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ABSTRACT 

We study the Lax-Friedrichs scheme, approximating the scalar, genuinely 

nonlinear conservation law ut + fx(u) = 0, where feu) is, say, strictly 

convex, f ) ~* > O. We show that the divided differences of the numerical 

solution at time t do not exceed This one-sided Lipschitz 

boundedness is in complete agreement with the corresponding estimate one has 

in the differential case; in particular, it is independent of the initial 

amplitude in sharp contrast to linear problems. It guarantees the entropy 

compactness of the scheme in this case, as well as providing a guantitive 

insight into the large-time behavior of the numerical computation. 
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Introduction 

We study monotonicity preserving schemes of the 3-point conservative form 

(1.1 ) 

serving as consistent approximations to the scalar conservation law 

(1.2a) au +.E.!. ( ) at (x, t) ax u(x, t) o 

and subject to the initial data 

(1.2b) 
1 co 

u (x, 0) e: L n L n BV. 

Here, vv(t) = v(xv,t) is denoting the approximation value at the gridpoint 

(x = v~x,t), k and ~x are, respectively, the time-step and mesh size such v 

that the mesh ratio A = k/~x is being kept fixed, and h(',') is the 

Lipschitz continuous numerical flux consistent with the differential 

one, h(v,v) = f(v). 

Studying conservative difference approximations to (1.2), one aims at 

having 

(i) compactness 

(ii) entropy condition. 

By compactness we merely mean the compactness of the family of solutions 

A standard tool being used in that 

direction, e.g., [1], [3], [6], [11], is to guarantee that the total variation 

TV[v(t») = L Ivv+1 (t)-vv(t)I 
v 

co 
remains bounded in time, ve: L (BV, [O,T): 

since the mean value vet) = L vv(t)~x is independent of t, it then follows 
v 
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that ~(1 ~ ) v e: L L () L ,[0, T] ; a classical argument which involves Helly's 

theorem, the diagonal process and Lipschitz continuity of /v(-,t)/ l' 
L 

implies 1 
Ll -compactness. oc 

By compactness there follows the existence of a 

subsequence L1- limit solution v(x,t), v(x,t) = lim vv(t;~x'), 
x=vllx' ,1Ix'+0 

O(t(T, satisfying (1.2) in the weak sense. In Section 2 we show that 3-

point monotonicity preserving schemes are exactly those whose total variation 

does not increase in time; in particular, therefore, they admit a limit-weak 

solution. 

It is well known that independently of the initial smoothness, weak 

solutions of (1.2) are, in general, not unique. By the entropy condition, we 

refer to a variety of criteria which single out the so-called physically 

relevant solution, thus guaranteeing uniqueness: geometrically they require 

characteristics to propagate toward shocks; analytically they indicate the 

existence of vanishing viscosity. In the case f is convex, for example, 

they amount to Oleinik's (E) condition requiring uleft > Uright across shock 

discontinuities. A standard way being used to verify the entropy condition, 

e.g., [1], [7], [13], is by constructing a discrete entropy pair satisfying an 

entropy inequality. Unfortunately, the limit solutions of monotonicity 

preserving schemes are not necessarily the physically relevant ones 

examples of limit solutions violating the entropy condition in this case, are 

well known (e.g., Example 2.4 below). 

Monotone schemes -- those for which the RHS of (1.1) is non-decreasing in 

each of its v-arguments -- is by now a classical example for a subclass of 

monotonicity preserving schemes, capturing both the compactness and the 

entropy requirements. This has been shown by successfully implementing ideas 

along the above lines, e.g. [1], [7], [13]. Recently, Osher [13] introduces, 

for the method of lines, a general E class of monotonicity preserving schemes 

\ 



enjoying both properties of entropy satisfying compactness. 

