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PREFACE 

In1tial fund1ng for this study began 1n October 1976 under the 

NASA Terminal Configured Veh1cle (ATOPS) program. The main effort was 

directed toward the app11cat1on of a var1at1on of a partit10ned adapt1ve 

control algorithm to the dynamics of a B-737 aircraft. The special 

control law was one wh1ch could accommodate nonlinearit1es in the a1rcraft 

dynam1cs. Particular emphasis was placed on the problem of guiding the 

craft on optimum landing trajector1es to provide quicker and safer land-

1ng approaches in adverse weather cond1t10ns. The deta11s of th1s control 

law and 1tS development were reported in 1nterim unpublished reports 

dated 10/77 and 5/78. Th1S work was done with the help of P. E. ZW1cke. 

Subsequently, w1th some shifts in personnel the proJect was 

cont1nued w1th some refinements 1n the ma1n control law. Some 1n

eff1c1ency was 1ncurred through the natural d1ff1culty of transferr1ng 

computer code from one user to another. The emphas1s was on simulat10n 

of nonlinear measurements, 1ncorporat1on of a realist1c w1nd shear and 

gust model and model reduction uS1ng a known correlated 1nput as a 

pseudo-1nput to each coni1guration model. These aspects were reported 

on 2/79. 

The proJect then suffered some delay and redirect1on. Tak1ng 

over from W1111arn Lucas was Joel Brinkley. Joel's interest lay in 

studY1ng the detect10n of fa11ures 1n the control system. This 



last phase of the proJect is reported herein and provides a com

pletIon of the proJect (8/82). 

All of the investigators would like to take this opportunity to 

thank the assocIated NASA personnel for their support and encour

agement; in particular, Dr. T. M. Walsh for his confidence in get

tIng our proJect started, Dr. J. R. Creenon for the bulk of the 

technIcal gUIdance and patIence Wlth our staffing problems and R. 

M. Hueschen and NeSlm Halyo for their assistance and work on the 

technlcal aspects. 
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1. INTRODUCTION 

One of the major goals of the NASA Terminal Configured Vehicle 

(TCV) project is automatic control of aircraft in adverse weather for 

I quicker, safer landings. The ATOPS B-737 was chosen for the pro[;ram 

because of its nonlinear flight envelope. In addition to the nonlinear 

plant, some of the aerodynamic parameters are only partially known which 

makes it a difficult control problem. This part of the problem has 

been solved by Zwicke and Lucas (14,15,16); however, the effect of 

actuator and sensor failures was not explored. Sensor and actuator 

failure detection and compensation is an extremely important part of 

the overall aircraft control because if a failure is not detected and 

the controller is not properly compensated, the flight may end disas

trously. In this thesis only the failure detection problem is under

taken except to show that the estimator part of the control algorithm 

used by Zwicke (14,16) can adapt to properly modeled sensor failures. 

The first method to be used for failure detection is the configu

ration detection algorithm from the Modified Partitioned Adaptive 

Controller (14). This method uses a bank of parallel Kalman filters 

to predict the state of the various configurations and determines the 

correct configuration by the whiteness of the noise in the filter 

residue. The failure detection technique is tested to determine the 

types of failures it will detect and under what conditions this detec

tion occurs. The most important criterion is the detection technique's 

ability to accurately and quickly determine actuator and sensor failures 

in the presence of sensor noise with inaccuracies in the plant model. 

1 
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The second method to be used for failure detection is the failure 

detection filter, FDF, technique developed by Beard (1) and Jones (2). 

Since this failure detection technique was developed, little work has 

been done on estimation theory to determine how the noisy plant output 

is associated with the line or plane characteristic of a failure. A 

solution to this problem is presented and the FDF technique is tested 

with the same failures and conditions as the first method. Again the 

most important criterion is the FDF technique's ability to detect fail

ures in the presence of noise with inaccuracies in the plant model. 

In the past a number of different techniques have been used to 

detect actuator and sensor failures. The primary emphasis has been to 

detect sensor failures. The simplest schemes involve redundant hard

ware; but with the development of the computer, more and more schemes 

have been developed which depend on computational algorithms rather 

than redundant hardware to detect failures. Only a brief summary of 

the work done in the past on failure detect~on is presented here. A 

detailed summary of the different failure detection techniques can be 

found in (3). 

Voting schemes are the simplest sensor failure detection scheme. 

In most voting schemes the output of three or more redundant sensors is 

compared. If the output of one of the sensors differs from the others, 

it is declared failed and removed from future consideration. This 

method is easy to implement, but can not detect soft failures or small 

biases and does not take advantage of information available from non

identical sensors. The following papers give examples of this method 
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(4,5,6,7). A modification of this method involves two sensors compar

ing outputs and if a difference arises, an analytical method is used 

to determine which sensor has failed. This reduces redundant hardware 

but at the cost of increased complexity. Work in this area has been 

done by Deckert, et al. (8). Another modification of the straight 

voting procedure is the method developed by Chien (9). This method 

uses a time weighted average of measurement errors to detect failures 

that memoryless voting schemes would miss. 

In addition to voting schemes, a large number of failure detection 

techniques have been developed based on the likelihood ratio developed 

by Van Trees (10). The extension of this, the Generalized Likelihood 

Ratio or GLR, has been used in many applications because it is optimal 

in a statistical sense; however, it can become extremely complex and 

this is its major limitation. Caglayan and Montgomery (11,12) devel

oped a technique USing a bank of parallel Kalman filters to predict 

the state of all possible failure modes and used the GLR to find the 

probability of each configuration. Various other methods have been 

employed to reduce the complexity of the full GLR method and a good 

synopsis of these is done by Willsky (3). 

Another method to detect actuator and sensor failures is the 

Failure Detection Filter, FDF, technique developed by Beard (1). This 

failure detection method can detect a wide range of failures in 

actuators and sensors or dynamic changes in one element of the system 

dynamics matrix or the input coefficient matrix. The filter is 

designed so that in the no failed state the filter estimator tracks 
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the state estimator. When a failure occurs, the filter is designed 

to accentuate the failure in a predictable manner in the filter 

residual. A design algorithm was developed for continuous, linear, 

time-invariant, deterministic systems. Jones (2) extended the FDF 

method to stochastic and discrete systems. He also demonstrated that 

the FDF could be used as a suboptimal state estimator. 



2. KALMAN FILTERS FOR FAILURE DETECTION 

2.1 Introduction 

The Kalman filter has been used for a number of years for a variety 

of applications. Its wide use is due primarily to its pred~ction cor

rection structure for state estimation and its noise filtering capa

bilities. The Kalman filter is optimal in the sense that it minimizes 

the mean square error. In this chapter the Kalman filter is used to 

predict the state of various plant models in the presence of white 

noise. The whiteness of the filter residue, the plant output minus 

the output predicted by the Kalman filter, is used to determine the 

actual configuration. 

The decision theory used in this chapter was presented by Moose 

and Wang in (13) and was developed for randomly switching plant con

figurations. These randomly switching plant configurations may be 

actuator or sensor failure models as long as the system remains observ

able and controllable after the failure. 

One of the purposes of this chapter is to review the B737 project 

sponsored by NASA and show that the algorithm developed by Zwicke (14) 

can adequately control the aircraft after a sensor failure. The other 

purpose of this chapter is to show that the method developed by Zwicke, 

Moose, Wang, et al. (13,14) can be modified to detect both sensor and 

actuator failures and present an example for simulation. 

