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Abstract 

A fully conservative numerical method for the computation of steady 

inviscid supersonic flow about general conical bodies at incidence is 

described. The procedure utilizes the potential approximation and implements 

a body conforming mesh generator. The conical potential is assumed to have 

its best linear variation inside each mesh cell; a secondary interlocking cell 

system is used to establish the flux balance required to conserve mass. In 

the supersonic regions the scheme is desymmetrizied by adding artificial 

viscosity in conservation form. The algorithm is nearly an order of a 

magnitude faster than present Euler methods and predicts known results 

accurately and qualitative features such as nodal point lift off correctly. 

Results are compared with those of other investigators. 
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the first author was in residence at ICASE, NASA Langley Research Center, 
Hampton, VA 23665, which is operated under NASA Contract No. NASl-17070. 
Calculations were performed at NASA Ames Research Center using remote 
facilities supported by NASA Training Grant NGT 03-002-S00. 
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Introducti on 

Conical flows are one of the simpliest type of inviscid flows that 

have the basic features of a three-dimensional flow. A flow field is 

classified as conical when all the physical properties, viz., the 

pressure, density, velocity, and entropy, remain constant along every 

straight line through a given point called the apex. Conical flows 

occur for example, around finite cones in supersonic flows because of 

the law of forbidden signals. The topological features of conical flows 

can be easily understood by studying the cross-flow streamlines; that is 

the traces of the conical stream surface's intersection with a sphere as 

sketched in Figure 1. The cross-flow streamlines will have critical 

points where the cross-flow velocities vanish. For a special class of 

critical points one can derive rules for the number of these points 

using Poincare indices. Thus, for example, irrotational conical flows 

must have an equal number of saddle points and nodes. At a nodal point 

the entropy, density and radial velocity are multivalued. At high 

angles of attack conical streamline patterns exhibit certain global 

changes such as the lift-off of the leeward node and, perhaps, the 

appearance of spiral nodes. In addition, the cross flow may become 

supersonic as it expands about the leading edge, leading to an embedded 

supersonic cross-flow region terminated by a shock wave (see Figure 1). 

It is interesting to note that the perturbation of shock free flows to 

see if neighboring solutions exist in the classical sense of Morawetz 2 

remains to be studied for conical flows. 

The isentropic assumption retains all of the topological features 

of these flows except spiral nodes and should provide an adequate 

approximation to the quantitative flow features if the Mach number 

normal to any shock is less than about 1. 4. This approximation greatly 
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simplifies the computations because the governing equation is scalar and 

the possibility of multiple values at a nodal point (the vortical 

singularity) is eliminated. 

First major success in computing nonlinear irrotational conical flows was 

reported by Grossman3 , who devised a quasilinear finite difference method to 

this problem. An alternative approach is to extend Jameson's4 finite 

difference algorithm for transonic full potential equation in the euclidean 

three space as a marching scheme to treat supersonic potential flows. This 

extension has been developed by Shankar5 using Steger's6 density linearisation 

technique. 

In this paper the theory of irrotational conical flows is described in a 

general coordinate system defined on a unit sphere. A finite area method is 

described that represents an extension of the conventional finite volume 

methods 7 ,8 to vector fields defined on a curved surface. It is then used to 

compute various conical flow fields studied by other investigators 3,9,10. 

Simlarity between the highest-order terms of the partial differential equation 

describing conical flows and that describing plane transonic flows has been 

exploited to devise a suitable artifical viscosity to implement the 

(mathematical) entropy condition11 as well as to construct a stable iteration 

scheme. 
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Cross-flow velocity field 

It is essential in the application of the finite area method to 

frame the equations in an invariant coordinate system. We have done 

this by first projecting the Euler equations for a general 

three-dimensional flow onto a sphere of radius r, and then scaling them 

to obtain the description on the unit sphere. We first note that the 

main stream velocity components, Qi, and their projection on the 

sphere of radius r, Va, are related by 

where 

B i , 0: = 1,2 and i = 1,2,3 
0: 

12 
are the projection factors (or the tangents). Here the Xi are 

coordinates in Euclidian 3-space and the 30: are parametric coordinates 
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on the surface of a sphere. We could also decompose the mainstream 

velocity as 

I'lhere OR is the radial velocity and Ni the normal to the spherical 

surface. 

Now, with the conical assu~ption in mind, we introduce a radial 

scaling to reduce the variables to those on a unit sphere, viz., 

II 
= _a_ 

r 

such that the magnitude of the scaled cross-flOl'l velocity yay = yay = q2 
a a C 

is independent of r. The total velocity is thus 

Once the coordi nates 3 a , the metri c ga~' and the vel oci ty vector 

va, are defined on a portion of the surface of the unit sphere, we may 

use elementary results from Riemann geometry to develop the governing 

equati ons. For potenti a1 flow vie need to use only the conti nui ty and 

the energy equations. 

