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OF POOR QUALITY

ABSTRACT

Observations and theories of particle acceleration in solar- flares are
I

reviewed. The most direct signatures of particle acceleration in flares are

gamma rays, X rays and radio emissions produced by the energetic particles in

i
the solar- atmosphere and energetic particles detected in interplanetary space

and in the Earth's atmosphere. We discuss the implication of these

observations, we review the theories of stochastic and shock acceleration as

well as acceleration in direct el ectr • i c fields, and we briefly discuss

interplanetary particle propagation. We attempt to present an overview of the

highlights of both current and promising future research.

s
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INTRODUCTION	 OF POOR QUALITY

Acceleration of energetic particles is a wide spread phenomenon in

nature, one that occurs at a variety of sites ranging from the Earth's

magnetosphere to distant objects such as supernovae, active galaxies and

quas;ir•s. There are in fact many explosive phenomena in astrophysics, solar

flares among them, in which energetic particles are routinely produced and

often contain a large fraction of all the available energy.

It is widely believed (e.g. Syrovatskii 1981) that solar flares draw

their energy from the annihilation of magnetic fields. The strong electric

fields which accompany such annihilation should accelerate particles, and in

addition the rapid energy deposition following the annihilation should be an

important source of shocks and turbulence. As proposed by Fermi (1949),

charged particles can be accelerated to high energies in repeated reflections

from magnetized clouds, or, in the more recent view, from hydromagnetic

turbulence and shocks. This mechanism must be important in solar flares where

shocks are known to exist and turbulence is expected to be produced by both

shocks and other mechanisms.

Because the Sun is close to the Earth, particle acceleration in flares

can be observed in considerable detail. TJ,• relevant obser•vables are

electromagnetic radiations produced by the ccelerated particles in the solar

atmosphere and energetic particles that escape from the Sun and are directly

detected in interplanetary space. From the analysis of electromagnetic

radiations and energetic particles observed from flares it follows that not

all solar flare particles species are accelerated to their final energies at

the same time. There appears to be a first-phase particle acceleration which

produces mostly non-relativistic electrons and a second phase which

accelerates ions and relativistic electrons. It is not clear, however,

4



OR'(4NgLof Poo)
'
 
QUA ^r s
	 5

whether these two phases are manifestations of different acceleration

mechanisms, or whether they are due to the evolution in space and time of the

same mechanism modified by different energy loss and particle transport

processes. Also, recent gamma-ray observations have shown that energetic ions

can be produced very promptly, within a few seconds of the nonrelativistic

electrons.

The energy spectrum resulting from solar flare particle acceleration can

be determined down to a few MeV/nucleon from the maximum flux at each energy

as observed in interplanetary space. This spectrum is clearly not a power

law; simple shock and stochastic acceleration models appear to produce energy

spectra that can fit the data. The chemical composition of solar energetic

ions observed in interplanetary space, while grossly similar to the

composition of the solar atmosphere, varies from one flare to another, and

occasionally departs dramatically from the photospheric composition. These

variations probably result from the existence of acceleration thresholds and

injection mechanisms which depend on the charge and mass of the particles.

The ionic states of energetic particles give some indication that the

particles observed in interplanetary space are accelerated in the corona; they

also seem to imply that selective heating mechanisms are occasionally

important.

We review the observations and their implications in Section II, we treat

acceleration by turbulence, by shocks, and in direct electric fields in

Section III, we discuss the problem of the determination of solar flare

particle energy spectra from interplanetary observations in Section IV, and we

summarize the paper and provide an outlook for future research in Section V.



ORIGINAL PAGE 1=	 6
OF POOR QULITY

II. ENERGETIC PARTICLES IN SOLAR FLARES

The solar flare is capable of producing a rich and complex particle

population characterized by a broad spectrum of particle energies and

containing many different cher^ical, isotopic and ionic species. Of these, the

most commonly accelerated particles are electrons of energies in the range

from about 10 to 100 keV. Information on these particles is obtained from

hard X-ray observations (e.g. Hudson 1979, Kane et al. 19 gn), from microwave

and Type III radio observations (e.g. Lin 1974), and from direct electron

detections in interplanetary space (e.g. Lin 1974, Ramaty et al. 1980).

Solar• flares also accelerate protons, nuclei and relativistic

electrons. The nucleonic component is observed in interplanetary space (e.g.

McDonald, Fichtel and Fisk 1974), it is occasionally detected on the ground by

neutron monitors (e.g. Shea and Smart 1973, Duggal 1979) and its interactions

at the Sun are manifest in gamma-ray lines (Chupp et al. 1973, Ramaty,

Kozlovsky and Lingenfelter• 1975, Chupp 1982). Relativistic electrons are

observed directly in interplanetary space (Simnett 1971, Datlowe 1971,

Evenson, Meyer and Yanagita 1981) and their interactions at the Sun produce

gamma-ray continuum (Suri et al. 1975) and Type IV radio emission (e.g. Ramaty

et al. 1980).

In the present Section we review the most pertinent data on solar

energetic particles and discuss their • implications. Electromagnetic emissions

are discussed in IIa and the direct particle observations are in IIb. Since

much of the information on solar radio emission is treated in a separate

article in this volume (Smith and Goldman 1982), we discuss this topic only

briefly here. Solar hard X-ray observations have also been reviewed in

considerable detail recently (Hudson 1979, Kane et al. 1980) as have been the
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gamma-ray observations (Ramaty 1982, in this volume).

a. Electromagnetic Radiations

The electromagnetic emissions that contain the least ambiguous

information on solar energetic particles are radio emissions, X-rays and

gamma-rays. Other emission such as EUV and white light radiations are not

discussed in the present article, but the reader can refer• to other• recent

reviews (e.g. Kane et al. 1980, Ramaty et al. 1980).

It has been known for sometime (Wild, Smer •d and Weiss 1963, Frost and

Dennis 1971, Lin 1974, Ramaty et al. 1980) that at least two phases of

particle acceleration can occur in solar flares. The first phase is

characterized by impulsive bursts of hard X-rays and microwaves and by Type

iii radio emission, while the second phase is manifest in Type II bursts,

microwave and metric Type IV emission, flare continuum radio emission and

gradual hard X-rays. Gamma-ray emission is probably due to particles

accelerated in both the first and second phases. The first phase has typical

rise times of seconds or less and durations as short as a few seconds, while

the second phase, in general, has longer rise times and durations. We proceed

now to discuss these emissions in more detail.

Radio Emissions

As Just mentioned, first-phase acceleration in the radio band is

characterized by impulsive microwave bursts and Type III radio bursts.

Impulsive microwave bursts are generally believed to be due to gyrosynchrotron

radiation of electrons of energies in the range from several tens to several

hundreds of keV (Takakura 1960, Ramaty 1969). Type III bursts result from the

conversion into electromagnetic emission of Langmuir• waves excited by beams of

electrons of energies in the 10 to 100 keV range (Wild, Smer •d amd Weiss
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1963). The same energy electrons also produce hard X-rays (see below). These

electrons have access to both closed field lines of low loops, where they

radiate microwaves and hard X-rays, and open field lines where they produce

type III bursts. The electrons on open field lines can also be directly

observed in interplanetary space (e.g. Lin 1974).

Second phase acceleration is characterized by Type II radio bursts,

microwave Type IV bursts, flare continuum and moving Type IV emission. Type

II bursts, presumably also due to the conversion of Lanqmuir waves, are

indicators of shock fronts (Wild, Smerd and Weiss 1963) in the corona.

Particle acceleration by these shocks, or by the turbulence behind them, is

consistent with many second-phase phenomena including the protons and nuclei

observed in interplanetary space. This conclusion is based on the good

correlation between proton events and Type II bursts (Svestka and Fritzova

1974). The Type II emission itself is probably produced by 10 to 100 keV

electrons that are also accelerated by the shock.

Type IV emission, in general, is due to gyrosynchrotron radiation of

relativistic electrons. This emission includes microwave Type IV bursts,

produced in low coronal loops where the magnetic field is relatively high, and

moving Type IV bursts which are geoerally observed in the corona. The

microwave Type IV emission can be distinguished from impulsive microwave

bursts by their delayed rise to maximum intensity. The moving Type IV bursts

are due to synchrotron radiation of — 1 MeV electrons in coronal magnetic

fields of a few gauss. Flare continuum emission is also observed in the

corona at the time of the passage of a Type II burst. As opposed to moving

Type IV bursts, this emission is stationary and is believed to be due to

plasma radiation (Dulk, Melrose and Smerd 1978).
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Hard X-Rays

Hard X-rays in solar flares result from the br •emsstr•ahlung of electrons

in the energy range from about 10 to several hundred keV. In the X-ray band,

first-phase acceleration is characterized by impulsive hard X-ray bursts. The

correlation between these bursts and impulsive microwave bursts (e.g. Lin

1974) indicates that both emissions should be produced by essentially the same

electron population. As already mentioned, these electrons also produce Type

III radio bursts. The first-phase mechanism is thought to be responsible for

the impulsive acceleration of 10 to several hundred keV electrons in flares

(e.g. Ramaty et al. 1980).

The most detailed information on first phase acceleration of electrons

comes from hard X-ray observations. This information, however-, is model

dependent. Two limiting cases exist regarding the nature of the electrons.

They could hciung W a nnnther•mal population whose number density is lower

than that of the relatively cool ambient medium with which it interacts, or

they could form a quasithermal hot plasma. In the former case, the radiation

yield is the ratio of the bremsstr •ahlung production rate to the nonr•adiative

collisional loss rate. Since in the X-ray band this yield is very small (-

10- 5 at 25 keV), hard X-ray production in flares should be accompanied by the

deposition of large amounts of energy into the solar atmosphere. On the other-

hand, in thermal models (Chubb 1970, Cr •annell et al. 1978), a larger fraction

of the electron energy content could in principle be emitted as hard X-rays.

But it turns out that it is difficult to confine the hot electrons to dense

regions for times comparable to their- radiation loss time (Smith and Auer

1980) and therefore the radiation yield of the thermal models is probably not

much higher than that of the non-thermal one.

There are also a variety of particle interaction models which can be
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crudely classified as thin- or thick-target (e.g. Kane et al. 1980). In the

thin-target model (Datlowe and Lin 1973) the X-rays are produced by electrons

which escape from the interaction region at the Sun, while in the thick-target

model (Brown 1971, Hudson 1972), X-ray production takes place as the electrons

slow down in the solar atmosphere. Clea. •ly, the radiation yield is lower for

a thin-target than for a thick-target, because for the lat ter, in addition to

the collisional losses, the electrons also carry away kinetic energy.

However, from the comparison of number of electrons observed in interplanetary

space with that needed to produce the impulsive hard X-rays at the Sun, it

follows (Lin 1974) that the majority of the 10 to 100 keV electrons remain

trapped at the Sun and produce X-rays in thick-target interactions.

Various estimates exist of the energies deposited in the solar atmosphere

by electrons accelerated in the first phase. From the summary of Ramaty et

al. (1980) we have that in the thick-target and nonthermal model, the energy

deposited by electrons above 25 keV is - 2x10 32 ergs for the August 4, 1972

flare, which was one of the strongest events observed. The energy deposited

in other cases ranges from about 5 to 50x1029 ergs in typical strong events,

and from about 2 to 20x1028 ergs in typical small events. The fact that these

energies are comparable to the total observed flare energies has led to the

suggestion Mn and Hudson 1976) that most flare phenomena could be accounted

for, at least energetically, by the interaction of the first-phase electrons

with the solar atmosphere.

