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AN M~STEP PRECONDITIONED CONJUGATE GRADIENT METHOD FOR PARALLEL COMPUTATION

Loyce Adams
Institute for Computer Applications i{n Science and Engineering
Hampton, Virginia 23665

Abstract -— This paper  deacribes a
preconditioned conjugate gradient method that can
be effectively implemented on both vector machines
and parallel arrays to solve sparse symmetric and
positive definite systems of 1linear equations.
The implementatiun on the CYBER 203/205 and on the
Finite Element Machine 1is discussed and results
obtained using the method on these machines are
given.

Introduction

In this paper we are concerned with the
solution of a spsrse N X N system of symmetric
and positive definite linear equations

Ku = £ (1.1)

by preconditioned conjugate gradient (PCG) methods
on both vector computers and parallel arrays.
Several descriptions of these methods appear 1in
the literature; seec for example, Concus, Golub,
O’Leary ([1976) and Chandra [1978}. Also, Schrieber
[1978) discussed the implementation of conjugate
gradient (CG) on vector computers and Podsiadlo
and Jordan [1981) discussed its implementation on
the ¥inite Element Machine under construction at
NASA Langley Research Center. .

The PCG method solves the system Ra = f
vhere

k= o' kqT, u = QTu, £ =7, (1.2)

Q 1is a nonsingular matrix, and the eymmetric and
poaitive dc;intte preconditioning matrix ia given
by M = QQ'« The algorithm for the solution of
u directly is described in Chandra [1978] and is
given below where u, r, ¥, and p are vectors
and (x,y) denotes the inner product x'y.

(1) Choose u°
(.2) °
(3) Mr® = £°
(4) p° = £°

(5) For k = 0,1,"‘km‘

R
pk,Kp¥)

- f - Ku°

calculation of

@) o e gk 4 ook
K+l k

(3) If lu -l <k then
stop, otherwise contlnua.

@ o arpk

) “;k"'l - rk‘f‘l
2kl _k+l
6) 8=l
(r (23 )
N pk+l - ;k+1 + Bpk
Algorithm 1. PCG Algorithm

We note that the standard conjugate gradient
algorithm results by choosing M = I.

For vector machines, {f M = I, all asteps of
the iteratfon loop except (1) and (6) can be
vectorized. In particular, the multipiication
Kp, for K sgparse, vectorizes after a suitable
ordering of the equations and will be discussed in
detail in Section 3. The difficulty arises in the
formation of the dnner products necessary to
calculate & and B. These calculstiona require
a phase in which N partial sums must be added
together and therefore do not vectorize well.

For parallel arrays like the Fi{nite Element
Machine (Jordan {1978], Adams (1982)), the
u,r, and p can be distributed
to tha individual proceassors and the necessary
communication between processors can be performed
on the dedicated local 1links. The convergence
test in (3) can be performed by using tne flag
network. However, for a large number of
processors, the calculationas of a and f «can be
expensive since the number of values to be summed
for each inner product is equal to P, the number
of processora. Jordan [1979] reallzed that this
was potentially detrimental to the efficlency of
the nethod on this machine, and as a result, a
special hardware circult (sum/max) was designed to
perform the P sums in 0(10321’) time.

Since Algorithm 1 has two inner products per
iteration that will become costly as N (on
vector machines) or P (on arrays) increcases, a
natural goal 1is to devise a preconditioner that
will reduce the number of CG iterations, and hence
the number of 1inner products, while being
inexpensive to implement. In the next section
preconditioners that are based on taking m s8teps
of an iterative method are described. In Section
3, the implementations of these methods on the
CYBER 203/205 and the Pinite Elcment Machine are.
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given for a system of equatione that results from
an example structural engineering problem.
Results for this problem on the CYBER 203 and the
Finite Element Machine are given in Section 4.

2. M-Step Parallel Preconditioners
2.1 Choosing M
The preconditioned conjugate
algorithm of the last saction requires a symmetric
and positive definite preconditioning matrix M.
The question 1s how _to choose M 8o that the
condition nurber of K,

maxA

is as emall as possible.