5 
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2.2 The Structure of the Kalman Filter 

The discrete t~e descr~ption of a linear system corrupted by 

noise is 

x(k+l) = Ax(k) + Bu(k) + Gw(k) (2.2.1) 

y(k) = Cx(k) + Hv(k) (2.2.2) 

where, 

x is an nxl state vector 

u is an mxl input vector 

y is an rxl output vector 

w is an nxl input disturbance vector 

v is an rxl measurement noise vector 

A is an nxn system dynamics matrix 

B is an nxm input coeffic~ent matrix 

C is an rxn measurement coeffic~ent matrix 

The vectors w and v are zero mean white Gaussian processes with var~

ances Q and R respectively. 

The Kalman filter is described by equations, 

z(k+l/k) = Az(k) + Bu(k) (2.2.3) 

z(k+l) = z(k+l/k) + K(k+l) [y(k+l) - Cz(k+l/k)] (2.2.4) 

The Kalman filter gain K is calculated as follows 

M(k+l) = AP(k)AT + GQGT (2.2.5) 
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(2.2.6) 

P(k+l) = [I - K(k+l)C]M(k+l)[I - K(k+l)C]T + K(k+l)HRHTKT(k+l) (2.2.7) 

2.3 The B737 Project 

A major goal of the NASA Terminal Configured Vehicle (TCV) project 

is automatic landing of aircraft in adverse weather on a predetermined 

glideslope with a linear decrease in both velocity and altitude. The 

automatic control is complicated by the nonlinear dynamics of the air

craft and the fact that many of these dynamics are not precisely known. 

In addition many aerodynamic coefficients are in tabular form and some 

of these are only estimated. The nonlinear measurement model and 

measurement errors further complicate the problem. 

In the past, work has been done by Moose, VanLandingham, Zwicke 

and Lucas (14,15,16) on the control of the longitudinal dynamics of the 

B737 ignoring the possibility of a sensor failure. The goal of this 

part of the project is to show that satisfactory control of the air

craft can be maintained after a sensor failure. 

In this section there is a brief review of the work done by Zwicke 

(14) and a development of the sensor failure model. 

2.3.1 The B737 Model 

The B737 is a highly nonlinear plant and is linearized about ten 

operating points using Taylor Series Expansion. From these ten plant 

models the longitudinal dynamics of the airplane can be adequ~tely 

represented for the adaptive control algorithm. The assumptions that 

are made to further simplify the problem are: 
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1) Control inputs are elevator perturbation and throttle rate. 

2) All lateral variables and their rates are small such as yaw, 

roll and sideslip. 

3) The pitch angle is small. 

4) All equations are linearized around 

5) 

u steady state inertial speed x-direction 
o 

w steady state inertial speed z-direction 
o 

e o steady state pitch angle 

Perturbations of the pitch angle, e, are small so cose : 1 

and sine: e. 

The B737 plant model is described by equations (2.2.1) and (2.2.2). 

The system dynamics is represented by fourteen state variables. Nine 

of these correspond to plant states and the other five state variables 

were added for the simulation of correlated w~nd gusts. The input 

coefficient, B, matrix has two rows: one indicating the effect of the 

throttle rate on the system and the other the effect of the elevator 

perturbation on the system. The measurement coefficient, C, matrix is 

a nonlinear combination of the states. It has been linearized about an 

operating point and is accurate for small values of noise. 

2.3.2 The B737 Controller 

The control technique used in the B737 project is the Modified 

Partitioned Adaptive Controller or MPAC developed by Zwicke (14). The 

controller computes a system input based on the plant configuration Si 

and the reference input. A bank of parallel Kalman filters operates 

independently on noisy measurements. Each filter produces a state 
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estimate Zi(k+l). This state estimate is multiplied by a feedback gain 

calculated for the ith configuration. In addition to the state vari-

able feedback, two other terms must be added to the input for each 

configuration. The reference input, q, is scaled so that zero steady 

state error can be achieved, and a linearization constant from the 

Taylor Series Expansion associated with each model must be added. 

Therefore, the input is of the form 

where 

U. (k) 
~ 

Fi(k) 

Zi(k) 

Hi 

q 

(2.3.1) 

is the input calculated for the ith configuration 

is the time varying feedback gain for the ith configuration 

is the Kalman estimate for the ith configuration 

is the scaling constant for zero steady state error 

is the reference input 

th is the Taylor Series Expansion constant for the i 
configuration 

In order to calculate the overall system input a weighted sum of the 

individual inputs Ui is computed. The weighting coefficients ITi are 

calculated as follows, 

[

PI (r(k+l» 0 ] [611 •• 61 ] 
IT(k+l) os C(k+l) :..: : .• : m n(k) (2.3.2) 

o p (r(k+l» 6 1 •• 6 m m mm 

where 

(2.3.3) 



and 

-
C(k+l) 

II (k+l) 

r. (k+l) 
~ 
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is a semi-Markov transition parameter 

is a normalizing constant 

is a vector containing the probability of each plant 
configuration 

th is the plant output minus the i filter output 

The probability density p(y(k+l)/S(k+l) = Si' Y(k» is approximated by 

a Gaussian density for the cases where the probability of transition 

between adjacent samples is small and is given by 

= D~ exp{-1/2 r.T(k+l)V.-l r.(k+l)} ... ~ ~ ~ 
(2.3.4) 

where, 

th is the measurement residual covariance for the i filter 

D = (2IT)-M/2 Iv. ,-1/2 
i ~ 

(2.3.5) 

The semi-Markov transition probabilities e .. in (2.3.2) represent the 
J~ 

probability of changing from configuration S. to S .• An excellent 
~ J 

discussion of how to choose the semi-Markov matrix can be found in 

(14) • When the largest weighting coefficient II. (k+l) falls below a 
J 

predetermined threshold, the Kalman gains for all the configurations 

are reset in order to improve the convergence of the filters when 

the plant moves from one configuration to another. This threshold is 

found by trial and error and is dependent primarily on the signal to 

noise ratio. 

2.3.3 The Sensor Failure Model for B737 

A sensor failure is modeled as zero output from the failed sensor 
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which is equivalent to a zero row in the C matrix in equation (2.2.2). 

The sensor failures that were included as poss1ble configurations were 

those which (A, C) from equations (2.2.1) and (2.2.2) remained an 

observable pair after the sensor failure. 

2.4 Actuator and Sensor Failure Detection using Kalman Filters 

The Kalman filter approach to detecting failures has many similar-

ities to the estimator part of the MPAC developed in the last section. 

The Kalman filter approach to detecting failures developed in this 

thesis is a slight modification of the work done by Moose and Wang 

(13). 

The method developed in this section can detect sensor or actuator 

failures in a system which is observable after the failure. For each 

failure a model is developed. The actuator and sensor failure models 

are developed in sections 3.4.1 and 3.4.2 respectively. A bank of 

parallel Kalman filters, one filter for each possible failure mode, 

is run with each filter independent of the others. The filter residue 

from each filter is then used to compute the probability of that state, 

using equation (2.3.2). As in the MPAC when the largest probability 

TIi(k+l) falls below a predetermined threshold, the Kalman gains are 

reset to improve convergence. 

