET ZONE RANGE LIMITS

SET THE HISTORY FOR EACH INLET AEROELEMENT

FOUWER OF COMPRESSION FOR ALL

INTERFOLATION MATRICIES FOR ALL
JUNP TO NEXT SECTION

€T

PAX CONTROL CODE ASSEMELER -- X01.00A

WNOND N

0073
0074
0075
0076
0077
0078 000000000 000000010
0079 000000003 000000010
007A 000000006 000000005

00000000C

10 AUG 81

000000000

00000000 000000000

000000001

000000121

19 JUL 1982 10:29:133.978 FAGE S

+FSECT $STOKE, I» RWs LCLs REL, CON

“+

HIS SECTION CALCULATES AEROELEMENT ACCELERATIONS VIA THE COMPLETE

T
NAVIER-STOKES EQUATION.

U) - - w e

TOKES? TEDIM DSTOK1,»DASEA
TEDM DSTOK2yDASEA
TJIMP MDFR»WORK

G0 ON TO WORK FLOW

Listing 1. - Continued.

FPAX CONTROL CODE ASSEMBLER --

N0 NOAD N -

007E
007F
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
008A
008B

000000000
000000003
000000006
000000009
00000000R
00000000D
00000000E
000000010
000000012
000000013

000000010
000000010
000000010
000000010
000000003
000000000
000000010
000000003
000000000
000000005

X01.00A

00000000E
00000000F
000000010
000000011
00000007C

000000012
00000007¢C

000000001

10 AUG 81

000000000
000000000
000000000

000000130

19 JUL 1982

+PSECT

+

-

IORK ¢ TEDM
TEDN
TEDH
TEDM

TEDNW

TJINP

10:29:33.978

$WORKy I» RWs LCL»

DWRKA»DASEA
DWRKD+DASEA
DWRKE» IASEA
DWRKF
DASSMyGDAST
DASEA
DURKG
DASSMyGDAST
IASEA
MOFR» QUTPUT

Listing 1. - Continued.

- WP ap WP s We W wp W

PAGE -]

REL, CON

THIS SECTION CALCULATES THE INTERELEMENT FLOW OF WORK.

INITIALIZE THE DATA EASE
POWER OF DISTORTION - PHASE 1
POWER OF DISTORTION - PHASE 2

HEAT TRANSFER BETWEEN RECIPROCATING
NEAREST NEIGHBORS

ACCUMULATE ALL HEAT TRANSFER CONTRIBUTIONS
AMD ADJUST AERVELEMENT TEMPERATURES.

Y4

PAX CONTROL CODE ASSEMEBLER -- X01.00A 10 AUG 81 19 JUL 1982 10:293133.978 FPAGE 7

1 008F +FSECT $OUTPUs Is RWs LCL, REL, CON

2 0090 it

3 0091 3 DATA OUTFUT

4 0092 -

5 0093 000000000 000000005 000000001 000000146 OQUTFUT: TJHF MOFR»MOVE 7 NO OQUTFUT AT THIS TIME

Listing 1. - Continued.

JE.
L

9¢

PAX CONTROL CODE ASSEMBLER --

SOoNOs LTS

b b
LGN O

0097
0098
0099
0094
009B
009C
009D
009E
009F
0040
00A1
00A2
0043
00A4

000000000
000000002
000000004
000000006
000000008
000000009
00000000C
00000000F
000000011

000000010
000000003
000000003
000000003
000000000
000000010
00000001D
000000001
000000005

X01.,004A

000000013
00000007E
00000007C
00000007F

000000014
000000001
00000007E
000000001

10 AUG 81 19 JuL 1982 1
+PSECT
it
i T
ACCELERATIONS.
;_
MOVE: TEDM
000000000 TEDM
00000007C TADUF
0000001460 TJMF

Listing 1. - Continued.

0:129:23.978

MOVEL, Is RU»

OMOVEL
DASSMsCURTIM
DASSMsGDAST
DASSH,NINC
DASEA
DMOVL2s IASEA
MDFRyGDAST
MIOFR»CURTIN
MDFRsSORT

LCL.

HIS SECTION MOVES THE AEROCELEMENTS ERASED

. WP s W wr WS W W W

FAGE 8

RELs CON

DO ELEMENT MOTION

RESULT COFY-RACK
BUMF CURRENT TIME

UFON THE CALCULATED

Le

PAX CONTROL CODE ASSEMELER -- X01.004

NVNONOU D IR -

PP bt 1t b b b et ek b b e
RovVvaNOCUAWNO

'J
J

piets

NN
L4, I X}

N
o~

00A8
00A9
00AA
00AB
00AC
00AD
00AE
00AF
00RO
00R1
00R2
00B3
00R4
00B3
00R6
00R7
(o103 42
00R?
00EA
O0BE
00EC
00BD
Q0BE
00BF
00CO
00C1

000000000
000000003
000000005
000000008
00000000k
00000000E
000000011
000000013
000000016
000000018
000000014
00000001C
00000001D
000000020
000000022
000000024
000000026
000000027
000000029
00000002A

000000019
000000001
000000016
00000000A
000000008
000000019
000000001
000000019
000000001
000000001
000000013
00000000E
000000010
000000010
000000003
000000006
000000000
000000001
00000000E
000000005

000000000
000000073
000000001
000000001
000000001
000000001
000000074
000000000
000000073
000000003
000000000

000000015
000000016
000000073
00000000
000000003

000000001

10 AUG 81

000000004
000000074
000000178
000000173
000000075

000000001

000000000

000000090

U - e o e e

S

S

19 JUL 1982

»FSECT

-+

THIS SECTION
NEXT FASS.

10:29133.978

$SORTy I»

RW»

LCL»

FAGE 9

REL» CON

DECREMENTS THE AERDELEMENT RELOCATION COUNTER FOR THE

IF THE RESULT IS ZEROD»

CTRL2 IS SET TO 4 TO CAUSE

GENERATION

OF THE FLOW ZONE RESILHENT AEROELEMENT CROSS REFERENCE INFORMATION.

ORT? THOV
TDEC
TREQ
TRGT
™OY

ORT1:

ORT2: TIEA

TIEA
TEEA
TJIMP

MIMD 4
MDFR»CTRL2
MUFR»CNTR1
MDFRySORT2
MOFR»SORT1
MDFR,CNTR2
MIFRyCNTR1
MIMDs1
MOFR,CTRL2
ERESO?7
XFZIDL

ORESOL1,»DASER
DRESOZ2
DASSMsCTRLZ2
DASMI XFZIDL
DASER

EDEEF

MDFRsRECYL

Listing 1. - Continued.

e WP R NP b s b MR N NP s W W P e WS e e s R

ASSUME A RELOCATION FASS

SHALL WE RELOCATE 7
YES
NO»
MOy
ANDTHER WAIT LOOF

STILL IN WAIT LOOP

RE-INITIALIZE COUNTER TO BEGIN

TURN OFF CROSS-REFERENCE REQUEST

ZAF CROSS-REFERENCE CONTROLS:»

INHIBIT REDUNDANT SORT CHECKS
D0 THE SORT

FLUSH CROSS-REFERENCE RESULTS

LOOF BACK

REGARDLESS

82

PAX CONTROL CODE ASSEMBLER ~-- X01.00A

VONU LN -

00CS
00C6
00C7
00cs
00C9
0ocA
00CB
00CC
00CD
00CE
00CF
00Rpo
00D1
00D2
00D3
00D4
00DS5
00Bs6
ooD7
ooD8
00D9
00DA
00DB
00DC

00000000E
00000000C
000000000
00000000E
00000000F
000000010
000000011
000000012
000000013

000000045

00000000R
000000083
00000000C
000000082
00000000D
000000076
00000000E
00000007A
00000000F
000000077
000000010
000000078
000000011
000000079
000000012
000000088
000000013
000000089
000000065
00000007E

10 AUG 81

+

. w wr wr

Listing 1. - Continued.

19 JUL 1982

+FSECT

XVOLA
+WORD
XOMEGA
+ WORD
XFZIDL
+WORD
XISIZE
+WORD
XIDI

+WORD
XIDE

+WORD
XIDU

+WORD
XBIIZNS
+WORD
XGNASCO
+WORD
101

+WORD

+$ABS.,

VoLA
OMEGA
FZIDL
ISIZE
IbI
IDE
Iny
IRDZ
GASCON

CURTIM

10:29:33.978

INITIALIZE INDIRECT POINTERS

b as WP W WP s s mp W b P Ws WB ap WP ep WP er WE R

6T

PAX CONTROL CODBE ASSEMELER ~- X01.00n 10 AUG 81 19 JUL 1982 10:29:133.978

DOy

00EO
00E1
00E2
00E3

it
i EMDI OF FROGRAM
;-

000000090 vEMD RECYL §

Listing 1. - Continued.