Identifying 3-point conservative scheme according to their numerical 

viscosity coefficient [6], we arrive at Section 2, to the following concise 

characterizations: while monotonicity preserving schemes (compactness) are 

exactly those having numerical dissipation no more than Lax-Friedrichs (LF) 

scheme, no less than Courant-Isaacson-Rees scheme, entropy satisfying schemes 

are those further restricted by having no less dissipation than Godunov's 

scheme; the latter is, in fact, the fully discrete analogue of Osher's E 

schemes. 

In both cases, the LF scheme plays a special role as the one having the 

most allowable numerical dissiptation. In Section 3 we begin studying the LF 

scheme in the genuinely nonlinear case where f is, say, strictly convex, 
• 1 
a* = Min f(v) > O. We show that the following one-sided Lipschitz condition 

holds 

(L) 

The one-sided Lipschitz bound is in complete agreement with the corresponding 

estimate one has in the differential case [10, Theorem 3.1]. In particular, 

it is independent of the initial amplitude; this is in sharp contrast to the 

situation in the linear problem. Estimate (L) guarantees both compactness and 

the entropy condition as well as providing quantitive insight into the 

behavior of the numerical solution. In Section 4 we conclude, in verifying 

the (L) estimate for LF scheme when the CFL condition is replaced by the 

weaker monotonicity preserving requirement. 

1Here and elsewhere in the paper, 
stands for f(v). 

denotes differentiation and a(v) 

3 
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To motivate (L), one differentiate (1.2) to find that along any 

characteristic ~~ = a(u(x,t») we have d • 2 dt (ux ) = -a(ux) ; the latter 

equation is dominated by the characteristic ODE 

dw • 2 
dt = -a*w , w w(t). 

For the last ODE one has 
1 

w(t) (---. ; since physically relevant solutions of 

ta* 
(1.2) are exactly those whose characteristics can be drawn backward to the 

initial line t = 0, we conclude that u x 
( _1_ . (weakly), which is the 

ta* 

differential analogue of having (L) • Interestingly, the very same equation 

which rules out the existence of (long-time) strong solutions, e.g. [8], [9], 

can be used to show the existence of a physically relevant weak one. 

(Alternatively, the following simpler geometric argument prevails: the 

straight characteristics issued backward from (x1,t) and (x2,t) meet the 

ini tial line t = 0, at ta(u(x2,t» and 

respectively; the requirement for these characteristics not to intersect 

yields, after little rearrangement 

) 

We close by saying that most likely the one-sided (L) condition holds for 

other schemes those in the E class are, of course, natural candidates. If 

shown, (L) will provide, in the genuinely nonlinear case, a unified 

alternative to the standard total variation boundedness/entropy inequality 

approach, in showing the entropy satisfying compactness. 



2. Three-Point MOnotonicity Preserving Schemes 

We start by considering 3-point schemes in an increment form 

(Z.la) 

where 

(Z.lb) 

C- If /::"v l' v- Z v-

Having the scheme in such increment form is not a restriction. 

have 

Lemma 2.1 

In fact we 

Every 3-point conservative scheme (1.1). can be written in an increment 

form (Z.l). Conversely. any 3-point increment scheme is conservative provided 

the following consistency requirement 

(Z. Z) 
Mv 

C- C+ -, 
1 - 1L = 1\ /::"v v+ /z v+ IZ V 

holds. 

Proof: We follow Harten [5, Section 11.3]. Suppose (Z.l) admits a 

consistent conservative form; equating the RHS of (Z.la) and (1.1) we obtain 

(for simplicity, we drop the time dependence) 

C+ /::"v - C 1 /::"v 
v+ liz v v- /Z v-I 

Setting vV_1 Vv gives 

5 
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(2.3a) 

while putting Vv = vv+I' implies 

(2.3b) 

Thus, the incremental coefficients are necessarily those given in (2.3). We 

note that using (2.3), the consistency condition h(v,v) = f(v) amounts to 

having (2.2). 

Now, suppose (2.2) holds and define the consistent numerical flux 

(2.4a) 

Making use of (2.2) we find 

(2.4bv_
I

) 

which puts the RHS of (2.Ia) in the consistent conservative form (1.1), thus 

completing the proof. 