First-phase acceleration must be very efficient, both in the amount of

energy that it converts into accelerated particle energy, as we have Just

seen, and the number of ambient particles that it accelerates. The mechanism,

however-, accelerates fewer protons to 10 to 100 keV than electrons, as

indicated by the absencQ of nonther •mal wings of hydrogen Lya (Canfield and
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Cook 1978). We discuss below the recent gamma-ray evidence for the impulsive

acceleration of MeV protons. As we shall see, the energy content in these

particles is also lower than that in the 10 to 100 keV electrons. Mechanisms

for first-phase acceleration `iav! been reviewed by Smith (1979).

In addition to the impulsive component, so l ar hard X-rays occasionally

•	 exhibit a gradual component (duration - 10 minutes) which is believed to be a

manifestation of second-phase acceleration. Hudson (1979) has reviewed the

evidence for this component. It can be four.1 in hard X-ray observations from

flares located behind the limb of the Sun (Hudson, Lin and Stewart 1981) and

from flares on the visible solar hemisphere which produce extended X-ray

bursts (Frost and Dennis 1971, Hoyng, Brown and Van Beek 1976). These X-rays

are produced in the corona and their spectrum is generally harder- than that of

the impulsive X-rays. This indicates additional acceleration. But the energy

deposited in the solar atmosphere by the 10 to 100 keV electrons responsible

for the gradual X-rays is lower by at least an order- of magnitude than that

deposited by the electrons of the impulsive phase (Hudson 1979).

Gamma-Rays

Gamma-ray lines, produced in energetic particle reactions in the solar

atmosphere (Ramaty, Kozlovsky and Lingenfelter • 1975), are tracers of the

nucleonic component accelerated in flares. Many narrow and broad lines are	
i

produced (e.g. Ramaty, Kozlovsky and Lingenfelter • 1979). The strongest narrow

line is at 2.22 MeV from neutron capture on hydrogen. This line has been seen

from a number of flares so far, as have some of the other strong narrow lines,

e.g. at 4.44 MeV from 12C, at 6.13 MeV from 160 and at 0.51 MeV from positron

annihilation (Chupp 1982, Ramaty 1982, in this volume). In additioi to being

observed individually, nuclear lines make a significant contribution to the

total gamma-ray emission above 1 MeV (Ramaty et al. 1980). In particular-, in

)
LW



.:mot-•z^'^` ^,^_ -^— " ^ p -,

OF r- JOR Q ^ ' '^y ' '	
12

the 4 to 7 MeV band, nuclear radiation appears to be the dominant emission

mechanism (Ramaty, Kozlovsky and Suri 1977, Ibrr^imov and Kocharov 1977). On

the other hand, gamma-ray emission up to an MeV is almost entirely due to

electron br •emsstrahlung and hence is a good tracer of the relativistic

electrons in this energy range. Nuclear reactions in the solar atmosphere

occasionally produce high energy neutrons which can travel as far • as the Earth

resulting in detectable neutron fluxes (Lingenfelter • and Ramaty 1967). High

energy neutrons were observed from a large Mire in 1980 (Chupp et al. 1982).

Gamma-ray observations can provide information on the timing of the

acceleration of protons, nuclei and relativis'i^; electrons, they % ,an deter•min2

the energy deposited by the nucleonic component in the solar atmc;pher •e, and

they can place constraints on the energy spectra of the protons and nuc"Pi.

Thr•nugh Doppler shifts, gamma-ray lines could provide unique information on

the beaming of the energetic particles (Ramaty and Crannell 1976, Kozlovsky

and Ramaty 1977, Zweibel and Haher 1982).

We first address the question of the timing of the nucleonic acceleration

and its relationship to the timing of the accoler •ation of the 10 to 100 keV

electrons in the first phase. This question was studied (Bai and Ramaty 1976,

Lin and Hudson 1976) for the August 4, 1972 flare which was the first flare

from which nuclear gaiMna-rays were seen (Chupp et al. 1973) .

The time dependences of hard X-rays, gamma-riy continuum, high frequency

mf,,r •owave emission and the 2.22 MeV line for the August 4, 1972 flare are

shown in Figure 1 (from Bal and Ramaty 1976). As can be seen, the emissions

produced by relativistic electrons (> 0.35 MeV gamma-ray continuum and

high-frequency microwave emission, had a time history different from that of

the X-ray emission produced by < 100 keV electrons. This difference is

manifest in that the gamma-ray continuum and microwave emission reached peak
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strength a few minutes later than the X-rays. In addition, as can be seen

from Figure 1, the time profile of the 2.22 MeV line could be hetter explained

when the time profile of neutron production was assumed to be similar to the

time profile of the gamma - ray continuum rather than that of the X-rays. (See

article by Ramaty 1982, in this volume, for a detailed discussion on the delay

of the emission of 2.22 MeV photons owing.to the finite capture time of the

neutrons). This led Bai and Ramaty (1976) to conclude that the > 0.35 MeV

electrons and > 10 MeV protons are acce l erated in the second phase. However,

as can be seen in Figure 1, even though the build-up of the higher- energy

emissions in the August 4, 1972 flare was slower than that nf the hard X-rays,

the two emissions were not clearly separated in time.

As oppo3ed to the gradual build-up of the nucleonic component on a time

scale of a few minutes seen in the August 4 event, the recent SMM (Chupp 1982)

and HEAO-3 (Prince et 0. 1982) observations have provided examples of very

prompt acceleration of protons and nuclei. The most useful information in

this regard comes from the comparison of the time history of the prompt gamma

rays in the energy band from 4 to 7 MeV (which is dominated by nuclear gamma-

rays) with that of the hard X-rays. For the June 7, 1980 flare (Chupp 1982)

this comparison (Bai 1982) implies that the < 100 keV electrons and > 10 MeV

nuclei were acceler •atEd in very close time proximity (less than a few

seconds). There are, nevertheless, differences between the two time

profiles: there is a delay of approximately 2 sec between individual hard

X-ray and gamma-ray peaks, and the gamma rays reach maximum strength at least

10 seconds after the X-rays. The small but finite lag of gamma rays behind

the hard X-rays in the June 7 flare would be yet another manifestation of a

second acceler •atioA phase. This type of second-phase acceleration, i.e. one

which is very closely correlated with the first -phase acceleration, has baen
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referred to as second-step acceleration (Bai and Ramaty 1979, Ball 1982).

We next discuss the energy content in the nucleonic component and its

relationship to the energy deposited by electrons accelerated in the first

phase. The nucleonic energy content is the sum of the energy deposited during

gamma-ray line production and the energy carried away by particles escaping

from the Sun.

We consider numerical values for two flares (August 4, 1972 and June 7,

1980) for whica tlre gamma-ray data have been analysed in considerable

detail. These are given in Table 1. Here W d (>1MeV/nucleon) and Wesc

(>1MeV/nucleon) are, respectively, the energies deposited and carried away by

the nucleonic component, W e (>20keV) is the energy deposited by electrons

above 20 keV, and N  (>10 MeV) and Nesc,p (>10 MeV) are the numbers of protons

above 10 MeV that interact and escape from the Sun, respectively. For the

August 4 flare, Wd and N p are from Ramaty (1982, in this volume), 'Wesc and

Nesc,p are from Lin and Hudso;i (1976) and We has been given earlier in this

section. Tor- the	 ne 7	 are, Wd and 
R  

are again from Ramaty (1982, in this

volume), Wesc and Nesc,p are from Von Rosenvinge, Ramaty and Reames (1981) and

We is from A. Kiplinger • (private communication 1981).

Considering the numerical values of Table 1, we first note that the

escape conditions for • the nucleonic component can vary considerably from one

flare to another. While for the June 7 flare only a small fraction of the

particles escaped from the Sun, for the August 4 flare the number of protons

observed in space exceeded the number that interacted at the Sun by more than

an order of magnitude. Evidently, in certain cases particles have access to

open field lines while in others they do not. In both cases, however, the

total energy in the nucleonic component is less than the energy deposited by

the electrons accelerated in the first phase. Shocks, turbulence, or both.
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produced during energy deposition in the first phase, could thus be

responsible for second-phase acceleration.

The gamma-ray observations also set constraints on the energy spectra of

the protons and nuclei. The derived energy spectra (Ramaty 1982, in this

volume) turn out to be consistent with those obtained from direct particle

observations in interplanetary space (McGuire, Von Rosenvinge and McDonald

1981 and IIb). This agreement implies that the same acceleration mechanism

could be responsible for both the escaping and trapped nucleonic component,

even though the ratio between the numbers of particles in these two

populations can vary dramatically from flare to flare. On the other hand we

cannot rule out the possibility that these two populations are produced by

different mechanisms.

For a discussion of additional implications of the solar gamma-ray

observations (e.g. beaming, photospher • ic 3He abundance, limb darkening

effects) the reader is referred to the article by Ramaty (1982, in this

volume.

b. Energetic Particles

Complementary to the electromagnetic radiations discussed in the previous

subsection are the direct particle observations in interplanetary space and in

the Earth's atmosphere. Spacecraft observations (e.g. Van Hollebeke 1979,

Gloeckler 1979) can determine the energy spectra of the various particle

species including electrons, the abundances of essentially all elements from H

through Ni, and isotopic and ionic abundances for a few abundant elements.

Ground based neutron monitor observations (e.g. Duggal 1979) extend the
a.

spectrum of the nucleonic component of solar flare particles to about 20

GeV. Particle observations, however, can only provide limited information on

the timing of the acceleration. We proceed now to discuss the most pertinent
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of these observations.

Energy Spectra and Electron-Proton Coy-relations

Detailed studies of solar flare proton spectra that attempted to

eliminate the effects of cor•onal and interplanetary transport were made by

Bryant et al. (1965), Reinhard and Wibberenz (1974) and Van Hollebeke, Ma Sung

and McDonald (1975). In the study of Van Hollebeke et al. the effects of

propagation on the observed spectra were minimized by considering only

particle events from flares that were well connected magnetically to the

observing spacecraft and by constructing the proton energy spectra at times of

maximum intensity at each energy (see Section IV). Because of instrumental

limitations, however, the resultant energy spectra extended only over the

narrow energy range from 20 to 80 MeV and therefore could not differentiate

between various possible spectral fits such as power laws or exponentials.

A more recent study (McGuire, Von Rosenvinge and McDonald 1981) has

extended considerably the particle energy range under investigation (1 to 400

MeV for protons) and has provided data on a-particle spectra as well. By

using the same techniques for minimizing the propagation effects as Van

Hollebeke et al. (1975), McGuire et al. (1981) find two spectral forms that

provide good fits to the data. These are the Bessel function spectrum (Ramaty

1979, Section IIIa)

3

f

and an exponential spectrum in rigidity

dr(E) a exp(-R/Ro ) dR/dE.
	

(2)

3

1
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Here dJ/dE is differential intensity measured in particles/(cm 2sec sr MeV/

nucleon), v = c6, E and R are particle velocity, energy per nucleon and

rigidity, respectively, and K2 is the modified Bessel function of order 2

(Abramowitz and Stegun 1966). The parameters aT for the Bessel function and

Ro for the exponential characterize the shape of the particle energy

spectra. Equation (1) was shown to be the solution of a transport equation

for stochastic acceleration with acceleration efficiency a and loss time T (M.

