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ABSTRACT 

In this paper, we demonstrate the equivalence of a scalar input system 

• x =~x + bu, for which the eigenvalues of the generator J4f coincide with the 

roots of the entire function 

peW) 
wT W(T-e l ) 

= e + al e . + ••• 
T 

+ a + f'a(e)eW(T-e)de, 
m 0 

with the controlled scalar functional equation 

T 
yet) + aly(t-e l ) + ••• + amy(t-T) + foa(e)y(t-e)de = u(t). 

The theory of nonharmonic Fourier series is then employed to investigate the 

placement of eigenvalues in the closed-loop system with continuous state 

feedback. 
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1. Introduction 

Let ~ be a generator of a strongly continuous group of operators 

~t) : t € 1ij on a Hilbert space hr, and suppose that the spectrum of ~ 

corisists of an infinite sequence of simple eigenvalues {~} which forms the 

zero set of an entire function having the form 

pew) 
T 

+ ••• a + f a(6)e w(T-6)d6. 
m 0 

(1) 

In this paper, we will analyze in detail the transformation which carries the 

scalar input system 

x(t) =~x(t) + bu(t), (2) 

to the scalar functional equation 

T 
yet) + a Iy(t-6 I ) + ••• + amy(t-T) + foa(6)y(t-6)d6 = u(t). (3) 

The latter constitutes the causal control canonical form for the pair ~b). 

The adjective "causal" is used here because a feedback law of the form 

u(t) = (6 ,x(t») 
f§ 

will be shown to transform to a feedback law of the form 

u(t) 
T 

f g(6)y(t-6)d6, 
o 

i.e., the input u depends only upon past values of y. The expression 

(4) 

(5) 
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"control,canonical form" refers to the fact that the above-mentioned 

transformation;has a structure quite similar to its well-known finite 

dimensional counterpart as well as to the fact that the effect of linear 

feedback (4) in the original system (2) can be readily analyzed in terms of 

the system (3) with corresponding feedback (5). 

Before proceeding, we present an example of a system which possesses the 

structure indicated above. Consider the linear hyperbolic system in 

characteristic normal form [3]: 

with boundary conditions 

Here, 

are diagonal nXn matrices with 

A (x) ( ••• ( A (x) < 0 < A (x) ( ••• (A (x) • 
1 n n+1 2n 

Also, 

A(x) 



and DO and Dl are both nXn matrices which determine the manner in which 

"information" is reflected at the boundaries x = 0 and x = 1. Such systems 

arise in the study of counterflow heat exchangers [9] and in the study of 

multiconductor transmission lines [6]. 

If A1Z = AZI = 0 and the off-diagonal components of both A- and A+ 

vanish identically, then the characteristic frequencies are the roots of 

where 

and 

1 ± -1 
A± - J (A (x) dx, 

o 

1 -1 ± - J (A±(x) A (x)dx. 
o 

The roots of TI will coincide with those of a function p having the form 

displayed in (1): 

TI(W) 

wa 
- e • p(w). 

In the case where A has non-zero off-diagonal components, one can show [19], 

under the assumption that both DO and Dl are invertible, that p remains 

the same except for the addition of an integral term as in (1) with 

Z a(·) e:: L (O,T). 

In the above example, one may consider control problems wherein one 

introduces a forcing term proportional to a scalar function u(t) in the 

3 
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differential equations (distributed control): 

dW _ dW at - hex) ax + A(x)w + b(x)u(t), (6) 

or in the boundary conditions (point control): e.g., 

+ w (l, T) (7) 

Either way, one is led to consider a system of the form 

x(t) =~x(t) + bu(t), 

where the element b, in the former case, lies in the state space ~ but, in 

the latter case, must be interpreted as a distribution. We will discuss this 

point in greater detail in Section 2. 