The continutiy equation for the general three-dimensional inviscid 

flow is 

= 0 
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where IG is determinant of the metric tensor of the space Xi, anrl p 

the gas density. For conical f10\',s this implies that on a unit sphere 

+ 2p/g OR = 0 

Here I g is the determi nant of the metri c tensor of the parametri c space 

~a on the surface of unit sphere.
13 

If the irrotationa1 assumption 

is made, the velocity Oi will have a potential ~(Xi) such that for 

coni ca 1 flows 

where F(~a) may be called the conical velocity potential since 

We also have the energy equation 

y-1_ 1 + Et12 (1-02) 
P - 2 00 

(1) 

v/here 

and 1,1 is the freestream t'lach number. Thus, we must sol ve the equati on 
00 

+ 2p/g F = 0 (2 ) 

where (3) 
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and the density is given by tile energy e~uation (1). 

Substituting (1) and (3) into (2) ijnd performing the differentiation, we 

find the quasilinear form of the governing partial differential 

equation: 

(4) 

where "II" means surface covariant differentiation12 and, a, the sound 

speed and is given by, 

Equati on (4) changes its type ~'Ihen 

12 
(g 

UV 2 
- :2) 

a 

or, noting 9 > 0 always, when 

Here we use the notati on 

11 
(g 

u2 22 
- -) (g 

a2 
v2 

-2 
a 

= 0 

(5 ) 

Thus, the equation is hyperbolic, parabolic, or elliptic depending on 

whether the cross-flow Mach number Mc is the greater, equal, or le~s 
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than one. We could also derive this result by choosing a local 

coordinate system aligned with the cross-flow streamlines. 

If we define streamwise and normal coordinates s,n such that 

with 

= 1 

Here Ea~ is the surface permutation symbol l2 • Then we find 

Note also that in these coordinates 

of of o~a: V Va: 
= = qc = a: --oS o~a: oS qc 

and 

of =~ 1 v ) of 1 ~) 0 (- - - + (/g = on or: Ig qc 011 qc 

Sirnil ari ly, we also obtain the relations 

02F _ Va:V~ 02F 
+ ... 

os2 q2 02a:03~ 
C 

and 

02F = (ga:~ Va:V~ 02F 
+ 

-~ 
... 

on2 o~a:o~~ C 
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Using these relations we may write the governing partial differential 

equation as 

+ ••• = 0 

We also note the following structure of these equation: Replacing 

the expression for 02F/os2 we obtain 

where 

a2 
~ = {1 - ~ 

c 

_ a2 02FJ + •.. = 0 

on 2 

Now if we defi ne tvlO functi ons P, Q such that 

and 

Ig ,,2F 
Q = ~p (UV u 

T 0F;;0T) 

then the parti al differenti al efluati on becomes 

- 02F 
-(P + Q) + pig -2 + •.• = 0 

on 

This form is useful for explaining the introduction of a conservative 

artificial viscosity. 
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Finally, we note that the governing ellUrltion is of quasilinear type 

and hence, that it admits shock jumps. The jump condition that 

conserves mass follows immediately from the Eq. (2): 

This is obviously the jump condition that would be desired from the 

mainstream continuity equation with the conical assumption. 

Finite area method 

Jameson's finite volume method for the potential equation8 may be 

extended to a vector field defined on a non-Euclidian space as long as 

v~e have a simil ar parti a 1 differenti al equati on. In thi s secti on we 

develop the finite area method on the unit sphere. It should be 

emphasized that the derivation would be the same for a vector field on a 

general curved surface. We assume that on this curved surface a smooth 

grid is provided, as sketched in Figure 2, with the surface coordinates 

(latitude e, longitude ~) provided for each nodal point: 

We call these primary cells. In order to implement the finite area 

method the primary cells are mapped to a unit square using a local 

bilinear transformation in the parametric space sllch that 

4 
e = ~ 

;=1 

4 
and ~ = ~ 

i=l 
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Here i denotes the nodal values and 

The geometrical quantities are calculated in the following manner. 