A. Lee private communication 1978, Ramaty 1979, Section IIIa).

An example of the results of McGuire et al. (1981) is shown in Figure

2. Here the data points show the cbserved particle intensities from the

November 5, 1974 event, and the solid and dashed curves are given by equations

(1) and (2), respectively. The spectral parameters for this event are aT =

0.024 and Ro = 73 MV for protons, and aT = 0.015 and Ro = 80 MV for a

particles. A very important ' result of McGuire et al. (1981) is that power

laws in energy (dJ(E)/dE - E -Y with Y a constant) do not fit the data over the

entire observed energy range, as can be clearly seen from Figure 2.

The variability of the spectral parameters aT and Ro from one flare to

another was also studied by McGuire et al. (1981). They find, as did Van

Hollebeke et al. (1975) before, that for the well-connected flares the

spectral parameters are confined to rather narrow ranges. For protons, aT =

0.025 t 0.011 and R o = 70 t 27 MV. The a-particlespectra are generally

steeper than the proton spectra. The ratios of the proton to a-particle al's

and Ro's are 1.6 t 0.2 and 0.7 t 0.1, respectively (R. McGuire, private

communication 1981).

We pointed out in IIa that constraints on the energy spectra of the

protons and nuclei that interact at the Sun can be set by gamma-ray line ratio

observations. Unlike the interplanetary ohservations, these data are not
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influenced by propagation effects, but they depend on the assumed interaction

model. For thick-target interactions, Ramaty (1982, in this volume) finds

that for 7 flares for which line ratios are available, aT (assumed to be the

same for all particle species) is in the range 0.014 to 0.020. This

relatively narrow range is consistent with that found by McGuire et al. (1981)

from interplanetary observations. As already mentioned, the implication of

this result is that a single mechanism could be responsible for both the

escaping and trapped nucleonic component.

We turn now to a discussion of electron energy spectra and correlations

between electrons and protons of various energies. Energy spectra of

electrons accelerated in solar flares were analysed by Lin (1971, 1974) and

recently by Lin, Mewaldt and Van Hollebeke (1982) who have minimized the

propagation effects in the same fashion as was done for the protons and a

particles discussed above. An energy spectrum of a large electron event is

shown in Figure 3 (from Lin, Mewaldt and Van Hollebeke 1982). The break at -

100 keV, characteristic of all solar flare electron spectra, is probably due

to the acceleration process itself (Lin et al. 1982), since the time of

maximum treatment is expected to minimize the propagation effects, and Coulomb

losses in the solar• atmosphere would produce a continuous flattening rather

than a single break. For small electron events the energy spectra are steeper

than the spectrum of Figure 3, both below and above the break. Whereas in

large events, relativistic electrons are occasionally seen above 10 MeV

(Datlowe 1971), in small events, electrons cannot be seen above a few hundred

keV.

Correlations between electrons and protons were studied by Ramaty et al.

(1980) and more recently by Evenson, Meyer and Yanagita (1981). Figure 4

(from Ramaty et al. 1980) shows the correlation between 0.5 to 1.1 MeV
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electrons and 10 MeV protons. As can be seen, for large events the two

populations are well correlated, but for smaller events ti;er•e is an

overabundance of electrons. This effect is possibly a manifestation of the

two acceleration phases, with the first-phase producing more electrons than

protons in small events. The good correlation seen for larger- events

indicates that relativistic electrons just below an MeV and - 10 MeV protons

could be accelerated by the same mechanism. This could be second-phase

acceleration. The correlation between these two particle population is

supported by the gamma-ray data. As discussed in Na and seen in Figure 1,

the >0.35 MeV continuum produced predominantly by <1 MeV electrons, and

nuclear gamma rays from > 10 MeV protons, have similar time histories.

Evenson et al. (1981) have recently examined the relationship between

protons and relativistic electrons at nearly the same energy (- 10 MeV). They

find that these two particle populations are very poorly correlated. In

particular-, the majority of the proton events have very low (< 10-3)

electron-to-proton ratios at - 10 MeV. This is in contrast to the correlation

seen in Figure 4 where all proton events are accompanied by 0.5 to 1.1 MeV

electrons. A few of the events, however, show larger electron-to-proton

ratios, and some of them are as high as 0.2 at 10 MeV. Gamma rays (lines or

continuum) were seen from all of these events. But it is not clear at the

present time whether these electron enrichments are caused by the acceleration

mechanism or whether they reflect different escape cond;tion for protons and

electrons. Oppositely directed beams of ions and electrons produced in a

direct electric field could yield gamma-ray lines at the Sun and relativistic

electrons in space. Such electric fields are discussed in Section IIIc.



20

Chemical Compositions

Nuclei heavier than He in solar energetic particles were first detected

by Fichtel and Guss (1961) and since then many measurements of such particles

have been made (see reviews by McDonald, Fichtel and Fisk 1974, Fan, Gloeckler•

and Hovestadt 1975, Ramaty et al. 1980). While the earlier results indicated

rough agreement of the energetic particle composition with photospher•ic

composition (e.g. Bertsch, Fichtel and Reames 1969), with more recent results,

it became obvious that these two sets of abundances can differ drastically

from each other.

The first indications for large abundance anomalies in flare accelerated

particles came from the observations of Price et al. (1971) which showed large

enhancements at low energies of iron-group nuclei over photospher • i c

abundances. Further- studies (Mogr •o-Camper•o and Simpson 1972, Teegarden, Von

Rosenvinge and McDonald 1973) have revealed such enhancements also for Mg and

Si.

The most dramatic departure of a solar energetic particle abundance from

its photospheric value is that of 3He (Garrard, Stone and Vogt 1973). Here

very large enhancements are occasionally observed in the 3He/4He ratio above

its likely  photospher • i c value ( see Ramaty et al. 1980 for a review of the

data).

Enrichments of 3He in energetic particle populations (for example, the

galactic cosmic rays) have been genet-ally attributed to nuclear reactions

between the energetic particles and the ambient medium. But, as first pointed

out by Garrard, Stone and Vogt (1973), this interpretation  of the solar 3He

enrichments, in its simplest form, is inconsistent with much of the 3He

data. If the 3He enrichments are due to nuclear reactions of the energetic

particles, then they should be accompanied by similar enr • ic)ments in 2H and,



to a lesser degree, in 3H. Such enrichments, however, are not observed.

Several schemes based on nuclear reactions have been proposed to overcome

this difficulty. These rely on the kinematics and angular distributions of

the reaction products which favor the preferential escape of 3He (Ramaty and

Kozlovsky 1974, Rothwell 1976) and the thermonuclear destruction of 2H and 3H

in a model in which the energetic products of the nuclear reactions are

confined to thin filaments and interact with each other (Colgate, Audouze and

Fowler 1977). But, as proposed by Fisk (1978) and Kochar •ov and Kochar•ov

(1978), the enhanced 3He abundance in solar , energetic particles could to due

to preferential heating of ambient 3He. Provided that the acceleration

mechanism has an injection threshold (Section III), such heating would greatly

enhance the number of accelerated particles.

Several systematic studies of solar energetic particle composition have

been carried out recently (McGuire, Von Rosenvinge and McDonald 1979, Cook,

Stone and Vogt 1980, Mason et al. 1980, Reames and Von Rosenvinge 1981). The

results of these studies are summarized in Figure 5. Here ratios of energetic

particle abundances to photospher • ic abundances are shown for a variety of

elements as well as for 3He and 4He.

For each element or isotope plotted in Figure 5 we consider flares for

which the energetic particles are rich in 3He and flares from which no 3He is

observed. The data for these two groups are separated by the dashed vertical

lines, with 3He-rich flares to the right of the lines and flares with no 3He

to their left.

The closed circles are the data of McGuire, Von Rosenvinge and McDonald

(1979) who measured the energetic particle composition of eight large non

3He-rich solar flares in the energy range from 6.7 to 15 MeV/nucleon. Such
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compositions were also measured by Cook, Stone and Vogt (1980) from a few to 	 a

i
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15 MeV/nucleon and by Mason et al. (1980) near 1 MeV/nucleon. The values

given by crosses and stars are the average particle abundances measured by

Cook et al. (1980) and Mason et al. (1980), respectively, for their sample of

large solar flares. As can be seen, these averages are consistent with the

data of McGuire et al. (1978).

To the right of the dashed lines are data for 3He-rich flares. The open

circles represent the recent data of Reames and Von Rosenvinge (1981) for six

flares, while the values given by the diamonds re present abundances labelled

by Mason et al. (1980) as anomalous. In particular, diamond-1 is for their

carbon-poor flares and diamond-2 is for the October 12-13, 1977 flares. Both

these sets of energetic particles are rich in 3He.

The distinction between 3He-rich and normal events follows mainly from

the 3He abundance itself. The 3He/O ratio of the former exceeds the upper

limits on this ratio for the latter by at least an order of magnitude. The

other abundances, however, are not too different for the two classes of

events. As can be seen in Figure 5, 3He-rich events can be both rich or poor

in H (see values of diamonds-1 and 2 for H), although it has been noticed

!e.a. Ramaty et al. 1980) that 3He-rich flares have on the average low lH/4He

ratios. It also follows from Figure 5 that 4He and C tend to be somewhat

suppressed in 3He-rich events although it is not necessarily true that all 3He

rich events are C poor. The variability from event to event in 4He, C and

other elements is larger in 3He-rich events than in normal events.

Both normal and 3He-rich events show enrichments in heavy elements,

although these are significantly larger for the 3He-rich events. The

abundance enhancements in Ca and Fe are in fact almost as large as those of

3He. The correlation between 3He and Fe enhancements in 3He-rich events was

first noticed by Anglin, Dietrich and Simpson (1977).
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Various models have been proposed to account for these abundance

variations. Meyer• (1981) has pointed out that some of the less dramatic

abundance variation could simply reflect coronal abundances which are

different from those of the photosphere. Mullan and Levine (1981) suggested

that differences in Coulomb energy losses (Section IIIa) of partially stripped

heavy ions could lower the injection thresholds of these ions and hence

increase the number of particles that are accelerated. Eichler (1979) has

pointed out that in acceleration by shocks of finite widths (Section IIIb),
4

partially stripped ions with large gyr•or•adi i could be preferentially

accelerated because they are capable of sampling more of the compression at

the shock. This assumes a rigidity dependent mean free path (Section IIIb)

and that all ions have the same initial velocities. Word (1982) points out

that, aside from this effect, the shock may selectively heat ions of different

mass-to-charge ratios by plasma processes, so that the ions will be injected

in a manner which depends on this ratio. In Fisk's (1978) model (see also

Mason et al. 1980), the electrostatic ion cyclotron waves which heat the 3He

also heat partially stripped heavy ions which have A/Z near 3 (e.g. 160+5,

56Fe+17) by resonance with the second harmonic of the particle cyclotron

frequency. Only mechanisms which can selectively preheat certain ions, such

as the mechanisms of Fisk (1978) and Kochor •ov and Kochar •ov (1978), combined

with injection thresholds which are large compared to the thermal speeds of

the normal ions in the source, can explain the observed 3He enhancements.

