
NASA Contractor Report 172150

leASE
NASA-CR-172150
19830020669

AN M-STEP PRECONDITIONED CONJUGATE GRADIENT METHOD
FOR PARALLEL COMPUTATION

Loyce Adams

Contract Nos. NASl-15810, NASl-17070,
NASl-17130

June 1983

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NJ\SI\'
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

111
NF01597

lIBR:'R'. !,I ~::: .. t\

HA!\~PTON. VIRlOlt:!II.

, oR

AN K-STEP PRECONDITIONED CONJUGATE GRADIENT HETHOD FOR PARALLEL COMPUTATION

Loyce Adams
Institute for Computer Applications in Science and Engineering

Hampton. Virginia 23665

Abstract Tbis paper describes a
preconditioned conjugate gradient method tbat can
be effectively implemented on both vector machines
and parallel arrays to solve sparse symmetric and
positive definite systema of linear equations.
The implementation on the CYBER 203/205 and on tbe
Finite Element Machine is discuased and result a
obtained using the method on these machines are
siven.

Introduction

In tbis paper we are concerned witb tbe
lolution of 1\ sparse . N)(N system of symmetric
and positive definite linear equations

Ku • f (1.1)

by preconditioned conjugate gradient (PCG) methods
on both vector computers and parallel arrays.
Several dCBcriptions of these methods appear in
the literature; sec for example. Concus. Golub.
O'Leary [1976] and Chandra [1978]. Aleo. Schrieber
[1978] discussed the implementation of conjugate
gradient (CG) on vector computers and Podsiadlo
and Jordan [1981] discussed its implementation on
the }'inite Element Machine under conotructlon at
NASA Langley Research Center.

The PCG method solves the system ~. i
where

.. T -1 -T" T .. -1
K • Q K KQ • u • Q u. f • Q f. (1.2)

Q is a nonsingular matrix. and the sYllUlletric snd
positive detinUe preconditioning matrix ia given
by K· QQ. The algorithm for the aolution of
u directly is described in Chandra [1978] and is
given below where u. r. 1'. and p afe vectors
and (x.y) denotes the inner product x y.

(1) Choose o
u

(2) r O
• f - Kuo

(3) K;o • r O

(4) po .. ;0
(S) For k· O.l.···kmax

(1)

(3)

(4)

(5)

(6)

1£ luk+l-ukl .. < t tben
stop. otherwise continue.

k+l k k r • r - oKp

K;k+l • r U1

(7) pk+l. ;k+l + 8pk
Algorithm 1. PCG Algorithm

We note that tbe standard conjugate gradient
algoritbm results by choosing K • I.

For vector machines. if K· I. all steps of
the iteration loop except (l) and (6) can be
vectorized. In particular. the multiplication
Kp. for K sparse. vectorizes after a suitable
orde~ing of the equations and will be discussed in
detail in Section 3. The difficulty arises in the
formation of the inner products necessary to
calculate a and B. Theee ealculationa require
a phase in which N partial suma must be added
together and therefore do not vectorlze well.

For parallel IIrrays like the Flnl te tlp-ment
Hachine (Jordan [1978] • Adams [l982)}. the
calculation of u.r. and p can be distributed
to the individual processors and the necessary
communication between processors can be periormed
on the dedicated local links. The convergence
test in (3) can be performcd by ua1ng tit.! flng
network. However. for a large numb"r of
processors. th~ calculations of Q and ~ ~an be
expensive since the number of values to be Bummed
for each inner product is equal to p. the number
of processors. Jordan [1979] realized that this
was potentially detrimental to the efficiency of
the method on this machine. and as a reault. 1\

special hardware circuit (sum/max) VIIS designed to
perform the P sums in 0(log2P) time.