2.4.1 Actuator Failure Model 

th 
A failure in the i actuator is modeled for the Kalman filter 

detection technique by modifying the ith column of the B matrix, b
i

• 

A constant bias is modeled by multiplying bi by a constant not equal 
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to one. The magnitude of the bias is one minus the constant multi-

plier. A zero fa~lure is modeled by replacing b. by a vector with 
~ 

all zero entries. 

2.4.2 Sensor Failure Model 

A failure in the ith sensor is modeled for the Kalman filter 

detection technique by modifying the ith row of the C matrix, C .. A 
~ 

constant bias is modeled by multiplying C. by a constant. The magni
~ 

tude of the bias is found exactly as it was in section 2.4.1. A zero 

failure is modeled by replacing C
i 

with a vector containing all zeros 

d f f il i . ith . dId b' i h .th an a so t a ure n tne sensor ~s mo e e y ~ncreas ng t e ~ 

th diagonal element H which increases the noise on the i 'sensor. 

2.4.3 Boiler System Example El 

This is an example of a boiler system that might be used on board 

ship and is adap~ed from an example in (17). There are two boilers on 

board but only one will be modeled. It is assumeq t~at the other is 

operating at steady state and at th~ desired opera~ing point. There 

are three states of interest: 1) pressure qeviation, P, around 20 

bars; 2) temperature deviation, T. around 300 o G; 3) the integr~l of 

the energy/KG of the superheated steam about the desired operating 

point (20 bars and 300°C). The control imp~emented woulq try to k~ep 

P and T at the operating point and keep the integra~ of the steam 

energy zero; however, in this thesis only detection of an actuator 

or sensor failure is considered. 

The three inputs to the system are fuel, superheated steam and 

saturated steam. The steam can be considered an inp~t when it is 
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used to preheat the boiler or to meet the operating conditions when 

there is a zero or low fuel rate to the boiler. 

The continuous time system is modeled 

• x .. Ex + Fu (2.4.1) 

y .. Cx (2.4.2) 

where the state variables in the vector x are 

is the deviation of pressure around 20 bars in the boiler 

is the deviation of the output temperature around 300°C 

is an intermediate variable 

is MJ/kg of energy in the steam integrated over time 

and the inputs u are defined 

ul is the flow rate of fuel (Mg/hr) 

u2 is the flow rate of superheated steam (Mg/hr) 

u
3 

is the flow rate of saturated steam (Mg/hr) 

The continuous model matrices are 

0 0 0 0 

0 -1/154 -1/154 0 
E .. 

0 0 -1/183 0 

.00338 .02363 0 0 

396xlO-3 325xlO-4 -325X10-4 

1250/154 1.7 -629.35x10-3 

F .. 
0 1375/83 -662.65 

0 0 0 

(2.4.3) 

(2:4.4) 
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1 1 0 1 

C = 3 1 0 1 

2 1 1 1 

(2.4.5) 

The continuous time system is converted to a discrete time system 

with a forty-second sampling time. The discrete time model is given by 

x (k+l) - Ax(k) + Bu(k) + Gw(k) 

y(k) - Cx(k) + Hu(k) 

where 

1 0 0 0 

0 .77125 -.1796 0 
AD 

0 0 .61759 0 

.1352 .832419 -.09633 1 

l5.84 1.3 -1.3 

285.935 -7.65 2679.275 
B .. 

0 525.812 -21032.44 

140.98 6.998 893.619 

1 1 0 1 

C = 3 1 0 1 

2 1 1 1 

(2.2.1) 

(2.2.2) 

(2.4.6) 

(2.4.7) 

(2.4.8) 

Below are examples of the system with a 10% bias failure for both 

an actuator and sensor failure. Other failures are modeled similarly 

following the rules in section 2.4.1 or 2.4.2. A 10% bias failure in 
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the fuel flow rate, actuator one, is modeled by letting B become B' 

where B' is 

B' = 

16.94 

314.53 

1.3 

-7.65 

-1.3 

2679.275 

o 525.812 -21032.44 

155.078 6.998 893.619 

(2.4.9) 

A 10% bias in the first sensor is modeled by letting C become C' where 

C' is 

1.1 1.1 

C' = 3 1 

2 1 

o 1.1 

o 1 

1 1 

(2.4.10) 



3. FAILURE DETECTION FILTERS FOR FAILURE DETECTION 

The failure detection filter, FDF, was first developed by Beard (1) 

for continuous, deterministic, time-invariant, linear systems. Jones 

(2) extended the FDF theory to include discrete and stochastic systems. 

However, since this work was done, very little research has been done 

either on further development or application of FDF theory. In this 

chapter the basic concepts and design algorithms are presented so that 

a reader will have the tools to design and use FDF's to detect actuator 

or sensor failures. In addition a configuration estimation technique 

is developed that gives the probability that a noisy plant output is 

associated with a line or plane characteristic of an actuator or sensor 

failure. 

3.1 Development of Actuator and Sensor Failure for Rank of C Greater 
Than or Equal to N 

The purpose of this section is to give an introduction to the 

failure detection filter. The case demonstrated in this section, the 

rank of the measurement coefficient matrix greater than or equal to 

the rank of the system dynamics matrix, demonstrates many of the basic 

concepts in failure detection filters. A more complete development of 

the topic may be found in (1,2). It should be noted that the failure 

models shown in this section are valid for C of any rank. 

The plant model used in this section is found in equations (2.2.1) 

and (2.2.2); however, v(k) and w(k) will be identically zero. 

The failure detection filter equation is 

16 
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z(k+l) D Gz(k) + Dy(k) + BFuD(k) (3.1.1) 

where (3.1.1) is valid for e of any rank and (3.1.2-6) are valid for 

Rank[e] greater than or equal to n. The parameter G is defined 

G • A - DC (3.1.2) 

G ... aI (3.1.3) 

where lal must be less than one for a stable filter. The detector 

gain D is defined for man 

or for m :- n 

and BF is defined 

-1 
D ... (A - G)e 

BF - B 

It is important to note that, for the rank of the e matrix 

(3.1.4) 

(3.1.5) 

(3.1.6) 

greater than or equal to n, equations (3.1.1-6) yield a filter that 

will detect any single actuator of sensor failure. 

3.1.1 Actuator Failure 

th A failure in the i actuator is modeled 

u(k) = uD(k) + er
i 

n(k) (3.1.7) 



where 

and 

uD(k) 

n(k) 

18 

is the desired control input 

is an arbitrary function of time sampled at t = kT 

er a 
i 

o 

o 

1 

o 

o 

th where the 1 is in the i position. 

(3.1.8) 

Example E2 is an example of an actuator failure with the rank of C 

equal to n. Assume, 

C ... I (3.1.9) 

and the FOF is defined by equation (3.1.1) 

z(k+l) .. Gz(k) + Dy(k) + BFuD(k) (3.1.1) 

where 

y(k) .. x(k) (3.1.10) 

G .. 01 (3.1.11) 

D .. A - or (3.1.12) 

BF .. B (3.1.13) 
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u(k) = uD(k) + er
i 

n(k) 

The FDF residue is 

E(k+1) = x(k+1) - z(k+1) 

where this can be expanded to 

where 

E(k+l) = Ax(k) + Bu(k) - Gz(k) - Dx(k) - BFuD(k) 

E(k+1) .. Ax(k) + BuD(k) + Beri n(k) -

oIz(k) - (A - oI)x(k) - BuD(k) 

.. oIx(k) + Beri n(k) - oIz(k) 

- oI(x(k) - z(k» + b. n(k) 
1. 

