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1.	 Introduction

In this study we present results of a series of numerical experiments

in which an upper ocean model is driven by surface heat fluxes and stress

fields derived from the FGGE SOP-1 CLAS analysis/forecast system (Halem et

al., 1982).
M

`

	

	 The ocean model is essentially an oceanic boundary layer coupled with a

dynamic model of the upper ocean currents (Schopf anu Cane, 1983). The

oceanic boundary layer can be viewed as an intermediary zone between the

deep ocean circulation and the atmosphere, extending from the surface to a

depth of about 10-150 meters. In this layer both the temperature and the

salinity fields are almost constant in the vertical. This vertical constancy

is due to mixing which is caused by turbulence. The turbulence is in turn

caused by breaking waves, shear instabilities, etc.

The aim of this study is to seek a better understanding of the model

ocean boundary layer response to various forms of atmospheric forcings and

the associated time and space scales involved. It is known that the time

scales of the atmospheric flow are smaller than those of the oceanic flow

even for an upper ocean model like ours. On the other hand, the space scales
t
t'

for the baroclinic motion in the ocean are considerably .less than in the

atmosphere. The grid being used is of 4 0 by 5 0 of latitude and longitude,

respectively and was chosen Zo coincide with that of the atmospheric analysis.

However, an accurate description of the oceanic synoptic scales requires a

much finer horizontal resolution, on the order of 10-50 kilometers. The coarse-

ness of the grid is very significant limitation of our experiments.

Although the distributions of atmospheric wind forcings, are very similar

in summer and in winter, their intensity is greater in winter (Elsberry and
i

Camp, 1978: Elsberry and Raney, 1978). The source of mechanical energy is
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proportional to ux . Thus, during the passage of a winter storm, there is

an upward heat flux and the mechanical mixing is enhanced by the strengthening

of the -find forcing. As a result of the upward heat Vvx, the bottom of the

mixed layer deepens. After the storm's passage, the cooling effect continues,

due to entrainment. In summer, the winds are weaker. Consequently, the

entrainment at the base of the oceanic boundary layer is almost nonexistent.

As a direct consequence of the stabilizing Effect of the surface heating, the

oceanic boundary layer becomes shallower. (Elsberry and Camp, 1978: Elsberry

and Raney, 1978).

One of the problems faced in this kind of study is the intialization of

the ocean model. A solution may be available in the near future: according

to Levoy (1981), it is expected that global SST distributions with higher

resolution will be possible to get from satellite radiances. Also, accurate

estimates of the surface wind field may be obtained using data from the

radar Scatterometer (O'Brien, 1981). However, in the present study somewhat

arbitrary initial conditions are used for the mixed layer depth and deep

temperature fields. The initial currents were assumed to be zero and the

initial SST's were obtained from the GLAS/temperature retrieval system for

January 1979 (Susskind et al., 1982). It is very possible that the results

may have been dependent on such a choice.

Another characteristic of these experiments is that we have used a one-

way coupling mechanism, in which the atmospheric parameters derived from the

GLAS analysis/forecast system were used to drive t ine ocean model. It should

be noted that the atmospheric analysis was performed assuming climatological

SST's, and that the coupling did not allow any feedback from the ocean model's
M

predicted SST to the atmosphere. The lack of feedback may also be a serious

deficiency of our experiments.
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2. The ocean model and atmospheric analysis	 OF POOR QUALITY

The mixed-Layer ocean model used in this st,idy is the one developed by

Schopf and Cane (1983). Followc,g Kasahara (1974), the model equations of

momentum, temperature, continuity and the hydrostatic relation are as follows:

a(hV)/at + V• (VhV) + a(weV)/as — if + u/a Lane) k x hVw
N	 N N	 N	 N N

- h {Vp + b Vz} + 3T/as + h FH(V), 	 (1)
N	 N

a(hT)/at + V• (VhT) + a(weT)/as - aQ/as - a Dv/as + h DH(T)	 (2)
N

ah/at + V•(hV) + awe/as = 0	 (3)
N

D r/a s = bh.	 (4)

where s is a generalized vertical coordinate. The bouyancy, b, is calculated

via a linear expression:

b = b(T) = ga(T - Tr ).	 (5)

Following Niiler and Krauss (1977) and Kim (1976) the equation of entrain-

ment, we , needed to clo , z the system is:

we H(we) {hl(bl - b e) + q 2 - me lAV1 2 1 	 2 ms ux 3 - 2 eohl

+ h 1Bo [l - mb H(no)] + B I M.	 (6)

For a more detailed explanation about the model and the symbolism being

used, the reader is refered to the original paper (Schopf and Cane, 1983).