Since Algorithm 1 has two inner producta per
iteration that will become costly 6S N (on
vector machines) or P (on arrays) incrr-ases. a
natural goal is to devise a pre conditioner that
will reduce the number of CG iterations, end hence
the number of inner products. while being
inexpensive to implement. In the next section
preconditioners that are based on taking m stol's
of an iterative method are dcscribed. In Section
3. the implementations of these methods on the
CYBER 203/205 lind the Finite Element Machine are·

The research reported in this paper was supported in part by the Nstional Aeronautics and Space
Adllliniatration under NASA Grant NAGl-46 . while the author was at the University of Virginia.
Charlottesville. VA. and in part by the National Aeronautics and Space Administration Contract Nos.
NASl-15810. NASI-17070 and NASl-l7130 while the author was in residence at ICASE. NASA Langley Research
Center. Hampton. VA 23665.

given for a system of equations that results from
an example structural engineering problem.
Results Cor this rrohlem on the CynER 203 and the
Finite Element Machine are given in Section 4.

2. H-Stcp ParAllel Preconditionera
2.1 Choosing H

The preconditioned conjugate gradient·
algorithm of the last s2ction requires a sy~netric
and positive definite preconditioning matrix M.
The question is how Ato choose M so that the
condition nu~ber of K.

max).

II:(X) - minX i
•

i i
is as small as possible.

The best choice for M in the sense of
aainimiz1ng lC(xL is M - K but this gains
nothing aince Kr - r is just as difficult to
solve as Ku· f. A class of pre conditioners that
appears to be easily implemented on parallel
computers arises by choosing M to be a splitting
of Ie that describes a linear ststionary
iterative method. As an example. the SSOR
splitting of K yields

(2.1)

where D.-L. and -U arc the diagonal. strictly
lower. and str.ictly upper partR of K respective­
ly. This splitting has been considered extensive­
ly in the literature as a preconditionerj for
exal1lple. refer to Concus. Goluh. O'Leary (1976)
and the references therein. Now. if the matrix
Ie is ordered by tho:! Hulticolor o~dering (Adllms
end Ortega (1982». the system Hr - r can be
implemented on parallel computers as a forward
followed by a backward Multicolor SOR iteration

applied to Kr-r with initiai guess ;(0).0 and
will be explained in more detail in Section 3.
The question now arises whether it would be
beneficial to take more than one step of a linear
stationary iterative method to produce a
preconditioner M that more closely approximates
K. If this is done. the resulting preconditioning
aaatrix is

(m-l)-1 M • P Iof{;+ ••• of{; • (2.2)

Now. M must be symmetric and positive definite to
be considered liS a preconditioner. The necessary
and sufficient conditions for H to satisfy thC8e
requirements sre given in Adams [1962] and we only
note here that if P is the SSOR splitting matrix
theoe conditions are met. We also note that
Dubois. Greenhllum. and Rodrique [1979] fons ide red
a truncated Neumann seriea for K- aa a
preconditior,(·r which corresponded to a Jacobi
splitting where P - diag(K).

Even though the preconditioner in (2.2) for
the SSOR splitting is sy~p.tric and positive
definUe. the queRtion of how ,{en the resulting
peG method will reduce the number of CG iterations
lIIust bo answered. In Adamfl [1982]. for the SSQR
splitting. the condition number of the matrix K
of (1.2) was proven to decreaoe as tho number of
steps of the preconditoner inlC(~212) increases j

however, the maximum ratio of II:(K!) was shown to

2

be m. In practice. for larger m, this reduction
may not be enough to balllnce the increase in the
work that must be done by the preconditoner Cas
results in Section 4 verify). However. by
parametrizing this precondUoner. the method is
very effective. This parametrization is briefly
discussed in the next section and the parameters
for the SSOR splitting are given.

2.2 Parametrizing M
Johnson. M1cchelli. and Paul [1982] have

suggested symmetrically scaling the matrix K to
have unit diagonal and then taking 1 m terms 1 of a
parametrized Newmany series for K- • CI-G)- dS

the value for M-. This corresponds to a
symmetric preconditioning matrix Whose inverse is
a polynominal of degree m-l in e.

-1 2 .. 1
Mm • aOI + ale + Q2e + ••• + a .. 1e (2.3)

derived from the Jacobi splitting.