The best choice for M in the sense of
minimizing K(KL is M =K but this gains
nothing since Kr = r {8 Just as difficult to
solve as Ku = f. A class of preconditioners that
appears to be easily implemented on parallel
computers arises by choosing M to be a splitting

of K that describes a 1linear stationary
{terative method. As an example, the SSOR
splitting of K ylelds

H = % (Lo-1)p7! (dp-u) (2.1)

where D,-L, and -~U arec the diagonal, strictly
lower, and strictly upper parts of K respective=-
1y. This splitting has been considered extensive-
ly 4in the 1literature as & preconditioner; for
example, refer to Concus, Golub, O°Leary [1976]
and the references therein. Now, {f the matrix
K 18 ordered by the Multicolor ordering (Adams
and Ortega [1982)), the system Mr = r can be
implemented on parallel computers as a forward
followed by a backward Multicolor SOR iteration

applied to Krwr with initial guess :(°)-o and
will be explained in more detail in Section 3.
The question now arises whether 4t would be
beneficial to take more than one step of a linear
stationary {iterative method to produce a
preconditioner M that more closely approximates
Ke If this is done, the resulting preconditioning
matrix is

¥ = P(14G+. . 0™ 1)L, (2.2)
Now, M must be symmetric and positive definite to
be conaidered as a preconditioner. The necessary
and sufficfent conditiona for M to satisfy these
requircments are given in Adams [1982) and we only
note here that {f P {8 the SSOR splitting matrix
these conditions are met. We also note that
Dubois, Greenbaum, and Rodrique (1979] fonsidered
a truncated Neumann series for as a
preconditioncr which corresponded to a Jacobli
splitting where P = diag(K).

Even though the preconditioner in (2.2) for
the SSOR splitting 1is symmetric and positive
definite, the question of how well the resulting
PCG method will reduce the number of CG {terationa
must be answerede In Adams {1982], for the SSQR
splitting, the condition number of the matrix K
of (l.2) was proven to decrease as the number of
steps of the preconditoner in (2 2) 1increases;

WLy
(Ky)

however, the maximum ratio of wag shown to

gradient:

be m. In practice, for larger m, this reduction
may not be enough to balance the increase in the
work that must be done by the preconditoner (as
results 4in Section &4 verify). However, by
parametrizing this preconditoner, the method 1s
very effective. This parametrization 1is briefly
discussed in the next section and the parameters
for the SSOR splitting are given.

2.2 Parametrizing M

Johnson, Micchelli, and Paul [1982) have
suggested symmetrically scaling the matrix K to
have unit diagonal and then taking terms of a
parametrized Newman? geries for K'l = (I—G)'l as
the value for This corresponds to a
symmetric preconditioning matrix whose inverse 1is
a polynominal of degree m-1 4n G,

1

- aOI + ul y

derived from the Jacobi splitting,

- 2 o1
H G+ a,6° +sieet um_lG (2.3)

K=1-6 (2.4)
of K; hence, the solution to "m; «r can be
implemented by taking m steps of the Jacobi
iterative method applied to Kr = r with initial

guess £®) . Johnson, et.al. chﬁ ose the
a,’s 80 that the eigenvalues of M, K»  and hence
those of » are positive on the interval
Al, ] that contains the eigenvalues of K and
are as close to 1 as possible in some sense such
as the min-max or thf least sgquares criterfa.
Clearly, 1if q -1, K = a3k and the condition
number of ML 18 the same for all «ag # 0.
Hence, we are only interested in m > l.
We now generalize this idea for any splitting
of the matrix K,
Ke«P=Q. (2.5)
If G = P-IQ. then by parametrizing (2.2), the
inverse of the m—-step preconditioner becomes
Wl = (ayta Gta,6theenta 6™ )P (2.6)
and will be symmetric 1f P 1s symmetric. We
chooaelthe values of a; so that the eigenvalucs
of M " K are positive on the 1nteiva1 [X WA ]
that containa the eigenvalues of P™'K and are aa
close to 1 as possible in some sense such as the
min-max or least squares criteria. For the least
squares criterfa, the values of a that
correspond to the SSOR gplitting are given 1n
Table 1 for m = 2,3, and 4.

Table 1.
a Values for the m~step SSOR PCC Method

2 ) 2 e} b}
2 1.00 5.00

3 1.00 =2.00 7.00

6 1-00 7000 "24.50 31050

In the next section we describe how to implement
the mstep parametrized SSOR PCG method on the



CYBER 203/205 and on the Pinite Element Machine
and in Section 4, results on these machines are
given.

3. Implementation of the m-step SSOR PCG Method

o We firat describe the algorithm for solving
Mr = r, where M 18 the preconditioning matrix
given by (2.6). To be concrete, this description
will be given for the following test problem.