An essential property characterizing the scalar diff erential solution 

operator, which is highly desirable to be retained in the discrete framework 

as well, is preserving monotone profiles. We have 

Lemma 2.2 

Three-point monotonicity preserving schemes are exactly those whose total 

variation is non-increasing. They are characterized by the set of 
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inequalities 

(2.5) 

Proof: Differencing (2.1a) we obtain 

(2.6) 

0, we find 

By monotonicity preserving, the sign of ~vv(t+k) must agree with that of 

should be non-negative for 

The other inequalities in (2.5) follow likewise by 

setting ~vv_l (t) = ~vv+l(t) = 0 and ~vv(t) = ~vV+l(t) = o. 

Next, we follow Harten [6] in showing that (2.4) implies the non-increase 

in total variation; summing (2.6), we obtain 

+ L I (1 - C + 1 - C + If) I I ~v ( t) I + Lie - If I I ~v 1 (t) I . 
v v+ 12 v+ 2 v v v- 2 v-

Re-indexing the first and third summations we find, on account of (2.4), that 

the RHS does not exceed 
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Since, on the other hand, non-increasing total variation implies monotonicity 

preserving [6], there follows the equivalence between the two and their 

characterization by (2.4). 

The consistency requirement (2.2) shows that there is only one degree of 

freedom in setting up the recipe of 3-point conservative scheme; letting 

(2.7) 

then by averaging (2.4av) and (2.4bv) we have 

(2.8) 

The scheme (1.1) then recast into the form 

which reveals the role Q plays as the numerical viscosity coefficient [6]. 

Noting, that according to (2.2) 

(2.10) 
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We conclude 

Corollary 2.3 

A 3-point conservative scheme (2.9) is monotonicity preserving and total 

variation non-increasing, if and only if, its numerical viscosity coefficient, 

Qv+ 1/
2

, satisfies 

(2.11) 
Mv 

A 1..--1 .. Q".L 1/
2

" 1. uv vr v 

We turn now to consider few examples. 

EXAMPLE 2.4 : Murman's scheme [12] is the nonlinear generalization of the 

upwind Courant-Isaacson-Rees (CIR) scheme 

(2.12a) 

where 

M 

S~l/z =[ 
~< 0 !J.v v 

(2.12a') 
M 
_v) 0 !J.vv 

Noting that its incremental form (2.1a) amount 

to 

(2.12b) 
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and it admits the consistent conservative form (1.1) with 

(2.l2c) 

Its numerical viscosity coefficient is given by 

(2.l2d) 

and hence it meets the monotonicity preserving requirement (2.11) provided the 
Mv 

CFL-like condition A sup I~v I (1 is fulfilled. If this is the case, then 
v v 

by Lemma 2.2 and the previously argued compactness,· the scheme admits a limit 

solution v(x,t) = lim vv(t;~x'). It is well known that this limit 
x=v~x',~x'+O 

solution nevertheless may turn out to be a physically irrelevant one as shown, 

for example, by choosing initial data vv(t=O) = sign(V- l l2): with feu) = u2 , 

the scheme admits this initial discontinuity as an "expansive shock" steady 

state solution rather than dissolving it as a rarefaction, the reason being 

its lacking of (i.e., zero) dissipation in this case. 

EXAMPLE 2.5: Godunov's scheme [4] is determined by the numerical flux 

(2.l3a) 

where uR(x,t) is the solution of the Riemann problem (1.1) with initial data 

(2.l3a') 



Consider, for simplicity, the convex case, f > 0.· Except for the sonic 

rarefaction case, uR(xw- 1/2 ,k) takes the value of either vW-l or vv; 