(2.4)
A

of Kj hence. the solution to Mmr - r can be
implemented by taking m stAeps of the Jacobi
iteratiVe method applied to Kr - r with initial

guess ;(0) - 0; Johnson. et.al. ch~ose the
ai's so that the eigenvalues of H; K. and hence
tnose of ~. are positive on the interval
[).l').n] that contains the eigenvalup.s of It and
are as close to 1 as possible in some sense such
as the min-max or thf least squares criteria.
Clearly. if _, - 1. H; K - aOK and the condition
number of Mm K is the same for all aO - O.
Hence. we are only interested in m > 1.

We now generalize this idea for any splitting
of the matrix K.

K - P - Q. (2.5)

If G - p-1Q• then by parametrizing (2.2). the
inverse of the m-step preconditioner becomes

-1 (2 m-1) -1 Mm • aOI+a1G+a2G + ... +am-1G P . (2.6)

and will be symmetric if P is symmetric. We
choosB..1 the values of a i so that the eig~nvll1ues
of Hm K are positive on the interval LAl').n]
that contains the eigenvalues of P- K and are as
close to 1 as possible in some eense such as the
min-max or lel1st squares criteria. For the least
squares criteria. the values of a

i
that

correspond to the SSOR splitting are given in
Table 1 for m - 2.3. and 4.

Table 1.
a Values for the m-step SSOR PeG Method

.!!! a
O ~

a
2 a 3

2 1.00 5.00
3 1.00 -2.00 1'.00
4 1.00 7.00 -24.50 31.50

In the next aection we describe how to implement
the .. step parametrized SSOR PCG method on the

3

eYBER 203/20S and on the Finite Elel\!ent Machine
and in Section 4, results on theae machines are
given.

3. Implementation of the m-etep SSOR PCG Method

.. We firs t describe the algorithm for solving
Hr • r, where H is the preconditioninl! matrix
given by (2.6). To be concrete, thie deecription
will be given for the following teet prohlem.

The domein cons idered will be a rectanguler
plate dfscretized with triangulllr finite clements
over which linear basis functions nrc defined. The
nodes- of the triangles ere colored Red, Black, and
Green so that nodes on a gtven triangle sre
different colors se ehown in Figure 1. This
coloring; as described in Adams and Ortega (1982),
decouples the equstions so thst an implementation
on either vector or array computers is possible as
will be como Tore spparent later in this
discussion.

Figure 1. Plate (Triangular Elementa)

The problem is to determine the displacements,
ISY u and v, in the x and y directions
respsctively at each node in the plate whenever
the plate is loaded on ono edAe and constrained on
another. The partial differential equations of
plane stress that govern these dieplacemente are
well known, seQ Norrie and DeVriee (1978), but do
not contribute to the diecussion here. The
important point to make is that the stiffness
matrix K of (1.1) will be symmetric and positive
definite and will have dimension 2ab x 2ab
where a is the number of rowe of nodes and b
is the number of columns of unconstrained nodes (2
unknowns at each node), and each row of K will
contain at most 14 nonzero elemente which
correspond to the grid point etencil for linear
triangular elements ehown in Figure 2.

-(u,v) [(U,V)
• ~ (u,v) '(u v)

(u,v) l~ ,
(u,v) • (u,v)

Figure 2. Grid Point Stencil

Observe from Figures 1 and 2 that while there
1s no coupling between the equations at two nodea
of the game COIOf, the equations at a given node
do couple. Hence, to completely decouple the
system, six COIOfS arc neceaaary; namely, Red(u),
Red(v), Black(u), Black(v), Green(u), and

Green(v). Now, 1l the equations at the nodes in
Figure 1 are numbered by these six colors from
bottom to top, left to right, the system Kt • r
has the form,

D11 B12 B13 B14 B1S B16 rl l'1

T B12 D22 B23 B24 B2S B26 r2 r,
T B13

T
B23 D33 B34 B3S B36 r3 r3

T
B14

T
B24

T
B34 D44 B4S B46 r4 r4 (3.1)

T B15
T

B25
T

B3S
T

B45 DSS B56 rS rS
T T T T T

D66 B16 B26 B36 B46 B56 r6 r6

where B12,II 34,B 56 , and DU ' i • 1 to 6 are
diagonal matrices.