In these experiments the model has been used in a global configuration

with a resolution of 4° of latitude by 5° of longitude. While no slip con-

ditions are used at the coastal boundaries, no flux of temperature is allowed

through these same boundaries. The time step used is of three hours.

Because salinity is not predicted in the model, and in order to avoid

complications associated with ice generation, artificial boundaries have

been arbitrarily placed at 70°N and 58°S.

-3-



ORIGINAL PAGE Is	 r,

OF POOR QUALITY
3. Description of the experiments	 E:

The parameters that drive the ocean model are: the surface heat budget,

the wind stress and the friction velocity. The components of the surface

heat budget include the latent and sensible heat fluxes and the incoming and

outgoing radiative fluxes. Thus, the surface heat balance, Q, is computed

as:

Q - (,SW - Xw - Ev - SH)/p	 (7)

where Sw, Xw, Ev and Sh Tepresent the solar radiation at ground level, the

long wave radiation at ground level, the latent heat, and the sensible heat

flux, respectively. A reference sea density is represented by p.

The surface wind stress, T , is computed as in the atmospheric model while

the friction velocity, ux, is calculated as usual (Sommerville et al., 1974).

Both Q, ux and T from the 6 hour c5,cle global analysis produced by the GLAS

analysis/forecast system (Halem et al., 1982).

The geopotential height, horizontal wind, and relative humidity are anal-

yzed at mandatory pressure levels in the GLAS objective analysis scheme

(Baker, 1983). The 6-hour model forecast supplies a first-guess for the

above fields at 300 mb and sea level. The assimilation/forecast model is a

fourth-order global atmospheric model which is based on an energy-coaserving
r

scheme with all horizontal differences computed with fourth-order accuracy 	 1'

(Kalnay-Rivas et al., 1977; Kalnay-Rivas and Hottsma, 1979).

Five experiments to study the result of using the FGGE GLAS analysis/

forecast system to drive (without feedback) a global upper ocean model, were

performed for the period 5 January to 9 February, 1979 (FGGE first special

observing period).

Prelimin-iry experiments coupling the atmospheric forcing from the GLAS s

FGGE analysis showed unrealistic large changes in the sea surface temperature

-4-



(SST). In order to understand the causes of these unrealistic variations, a

series of simpler idealized experiments were conducted. The main objectives

in setting up these experiments were to stuOy tUil time evolution and seek a

better understanding of the time scales involved in the development of o,sym-

metric oceanic features.

In the :First three idealize, experiments, the oceanic initial conditions

were zonally averaged (Figures 3.1 and 3.2). In addition, in the First experi-

ment, all the external atmospheric forcings were obtained from the January 1979

analysis and zonally averaged; i.e., the surface heat balance, the friction

velocity, were assumed to be constant in time and independent of longitude

(Figures 3.3, 3.4, and 3.5).

In the second experiment, the wind stress and friction velocities were

zonally averaged throughout the entire time integration. For the surface

heat balance, however we used the January 1979 average value (Figure 3.6) as

obtained from the CLAS analysis.

In the third experiment, the only forcing parameter that was zonally

averaged was the surface heat balance. On the other hand, for the other two

atmospheric parameters--friction velocity and wind stress--their respective

January 1979 average values were used during; the Five week integration.

In the last two experiments (fourth at?d fifth), the initial condition for
!3

the mixed layer depth is depicted in Figure 3.7. In the fourth experiment,

all the atmospheric forcing parameters were the time average values corresponding

to January 1979 (Figures 3.6, 3.9, 3.10, and 3.11).

Finally, in the last experiment the instantaneous values of all the externally

atmospheric forcings were used in the time integration.