Isotopic and Ionic Compositions

In addition to the 3He observations discussed above, the only elements

whose isotopic abundances have been observed in solar energetic particles are

Ne and Mg (Dietrich and Simpson 1979, 1981, Mewaldt et al. 1979, 1981). For

Ne, it has been found that 22Ne/20Ne = 0.13 1 0.003 and 21 Ne/22Ne < 0.1.
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These abundances are consistent with those of Neon-A in meteorites (Podosek

1978) which is believed to represent the primordial Ne isotopic abundance at

the time of the formation of the solar system. The isotopic abundances of Ne

in the photosphere are not known. In the solar wind, the 22Ne/20Ne ratio of

0.07 t 0.002 (Geiss 1973) is significantly lower than in the solar• energetic

particles. The origin of this discrepancy is not yet understood. But because

the Mg isotopic abundances in solar energetic particles, 25Mg/ 24Mg =

0.14(+0.05, - 0.02), 26Mg/24Mg = 0.15 (+ 0.04, - 0.03) (Mewaldt et al. 1981)

seem to be consistent with primordial solar system material, it is possible

that Ne isotopic fractionation takes place in the solar wind. Mg isotopic

abundances have not yet been measured in the solar • wind and are not known in

the photosphere.

The first measurements (Gloeckler • et al. 1976) of the ionic states of

solar energetic particles revealed a charge distribution, consistent with that

of a gas in ionization equilibrium at about 1 to 2x10 6K. Subsequent

measurements (Sciambi et al. 1977) found that the charge states of C and 0 in

several solar particle events essentially do not vary with energy (from 0.037

to 1 MeV per charge), in time and from event to event. These results are

consistent with particles being accelerated in coronal material and traversing

little material during and after their acceleration. The recent observation

(Hovestadt et al. 1981) of singly charged He ions in solar energetic particles

indicates that cooler material is also accelerated. This could be due to

temperature inhomogeneities in the corona or the injection of chromospheric

material into the acceleration region.

Measurements of charge states have important implications on the heating

mechanisms discussed above for producing the 3He and heavy element abundance

anomalies. Ma Sung et al. (1981) find that 160+5 anH 5 6Fe+17 are indeed
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present in a 3He rich flare, as would be expected in Fisk's (1978) model.

However, the existence of appreciable concentrations of such ions in the

ambient medium, requires that particles be accelerated from regions spanning a

broad range of temperatures (4405 to 5406K).

Recently, Kleckler et al. (1982) have reported that the mean charge of Fe

during events with large 3He and Fe enrichments is significantly larger than

the mean charge of Fe during flares of normal composition. Since the charge

of Fe during normal events is not expected to be as high as +17, this result

is consistent with the heating model of Fisk (1978) which preferentially

enhances Fe+17,

III. MECHANISMS OF SOLAR FLARE PARTICLE ACCELERATION

Based on the observations described in the previous Section, a solar

flare acceleration mechanism or combination of mechanisms must fulfill the

following requirements: the acceleration mechanism must be capable of

imparting a large fraction of the available flare energy to energetic

particles and it must be possible to accelerate a significant fraction ')f

ambient particles; the dominant mechanism or the combination of mechanisms

should be capable of producing the spatial and temporal evolution of the

different energetic particle populations, in particular the rapid rise of the

various electromagnetic emissions; the mechanisms must have acceleration

thresholds, which, with appropriate injection or preacceleration mechanisms,

are capable of accounting for the observed compositions and their variations;

and the mechanisms must be able to produce particles with the observed enp^gy

spectra.

The observations also indicate that the occurence of solar flare ions in
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space is associated with cor •onal shocks and by implication with turbulence

produced by the shock. Therefore, it is reasonable to invoke stochastic

acceleration and direct shock acceleration for solar • flare ion production. On

an even more basic level, solar flares are associated with the release of

magnetic energy by the collapse and reconnection of magnetic fields, N̂ nd these

processes may generate large transient electric fields vhich could accelerate

ions and electrons directly.

In subsection (a) we discuss stochastic acceleration and in subsection

(b) we discuss shock acceleration with emphasis on recent ideas of diffusive

shock acceleration. For both mechanisms we consider energy spectra, the

problem of injection, and the acceleration times of the particles. In

subsection (c) we briefly discuss magnetic reconnection and electric fields

and their possible role in par•t'cle acceleration.

The results of subsections (a) and (b) are most relevant to ion

acceleration in solar flares. The reader is referred to several recent

reviews of first-phase electron accele r ation (e.g. Smith 1979, kamaty et al.

1980, Brown and Smith 1980). Our treatment of particle acceleration, as well

as the treatments that we review, do not discuss the generation and decay of

the shocks and turbulence, and do not, for the most part, take into account

the effect of the accelerated particles on the turbulence or on the shocks

which accelerate them. This important aspect of acceler •atinn theory remains a

subject for futu: •e research.

a. Stochas tic Acceleration

Processes in turbulent plasmas which cause particles to change their

energy in a random way wi tn many increases and decreases in energy lead to

stochastic acceleration. In the original stochastic Fermi mechanism (Fermi

1949), the process was reflection from randomly moving magnetized clouds.



Stochastic acceleration can also result from resonant pitch-angle scattering

from Alfven waves with wavelength of the order of the particle gyroradius. To

accelerate paticles these waves must propagate both parallel and anti-parallel

to the average magnetic field (Skilling 1975). Other modes of stochastic

acceleration, called magnetic pumping and transit-time damping, occur through

interaction with magnetosonic waves whose wavelengths are much longer than the

particle gyroradius (Kulsrud and Ferrari 1971, Melrose 1980, Achterbera

1981). These modes require additional pitch-angle scattering to keep the

particles isotropic. Langmuir (plasma) waves or other electrostatic waves

with phase velocities of the order of the particle speed will also accelerate

particles stochastically (Melrose 1980).

When the random energy increments are small compared to the particle

energy, stochastic acceleration results in a diffusive current in momentum

space, Sp = - Dppaf/ap, where r is the magnitude of the momentum, f(p) is the

number of particles per unit volume in phase space and Sp is measured in cm-3

momentum - 2 sec- I . Particles injected at some momentum Po will diffuse in

momentum to larger and smaller p. In terms of f, the differential particle

intensity per unit energy per nucleon is given by dJ/dE = A p 2f, where A is

the nuclear mass number. Additional non-diffusive energy changes can be added

to Sp,

of	 dp
Sp = - Dppap +f

where dp/dt represents convection in momentum space due to processes which

change .he energy of all particles (e.g. ionization or Coulomb losses).

The momentum diffusion coefficient D pp depends on the nature of the

stochastic process. If the process is hard sphere scattering with mean free

27
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path a, then Dpp can be derived (Parker and Tidman 1958, M. A. Lee, private

communication 1978) from the Boltzmann equation. This yields

Dpp = p2 W) 2 /3va	 ,	 (4)

where (6V) 2 is the mean square velocity of the scatterers and v the particle

speed.

If the stochastic acceleration is due to resonant pitch-angle scattering

from Alfven waves, the momentum diffusion coefficient obtained from quasi-

linear theory is Milling 1975)

2p2VA2	
D+ D_

Dpp = —v2	 J +6+ + D du

where VA is the Alfven s peed, D+(D-) is the pitch-angle scattering coefficient

due to forward (backward) propagating Alfven waves, and u is the cosine of the

particle pitch angle in the mean field. It is clear from this equation that

there is no stochastic acceleration due to Alfven waves unless the waves

propagate in both directions. This requirement occurs because the electric

fields of Alfven waves in one direction can be Lorentz-transformed away and so

cannot accelerate particles. For example, Alfven waves generated by the

streaming of energetic particles (Wentzel 1969) propagate only in the

direction of the streaming and hence do not accelerate the particles.

By comparing equations (4) and (5) we can define an effective mean free

path for stochastic acceleration by Alfven waves, aA = p2 VA/3vDppA .	 This

AA is, in general, a function of particle rigidity which is determined by the

power spectrum of the Alfven waves. Let Wt (k) be the energy density per wave

number k in waves propagating in the + or - directions. Then, from quasi-

(5)
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linear theory (Nasselmann and Wibberenz 1968, Jokipii 1971, Luhmann 1976),

Dt (u) = v(2nZe/ pc) 2 Wt (1/urc )(1-02
 
WW I, 	 (6)

where Ze is the particle charge and rc its gyroradius in the average magnetic

field, B. For example, if D+ = D_ and W(k) c'

•	 B2r 2

^
A
(R) = ^	 (2-n) (4-n) - R n .	 (7)

96,r W(1 /rc)

For stochastic acceleration due to long-wavelenqth magnetosonic waves

(assuming adequate particle pitch-angle scattering) the expression for Dpp

from quasi-linear theory is

P2V 
2	

2
DppM = -^A <d	 <k>	 (8)

B

(adapted from Achterberg 1981), where <6B 2 > is the mean square of the

fluctuations in the field magnitude and <k> is the mean wavenumber of the

magnetosonic waves. The number ^ depends on the angular distribution of the

waves and it is usually assumed that C - 1. Note that the a M corresponding

to equation (7) is B 2 <k> -1 /<6B 2> and is independent of particle momentum or

charge. It is not necessary for the magnetosonic waves to propagate in both

directions to accelerate particles, but as already mentioned a certain level

of pitch-angle scattering is required to isotropize the particles. This

condition is D ++D - >D ppM/p 2 (Achterberg 1981). Unlike for acceleration by

Alfven waves, the waves which do this scattering are not required to propagate

in both the + and - directions.
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The relative importance of acceleration by magnetosonic and by Alfven

waves is given by DppM /DppA .	 In order of magnitude, this ratio is

D M

Dpp
	 Y .W+ r	 r - r

where k r, = r•c -1 is the resonant wave numberand WM is the total energy

density in the long wavelength magnetosonic waves. Since by assumption

<Or c «1, acceleration by Alfven waves dominates when their energy density is

comparable to that in magnetosonic waves, but only when there is appreciable

power in Alfven waves propagating in both directions.

The momentum diffusion coefficient for isotropic Langmuir

turbulence, D opL , is given by Melrose (1980; e.q. 8.13). This results in

a aL a (A/Z) 
Z 

times a function of particle velocity.

The acceleration models which we now discuss in detail consider the

physical mode of stochastic acceleration only through the momentum diffusion

coefficient Dpp , Neglecting spatial convection, averaging over some volume of

space and introducting an escape time T from this volume, particle

conservation results in the transport equation

at + —7 ap (p2Sp ) + fi - Q(plt)
p

where Q(p,t) is the particle source in momentum space. Equation (10) has been

applied to the acceleration of solar energetic particles by Barbosa (1979),

Ramaty and Lee (Ramaty 1979) and Mullan (1980).

In Bar•bosa's (1979) model (hereafter referred to as model B) the

acceleration is by Alfven waves with a power law spectrum for W(k), T is

assumed to be a power law in velocity, T avm , and dp/dt is neglected. In

(10)
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Mullan's model (1980, referred to as model M), the scatterin g is from neutral

sheets in turbulent motion leading to a constant a; numerical integration is

used in order- to incorporate realistic losses due to Coulomb scattering and

adiabatic deceleration in an expanding turbulent region, followed by an

energy-independent escape. The Ramaty-Lee model (Ramaty 1979, model RL) is a

special case of the other two, since it assumes that both the mean free path

and escape time are energy-independent and that dp/dt is negligible when

acceleration is effective. These are rather special assumptions which need to

be physically justified. Nevertheless, the pr •edicteo energy spectrum of this

model fits the interplanetary observations of proton and a-particle spectra al

1AU very well (see Section IIb). Because of this and because of its inherent

simplicity, we proceed to first discuss the RL model.