FAGE

11

(11

PAX

0003
0003
0000
0000
0000
0000
0000
0000
0000
0000
0003
0003
0003
0003
0003
0003
0004
0000
0009
0003
0000
0000
0000
0000

CONTROL CODE ASSEMELER -- X01.00A

CNTR1
CTRL2
DASHMI
DINTF
DPRSHI
DRHOPR
DVCORA
DURKD
EDBEF
ERELZ
FZIDL
IBDZ
ISIZE
MGDAST
NINC
PAV
RECYL
REL
SORT2
VREST
XGASCO
XISIZE
$0UTPU
$WORK

10 AUG 81

Xokaokxkk SYMBOL TAEBLE Xkxkiokkxk

000000074
000000073
000000006
00000000F
000000008
00000000A
000000007
00000000F
000000005
00000000C
000000076
000000088
00000007A
000000070
00000007F
000000081
000000090
KRKKKKkXK
000000178
000000084
000000013
00000000E
RKOKKKX K
XXKRXKKKK

R

R

RD
RR
RD
RD
RD
RD
RI
RD

DA DMIDDNDI RN R
[~ R =)

0003
0003
0000
0000
0000
0000
0000
0000
0000
0000
0003
0003
0000
0000
0003
0003
0004
0000
0005
0006
0000
0000
0000
0000

CNTR2
CURTIM
NASSI
DMIGR2
IFWRC
DSTOK1
nvoL
DWRKE
EEXHST
EREL4
GASCON
IDE
LCL
MIMD
NZN
PHHIGH
RECYL1
RW
STOKES
WORK
XIDE
XOMEGA
$RECYL

000000075
00000007E
000000005
000000009
000000005
00000000C
000000004
000000010
00000000F
00000000D
000000089
000000078
KEXRKRKEX
000000000
00000007E
000000087
000000040
Kk iokok
000000112
000000121
000000010
00000000C
(223323234
FRkKokykok

19 JUL 1982

R
R
RI
RD
RD
RD
RI
RD
RD
RD
R
R
R
RD
[
R
R
R
R
R
RI
RD
R
R

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0003
0003
0000
0008
0003
0003
0004
0009
0003
0000
0000
0000
0000
0000

Listing 1. - Continued.

CON

il
OASSH
DMOVEL
DRESO1
DSTOK2
nvsum
DWRKF
EMIGR1
ERESO7
GDAST
InI
MDIF
MOVE
OMEGA
FHLOW
RECYL2
SORT
VCORF
XBDZNS
XIDI
XvoLa
$S0RT
+$ABS.,

10:129:33.5978

(322422241
KRk okKkxok
000000003
000000013
000000015
000000000D
000000001
000000011
000000001
000000003
00000007C
000000077
000000002
000000144
000000082
000000086
0000000E4
000000160
000000085
000000012
00000000F
00000000R
(232833 %44
Xkiokxkxk

R

RD
RID
RU
RD
RIl

R
RD
RD
RID
R
R

FAGE

0003
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0003
0000
0000
0007
0003
0004
0009
0003
0000
0000
0000
0000

12

CTRL1
[ASEA
HFNEZN
LMOVL2
DRESD2
DVCOR
DVWRKA
IWRKG
EREL2
ESUFHR
I

DU
MDFR
MOVEL
QUTPUT
PVHREF
RECYL3
SORT1
VOLA
XFZ1noL
pag il
$DATA
$STOKE

000000072
000000000
000000003
000000014
000000016
000000004
00000000E
000000012
00000000k
00000000E
(232328244
000000079
000000001
kkkxkxk
000000130
000000080
0000000FF
000000173
000000083
000000000
000000011
XRKRKOkxk
12332423244

R

RD
RI
RD
R
RD
RD
RI
RD
RD

=

(=]

mOomaanM XD DNDANADD
=]

R

1€

PAX

0001
0002
0003
0004
0005
0006
0007
0008
0009

CONTROL

. ‘ABSO
+$REL .
$DATA
$RECYL
$STOKE
$WORK
$OUTFU
MOVEL
$SORT

CODE ASSEMBLER -- X01.00A 10 AUG 81

XXkXkxkkX FROGRAM

000000000
000000056C
000000072
000000090
000000112
000000121
000000130
000000146
000000160

000000066
000000000
000000018
00000007C
000000009
000000014
000000003
000000014
000000020

SECTION TABLE XXkXkkxx

0. 1
108,
114,
144,
274,
289,
317,
326,
352,

[
RN <
OWND O dOMN

“ e e o * s e «
P IR VI NP N

&y

ERROR REPORTS FOR 19 JUL 1982 AT 10:34133.344

¥x%x NO ERRORS TO REFORT XXX

Listing 1. - Concluded.

b b B

19 JUuL 1982

10:293323.978
LCL ABS
LCL REL
LCL REL
LCL REL
LCL REL
LCL REL
LCL REL
LCL REL
LCL REL

CON
CON
CON
CON
CON
CON
CON
CON
CON

FAGE

13

[43

BFORsMS CASFER1.YCORD

FOR 4R1
>@EOF

E -01/13/83-14103110 (1)

SUBROUTINE VCOR ENTRY FOINT 000051

STORAGE USED: CODE(1) 000070; DATACO) 0000155 BLANK COMMON(2) 000000

EXTERNAL REFERENCES (BLOCK. NAME)

0003
0004
0005
0004
0007

STORAGE

0001
0000

00101
00101
00101
00101
00101
00101
00101
00101

CHKLH

CHKTIM

v

STAESC

NERR3$

ASSIGNMENT (BLOCK» TYFE, RELATIVE LOCATIOWs NAKE)

000017 1166 0001 000040 20L 0000 I 000004 I 0000 I 000001 ID
000005 INJP$ 0000 I 000000 IS 0000 R 000003 R 0005 R 000000 V

1% SUBROUTIME VCOR (IL,TIHsVUL) 13200010
2% C+ 13200020
3% C 13200030
4x c VCOR kKkkkkx A SUBROUTINE FOR CASPER kkikkk 13200040
5% c AUTHOR WILLIAM HENRY JONES 13200050
&% c Vo1-00 02 FEB 79 13200060
7% € V01-004 08 FEB 80 SEPARATES INPUTS AND QUTPUT

8% c 13200070

Listing 2. - Simple parailel computation,

0000 I 000002 IE

000000
000000
000000
000000
000000
000000
000000
000000

13

00101
00101
00101
00101
00101
00101
00101
00103
00104
00105
00107
00111
00112
00115
00120
00121
00122
00124
00125
END FOR
>

23X
26%

[or B ar N o B e B e L 3 e]

17

19
20

DESCRIPTION XEXkxk

APPLIES A SUPPLIED KULTIPLICATIVE CORRECTION TO THE VOLUME
ESTINATES OF ALL AEROELEMENTS IN THE RANGE “IL’ TO ‘IH’.

INTEGER ILsIHsIS,»IDsIE
REAL VLsR

DATA 1D/132/

DATA IE/L/

CALL CHKLH (IL,IHsISsIDsIE)
IF (18) 17,20+17

DO 19 I=ILsIHsIS

CALL CHKTIN (ILsIH,I)
R=VLXV(I)

CALL STAESC (IsR)
RETURH

END

@ CHECK AEROELEHENT RAHGE
@ VALID RANGE 7

@ YES» APPLY CORRECTION

@ KEEP AN EYE ON THE TIHE
e

@ RESULT TO SCRATCH SLOT
e

Listing 2. - Conciuded.

13200080
13200090
13200100
13200110
13200120
13200130
13200140
13200150
13200140
13200170
13200180
13200190
13200200
13200210

13200220

13200240
13200250

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000006
000010
000017
000024
000031
000040
000067

12

@FORsNS CASPERY.MOVELD

FOR 4Rl
»REQF

E -01/13/83-14104109 (&v)

SUBROUTINE MOVEL ENTRY POINT 000556

STORAGE USED: CODE(1) 0010157 DATA(0) 000172; BLANK COMNON(2) 000000

COMMON BLOCKS?

0003
0004

NINC 000001
IDuC 000001

EATERNAL REFERENCES (BLOCK» NAME)

0003
0006
0007
0010
0011
0012
0013
0014
0013
0016
0017
0020
0021
0022
0023
0024
0023
0024

FZ
STAT
ZBL
IPZBL
IPLZN
LIN
CHKLH
CHKTIN
STIAES
X

U

A

§TS
GRDED
SURFVE
STSTAT
ERROR2
TSTIN

Listing 3. - Parallel computation with coordinated algorithm.

3%

0027 TSTBOT
0030 SGRT
0031 NERR3$

STORAGE ASSIGNMENT (BLOCKs TYPE» RELATIVE LOCATION, NAME)

0001 000147 10iL 0001 000243 106L 0001 000200 107L 0001 000035 1346 0001 000053 1446
0001 000137 145G 0001 000202 2046 0001 000212 2156 0001 000501 219L 0001 000535 22iL
0001 000227 223G 0001 000242 2326 0001 Q00231 237G 0001 000301 253G 0001 000027 2794L
0001 000666 29L 0001 000351 3016 0001 000361 310G 0001 000417 3316 0001 000431 341G

0001 000310 3500L 0001 000335 3570L 0001 000346 3600L 0001 000410 3710L 0001 000503 3736
0001 000425 3740L 0001 000436 3790L 0001 000440 3BOOL 0001 000454 3840L 0001 000470 IB8OL

0001 000747 41L 0001 000603 4116 0001 000731 A2L 0001 000706 4366 0001 000757 45L
0020 R 000000 & 0000 R 000001 AL 0000 R 000066 B 0000 R 000067 C 0005 I 000000 FZ
0000 R 000024 GR 0000 I 000057 1 0000 I 000104 ID 0000 I 0000463 IDB 0000 I 000074 IDHIN
0004 I 000000 IDY 0000 I 000075 IE3F 0000 I 000056 IFZ 0000 000134 IHJP$ 0000 000126 INJPS
0000 000121 INJP$ 0011 I 000000 IPLZN 0010 I 000000 IPZBL 0000 I 000000 IS 0000 I 000106 IT
0000 I 000055 Ii 0000 I 000072 J 0000 I 000065 K 0012 T 000000 LZH 0000 I 000077 N
0000 1 000100 N 0000 1 000101 NA 0000 I 000102 NE 0000 1 000103 WNC 0000 I 000070 NNN
0003 I 000000 NIN 0006 I 000000 STAT 0000 R 000105 sV 0000 R 000064 SVMIN 0000 R 0000460 T
0000 R 000073 Ta 0000 R 000054 TE 0000 R 000052 TINC 0000 R 000053 TINCSQ 0000 R 000062 TLEFT
0000 R 000071 TN 0000 R 000074 TQ 0000 R 000061 TS 0017 R 000000 U 0000 R 000043 UA
0000 R 000027 UL 0000 R 000037 UN 0000 R 000033 UQ 0000 R 000047 VBD 0014 R 000000 X
0000 R 000020 X4 0000 R 000004 XL 0000 R 000014 XH 0000 R 000010 X0 0007 R 000000 ZBL

00101 1% 000000

00101 2x 000000

00101 K} 000000

00101 A% 000000

00101 S5k 000000

00101 &% 000000

00101 7% 000000

Listing 3. - Continued.