The initial SST conditions were the January time averaged SST obtained by

RVEM

-5-
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Susskind et al. (1982) and is shown in Fig. 3.8. For comparison with the

numerical results we also present the Averaged February SST (Fig. 3.12) and

the difference between the two fields (Fig. 3.13). M.so, for the sake of

completeness, the climatological difference between February and January

is depicted in Fig. (3.14).

In all five experiments, the ocean model was started from rest.

A
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4. Results	 OF POOR QUALITY

The discussions of these experiments will be limited to the open ocean

regimes. Thus, i will avoid the study of the especially complex circulations

in coastal regions, were the lack of boundary currents in the initial conditions

and the coarseness of the grid, make the model particularly unraaletic.

First Case: (zonally averaged initial conditions, zonally averaged surface

x	heat flux, wind stress and friction velocity)

The analysis of Figures 4.1.1 and 4.1.5 shown that most of the changes

in the ML depth occurs in the first ten clays. The bAme feature is observed

for the horizontal velocity (Figures 4.1.5, 4.1.4, 4,1.7 and 4.1.8). However,

the changes in the temperature field do occur in a much longer time (Figures

4.1.2 and 4.1.6). More specifically, no net cl,inge of temperature is observed

after one week.

Since the results show that the principal changes after one weep in depth,

n ►.d velocity field are essentially retained after five weeks for the first three

cases, to avoid redundancy we will limit our discussion to an examination and

description of the fifth week's results.

In Figure 4.1.6 we observe a decrease in temperature north of 10 0 S up to

45°N. This can be attributed to two factors: the deficit of surface heat

balance north of 10 0N (Figure 3.3), combined with equatorial upwelling (notice

the divergence implied by Dv/3y in rig. 4.1.8). Conversely, the increase in

t	
.

temperature south of 10 0 S should be attributed to the surplus of surface heat

balance; north of 50°N the winds and heat balance are very weak, and so is

the change in temperature.
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The weak winds north of 30 °S are responsible for the shallowing of the

mixed layer at those latitudes especially at high latitudes in the northern

hemisphere (Figures 3.5 and 4.1.5). The deepening of the mixed layer in the

belt between 40°S-55 °S is due to the westerly winds, which are stronger in

the southern hemisphere.

Second Case: (zonally averaged initial conditions, zonally averaged wind stress

and friction velocity, time averaged, but non zonally averaged

heat flux)

As in the previous case most of the changes in the height and in the

horizantal velocity of the oceanic boundary layer model take place in the

very first days (Figures 4.2.1, 4.2.3, 4.2.4, 4.2.5, 4.2.7 and 4.2.8). Again,

from Figure 4,.2.2 it is observed that the temperature field changes observed

after one week are small.

There is a marked difference in the temperature field between this case

and the previous one. From a comparison of Figures 3.6 and 4.2.6, we observe

that whenever we have a deficit of surface heat balance, the ocean model

responds by a decrease in the temperature field, and viceversea. The only

exception is again north of 50° N.

In the northern hemisphere, where we have a maximum deficit of surface

heat balance, we observe a deepening of the mixed layer (Figure 4.2.5). There-

fore the deepening of the mixed layer observed in the belt of 15°N-35°N in

the sub-tropical Atlantic and Pacific Ocean is due to both the deficit of

surface heat balance and the strength of the winds observed at those latitudes

(Figures 3.5 and 3.6).

The analysis of these same figures demonstrates that the effects of the

lighter winds north of 35°N are more important than the effects of the deficit

&W011 AL PAGE IS

-30-
	 OF POOR QUALITY



I

f

ORIGINAL PAGE IS
OE POOR QUALITY

	

y	 `"r.	 tti r

	

'^^ ~ 4^ „"'t ^'^^ a+'e r1,1 ^\'1 	 '^•• I )\	 °Y ^ ^^ w.,'f 

`r r^1 + r,^ a n
^^ ^, I	 I	 I	

..'-..
N

^,	 .^...	 4 r

PlY

	

'.,	 ,^+ ^i ` l̂	 ,	 i `r '"^."^^i.:	 -.+ 'r , , t..4 k^^l'F ;,.;.^,,,/:^	 a	 II	 ^^^^^•1 ..•'!	 ♦,^._.,.