Of central interest in this paper is .the spectral synthesis problem: 

given a set of "desired" eigenvalues {Vk } , can one construct a feedback law 

of the form (4) such that the eigenvalues of the closed-loop system 

• 
x =..s;tX + b (6,x) - W+ b ® 6)x, 

coincide precisely with {~}? Russell [14] has carried out a study of this 

question in the case corresponding to m = 1 above for a class of linear 

hyperbolic systems consisting of a pair of equations. In his study, the 

theory of nonharmonic Fourier series is used to study the canonical equation 

(3) and conclude that any sequence {~} for which 



where {bk } is the sequence of expansion coefficients of the control 

distribution element b with respect to the eigenfunctions of ~ may be 

synthesized by continuous linear state feedback. An alternative approach, 

(8) 

which apparently avoids an appeal to the theory of nonharmonic Fourier series, 

has been offered by Clarke and Williamson [2]. Perturbation theorems for 

spectral operators have been employed by Sun [18] to show that condition (8) 

is both necessary and sufficient for a class of systems that would include the 

one studied in this paper. The main contributions of this paper include a 

more explicit representation of the transformation carrying (2) into (3) than 

that given in [14] as well as a formula for the expansion coefficients of 

in terms of the desired set of eigenvalues {~}. 

1. A Discrete Finite Dimensional System 

For the sake of motivation, we will review briefly the reduction of the 

finite dimensional discrete system, where A E Ifxn and bEEr, 

(1.1 ) 

to its causal canonical scalar equation 

(1.2) 

d ( \ ) \ n + \ n-1 where et 1\1 - A - 1\ a
1

1\ + ••• + an" 

5 
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For r = 1,···,n, we have 

r· r: r-t 
A ~ + L A b~+t. 

t=l 

In particular, if Xo = 0, 

x 
n 

[ n-1 
A b··· Ab 

(1.3) 

(1.4) 

Well known is the fact that the pair (A,b) is controllable just in case the 

nXn matrix C is invertible. 

With aO = 1, we find 

n-1 
I a Xk+n + anxk m"'O m -m 

n-1 
I a (An

-
m + 

m=O m ~ 

(1.5) 

where n n-1 peA) = A + a A + ••• + a I '" 0 
1 n 

by the Cayley-Hamilton theorem and 

where we have interchanged the order of summation in obtaining the last line. 

The remaining double sum may be rewritten as 

[U~+l] CM • . 
uk+n 

where 



M = 

1 

Equation (1.5) now reads 

• • • 

(1.6) 

(1.7) 

It is important to note that the coefficients appearing on the left hand 

side of (1.7) are scalars. Assuming the pair (A,b) to be controllable, or 

equivalently, the matrix C to be invertible, we define the variable n by 

It is also important that 

~,I 

· • • 

~,n 

-1 -1 
= M C xk+n 

~ depends only on k+r. This may be 
oK, r 

(1.8) 

demonstrated as follows. Let er denote the rth standard unit vector in Fr; 

thus 

According to (1.8), 

n k,r 

• • • 

~+p,n 

-1 -1 
= M C xk+p+n 

7 
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Suppose p+q r. We wish to show that 

~,r = ~+p,q 
i.e, that 

T -1 -1 T -1 -1 
erM C xk+n = eqM C xk+p+n 

Since 

= APx + g AP-~ b 
K+n ~~1 uk+~+n ' 

we must have: 

(i) 

(ii) o. 

That (i) is true follows from the well-known fact (see [10] or [16], e.g.) 
... 

that A is the companion matrix of A: 

... 
A 

1 
o 
o 

1 0] ..~1 • 
•••• -a2 -a 1 

That (ii) holds true follows from the observation that 

e 
n-p+~ , 

and the fact that span{e +o,···,e} n-p ;. n is invariant under 



We now define the sequence {Yk} C:R by 

Equation (1.8) now reads 

• • • 

= ~ 1· , 

-1 -1 = M C xk+n. 

Hultiplying (1.7) on the left by }CIC-I , we find that {Yk} satisfies (1.2). 

Let us now see how linear feedback in (1.1) manifests itself in (1.2). 