The first fundamental form in the spherical coordinate system ea is 

ds2 = si n2</Jde2 + d</J2, or 

(6) 

and 

19 = si n </J (7} 

In a mapped coordi nate system 'B,a, I"i th ds2 

(8 ) 

and 

Ig = 19 J 

Here J is the Jacobian of the parametric transformation ea ('B,~), that is 

Ig = sin </J (e~</J - e </J,) 
~ T] T] s 

( 9) 

We always calculate the geometric quantities at the center of the cells 

and therefore the bilinear transformation and its best linear substitute 

have the same rolel~ Thus we take 
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1 i Si Si +e:\ = = "4 + TJ TJ b 

and thus 

4 

ee: = E 
i=1 

and at the center of the 

4 
e = 1 l: 

if i=1 

e\i , etc. 

cell 

ei 
t , e c. 

Equations (6) - (10) define geometric quantities at the center of 

(10 ) 

primary cells. The floYI quantities are also defined at the center of 

the cells. The potential is of course defined only at the nodal 

points. The flow quantities may be calculated as follows: Let f be the 

disturbance to the freestream potential fro due to the body, i.e., F = 

fro + f. Then we assume the disturbed potential also to have the 

bil i near form 

4 
f= l: Sifi 

i =1 

Because lumping is not used in the present formulation (it was not found 

i i to be necessary), "'Ie may replace S by Sb . 

Thus, 

4 
f = E 

i=1 



and f = 
I; 

4 
E 

i=1 
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": i fi t '; ,e c. 

The total velocity is computed from 

and 

f = cos a cos ~ + sin e sin ~ sin a, 
00 

where a is the angle of· attack. 

We are now ready to implement the finite are method. VJe first 

introduce a secondary interlocking cell structure as shol'/n in Figure 3 

in order to integrate the mass continuity equations. He now integrate 

the weak conservation law over the domain Q so that 

1 
J Ig 
Q 

Igd~d~ + J 2pF/gd~d~ = 0 
Q 

Applying the surface divergence theorm to the first term, we find 

J 
c 

Here n is tangent to the surface and normal to the curve c. This relation 
a 

is valid for any arbitrary n and therefore also valid locally for a flux 

cell. Since the flux cell faces are parallel to coordinate lines in the 

mapped plane, and using one point evaluation for each integral, we obtain 

o[pu/gJ + o [pv/gJ + (2PF/g)O 0 
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for each cell, where 6[ ... J denotes the net flux change across the cell 

and ( •.. )0 the average over the cell. We also need to define the flux 

quantities at points A,B,C and 0 of the flux cell faces. In this 

formulation we simply use a box sche~e to evaluate these terms. Thus we 

obtain the approximation to Equation (2) as 

~ 6 (p/gU) + ~ 6 (p/gV) + ~ ~ (2p/gF) = O. 
11 I; I; 11 I; 11 

where ~ and 6 are respectively the averaging and central difference 

operations. 

Boundary conditions 

We consider the computational domain in Figure 4. The outer 

boundary Co is taken well outside the bow shock wave. Boundaries C1 and 

C2 are symmetry pl anes and Cb is the cone body where the normal 

velocity vanishes. 

Oute1"boundary 

At the outer boundary all the disturbance vanish, i.e., f, f~, fn are 

all zero. This is implemented in the following way, if N2 grids are the 

rings, then 

f(I,N2 + 2) and f(I,N2 + 1) o 

Syrrmet1"Y pZane 

At the symmetry plane W~ introduce an additional grid line and 

explicitly set the reduced potential to be the same on both grid lines. 

Thus, if Nl grids are in the circumferential direction, then 

f(l,J) = f(3,J) and f(N 1 - 1,J) = f(N 1 + 1,J) 
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Cone surface 

On the body surface the normal velocity should be zero. If flj('E,a.) 

is the cone surface, then uiaflj/axi = 0 implies Vaa~/a~a = 0 since the 

body is a cone. If the body coincides \vith a coordinate surface, I; for 

example, then ~(~a) = n = 0 and the boundary condition implies V 0, 

i.e., the contravariant cross-flow component that does not lie on the 

body must vanish. This is implemented by considering a half flux cell 

about the cone and using flux reflection. 

Artificial viscosity 

In order to stabilize the scheme in the supersonic regions we de-

symmetri ze the scheme by up\vi nd differenci ng the contri buti on for the 

Fss term. Also, since the higher-order terms of the partial differen

tial equation for conical flows are similar to that of plane transonic 

flows, if vIe do the upwind differencing with first-order accuracy (at 

least near the shocks), then the resulting truncation errors will look 

1 ike the vi scous tenn for pl ane flows and therefore may be expected to 

capture any shock waves and insure the entropy condition. The viscosity 

should be introduced in the conservation form and this can be accomplished in 

the following manner. Let us consider the case when Va > o. We noticed 

earlier that the terms contributing the Fss term have a structure containing 

- -and therefore will effectively evaluated as -Pi,j - Qi,j in the 

finite area scheme. To upwind we need to replace 
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them by -P. 1 . - Q. . 1 and thi s means \'ole need to add a vi scos i ty term l-,J 1,J-

T;j' 

R .•• 
1J 

such that T .. = (P .. - P. 1 .) + (0 .. - O .. 1)' to the residual 
1J 1,J l-,J 1,J 1,J-

We use the switching function 

in the supersonic zones 

in the subsonic zones 

The method has to be appropriately modified for the other directions of 

contravariant velocity. 