---4.	 ► ^	 II
	 ^+	 a

'"' t+ I';	 :r	 ._.^^	 '_30...x',	 :::,^ .^	 -^	 J	 - 3 0	 -^

I	 ^	 I	 ^ "	 'ti^

	

.
	:::q m	 to.

 ..^+: yr	 (:^..,,,.,: • l
	 I	 :1:' : `; r. -

-tau	 -I'M	 -w	 -au	 -3u	 o	 30	 60	 90	 120	 150

	4.2.1	 Weekly averaged ML depth changes after one week for the second case.
Contour interval of 10 m

60

30

0

-30

_00

-31



60

ORIGINAL 
PAGE I5

05 
pppR QUALITY

f	 I	 f	 _
.58 r	 a	 `^`.0-1- --	 f	 4 I	 o.a00 r 	 ^.

-150 ~--120	 -90	 ^LO	
J:.	 ^..._...:3'' _.. 50	 90..^. 120

	 l50

4.2.2	 Weekly averaged ML temperature changes after one week for the second

case. Contour interval of 1°C

-32-

6

g

s

i
i



ORIGINAL PAGE I
OF POOR QUALITY

^. h	 (fir......,.^•' '! '^ Fz^'v""	 ^^:: I	 [	 "	 l
1

o	 d,	
..._`;	 (	 150 i I t '
	 for,

	
- 	. ------

] 9. 

123.	 I	 I	 I	 !	 !	 I	 I.	 (	 !	 °!	 ^^

-150	 -120	
1. t10 .^. . SU.
	

_ u0	 :90

^'	
' 0.....:^,_.'C^.
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of surface heat balance. This is reflected in the shallowing of the mixed

layer observed north of 35°N (Figure 4.2.;: 	 Similarly, the shallowing observed

south of 15°N should be attributed to the very moderate winds in this region

and warming by the surface heat flux. As in the previous case, the shallowing

of the mixed layer is interrupted by a deepening observed between 40°S and 55°S.

It is also observed that the increase in temperature in that belt is somewhat

intense (2-3°C) and it can be stated that in the belt of 40 0 S to 55 0 S the effects

of the surplus of surface heat balance and the strong winds do not tend to balance

each other as far as the temperature field is concerned.

Third Case: (zonally averaged initial conditions, zonally averaged heat flux, time

averaged, but not zonally averaged wind stress and friction velocity)

For the same reasons as before I will limit my analysis to the five week

results. The results after one week (Figs. 4.3.1-4.3.4) are also included

for reference.

In Figure 4.3.5, a deepening of the mixed layer in the north-central Pacific

and extra-tropical northern Atlantic is observed. Thus the zonal asymmetry in

the oceanic boundary layer height reflects the zonal asymmetry in the friction

velocity (Figures 4.3.5 and 3.9).

Since the deficit of solar radiation north of 40°N is weak (Figure 3.3),

no net change in the deepening or shallowing of the mixed layer occurs. The

shallowing of the mixed layer west of South and Central America is due to the

presence of very light winds. The same effect is observed in most of the

South Atlantic. In this particular case, in the belt between 40 0 8 and 60 0S,

the deepening of the mixed layer is stronger than in the previous cases as a

direct result of stronger westerly winds. The shallowing of the mixed layer

W, ..ved in the northern and central Indian Ocean is due to the presence of

very light to moderate easterly winds, combined with a surplus of solar radiation.

k
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The sharp decrease in temperature in the Atlantic and Pacific Oceans

at the equator should be attributed to the equatorial upwelling (Figures 4.3.6,

4.3.7 and 4.3,8) and by advection by the meridional wind. The increase in

temperature south of 30°S should be to the surplus of the surface heat balance,

the effects of which outweigh the effect of the wind stress. On the other hand,

in the Atlantic and Pacific the decrease in temperature observed in the northern

hemisphere up to 45°N should be attributed to the deficit of surface heat balance

(Figure 3.3).

Fourth Case: (Time averaged but not zonally averaged heat flux, wind stress

and friction velocity)

In these last two cases we will examine the differences between the first

and fifth week results in more detail.

The first set of pictures we are going to analyze details the mixed layer

depth and temperature fields after one week. Figuru 4.4.1 shows a uniform global

deepening of the mixed layer depth in the latitudes 40 0 S to 50 0 S. At the same

time and in the same place, we can observe a slight cooling (Figure 4.4.2). In

this region the effects of the strong westerly winds are almost balanced by the

surplus of surface heat balance.