9¢

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

8x
9x
10x
11%

13%
14%
15%
16%
17x
18%
19%
20%
21x

2%
24%
25%
26%
27%
28%
29%
30%
31x
32%
33%
34%
35%
6%

38%
39x
40%
41x
42%
43%

OO0 0000000000000

SUBROUTIRE MOVEL (ILsIH»CURTIMsGDASTsHIRC) 90140010
$0100030
90100040

HOVEL TXERXk A SUBROUTINE FOR CASPER Xkkx%x 90100050
AUTHOR WILLIAN HEHWRY JONES 20100060
v02-00 14 APR 77 90100070

V02-01 22 JUN 77 90110071
v02-02 26 JuL 77 90120072

vo2-03 22 SEP 77 90130073

V02-04 22 SEP 77 90140074

v02-05 26 SEP 77 90130073
V02-04 01 JuN 78 90160076

V62-07 16 JUR 78 90170077
v02-08 29 AUG 78 90180078
V02-08A 13 FEB 79 90140079
V02-08B 09 HAR 79 20180080
V02-08C 13 FEB 80 INPUT/0UTPUT SEGREGATION
V02-08D 15 SEP 80 FUNCTION TYPE STATEMENTS

V02-08E 28 SEP 81 HOVING BOUNDARIES V2-08E

V02-08F 06 JAN 83 BAD POSITION INTEGRATION VO02-08F

20100090

ARGUMENTS IN CASPER ‘CACHE’ MEMORY kkigxx 90180094
90180094

ARGUMENT TYPE DIMENSION DESCRIPTION 90100100
90180110
X REAL 1 70 ISIZE AEROELENENT POSITION 90100120
1703 CODRDINATES 20100130
20100140
U REAL 1 70 ISIZE AERDELEMENT VELOCITIES 90100150
1703 90100160
90100170
A REAL 1 70 ISIZE AEROELENENT ACCELERATIONS 90100180
1103 70100190
90100200

FZ INTEGER 1 T0 ISIZE AEROELEMERT FLOW ZOKE 90100210

Listing 3. - Continued.

NUMBERS (B AEROELEMENT) 90100220

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
060000
000000
000000
000000
000000

Le

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

44%

53%
54%
55%
56%
57%
58%
59%
0%
61%
62%
63%
64%
65K
66%
67K
8%
69%
70%
71%
72%
73%
74%
75%
76%
77%
78%
79%

OO OO0 O00Em 0

90100230
STAT INTEGER 1 TO ISIZE AERDELENMENT STATUS LIST 90100240
90100360
ZBL INTEGER 1 T8 ZBLSZ BOUNDARY LIST BY FLOW ZONES90100370
90100380
IPZBL INTEGER 1 TO NZN ZRL CONTROL PARAMETERS LIST90100390
1702 (Xs1) = STARTIKG POINT 90100400
(Xs2) = STRING LENGTH 90100410
90100420
90100560
ARGUMENTS PASSED IN SUBROUTINE CALL Xkkkkxk 90180062
901800564
ARGUMENT TYPE DIMENSION DESCRIFTION 90180566
901805468
IL INTEGER SCALAR AEROELEMENT ID LOW LIMIT 901A0549
90140570
IH INTEGER SCALAR AEROELEMENT ID HIGH LIKIT 90140571
90140572
CURTIH REAL SCALAR CURRENT OPENING TIHE 90140573
90170574
GDAST REAL SCALAR BASIC TIKE IHCREKERT 90140575
90180576
NIRC INTEGER SCALAR NUMBER OF TIHE SUB- 90180578
INCREMENTS 90180580
90180582
90180584
RESULT LOCATIDHS ¥rkkix
LOCATION CONTENTS
AESCRA FINAL FLOW ZONWE ID OF AEROELEMENT
5(1) X(1)
S(2) X(2)
S(3 X3
S(4) Uiy

Listing 3. - Continued.

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

oy

=

%

ol

8¢

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

80%
a1x
82x%
83%
84%
83%
BoX
87%
88x%
89%
0%
91x
2%
93%
94%
95k
4%
97%
78%
99%
100%
101%
102%
103%
104x
105%
106%
107%
108x
109%
110%
111%
112%
113x
114%
115%

OO EA0EO OO0 0EO0NEO0AOE0O0NO0O00a0000n0

5(9) u2)
S(4) uc3)
DESCRIFTION Xkkkix 20180586

90180588
NOVEL IS A SUBROUTIHE WHICH» GIVEW THE FOSITION» VELOCITYs AHD 90100590

ACCELERATION OF INDIVIDUAL AEROELENENTS AS WELL AS A DEFINITION 90100600
OF THE ROUNDARIES AND FLOW ZOKES OF THE AIRFLOW VOLUME, WILL 90100610
REPOSITION THOSE AEROELEMENTS THAT ARE NOT RESTRICTED TO OTHER 90100620
FRESET LAWS OF MOTION (E.G. - ROUNDARY ELEMENTS FIXED IN SFACE) 90100630
ACCORDING TO THE CLASSIC INTEGRATION OF CONSTANTLY ACCELERATING 901004640
HOTION, 20100430
90100660
DURING SUCH RELOCATION EACH APPROPRIATE ROUNDARY IS CHECKED FOR 90100470
POTENTIAL VIDLATIONS BY THE AEROELENENT. IF SUCH A VIOLATION IS 90100480
DETECTED THE FDINT OF VIDLATION IS FOUND AND THE AERDELEMEWT IS 90100690
ELASTICALLY BOUNCED OFF THE BOUNDARY AT THAT LOCATION. TO ENHANCE?0100700
BOUNDARY VIOLATION DETECTION A SUB-INCREMENTAL TIME STEF IS 90100710
SPECIFYABLE BY THE INTEGER ARGUMENT NINC. THIS WILL DIVIDE THE 90100720
PARABOLIC MOTIOH FROM X € T TO X & TH+GDAST IWTO NINC EQUAL STEFS 90100730
AND CHECK FOR ROUNDARY VIOLATIONS AT EACH OF THE INTERMEDIATE 90100740
POSITIONS, THUS LOWERING THE FROBABILITY OF AERCELEMENTS "FASSING 901007350
THROUGH" THIN BOUNDARIES SUCH AS LEADRING AND TRAILIMG EDGES OF 20100740
AIRFOILS, 20100779
Vo2-08E
THE BOUNDARY BOUNCING FROCESS IS A SIHPLE REFLECTION ALGORITHMs VO2-08E
I.E.» ANGLE OF INCIDENCE EQUALS ANGLE OF REFLECTION., TD DD THIS, V02-08E
THE VELOCITY VECTOR FOR THE AEROELEMENT IS ADJUSTED AT THE TIHE V02-08E
OF BOUNCE TO GIVE THE APPROPRIATE INITIAL DIRECTION. THE V02-08E
ACCELERATION OF THE AEROELEMENT IS NOT ADJUSTED. TO ACCOUNT V02-08E
FOR SITUATIONS WHERE THE AERDELEMENT IS NOT MOVING AND IS HIT V02-08E
BY A MOVING BOUNDARY» THE AERCELEKENT VELOCITY IS FIRST COWVERTED V02-08BE
TO A VELGCITY RELATIVE TO THE BOUNDARYs ADJUSTED FOR THE BOUNCE, V02-08E

AND THEN CONVERTED BACK TO VELOCITY RELATIVE TD THE STATIONARY V02-08E
REFERENCE FRAME. Vo2-08E

Listing 3. - Continued,

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

6¢

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

116%
117%
118x%
119%
120%
121%
122%
123%
124%
125%
126%
127%
128%
129%
130%
131x%
132%
133%
134x
133%
1346%
137%
138x
139%
140x
141x%
142x
143k
144x%
140x
146%
147%
148%
149%
150%
151%

OO0 EOO0 0000 OO0 OO0 0

SELECTED VARIARLES IN THE ARGUMEMT LIST» NOTABLY LZN, ZBLs BDZN,
AN} NEIZN» ARE FASSED WITH COHTROL PARAMETER LISTS IN DYRAMICALLY
AS NOTED IN THE ARGUMENT DESCRIPTIONSs THE
CONTROL PARAMETERS CONSIST OF A STARTING FOINT LIST ARL' A STRING

VARIABLE ARRAY FORM.