With a steady source of q particles/cm 3sec at momentum po, equation (10)

becomes

of _ 1 a	 4 of + f = qd(p-po)

p ap ( ` 6 ap) T 4,r 2
0

where the acceleration parameter- a = M) 
2 /Xc. 	 The steady-state solutions

of this equation are characterized by the dimensionless, energy-independent

constant J. For ul tr •ar •el ati vi stir particles

( po
P 

-3/2 t (9/4 + 3/aT) 112
q	 )

f =

	

	
2	

(12)
4,rpo a (1 + 4/3aT)

(11)
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where the plus sign applies to p<po and the minus sign to p>po• For

non-relativistic particles and p>po

f =	
p1 I

2 (2(3po/mcaT) 
1/2 

)K 2 (2(3p/mcaT) 1^ )	 (13)
p o ca

where m is the ion mass, and I 2 and K2 are the modified Bessel functions of

order 2 (Abramowitz  and Stegun 1966) . The arguments of 12 and K2 are

interchanged for p<p o . The corresponding intensity per energy per nucleon

is dJ/dE = Ap2f.

The spectrum of dJ/dE is not a power-law. It has an energy-dependent

slope y(E) _ - dln(dJ/dE)/d1nE which approaches zero at low energies. From

the asymptotic expression for K 2 (x) - x -1/2 exp(- x), we find thst at energies

E>> 3.26 a2T2 MeV/nucleon

W a E3/8exp (- (E/(3.26(aT)2))1/4)	 (14)

This spectrum steepens with increasing energy up to the fully relativistic

domain where equation (12) applies and y(E) = (1/2)(9 + 12/aT) 1/^ - 1/2.

As discussed in Section IIb, McGuire, et al. (1981) have found that

equations (13) or (14) fit the spectra of protons and a-particles in

interplanetary  space quite well with aT around 0.025 for protons. Different

values of aT, however-, are required for these two particle species; in many

events the values of aT which fit the helium spectra are less than those for
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protons. The solar energetic particle spectra, therefore are not strictly

velocity-dependent as implied by a constant X. The possibility of a rigidity

dependent diffusion mean free path is considered in the model of Barbosa

(1979) which we discuss next. 1

As already mentioned, the B model uses the quasi-linear theory of 	 1

particle resonant scattering to evaluate Dpp from a given spectrum of Alfven

waves. The steady state spectrum of non-relativistic particles in this model,

with X.R n (cf. equation 7) and Tavm is

63	 (1+n/2) 	 1 3va 1f2
dE v	 Kv (S (=)

VA T

where s = (n+l-m)/2>0 and v = (2-0/2s. By using the asymptotic expression

for K v (x), equation (15) can be written as

^ a e(3+n+m)/8 exp (-(Z)n/2 ( E
	 )

(l+n-m)/4 	
(16)

3.26K

which is valid if the argument of the exponential is much larger than unity.

The constant K in equation (16) for the B model is equivalent to aT in

equation (14) for the RL model. For n = m = 0 equations (15) and (16) reduce

to equations (13) and (14), respectively, i.e. the B model reduces to the RL

model.

For n>0 equation (16) predicts a-particle spectra, which, when expressed

as functions of energy per • nucleon, are steeper than the proton spectra for
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the same K. This feature of the B model, not present in the RL model, is

qualitatively consistent with the observations, as discussed above. But the

comparison of equation (16) with the solar flare proton spectra for a variety

of m's and n's shows that the best fit is obtained for m = n = 0. Other

values make the slope of the spectrum vary more rapidly with energy than

observed. For example, if m = 0, we find that equation (16) fits the observed

proton spectrum shown in Figure 2 only if n	 0.1.	 For such small values of

n, the a-particle spectrum is only slightly steeper than the proton spectrum

with the same K, while the observed proton and a-particle spectra shown in

Figure 2 are considerably different. Thus, while the B model allows rigidity

dependent spectra, the fit of the calculations to the data implies that this

rigidity dependence is not very pronounced.

In the M model, the scattering elements are assumed to move with

velocities 6V of the order- of shock velocities in the corona. Since a is

assumed to be energy independent Dpp , is given by the same expression as in

the RL model, equation (4). The dp/dt term in equation (3), however-, is taken

into account. In particular a time dependent combination of Coulomb and
R
1

adiabatic deceleration losses followed by energy independent escape is used. 	 l

Because of this complexity, the resultant energy spectra can only be given
3

graphically. They are approximately constant below 1 MeV/nucleon, very steep

above 100 MeV/nucleon, and have y - 3 at - 50 MeV/nucleon. This is in general

agreement with observed spectra, although detailed comparisons over an

extended energy range have not yet been made.

A very important question in all particle acceleration theories,
i

including stochastic acceleration, is that of injection. We first note that

the basic concept of stochastic acceleration assumes that the energy changes

are small compared with the particle energy and therefore the particle

IN
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velocity must be much greater- than dV. Furthermore, for resonantresonant scattering,

ions must have v>V A to scatter• from Alfven waves and electrons must have

v>43VA to scatter from whistlers (Melrose 1974).

An additional injection condition is set by the requi rement that the

systematic acceleration rate due to diffusion in momentum space be larger than

the ionization and Coulomb en pr•gy loss rates of the particles. The systematic

acceleration rate is (e.g. Ramaty 1979)

(p)	 = ( vp2 ) -1 aP ( vp2DPP )acc

and for Dpp from equation (4)

( dl )	 = 4a (E (E + 2Mc2)) 1^
acc

Here M and E are the proton mass and kinetic energy per nucleon for • nuclei,

and the electron mass and kinetic energy for electrons.

Energy loss rates due to ionization in a neutral medium and Coulomb

losses in a fully ionized medium were summarized by Ramaty (1979). These loss

rates together with the systematic acceleration rates for nuclei and electrons

(equation 18) are plotted in Figures 6 and 7 for neutral and ionized media,

respectively. Particles can be accelerated only if the rate of systematic

energy gain exceeds the rate of energy loss. Depending on the ratio of the

acceleration efficiency, a, to the ambient density, n, the energy gain curve

f.

a .



may or- may not intersect the energy loss curve. In the former case an

injection mechanism is required which preaccelerates the particles to E - Eo,

wher-e Eo is the energy where the two curves intersect.

The values of a/n indicated in Figures 6 and 7 were chosen such that E 

for- electrons is around 0.1 MeV, an energy at which there seems to be a

transition from first phase to second phase acceleration (Section II). For

protons, however-, these a/n's are such that the systematic gain is larger that

the loss at all energies, and in this case it is possible to accelerate

ambient particles directly. However, stochastic acceleration still r•equir•es

that the particle velocities be lar •yer than dV. Assuming that dV is of the

or-der- of the Alfven velocity, the particles must be accelerated either from a

high g plasma ( a = par-ticle pr •essur•e/magnetic pressure) or possibly from the

non-thermal tail of a low-B plasma. Such non-thermal tails ar-e observed in

the solar- wind (Ogilvie, Scudder- and Olber-t 1978, Scudder and Ogilvie 1979).

If the Alfven speed is the threshold, then 3He-rich events cannot originate in

high-a plasmas.

The solar- energetic particle abundances and their- variability must be

strongly dependent on the injection process as we have discussed in Section

IIb. Injection questions have not yet been fully investigated and they remain

outstanding problems for future r•esear•ch.

The acceleration time of stochastic acceleration can be studied from the

time dependent solutions of equation (10). Such solutions were obtained in

the RL model for- impulsive injection of particles at t - 0 and p = po'

with T ; - and a = const.	 In Figure 8 (from Ramaty 1979) we show the

differential proton and electron number- densities (N(E) = 4wp2 f/v) at various

times t after injection. As can be seen, in r given time, protons are

accele ► • ated to much higher- energies than electrons. This result is the direct

36
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consequence of the acceleration rates shown in Figures 6 and 7 which assume

the same a for protons and electrons.

From the gamma-ray observations (Section IIa) it follows that in at least

some flares protons and nuclei are accelerated to energies greater than 10

MeV/nucleon in about 1 sec. As can be seen from Figure 8, acceleration of a

significant fraction of the protons to such energies requires

that at - 0.1.	 Then if t . 1 sec, a •= 0.1 sec -1 .	 Because dV can probably

not be greater than 3408 cm/sec, A must be less than 3x10 7cm. Since this

value is 50 times the gyr•oradius of a 20 MeV proton in a 1 Gauss field, we

could expect such short mean free paths in the strong turbulence of solar

flares. But there is no direct observational evidence for such turbulence.

The characteristic acceleration time in the B model is of the same form

as in the RL model. Barbosa (1979) estimates that the acceleration time to

10 MeV can be as short as - 10 seconds. As above, this requires strong

turbulence on scales	 106cm. Mullan (1980), on the other hand, estimates

from numerical solutions that the time to accelerate keV protons to - 5 MeV is

about an hour. This time is too long for the acceleration of the gamma-ray

producing protons and nuclei, but it could be adequate for the acceleration of

the solar flare particles observed in interplanetary space.

b) Shock Acceleration

Solar flare shocks propagate upward through the solar corona at speeds of

about 500 to 2000 km/sec, as indicated by Type II radio bursts (Smith and

Goldman 1982 and Section IIa), and laterally through the chromosphere where

they are seen as Moreton waves (Uchida 1974). The occur •ence of solar

energetic particles in space is strongly correlated with flares having Type II

bursts (Svestka and Fritzova 1974). Flare shocks are observed to accelerate

particles in interplanetary space (Richter and Keppler 1911), as are
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co-rotatinq shocks (Barn^s and Simpson 1976, McDonald et al. 1976) and

planetary bow shocks (Asbridge, Bame and Strong 1968, Lin, Meng and Anderson

1974, Scholer• et al. 1980, Zwickl et al. 1981). A flare shock can transport

particles in an energy-independent manner through the corona until they escape

onto open field lines. Shock acceleration has been recently reviewed by

Toptygin (1980) and Axford (1982) and applied to solar flares by Achterberg

and Norman (1980), Decker-, Pesses and Armstrong (1981) and Lee and Fisk

(1982). See also McDonald (1981) for review.

There are basically two types of shock acceleration: scatter-free, in

which particles gain energy by reflection in a single shock encounter 	 {

(Sonnerup 1973, Chen and Armstrong 1975, Pesses, Decker and Armstrong 1982)

and diffusive, in which particles gain energy by repeated scattering between

the converging plasmas on either side of the shock (e.g. Axford, Leer and

Skadron 1977, Axford 1982). The scatter-free mechanism can enhance the

particle energy by about an order of magnitude if the shock is nearly

perpendicular (i.e. the magnetic field is nearly perpendicular to the shock

normal), but in that case, only particles with spetds which are already much

greater than the shock speed can be reflected. Further acceleration, however,•

requires multiple reflections. These are possible if there is particle

scattering in the fluid flow or• if the particles are trapped between
i

converging shocks in a flare loop (Wentzel 1965).