The solution to equation (3.1.19) is 

k-1 
E(k) .. (OI)k £(0) + I (OI)k-j-1 b

i 
n(j) 

j-O 

k-l 
- (o)k E(O) + I (crI)k-j-l bi n(j) 

j=O 

k k-1 k j 1 
= 0 £(0) + b

i 
I (0) - - n(j) 

j-O 

The steady state solution to (3.1.23) is 

(3.1.14) 

(3.1.15) 

(3.1.16) 

(3.1.17) 

(3.1.18) 

(3.1.19) 

(3.1.20) 

(3.1. 21) 

(3.1.22) 

(3.1.23) 

(3.1.24) 
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It should be noted that bi is a vector and the rest of equation 

(3.1.24) is a scalar and that if n(k) is a constant then 

k-l . 
lim 2 ak- J -

l n(j) = constant 
k~"" j=O 

(3.1.25) 

Also, it can be sh?wn that in equation (3.1.22), €(k) does not depend 

on the rank of C and is valid for any C if 01 is replaced by (A-DC) 

in that equation. 

However, €(k) is not an accessible signal. The accessible signal 

is 

€' (k) = Cc:(k) (3.1.26) 

= y(k) - Cz(k) (3.1.27) 

k-l 
= Cb. I k-j-l n(j) 

~ 
j=O 

(3.1.28) 

Therefore, the error vector Cbi is indicative of a failure in the ith 

actuator for C of any rank and the magnitude of the failure may give 

information about the nature of. the failure. It can easily be shown 

th that in order to identify a failure in the i actuator, Cb. must be 
~ 

independent of Cb
j 

for all j~i. If there are two dependent vectors 

Cbi and Cb
j

, i not equal to j, then the direction alone will not supply 

enough information to determine which actuator has failed. 

3.1.2 Sensor Failure 

th A failure in the i sensor is modeled 

y(k) = Cx(k) + emi n(k) (3.1.29) 
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where n(k) is an arbitrary function of time sampled at t=kT and 

o 

o 

1 (3.1.30) 

o 

o 

th where 1 is in the i position. 

Example E3 is an example of the ith sensor failing with the rank 

of C equal to n. Assume 

c = I (3.1.31) 

The FDF is defined by equation (3.1.1) 

z(k+l) = Gz(k) + Dy(k) + BFu(k) (3.1.1) 

where G, D and BF are defined by equations (3.1.11-13) and where u(k) 

is the desired input defined 

u(k) - uD(k) (3.1. 32) 

The sensor outputs are defined by (3.1.29). The FDF residue is 

x(k+l) - z(k+l) = Ax(k) + Bu(k) -

[aIz(k) + D(x(k) + em. n(k» + Bu(k)] 
1. 

€(k+l) = aI(x(k) - z(k» - Dem. n(k) 
1. 

(3.1.33) 

(3.1. 34) 
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E(k+l) = oI E(k) - Demi n(k) (3.1. 35) 

The solution to equation (3.1.35) is 

dk) 
k k-l k-j-l 

= 0 c(O) - I 0 Demi n(j) 
j=O 

(3.1.36) 

The settled out signal is 

dk) 
k-l k-j-l 

: - Demi L 0 n(j) 
j=O 

(3.1.37) 

As in the actuator failure case, c(k) is not accessible. The accessible 

signal is 

c'(k) = y(k) - Cz(k) (3.1.38) 

c' (k) = CE(k) - em! n(k) (3.1.39) 

k-l k-j-l 
- -CDemi I (01) n(j) + emi n(k) 

jeO 
(3.1.40) 

since 

D = A - 01 (3.1.12) 

then, 

Demi = (A - al)emi (3.1.41) 

and letting 

(3.1.42) 

k-l k· 1 t k-1 J c'(k) = a
i 

I 0 -J- n(j) + n(k) + I ok-j n(j) emi 
j=O j=O 

(3.1.43) 
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It can be shown that equation (3.1.40) is valid for any C if cr1 is 

replaced by A-DC. 

The error vector associated with a sensor failure can only be 

constrained to a plane determined by CDemi and emi and it can be shown 

that this plane is characteristic of a failure in the ith sensor for C 

of any rank. The sensor failures are detectable even when two or more 

error planes intersect except when one of the two following cases 

occurs: 1) the error planes are coincident; or 2) the error signal 

maintains a fixed direction coincident with the intersection of the 

two planes. 

3.2 Fundamental Background for Rank C Less Than N 

This section is intended to present the basic concepts of the work 

done by Beard (1) and Jones (2) on failure detection filters. The 

proofs and underlying theory will not be presented and can be found in 

(1,2). The goal of this section is to develop the background material 

needed for designing FDF for either actuator or sensor failures where 

the rank of C is less than n. The actual design algorithms ~or 

actuator and sensor failures are presented in sections 3.3 and 3.4. 

The background material starts with the definition of the error 

vector E(k+l) and f the failure vector associated with a particular 

failure: 

E(k+l) = GE(k) + fn(k) (3.2.1) 

where 

G = A - DC (3.1.2) 



24 

is the filter dynamics matrix and n(k) is defined in equation (3.1.7) 

or (3.1.29) and f is given by one of the two following cases: 

1) f = b. 
~ 

for effector failures (3.2.2) 

2) f = Dem
i 

for sensor failures (3.2.3) 

An event associated with the vector f in equation (3.2.1) is 

defined to be detectable if there exists a matrix D, the filter gain, 

such that 

1) Cc(k) maintains a fixed direction (actuator failure) or 

plane (sensor failure) in the output space. 

2) All eigenvalues of (A-DC) can be specified almost arbitrarily. 

Condition 1) should be self-explanatory and condition 2) is necessary 

in order to insure a stable filter and to give the designer freedom to 

change eigenvalues of the filter in order to improve the filter's per-

formance in a noisy environment. 

The detection space of f is defined as the controllable subspace 

of G with respect to f. The dimension of the controllable subspace of 

f with respect to G is v. 

th The n-vector g is defined to be the k order detection generator 

for f if the following conditions are met: 
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1) C 

2) 

3) 

CA 

k-2 
CA 

g • 0 

k-2 k-1 f = a1g + ... + ak_
1

A g + A g 

if Cf ~ 0 and where a1 , a 2 , ... , ak_1 

are scalars 

(3.2.4) 

(3.2.5) 

(3.2.6) 

th 
If g is a k order detection generator and k eigenvalues of A-DC 

are associated with the controllable space of f, then any solution of 

(3.2.7) 

will be a detector gain for f. The eigenvalues associated with the 

controllable space of A-DC are given by 

Zk + Pkzk-1 + + P + P 0 • • • 2z 1'" (3.2.8) 

where Pi are scalars and z is the z-transform variable. 