If 

T 
f = row vector, 

then, by 1.8, 

Yk-n Yk-n 

fT CM 
• T • 

Uk = - g · • (1.9) 

Yk- I Yk- I 

Thus, the closed-loop system 

goes over to the closed-loop system 

9 
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Let AI' ••• , An denote" the (not necessarily distinct) eigenvalues of 

A. We are assuming that the entries in A are all real; hence { A' ••• A .} 
. l' , n 

is symmetric with respect to the real axis in the complex plane. Given any 

likewise' symmetric set of complex numbers {"I' ••• , "n}' it is now an easy 

matter to construct a feedback gain f e 1r for which the eigenvalues of 

Indeed, if 

n n-l A + c A + ••• + c -
1 n 

then ci e R for i=I,···,n and hence, referring to (1.10), we must have 

or 

T T T 
g = a - c where 

T 
a 

i=I,···,n 

Referring to (1.9), we arrive at the Bass-Gura formula [10] for f: 

(1.11) 

We will show that the same formula holds true under appropriate assumptions 

for the class of infinite dimensional systems mentioned above and to which we 

now turn. 
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2. Nonharmonic Fourier Series and Controllability 

In this section, we discuss the nature of the transformation which 

corresponds to the matrix C of the previous section. Before doing so, it is 

first necessary to recall some definitions which concern the scalar. input 

system 

~(t) =~(t) + bu(t). (2.1) 

Let.s¥ generate a strongly-continuous group &(t): t e: E.} on the 

Hilbert space ~ and denote the action of a conjugate linear functional x 

on W e:hrby <~,x>. As with the inner product (.,.) on ~ the bracket 

<.,.> is understood to be conjugate linear in the first argument and linear 

in the second. It is also understood that <.,.> has the property that 

<~,x> = (~,x) if x e:M. Let us define the weak solution x(·) to (2.1) 

satisfying x(O) = xo e:~ by requiring 

<~,x(t» * t * ~t) ~,xO> + J ~t-s) ~,b>u(s)ds, 
o 

(2.2) 

for all ~ e:~~). Here, {~t) * : t e: E} denotes the adjoint group 

d by rvr* generate ~ with domain ~V) C ((/ and b is understood to represent a 

conjugate linear functional on ·hr. 

Definition 2.1. [4]: 

The control distribution element b is said to be admissible with 

respect to -q( 1f b can be identified with a conjugate linear functional, 

also denoted by b, for which 
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(ii) for-any initial state x(O) e: 1:1/ and any locally square 

integrable input u, the weak solution x(t) of (2.1) lies 

in Off for each t;> O. 

We note that if -6 e:;;;' in (2.1), then the weak solution coincides with 

the mild solution 

t 

x(t) = ~(t)xO + J ~(t-s)bu(s)ds. 
o 

Since x(t) e: ::Jf- for each t;> 0 [5], b' in this case is admissible. 

(2.3) 

To make (2.2) somewhat more 'constructive, we introduce the sequence 

{~k} of eigenfunctions of ~ with corresponding eigenvalues {~}. We will 

assume that each wk is simple and that {~k} forms a Riesz basis for J¥: 

Definition 2.2 ([7], [11]): 

A sequence {~k} of elements of a Hilbert space is said to form a Riesz 

basis for ~ if the exist constants d,D with 0 < d ( D < ~ such that 

every x e:~ may be expanded uniquely in a series 

with 

x=L~~k' 
k 

(2.4) 

Equivalently ([7], e.g.), a Riesz basis may be thought of as the image of 

an orthonormal basis {ek} of~ under a bounded and boundedly invertible 

transformation ~: 



With every Riesz basis {<I>k} , there is associated a unique "dual" Riesz basis 

{~k} defined by 

* -1 ~k = «(P) e k , 

with the biorthonormality property (~k'~~~ = 5k~. The expansion 

coefficients of x e.JI. with respect to {<I>k} , {~k} are (~k'x), (x,<I>k) 

respectively. 

Let us denote by * the sequence of eigenfunctions of.S4f ; i.e., 

* -r¥ ~k = ~~k· 

Now let ~ = 

Suitably normalized, {~k} is easily seen to be dual to {<I>k}. 

~k in (2.2) and set ~(t) = <~k,x(t» and bk = <~k,b>. Then 

~t t ~(t-s) 
= e xk(O) + bk J e u(s)ds, 

o 
(2.5) 

and hence, weak solutions may be represented as 

with the xk's given by (2.5). If sup IRe ~I <~, admissibility reduces, 

via (2.4), to whether or not, for each t) 0, the sequence 

t ~(t-s) 2 
{bk J e u(s)ds} e ~ , 

o 

for every u e L2(0,t). 

In the course of reducing (2.1) to canonical form, we will carry out 

manipulations similar to those employed in the previous section and which 

involve the expression 

13 
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-',. 