Iteration scheme 

The nonlinear algebraic equations resulting from the finite area 

method are solved using a "constructed" line relaxation scheme. This 

means that ~/e assume that the problem is being solved by Jameson's 

rotated difference scheme in the quasilinear form along with Jameson's 

special relaxation method9
• Here we assume that the iteration process 

is equivalent to a problem of evolution in an artificial time and choose 

the explicit time dependent terms such that the problem is well posed. 

We do have certain restrictions on the direction of the sweep. We 

should not sV/eep against the flOl'l inside the supersonic zone. At high 

angle of attack this condition is difficult to maintain with a ring 

relaxation inward from the bOl'l shock v/ave. Thlls the suitable line 

relaxations are either a circumferential sweep or a combination of the two 

(see Figure 4). One should note that the restrictions on the sweep direction 

can be easily removed by devising an approximate factorization sCheme 16 • We 

use line relaxation mainly to test the finite area formulation. It was found 

that a circumferential relaxation from windward to leeward is the best in most 

of the cases and is this scheme described here. Assume tht Va > 0 and 

consider the line relaxation scheme. 
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scheme 

A1C •• + A2 {C •. - C. 1 .) + A3 {C .. - C. ·1) + A4 {C •• - C. ·+1) 
1J 1J 1- ,J 1J 1,J- 1J 1,J 

= R.. + T.. + A5 (C. 1 . 1 - c. -1 . + 1 ) 1J 1J 1- ,J- 1,J 

If we now consider that Rij + Tij are equivalent to their quasilinear 

finite difference equivalent multiplied by pig, then, construction of 

the Jameson iterative scheme will give the following values for 

Al ,···,A5 : 

u2 2 pi g{ gl1 - -:2){- -1) 
a w 

o 

where w is the over-relaxation factor, 

and 

y2 
A3 = p/g{ g22 -a-z 

y2 
+ [1-) 

a2 

subsonic 

supersonic 

where [1 is the switching function. We note here that in subsonic flow, 

provided w < 2, all the coefficients Al , ••• ,A4 are positive. Thus the 

scheme is linearly stable. We obtain furttler insight by looking at its 

equivalent time dependent form for each flow type: 
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Subsonic zone 

11 U2 2 v U 2 2 lIt[ (g - -)(- - l)F - - Fnt + qc (1 - t1 )F t] = (1 - f1c)Fss a2 w t Igqc cs 

+ F + ••. nn 

Supersonic zone 

1I t[ - Ig~ 
c 

In the supersonic zone we apply the condition, 

_ 1)]2 > [1 _v_]2 (M2 _ 1) 
"Z Igqc c 

to ensure that s is time-like in the unsteady problem as well. This 

means that 

To ensure that the above condition is always satisfied, especially 

near the sonic line, we further augment the first term by adding 

£(U + V) Fst /qc where £ is as small as possible and yet sufficient 

to ensure stabil i ty. The term F st has to be represented by an upwi nd 

difference, we write this as 

d U
q
+ V) [~(C .. - C. 1 .) + 'i (C .. ,.. c .. 1)J 
c qc 1 J ' - ,J qc 1 J 1 ,J-

This scheme must be appropriately modified when V changes sign. 
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Grid generation on a curved surface 

Suppose we are interested in generating grids for a simply

connected region on a curved surface. We could use the following simple 

method: First we note that the first fundamental form is in the aa 

coordinate system is 

We first transform to a new coordinate system 3 a such that 

where A = A(~,n) 

This coordinate system is called the isothermal coordinate system 17 and 

this transform maps the surface portion conformally to a plane. Then we 

define a comp1ex variable z such that 

z = 1; + i" 

and apply further conformal transformations to obtain a simple domain 

where we may generate the desired grids. Alternately, one could derive 

a numerical grid generation method for the isothermal coordinates. In 

the present problem we used the grid generation procedure that is 

commonly used in supersonic computations, that is, we obtain the 

isothermal coordinates for a unit sphere using stereographic projection 

and then use a Joukowski transformation follO\'Iec1 by a simple shearing to 

obtain a suitable grid network. 
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Results and discussion 