The SSOR iteration can be realized by a
forward followed hy 8 backward Multicolor SOR
iteration, (Adams and Ortega (1982), bu~ ia only
8S expensive ss one Multicolor SOR iteration aince
a technique of Conrad and Wallach [19791 can be
used to save rceults in an auxiliary vector, y,
from the forward pasA to be used in the backward
pass. Thc procedure is givcn below for soiving Hr . r of Alr,nrithm 1. "The relsxation parAmeter
III of the SSOR method causes no problems in the
implementation and will be set to one here for
simplicity.

(1) r· 0,
(2) For I.

(1)

(2)

For

(1)

(2)

(3)

For

(1)

(2)

y. 0

to DI

Solve Dc;c· x + yc + am-src

Set y c • x

c - 5 down to 2

6 ..
Fom x· -~ B r

j-c+l cj j

..
Solve Dcrc - x + yc + r.m-src

(3) Set

(3)

Algorithm 2. m-step 6-color SSOR

Notice that th<! values of a above are the
parametel:s that were given in Dfa\le I, and if no
parametrization is desired, these are simply set
to one. We also pOint out that Algorithm 2 can
easily be modified to solve problems whose domains
are discretized by more complicated finite
elements or finite differences as lo~~ 8S a

multicolor ordering is used. For more detsils see
Adams an 1 Ortega (19821. We now turn to the
lmp1emt'ntation of Algorithm 1 in conjunction with
Algorithm 2 on the CYBER 203/205.

3.1 CYSF.R 203/205 Jmpl~m~ntation
On the CYIII':R 203/205, vectors consist of

contiguous storage locations and maximum
efficiency of vector operations is achieved for
very long vectors. For vectors of length 1000
around 90% efficiency is ohtained, but this drops
to approximately 50% or less for vectors of length
100 and 10% for vectors of len~th 10.

To nchieve the maximum vector length for our
test problem the u equat lons at the Red nodes
(left to right, bottom to top) including the
constrained nodes are numbered first, followed by
the corresponding v equations at the Red nodes,
then by the Black u, mack v, Green u, and Green
V equations. Thl! numhering of the constrained
equations is necesaary for ease of implementation
given thl! CYSER'/I cont igl\ous storage requirement
but 11s0 increases the vector length from 1 nab
to 'Sa(b+l). Of course, the actual updating of
the storage locations corresponding to these
constrained nodes is prohibited by the control
vector feature on this machine, see Ortega and
Voigt (19711, and for large values of a and b
little ineffiCiency is incurred. For a unit
squsre plate, the maximum vector length for our

2
test prohlem is i and ia around 1000 when

... 55, or equivnlcntly when the width of each
triangle is equal to 1/54.

The contiguous storage requirement coupled
with the manner in which the nodes are colored
imposes a restriction on the number of nodes that
can be in each row of the plate. In particular,
the last node in the first row must be Black so
that the cobrtng R/S/G/R/S/G, etc. wraps around
from one row to the next.

Now, the calculations of Kuo and Kpk in
Algorithm 2 can be done by a straightforward
generalization of Madsen, Rodrique, and Karush's

Figure 3a. 18 nodes/procesor

~
G

1
Figure 3c.

4

(1976]
since
(3.2)
well)1

matrix multiplication by diagonals scheme
K of (3.1) has the structure shown in

(and wlll be stored by these diagonals as

R B G
u V u,v u v u" "~~~~R v"" "" ~~~~

K· u ~~"""" ~~B
v ~~" "" ~ ~ (3.2)

u~~~~" ~G
v~~~~" "

Also, the multiplication of BIc~1 and BC1;j In
Algorithm 2 can he performed' by the same
techniqu\'+l ~he suhtraction in the cor.vergence
test lu -u I", < C vectorizeB and the absolute
value is performed by the vector absolute value
function that is available on the CYBF.R. The
inner products for the calculation of a and II
are done by a call to lin inner product routine
whIch utilizes the IIIIIchtne's vector hardware.;
however, the additions of the partial sums make
this operation considerably slower than the other
vector operations required in the algorithm.