LENGTH LIST,

ARRAYS ARE ARRANGEDR SUCH THAT THE SUR-ARRAY RUNS FROM 1 TO THE
STRING LENGTH AMD THE FIRST ELEMENT IS AT THE STARTING POINT PLUS
1, THUSs FOR LZHs THE J TH ELEKENT OF THE I TH FLOW ZONWE LIST
WOULD BE LZN(IPLZN(Iy1)+J) AND THE LENGTH OF THE I TH FLOW ZOME

THESE DYNANICALLY VARIABLE

LIST WOULD BE IPLZN(I»2).

REQUIRED SUBROUTINES x%¥xkx

401

417
421

471
473
11

AVIRI
402
404
406
STSTAT 416
8TFZ 420
470
ZBL
HVIRI 476
HRRH 912

ERRORS REPORTED kxkkXx

1

STAT

FVIRI

IPZBL
TSTZH

NEITHER RESULT OF BOUNDARY SURFACE FINDER WAS

Listing 3. - Continued.

90100780
70100830
90100840
90100830
90100860
70180870
90100850
20100900
90100910
90100920
20100930
90100940
90100950
70100960
20100970
90100980
20100990
20101000
20102500
90182510
90182512
90182514
20182516
20182518
90182520
20182522
90182524
901823534
90182536
90182538
90182540
90182542
90182544
90182544
70182548
70182550

000000
0006000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00103
00104
00105
00106
00107
00110
00111
00112
00113
00114
00115
00116
00117
00120
00121
00122
00123
00124
00125
00126
00127
00130
00131
00134
00133

152k
153%
154%
155%
156%
157%
158%
159%
160k
161x%
162%
163x
164%
165%
146%
167%
148%
169%
170%
171%
172%
173%
174%
175k
176%
177%
178%
179%
180%
181x
182%
183x%
184%
185k
186x%
187%

¥ SAFE (901X3870), 90182552
c 2 BOUNDARY SURFACE FINDER SETUF PUSHED ‘Q‘ BACK 20182554
T BEYOND ZERO TIME WITHOUT FINDING A SAFE POSITION 90182556
c (901X3348), 90182508
C 3 AN AEROELEMENT FLOW PATH WAS FOUND THAT LEADS TO 20142360
c BOUNDARY VIOLATION WITHOUT CROSSING A LEGITINATE 901A2065
C ACTIVE ROUNDARY. 70142570
C 4 THE BOUNDARY INTERCEFT LOCATOR FAILED TO LOCK ON 90142575
c TO AN EXISTING ACTIVE BOUNDARY. 901A2580
c F01A2585
c- 20142590
INTEGER IL»IH,IS 90142595
INTEGER FZsSTATsEIFLZNsST+EHODySTP1sELZHsDLZN
COMNON /NZNC/NIN 20102620
COMMON /IDUC/IDU 90182630
REAL CURTINsGDAST 90182670
INTEGER NINC 20182680
REAL AL(3) XL (A) 2XQCA) s AN(4) 9 XA(4)yGB(T) Vo2-08F
REAL UL(4),UQ(A),UN(4)sUA(4) Vo2-08F
REAL VBO(3) V02-08E
DEFINE EZBL(I)=ZBL(I) 90112713
DEFIHE DZBL(I+J)=EZBLCIPZBL(Ir1)+J) 20112720
DEFINE EIPLZN(I»J)=IPLZN(I»J) 90112725
DEFINE STC(I)=EIPLZN(FZ(I)s1) 90112730
DEFINE NU{I)=EIPLZR(FZ(1}»2) 90112740
DEFINE ENOD(I»J)=MOD(Tsd) 90112745
DEFINE STPI(D)=EIFLZH(EHOB(FZ(I)HNZHI+1,1) 90112750
DEFINE ELZN(I)=LZN(I) 90112755
DEFINE DLZN(I)=ELZN(ST(I)+RU(I)) 90112760
TINC=GDAST/NINC BCALC SUB-INCREMENT 90102770
TINCSA=0,5XTIRCRTIHC @CALC 1/2 SRUARE SUB-INCREMENT®0112780
TE=0,001XTINC BTOLERANCE OF BOUNCES IN TINE 90132783
CALL CHKLH (ILsIH,I5:901»3) @ GO CHECK AERODELEMENT RARGE 901A2790
IF (I8) 2796227942794 @ VALID RAMGE ? 90142792
2794 RETURN 2 NO 90142794
2796 DO 221 Ii=IL,IHyIS @ IN RANGE AEROELEMEMT LOOP 901A27%4

Listing 3. - Continued.

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000004
000007
000012
000021
000023
000027

44

00140
00141
00142
00143
00144
00147
00150
00151
00152
00153
00155
00140
00143
001464
00167
00170
00171
00172
00173
00174
00175
00200
00203
00204
00205
00210
00212
00213
00214
00217
00221
00222
00225
00226
00230
00231

188x%
189%
190%
191x
192%
193%
194%
195%
196%
197%
198%
199%
200%
201x
202%
203%
204%
205%
206%
207%
208%
209x
210x
211%
212%
213x
214x
215%
216%
217%
218x
219x
220%
221x
222%
223x

201

2820
2830

101

104
105

107
108

200

CALL CHKTIM (ILsIH,I1)
IFZ=FZ(I1)

CALL STIAES (Ii,IF2)
DO 201 I=1,3
XL(D)=X(I1yD1)

UL =U(TLy 1)
AL(I)=A(I1,1)

CALL STS (I1,IsXL(I))
CALL STS (I1»I+3,UL(I))
CONTINUE

KEEP AN EYE ON THE TIHME
LOCALIZE
BUTFUT IN CASE OF A SKIP
LOCALIZE

ORIGINAL FOSITION
ORIGINAL VELOCITY
ACCELERATION

IN CASE OF A SKIP

MUV BMOME DM D

IF (AND(STAT(I1),2%%9)) 221,2820,221 & SKIP IF SPECIAL

IF (IFZ-IDU) 2830,221,2830
XL{(4)=CURTIHX

D0 219 I=1,NINC
T=TINC

T5=TINCSO

TLEFT=0,0

IDB=-1

CALL SPC (XLsUL»T)
CALL VNN (XL)

IF (SVMIN) 106,106,104
IF (IDR) 219,103,105
CALL GRDEBD' (XLsIDBsGE)
CALL SURFVE (XLsIDB,VBOs%$107)
D0 108 K=1,3

UL (KY=UL (K)-VRO(K)
k=0,0

C=0,0

00 204 K=1,3
B=R+GB(K) ¥%2
B=1.0/SGRT(R)

D0 205 K=1,3
GR(K)=B¥GB(K)
C=C+GB(K) ¥UL (K)
C=2,0%C

DO 206 K=1,3

@ SKIP IF IN THE DOG HOUSE
e

OUTFUT POSITION AND VELOCITY

BSTART TIME SUB-INCREMENT LOOF90102850

@SET TIHE SPAN

@SET 1/2 SQUARE TIME SPAN
@SET TIME REMAINING SUB-IKC
8SET BOUNDARY MO-VIO FLAG

@ POSITION AT END OF SPAH

8 GO CHECK ALL BOUNDARIES

@ 106 DH BOUNDARY VIODLATION
@CHK FOR PENDING BOUNCE
PBOUNCE - BGET GRADIENT

@ GET SURFACE VELOCITY

@ GET VELOCITY OF AEROELEHENT
@ RELATIVE TO SURFACE

@CLR ACCUKULATOR

BCLR ACCUMULATOR
PACCUKULATE LENGTH SQUARED
@ OF GRADIENT VECTOR

@FAST DIVIDE LENGTH OF GRAD
@LooP TO

@ NORMALIZE GRADIEWT

90102860
90102870
20102880

. 90102890

V02-08F

90142930
90142940
90103070
90143080
V02-08E

V01-08E

V02-08E

90103090
90103100
90103110
90103120
20133130
90103140
20103150

@ ACCUNULATE DOT PROD VELOCTY90103160

@ADJUST CONSTANT FOR ROUNCE

20103170

@BOUNCE! VELOCITY ANGLE INCID.90103180

Listing 3. - Continued.

000033
000042
000046
000035
000053
000062
000067
000074
000103
000117
000117
000127
000132
000137
000137
000141
000143
000144
000147
000153
000156
000161
000164
000171
000202
000202
000205
000206
000212
000212
000216
000227
000227
000231
000233
000242

a4

00234
00234
00241
00243
00244
00245
00246
00244
00246
00246
00244
00246
00246
00244
00246
00246
00244
00246
00246
00246
00246
00244
00246
00246
00246
00246
00247
00250
00251
00252
00255
00256
00260
00261
00262
00263

224%
225%
226%
227%
228%
229%
230%
231x
232%
233%
234x
235x
236%
237%
238x
239%
240%
241x
242x
243%
244
245%
246%
247%
248%
249%
250%
251%
252%
253k
254%
255%
256%
257%
258%
259%

206

208

nnnnnﬂnnononoﬂnnnng

106

3480

3500

UL (K)=UL (K)-C¥GB(K)
DO 208 K~1,3
UL(K)=UL (K)+VBO(K)
T=TLEFT

TLEFT=0.0

IDB=-1

60 TO 101

2 EQUALS ANGLE OF REFLECTIOR 90103190

@ AEROELEMENT VELOCITY RELA-

@ TIVE TO STATIONARY FRAME
@SET TINE SPAN FOR REST OF
BCLR REMAINING TIKE

EWIPE OUT PENDIMG BOUNCE

V02-08E
vo2-08E
90103200
90103220
90103230

@JHP BACK - FIHISH SUR-IHCREHT90103240

THE FOLLOWIRG SECTION IS ENTERED WHEN A BOUNBARY IS VIOLATED.
IT BACKS THE PARTICLE UP ALONG ITS PATH TO LOCATE THE POINT
AT WHICH IT FIRST PENETRATES A BOUNDARY. WHEN THIS FOINT IS
LOCATED TO WITHIN TOLERANCE ‘TE‘ THE ID OF THE BOUNDARY
AROUT TO BE VIOLATED IS LOADED INTO ‘IUB’ AHD THE TIME IS
SUBDIVIDED TO CAUSE A STEP JUST TO THE BOUNDARY FOLLOWED BY
A BOUNCE AND A STEP 7O THE END OF THE TIKE SUB-IHCREMENT.