T 
J ~(T-:-s)b u( s )ds. 
o 

The,whole point of the above discussion is that the latter expression may, 

even if b ¢~, be interpreted rigorously if the eigenfunctions {~} of 

form a Riesz basis for:J:I- and b is admissible with respect to ~: 

T ' t ~(t-s) 
J Y( t-s)bu(s )ds :: I (bk J e u(s )ds) 4>k. 
o k 0 

In particular, if, xo 0, we may write 

T 
x(T) = J ~(T-s)bu(s)ds ::~(T)u. 

o 
(2.6) 

This is the analogue of (1.4). Conversely, if x £~, the problem of 

constructing a control u £ L2(0,T) which takes the origin to x at time 

T is characterized by a moment problem: 

or, with x = I 1k4>k' 
k 

Definition 2.3 ([15]): 

.If(T)u x, 

T ~(T-s) 
bk J e u(s)ds = ~. 

o 
(2.7) 

The pair ~b) is said to be approximately, exactly controllable in 

time T if ~(T) : L
2

(0,T) + .):fis densely, boundedly invertible 

respectively. 



Referring to (2.7), it is obvious that approximate controllability 

requires bk * 0 for all k. But controllability also depends upon 
wk • properties of the sequence of exponentials {e }. This paper is concerned 

with a very special class of Jdf's, namely those whose spectrum coincides with 

the zero set {~} of a function having the form 

pew) (2.8) 

It is assumed that ai € lP, i=I,···,m with a * 0, that a(·) € L2(O,T) m 

is real valued, and that 

o < e < ••• < e - T. 
1 m 

Let us write 
T 

a( e)e weT-e) pew) p (00) + J de, 
o 0 

and let {Ok} denote the zero set of the exponential polynomial po. It is 

easy to see that the set {Ok} as well as the set {~} must lie in a 

vertical strip of finite width in the complex plane. It has been shown [1] 

using the argument principle that an infinite number of O's do exist and k 

that the number of ok's in any horizontal strip of fixed height is bounded. 

The prototype in this situation is which has for its set 

It can also be shown [17], [19], using the above 

properties of {Ok} together with the Fourier transform in the complex 
° . 

domain, that the sequence of exponentials {e k} forms a Riesz basis for 

L2(O,T) if, in addition, inf Ip~(Ok)1 > 0. 
k 

The latter condition ensures the 

bounded invertibility of the map ~ discussed after Definition 2.2. One can 

also demonstrate using Rouche's theorem that the sequence {~} of zeros 

of p may be indexed in such a way that {wk - ok} € 12 and that 

15 
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inf I p' (wk ) I > 0 is sufficient to yield the Rieszbasis property for the . 
k wk· 

sequence {e }. We omit the somewhat detailed proof of these statements 

[19] and return to their relationship with the notion of controllability. 

{e~ .} { Let us denote the sequence biorthonormal to by qt(·)}: 

The construction of the sequence {qt(·)} goes back to the work of Paley and 

Wiener [12] and is carried out as follows. One forms the function 

A 

p(W) 
q (w) =----

p , ( ll1c )( w-~ ) 

and notes that qt(wk ) = 0kt' The Paley-Wiener theorem ([12],[13]) then 

asserts that qt is the Laplace transform of a square integrable function 

Thus, qt may be represented via the inverse Laplace transform 

(2.9) 

The sequence so constructed is biorthonormal to since 



However, in the next section, we shall derive an explicit formula for each 

qt without any mention of the Paley-Wiener theory. In effect, the inverse 

transform (2.9) can be computed explicitly in closed form. 

Assuming bk * 0 for any k, we may now invert relationship (2.7) with 

the aid of the sequence {qk(e)}. Indeed, the control 

x
k 

_ 
u(t) = I - q (T-t), 

k bk k 

satisfies (2.7). Here, T is understood to be the quantity appearing in the 

definition (2.8) of p. Thus ~=5f(T) has the properties 

-1 
~ 

~: q (T-e) + h 4> 
k K k 

which will be used throughout the remainder of the paper. 

(2.10 ) 

(2.11) 

We conclude this section with a summary of the various assumptions made 

and a brief discussion of their significance. 