Next, we turn to the implementation of
Algorithm 1 in conjuction with Algorithm 2 on the
Finite F.temcnt Machine.

3.2 Flnit~ F,lement MII~h1nB TmptQm~ntntion
The first task for the implementation on thie

machine is to assign the nodea (and hence
equations at the nodes) of the plate to tho
processors. This is done by assip,ni~g each
processor, as nearly OB possihle, an equn1 numbor
of Red/Black/ and Green unconstrained nodes as
illustrated in Figures 3a, 3b, and 3c, ..,here in
each Figure, the node colorings may repeat beyond
the region shown.

I \
9 nodes/processor

5

In contrast to the CYIIY.R implementation we need
not be c"ncerned with numbering the constrained
nodes, but instead we should require that each
processor reccive an equal distribution of each
color of the unconstrained nodes.

Since memory is ·distributed on the Finite
Element Machine, cach processor storeo the portion
of u, p, r, r snd K that corresponds to its
collect Lon of nodes. For each equllt Lon that is
assigned to ~ praCCH60r, 14 stornRc loclltions are
reserved for the nonzero coefficients of K that
cerrespond tc the grid point stencil in Figure
2. Fot" more informllt ion about these data
structures see Adams (1982). In addition, storago
must be reserved in ellch processor for the portion
of p that must be received from neighbor
processors during the calculation of Kp each
iteration. For example, in Figure 3b, processor 1
must reserve storage for the componcnts of p
that corr~Apond to the 3 border nodes in processor
3 and the 3 border nodes in prOC<:!9sor 2, but no
components ere received from processor 4 since no
nodes in processors 1 and 4 share a common
triang1c. This eame storage may be used initially
for U

O during the calculation of Kuo!
Similarly, storap:e must be reserved for the r
componcnts assoclnted with thc equations at border
nodes in neighbor procesors for the

multiplications of
Algorithm :.

T A A

Bjcrj and Bcjrj in

Tho sending and receiving of the border p
components i~ each CG iteration in Algorithm 1 and
the border r components during each step of the
preconditioner in Algorithm 2 is only (for
rectangular regions) between neighbor processors
and in particular for our test problem will
require six of the machine's eight nearest
neighbor links as showl' in Figure 4 for processor
P.

Figure 4. FEM Local Links

Hence, the communication required for the m-step
SSOR preconditioner on this machine is completely
local and the amount of data that a given
processor must communicate can be seen from Figure
3 to he dependent on its number of neighbors as
well as the dimension of the rectangle of nodes
assigned to {t. To reduce the time required for
the I/O, the val.ues of each color to be sent to a
given neighbor can be packap,ed ·and sent as one
record and l1!:ewlse for the values of a particular
color to be rcceived from a given neighbor. If
this is done, it becomes advantsgeous to think of
the two equations at the same nodc as being the
same color, because, on this machine, it does not
matter that they couple since they wl11 a1,..ays be
assigned to the same proccssor.

The convergence test in Algorithm is
implemented by the signal flng network. Esch
processor raises its convergence flag whenever its
portion o! u values nre within the stopping
criterion. The processors are then synchronized

and tel ted to lee if all flagl are raised; if 10,
the iteration stops -- if not, all fla8s are
lowered and the iteration continues.

Lastly, we summarize our remarks about the
Finite Element Machine implementation of Algorithm
2 by providing a parallel version in Algorithm 3
that will be executed by processor p. The
subscript p denotes the portion of a veClur that
Is assip:ned to processor p, the subscript n
denotes tho portion of the vcctor that Is IPceived
from all of processor p's neighbors aud the
subscript t denotes the total vector which
consists of the components received by, as well as
those assiRned to, processor p.

(1) r t - O' Y , p

(2) For s - I

(1) For

(1)

(2)

(3)

(4)

(2) FOf

(1)

(2)

(3)

(4.)