The shallowing of the mixed layer observed west of Central America and in

the South Pacific is

surface heating. An

mixed layer observed

stronger and more pe

ature is observed in

heat balance tend to

due to the combination of light winds and the surplus of

increase in the SST is also observed. Tile deepening of the

in the central tropical Pacific can be explained by the

rsi.stent easterlies (Figure 3.10). No net change of temper—

that region, since the effects of the surplus of surface

counterbalance the effects of the stronger easterly winds.

A shallowing of the mixed layer in the north and central Indian Ocean is

caused by the effects of the 1if;1t and variable winds, and the surplus of

—45-
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surface heat balance. These two factors also contribute to the slight increase

in temperature observed in that region. Similar results can be found for

most of the south Atlantic.

An analysis of the second set of pictures indicates no demonstrable

differences in the mixed layer depth between the first and fifth weeks (Figures

4.4.1 and 4.4.5). The decrease in temperature observed in the equatorial Pacific

is due to the strength of the local equatorial upwelling and the strong easterlies

(Figures 4.4.6 and 4.4.8). Because of the surplus of surface heat balance, we

observe a significant increase in the temperature field both in the south Atlantic

and in the extra-tropical latitudes of the South Pacific, as well as along the

western coast of South America. The results after one week are depicted in

Figs. 4.4.1-4.4.4; and after five weeks in 4.4.5-4.4.8.

Because the effects of the westerlies are compensated by the surplus of

solar heating, which is very strong at these latitudes, the decrease in temper-

ature in the southern belt between 40°S and 50°S is marvb, a1. The decrease in

temperature observed both in the tropical Atlantic and Pacific Oceans in the

northern hemisphere can be explained by the deficit of surface heat balance and

the light and persistent easterlies.

Fifth Case: (Instantaneous values for all atmospheric forcing)

We will begin with an analysis of the one week results (Figs. 4.5.1-4.5.8).

In this case, in the belt between 35°S and 60°S the deepening of the mixed layer

is well organized globally, (Figures 4.5.5). The changes in temperature after

one week are (Fig. 4.5.6) are generally smaller than 1°C. The main exception is

near the East coast of North America. It is interesting to notice that the use

of time varying wind stress and friction results in smaller changes in ML depth

(Fig. 4.4.1). A discontinuous temperature front can be observed to the Southeast

of Africa. This front is stronger than in the previous cases.
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	4.4.3	 Weekly averaged value of the zonal velocity field, u, after one
week for the fourth case. Contour interval of 75 mm/s
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4.4.4	 Weekly averaged value of the meridional velocity field, v, after
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4.4.5	 Weekly averaged ML depth changes after five weeks for the fourth
case. Contour interval of 10 m
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five weeks for the fourth case. Contour interval of 75 mm/s
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	4.5.1	 Weekly averaged value of the surface heat balance after one week.
Contour interval. of 20 Watts/m2
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	4.5.2	 Weekly averaged value of friction velocity after one week.
Contour interval of 15 10-lmm/s
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	 Weekly averaged ML height changes after one week for the fifth
case. Contour interval of 10 m
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After five weeks the deepening at the ML observed in most of the south

Atlantic may be explained by the deficit of surface heat balance which counter-

balances the effects of the very light easterlies observed in the region.

Opposite reasons are valid for the shallowing of the ML observed in the south

Pacific down to 40 ° S (Figures 4.5.9 and 4.5.13). Also very light easterly

winds are observed in the south Pacific after five weeks ( Figures 4 . 5.11).

As far as the temperature in the north and central Indian Ocean is concerned,

the deficit of a strong surface heating balance, combined with the minimal

balancing effects of the light winds, produces a decrease in the temperature

fields. The light winds do not balance the deficit of a strong surface

heating balance, thus decrease in the temperature fields (Figures 4.5.14).

Because of the absence of easterly winds west of southern Africa, we observe

a great increase in the SST. The same is true of the west of South America.

Furthermore, north of 10°S the deficit of heat balance produces a decrease

in the SST in the Atlantic Ocean up to 35 0N. Results for the fifth week are

depicted in Figs. 4.5.8-4.5.14.