-1 
(2.8), A Qw- 1/2 11vv equals the difference between the sum fv + fW-l 

by 

and 

twice the numerical flux h(vv,vv+l)· 

coefficient in this case is given by 

Hence the numerical viscosity 

fW-l - 2f(v) + fv 
A----,,----__ 

llvv 

• 

otherwise 

We remark that in the general nonconvex case, one has due to Osher [13, 

Godunov's scheme boils down to 

i.e. , 

(2.13b') 
fV+l + f -

A Max 
v 

llv 

QG, W- 1/2 = 
v 

M 
A 1.-':1 

llvv 

A times 

2f(v) 

where 

viscosity coefficient of 

fW-l + fv - 2f(v) 

llv v 

if a(v) vanishes, min max 
vw- 1/2 .- v .- vw- 1/2 

min max 
if a(v) '" 0, vw- 1h .- v .- vw- 1h 

Thus, Godunov deviates from crR scheme exactly where the latter fails - it 

introduces nonzero dissipation in the sonic rarefaction case. 

EXAMPLE 2.6: The Engquist-osher (EO) scheme [2] is having numerical flux 

11 
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(2.14a) 

.. 
and hence its numerical dissipation coefficient in the convex case f > 0, is 

given by 

(2.14b) 

v"+1 
Q 1 = A _1_ J If(v)ldv = 

EO ,v+ {2 llv" 
v" 

fV+l - 2f(v) + f" 
A 

Illv" I 

llf" 
A Illv I 

" 

• 

otherwise 

Thus, it deviates from eIR scheme in the sonic case, introducing even more 

dissipation than Godunov does in the sonic shock case - in fact, it treats 

the latter case, a(v,,) > 0 > a(vv+l) as a "compressive rarefaction." 

EXAMPLE 2.7: The Lax-Friedrichs (LF) scheme is given by 

(2.15a) 

Its incremental coefficients, numerical flux and numerical viscosity 

coefficient are given respectively by 

(2.15b) 

(2.15c) 

(2.15d) QLF v+ 1/ :: 1. , 2 



Thus, the LF scheme is monotonicity preserving provided the CFL-like condition 

M 
A sup I~I <: 1 is met, and hence admitting a limit solution in this case; 

" I'J.v" 

interestingly as we shall see later on, this solution still may be the 

physically irrelevant one. Only upon strengthening the CFL condition, 

A sup la(v)1 <: 1, will we get the desired convergence due to the scheme 
v 

monotonicity, as is the case with Godunov and EO schemes. 

In view of the above examples, we see that the CIR and L1 schemes have, 

respectively, the least and the most numerical dissipation allowed under the 

monotonicity preserving requirement, as (2.11), (2.12d), and (2.15d) read 

Corollary 2.8 

A 3-point scheme is monotonicity preserving if. and only if, its 

numerical viscosity coefficient, Q,,+lh ,satisfies 

(2.16) 

In [13], Osher introduces, for the method of lines, a class of E schemes 

which according to our terminology can be interpreted as exactly those having 

no less numerical dissipation than Godunov's; Osher showed that such E schemes 

satisfy the entropy condition. Carrying on his ideas to the fully discrete 

case we formulate though not prove 

Corollary 2.9 

A 3-point scheme is monotonicity preserving (compactness) and entropy 

satisfying if its numerical viscosity coefficient is further restricted by 

13 
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(2.17) 

Finally, we note that all the above mentioned schemes are first order 

accurate. This is not a coincidence, since generically we have 

Lemma 2.10 

Any 3-point monotonicity preserving scheme is of first order accuracy. 

Proof: The truncation error for smooth solution u of (1.2a), is given, 

modulo third order terms, by 

(~t)2 2 2 
2 [{Q(u,u) - A a (u)}u] • x x 

By Corollary 2.3, A!a(u)! ( Q(u,u) ( 1, which implies that the coefficient 

inside the inner curly brackets is non-negative 

indeed, unless 
~f 

A! ___ V! = 1 where the scheme reduces to the trivial nongeneric 
~vv 

case of pure translation, strict inequalities hold, excluding more than first 

order accuracy. We remark that an alternative proof can be given by the same 

argument used to show first order accuracy for monotone schemes: the first 

two inequality characterizing monotonicity preserving in (2.5) express 

according to (2.3), the fact that while setting v = v v-I 

of (1.1), H(vv_l,vv,vv+l)' is nondecreasing in its first and third arguments; 

the third inequality in (2.5) implies that the partial derivatives w.r.t. to 



these arguments are non-negative; noting that the dependence on the second 

argument is not as essential, the result follows along the lines of [7]. 