Acceleration by diffusive scattering across the shock is a first order

Fermi process, in the sense that every shock crossing results in an energy

gain. It is in principle more efficient than stochastic acceleration because

it derives energy directly from the compression of the flow at the shock. For

this mechanism to be effective, however, there must be adequate particle

scattering both upstream and downstream of the shock. The passage of the
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shock is expected to generate turbulence downstream which will scatter the

particles. Scattering upstream, however,is more problematic (Holman, Ionson

and Scott 1979). Observations (Tsurutani and Rodriquez 1981) of

interplantetary shocks and planetary bow shocks show that when they are nearly

parallel there is a very turbulent foresh rick reqion capable of scattering

particles. Such a region could be produced by the accelerated particles

themselves (Achterberg and Norman 1980, Lee 1982).

In the simplest example of a plane shock where the only losses are due to

convection of the particles away from the shock downstream, the energetic

particle density in phase space is given by a power law, f R p-P AVM where V

is the shock speed and AV the discontinuity in the plasma speed at the

shock. In terms of the compression ratio, r, at the shock, V/aV = r/(r-1).

For a strong shock in a non-relativistic fluid, r - 4 and hence f(p) R p-4.

For weaker shocks, 4>r>l and th •efore the power-law is steeper. Rlandford

and Ostriker (1980) have modeled cosmic-ray acceleration and propagation in

the Galax; on the basis of this result, including acceleration by shocks with

a spectrum of compression ratios. They have been able to reproduce the

observed cosmic-ray spectrum which approximates a power law over a wide range

of energies.

Unlike galactic cosmic rays. solar flare particles do not have power-law

spectra (e.g. Figure 2). In fact, none of the energetic particle populations

which are observed to be accelerated by shocks in interplanetary space have

power-law spectra. Diffusive shock acceleration produces such curved spectra

rather than power laws when particle energy losses or escape losses are

significant, or when the shock has a finite size or lifetime, compared to the

natural scales of the shock acceleration. For example, diff;,sive escape

losses from the finite bow shock of the Earth (Eichler 1981, Forman 1981b,
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Ellison 1981x, Lee 1982) and adiabatic losses near- interplanetary shocks (Fisk

and Lee 1980, Forman 1981x) have been shown to reproduce the observed spectra

quite well.

In the present subsection we describe the general methods used to obtain

energetic particle spectr-a from shock acceleration, and provide a simple

solution of the appropriate transport equation which provides a spectrum that

fits the solar- fl ar•e data quite well.

The transport equation which describes diffusive shock acceleration is

similar- to equation (10) without the stochastic acceleration term pr-opo ►•tional

to Opp, but with additional terms due to convective transport, spatial

diffusion and adiabatic compression of particles in the plasma flow. This

equation is given by (Axfor •d 1982)

of + V•vf - v•(k•vf)	
v•V 

p 
of + f + 1	

a(p2(dp)f) = Q(p,r• ,t),	 (19)
at	 - -T ap T 

p 
ap R

where f, T and dp!dt have been defined in connection with equation (10),V is

the plasma velocity and k the spatial diffusion tensor- which ;ouples the

energetic particles to the plasma converging at the shock. The terms

containing V and k ar-e essential for- the description of acceleration across

the shock front. The Injected particles are explicitly introd . -ced in equation

(19) by the source term Q; the injection may also be treated as a boundary

condition such that f approaches a given value fo far- upstream. The losso?s

due to particle escape can be treated via the escape time T, or- as diffusive

escape. In the latter- case the scatterinq becomes negligible at a finite

distance from the shock.

The usual method for- deriving a steady-state ( 	 0) particle spectrum 	
t

is to first solve equation (19) separately on each side of the shock and then
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to match the two solutions at the shock by imposing boundary conditions. These

conditions are that both the energetic particle density and the normal

component of the spatial streaming ( S = - 47rp2(11p 
ap 

+ k•vf)) of these
particles be continuous at the shock. Toptygin (1980) has shown that this is

an appropriate approach even though equation (19) is not valid very close to

the shock.

We present here a steady-state solution of equation (19) by assuming that

dp/dt is negligible and T is constant (as in the RL model for stochastic

acceleration), than only diffusion along the shock normal is important (hence

k can he treated as a scalar), that the shock is an infinite plane at x = 0

and infinitely thin, and that the particles are steadily injected at the

shock, i.e. Q = q 6(x)6(p- p
0

) /( 4,rp 02 ) where q is measured in particles cm-2

sec - 1 . For these conditions, the solution on either sideside of the shock is

given by

f(x,p) = f(O,p) exp (-B i lxl) ,
	 oF POOR ( UAI xf 1t	

(20)

where upstream

Bi = 81 = (V + (V 2 + 4k 1 /T) 1t2 )/2k1
	

(21)

and downstream

S
i
 = 62 = (-(V - eV) + ( (V - AV' + 4k 2 /T) 112 	 2.	 (22)

The streaming continuity at the shock gives the equation



)
nVP3 
p

(0 p) + (klsl + k2 62 ) f(O,P) _ --

qa(p-p
^ —	 (23)

4,rp0

The exact non-relativistic solution of this equation is

f(O,p) =
3q
	

( pp)-3V/nVexp (
-3(VI 1 + ( V - AV)I2)/,&V)	 (24)

	

4n p
o 

AV	 o

where

I i = (1+n i ) /2 -1 - ctnh -1 (1+n i )1 - In (n i /4 0	 (25)

with ni = 4a i p/(3mV?T). Since I i ^0 for n i +0, the distribution function is a

power law for v << 3V?T/4a i with the same spectra l index (3V/AV) as for the

case of a plane shock with no losses. However, when v becomes comparable to

the lower value of 3V^T/4a i , the shape of the spectrum is determined by the

exponential term in equation (24). In other words, the spectrum is determined

by the losses on the side of the shock where V?/x i is lower. This is probably

the upstream side.

Assuming for simplicity that V 2 /a is the same on both sides of the shock,

and that 3V/AV = 4, as for a strong shock, the differential intensity per

energy per nucleon, for v>> 3V 2T/4, is

di m E-1 exp (-(E/(0.422(aT)2)) 1/4 ),	 (26)

	where aT = V2T/(ac).	 Equation (26) for shock acceleration is quite similar

to equation (10) for stochastic acceleration in the RL model. These two

spectra are compared in Figure 9 using values of aT which fit typical data in
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both cases. As can be seen, the difference between them is most pronounced at

the lowest energies where the solar flare spectrum is unknown because of

adiabatic energy losses in the interplanetary medium (Section IV).

As for stochastic acceleration, for shock acceleration as well, the

question of injection is very important. Ionization and Coulomb energy losses

to the ambient medium have the same role in determining injection conditions

in shock acceleration as they do in stochastic acceleration. In addition, for

diffusive shock acceleration, particles downstream must have sufficient

velocity to overtake the shock. This is at least (V - AV) directed towards

the shock, and increases as cos- ? y, where ^ is the angle between the

downstream field and the shock normal. The velocity V-AV is at least as great

as VA o ► • SV, and with the additional cos- 2 y factor-, the threshold for shock

acceleration is expected to he higher than for stochastic acceleration.

Another injection condition is set by the finite width of the shock which

could depend on many parameters including  the pressure of the accelerated

particles. When this pressure is taken into account (Axford, Leer-, and

Skadron 1977, Eichler- 1979, Drury and Volk 1981, Drur y , Axford and Summers

1982) all or part of the velocity change AV is smoothed out over a length

scale - k/V, where k is the diffusion coefficient of the energetic particles

averaged over • their energy spectrum. As pointed out in Section IIb, this

smoothing is expected to affect the composition of the accelerated particles

(Eichler 1979). Drury, Axford and Summers (1982) show analytically that when

k is independent of energy, the smoothing causes the dominant accelerated

species (i.e. protons) to have a steeper spectrum than in the case of an

infinitely thin shock. Minor species which are only partially stripped could

have larger diffusion coefficients than the protons if the diffusion mean free

path is rigidity dependent, and therefore for them OR. 	 Drury, Axford and

)

i
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Summers (1982) show that the spectrum o; such minor species is flatter than

for protons and approaches that of an ' I nfinitely thin shock.

Ellison (1981b) has studied these effects with a Monte Carlo calculation

appropriate for a parallel shock. In this treatment, the plasma flow and the

energetic protons are required to conserve mass, momentum and energy flux, the

mean free path is assumed to be propor •tienal to gyroradius, and particles are

injected from the shocked plasma doumstr •eam in which the temperatures of

different ions are proporti oral to t-,ei r mass. Ellison (1981, b) finds that the

shock is indeed broadened and drat ',;ier •e are modest enhancements of energetic

particles which increase with the mass-to-charge ratio.

The acceleration time d.: shock acceleration can be obtained from the

time-dependent solution of equation (19). Such solutions have been obtained

for• various initial -onditions and geometries by Fisk(1971), Forman and

Morfill (1979) and Toptygin (1980) and have been reviewed by Axfor •d (1982).

The general result is that

dE = AV ( 1 + ")	 (E(E+2M c 2 )) 12	 (27)

1	 2

This expression shows explicitly that if the mean free path on either side of

the shock is very large, the rate of energy gain is very small. Since, as

already mentioned, shocked gas downstream is expected to be turbulent, the

efficiency of of the acceleration depends critically on the presence of

turbulence upstream.

In the absence of upstream turbulence, particles can still be accelerated

stochastically by the shock-generated turbulence downstream. By comparing

equations (18) and (27) we find that the ratio of the shock acceleration rates

and the stochastic acceleration rate downstream is of the order



VeV/(sV)2	
2M1 + ^`2)), 

where dV is the velocity of the turbulent elements

and a2 and al are the downstream and upstream mean free paths, respectively.

Thus, if the mean free paths are comparable, shock acceleration will be more

rapid since V and eV are expected to be larger • than SV.

c. Acceleration in Direct Electric Fields

The previous two sub-sections have dealt with mechanisms that can be best

applied to the acceleration of ions in solar flares. In addition to

stochastic and shock acceleration, there is also the possibility of

accelerating particles in direct electric fields. Such fields are associated

with magnetic reconnection in the vicinity of magnetic neutral points and

current sheets (Syr •ovatskii 1981), where they appear perpendicular to the

magnetic field. Particle acceleration is also possible in electric fields

parallel to the magnetic field (Colgate 1978). Parallel electric fields arise

from the interruption (due to plasma instabilities) of the parallel currents

associated with twisted i1agnetic flux tubes and from the formation of double

layers of electric charge (e.g. Spicer 1982).

The application of direct electric fields to the acceleration of

nonrelativistic electrons in solar flares has been discussed most recently by

Spicer (1982). (See also Smith 1979, Heyvaerts 1981). Here we wish to

emphasize the role that direct electric fields could play in the very rapid

production of ions and the acceleration of relativistic electrons.

As discussed in subsections (a) and (b), both stochastic and sha.:k

acceleration could accelerate ions quickly enough to account for the gamma-ray

observations, but it is not clear that the mean free paths are, in fact,

sufficiently short and the turbulent and shock velocities are large enough to

account for the rapid acceleration. On the other hand,hand, in an electric field

model (such as that of Colgate 1978), the acceleration time could be as short
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as 0.1 sec for a loop of length 	 I.09cm.