This decrease in temperature is not as remarkable in the Pacific Ocean

because of a strong surplus of surface heat balance. The presence of moderate

easterly winds tends to counterbalance the effects of the surplus of surface

heat balance in the belt between 10°N and 30 O N in the Central Pacific, explain-

ing the slight decrease in the SST observed in that area. North of 30 0 N, in

the same Pacific Ocean, the surplus of surface heating tends to counterbalance

the effects of the westerlies, thus generating no net change in the temperature

fields.

Because the time scale of response of the mixed layer temperature to the

atmospheric wind forcing is a matter of hours, the instantaneous effects of the

stronger wind stress will have a greater impact than in the time averaged case.
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4.5.7	 Weekly averaged value of the zonal velocity, u, after one week for
the fifth case. Contour interval of 75 mm/s
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Then, after five weeks the temperature front observed in the Indian Ocean at

?!	 35°S is stronger than after one week. Simultaneously, the decrease in tempera
xsr

Cure observed after five weeks in the belt between 40°S and 60 0 S is even greater

ht

than after one week. East of Asia, the decrease in SST can be explained by

the deficit of surface heating in that area.

We now compare the five week temperature changes predicted by the model.

(Fig. 4.5.14) with the actual observed changes from January to February 1979,

(Fig. 3.13). First of all we should point out the model has less skill in

predicting the changes than climatology (Fig. 3.14). Although there is some

skill in predicting the sign of the change, their magnitudes are generally

overpredicted. The model has correctly predicted cooling in the North Atlantic

and North Pacific. The observed warming west of South America and South Africa

are also predicted, but larger than observed. The cooling in the South Indian

Ocean and in the Australian region is well predicted, but the model predicted

cooling in the Arabian Sea and Bay of Bengal, whereas warming was observed.

Similarly, the model overpredicted the cooling northeast of South America.

A major failure occured in the belt between 30°S to 60°S, where there was

generally observed warming, with some small regions with cooling. Here the

model predicted strong cooling, presumably through excessive deepening of

the mixed layer by the roaring forties. Results after five weeks are depicted

in Figs. 4.5.15 and 4.5.16.

It is interesting to note that, of all five experiments, the first two

have the best agreement with the climatological changes (Fig. 4.1.6 and 4.2.6).

The second one (in which surface friction and wind stress were zonally and

time averaged and the surface heat flux was only time averaged) has the best

skill in predicting the observed changes (cf Fig. 4.2.6 with Fig. 3.13).
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5.	 Conclusions

We have performed a series of experiments with the Schopf and Cane

(1983) upper ocean model driven by surface fluxes derived from the GLAS atmos-

pheric analysis for January 1979, with SST's derived for January 1979 by

Susskind et al. ( 1982), and starting from a state of rest.

The model results are generally qualitatively reasonable. Namely, that

whenever we have strong winds a deepening of the oceanic boundary layer is

observed, and viceversa. Conversely, the opposite is also true. Furthermore,

the temperature changes respond to the surface heat budget. Whenever an

uraard heat flux is observed, the boundary layer model responds by a decrease

of temperature and viceversa.

The model results show that most changes in the mixed layer height and

horizontal 3elocity occur in the first days. On the other hand, changes in

the temperature field take a longer time to develop. The best forecast was

obtained in the experiment where the driving surface stress and friction

velocity were zonally and time averaged, and the surface heat flux was time

averaged. In the most realistic case ( real initial conditions, instantaneous

forcing fields from the atmospheric analysis), the resulting changes in

temperature were larger than observed and the correlation between observed

and predicted changes was poor.

The deficiency in the forecast of SST changes may be due to several

factors: lack of sufficient ocean resolution, improper initialization, lack

of feedback between the .^ttean and the atmosphere and the absence of transports

by the strong boundary currents and perhaps unrealistic surface fluxes of

heat and momentum. Unless these problems are alleviated it will not be

reasonable to perform coupled atmospheric ocean forecasts.
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Appendix: Computational implementation of the coupling

The initialization of the model is in the subroutine CLIMIN. The

sub-routine reads ocean data from a data file. The fields are as follows:

	

H1:	 Oceanic boundary layer depth;

	

112:	 Subsurface layer depth;

T1: Mixed layer temperature

T2: Sublayer temperature

	

T200:	 Temperature at the base of the subsurface layer;
i

	

T300:	 Temperature at the pressure reference surface. 	 t

The atmospheric forcing is fed into the model in the subroutine FORCIN.