IN LOCATING THE NEAR-VIOLATION POINT ALL BOUNDARIES IN THE
HANDATORY FLOW ZOME AND IN THE AEROELEMENT’S FLOW ZONE OF
RESIDENCE ARE CHECKED TO PRODUCE & VIOLATION/HO-VIDLATIOR
DECISION. THIS DECISION SHOULD RE BASED ON AT LEAST ONE

BOUNDARY EVALUATIOH THAT DID NOT TRUNCATE. IF THIS IS NOT

THE CASE ERROR ¥3 IS REPORTED.

A PROPER CASPER PROBLEM

SETUP MAY NOT HAVE ANY AERDELEMENT FLOW PATH THAT CROSSES
FRON A NON-VIOLATION AREA TGO A VIOLATION AREA WITHOUT

CROSSING A DEFIRED ROUNDARY SURFACE.

NNN=OR(STAT(I1),2¢%8)
CALL STSTAT (I1,NNN)

TN=T

DO 3480 J=1,4

UNCD=UL D)

ANCS) =XL(J)

Th=-T

CALL SPC (XL, UL,TA)

CALL YNM (XL)

IF (SVNIN) 3330:3530,35600

@ SET MANDATORY SIFT RIT
e

@ N IWPLIES A POINT IN

@ VIOLATION

XL BACK TO ORIGINAL SPOT

CHECK BOUNDARIES HERE

e
e
e
e
@ NON-VIOLATING ?

Listing 3. - Continued.

90143250
90143260
901A3270
901A3280
20143290
90143300
90103310
901A3320
90143330
90143340
201A3350
90143360
901A3370
70143380
901A3390
90143400
901/3410
90143420
90143430
F01A3440
90143450
90143460
90173470
V02-08F

90113480
90143490
V02-08F

70143510
901A3520

000242
000251
000251
000254
000256
000257
000261
0002561
000261
000261
000261
000261
000261
000261
000261
000261
000261
0002561
000261
000261
000261
0002461
000261
000261
000261
000261
000263
000270
000274
000301
000301
000302
000305
000310
000314
000317

94

00266
00271
00272
00273
00274
00275
00274
00277
00300
00303
00304
00306
00307
00312
00315
00316
00317
00320
00323
00324
00327
00330
00333
00334
003346
00337
00340
00343
00344
00346
00350
00353
00354
00355
00356
00351

3530
3340

3570

3600

3620

3660

3700
3710
3720

3740

3760

3780

3790

3800
3810

3840
3850

IF (XL(4)) 3570,3570+3540
TN=TN-TA

T=T-TA

GO TO 3300

CALL ERROR2 (201:2)

CALL STIAES (I1,IDD)

G0 TO 221

T8=0.0

DO 3620 J-1,4

veI)y=UL ()

XQ(y=XL(3)

IE3F=0

pD 3790 J=1,15

IF (ABS(TN-TQ)-TE) 3800s3660s3640
TA=0,5k(TH+TA)

CALL SPC (XAsUAsTA)

CALL YNK (XA)

IF (IDNIN) 3710,3710,3700
TIE3F=IDNIN

IF (SVNIN) 376053760+3720
T0=TA

DO 3740 K=1,4

URKY=UALK)

AQ(K)=XA(K)

GO TO 3790

TN=TA

D 3780 K=1,4

UNCK)=UACK)

XN(K)=XA(K)

CONTINUE

IF (IE3F) 3810,3810s3840
CALL ERROR2 (901,3)

CALL STIAES (I1.1DW)

GG TO 221

IF (IDMIN) 3850s38350:3880
CALL ERROR2Z (901+4)

KEEP TRACK OF TINE SPANS

GO BACK IT UP
CAH’T SHARE ROURDARY
THIS TURKEY GOES TO SHEOL

0 INPLIES A POINT NOT IN
VIOLATION

ERROR 3 ABORT FLAG
RISECTION LDOP

CLOSE ENOUGH ?

NOs RISECT AGAIN

FIND THAT POINT IN SPACE
TEST THE BOUNDARIES

DID ALL TRUNCATE 7

NO» FLAG AN ACTIVE BOUNDARY
A NON-VIOLATING POINT 7
YESs REPLACE Q@ POIRT

N0y REPLACE N POINT

CONSTRUCTIOR PROBLEM ?
YESs REPORT IT
FORGET THIS GUY

W EPEREEPMMPDI VAT EOVMOEERPYEOEODDPOEPT DI O®D D

ALGORITHY DIDH‘T TRACK ?
@ YESs VERY ODD

Listing 3. - Continued.

NOs CAN WE BACK UP FURTHER 790143530

90143540
70143550
90143560
90143570

90143390
90143600
90143610
V02-08F

90143620
90143630
F01A3640
901434650
901A3640
V02-08F

90143680
90172690
90183700
90143710
90143720
90143730
Vo1-08F

90143740
90143730
901A3760
901A3770
Vo2-08F

20143780
90143790
90143800
90143810

901A3830
90143840
90143830

000322
000325
000330
000333
000335
000340
000344
000345
000351
000351
000352
000355
000361
000341
000367
000373
000400
000403
000404
000410
000412
000417
000417
000420
000423
000425
000431
000431
000432
000440
000440
000442
000446
000432
000454
000454

00362
00363
00354
00345
00346
00367
00370
00372
00375
00376
00400
00401
00403
00404
00404
00404
00404
00404
00407
00410
00413
00414
00416
00417
00420
00420
00420
00420
00420
00420
00420
00420
00420
00423
00423
00423

296%
297%
298%
299%
300%
301%
302%
303%
304%
305%
306%
307%
308%
309%
310%
311x
312%
313%
314x
315%
316%
317x
318%
319%
320%
321%
322%
323%
324%
325%
I26%
327%
328%
329x
330%
331ix

3880

219

220

221

0oon

13

-+

l?nnnnnnn

x)
RS-

CALL STIAES (I1.IDW) 2 INTD THE BLACK HOLE WITH HIK

GO T0O 221 e

IDB=IDKIN @ BOUHCE OFF THIS BOUHDARY
TLEFT=TLEFT+T-TQ @ TIME TO 6O AFTER BOUNCE
T=TQ @ TIME TO BOURCE

G0 1O 101 @TRY SHORTER TIME SPAN
CONTINUE @END TIKE SUBR-INCREMENT LOOP
00 220 I=1,3 @ RECORD NEW POSITION AND

CALL STS (I1sIsXL(I))
CALL STS (I1sI43,ULCT))
CALL STIAES (I1,IF2)

@ VELOCITY RESULTS IN
@ ASSIGNED SLOTS
@ RECORD FINAL FLOW ZOWE

CONTINUE PEND ELEMENT BY ELEMENT LOOP
RETURN
SUBROUTINE SPC (VeZsTD) U

LOADS VECTOR Y WITH AEROELEMENT FOSITION AT TIME ‘TI’ RELATIVE
TO 'XL’, CALCULATES VELOCITY AT Y AND PLACES IT IN Z.

REAL Y(4)+Z(3)TI e
DO 13 N=1,3

YO =XLODH(TIRUL ()) H (0 ORTIRTIRAL(NY)
ZN)=UL(N)HCTIXAL(N))

Y(4)=XL(4)+T1

RETURN

SUBROUTINE YRH (Y)

1) IDENTIFIES FLOW ZONE OF SPACE-TIHE POINT ‘Y’ AND UPDATES
FLOW ZOME OF AEROELEMENT ‘I1’ IF NECESSARY.

2) CHECKS ALL APFROPRIATE ROUNDARIES TO FRODUCE ‘IDMIN’/‘SVHIN’.
DOES NOT CONSIDER FOR ‘IDMIN’//SVUMIN’ BOUNDARIES THAT ARE
SAFE BY TRUNCATION.

3) DISCONTINUES SEARCH IF ‘SUMIN’ GOES NEGATIVE.

REAL 1(4)
CAUTION %%k THIS ROUTINE DOES NOT DETECT THE ’ZONE NOT FOUND/

Listing 3. - Continued.