3. Time-Decay in the Genuinely Nonlinear LF Scheme 

The Lax-Friedrichs scheme 

(3.1) 

is essentially a staggered-type scheme. To simplify the notations we 
~ 

introduce the staggered differencing operator 6 = 6(26x) and correspondingly 

D = _1_ 6- D (t) 
26x ' v 

~ 

abbreviates Dvv(t), D(t) = sup Dv(t). 
v 

We are interested in the time decay of the numerical solution vv(t) in 

the genuinely nonlinear case, i.e., when a(v) '" 0 for all 

f(v) is strictly convex 

Theorem 3.1 

. . 
a* = Min a(v) > O. 

v 

Consider the LF scheme (3.1) under the CFL condition 

(3.2) A sup !a(vv(t)! ( 1. 
v 

Then, for arbitrary d, d > 1, we have 

(3.3) D(t) ( Max [ 2 • 't!k dk D(t=O)]. 
(t+dk)a* 

v, say when 

15 
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Proof: By induction, starting with t = 0 where the second term inside the 

maximum brackets is reduced to D(t=O). The general step follows by showing 

(3.4) "'" dA 
D(t) ~ t + dk M, M = Max[--?- , ~xD(t=O)]. 

dAa* 

Differencing (3.1) gives 

(3.5) 

By the strict convexity of f 

. . 
(3.6) 

"'" a* "'" 2 "'" "'" a* "'" 2 
a(vv)~vv +-z I~vvl ~ ~fv ~ a(vV+2)~vv - -z I~vvl • 

The RHS inequality follows by second order Taylor expansion around vv+2; the 

LHS, around vv. Inserted into (3.5), (3.6) yields 

or, often division by 2~x 

(3.7) 

The CFL condition implies that the sum of the first two terms on the right 

does not exceed Max [Dv+1 
(t) ,Dv_l (t) ]; the sum of the two terms inside the 

last brackets on the right is not less than MaX[Dv+1(t),Dv_1 (t)]2. Hence, 
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(3.8) 

We distinguish between two cases: 

(i) Assume The quadratic z(l-Yz) is monotonic 

increasing as long as z < 1/2y. This is the case with the RHS of (3.8) 

viewed as such quadratic in z = Max[Dv+1(t),Dv_1(t)] 
k;* 

with Y = --2-' since by 

assumption 

Thus increasing the RHS of (3.8) by replacing Max[Dv+
1
(t),Dv_

1
(t)] with its 

assumed upper bound dA 
t + dk M, we find 

Since, by definition, M is greater than 2, the brackets on the right do 
dA;* 

not exceed 1 - t +kdk ' and the last inequality yields 

dA ( k) dA 
Dv(t+k) ( t + dk M 1 - t + dk < t + k + dk M. 

(ii) The quadratic z(l - Yz) has a maximal value 

1 4y. Viewing the RHS of (3.8) as such a quadratic in 

k~* 
y = -z ' it does not exceed a maximal value of 

(recall, d > 1) 
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DV(t+k) .. _1_ .. t + dk 
2k~* ~*(t+k+dk) 

dA 
- -:-t-+~k"-:+--:dk;-

t + dk dA 
~--:;;~ .. t + k +dk M. 
~*dA 

This completes the proof. 

We remark that (3.2) requires verification of the CFL condition 

A sup la(v)1 .. 1, only at the gridva1ues In the next section we 
t:.f v 

A sup I~v I .. 1 due 
v v 

v 
discuss the situation when the weaker CFL-like condition 

to monotonicity preserving holds. We pause here to discuss a few .implications 

of Theorem 3.1, excluding the rarefaction-free trivial case where by (3.7) 

D(t=O) .. 0 implies D(t)" 0 later on. 