The general solution to equation (3.2.7) is 

(3.2.9) 

where 

(3.2.10) 

and D' is the freedom left in Dafter D has been constrained to be a 

detector gain for f. It can be shown that the number of eigenvalues 
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of A-DC which can be changed arbitrarily with D' is n-v and the number 

of eigenvalues specified by QD is k. Therefore, v-k eigenvalues are 

not under the control of the designer. This result will become impor

tant later. 

The following definitions are made, in part, so that it can be 

determined how many eigenvalues of A-DC are free after constraining D 

to be a detector gain for f. 

A' = A - QD[(Cf)TCf]-l(Cf)T 

C' = [I - Cf[(Cf)TCf]-l(Cf)T]C 

K = A - Af[(Cf)TCf]-l(Cf)TC 

c' 

M' C'A' 
= 

C'A,n-l 

or 

C' 

M' e'K = 

C'Kn- l 

q' = rank [M'l 

v ... n - q' 

where v is the detection order of f. 

(3.2.11) 

(3.2.12) 

(3.2.13) 

(3.2.14) 

(3.2.15) 

(3.2.16) 

(3.2.17) 
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It has been shown that 

A' - D'C' = A - DC (3.2.18) 

where D' is the arbitrary matrix of equation (3.2.9). The unobservable 

space of (A', C') is associated with the eigenvalues which were con

strained by making D a detector gain for f. Therefore it follows that 

the detection space of f is the null space of M'. The dimension of 

the detection space of f, v, is defined to be the detection order of f. 

It was noted earlier that if the detection order of f, v, is not 

equal to the order of the detection generator, k, then some of the 

eigenvalues of A-DC will not be under the control of the designer. 

Therefore a generator of order v, called a maximal detection generator 

or just a maximal generator, must be found in order to have full 

control over the eigenvalues. It has been shown that if (A, C) is an 

observable pair, then a maximal generator exists and is unique. 

Appendix A describes the procedure for finding the maximal generator. 

If (A, C) is not an observable pair and the error residue does not lie 

in the unobservable space, then a detection filter gain D for f may be 

found but n-q'-k eigenvalues of the filter will be uncontrollable. 

The theory developed so far applies to detection of a single 

failure f. The background material covered in the rest of this section 

is for multiple failure detection with a single filter. 

The vectors {fl , f2' "', f r } are defined to be output separable 

if 

Rank[CF] a r (3.2.19) 
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where F is the nxr matrix 

... , (3.2.20) 

with u
i 

for each fi defined by 

j = 1, ... , u-l (3.2.21) 

(3.2.22) 

If two vectors are not output separable, then one of two cases must 

hold: 

1) The two vectors have the same detection space and a detector 

gain for one is a detector gain for both. 

2) The two vectors do not have the same detection space and can 

not be detected by the same filter. 

The requirements for detection of more than one failure with a 

single filter are the same as for a single failure detection filter. 

The vectors {fl , .," f r } are defined to be mutually detectable if 

there exists a D which satisfies the following conditions. 

1) CE(t) maintains a fixed direction in the output space 

(actuator failure) or stays in a fixed plane (sensor failure). 

2) All eigenvalues of A-DC can be specified almost arbitrarily. 

The detector gain D that will constrain the error residue to a 

direction or plane can be found by solving the following equation 

(3,2.23) 
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where the eigenvalues of A-DC associated with constraining D to be a 

detector gain for F are fixed by the following equation 

(3.2.24) 

where 

(3.2.25) 

and gi is the maximal generator. The scalars [Pil , ... , Pik .] are 
~ 

defined by 

(3.2.26) 

where z is the z-transform variable. As in the single failure 

detection case D' is the freedom left in Dafter D has been con-

strained to be a detector gain for F. 

Definitions similar to equations (3.2.11-16) are needed to deter-

mine how much freedom will be left in the eigenvalues of A-DC after 

constraining D to be a detector gain for F. 

(3.2.27) 

(3.2.28) 

c' 

C'K 
MG' :I (3.2.29) 

qg' a rank [MG'] (3.2.30) 
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The group detection order, gdo, of {f
l

, ... , 

gdo = n - qg' 

f } is 
r 

(3.2.31) 

In the equation (3.2.23) it can be shown that the number of 
r 

eigenvalues which are fixed When QD is found is I Vi' S~milar to 
i=l 

the single filter case, qg' is the number of eigenvalues which can be 
r 

specified by arbitrary choice of D' • Therefore, n - I v. - qg' is 
i=l ~ 

the number of eigenvalues not under the control of the designer. 

These eigenvalues can be found. The algorithm for determining them 

may be found in (1). The designer will have control over all the 

eigenvalues if and only if the group detection order, gdo, is equal 
r 

to the sum of the individual detection orders, I v .. 
i=l ~ 

3.3 Failure Detection Filter Design for Actuator Failures 

This section is a step by step guide to designing PDF of the 

form of equation (3.1.1) for multiple actuator failures and is 

derived from (1). The design of single failure filters is similar 

except that steps 2, 3, 5 and 7 are not needed. 

The failure of the ith actuator is associated with b., the ith 
~ 

column of B, where 

(3.3.1) 

The following steps are a guide to designing the one or more FDF's 

needed to detect an actuator failure. 
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1) If any 

Cbi 
.. 0 (3.3.2) 

replace bi by A t;,i where u is defined by 

CAjb 
i = 0 j .,. 0, .. . , u-l (3.3.3) 

CAub 
i 

:f- 0 (3.3.4) 

2) Form F 

u Uz u 
F a [A ~l' A bZ' ... , A rb ] 

r (3.3.5) 

3) Find the rank of CF and if it is less than r divide the set 

into two or more subsets until the rank of each set is the 

same as the number of vectors in it. If the rank of CF 

equals r, then f is output separable. 

4) Determine the maximal generator and the detection order, 

Vi' for each fi in F. If two or more fi have the same 

detection spaces, only one of them needs to be considered 

in the following steps. Any detection filter for one such 

vector will be a detection filter for all. 

5) Determine C' , ~ MG ' and qg' for F using equations (3.2.27-

3.2.30). 

6) Determine C', K and M' for each fi using equations (3.2.12-

3.2.14). 
r 

7) If the group detection order n-qg' is not equal to I Vi' 
i=l 
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i) Divide the set into two or more sets and find C', K, 

MG' and qg' for the new set F. 
r 

ii) See ~f the group detection order equals LV .. 
i=l ~ 

iii) Repeat the process if the group detection order of 
r 

the new set F is not equal to LVi' 
i=l 

8) A detector gain for each set of vectors from step 7 may be 

found by sqlving equation (3.2.23). 

9) From 

G = A - DC (3.2.2) 

10) Let 

BF = B (3.3.6) 

th The line characteristic of a failure in the i actuator is given by 

If there are other detection filters, they will produce error 

th signals if a failure in the i actuator occurs, but they will not 

lie in a fixed direction, or they will not lie in a direction for 

which the filter was designed. 

This example E4 will demonstrate the design of a FDF for multiple 

actuator failures. The system will be the boiler system in example El. 

The eigenvalues of all the filters will be placed at ±.5. The system 

model is described by the matrices (2.4.6-8). 

1 o o o 

o .77125 -.1796 o 
A - (2.4.6) 

o o .61759 o 

.1352 .832419 -.09633 1 
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15.84 1.3 -1.3 

285.935 -7.65 2679.275 
B = (2.4.7) 

o 525.812 -21032.44 

140.98 6.998 893.619 

1 1 0 1 

C - 3 1 0 1 (2.4.8) 

2 1 1 1 

The filter design is below. 