Computati ons were made to demonstrate that the method predi cts 

qualitative features of simple flows correctly and their quantitative 

aspects accurately. All the calculations were performed on three mesh 

levels startinq with a 16 x 16 grid system. On this initial grid 150 

iterations were performed and this was followed by 100 iterations at the 

32 x 32 1 evel and at the fi nal 1 evel. Convergence for the 1 ast two 

grids is reliable after 25 to 50 iterations, depending principally on 

whether or not there is a body shock wave. Cal cul ati ons ,,,ere performed 

with uniform grids without any clustering; a typical grid is shown in 

Figure 5. The results for a circular cone of 10° half angle at 10° 

angle of attack in a freestream of Mach 2, are shown in Figures 6a and 

6b. While the results shown are for a 64 x 64 grid, excellent agreement 

for the pressure coefficient on the body and the bow shock positions was 

obtained using the 16 x 16 grid and this required fewer than 70 itera

tions. This coarse grid only requires few seconds of CDC 7600 CPU 

time. The pressure distribution in the field is shown in Figure 7 for 

three circumferential angles. Excellent agreement with the Euler compu

tations of D.J. Jones 9 is again demonstrated. An example of lift off is 

given in Figure 8, where the streamline patterns for the 10° angle of 

attack case are compared with those for an angle of attack of 20°. 

Results for two thin elliptic cones are shown in Figures 9 and 10. 

One ellipse has a major to minor axis ratio of approximately 6:1 and the 

other has a ratio 13:1. In the first case a comparison with the Euler 

equation calculations of Siclari10is made. The agreement is generally 

excellent except for the extra leading edge suction which may be due in 
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part to the potential approximation, and except for the post shock 

pressure. We note here that the Euler result does not show the expected 

shock foot singularity* captured by our potential calculations. The 

second example compares the Euler equation results of Siclari, the non-

conservative potential finite difference results of Grossman3 and our 

results. Here all three methods capture to some extent, the shock foot 

s i ngul arity. The fi nite area method agrees \'/ell \'/ith the Eul er 

results. The difference in the shock position between the conservative 

and nonconservative method is to be noted. The total computation time for a 

case with body shock wave is about 40 seconds of CDC 7600 CPU time. 

* The pressure gradient immediately behind the shock must be 
logarithmically infinite. 
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PROJECTION OF STREAMLINES 
ON SPHERE R = CONST 

'" PARTICLE TRAJECTORY 
FLOW '" ..d:.~~ " ' 

"'" CON I CAL 
, STREAM SURFACE 

SHOCK WAVE 

CONE 

BOW SHOCK WAVE---" 

Figure 1. Concial flow particle trajectories and stream surface (from Ref. 

1), and sketch of flow about an elliptic cone showing bow shock 

wave, cross-flow sonic surface and cross-flow shock waves. 
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3 rt 2 

• -

~ 

4 1 

Figure 2. The computational domain and a sketch of the bilinear parametric 

transformation on a unit sphere. 
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Figure 3. Sketch of primary cells and the flux cell. 
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Figure 4. Computational boundaries and various possibilities for line 

relaxation. 



Figure 5. 
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The 64 x 64 mesh for a 18.39°: 3.17° elliptic cone at 10° angle of 

attack. 
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Figure 6a. Surface distribution for a circular cone at 100 angle of attack 

with M~ = 2.0; 64 x 64 grid. comparison is with the rotational 

calculations of Jones9 • 
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6 PRESENT RESULTS 
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Figure 6b. Bow shock position for a curcular cone of 10° half angle at 10° 

angle of attack. Calculated using a 64 x 64 grid. Comparison is 

with the rotational calculations of Jones9 • 
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Figure 7. Pressure variation between the bow shock wave and the body for a 

circular cone of 10° half angle at 10° angle with M = 2.0. 
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Comparison is with the rotational calculations of Jones9 • 
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Figure 8. Comparisons of the streamline patterns on a circular cone at 

a) 200 and b) 100 angle of attack with Moo = 2.0. Note the lift-

off of the leeward node as well as the formation of a supersonic 

zone in the cross flow. 
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Figure 9. Comparison of the results using the Euler equations due to 

Siclari 10 with the present results for a 18.39°: 3.17° elliptic 

cone at 10° angle of attack with M~ = 1.97. 
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Figure 10. Comparison of the results using the Euler equations due to 

Siclari10 , and a quasilinear formulation of the potential equation 

due to Grossman3 , with the present result for 

a 200: 1.50 elliptical cone at 100 angle of attack with 

M = 2.0. 
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