The one-sided Lipschitz estimate (3.3) involves a free parameter d, 

d > 1 which can be chosen so as to minimize the Lipschitz bound. 

2 Choosing d = , see Figure 3-1, we conclude 
~*D(t=O) 

2 

D(t=O) 

kD(t=O) 
t + k 

------~--~------------~~~============~==~~~ d 

d = 1 d _--.-;2~_ > 1 

k;*D(t=O) 

Figure 3-1 

2 



Corollary 3.2 

Assume the CFL condition (3.2) holds. Then, the LF scheme (3.1) 

satisfies 

(3.9) 
vv+1(t) - vV_1(t) 

sup ----2~!!.~x---- <: 
v 

Proof: We have to verify that the above choice of d is admissible, i.e., 

that 2 d = -.-=--- > 1, or 4 Indeed, CFL condition (3.2) 
ka*D(t=O) 

implies 

A~* sup ~vv(t=O) <: A sup ~a(vv(t=O») <: 2A sup la(vv(t=O»)I < 4. 
v v v 

To draw global estimates from the one-sided Lipschitz condition (3.9), we 

have due to the staggered nature of the LF scheme -- to distinguish between 

the even and odd numbered gridvalues 

under the CFL assumption of Corollary 3.2, (3.9) amounts to 

(3.10) !!.v~(t) <: 4~x 
ta* 

4!!.x !!.v" (t) <: 
v • ta* 

Given a grid function w = {w), its increasing (similarily decreasing) 

variation, Tv+[w) (similarily TV-[w) is defined by 

TV%[w) = ± L !!.wv • 
±!!.wv>O 

19 
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Thus, we have 

(3.11a) + -TV[w) = TV [w) + TV [w), 

while, when restricted to the interval [X_m'Xm), 

(3.11b) 

In particular, (3.11a), (3.11b) imply 

(3.11c) TV[w)l[x ,x) 
_m m 

According to this terminology, (3.10) yields 

llw v = w(x ) - w(x ). m _m 

(3.12) I 4L'lx .. 2 supp [v(t») 
L'lv~(t»O ta* 

and similarly for V"(t). 

Consider now the Cauchy problem (1.2). There are two cases: 

(i) The periodic problem. Let P be the period. Depending on whether 

it consists of an even or odd number of grid points, say even, we have by 

(3.1), that the increasing variation of v' (t) does 2P not exceed --.-; because 
ta* 

of its periodicity, (3.llc) imply that v'(t) has a total variation which 

equals twice its increasing one. Hence 

(3.13) TV[v'(t») .. 4P 
t Min ;(v'(t») 

Thus, the total variation of v'(t) per period tends to zero as t tends to 



-1 infinity in an inverse linear rate, "t • In particular, since the mean 

value of v' (t), v' (t), is conserved in time, we conclude that for t large 

enough 

(3.14) - 2P 
suplv~(t) - v'(t=O)1 ( 

v t;(v' (t=O)) 

The last two estimates are -- apart from the unessential factor of two -- in 

complete agreement with the corresponding estimates one has in the 

differential case [10, Theorem 4.3]. 

(ii) The pure Cauchy problem. Suppose the initial data v(x=xv,t=O) 

are supported in a finite interval of length L. Applying (3.11c) over the 

support of v'(t), we find that its total variation equals twice its 

increasing one; using (3.12) to bound the latter we conclude 

(3.15) TV[v'(t)] (~supp[v(t)]. 
ta* 

In the differential case, the solution support at time t 

[10, Section 4], and (3.15) implies a total variation decay 

expands like 

-liz .$ t • 

1/2 t , 

In the 

discrete case, the support of vet) does not exceed L + 2A-1t and hence 

(3.16) 