The domain considered will be a rectangular
plate discretized with triangular finite elements
over which linear basis functions are defined. The
nodes. of the triangles are colored Red, Black, and
Creen 80 that nodes on a glven triangle are
different colors as shown in Figure 1. This
coloring. as described in Adams and Ortega [1982],
decouples the equations so that an implementation
on -either vector or array computers is possible as

will become Tore apparent later 1in this
discusaion.
B [¢] R B G R
G R B G R B
R 3 G R B G
B \Jc NB 6 \Jr
7
,,G R B G R B
y
N0 e \Jr N\ \le l
x

Figure 1. Plate (Triangular Elements)

The problem {8 to determine the displacenents,
say u and v, in the x and y directions
respectively at each node in the plate whenever
the plate 18 loaded on one edge and constrained on
another. The partial differcntial equations of
plane stress that govern these displacements are
well known, sec Norrie and DeVries {1978}, but do
not contribute to the discussion here. The
important point to make 18 that the stiffness

matrix K of (l.1) will be symmetric and positive
definite and will have dimension 2ab x 2ab
where & 18 the number of rows of nodes and b

{8 the number of columns of unconstrained nodes (2
unknowns at each node), and each row of K will
_contain at most 14 nonzero elements which
correspond to the grid point stencil for linear
triangular elements shown in Figure 2.

*(u,v) (u,v)
. (wv)
(u ’V) I (u,v)
(u,v) e(u,v)
Figure 2. Grid Point Stencil

Observe from Figures 1 and 2 that while there
18 no coupling between the equations at two nodes
of the same color, the equations at a given node
do couple. Hence, to completely decouple the
system, six colors arc necessary; namely, Red(u),
Red(v), Black(u), Black(v), Green(u), and

Green(v). Now, if the equations at the nodes in
Pigure 1 are numbered by these six colors from
bottom to top, left to right, the systen Kr = ¢
has the form,

”u B2 By3 Byy Bys 51; -;; H

Bl Dyy Bay By, Bps Bagl | T )

Bly By D33 By B3s Bayg| | T3 = | %3

Bla B34 B4 Day Bys Bl || |m| @D
Bls Bis Bis Bis Dss Bsg| |75 ts

Lﬁ'fs B36 B3s Big Big D6§J L:’s_ 76 ]
where Bjy,,Bq,Bg5¢, and Dygp 1 = 1 to 6 are

diagonal matrices.

The SSOR {teration can be realizad by a
forward followed hy a backward Multicolor SOR
iteration, (Adams and Ortega [1962]), but is only
as expensive as one Multicolor SOR {teration aince
a technique of Conrad and Wallach (19791 can be
used to save results in an auxiliary vector, vy,
from the forward pass to be used in the backward
pass. The procedure is given below for sniving
Mr = r of Algorithm l. The relaxation parameter
w of the SSOR method causes no problems in the
implementation and will be set to one here for
simplicity.

(1) =0 y=o0
(2) Yor aw1l tom
(1) For e=1 to 6
C"l 'y
(1) Porm x = ;ZlBjc rj
(2) Solve Dr.=x+ Yo + OpsTc
(3) Set Y.
(2) Por ¢ =5 down to 2
6 - :
(1) Form x = J:E+lncjtj

(2) Solve D r, = x+y. + ¢yt

(3) Set Vo= %

6
--)3

P + uotl

(3) Solve Dlr1 ljrj + 2

Algorithm 2. m-step 6-color SSOR

Notice that the wvalues of above are the
parameters that were given in lr’I‘-ﬁ'l:ule 1, and 1f no
parametrization is desired, these are simply set
to onc. We also point out that Algorithm 2 can
easily be modified to solve problems whose domains
are discretized by more complicated finite
elements or finite differences as 1long as a



multicolor ordering is used. For more details see
Adams ani Ortega [1982). We now turn to the
implementation of Algorithm 1 in conjunction with
Algorithm 2 on the CYBER 203/205.

3.1 CYBER 203/205 Implementation

On the CYBER 203/205, vectors consist of
contiguous storage locations and maximum
efficiency of vector operations 1s achieved for
very long vectors. For vectors of length 1000
around 907 efficiency is obtained, but this drops
to approximately 50Z or less for vectors of length
100 and 10X for vectors of length 10.

