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SUMMARY

__ The contravariant Navier-Stokes equations in weak conservation form are
_ well suited to certain fluid flow analysis problems. Three-dimensional con-

travariant momentumequations may be used to obtain Navier-Stokes equations in
weak conservation form on a nonplanar two-dimensional surface with varying
streamsheet thickness. Thus a three-dimensional flow can be simulated with
two-dimensional equations to obtain a quasi-three-dimensional solution for
viscous flow. Whenthe Navier-Stokes equations on the two-dimensional non-
planar surface are transformed to a generalized body-fitted mesh coordinate
system, the resulting equations are similar to the equations for a body-fitted
mesh coordinate system on the Euclidean plane.

Contravariant momentumcomponents are also useful for analyzing compres-
sible, three-dimensional viscous flow through an internal duct by parabolic
marching. This type of flow can be efficiently analyzed by parabolic marching
methods, where the streamwise momentumequation is uncoupled from the two
crossflow momentumequations. This can be done, even for ducts with a large
amount of turning, if the Navier-Stokes equations are written with contravar-
iant components.

INTRODUCTION

The Navier-Stokes equations are often transformed to special coordinate
systems for computational purposes. However, if it is desired to have the
equations in conservation form, it is generally necessary to use Cartesian mo-
mentum components. On the other hand, there are cases where it is useful to
use the contravariant momentumcomponents in weak conservation form. Two ex-
amples are considered here: one example is a nonplanar flow surface embedded
in a three-dimensional flow field; the other example is three-dimensional flow
in a turning duct. Both examples have applications in turbomachinery.

There are many instances of two-dimensional flow where the flow is not
planar; i.e., either the two-dimensional surface is curved or the streamsheet
thickness is not constant (e.g., axisymmetric flow). In such cases the three-
dimensional Navier-Stokes equations may be reduced to two dimensions. A gen-
eral method for doing this is to transform the three-dimensional equation to a
new coordinate system such that two coordinate lines lie on the surface of in-
terest, with the third coordinate normal to the surface. The momentumequa-
tions are then combined so as to obtain contravariant momentumcomponents.
Thus two components of momentumlie on the surface and the third component is
omitted; the equation will involve only the two contravariant components. As
an illustration, equations are presented here for viscous flow on a rotating
surface of revolution. A flow solution on such a surface would be useful for
analyzing flow through a turbomachine.



Ducts of complexgeometrymay be analyzedefficientlyif the flow is of a
"boundarylayer"type; i.e., flow with a predominantdirection(no reve-se
flow), and negligiblestreamwisediffusion. This kind of flow can be analyzed
by parabolicmarchingmethods. Patankarand Spalding (ref. 4), Briley
(ref. 8), Robertsand Forester (ref. 7), Moore and Moore (ref.6), and others
have calculatedthree-dimensionalviscousflow in ducts by means of parabolic
space marching. For this purposethe momentumequationsare uncoupled. The
streamwisemomentumequation is used to advancestreamwisevelocitycomponents,
and cross-streammomentumequationsare used to advancethe cross-streamveloc-
ity components. If a body-fittedcoordinatesystem is used, the contravariant
componentsof the momentum equation (withcontravariantvelocitycomponentsas
dependentvariables)providea naturalmethod of uncouplingthe streamwisemo-
mentum equationfrom the cross-streammomentumequation. As an example,equa-
tions are presentedfor flow througha rotatingpassage,e.g., a blade passage
througha turbomachineblade row.

NAVIER-STOKESEQUATIONS

The two-dimensional,planar,nonsteadyNavier-Stokesequationsin conser-
vation form are

Btq + _xE + _yF : BxR + ByS (1)
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Here p is density, V is velocity, p is pressure, e is total internal en-
ergy per unit volume, T is temperature, and T is shear stress tensor. The
x and y subscripts refer to the x and y coordinates. For numerical so-
lutions, the equation may be transformed to an arbitrary { - n coordinate
system (ref. I). These are usually body-fitted coordinates, such that constant
values of { or n correspond to the body surface. The transformed equations
in conservation form are

_t_-+ B_ . _n_ = _n_ (2)
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The superscripts _ and n refer to contravariant velocity components,
and J is the Jacobian of the transformation. The thin-layer approximation
is used here (viscous derivatives in the streamwise direction are neglected).
Note that the momentumcomponents (the second and third equations) are still x
and y components. If { and n (either contravariant or covariant) momen-
tum components are used the equation cannot be written in conservation form if
there is any curvature of the { or n coordinate lines.