These values are taken from a log 8 tape. The values are as follows:

TAU: Time in hours of data;

TS: Ground temperature;

U8, U9, V8, V9: Components of horizontal velocity at levels 8 and 9 in the

GCM model;

	

Ev:	 Evaporative heat flux;

	

SH:	 Sensible heat flux;

	

SW:	 Solar radiation at gr')und level;

	

XW;	 Long-wave radiation at ground "level; i

	

WK:	 Wind magnitude;

	

ST:	 Total surface wind stress.

Also in this same subroutine the horizontal wind stresses are computed

as TAUX and TAUY. The friction velocity and the surface heating budget are

Also computed as USTR and HEATNG, respectively..

The daily and weekly averages are computed in the main program. The

A e s,-e variables are preceded by tie letters PR. For example, the averages of

(i	 and Tl are PRUI, PRH2, and PRTI, respectively.
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Figure Captions

Y'iores

3.1	 Zonally averaged ML depth
Contour interval. of 5 m

3.2	 Zonally averaged temperature
Countour interval of 2°C

3.3	 Zonally averaged surface heat balance
Contour interval of 20 Watts/m2

3.4	 Zonally averaged friction velocity
Contour interval of 15 10-Imm/s

3.5	 Zonally averaged wind stress in the x direction
Contour interval of 75 10"3N/m2

3.6	 January 1979 ava age value of the surface heat balance
Contour interval of 20 Watts/m2

3.7	 Initial condition of ML depth (rot zonally averaged)
Contour interval of 5 m

3.8	 Initial condition of ML temperature (not zonally averaged)
(Susskind et al. 1982) Contour interval of 2° C

3.9	 January 1979 average value of the friction velocity
Contour interval of 15 10'lmm/s

3.10	 January 1979 average- value of the wind stress in the x direction
Contour interval of 75 10-3N/m2

3.11	 January 1979 average value of the wind stress in the y direction
Contour interval of 75 10°3N/m2

3.12	 February 1979 average sea surface temperature (Susskind et al. 1982)
Contour interval of 2° C

3.13	 Observed sea surface temperature difference between February and
January 1979 (Susskind et al. 1982) Contour interval of 0.5° C

3.14	 Climatological sea surface temperature difference between February
and January. Contour interval of 0.5° C.

4.1.1	 Weekly averaged ML depth changes after one week for the first case.
Contour interval of 10 m

4.1.2	 Weekly averaged ML temperature changes after one week for the first
case. Contour interval of 1° C

4.1.3	 Weekly averaged value of the zonal velocity field, u, after one week
for the first case. Contour interval of 75 mm/s
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4.1.4	 Weekly averaged value of the meridional velocity field, v, after one
week for the first case. Contour interval. of 75 mm/s

	

4.1.5	 Weekly averaged ML depth changes after five weeks for the first case.
Contour interval of 10 m

	

4.1.6	 Weekly averaged the ML temperature changes after five weeks for the
first case . Contour interval of 1° C

	

4.1.7	 Weekly averaged value of the zonal velocity field, u, after five weeks
for the first case. Contour ,interval of 75 mm/s

	

4.1.8	 Weekly averaged value of the meridional velocity field, v, after five weeks
for the first case. Contour interval of 75 mm/s

	

4.2.1	 Weekly averaged ML depth changes after one week for the second case.
Contour interval of 10 m

	

4.2.2	 Weekly averaged ML temperature changes after one week for the second
case. Contour interval of 1°C

	

4.2.3	 Weekly averaged value of the zonal velocity field, u, after one week
for the second case. Contour interval of 75 mm/s

	

4.2.4	 Weekly averaged value of the merldional velocity field, v, after one week
for the second case. Contour interval of 75 mm/s

	

4.2.5	 Weekly averaged ML depth changes after five weeks for the second case.
Contour interval of 10 m

	

4.2.6	 Weekly averaged ML temperature changes attar five weeks for the second
case. Contour interval of 1°C

	