- 0

to III

c -
I to 6

c-l A

X - -r BT r
j-1 jc j,t

A
Dc,prc,p - x + Yp + am-sfp

y - x p

If c mod 2 - 0 then

(1) S!nd border APortlon of
rc-l,p and rc,p

(2) R!ce1ve
A

and rc-l,n
rc,n

c • 5 down to 2

6 A.

x • -r B r
j-c+1 cj j,t ..

Dc.prc,p - x + yP + am-srp

yP - x

If c mod 2 • 0 then

(1) S~nd border APortlon of
rc+l,p and rc,p

(2) R~ceive

rc,n

6

and

(3) Solve Dl,prl,p· - ;I
2
Bljrl,t + Yp + Qorp

Algorithm 3. FEM Gl-step 6-color SSOR

4.Results

The example plane stress problem was run on
the CYBER 203 at the NASA Langley Research Center
for a unit square plete for varying mesh sizes.
Table 2 gives the number of iterations, t, and

time. T. 1n leconds to lolve th11 problem uling
III • 0-10. The parametrized preconditioner results

6

are denoted by P. the number of rowl in the plate
by a. and the maximum vector length by v.

Table 2. CYBER 203 Iterations and Tilllings .-step SSOR PCG

v - 132

a - 20

v - 561

.!....!..ll
v - 1282

a - 62

v - 2134

~.Q.

III I ITT I ! 1. J:.
---~--~---=--~~--~----~----~--~~---=----~--~~--~----

I T I

o 112

52

38

.133

.129

.143

.116

.155

.121

.138

.143

.159

157

66

50

40

39

30

.213

.184

.208

.167

.216

.167

.:.li§..

271 .565 536 3.293 788 11.845 929 22.780

1 III .'454 214 2.373 311 7.832 395 17.194

17.380

13.534

18.469

13.151

12.306

12.260

12.011

n.410

11.985

11.731

11.594

2

2.

3

3.

4P

5P

6P

7P

8P

9P

lOP

7? .478 152 2.428 221 7.773 280

11
31

61 .369 118 1.885 172 6.052 218

65 .520 124 2.585 181 8.174 229

24

22

IS

18

46 .369 88 1.836 129 5.828 163

li
20

18

35 .350 67 1.726 99 5.471 124

.167

.175

1:...9 .347 56 1.716 82 5.345 104

25 .348 47 1.670 70 5.263 88

26 .413 43 1.739 64 5.451 80

21 .375 1i 1.634 54 5.139 69

It Ihould be noted that the inner product routine
that wall used for these results was developed at
Langley and is optimized for the CYBER 203.
Several observations can be lIIode from these six
test cases.

(1) The parametrhed precondit1oner is
better wIth rcspect to both the number
of iterations and the execution time
than the corresponding unparametrized
prer.ondit1oner.

(2) The optimal number of steps of the
parametrized pre conditioner increased
as the vector length increased.

In relation to (2), an interesting question
11 to determine how msny steps would be beneficial
for a larg~ problem. The answer to this is quite

'Iilllp!e if the number of iterations, Nm• could be
expressed as a function of ~. since the execution
time of the m-step method can be expressed as

(4.1)

where A id the time for one outer conjugate
gradient iteration and B is the time for 1 step
of the precc.ndit1oner. Now if we assume that
NIII+1 < Kill' taking 111+1 steps is more beneficial
than taking m steps whenever

(1) (m+l)Nm+l - mNm < O. (This means
the total number of inner loops is leas for
Iteps)

or (2)

that
111+1

(4.2)

33 1.660 ~ 5.056 61

31 1.709 44 5.070 11

The inequalities in (4.2) explain for larger
problems when more steps of the preconditioner
should be taken. For instance, the valuM of the
left and riRht stde of incqll/lUty (2) \,""!tcn m-9
are (.81, .15), (.68, .5), anel (.76,6) for a.
41.62, and 80 reflpectivcly. Hence, ten IIteps
are preferable to nine only for a. 80.

We now give the F1nite Element Machine
resultll. The example plane stress problem with 6
rows and 6 columns of nodes (60 equations) was
solved on a I, 2 and then on a 5-processnr Finite
Element Machine using the m-step SSOR PCG
method. For this problem the assignment of
unconstrained nodes to the processors is shown in
Figure 5.