To achieve the maximum vector length for our
" test problem the u equations at the Red nodes
(left to right, bottom to top) including the
constrained nodes are numbered first, followed by
the corresponding v equations at the Red nodes,
then by the Black u, Black v, Green u, and Green
v  oquations. The numbering of the constrained
equations {8 necessary for ease of implementation
given the CYBER’s contiguous storage requirement
but glso increases the vector length from 1/3ab
to a(b+l). Of course, the actual updating of
the storage locations corresponding to these
constrained nodes 1s prohibited by the control
vector feature on this machine, see Ortega and
Voigt (1977), and for large values of a and b
little inefficiency {8 {ncurred. For a unit
square plate, the maximum vector length for our

test problem 48 4 and is around 1000 when

a ~ 55, or equivalently when the width of each
triangle is equal to 1/54.

The contiguous storage requirement coupled
with the manner in which the nodes are colored
{mposes a restriction on the number of nodes that
can be in each row of the plate. In particular,
the last node in the first row must be Black so
that the coloring R/B/G/R/B/G, etc. wraps around
from one row to the next. k

Now, the calculations of Ku® and Kp in
Algorithm 2 can be done by a straightforward
generalization of Madsen, Rodrique, and Karush’s

AT

—
Figure 3a. 18 nodes/procesor

[1976]) matrix multiplication by diagonals scheme
since K of (3.1) has the structure shown in
(3.2) (and will be stored by these diagonals as
well): .

R G
v

L9/ /79
7,

/

(3.2)

17,07
75

/

u

7707
LI /-
7077 19

v

%
/)
//

N

Also, the multiplication of chr and Bc1t in
Algorithm 2 can be performed by the “same
techniquek._H Ehe subtraction in the convergence
test Tu -u'k, € € vectorizes and the absolute
value 1is performed by the vector absolute value
function that is available on the CYBFR. The
inner products for the calculation of a and B8
are done by a call to an inner product routine
which utilizes the machine’s vector hardware;
however, the additions of the partial sums make
this operation considerably slower than the other
vector operations required in the algorithm.

Next, we turn to the implementation of
Algorithm 1 in conjuction with Algorithm 2 on the
Finite Element Machinac.

3.2 PFinite Plement Machine Implemantation
The first task for the implementation on this
machine 18 to assign the nodes (and hence

equations at the nodes) of the plate to the
proceasors. This 18 done by assignirg each
processor, as nearly as posaible, an equal number

of Red/Black/ and Green unconstrained nodes as
illustrated {in Figures 3a, 3b, and 3¢, where in
each Figure, the node colorings may repeat beyond
the region showm. :

! \ !
R B & R B
SRRERRT
N \:l.\.
f AN SS T
N VN N AN I Y
= -To—
_JX—.E:FkI_ Lad
N \\
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Figure 3b. 9 nodes/processor '
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In contrast to the CYBER implementation we need
not be cuncerned with numhering the constrained
nodes, but instead we should require that each
processor reccive an equal distribution of each
color of the unconstrained nodes.

Since memory 1s dfstributed on the Finite
Element Machine, each processor stores the portion
of u,p, r, r and K that corresponds to {its
collection of nodes. For each equation that {s
assigned to & processor, 14 storage locations are
reserved for the nonzero coefficfents of K that
ccrrespond tc the grid point stencil in Figure
2. For more 1information about these data
structures see Adams ([1982). In addition, storage
mnust be reserved in each processor for the portion
of p that must be received from neighbor
processors during the calculation of Kp each
iteration. For example, in Figure 3b, processor 1
nust reserve storage for the components of p
that correspond to the 3 border nodes in processor
3 and the 3 border nodes in processor 2, but no
components are received from processor 4 since no
nodes in processors 1 and 4 share a common

triangle. This same storage may be used initially
for u® during the calculation of Ku®
Similarly, storage must be reserved for the r

componcents associated with the equatfons at border
nodes in neighbor procesors for the

nultiplications of
Algorithm Z.