Relativistic electrons around 10 MeV, however-, cannot be produced fast

enough and in sufficient quantities in stochastic and shock acceleration

because the particle energy gain per collision is proportional to particle

mass. But there seems to be a good correlation between interplanetary

electrons of such energies and gamma-ray flares (Evenson, Meyer and Yanagita

1981; Section IIb). Since the gamma rays are produced by ions of - 10

MeV/nucleon, this correlation could indicate electron and ion acceleration to

the same energy by an electric field.

In this Section, we review particle acceleration processes in current

sheets and in the vicinity of magnetic neutral points. For discussions of

acceleration by parallel lectr • ic fields, the reader should consult Colgate

(1978), Smith (1979), Heyvaer •ts (1981), and the review of Spicer (1982).

Current sheets and magnetic neutral points are involved in a wide variety

of contexts in solar physics. The primary energy release in solar flares may

occur by magnetic reconnection (e.g. Kahler • et. al. 1980, Sturr•ock 1980).

Parker (1979 and references therein) has emphasized the near-singular
F

conditions required for magnetostatic equilibrium, and has proposed that the

reconnection of tangled magnetic fields occurs routinely and inevitably in

nature. Syrovatskii (1981) has recently reviewed the formation of current

sheets. In view of the important role suggested for current sheets and

reconnection in the solar atmosphere it is natural to consider particle

acceleration mechanisms associated with these phenomena. Reconnection and

associated particle acceleration have been extensively studied in the Earth's

magnetosphere (Steen and Ness 1982).

In models of steady state reconnection, magnetic fields of opposite

polarity are brought together by a flow of fluid. A detailed discussion of



the fluid theory of steady state reconnection has been given by Vasyliunas

(1975). Early descriptions of the reconnection process and its application to

solar flares were given by Parker (1957, 1963) and Sweet (1958). Two of the

best known examples of reconnection are the models of Petschek (1964) and

Sonnerup (1970) which involve x-type neutral points. The magnetic field lines

are sketched in Figures 10a and 10b for these two models. These field lines

lie in a plane (say, the x-y plane) and there is a constant electric field, E,

perpendicular to that plane. The electric field is related to the magnetic

field B, flow velocity V, and current J in the plasma by Ohm's law

E+VxB/c = nJ,
	

(28)

where n is the resistivity. The inclusion of other terms in equation (28) is

discussed by Vasyliunas (1975). The resistive term is unimportant everywhere

except in a small region near the x-type neutral point where 8 becomes small

and J is large (because the gradients of B are large). Here the frozen in

condition of the magnetic field is violated. Rather than being transported by

the fluid, the field diffuses through the semi-stagnant plasma. The region,

therefore, {s referred to as the diffusion region.

As shown in Figure 10, cold fluid flows inward along the x axis. Most of

the fluid never enters the diffusion region, but passes through a shock front

(or pair of fronts, in Sonnerup's model) and flows out parallel to the y

axis. In Petschek's model, the inflow occurs at a small fraction (—•1) of the

Alfven speed, while the outflow is exactly Alfvenic. This acceleration takes

place at the expense of magnetic energy. In Sonnerup's model, the inflow can

be faster than in Petschek's model, in which case, less acceleration of the

bulk flow occurs. In both models, however, the thermal speed of the ions



increases across the shock front to about the Alfven speed. The increase of

electron thermal energy depends on the structure of the shock and the nature

of the coupling between electrons and ions.

Similar results have been obtained by Hayashi and Sato (1978) who have

simulated time dependent, compressible reconnection by solving the fluid

equations numerically. In their model, an initially planar • neutral sheet is

compressed into an x-type neutral line by imposed fluid flow directed inward,

perpendicular to the initial field lines. They assume that when the current

density J exceeds some critical value Jc, anomalous resistivity develops and

increases as a power of J - Jc. Thus, reconnection of the magnetic field-

lines and Joule seating of the plasma near the neutral line begin when the

neutral sheet has been sufficiently compressed by the incoming flow. They

find that, as in the analytic models of reconnection, the regions of inflow

and outflow are separated by shocks and that the outflow speed is on the order

of the Alfven speed.

If ions gain flow velocities on the order of the Alfven velocity, their

energy per• nucleon is 2.5x104 B2 /n, where B is in gauss and n in cm- 3. While

for most combinations of B and n in the solar atmosphere this energy is not as

high as the observed particle energies, this bulk flow acceleration could

nonetheless be important as an injection mechanism. In certain exceptional

cases, however-, B could be high enough and n low enough for the particles to

achieve energies as high as 10 MeV;nucleon (e.g. Sonnerup 1973) which would

suffice, for example, for the production of nuclear • gamma rays.

1'	 In addition to the acceleration and heating of the plasma as it passes

through the reconnection region, the possibility exists of direct particle

acceleration in the electric field at the magnetic null line.

An example of such acceleration was discussed by Speiser- (1965) . He
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	 I
considered a magnetic field with field lines parallel to the y axis with field

► • ever• sal at x = 0,

ORIGINAL PAGE IS

OF POOR QUALITY

B = ey B I	 IxI<d
(29)

B = eyB I TxxT I x I > d

where !y is the unit vector- in the y direction and B I is a constant. Here the

field equals B I for- Ixl>d and goes linearly to zero for- IxI <d. A constant

electric field E = VB,ez /c is also present and assumed to be continuous at

x=0. Everywhere in space except near- the field reversal region at x=0, the

particle orbits consist of gy ► • ation in the x -7 plane (the usual Lar-mot• motion)

combined with the ExB drift in the x direction, toward the plane x=0. Since

for- IxI >d the motion in z is oscillatory, the average energy gain is zero in

this r-egion. However-, once a par •ti cl a has dr-ifted to near- the x=0 plane where

the field is very weak, it does not gyrate - it is simply accelerated in the z

direction. The final energy, E, of the particle depends on the extent, L, of

the cur-r-ent sheet in the z direction. Numerically, E in MeV equals 10- 6 BLV,

where B is in gauss, L in km and V km/sec. Thus particles can be accelerated

to tens of MeV if B,V and L ar-e large enough.

Whether- neutral sheets have sufficient lengths, and, whether- or- not

par •ti cl es can r-emain in the sheet for- such lengths, ar-e pr-oblems which have

not yet received clear-cut answers for- solar- flares.

In order, to estimate the distance the particles stay in the neutral

sheet, particle orbits in various magnetic geometries have been calculated by 	 ,

Speiser- (1965), Friedman (1969), Bulanov and Sasor •ov (1976), Bulanov (1980),

and Syr•ovatskii (1981). The results depend strongly on assumed geometries,
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and analytic treatments can only be made for• the simplest field

configurations. Time dependent electric and magnetic fields have also been

considered (Burke and Layzer 1969, Levine 1974). Levine extended Burke and

Layzer• 's work by trying to estimate the effect of Coulomb collisions between

the test particles and field particles in the ambient medium. The existence

of an energy loss mechanism which competes with acceleration sets an upper

limit on the time constant for collapse of the neutral sheet such that

particle acceleration can still occur. Recently, Mullan and Levine (1981)

have studied the implications of the collapsing magnetic neutral sheet model

for the composition of solar • flare accelerated ions (see Section IIb).

Attempts have also been made to calculate the energy spectrum of

particles accelerated in neutral sheets. In the absence of stochastic

processes such as Coulomb collisions or wave-particle interactions, the phase

space distribution function f of the test particles satisfies Liouville's

theorem; the density of particles in phase space is constant on phase space

trajectories. Therefore, given an initial spatial distribution of injected

particles and solutions for the particle orbits, the momentum distribution

function of particles leaving the acceleration region can be calculated.

(Bulanov and Sasorov 1976, Bulanov 1980). They find that when the initial

distribution of particles is uniform in space, the spectrum is an exponential

in energy or in a fractional power of the energy. Energy spectra have also

been calculated numerically by Bulanov (1980) who finds good agreement with

the analytic results. Friedman (1969) has used numerical techniques to

calculate final energies for test particles in Petschek's (1964) reconnection

model. A generally recognized problem with particle acceleration in neutral

sheets is that only very few particles are accelerated.



IV. SOLAR FLARE ENERGY SPECTRA IN INTERPLANETARY SPACE

The spectra of particles observed at any one time in interplanetary space

are not exactly the same as the spectra released at the Sun because of

velocity dispersion caused by energy-dependent diffusion, and because the

solar- wind convects and decelerates energetic particles as it expands. If

these solar- wind effects are small, the effect of velocity dispersion can be

Pliminated in prompt, magnetically well-connected events by using the time-of-

maximum (TOP)) energy spectrum formed by the maximum intensity at each ener•or

(Lin 1970, Van Hollebeke et al. 1975). We justify this method below.

At energies less than about 1 MeV/nucleon for ions and 1 keV for-

electrons, convection and adiabatic deceleration will make the TOM spectrum

flatter than the spectrum at the Sun, but the precise effect on the spectrum

is uncertain. In addition, the TOM spectrum becomes less reliable for such

low-energy particles because their propagation becomes more sensitive to

inhomogeneties in the solar wind and magnetic fields (e.g. shocks).

The important questions which need to be resolved before interplanetary

spectra can be used to test models of the acceleration and release process at

the Sun are: What is the most convenient way to estimate the spectrum at the

Sun from spacecraft observations of energetic flare particles; above what

energy is that spectrum reliable; and what is the approximate nature of the

change in the spectrum below that energy. First, we show why the TOM spectrum

in simple well-connected events is a good approximation to the spectrum at the

Sun.

The observed f(p,r,t) is related to the spectrum injected into

interplanetary space by the transport equation.
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which is analogous to equation (19) for shock acceleration. Here

47rp2 F 0 (p, e, t) /v is the number of particles released per (energy-sec)  at

momentum p, longitude e, time t, and radial distance r •o from the Sun, and V is

the solar wind velocity.

It is clear that Fo can be most reliably recovered from f(p,r • ,t) when Fo
and the interplanetary parameters k and V are as uncomplicated as possible.

Therefore, we consider only events in which the effects of delayed and

longitude-dependent release at the Sun, longitudinal transport in

interplanetary space and all interplanetary propagation complexities (e.g.

shocks) are minimal. These are the magnetically well-connected and prompt

events at solar longitudes in the range 600 t 400 west of central meridian.

In addition, the spectrum can he derived with confidence only for those events

in which the particle fluxes have weak anisotr •opies during and after the time

of maximum (indicating sudden release) and which have smooth time profiles

(indicating that the injection is uniform over the connection longitudes). In

such simple events, the particle propagation can be treated as spherical

diffusion along each field line.

When, furthermore, k <<Vr • and for times t<< r•/V, the convection and

adiabatic deceleration can be neglected. Then equation (30) reduces to simple

time-dependent spherical diffusion from a point source. If the outer- boundary

is far away, the solution of equation (30) for k independent of r• is (Parker

1965)
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4r^ 2d,r (tk(p))

where No (p)dp is the number • of particles between p and p+dp released at the

Sun. Clearly, if the assumptions so far are valid, f(t) will have the time

dependence in equation (31), and a fit of particle data to that form will

confirm the asumptions and determine NOW.