Assumption 2.4: 

(i) ~ generates a strongly-continuous group ~t) 

Hilbert space $. 
t e: R} on a 

(ii) The sequence of eigenfunctions {<I>k} of ~ forms a Riesz basis 

for JI. 
(iii) The eigenvalues {~} of _Q( are the roots of pew) given by (2.8) 

and p'(~) * 0 for any k. 

(iv) The control distribution element b is admissible with respect to 

* -with coefficients ~ = <1jIk,b) * 0 for any k. WlIk = ~1Ik). 

17 
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Since finite linear combinations of the <!>k's are dense in~ the pair 

~b), under the above assumption, is approximately controllable in time T 

(c.f. [15]). If inf /bk / > ° and 
k 

inf /p'(~)/ > 0, exact controllability 
k 

in time T may be established as well [15]. 

Part (iii) of the above assumption essentially limits the scope of our 

results to the class of linear hyperbolic systems described in the 

introduction. For such systems, p'(~) t ° for all k does not hold true in 

general. We make this hypothesis here only to simplify our presentation -

notwithstanding a good dose of tedium, it can be shown by introducing 
. j ~t 

generalized exponentials (i.e., t e ) in the case of multiple roots ~ 

that the canonical form presented in this paper remains valid. 

The case of boundary control (see equation (7), where be: Ji1, does 

correspond to an admissible distribution b ([15], Theorem 3.1) 

and, if no component of b vanishes, approximate conntrollability may be 

established [19]. We do not wish to emphasize the abstract character of the 

above assumptions. However, the development of a canonical form is carried 

out most transparently in this setting. 

3. Reduction to Canonical Form 

In this section, we will derive the transformation which carries the 

system (2) to its canonical form (3), and in order to pursue as closely as 

possible the analogy between the pair (A,b) of the discrete system above 

with the pair ~b) at hand, we will proceed somewhat formally. Assumption 



2.4 will be understood to be in force throughout. We begin .with an analogue 

of the Cayley-Hamilton theory: 

Lemma 3.1: Under (i), (ii), and (iii) of Assumption 2.4, 

T 
yet) + al~(t-61) + ••• + anP'Ct-T) + f oa(6).91(t-6)d6 :: O. 

Proof. Given an arbitrary initial state x = L ~~k €~, the solution to 
k 

~(t) =catx(t) is given formally by x(t) =Y(t)x and concretely by 

Thus 
T 

[.~(t) + a~(t-61) + ••• + amj1(t-T) + fo a(6~t-6)d6]x 

~(t-T) 
= L p (~ ) e ~ ~k = O. 

k 

This completes the proof of the lemma. 

Thus, 

Formally, solutions to ~(t) =~(t) + bu(t) satisfy 

r 
x(t+r) = ~(r)x(t) + f ~(r-s)bu(s)ds. 

o 
(3.1) 

19 
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T 
x(t+T)+ a

l
x(t+T-6 l ) + ••• + amx(t) + J a(6)x(t+T-6)d6 

o 

T 
+ ••• + a ~(t-T) + J a(6)~t-6)d6]x(T) 

m 0 

T-6 
T 1 

+ J ~(T-s )bu( t+s )ds + a l J ~(T-61 -s )bu( t+s )ds 
o 0 

T-6 
m-1 

+ ••• + a 1 J ~(T-6 Cs),bu(t+S)ds 
m- 0 m-

T T-6 
+ J a(6) J ~(T-6-s)bu(t+S)ds d6. 

o 0 

The first term is zero by Lemma 3.1. Changing the inner variable of 

(3.2) 

integration from s to s+6 and then interchanging the order of integration, 

the last term may be written as 

T s 
J ~(T-s)b J a(6)u(t+s-6)d6 ds. 
o 0 

Likewise, 

T-8 
i 

J ~(T-8i -s)bu(t+S)ds 
o 

T 

J ~(T-8i-s)bx[0 T-8 ](s)u(t+s)ds 
o ' i 

T 

JO~(T-s)bX[0,T_8i](s-6i)u(t+S-8i)dS 

T 

J~(T-s)bX[8i,T](S)u(t+S-8i)dS, 

where X[a,b](·) is the characteristic function of the interval [a,b]. The 

right-hand side of (3.2) may now be written as 



T 
J ~(T-s)b (Lu( t+e») (s )ds =.)f,i'u( t+e), 
o 

·22 
where .)f is as before and ..-It: L (O,T) + L (O,T) is the transformation 

defined by 

+ eee 

Equation (3.2) now reads 

T 
x(t+T) + a

1
x(t+T-S

1
) + ••• + amx(t) + J a(S)x(t+T-S)dS =~~u(t+e) •. 

o 

Equations (3.3) and (3.4) should be compared with (1.6) and (1.7) 

(3.3) 

(3.4) 

respectively. To proceed further, the nature of the transformation../t must 

be analyzed. 