1) Check all Cb i and 

(3.3.7) 

so go to next step. 

2) Form F 

15.84 1.3 -1.3 

285.935 -7.65 2679.275 
F a (3.3.8) 

o 525.812 -21032.44 

140.98 6.998 813.619 

3) The rank of CF is 3 therefore F is output separable. 

4) Determine the maximal generators for f1' f2 and f3 and they are 

g • f -1 1 

15.84 

285.935 

o 

140.98 

(3.3.9) 
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1.3 

-7.65 

525.812 

6.998 

-1.3 

2679.275 

-21032.44 

893.619 

The detection order, v., of all three vectors is one. 
1. 

(3.3.10) 

(3.3.11) 

Steps 5) and 6) are simple equation evaluations and will not be shown 

here; however, the main result of steps 5) and 6) is 

qg' = 0 (3.3.12) 

7) The group detection order is four and the sum of the individual 

detection orders is three. Therefore, one eigenvalue will 

not be under the control of the designer if the FDF is 

designed with F. So the set is subdivided into two sets 

(3.3.13) 

(3.3.14) 

The group detection order of FI is two and the sum of the 

individual detection orders is two. Therefore, all the 

eigenvalues of A-DC are under the control of the designer. 

For the rest of the design, only Fl will be considered. 
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8) Find the detector gain for Fl realizing that two eigenvalues 

must be constrained to make D a detector gain for Fl and two 

eigenvalues will be arbitrary. 

D • 

D • 

The values of P11 and P12 in wd1 and wd2 are -.5, where wd i 

is given by equation (3.2.25). 

The solution is 

7.92 .65 .001162 

77.5612 -92.36 [ 

.001088 

-.000921 -.000979 

o 

310.65 

-.42 o 

o o 

o o 

61.83 

-40.61 

o 

o 

o 
[ 

.53316 

-.4989 

.00138 

-.4989 

.46683 

-.00129 

o 0 0 

-.21591 .2181 8.8367x10-3 

.16941 .1805 -.18121 

-.05694 -.06053 .11759 

.37525 .040075 -.099485 

.00138 

-.00129 

o 

-.00007164 ] + 

.0019019 

(3.3.15) 

(3.3.16) 

9) Form G 

.56143 -.00279 -.00009 -.00229 

-.348617 .60251 .001616 -.16874 
G .. (3.3.17) 

.00334 -.00012 .49999 -.000124 

-1.2433 .1559 .0031556 .32349 
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The eigenvalues of G are .4937, .4937, .5 and .5. 

10) Let 

BF = B (3.3.6) 

11) The line characteristic of a failure in actuator 1 is given 

by the vector 

442.775 

Cbl = 474.435 (3.3.18) 

458.595 

1 

Cbl 
:; 1.07 (3.3.19) 

1.04 

The characteristic vector for f2 is found similarly. 

The FDF that will detect a failure in actuator one or two is 

given by 

Zl (k+l) = GZlCk) + Dy(k) + BuD(k) (3.3.20) 

where G is given by equation (3.3.17), D is given by equation (3.3.16) 

and B is given by equation (2.4.7). 

A failure in actuator one will cause, in the noiseless case, 

(3.3.21) 

.after all transients have settled out to lie on a line given by 

(3.3.19). Similar results can be derived for a failure in actuator 

two. 
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3.4 Failure Detection Filter Design for Sensor Failures 

This section is a step by step guide for designing FDF. The 

design algorithm is for a single sensor failure and is derived from 

(1). The design of a filter for detecting multiple sensor failures 

will not be covered in this thesis because of the complexity of the 

algorithm. The detection of more than one sensor failure with one 

filter is developed in (1). 

A FDF for a sensor failure is designed by the following steps. 

1) Find f such that 

(3.4.1) 

where emi is defined by equation (3.1.30). 

2) Find g the maximal generator for f using the algorithm in 

Appendix A. 

3) Find A', C' and K using equations (3.2.11-13). 

4) Find 

f' - Af (3.4.2) 

5) One of the following must hold 

i) Af lies in the observable space of C' with respect to A'. 

ii) Af lies in the unobservable space of C' with respect to 

A' and any detection gain satisfying 

DC£ - QD (3.4.3) 

is also a detector gain for Af. 
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6) If case ii holds, solve for D using equation (3.2.9). 

7) If case i holds, find g', A" by repeating steps two and 

three replacing f with Af, C with C', and A with A'. 

8) Solve for QD'. Where QDI is formed by equation (3.2.10) 

with A replaced by A' and g replaced by g'. 

9) Solve for D' using the equation 

D' m QD'[(C'Af)TC'Af]-l C'Af + 

D"{I-C'Af[(C'Af)T C'Af]-l C'Af} 

where D" is an arbitrary matrix. 

10) Solve for A'-D'C' noting that 

A-DC I: AI-D'C' 

and 

G ... A'-DIC' 

11) Solve for D 

12) Let 

BF = B 

(3.4.4) 

(3.4.5) 

(3.4.6) 

(3.4.7) 

(3.4.8) 

th The plane characteristic of the failure of the i sensor is given 

by the vectors emi and C'Af. 

This example. E5, will demonstrate the design of a FDF for a single 

sensor failure. The system will be the boiler system of example El. 
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The eigenvalues of the filter will be placed at ±.5. The system model 

is described by the matrices (2.4.6-8). 

1 0 0 0 

0 .77125 -.1796 0 
A"" (2.4.6) 

0 0 .61759 0 

.1352 .832419 -.09633 1 

15.84 1.3 -1.3 

285.935 -7.65 2679.275 
B - (2.4.7) 

0 525.812 -21032.44 

140.98 6.998 813.419 

1 1 0 1 

C = 3 1 0 1 (2.4.8) 

2 1 1 1 

The filter design is as follows: 

1) Solve for f in (3.4.1) 

Cf .,. em
i (3.4.1) 

1 1 0 1 1 

3 1 0 1 f - 0 (3.4.9) 

2 1 1 1 0 
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-.5 

1.5 
f = (3.4.10) 

-.5 

0 

2) The maximal generator, g, for f is 

-.5 

1.5 
g a (3.4.11) 

-.5 

0 

The detection order of f is one. 

3) Find A' and C'. K will not be found since it is unnecessary 

for this part. 

4) 

A' a 

1.25 

-.496675 

.25 0 

.274575 -.1796 

.25 

-.496675 

.058795 .058795 .61759 .058795 

-1.09399 -.39667 -.09633 -.22919 

where PI from equation (3.2.10) is -.5 and 

-[: 
0 0 0 

C' 1 0 1 

1 1 1 

Find Af which is f' 

(3.4.12) 

(3.4.13) 
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-.5 

1. 24668 
Af .. (3.4.14) 

-.308795 

1.22919 

5) Since 

e'Af :{: 0 (3.4.15) 

then Ai lies in the observable space of A' with respect 

to e'. 

6) Since case i holds, step 6 is skipped. 

7) Find g' 

g' = 

8) Find QD' 

QD' .. 

'1-.08647 

.006089 

l ·104733 

1.2292 J 

.2439681 

-.587745 

.079686 

-.814229 J 

9) Solve for D' using (3.4.4). 