A more direct approach is to note that equation (31) has a maximum at tm

= r2 /6k(p), and that for particles at their tm( r,P)

3/2 N (p)	 N (p)
f(p,r,t (r,p)) _ (6/e)
	 o	 0.93 0	

(32)m	 23-3•-- 4wp
	 r 41vp

This is the basis for the assertion that the TOM spectrum is the same as that

released at the Sun. If k a r  with b<2, a similar relation holds and No(p)

4wp2f(p,r•,tm)r3.

Many of the assumptions leading to the validity of the TOM spectrum break

down at low ion energies because of the long time to maximum (- 1 day at 1

MeV/nucleon) and because of the stronger coupling to the solar wind, which is

highly variable on time scales of 1 day. In addition, the condition Vr«k,

which allows convection and adiabatic deceleration to be neglected, is

equivalent to v>>3Vr • /%. With a - 0.1 AU as in Figure 11 (Palmer 1982), this

velocity is - 109 cm/sec, or energies >> 1 MeV/nucleon.

The effect of adiabatic deceleration on the TOM spectrum can be estimated

several ways, which give similar results. Scholer • (1976) has shown by

(31)
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numerical simulations of particle trajectories that when k < Vr and k depends

on energy, convection and adiabatic deceleration not only make the time of

maximum flux of particles observed at energy E earlier than r •2 /6k(E), but make

the discrepancy larger at lower energies. This is because particles observed

at energy E had higher energy near the Sun and so diffused faster there; the

effect increases at lower energies because the relative energy change is

larger  at lower  ener •gi es. The ner•gy change must he less than the energy

shift in the tm( E ) curve compared to r2 /6k(E). This behavior of tm is

discussed by Kurt et al. (1981) who show that while the t m vs. energy curves

for well-connected flares vary - 1/v (as expected for a • constant) above an

energy E1 (- 1 MeV), the variation ;s weaker below E1 in . the manner of	 i

Scholer• 's (1976) simulations. The break energy E 1 varies slightly from flare

to flare, but is al ways near • where Vr• = k, on the basis to the tm at high

energies. Kurt et al. (1981) also show that the TOM spectra of these flares

are flatter• below E1 than above E1, and they discuss the apparent energy

change, and its effect on the TOM spectrum.

Scholer• (1976) found the energy change for each particle by integrating

the adiabatic deceleration law dp/dt = - 2Vp/3r• along the computed spatial

trajectories of the particles. Kurt et al. (1981) approximate the

trajectories with diffusion speed U(p,r • ) such that dr• - Udt. Then with U

3ak/r • , where k - E a , the deceleration law can be integrated. It can be shown

that U = 2 k/r• is a better choice, consistent with certain analytic results on

the effect of convection and adiabatic deceleration on the mime of maximum and

the particle flux at that time (Fisk and Word 1968, Forman 1970) 	 The

energy change law then becomes dp/dr = - Vp/3k. When a is constant, this

results in a change in the speed of a non-relativistic particle, given by Av =

- y r/% between the Sun and r. For the typical value of A = 0.1 AU, this is



ev - (- 4008 H AIM cm/sec.

Figure 12 shows the effect of this adiabatic energy change on the

spectrum.

We conclude that the TOM spectra of solar flare particle fluxes in

interplanetary space is a good first-order estimate of the spectrum released

at the Sun, for• reasonably well-connected flares showing fairly rapid particle

release, down to energies where convection and adiabatic deceleration are

significant. The TOM spectrum should be used because it eliminates the

velocity dispersion caused by the energy-dependence of the diffusion

coefficient; the spectrum varies slowly at that time; it is relatively

insensitive to finite injection times; and it is early enough that convection

and adiabatic deceleration effects are minimal. The TOM spectrum begins to

deviate from the s pectrum injected at the Sun at energies where k(E) < Vr•;

that is E < E1 - 3(r/10X) 2 MeV/nucleon forions and < 1.5 ( r • /1OX) 2 keV for

electrons,	

-

el ectrons, or • when the time of maximum is longer  than the solar wind transit

time divided by the Compton-Getting factor. Typical values of X make E 1 _ 1

MeV/nucleon for ions and - 1 keV for • electrons.

The effect of adiabatic deceleration and convection on ion spectra with

realistic propagation parameters below a few MeV/nucleon is not known

exactly. We have presented some rules which describe approximately how the

TOM spectrum is related to the spectrum released at the Sun. Since, as we

have shown in Section III, the spectrum below 1 MeV/nucleon differs greatly

between acceleration theories which explain the spectrum above 1 MeV/nucleon

equally well, a more exact method of deducing the accelerated spectrum below 1

MeV/nucleon from that observed in interplanetary space is needed to decide

among such theories. However, because the propagation of such low-energy ions

is extremely sensitive to interplanetary conditions, it is problematic whether

55



this can be practically done with observations at 1 AU.

V. SUMMARY AND OUTLOOK

We have reviewed observations and theories of particle acceleration in

solar flares. Flare accelerated particles that remain trapped at the Sun

produce a variety of electromagnetic emissions which provide important

information on the timing of the acceleration and on the number and energy of

the accelerated particles. While it is clear• that not all particles species

are accelerated to their final energies at the same time, the distinction

between first-phase and second-phase acceleration is no longer as clear as it

had been prior to recent gamma-ray observations. There is ample evidence for

the bulk ener•gization of non-relativistic electrons whose interactions in the

solar atmosphere produce hard X rays. The energy contained in these electrons

constitutes a major fraction of all the available flare energy. The

acceleration of the gamma-ray producing ions in some flares is closely

associated in time with this bulk ener•gization. The energy content of these

ions, while smaller than that of the non-relativistic electrons, also

constitutes a significant fraction of the total flare energy (Section IIa).

The ions observed in interplanetary  space are probably accelerated by

shocks or turbulence. The correlation between Type II radio bursts and ions

events provides the main observational support for• this conclusion. Both

stochastic and diffusive shock acceleration can explain the observed energy

spectra, but the fact that these spectra do not vary much from one event to

another (Section IIb) seems to imply that one of these mechanisms is

dominant. The relative importance of stochastic and shock acceleration

depends on the injection thresholds, the relative magnitudes of the shock and
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turbulent speeds and on the magnitudes of the scattering mean free paths. The

existence of suitable turbulence ahead of the shock is an essential

requirement for shock acceleration (Section IIIb).

The chemical compositions of the energetic particles in space and their

variability appears to be a problem of injection (Section IIb). This follows

from the fact that abundance variations are generally not accompanied by

spectral variations. Both stochastic and shock acceleration mechanisms have

injection thresholds, but the threshold of shock acceleration is expected to

be higher than that of stochastic acceleration (Section III). The abundance

variations could be due to variations of the threshold energies, or of the

preheating conditions. Preheating or preaccel er •ati on are required to produce

particles above the thresholds.

Both stochastic and shock acceleration can be rapid enough to produce the

observed rise times of the gamma-ray emission. We find that the necessary

short scattering mean free paths are not inconsistent with other data.

The question of whether the ions responsible for gamma-ray production and

those observed in interplanetary space are produced by the same mechanism

remains unanswered. On the one hand, the energy spectra of these two

populations appear to be similar, but on the other • , the correlation between

the number of particles seen in space and inferred at the Sun is quite poor.

An important recent observation (Section IIa) has been that of relativistic

electrons seen in interplanetary space in correlation with gamma-ray

emissions. Since stochastic and shock acceleration are not expected to

accelerate relativistic electron efficiently, this might he 4n indication for

the acceleration of nuclei and electrons to essentially the same energies in

electric fields (Section III0 .

Both observational and theoretical work is required for future progress
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the under-standing of solar fl ar-e particle accel er •ati on. On the

.er-vational side, much progress has recently been achieved by such novel

Festigations as gamma-ray and neutron observations, X-r-ay observations with

Ih tempo ► • al resolution, and direct charged particle detections with good

spectral elemental, isotopic and ionic resolutions. These should be continued

and cot-r-elated with each other- as well as with other data on solar- flares such

as shock par•amete ► • s. For example, in energetic particle measur-ements there is

a need for greater- sensitivity. Some of the most bizar • r•e and interesting

flare events ar-e the small ones; however, existing instrumentation cannot

accumulate sufficient statistics Zo measure the composition in great detail.

More sensitive gamma-ray observations are needed in order- to determine whether

prompt ion acceleration is present in all flares. Gamma-r-ay observations with

high energy resolution ar-e also needed to resolve the lines and measure

Doppler- shifts which would provide information on energetic particle

beaming.

The theoretical and interpretative work making use of the existing

observations is just beginning. We can foresee important advances from

studies that will apply recent theoretical results on shock acceleration to

solar- flare acceleration, investigations of ion acceleration by electric

fields leading to the beaming of the energetic particles which could have

observable effects on gamma-r-ay spectra, and from a much more detailed study

of acceleration theories which would consider- the acceleration of particles

and their- effect on the accelerating agent in a self consistent manner.
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June 7, 1972 2x1029erg	 2x1027er•g 4x1030er•g 8.5x1032	 1031

Flare Wd(>l MeV/n) We5C(>l MeV/n) We(>20 keV) Np(>10 MeV) NeSC,p(>lOMeV)

Aug 4,	 1980 2.5x1030er•g 3x1031erg 2x1032er•g 1.3x1034 3x1035
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FIGURE CAPTIONS

Fig. 1. Time dependences of X-rays, gamma-rays and microwave radiation from

the 4 August 1972 flare (from Bai and Ramaty 1976).

Fig. 2. Bessel function (see Section IIIa) in velocity,and exponential in

rigidity fits to proton and alpha particle spectra for the 5 November 1974

flare particle event. Fit parameters are aT (proton) = 0.024, aT (alpha)

0.015, Ro (proton) = 73 MV, Ro (alpha) = 80 MV.

Fig. 3. Electron energy spectrum from the 7 September 1973 flare (from Lin,

Mewaldt and Van Hollebeke 1982).

Fig. 4. Correlation between solar flare electron and proton intensities

observed in interplanetary space (from Ramaty et al. 1980).

Fig. 5. Compositon of solar energetic particles relative to the photosphere

(see Section IIb for details).

Fig. 6. Energy loss rates of protons, Fe nuclei and electrons in neutral H

(dashed curves) and energy gain rates from equation (18) (from Ramaty 1979).

Fig. 7. Energy loss rates of protons and electrons in an H plasma of 2x106K

(dashed curves). The loss rates for other ions scale as Z 2 /A. The energy

gain rates are from equation (18) (from Ramaty 1979).

Fig. 8. Time dependent proton and electron spectra from stochastic
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acceleration with impulsive injection and no losses, Eo is the injection

energy (from Ramaty 1979).

E	
Fig. 9. Compa rison of the particle spectra produced by steady-state stochastic

acceleration, equation (13), with shock acceleration, equation (24), for
E

models in which the scattering mean free path, X, and the escape time, T,

are energy independent. Vsh is the shock speed and (6v)2 the mean square

turbulent velocity. 	
4

Fig. 10. Magnetic field and flow configuration in (a) the Petchek (1964) and

(b) the Sonnerup (1970) reconnection models.

Fig. 11. Mean free paths of solar electrons and protons in interplanetary

space deduced by fitting time profiles in many events (from Palmer 1982).

Fig. 12. Illustration of the probable effect of adiabatic deceleration on the

spectra of solar flare ions at the time of maximum. The spectrum at the Sun

(shown as a dashed line) is shifted to lower energies.
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