The sending and receiving of the border »p
components in each CG iteration in Algorithm 1 and
the border r components during each step of the
preconditioner in Algorithm 2 48 only (for
rectangular regions) between neighbor processors
and in particular for our test problem will
require s8ix of the machine’s efght nearest
neighbor links as showr in Figure 4 for proceasor
P,

T - -
BJch and Bcj'J in

n\ull

- | ]
Figure 4. FEM Local Links
Hence, the communication required for the mstep
SSOR preconditioner on this machine is completely
local and the amount of data that a givea
processor must communicate can be seen from Figure
3 to be dependent on 1its number of neighbors as
well as the dimension of the rectangle of nodes
assigned to tt. To reduce the time required for
the 1I/0, the values of each color to be sent to a
given neighbor can be packaged and sent as one
record and lilewise for the values of a particular
color to be rcceived from a given neighbor. If
this 18 done, it becomes advantageous to think of
the two equations at the same node as being the
same color, because, on this machine, it does not
matter that they couple since they will always be
assigned to the same processor.

The convergence test in Algorithm 1 418
implemented by the signal flag network. Each
processor raises its convergence flag whenever its
portion of u values are within the stopping
criterfon. The processors are then synchronized

and tested to see 1if all flags are raised; if so,
the {teration stops =-- {f not, all flags are
lowered and the iteration continues.

Lastly, we summarize our remarks about the
Finite Element Machine i{mplementation of Algorithm
2 by providing a parallel version in Algorithm 3
that will be executed by processor pe The
subscript p denotes the portion of a veciur that
is assigned to processor p, the subscript n
denotes the portion of the vector that ia received
from all of processor p’s neighbors aid the
subscript t denotes the total vector which
conaists of the components received by, as well as
those assigned to, processor p.

(1) r, =0; p " 0

(2) For s =1 to m

(1) Por ¢c=1 to 6
c-1 -
a x- ;zlnjcrj.t
) D pFe,p = X+ Yp * OnsTp
3) Yoo X

(4) If cmod 2 =0 then

(1) Send border _portion of
Ye-l,p and Tc p
(2) Rgceive' ;c-l.n and
Teyn
(2) For c =5 down to 2
6 -~
1 -
( ) X j-E.H.Berjot
(2) Dc.p'c.p =x+yp,+a,gr,
3 -
3) Yo = X
(4) If cmod 2 # 0 then

(1) Send border _portion of
Tetl,p and re

(2)  Receive ;c+1.n and
_ Te,n
- -~ 6 -~
3) s D ‘= ) B + +a
(3) Solve 1,p%1,p jzz 1951, * Vp ofp

Algorithm 3. FEM m~step 6-color SSOR

4.Results

The example plane stress problem was run on
the CYBER 203 at the NASA Langley Reaearch Center
for & unit square plate for varying mesh sizes.
Table 2 gives the number of iterations, I, and



time, T, in seconds to solve this problem using

are denoted by P. the number of rows 1n the plate

m = 0-10, The parametrized preconditioner results by a, and the maximum vector length by v.
Table 2. CYBER 203 Iterations and Timinga m-step SSOR PCG
o v = 22 v = 41 v = 132 v = 561 v = 1282 v = 2134
a=8 a=lt a=20 2= 4l 2= 62 2 =80
n L L L I L r L I L I L ks
0 112 «133 157 «213 271 +565 536 3.293 788 11.845 929 22.780
1 52 <129 66 .184 111 <454 214 2.373 31l 7.832 395 17.194
2 38 <143 50 «208 79 «478 152 2,428 221 7.773 280 17.380
2p 31 o116 40 .167 61 4369 118 1.885 172 6.052 218 13.534
3 31 «155 39 <216 65 «520 124 2.585 181 8.174 229 18.469
r 24 121 30 167 46 «369 88 1.836 129 5.828 163 13.15t
4p 22 «138 24 166 35 «350 67 1.726 99 5.471 124 12.306
5p 18 «143 20 <167 29 347 56 1.716 82 5.345 104 12.260
6P 18 «159 18 <175 25 «348 47 1.670 70 5.263 88 12.011
P 26 413 43 1.739 64 5.451 80 12.410
8p 21 «375 36 1.634 54 5.139 69 11,985
9P 33 1.660 48 5.056 61 11.731
10p k) 1.709 44 5.070 55 11.594
It should be noted that the 1inner product routine The dinequalities in (4.2) explain for larger

that wvas used for these results was developed at
Langley and 18 optimized for the CYBER 203,
Several observations can be made from these six
test cases.

(1) The parametrized preconditioner 1is
better with respect to both the number
of {iterations and the execution time
than the corresponding unparametrized
preconditioner.

(2) The optimal npumber of steps of the
parametrized preconditioner {increased
a8 the vector length increased.