Lemma 3.2: 

(i) ../t is bounded and boundedly invertible. 

(ii) If g € L2(O,T) with .supp(g)C [T-S,T] for some S € (O,T), then 

supp~-lg)c: [T-S,T} as well. 

Proof: That ~ is bounded is clear from (3.3). Referring to the 

latter, let us write 

with UZy)(s)-
s 

J a(S)y(s-S)dS. 
o 

A standard theorem from integral 

21 
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equations [8] yields the fact that ~_AVz)-1 exists and is bounded with 

co 

= Y+ I A"~ 
k=1 

I i il bli h d h I A/) d h (''1Jf.:-_ A
2
,,)-l g ) -_ [T-e,T] t seas y esta set at sUPPvf2g an ence ~J~ -

if supp(g): [T-e,T]. Horeover, J1f is nilpotent since 

supp(A';g) S [T-e+e 1 ,T] if supp(g) ~ [T-e,T]. 

nilpotent and 

= r;;r- ~)-I(y_ fP-..£)-~)-1 
2 2 1 

(7- '12)-I(f+ I (U'-fz)-~)k), 
k=1 

for some n < co, which shows that At-I is bounded and satisfies (ii). This 

completes the proof. 

We remark that part (ii) of Lemma 3.2 is the analogue of the fact that 

span{e ••• e } 
n-p' 'n is invariant under the matrix discussed in Section 

1. We next Fourier analyze the action of .../{ on the exponentials 
~. 

e : 

Lemma 3.3: p(w)/(w-~). 

Proof: In forming the expression on the left, we find terms of the form 

J
T w(T-s) wk(s-Bi ) 

e X[e T] (s)e ds, 
o i' 

and the term 

I
T ~(T-s) s ~(s-B) 

e J a(B)e dB ds. 
o 0 
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Standard manipulations reduce the. former to 

w(T-6 i) '\ (T-6 i) 
e - e 

and the latter to 

T w(T-6) ~(T-6) 

J a (6) _e __ ~---,e ___ d6. 
o W - wk 

It follows that 

T (T ) ~ • wT ~ T W(T-61 ) ~ (T-61 ) J e
W 

-s Mfe )(s)ds = [e - e + a
1

(e - e ) 
o 

+ ••• 
w(T-6 1) ~ (T-6 1) 

( m- K m-) + am- 1 e - e 

T wet-e) ~(T-6) 
+ J a(6)(e - e )de]/(w-wk ) 

o 

since wk is a zero of p. This completes the proof. 

Recall that the basis 
~. 2 

{e } c:: L (0, T) has a unique biorthonormal 

sequence which we denote by {qk(·)} C L
2(0,T). The key property which A( 

possesses is the following: 

Lemma 3.4: 
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Proof: According to Lemma 3.3, 

T w.(T-s) ~. 
f e J ~e )(s)ds 
o 

Since the sequence {q .(T-·)} is biorthonormal to 
J 

w (T-·) 
{e j } and unique, we 

conclude that 
~. 

f/te )(s) 

which completes the proof. 

Remark: 

The preceding lemma allows us to construct the biorthonormal sequence 

explicitly: 

qk(s) 

Under Assumption 2.4, (iv), the map ~ possesses a densely defined 

inverse 5f-1 (see (2.11». If x(·) is a solution of ~ =~ + bu with 

sufficiently regular initial state Xo and input u(·), we may define 

Let us assume that n is defined for every t and s. Then 

Lemma 3.5: net,s) is a function of s+t. 

(3.5) 

Proof: Suppose p+s = r < T. We wish to show that n(t,r) = n(t+p,s). 

According to (3.5), 



"n(t,r) = ~-~-1x(t+T»)(r). 