4.2.7	 Weekly averaged value of the zonal velocity field, u, after five weeks
for the second case. Contour interval of 75 mm/s

	

4.2.8	 Weekly averaged value of the meridional velocity field, v, after five weeks
for the second case. Contour interval of 75 mm/s

	

4.3.1	 Weekly averaged ML depth changes after one week for the third case.
Contour interval of 10 m

	

4.3.2	 Weekly averaged ML temperature changes after one week for the third
case. Contour interval of 1° C

	

4.3.3	 Weekly averaged value of the zonal velocity field, u, after one week
for the third case. Contour interval of 75 mm/s

	

4.3.4	 Weekly averaged value of the meridional velocity field, v, after one
week for the third case. Contour interval of 75 mm/s

	

4.3.5	 Weekly averaged ML depth changes after five weeks for the third
case. Contour interval of 10 m

	

4.3.6	 Weekly averaged ML temperature changes after five weeks for third
case. Contour interval of V C
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4.3.7	 Weekly averaged value of the zonal velocity field, u, after five weeks
for the third case. Contour interval of 75 mm/s

	

4.3.8	 Weekly averaged value of the meridional velocity field, v, after five weeks
for the third case. Contour interval 75 mm/s

	

4.4.1	 Weekly averaged ML depth changes after one week for the fourth
case. Contour interval of 10 m

4

	4.4.2	 Weekly averaged ML temperature changes after one week for the
fourth case. Contour interval of V C

	

4.4.3	 Weekly averaged value of the zonal velocity field, u, after one
week for the fourth case. Contour interval of 75 mm/s

	

4.4.4	 Weekly averaged value of the meridional velocity field, v, after
one week for the fourth case. Contour interval of 75 mm/s

	

494.5	 Weekly averaged ML depth changes after five weeks for the fourth
case. Contour interval of 10 m

	

4.4.6	 Weekly averaged value ML temperature changes after, five weeks for
the fourth case. Contour interval of 1° C

	

4.4.7	 Weekly averaged value of the zonal velocity field, u, after five
weeks for the fourth case. Contour interval of 75 mm/s

	

4.4.8	 Weekly averaged value for the meridional velocity field, v, after
five weeks for the fourth case. Contour interval. of 75 mm/s

	

4.5.1	 Weekly averaged value of the surface heat balance after one week.
Contour interval of 20 Watts/m2

	

4.5.2	 Weekly averaged value of friction velocity after one week.
Contour interval of 15 10-1mm/s

	

4,5.3	 Weekly averaged value of the wind stress in the x direction after
one week. Contour interval of 75 10-3N/m2

	

4.5.4	 Weekly averaged value of the wind stress in the y direction after
one week. Contour interval of 75 10-3N/m2

	

4.5.5	 Weekly averaged ML height changes after one week for the fifth
case. Contour interval of 10 m

	

4.5.6	 Weekly averaged ML temperature changes after one week for the fifth
case. Contour interval of 1° C

	

4.5.7	 Weekly averaged value of the zonal velocity, u, after one week for
the fifth case. Contour interval of 75 mm/s

	

4.5.8	 Weekly averaged value of the meridional velocity, v, after one week
for the fifth case. Contour interval of 75 mm/s

-81-

0



4.5.9 Weekly averaged value of surface heat balance for the fifth week	 j

Contour interval of 20 Watts/m2

4.5.10 Weekly averaged value of friction velocity for the fifth week
Contour interval of 15 10'lmm/s

4.5.11 Weekly averaged value of the wind stress in the x direction for the
fifth week.	 Contour interval of 75 10-3N/m2

4.5.12 Weekly average value of the wind stress it, the y direction for the

fifth week.	 Contour interval of 75 10-3N/m2 1ry

i^

4.5.13 Weekly averaged ML height changes after five weeks for the fifth

case.	 Contour interval of 10 m

4.5.14 Weekly averaged ML temperature changes after five weeks for the fifth
case.	 Contour interval V C

4.5.15 Weekly averaged value of the zonal velocity, u, after five weeks
for the fifth case.	 Contour interval 75 mm/s

4.5.16 Weekly averaged value of the meridional velocity, v, after five weeks
for the fifth case.	 Contour interval 75 mm/s
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