(3.4.16) 

(3.4.17) 
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D' = .243968 [0 .421659 .50427] + 

-.587745 

.079686 

-.814229 

0 1.65 0 1 0 0 

0 3.3 0 0 .58852 -.4921 
(3.4.18) 

0 0 0 0 -.4921 .41148 

0 0 0 

It should be noted that it takes two eigenvalues of (A-DC) to 

constrain the residue to a plane and therefore two are left 

arbitrary and were specified by D". 

10) Find A'-D'C' 

-.5939 -.1350 .6889 -.1350 

-1.7389 .5 1. 7407 -.2706 
A'-D'C' = (3.4.19) 

-.1228 -.0151 .5773 -.0151 

• 7572 .3571 . .3143 .5247 

11) Solve for D 

-.25 1. 0739 -.6889 

.49709 1.694 -1.9203 
D .. (3.4.20) 

-.0589 .0337 .04029 

1.229 -.3433 -.41063 
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12) Let 

BF :a B (3.4.21) 

The plane characteristic of a failure in sensor one is given by the 

vectors emi and CIAf 

1 

emi " 0 

o 

CIAf .. 

o 

.9757 

1.167075 

(3.4.22) 

(3.4.23) 

The FDF that will detect a failure in sensor one is given by 

(3 .. 4.24) 

where G and D are given by (3.4.19) and (3.4.20). 

A failure in sensor one will cause, in the noiseless case, 

(3.4.25) 

after transients have settled out to lie in a plane given by the 

vectors (3.4.22) and (3.4.23). Failure detection filters to detect a 

failure in sensors two and three are found similarly. 
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3.5 Configuration Estimation Technique 

The first part of the chapter is concerned with developing a FDF 

that will constrain the filter residue to a predictable line or plane 

if there is a failure which the filter is designed to detect. In this 

section a decision technique is developed which gives the probability 

that a noisy plant output is associated with a particular line or 

plane. 

Moose and Wang (13) demonstrated a decision technique that detects 

random configuration changes in the presence of noise. The decision 

algorithm is given below. 

II(k+l) = 

o 

o 

p (r (k+l» 
m m e 

mm 

II(k) (3.5.1) 

where 6ji is a semi-Markov transition probability and where 

(3.5.2) 

where Pi(y(k+l»IS(k+l) - Si(k),y(k) is approximated to be a Gaussian 

density function and where SiCk) is the ith configuration at time t=k. 

Since Pi(ri(k+l» is a Gaussian density it is given by 

(3.5.3) 

where Vi is the covariance of a filter perfectly matched to the plant 

and where the constant Di is defined by 
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(3.5.4) 

It is assumed for this development that equation (3.5.2) can be 

approximated as a Gaussian density as it was in (13). Using this 

assumption, the only unknown parameters of (3.5.1) and (3.5.3) are 

eji, the semi-Markov transition probabilities, ri(k+l), the plant 

output minus the Kalman filter output in (13), and Vi' the covariance 

of the residue ri(k+l) when the filter is perfectly matched to the 

plant configuration. 

The semi-Markov transition probability eji is the probability 

that the plant will change from configuration Si to configuration Sj' 

An excellent discussion of how to choose the semi-~~rkov parameters 

is in (14). 

The residue ri(k+l), as stated above, is in (13) the plant output 

minus the Kalman filter output. In three dimensional output space, 

the residue ri(k+l) is the minimum distance between two points in 

output space. Therefore, the algorithm is actually dependent on the 

minimum distance between two points in the output space. 

Since the algorithm developed in (13) is minimum distance 

dependent, it follows that the algorithm can be extended to be the 

minimum distance between the filter residue point and a line or a 

plane, and the algorithm can be used to compute the probability that 

a filter residue is associated with a line for actuator failures or 

a plane for sensor failures. The modified algorithm is called the 

line or plane detection algorithm or LOPDA. 
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The value r.(k+l) must be the minimum distance between the plant 
~ 

output and the predicted line or plane. The minimum distance is 

computed by least squares using the formula 

(3.5.5) 

where 

S is the set of vectors [511 , S21] needed to describe the plane 

associated with the ith sensor failure or the vector [Sill 

needed to describe the line associated with the ith 

actuator failure. 

b is the residue £i(k+l) 

Yo is the solution to (3.5.5) 

The minimum distance is calculated 

(3.5.6) 

where £i(k+l) is defined 

(3.5.7) 

The final unknown in equation (3.5.1) and (3.5.3) is the 

covariance Vi. The mean is also calculated to show that the predicted 

line or plane is the mean of a FDF residue where the plant is in a 

failure state the FDF is designed to detect. The plant is described 

by equations (2.2.1-2) and the ith FDF is given by 

(3.5.8) 
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where 

G = A-DC (3.1.2) 
.,/ 

The following definitions are made to simplify the mean and 

variance calculations. 

xd(k) a Ax(k) + Bu(k) (3.5.9) 

yd(k) a Cxd(k) (3.5.10) 

zd(k+l) a (A-DC)zd(k) + Dyd(k) + Bu(k) (3:5.11) 

d(k+l) = yd(k+l) - Czd(k+l) (3.5.12) 

The vector G is defined as any vector which lies in the predicted 

direction or plane for an actuator or sensor failure respectively. 

The expected value of E(k+l) is 

E{E(k+l)} • E{y(k+l) - Cz(k+l)} 

= E{C[Ax(k) + Bu(k) + Gu(k)] + Hw(k) -

C[A-DC)z(k) + Dy(k) + Bu(k)]} 

= E{yd(k+l) - C[A-DC)z(k) + Dyd(k) + Bu(k)] + 

CGv(k) + Hw(k) - CD[CGv(k-l) + Hw(k-l)]} 

= E{Edtk+l)} + E{CGv(k) + Hw(k) -

cn[Gv(k-l) + Hw(k-l)]} 

= E{Ed(k+l)} + 0 

(3.5.13) 

(3.5.14) 

(3.5.15) 

(3.5.16) 

(3.5.17) 
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The term Ed(k+l) ~s the FDF residue with no noise. Therefore, it can 

be concluded that 

E{E(k+l)} = r (3.5.18) 

The steady state variance of E(k+l) is 

E{E(k+l)ET(k+l)} = E{[y(k+l) - Cz(k+l)] [y(k+l) - Cz(k+l)]T} (3.5.19) 

= E{(C[Ax(k) + Bu(k) + Gv(k)] + 

Hw(k) - C[(A-DC)z(k) + 

D[yd(k) + CGv(k-l) + Hw(k-l)] + Bu(k)]) 

(C[Ax(k) + Bu(k) + Gv(k)] + 

Hw(k) - C[(A-DC)Z(k) + 

D[yd(k) + CGv(k-l) + Hw(k-l) + Bu(k)])T} (3.5.20) 

a E{([yd(k+l) - Czd(k+l)] + CGv(k) + Hw(k) -

CD[CGv(k-l) + Hw(k)]) ([yd(k+l) - Czd(k+l)] + 

CGv(k) + Hw(k) - CD[CGv(k-l) + Hw(k)])T} (3.5.21) 