It is desired to obtain two-dimensional Navier-Stokes equations for non-
planar surfaces (i.e., quasi-three-dimensional). The desired equations can be
obtained from the three-dimensional version of Eq. (2), written with contra-
variant momentumcomponents in a {, n, c coordinate system. The _ and n
coordinates lie in the desired nonplanar surface, and _ is chosen in a spe-
cial way to be orthogonal to the surface. It is assumed that the chosen non-
planar surface is a stream surface, i.e., the contravariant velocity component

= O. Whenthis is done the third momentumequation can be eliminated and
the two-dimensional Navier-Stokes equation for flow on a two-dimensional sur-
face is obtained. Rather than give the general equation, an example will be
given which is of interest for turbomachinery flow analysis.

NAVIER-STOKESEQUATIONSONA ROTATINGSURFACEOF REVOLUTION

For analysis of flow through turbomachinery blade rows it is useful to
consider flow on a blade-to-blade surface as shown in figure I. The coordi-
nates are m (physical distance) and o (radians). In addition the stream-
sheet thickness h must be specified, as shown in figure 2. The thickness
h and the radius r are both functions of m only. The three-dimensional
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contravariantmomentum equationsare obtained in m, e, n coordinates,where
n is normal to the blade-to-bladesurface. The n coordinateis definedsuch
that the metric coefficientis l/h, so that not only is the normal velocity
zero, but also the derivativein the n directionis zero. The surfaceof
revolutionis rotatingat a constantrotationalvelocity m. The relative
velocityis W; m and e subscriptswill denote physical (not covariant)
velocities.

The Navier-Stokesequationobtainedis

atq' + amE' + arF' = amR' + arS' + K' (3)

where
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J1 = 1/rh is the Jacobian and m and B momentumcomponentsare used.
Except for the sourceterm, K', Eq. (3) is similarto Eq. (I). Eq. (3) can now
be transformedto body-fittedcoordinates,similarto Eq. (2). The transformed
equation is

G _,++_,: +_,+_, (4)at ' + au n n

where
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J = JIJ2 is the Jacobian (x, y, z) . ({, n, n), J2 is the Jacobian
(m, e) . ({, n), and m and e momentumcomponents are used. Equation (4)
uses m and e momentumcomponents, and is similar to Eq. (2), except for
the source term K' which is required because of the curvature of the m and
e coordinates. The techniques and computer codes for solving Eq. (2) (ref. I)
should be able to be extended to Eq. (4).

THREE-DIMENSIONALNAVIER-STOKESEQUATIONSFORA ROTATINGCOORDINATESYSTEM

An example of a viscous, three-dimensional internal flow that can be ana-
lyzed by parabolic space marching is flow through a turbomachinery blade row.
The desired equations are obtained by transforming the Navier-Stokes equations
in cylindrical (r, e, z) coordinates to a body-fitted (_, n, _) coordinate sys-
tem. Then the contravariant components of the momentumequations are obtained.
These equations involve only the contravariant velocity components. (The co-
variant components of momentumhave a simpler form, but involve both covariant
and contravariant velocity components (ref. 5).) This permits the streamwise
momentumcalculation to be uncoupled from the cross-stream momentumcalcula-
tion. Continuity is satisfied indirectly by modifying an inviscid pressure



field to correctfor viscouseffects. Modifyingthe streamwisepressuregra-
dient will affect streamwisevelocity componentsso that global continuityis
satisfied. Modifyingthe pressureover a cross sectionwill affect the cross-
stream velocitiesso that local continuitycan be satisfied. The steady-state
three-dimensionalNavier-Stokesequationsfor a rotatingcoordinatesystem
(transformedto a body-fitted({, n, €) coordinatesystem,and with contravar-
iantmo_ntum components)are:
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n : nrT + not + nzT etcTr rr ro rz' "
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G_p, Gnp G are functionsof velocityand geometry' {p

The flow is in the { direction,and n, _ are the cross-streamdirections.
The thin layer approximationis used.

CONCLUDINGREMARKS

Two examplesof applicationsof the contravariantNavier-Stokesequations
have been presented.

The first exampleshows that the contravariantNavier-Stokesequations
can be used to obtain two-dimensionalequationsfor a rotating surfaceof
revolutionwith varyingstreamsheetthickness. The equationsare similar in
form to the conservation-lawform of the Cartesiantwo-dimensionalNavier-
Stokes equations. The methods alreadydevelopedfor solvingthe Cartesian
two-dimensionalequationscan thus be used for analyzingflow on a blade-to-
blade surfaceof a turbomachine. Other applicationsfor nonplanarsurfaces
seem possible.

The second example is for three-dimensionalviscousflow througha rota-
ting duct. The contravariantform of the Navier-Stokesequationsprovides a
method for uncouplingthe streamwisemomentumfrom the cross-streammomentum.
This makes it easier to use parabolicmarchingmethods for turbomachinery....
blade passageswith a large amountof turning. A similartechniquecould be
used with other types of internalpassages.
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