In relation to (2), an interesting question

18 to determine how many steps would be beneficial

for a larges problem. The answer to this 1is quite

‘simple 1f the number of {iteratioms, Nm. could bhe

expressed as a function of m, gsince the execution

time of the mstep method can be expressed as

T(m) = N (A + mB) (4.1)

vhere A

gradient {iteration and B
of the preconditioner.

{3 the time for one outer conjugate
is the time for 1 step
Now 1f we assume that

Neep <K taking mtl steps 18 more beneficial
. tmn taking m steps whenever
(1) (m+1)N - mNm < 0. (This means that
the total number of inner loops 1is less for mtl
steps)
- N (4.2)

nrtl

m
(nﬂ'l)le- mNm

or (2) B/A <

problems when more steps of the preconditioner
should be taken. For inatance, the values of the
left and right side of finequality (2) vhen m=9
are (.81,.15), (.68,.5), and (.76,6) for a =
41,62, and B0 respectively. Hence, ten ateps
are preferable to nine only for a = 80.

We now give the Finite Flement Machine
results. The example plane stress problcm with 6
rows and 6 columns of nodes (60 equations) was
solved on a I, 2 and then on a 5-processcr Finite
Element Machine wusing the wmstep SSOR PCG
method. For this problem the assignment of
unconstrained nodes to the processors 1s shown in
Figure S.

/D\ -[ \‘ }§~J>_LSI(:'I:_N
/\\\,[\ g J‘\T\L\
N R o '\-v‘:.-: :.

/ di\{ 'im 1 ‘<L;4.;I:‘L;‘
ARSI D
2§ NN
N e e

Two Processors Five Processors

Figure 5. FEM Processor Assignments

Observe from Figure 5 that for the two and five
procesasor assignments each processor has an equal
number of R, B, and G nodes as well as an



equal number of border nodes to be communicated.
Therefore, in the absence of communication time
and any differences in processor spceds, a speedup
of two (five) over the one processor case should

be realized.

The number of iterations and the time 4n
seconds for the above assignments are given in
Table 3. The speedups for the two and five
processor assignments also are included.

can be modelled as a function of the number of
and the relative
speed of arithmetic to communication times for the

processors,

machine.

The mstep multicolor
conjugate

For more details, see Adams [1982].

5.

the

problem size,

Summary and Conclusions

SSOR preconditioned
gradient method described herein has

been shown to be effective on vector computers and
for a small problem was effective on the Finite
As more processors
sum/max hardware circuit become available on this
the method will be

Element Machine.

machine,

and the

tested on larger

Table 3. FEM Iterations, Timings, Speedups m-step SSOR PCG
p= 1 p = 2 p = 5
n I T I T Speedup 1 T Speedup
0 48 63.35 48 33.01 1.92 48 17.70 - 3.58
1 19 47.90 19 25.85 1.85 19 14.85 3.23
2 13 48.75 13 26,65 1.83 13 15.50 3.15
2P 11 41.95 11 22.95 1.83 11 13.30 3.15
3 11 54,95 11 30.15 1.82 11 17.65 .1
ar 8 41.25 8 22,75 1.81 8 13.25 3.11
4 10 62,40 10 34.30 1.82 10 20.20 3.09
4P 6 39.80 6 22.00 1.81 6 12,90 3.09
5P 5 40.60 5 22.50 1.80 5 13.25 3.06
6P 5 47.05 5 26,20 1.80
problems. This method does not face the usual
Several observations can be made from Table 3. difficulty 1n choosing the optimal relaxation
(1) The effectiveness of the preconditioner  parameter, w, for the multicolor SSOR method,
as a function of m was the same for the gince for this ordering and few colors w=1 1{g
sequential and two and five processor a good choice, see Adams ([1983]. A problem still
cases (4p,5p,3p,2p,1,2,3,4). ~remains 1in applying the method to irregular
regions asince the grid must be colored and for
(2) Taking more than one step the  array machines must also be diastributed to the
unparametrized preconditioner not processors in light of this coloring.
advantageous.
(3) The overhead for the CG(m=0) algorithm REFERENCES
was less than that for the PCG Algorithm :
because for two and five processors the Adams, L., Ortega, J. [1982). "A Multi-Color SOR
communications for the preconditioner  Method for Parallel Computation," Proceedings 1982
rather than for the {inner products Conference on Parallel Processing, Bellaire,
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