90143870
90143880
90143890
701A3920
90103960
20103970

90104010
90104140
vo2-08F

901A4160
90144170
vo2-08F

901A4190
V02-08F

701A4210
Vo2-08F

v02-08F

90144230
9014240
20143000
20145010
90145020
20145030
90145040
901A50350
901AT060
201AT070
701A5080
70145090

000462
000466
000470
000471
000475
000477
0003503
000505
000303
000514
000530
000336
000336
000367
000547
0003567
000567
000567
000567
000567
000603
000611
000614
000621
000652
000652
000652
0004632
000452
000652
000652
0006352
000652
000452
000652
000632

0027 NERR2$
0030 NWDU$
0031 NID2%
0032 NID1s
0033 NERR3$
STORAGE ASSIGNHENT (BLOCK, TYPE» RELATIVE LDCATIONs NAME)
0001 000743 1L 0001 000034 107L 0001 000053 110L 0001 000057 111L 0001 000043 115l
0001 000070 117L 0000 000026 119F 0001 000124 122L 0000 000031 123F 0001 000140 124L
0001 000207 134L 0001 000224 139L 0001 000235 140L 0001 000243 1420 0001 000246 144L
0001 000251 149L 0001 0002564 148L 0001 000061 132 0001 000335 175L 0001 000350 179L
0001 000344 1BIL 0001 0003465 182L 0001 000371 184L 0001 000377 18éL 0001 000404 187L
0001 000415 1B9L 0001 000760 2L 0001 000134 201G 0001 000450 203L 0001 000470 205L
0001 000146 210G 0001 000171 2246 0001 000516 2250 0001 000322 2261 0001 000324 227L
0001 000526 228L 0001 000212 2316 0001 000547 253L 0001 0005463 274L 0001 000755 3L
0001 0004621 300L 0001 0006467 308L 0001 000673 323L 0001 000702 326L 0000 000037 328F
0001 000727 330L 0001 000540 3546 0001 000753 AL 0001 000624 4026 0001 000735 5L
0001 000732 6L 0001 001022 995L 0000 000100 997F 0001 000774 999L 0003 I 000000 ELNK
0006 1 000000 FZ 0000 I 000005 I 0000 I 000021 IC 0000 I 000020 ICH 0000 I 000006 IDA
0000 I 000003 IE 0000 I 000025 IED 0000 I 000022 IEZ 0003 I 000003 IHEAD 0000 I 000011 IHO
0000 I 000012 IMNN 0000 I 000007 IHD 0000 I 000014 IKS 0000 000132 INJPS 0000 I 000000 IOC
0013 I 000000 IPLZN 0000 I 000016 IFO 0000 I 000017 IP1 0000 I 000024 IF2 0000 I 000013 ISE
0000 I 000010 IYE 0000 I 000015 1ZC 0000 I 000004 IZS 0000 T 000023 J 0003 I 000002 LXTETH
0003 I 000001 WXTETH 0003 I 000000 NTETH 0004 T 000000 NZN
00101 1% SUBROUTINE RESD2 (IZL,IZHsIOF»IDL) 000003
00101 2% C+ 000003
00101 3% c 000003
00101 4x c RESO2 KXkx%%x A SUBROUTINE FOR CASPER ¥¥Xxkikx 000003
00101 ok c AUTHOR WILLIAM HERRY JONES 000003
00101 6% c v01-00 19 FEB 80 000003

Ly

Listing 4. - Continued.

4

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

7x
8%

10%
11%
12%
13x
14%
15%
16%
17%
18%
19%
20%
21%
22x
23k
24x
25%
26%
27%
28%
29%
30%
31x
32%
33k
34%
35%
36%
37%
38%
I9x
40%
41%
42%

OOOOOONOoOOO0O00O0O0O0N OO 0DO0O0ND0eNo0NenO0

V01-004 15 SEP 80 FUNCTION TYFE STATEHENTS
V01-00B 04 JUN 82 DEND AMD DEBUG #SGS 1002V01-00E
V01-00C 13 JuL 82 TYPO v01-00C

DESCRIPTION X¥kkXX

THIS ROUTIME PERFORNS THE FLOW ZOME AEROELEMENT LINKAGE
PURIFICATION PASS. THIS FROCESS SEARCHES THROUGH EACH FLOW
ZOME’S RESIDENT AEROELEMENT LINKAGE LODKING FOR AERDELEMENTS
THAT ARE NOT RESIDENT IN THAT FLOW ZORE. ANY SUCH AEROELEKENTS
THAT ARE FOUND ARE REHMOVED FROM THAT FLOW ZOME’'S LINKAGE AND
CONSIGNED TO THE LINKAGE OF THE FLOW ZOWE OF WHICH THEY ARE

A RESIDENT.

CONSIGNMENT TO THE FLOW ZONE FOLLOWS ONE OF TW0 PROCEDURES.
IF THE DESTIHATION FLOW ZONE IS IN RAHGE, THE AERDELEMEHT IS
TMMEDIATELY LINKED INTO THE TAIL OF THAT FLOW ZONE’S LINKAGE.
IF THE FLOW ZOHE IS NOT IN RANGE; THE AEROELEKENT IS TETHERED
IN A LOCAL LINKAGE, AT AN APPROPRIATE TIME THIS LOCAL
LINKAGE IS REPORTED TO PAX FOR LINKING IHTO THE DESTINATION
LINKAGE.

SOME OPTIONAL REPORTS FOR CROSS REFERENCING PURPOSES MAY BE
REQUESTED AS SPECIFIED BRELOW,

10P REPORT
1 NO ADDITIONAL INFORMATION IS REFORTED
2 FOR 1 EQUAL TO 1» 2s OR 3y IF THE FLOW ZDHE OF

RESIDENCE FOR A PARTICULAR AERDELEMENT IS THE
SANE AS IDL(I)y THEN THAT AEROELEMENT’S ID IS
APPENDED TO A LIST THAT IS ULTIMATELY ASSOCIATED
WITH IDL(I) TR A REFORT TO PAX.

Listing 4. - Continued,

000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003

e

6v

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101

43x
A4x
ASK
46%
A7%
48X
49%
50%
51%
52%
53k
54%
55¢
56X
57%
58%
59%
60%
1%
62%
63K
64X
65%
66X
67%
48X
69%
70%
71%
72%
73%
74%
75k
76X
77%
78%

[B o B N B o B o B o B e I o o o o B B o I o e B B e B o B T B B 2 B e B o B e e o e Y e B e B o B o I IO

FOR I EQUAL TO 1» 2y OR 3» IF THE FLOW ZORE OF
RESIDENCE FOR A PARTICULAR AEROELEMENT IS THE
SANE IS IDL(I)» THER THAT AERDELEKENT’S ID IS
APPENDED TO A LIST THAT IS ULTIMATELY ASSOCIATED
WITH IBL(1) IN A REPORT TO FAX.

THE SAME AS 3. ADDITIONAL ACTION IS TAKEH. THE
FLOW ZONE OF RESIDENCE FOR THE AERGELENENT IS
CHANGED TO IDL(1) AND LINKAGE PURIFICATION PROCEEDS
ON THE REVISED VALUE.

GENERAL DATA BASE kiXXxkx

IPLZNC +4)
IPLZN(+3)
IPLZNC +6)

ELNK(+1)
ELNK(+2)

ELNK(+3)

LINKAGE HEAD POINTER
LINKAGE COUNT
LINKAGE TAIL POINTER

NEXT ELEMENT FOINTER

FOR THIS ROUTINE ONLYs FOR HEAD ELEMENT
ONLY> ORIGINAL LINKAGE COUNT REFORE
PURIFICATION OTHERWISEr SCRATCH

SCRATCH

COMNON TETHER DATA BASE Xx¥xix

LTETH
NTETH
HATETH
LXTETH
THEAD(1,)
THEAD(2y)
IHEAD(3y)

ELNK(#1)

NUMBER OF TETHER HEADS

NUMBER OF HIGHEST TETHER HEAD IN USE
NUMBER OF LONGEST TETHER HEAR IN USE
LENGTH OF LONGEST TETHER IN USE

FLOW ZONE ID ASSOCIATEDR WITH TETHER
POINTER TO FIRST ELEMEWT IN TETHER
LENGTH OF TETHER

POINTER TO NEXT ELEMENT

Listing 4. - Continued.

000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003

© 000003

000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003

oS

00101
00101
00101
00101
00101
00103
00104
00105
00111
00114
00115
00116
00117
00120
00123
00126
00131
00134
00135
00140
00141
00144
00147
00150
00151
00154
00156
00157
00160
00161
00174
00174
00175
00176
00205
00206

OO0

11%

122
123
124

ELNK(»2) LEHGTH OF TETHER (FIRST ELEKEHT ORLY)
ELNK(»3) POINTER TO LAST ELEMENT (FIRST ELEMENT ONLY)

PARANETER OURID=982

PARAMETER I0CHX=100

INCLUDE TETHP

INCLUDE PGSDEF e Vo1-00k
INTEGER IOC(3)+IDL(3)+ELNKsFZ

COMMON /NZNC/NZH

1e=1

CALL TETHI

IF (IZL) 1.1,101 @ ERROR CHECK FLOW ZONE

IF (IZL-NZN) 102,102s1 2@ RANGE LIKITS

IF (IZH) 2,2,103 e

IF (IZH-NZH) 104,104,2 e

1Z58+1 @ SET FLOW ZONE STEP

IF (IZH-IZL) 106+107,107 @ DIRECTIOR

125=-1 e

IF (10P) 353,108 @ ERROR CHECK OPTION

IF (I0P-4) 109+109,3 @ SELECTION

GO0 T0 (115,110,111,111),I0P @ OPTION BRAWCH

CALL STKCHG (3s1) @ (0P2) ASK FOR 3 STACKS

Do 114 I=1,3 @ (0P234) IHIT COUNTS LIST

10C(D)=0 e

CONTINUE e

CALL TOGSW (PGSDMO+PGSBUGy$117,%4124) @ DENO OR DEBUG ON ? Vo1~00B
CALL TIKPR (IDA»IHO»IYE»IHOsINN»ISE,INHS) € YESs GET TIME V01-00B
WRITE ¢45119) IZLsIZHsIDAyINO»IYEsTHO»IMNsISESINS @ V01-00B
FORMAT (1HO»5X» 30HCASPERY.RESO2D (DMD) -- RANGE »18»4H TO »I8r13R V01-00C
1ACCEPTED ON yJ2s1XsA4,J4,4H AT 52(J291H?)»J2,1H.sJ3) @ V01-00R
CALL TOGSW (PGSBUGr$122,%124) @ DEBUG ON ? V0i-00B
WRITE (4,123) IOP»(IDL(I)yI=1,3) @ YES V01-00B
FORMAT (1R »7X»6HIOP = s14s7H IDL = »3(IB)) € V01-00B
CONTINUE e V01-00R

Listing 4. - Continued.