Two Proccssors Five Proccssors

Figure 5. FEM Processor Assignments

Observe from Figure 5 that for the two and five
processor aSflignmentll each processor hss an equal
number of R. 8, and G nodell as well as an

equal nUlilber of border node8 to be communicated.
Therefore. in the absence of communication time
and any differences in processor speeds. a speedup
of two (five) over the one processor case should
be realized.

7

The number of iterationa and the time in
aecond8 for the above assignment8 are given in
Table 3. The speedups for the. two snd five
processor assignments also are included.

Table 3. FEK Iterations. Ti_ings. Speedup8 m-8tep SSOR PeG

III

o
1
2

2P

3

3P

4

4P

5P

6P

Several
(1)

(2)

(3)

~

1. .!
48

19

13

11

11

8

10

!.
5

5

63.35

47.90
48.75

41.95

54.95

41.25

62.40

39.80

40.60

47.05

I

48

19

13

11

11

8

10

!.
5

5

obser/stiona csn be made from Table 3.

33.01

25.85

26.65

22.95

30.15

22.75

34.30

22.00

22.50

26.20

The effectivene8s of the preconditioner
8S a function of m was the some for the
sequential and two and five processor
CS8e8 (4p.5p.3p.2p.l.2.3.4).

Taking more
unparametrized
advantageous.

than one step
preconditioner

of
was

the
not

The overhead for the CG(m-O) algorithm
wss less than that for the PCG Algorithm
beclluse for two and five processors the
communications for the preconditioner
rsther than for the inner producta
dominate the overhead.

In regard to (3). if we keep the number of nodes
per processor fixed and continue to add processors
up to a certain number, soy n, the overhead for
the preconditioner will still <l.be more than that
for the CG method and henco m - 3P or 2P may
become optimal; however. as the number of
processors increases beyond nat the value of
B/A in (4.2) will continue to decrease until
111) 4p steps of the preconditioner will be
optimal. 'I·he behavior of the m-step PeG Algorithm
can be modelled as a function of the number of
prOCOS80rs. th" problem size. and the relative
speed o~ arithmetic to communication times for the
machine. For more details, see Adams [1982].

5. Summary and Conclusions
The lII-step multicolor SSOR preconditioned

conjugate gradient method described herein has
been shown to be effective on vector computers snd
for s small problem WIIS effective on the Finite
Element Machine. As more processors snd the
sum/max hardware circuit he come available on this
machine. tho method will be tested on larger

Speedup

1.92

1.85

1.83

1.83

1.82

1.81

1.82

1.81

1.80

1.80

48

19

13

11

11

8

10

!.
5

17· 70

14.85

15.50

13.30

17.65

13.25

20.20

12.90

13.25

Spl'edup

3.58

3.23

3.15

3.15

3.11

3.ll

3.09

3.09

3.06

problems. This method does not face the uRual
difficulty in chOOSing the optimal relaxation
parameter. w. for the multicolor SSOR method.
aince for this ordering and few colors w - 1 is
a good choice. see Adams [1983]. A problem Rtill
remains in applying the method to irregular
regions since the p;rid must be colored and for
array machines must also be distributed to the
processors in light of this coloring.

REFERENCES

Adams. L.. Ortega. J. (1982]. "A Multi-Color SOR
Method for Parallel Computation." Proceedings 1982
Conference on Parallel Processing. Bellaire.
Michigan.

Adams,
Sparse
Ph.D.
1982).
Langley

L. [1982]. "Iterative Algorithms for Large
Linear Systems on Parallel Computers."
thesis. University of Virginia (Oct.
Also NASA Contractor Report 166027. NASA

Research Center.

Adams. L. [1983). "M-Step Preconditioned
Conjugate Gradient Methods." To apped.:" as an
lCASE Report.

Chandra, R. [1978). "Con.1ugstf' Gradient Methods
for Partial Differential Equations. II Ph. n. thesis,
Research Peport , 129. Department of Computer
Science. Yale University.