showing the boundedness of the total variation. We remark that in both the 

periodic and pure Cauchy problems, similar estimates like those derived above 

hold for v"(t) as well, since the difference between its end values, 

according to the above v' -estimates, is uniformly bounded. Therefore, in 

either case, we end up with a bound on the total variation which shows that 

21 
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the one-sided Lipschitz condition (3.9) guarantees the desired compactness, 

which in turn leads to the existence of a limit solution 

v(x,t) = 1 im vv(t;~x'). It also implies the entropy condition: 
x=v~x",~x'+O 

taking the limit ~x + 0 in (3.9), it follows that vleft > Vright across 

discontinuities. Thus, v(x,t) = lim vv(t,~x) is the unique, 
x=v~x,~x+O 

physically relevant solution of (1.2). The desired convergence of LF scheme 

is, of course, well known. The point made here was to show that by virtue of 

the one-sided Lipschitz condition (3.9), one can deduce both the entropy 

satisfying convergence as well as quantitive insight into the large time 

behavior of the numerical solution. 

4. Time Decay in the Genuinely Nonlinear LF Scheme (cont'd.) 

In this section we continue our discussion on the time-decay of the LF 

scheme 

(4.1 ) 

in the genuinely nonlinear case, say, strictly convex 

. 
case, a = 

* 
Min a(v) > 0, restricted by the weaker CFL-like condition 

~fv 
v 

A sup I~v I ( 1, due to monotonicity preserving. 
v v 

Theorem 4.1 

Let d, d > 1 be arbitrary and consider the LF scheme (4.1) under the 

CFL-like condition 



If 
(4.2) A 1_. vI <; ~ + k(d-l) sup ._ + k(d+!) 

v !J.vv 

Then (3.3) holds, i.e., 

"" [2 dk "" ] (4.3) D (t) <; Max .' t + dk D (t=O) • 
(t+dk)a* 

Proof: We repeat the induction step in proving (3.4) from Theorem 3.1. 

Differencing (4.1) we find, as before, 

(4.4) 

By the mean value theorem 

(4.5) 

Inserted into (4.4), one reads 

"" (4.6a) !J.vv(t+k) 

or, after division by 2!J.x 

(4.6b) 

We distinguish between three cases: 

(i) The shock-rarefaction interaction case: Assume 

If Dv+1(t) > 0 then Dv_1(t) < 0 and from (4.6b) 
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..... 1 - Aa(vV+l) ..... 
Dv(t+k) ~ 2 D(t), while if DV_l (t) > 0, then DV+l (t) < 0 and 

from (4.6b), 
..... 1 + Aa(~V_l) ~ 
Dv(t+k) ~ 2 D(t). In either case, (4.2) implies 

..... I+Ala(~V±I)I""' ... 1 t+k(d-l») dA 
Dv(t+k) ~ 2 D(t) ~ 2 (1 + t + k(d+l) t + dk M = dA M. 

t + k + dk 

(ii) The shock case. Then by (4.6b) 

..... dA 
Dv(t+k) ~ 0 < t + k + dk M. 

(iii) The rarefaction case: Our purpose 

is to reproduce the recursive inequality (3.8) which in turn led us to the 

desired bound (4.3). We rewrite with the help of (4.5) 

(4.7) 

where using the mean-value theorem once more we find 

(4.8) 

Inserting (4.8) into (4.7) and (4.7) into (4.4) we obtain, after division by 

2lix 



(4.9a) 

I I 
- k J J ~[···]dn(I-8)d8 D2 let) v-8=0 n=O 

Similarily, if we rewrite with the help of (4.5) 

and express the difference inside the second brackets on the right in terms of 

(4.8), substitution into (4.4) gives us after division by 2~x 

(4.9b) 

I I 
J J • ..... 2 - k a[···]dn 8 d8 Dv+l(t) 

8=0 n=O 

I I 
- k J J ~[···]dn(I-8)d8 Dv_l(t) Dv+l(t). 