000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000003
000005
000007
000012
000015
000020
000023
000025
000031
000034
000036
000041
000033
000061
000061
000063
000063
000070
000100
000116
000116
000116
000124
000140
000140

00207
00212
00213
00214
00217
00220
00223
00224
00227
00230
00233
00234
00237
00241
00242
00243
00244
00245
00246
00247
00250
00253
00254
00255
00256
00257
00262
00263
00264
00265
00266
00267
00270
00271
00274
00273

s

115%
116%
117%
118x
119x
120%
121%
122%
123%
124%
125%
126%
127%
128%
129%
130%
131%
132%
133%
134%
135%
136%
137x
138%
139%
140%
141x%
142%
143%
144%
145%
146%
147%
148x
149%
150%

129

131

134

137

139
140

142
144
145
146

148

151

175
176

DO 229 IZC=1ZL,IZHs1ZS
1P0=0

IP1=IPLZR(IZCy4)

IF (IP1) 228,228,129
ICH=ELNK(IP1,2)

IF (ICH) 5,228,131

o 227 1€=1,yICH

IEZ=FZ(IP1)

GO TO (175s134,134,134),1I0P
D0 137 I=1s3

J=1

IF (IEZ-IDL(I)) 137,139,137
CONTINUE

G0 TO 175

GO TO (175-144,142,140),I0F
IEZ=IDL(1)

CALL STFZ (IF1,IEZ)

J=1

GO TO 145

CALL STKSET (b

IF (I0C(J)) 6»144,148

CALL SPSHI (0)

CALL SPSHI (0)

CAlLLL SPSHI (IP1)
I0C())=I0C(I+1

IF (IOC(J)-I0CHX) 175513151351

CALL SFSHI (-I0C(J))
CALL SPSHI (IOC(J))

CALL SPSHI (IDL(J))

CALL SPSHI (2)

CALL SPSHI (I0C(J)+6)
CALL REGSAF (OURID,2)
10€()N=0

IF (IEZ-IZC) 17991764179
IF0=IP1

IP1=ELNK(IPOs1)

AP EPREMOMMMEEPEPMEORERVRERNRPRTVEDRAMDROMOMODMODDOEBDR T

PREVIOUS ELEMENT POINTER
CURRENT ELEWENT POINTER
IS THERE AN ELEMENT 7
YES» GET COUNT

LEGAL COUNT ?

YES

GET ELEMENT’S FLOW ZONE
BRANCH BY OPTION

(0P234)

FLOW ZONES MATCH 7
NO
TOTAL NISS

(OPA) REVISE FLOW ZOWE
(0P34) INTERFRET AS IDL(1)

(0P2) GET RIGHT STACK
NEED END-OF-ARGS 7
ES

ID ON TO STACK

KEEF ID COURT

ENOUGH TO REFORT 7

YESy CODE FOR LITERAL STRING
COUNT OF IDS

ZONE OF ASSOCIATION

TWO SINGLE LITERALS

STACK DEPTH

NONE ONH STACK NOW
IS IT IN THE RIGHT ZONE ?
YESs STEF TO NEXT

Listing 4. - Continued.

000140
000146
000147
000134
000156
000163
000165
000171
000175
000212
000212
000214
000222
000222
000224
000235
000236
000243
000244
000246
000251
000255
000260
000264
000271
000274
000277
000304
000311
000316
000321
000327
000333
000335
000337
000341

[4Y

00276
00277
00300
00301
00304
00305
00310
00311
00312
00313
00314
00317
00320
00321
00322
00325
00330
00331
00334
00335
00336
00337
00340
00341
00342
00343
00344
00345
00346
00347
00350
00352
00353
00353
00360
00363

S

151%
152%
153%
154x
155k
156%
157%
158%
159%
160%
161%
162%
163%
164%
165k
166%
167%
168%
169%
170x
171%
172x
173%
174%
175%
176x
177%
178x
179%
180x
181x
182%
183x
184x
185%
186%

179

181
182
183
184

186
187
188
189

201
202

204
209

209

223
226
227
228
229

252

GO TO 227

CALL STELNK (IP1+2:0)
IP2=ELNK(IFi,1)

IF (IP2) 181,182,182
1IP2=0

IF (IP0) 183,184,186
1F0=0

CALL STIPLZ (IZC,4,1P2)
GO 10 187

CALL STELNK (IPOs1,IP2)
IF (IP2) 181,188,189
CALL STIPLZ (IZC+6+1IP0)
I=IPLZR(IZC,5)-1

CALL STIPLZ (IZC,5.I)

IF (IEZ-1ZL) 225,201,201 '
IF (IEZ-IZH) 202,202,223
I=IPLZIN(IEZ,é)

IF (1) 204,203,209

I=0

CALL STIPLZ (IEZs45IF1)
CALL STIPLZ (IEZ»5s1)
CALL STIPLZ (IEQs4sIP1)
GD TO 226

CALL STELNK (Is1.IP1)
CALL STIPLZ (IEZ»6,1IP1)
I=IPLZN(IEZ,T)+1

CALL STIPLZ (IEZ»5yI)

GO TO 226

CALL TETHA (IP1,IEZ)
IP1=IP2

CONTINUE

CALL CHKTIN (IZLsIZH,IZC)
CONTINUE

DO 253 I=1,LTETH

IF (IHEAD(2yI)) 233,2335232
CALL TETHF (D)

mmmmmmmwmmmmmmmmmmmmmmmmmmmmmmmmmmmm

NO» ZAP ORIGINAL COUNT SLOT
PULL FROM LINKAGE

NEW LINKAGE HEAD
JOINT IN LINKAGE MIDDLE

NEW LINKAGE TAIL
ORE LESS ELEKENT

1S CORRECT ZONE IH RAHGE 7

YES» FOINT TO ITS TAIL
IS THERE AN OLD TAIL *?

NOy START A WHOLE NEW LINK

YESs ADD THIS TO TAIL

TETHER ELEMENT LOCALLY
ADJUST NEXT ELEMENT POINTER
EHD OF ELEMENT LOOF

KEEF AN EYE ON THE TIME

END OF ZOHE LOOF

FLUSH ANY RESIDUAL TETHERS

Listing 4. - Continued.

000344
000330
000354
000361
000364
000365
000367
000371
000375
000377
000404
000407
000415
000422
000427
000433
000437
000444
000446
000430
0004354
000461
000466
000470
000474
000501
000507
000514
000516
000522
000526
0003526
000540
000340
000540
000543

39

003564 187% 253 CONTINUE e 000551
00364 188x GG TO (323,300,276+276)sI0F @ BRANCH RY OPTIONS 000351
00367 189x 276 IF (I0C(1)) 325+325+277 @ (0P34} - ANY TO REPORT ? 000563
00372 190% 277 CALL SPSHI (-IOC(1)) @ YES» LIT. STRING CODE 000365
00373 191% CALL SPSHI (I0C(1)) @ COUNT OF IDS 000572
00374 192% CALL SPSHI (IDL(1)) @ ZONE OF ASSOCIATION 000575
00375 193% CALL SPSHI (2) @ TWO SINGLE LITERALS 000602
00376 174x CALL SPSHI (I0C(1)+6) @ STACK DEPTH 000405
00377 195% CALL REQSAF (OURID,2) @ TRANSHIT 000613
00400 196% 60 TO 325 @ 0005617
00401 197% 300 DO 308 J=1,3 @ (OP2) LODK AT EACH 000624
00404 198% IF (10CC(J)) 300,308,302 @ ANY TO REPORT 7 000624
00407 199% 302 CALL STKSET (J) @ YES» GET RIGHT STACK 000627
00410 200% CALL SPSHI (-IOC(J)) (O 000632
00411 201x CALL SFSHI (IDC(J) @ 000637
00412 202x CALL SPSHI (IBL(J)) C 000644
00413 203% CALL SPSHI (2) e 000651
00414 204% CALL SPSHI (IOC(J)+4) @ 000634
00415 205% CALL REBSAF (OURID,2) e 000662
00414 206% 308 IOC(N)=0 @ 000667
00420 207% CALL STKOLD @ BACK TD DRIGIHAL STACKS 000672
00421 208% 325 CALL TOGSYW (PGSDMO+FGSBUGs$326,$330) @ NEED CLOSING MESSAGE 7 V01-00R 000675
00422 209% 326 CALL TIWPR (IDA,IMO»IYEsIHO,IMN»ISE.IKS) & YES V01~00RB 000702
00423 210% WRITE (6,328) IDAyINOsIYE,IHO»IMN,ISE,INS @ V01~-00k 000712
00434 211% 328 FORNAT (1H »5Xy49HCASPER?.RESO2Dr (I¥0) -- SUCCESSFUL COWFLETION ONV01-00R 000727
00434 212% 1 »J2y145649J454H AT 22(J251H)»J251H, ¥ J3) @ . V01-00R 000727
00435 213% 330 RETURN # DONE V01~00R 000727
00433 214% C+ 000727
00435 215% C ERROR REFORTING 000727
00433 216% c- 000727
00434 217%) IE=IEH @ OFTIOR COUNT WAS NEGATIVE 000732
00437 218%] IE=IE+1 @ ELEMENT COUNT ILLEGAL FOR FLOW ZONE 000735
00440 219% TIE=TE+1 @ ERR 4 NOT USED 000737
00441 220x GO TO (3r4+3+3)9I0F @ TO OLD STACK CONFIGURATION ? 000741
00442 221x 4 CALL STKOLD 2 YES 000753
00443 222% 3 IE=TE+L @ ILLEGAL OFTIONS SELECTED 000753

Listing 4. - Continued.