Concus, P •• Golub. G., O'Leary. D. [1976]. "A
Generalized conjuRate Gradient Method for the
Numerical Solution of Elliptic Partinl
Differential Equations." Sparse Matrix
Computations, eds. J. Bunch. D. Rose, Academic
Press. pp. 309-332.

Conrad. V •• Wallach. Y. [1979]. "Alternating

Methods for Sets of Linear Equations." Numerische
MsthemAtik. Vol. 32. pp. 105-108.

Dubois. P •• Greenbaum. A •• Rodrique. G. (1979).
"Approximating the Inverse of a Hatrix for Use in
Iterative Algorithms on Vector Processors."
Computfnh, Vol. 22. pp. 257-268.

Hestenes. H •• and Stiefel, E. (1952). ''Methods of
Conjugate Gradients for Solving Linear Systems."
J. Res. Nnt. Bur. Std •• pp. 409-436.

Johnson. 0.. Hicchelli. C.. Paul. G. [1982).
"Polynominal Pre conditioners for Con.1ugate
Gradient Calculations." IBM Research Report 40444.
IBH Thomas J. Watson Research Center. Yorktown
Heights. N.Y.

Jordan, fl. (1978). "A Special Purpose
Architecture for Finite Element Analysis," !!.l!£...:.
1978 Int. Conf. on Par. Proc., pp. 263-266.

Madsen, N., Ro.frique. G.. Karush. J. (1976).
"Matrix Hultiplication by Disgonals on a
Vector /ParaUel Processor." Infnrmat1 nn ProceARinB

8

Letters. Vol. 5. No.2. pp. 41-45.

Norrie, D., DeVries, G. (1978). An Introduction
to Finite Element Analysis. Academic Press, N.Y.

Ortega, J., Voigt, R. (1977). "Solutions of
Partial Differential Equations on Vector
Computers," Prnc. 1977 Army Mum. Anal. Conf., pp.
475-526.

Podshdlo, D., and Jordan. H. (1981). "Operating
Syatems Support for the Finite Element Mschine."
CompntE'r Science ne!lign Group University of
Colorndo. Boulder, Colorado.

Reid. J.
Gradients
of Linear
Setll of
Yo.rk.

(1971). "On the Hethod of Conjugate
for the Solution of Large Sparse Systems
Equations." Prnc. Conf. on Large Sparse

J,\n(,lIr Equllttnns, Academic Press, New

Schreiber. R. [19Bl). "Implementation of the
Conjugate Gradient Method on a Vector CO·llIputer."
Submitted to SIAM Journal on Scientific and
Stllt1Aticlll Cnmplltntinn.

I 2. Government Accession No.· 1. Report No.

NASA CR-172150
4. Title and Subtitle

An M-Step Preconditioned Conjugate Gradient Method
for Parallel Computation

7. Authorls)

Loyce Adams

9. Performing Organization Name and Address

Institute for Computer Applications in Science
and Engineering

Mail Stop l32C, NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date

June 1983
6. Performing Organization Code

8. Performing Organization Report No.

83-23
10. Work Unit No.

11. Contract or Grant No.
NASl-15810, NASl-l 7070,
and NAS 1-1 7110

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes
The research reported in this paper was also supported in part under NASA Grant NAGl-46.
Langley Technical Monitor: Robert H. Tolson
Final Report

16. Abstract

This paper describes a preconditioned conjugate gradient method that can be effectively
implemented on both vector machines and parallel arrays to solve sparse symmetric and
positive definite systems of linear equations. The implementation on the CYBER 203/205
and on the Finite Element Machine is discussed and results obtained using the method on
these machines are given.

17. Key Words ISuggested by Authorls))

parallel computers
preconditioned conjugate gradient
SSOR (symmetric successive overrelaxation)

18. Distribution Statement

64 Numerical Analysis
61 Oomputer Programming and Software

Unclassified-Unlimited

19. Security Classif. lof this report)

Unclassified

20. Security Classif. lof this page)

Unclassified

21. No. of Pages

9

22. Price

A02

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