8=0 n=O 

Since according to our assumption D
V

_ I (t) ,D
V
+I (t) < 0, the fourth terms on 

the RHS of (4.9a) and (4.9b) are non-negative, while the sum of their first 

two terms does not exceed Max[Dv_l(t),Dv+l(t)]; we therefore find 

1 1 
• ..... 2 ..... 

< Max[DV_ I (t),Dv+l(t)] - k J f Dv(t+k) a[···]dn(1-8)d8 D (t) 
8=0 n=O v-I ' 

I I ..... 2 ..... 
< Max[Dv_l (t),Dv+1(t)] - k f f • 

Dv(t+k) a [ ••• ] dn 8 d8 DV+1 (t). 
8=0 n=O 
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Since ; [. • .] :> a*, each of the double integrals on the RHS of the last two 

inequalities is greater than liz, implying 

The last two inequalities amount to having (3.8) and the proof is completed as 

before. 

The one-sided Lipschitz bound appearing on the RHS of (4.3) is the 

maximum between the two terms 

2 dk ~ 
t + dk D(t=O), 

each of which involves a free parameter d, d > 1. For d» 1, the first 

term is becoming negligible, dominated by the second D(t=O) the initial 

strength of rarefaction. With d ~ 1, on the other hand, the first term 

dominates, provided no strong rarefactions are present. This is certainly the 

case after quite some time, when possible strong initial rarefaction were 

dissolved. Observe that as d decreases, we are forced to use a stricter CFL 

limitation 

A sup 
v 

( t + ked-I) 
t + ked+!) , 

so that possible strong rarefaction will be dissipated. 

essentially two situations: 

Thus, there are 

(i) There exist no strong initial rarefactions, D(t=O) 0(1 ) (in 



particular, with smooth initial data). Then we can take d» 1 easing the 

CFL limitation and giving inverse linear time decay due to the first term 

-1 
"t 

(ii) Strong initial rarefactions are present, D(t=O) = O(h-I ). Then we 

should choose 

time period 

d ~ 1 with CFL limitation A sup 

" 
.. t 

t + 2k 
which over a 

T ~ A (i.e., after D(h-I ) time steps) will cause these strong 

rarefactions to dissipate. Afterwards, we are back in the first situation 

where no strong rarefactions are present, and again, there is a time decay 

-1 
"t 

It is clear that by using the time-uniform CFL-like requirement 

t:f 
" A supl~1 .. 1 - 0, 0 > 0, we get the same inverse linear time decay; indeed, 

" !:"V 

" 
taking 2 d > 8 - 1 will do for the above analysis. It shows that taking the 

full CFL limitation, ° ~ 0, correspond to taking large d which may delay 

. .1'-1 
dissolving the rarefactions if initially strong -- only after n ~ v time 

steps will the strong rarefaction fully dissipate allowing the inverse linear 

time decay to dominate. 

Note, in particular, that as d + 00, allowing the extreme CFL-like 

requirement to be used, is not enough to dissolve strong 

rarefactions if present, despite the scheme being monotonicity preserving in 

this case; the estimate (4.3) reduces to D(t)" D(t=O), and the following 

example bears out its sharpness. 

EXAMPLE 4.2: Consider the LF scheme (4.1) applied to the Burger's equation, 

f (u) = u2 ,with initial data v" (t=O) = 0"0 and A = 1. The extreme CFL-
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like requirement A sup 

" 

~f 
1- '''1 
llv" 

1 is trivially satisfied, yet the initial, 

physically irrelevant spike will travel one mesh to the right at the time, 

without being dissolved. The LF scheme amounts in this case, to a pure 

translation, lacking the dissipation to cause any decay. 

The above example does not contradict the convergence of the LF scheme to 

the physically relevant limit solution due to its monotonicity, as much as it 

shows, as was men'tioned above, the importance of using the stronger eFL 

limitation A supla(v)1 ~ 1 -- the correct one to guarantee monotonicity. 
v 

.. 
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