If we let x(t+T) = 2 ~(t+T)~k and use (2.11) and Lemma 3.4, we have 
k 

Likewise, 

Since 
,\p p '\ (p-e) 

~(t+P+T) = e ~(t+T) + ~ J e u(t+e+T)de, 
o 

we have 
1 P ~(p-e) ~s 

n(t+p,s) - n(t,r) = 2 (p'(~)- J e u(t+e+T)de)e. 
k 0 

If we change the variable of integration via p-e = T-T and invoke Lemma 3.4, 

the right-hand side becomes 

__ (/r1 \' JT ~(T-T) _) 
~ L e u(t+p+T)dT qk(T-e) (s). 

k T-p 

But the function on which ~-1 operates is nothing but X[T-p,T] (·)u(t+p+e) 

expanded in terms of the sequence {qk(T-e)}. Hence 

Clearly, supp(g) c:: [T-p,T], and since 0 <; p+s = r < T implies s E [O,T-p], 

25 
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we conclude from Lemma 3.2 that ~1g)(s) O. Thus, n(t+p,s) = n(t,r). 

This completes the proof. 

Lemma 3.5 may be shown to hold true in the case where n(t,·) is merely 

a square-integrable function for each t by approximating everything with 

continuous functions and then passing to the limit. We may now define the 

scalar variable 

We conclude this section with 

Theorem 3.6: Under Assumption (2.4), the variable y defined by 

(3.6) satisfies the functional equation 

T 
yet) + a

1
y(t-8

1
) + ••• + a y(t-T) + J a(8)y(t-8)d8 = u(t). 

. m 0 

Proof: Apply ~-~-1 on the left to both sides of (3.4). 

4. Spectral Synthesis 

Let us first examine how continuous state feedback 

u(t) (O,x(t) 
J:I-

(3.6) 

(3.7) 

in the original system (2.1) manifests itself. in the canonical system (3.7). 

Let ,0. have the expansion 



6 = L fj1/Jj , 
j 

where {1/J j} denotes the sequence of eigenfunctions 

y(t+· ) have the expansions 

Referring to (3.6), we have 

Thus, 

x(t) = I ~(t)~k 
k 

w • 
y(t+o ) = L Yk(t)e k • 

k 

Again denoting the sequence biorthonormal to 

hand side of the last equation may be written as 

. By (4.1), 

* of s¥ • Let x(t) 

by 

If we change the variable of integration via s = T - 8 and define 

g(8) - I f.b .P'(w.)q.(T-8), 
j J J J J 
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and 

(4.1) 

(4.2) 
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we obtain 
T 

u(t) J g(6)y(t-6)d6. 
·0 

The resulting closed-loop canonical system is simply 

T 
y(t) + a1y(t-S 1) + ••• + amy(t-T) + J

o
(a(6)-g(6))y(t-6)d6 = O. 

Thus, the eigenvalues of the closed-loop system 

are roots of 

x(t) = (Jdif + b ® 6 )x(t) 

T 
P (w) P (w) + J (a(6) - g(6))e W(T-6)dS. 
goo 

(4.3) 

(4.4) 

.... 
As' we have already mentioned. in Section 2, one can show using Rouche's 

theorem that the sequence {"k} of roots of Pg differs from the sequence 

{<1
k

} of roots of Po in the sense that {"k - <1k } E R. 
2

• This' suggests that 

any sequence {"k} with this property can be synthesized with a certain 

feedback gain 6 EJk 

Lemma 4.1: If {"k} is a sequence of distinct complex numbers for 

which {"k- <1k} E R.2~ then there exists a unique c(·) E L2(0,T) for which 

the zero set of 
T 

J. w(T-6)· p (w) :: p (w) + c(6)e d6 
coO 

coincides with {"k}. 



Proof: c is characterized by the moment problem 

==) 

Using the properties of the exponential polynomial Po discussed in Section 2 

together with the assumption that {Vk - Ok} e ~2, it is readily established 

2 that {po(V
k

)} e ~. Horeover, it has been shown [17] that the sequence 

v • 
{e k} forms a basis for L2(O,T). Denoting the sequence biorthonormal to 

v • 
{e k} by {~(.)}, the unique solution to the above moment problem is given 

by 

which completes the proof. 

We now come to our main theorem. 