143

00444
00443
00444
00447
00450
00451
00463
00463
00464
00465
END FOR
>

223%
224x
220%
226%
227%
228%
229%
230%
231%
232x%

2 IE=TE+1 @ FLOW ZOWE HIGH LIKIT OUT OF RANGE
1 CONTINUE @ FLOW ZOHE LOW LIMIT OQUT OF RANGE
CALL ERROR2 (OURID,IE) B

CALL TOGSW (PGSDHD+PGSBUG,$999+$995) @ NEED A NESSAGE 7 V01-00R
999 CALL TINPR (IDAsINHOsIVE»IHO»IKNsISE»IKS) € YES V01-00k
WRITE (65s997) IErIDAyINOIYE,IHO»IMN,ISE,INS @ Vo1-008
997 FORMAT (1H +5X,30HCASPER?.RESC2D (D0} -- ERROR »J3s4H OH »J2,1X,AV01-00K
145 J454H AT 92(J2¢1H2) 2 J251H, 4 J3) e Vo1-00F
995 RETURN @ DONE BADLY V01-00k
END @

Listing 4. - Concluded.

000760
000763
000763
000766
000774
001004
001022
001022
001022
001103

SS

@FOR»MS CASPER?,.TETHFID

FOR 4Rl
»BEOF

E -01/13/83-14318109 (3y)

SUBROUTINE TETHF

ENTRY POINT 000161

STORAGE USED? CODE(1) 0001665 DATA(0) 0000735 BLANK COMHON(2) 000000

COMMON

0003

BLOCKS:

TETHC 000437

EXTERNAL REFERENCES (BLOCK» NANME)

0004
0003
0004
0007
0010
0011
0012
0013
0014
0013
0016

STORAGE

0001
0001
0004 I
0000 I

ELNK
TOGSW
TIMFR
SPSHI
DBAF
REQSAF
ERROR2
WALKE
NWDU$
NID2¢
NERK3$

ASSIGNMENT

000072 108L
000147 115L
000000 ELNK
000004 INN

(BLOCKs TYPEs RELATIVE LOCATION, NAKE)

0000 000034 109F 0001 000124 110L
0001 000151 116L 0601 000010 95L
0000 I 000007 I 0000 I 000000 IDA
0000 I 000001 IKO 0000 1 000006 IS

Listing 5. - Conflicted-task request routine.

0001 Q00133 11iL
0000 000014 97F
0003 I 000003 IHEAD
0000 000043 INJFS

0001 000137
0001 000035
0000 I 000003
0000 I 000005

1120
9L
THD
ISE

e

9¢

0000 1 000002 IYVE

0000 I 000013 M

00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00101
00103
00104
00110
00113
00114
00115
00116
00127
00127
00130
00131
00132

-+

s BN NelrNeNrNele NN r e Nl Nwlely]

95

97

0000 1 000010 J

0003 I 000001 MXTETH

SUBROUTINE TETHF (IP)

0000 1 000011 K 0000 I 000012 L

0003 T 000000 NTETH

TETHF ¥Xkkxk A SUBROUTIRE FOR CASPER ¥X®E¥X
AUTHOR WILLIAM HENRY JONES
V01-00 19 FEB 80
Vo1-00A 04 JUN 82 DEBUG NESSAGES
V01-00B 29 JUW 82 TYFO
1007 Vo1-00C 14 JUL 82 DATA BASE FLUSH ADDED

DESCRIFTION Xkk¥kx

1002v01-00A
1003V01-00R
V01-00C

TRANSHITS THE INFORMATION OF TETHER ‘IP’ TO PAX AND RE-IRITIALIZES

THE TETHER DATA.

PARANETER OURID=979 @ CASPER CATALOG ID
INCLUDE TETHF e

INCLUDE PGSDEF @

INTEGER ELNK e

CALL TOGSW (FGSBUG,$935+$99) @ DEBUG ON 7

CALL TIXPR (IDA,INMO»IYE,IHD»IKN,ISE,INS) & YES, NOTE THE TINME
HRITE €6597) IDA»IMO»IYE,IHOsINN>ISE,INS @ PRINT HEADING HSG
FORMAT (1HO»5Xs41HCASPERSWTETHFD (RUG) -~ FLUSH INVOKER! ON »J2s1X,V01-00A
104y J4y4H AT +2(J251H3) 1 J291H,»J3) @

CONTINUE
I=IHEAD(2sIF)
IF (I) 111,111,102

@
@ POINT TO ELEMENT
@ IS THERE AN ELEMENT T

Listing 5. - Continued.

V01-00A
Vo1-004
V01-00A
Vo1-00A
Y01-00A

V01-00A
V01-004

0003 I 000002 LXTETH

000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000010
000020
000035
000035
000035
000035
000034

LS

00135
00134
00137
00140
00141
00142
00143
00144
00145
00144
00147
00150
00150
00140
00161
00162
00163
00164
001463
00166
001467
00170
00171
00172
00173
00174
00175
END FOR
>

1%
32
33x
34%
39%
36%
37%
38k
39%
40%
41%
42%
43%
A4%
45
46%
47%
48%
49%
30%
5ix
52%
53k
D4k
30%
6%
97%

102

108

109

110

111
112

115
116

J=IHEAD(1,1IF)

ESy GET FLOW ZONE ID

e

CALL SPSHI (0) @

Cal.L SPSHI (0) e

CALL SPSKI (I) @ ELEMENT POIHTER

CALL SPSHI () ? FLOW ZONE

CALL SPSHI (2) @

CALL SPSHI (3) e

CALL TOGSW (PGSBUGy$108,$110) @ DEBUG OH 7 v01-00a
K=ELNK(Is1) @ YES» GET HEAD ELEMENT’S V01-00B
L=ELNK(I»2) @ IHFD V01-00R
H=ELNK(I+3) e Vo1-~00k
WRITE (67109) IFsIsJsKslsM e Vo1-008
FORMAT (1H »7Xy16HFLUSHING TETHER +I6»4Xy13HHEAD ELENENT »I8,4Xs10V01-004
1HFLOW ZONE »I8s/y1H #9Xs7HELNK = »3(112,2X)) € Vo1~00A
CONTINUE e V01-004
CALL DRAF # ASSURE SHARING OF DATA V01-00C
CALL REOSAF (QURIDs1) @

G0 TO 112 2

CALL ERROR2 (OURID1) @ IS ERROR TG FLUSH NOTHING
THEAD(1,IP)-0 @ ZAF HEAD

THEAD(2,IF)=0 @

THEAD(3sIF)=0 e

CALL TOGSW (PGSEUGr$110,%118) @ DEBUG ON 7 V01-004
CALL WALKE 2 YES, CORCLUDE WITH WALKBACK V01-00A
CONTINUE @ V01-00A
RETURN 2

END [

Listing 5. - Concluded.

000040
000042
000045
000050
000033
000056
000061
000064
000072
000076
000103
000110
000124
000124
000124
000124
000125
000131
000133
000137
000137
000140
000141
000147
000131
000151
000165

3. Recipient’s Catalog No.

1. Report No. 2. Goverr;ment Accssioﬁ Nc-).”
NASA TP-2179
4. Title and Subtitle i T T 5. Repo-rt Date T
PARALLEL, ASYNCHRONOUS EXECUTIVE (PAX): SYSTEM June 1983
CONCEPTS, FACILITIES, AND ARCHITECTURE 6. Performing Organization Code
505=-40-6A
7. Author(s) 8. Performing Organization Report No.
William H. Jones E~-1584
e .-} 10. Work Unit No.
9. Performing Organization Name and Address

National Aeronautics and Space Administration

Lewis Research Center 11. Contract or Grant No.

Cleveland, Ohio 44135

13. Type of Report and Period Covered

12

Sponsoring Agency Name and Address Technical Paper

National Aeronautics and Space Administration
Washington, D.C. 20546

14. Sponsoring Agency Code

15.

Supplementary Notes

16.

Abstract

The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many
computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC
1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers.
Data are shared among independent UNIVAC runstreams through shared mass~storage files. PAX has
achieved the following: (1) applied several computing processes simultaneously to a single, logically
unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved
by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault
isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing
machine. Additionally, one real-life problem has been constructed for the PAX environment. This is
CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is
not discussed in this report except to provide examples of parallel-processing techniques.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Parallel processing Unclassified - unlimited
Distributed processing) STAR Category 62

Fault tolerant processing

Parallel, asynchronous processing

19. Security Classif. (of this report) 20. Security Classif. (of this page} 21. No. of Pages 22. Price”

Unclassified Unclassified 59 A04

* For sale by the National Technical Information Service, Springfield, Virginia 22161

MASA-Langley, 1983