Theorem 4.2: Let {~} be any sequence of distinct complex numbers 

for which 

and let Assumption 2.4 hold true. Then there exists a unique 6 e-Y for which 

the spectrum of ~+ b ® 6 coincides with {~}. 

Proof. By Lemma 4.1, we may express the desired closed-loop 

characteristic function uniquely as 

T 
P (w) + J c(e)eW(T-e)de. 

o 0 

Referring to (4.2) and (4.4), the desired feedback gain element 

29 
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must be such that 

T 
P (w) :: P (w) + J (a(8) - g(8»)e

W
(T-8)d8 = p (w), 

goo c 

or g a-c. Let a and c have the expansions 

a(·) = L a q (T-·) 
k k k 

c(e) = L c q (T-e). 
k k k 

Referring to (4.2), we must have 

or 

This should be compared with (1.11). It remains only to show that our 

(4.5) 

hypotheses ensure that {fk } £ ~2. The expansion coefficients ak and ck 

are given by 

T ~ (T-8) 
J a(8)e d8 
o 

T ~(T-8) 
J c(8)e d8 
o 



Thus, by the intermediate value theorem, 

A 

-PC(Vk) - P~(Vk)(~-Vk) = P~(Vk)(Vk-~)' 

for some Vk on the line segment connecting ~ and ~. 

suplp~(Vk)1 < =, we conclude that 
k 

Since 

just in case 

This completes the proof. 

For linear hyperbolic systems of the type described in the introduction, 

Jdf is the real operator 

d .s:t' = A(x) dx + A(x), 

with domain 

where is the Sobolev space of square integrable ¢2n_va l ued functions 

possessing a square integrable derivative. As such the eigenfunctions of J4f 

as well as those of N* will have the property that <h. = <I> • 
'k -k Likewise, if 

is a sequence of complex numbers with Vk = v~k' then any biorthogonal 
v • 

set of functions . {e k } associated with the exporientials will have 

the property that ~ = h_k • Thus, for any such sequence {~} satisfying 

the hypothesis of Lemma 4.1, the function c(·) will be real-valued with 

expansion coefficients satisfying ~ = c_k , and hence the feedback gain 

element 
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constructed above will have each of its 2n component functions real valued. 

We conclude this section with a brief discussion of how to use the above 

theory to construct a feedback gain which shifts a finite number of 

eigenvalues. Suppose we wish to shift to 

desired closed-loop characteristic function is thus 

where o(w) 
n 
IT (w-"k) 

k=l 

n 
and 8(w) = IT (w-w

k
). 

k=l 
Thus 

p (w) 
c 

peW) + o(w) - 8(w) pew). 
sew) 

v ••• v l' 'n· 

Since the degree of 0 - 8 is strictly less than n, (0-8)/B "admits a 
.,. 

partial fractions decomposition 

According to Lemma 3.3, 

Thus 

p (w) 
c 

By Lemma 3.4, this is 

o(w) - 8(w) n 
I) 

pew) 
w - wk 

= 8(w) /.. 

k=l 

T w· 
J ~e k )(S)eW(T-S)dS. 
o 

The 

(4.6) 



p (W) 
C 

T 
p(w) + J 

o 

T 
= p(w) + J c(S)eW(T-e)dS. 

o 

Thus, the desired expansion coefficients of c are given simply by 

c
k 

= rkP'(wk), with the residues rk being determined by (4.6). 

5. Concluding Remarks 

In this paper, we have demonstrated precisely to what extent the 

eigenvalues associated with a controllable pair ~b) of a certain type may 

be modified via continous linear state feedback. Our results parallel those 

of Russell [14] for the case m = 1 as explained in the introduction. Our 

main contributions here include a more detailed analysis of the canonical 

transformation and a direct method for computing feedback gains in the case of 

shifting a finite number of eigenvalues. All of this requires, of course, a 

rather detailed knowledge of the spectral structure of ~ In practice, one 

can only obtain this information approximately by numerical computation. In 

this regard, our results might prove useful in providing exact solutions in 

special cases which could then be used to determine the accuracy of numerical 

computations in more general cases. It should be pointed out that it is 

unrealistic to assume the availability of state feeback in systems of the type 

discussed in this paper. Nevertheless, we feel that the results herein 

obtained should play a role in the development of an observer or asymptotic 

state estimator theory for such systems. 
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