= E{Ed(k+l)EdT(k+l)} + E{CGv(k)vT(k)GTCT + 

Hw(k)wT(k)HT - CD(CGv(k-l)vT(k-l)GTCT + 

T T Hw(k-l)w (k-l)H )} (3.5.22) 

At steady state if n(k) in equation (3.2.1) is constant or slowly 

time-varying, then the variance will be approximately 

where Q and R are the covariance of v(k) and w(k) respectively. 
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The failure detection part of the algorithm is complete and a 

failure can be detected using an equation of the form (3.5.1); 

however, the no failure case has not been discussed. For failure 

detection filters the no failure state is characterized by a zero 

residue because all FDF's track the plant state. Therefore, to 

detect the no failure state in the presence of noise, the distance 

from the residue point to zero ri(k+l) is Ei(k+l). It can easily be 

shown that if 

(3.5.24) 

the least squares algorithm in equation (3.5.5) will give 

x - 0 (3.4.25) 

Therefore, ri(k+l) will be the same for all values of i. To prevent 

-this a failure threshold is set and the magnitude of x is not allowed 

to be less than the threshold. It can be shown that a FDF will always 

have a residue when a failure occurs even though it may not be in a 

fixed direction or plane. The probability of the no failed state is 

computed by letting any residue 

(3.5.25) 

and where rl(k+l) is placed in equation (3.5.1) and ITI(k+l) is the 

probability of the no failed state. 

To summarize the results of this section, the steps to determine 

if a failure has occurred in actuator one or two are given where fi 
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is the direction of the line characteristic of a failure in the ith 

actuator. 

1) Find the semi-Markov transition matrix, set the threshold and 

th find Vi the covariance for the i residue and Di • 

The following steps must be completed each iteration. 

2) Find the plant output y(k+l). 

3) Find the FDF outputs zi(k+l). 

4) Find the FDF residue Ei(k+l). 

5) Calculate ri(k+l), the minimum distance between the plant 

output and fi or, for the no failure case, P1(k+l) is Ei(k+l). 

6) Calculate Pi(ri(k+l». 

7) Calculate n(k+l) the probability of a failure in actuator ~ 

or a no failure state. 



4. SIMULATION AND RESULTS 

The purpose of this chapter is to exercise the theory developed in 

the previous two chapters and show their merit. This will be done by 

computer simulation. First, the B737 aircraft is simulated using the 

model developed by Zwicke, et al., to show that the estimator part 

of the control algorithm can adapt to a sensor failure, and the results 

are discussed in Section 4.1. Then the boiler system developed in 

example E1 is simulated with actuator and sensor failures using the 

two detection techniques developed, the Kalman filter technique 

developed in Chapter 2 and the FDF technique developed in Chapter 3. 

The boiler system simulations were designed to find what types 

of failures the failure detection techniques can detect and how they 

respond to modeling errors and sensor noise. The following types of 

actuator and/or sensor failures were considered. 

1) Biases on the actuator or sensor. 

2) Zero failures, i.e. no input from an actuator or no output 

from a sensor. 

3) Soft failures, i.e. increased noise on sensors. 

The results of these simulations are discussed in Sections 4.2 and 4.3. 

4.1 B737 Simulation and Results 

The B737 model with the linearized measurement model was simulated 

in the presence of sensor noise. The sensor noise covariance is gotten 

from (14). The only types of failures simulated are zero failures of 

a sensor. 
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The aircraft is started below the glideslope and below the target 

speed. The failure of sensor one occurs at T=6 seconds. Figure 1 

shows that the estimator did determine with a high degree of certainty 

that a failure did occur. Figure 2 shows that the plane does stay on 

the glides lope even after the sensor failure and the aircraft per

formance is very good. 

As a result of the simulations, it has been shown that the control 

algorithm adapts quickly to a sensor failure as long as (A,C) remains 

an observable pair. The simulations also show that the estimator 

part of the controller has good noise rejection; but as expected, 

performance is degraded as sensor noise increases. A major point 

that should not be overlooked is the fact that all possible failures 

must be modeled. 

4.2 Kalman Filter Technique Simulation and Results 

The boiler system developed in example El was simulated for both 

actuator and sensor failures using the Kalman filter technique devel

oped in Chapter 2. 

The different types of actuator failures simulated include large 

and small bias and a zero failure under a variety of sensor noise 

levels. The failures were simulated for two types of desired inputs. 

They were a step input and a ramp input. This was done to see if the 

type of input affected the failure detection. For all these conditions 

the Kalman filter technique quickly and accurately identified the 

failure even in the presence of sensor noise. Figure 3 is typical 
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showing a correct identification of the no failed state and the failed 

actuator (actuator 2). 

Actuator failures were also simulated in the presence of modeling 

error. This was done by changing one or all of the eigenvalues of the 

plant by a known value from the model the Kalman filter was using. In 

this, too, the Kalman filter approach did extremely well. Figure 4 is 

typical showing the identification of a failure in actuator one when 

there is a 5% change of all the eigenvalues. This method showed good 

tolerance for modeling error but the performance of the decision 

algorithm was degraded as the number of changed eigenvalues increased 

and as the percent error increased. 

The different types of sensor failures simulated were large and 

small biases on a sensor and a zero output, all of these under a 

variety of sensor noise levels. The failures were simulated for two 

types of inputs, a step and a ramp. The failure detection was not 

affected by a change in inputs. For all the different types of 

failures, the failure detection technique worked extremely well even 

in the presence of sensor noise; however, this technique will not 

detect soft failures in sensors. For all other cases, the no failed 

state was quickly identified and the failure state was identified soon 

after the failure occurred even in the presence of sensor noise. 

Figure 5 is typical showing the identification of the no failed state 

and the identification of the sensor failure after a short false 

identification. 

Sensor failures were also simulated in the presence of modeling 

error just as the actuator failures were. In this case too, the 



8 
• 

N 

@ 
• -

~8 x· 
0:-

>-

8 

)II( NO FAILURE 

• FAILURE ACTUATOR 

6. FAI LURE ACTUATOR 2 

(!) FAJ LURE ACTUATOR 3 

NO FAILURE---+-FAILURE ACTUATOR 21 

~~-a~~~~~~+m~~~~~~1 I 
80.00 120.00 160.00 200.00 40.00 

TIME SECONDS *10 1 

Figure 3. Actuator failure detection with sensor noise 
by Kalman filter technique. 

j 

240.00 
I 

280.00 



8 
• N 

>-

~ • o 

8 

)I( NO FAILURE 

• FAILURE ACTUATOR 1 

A FAILURE ACTUATOR 2 

~ FAILURE ACTUATOR 3 

NO FAILURE ---t-FAILURE ACTUATOR 1 i 

40.00 80.00 
TIME 

120.00 ~~O.OO 2bo.oo 
SECONDS * 1 0 I 

Figure 4. Actuator failure detection with sensor noise 
by Kalman filter technique. 

I 
240.00 

I 
280.00 



8 
• 

'" 

• -
~8 
X· 
([-

>-
o 
Ul 

• o 

g 

.. 

NO FA I LURE-4- FAILURE SENSOR I ~ 

NO FAILURE 

o FA1LURE SENSOR 

A FA1LUR~ SENSOR 2 

FAILURE SENSOR 3 

.·~~~~~~~c-~-+~~~~~~~~~~ft~'--------~I--------~I--------~I 
40.00 80.00 

T J f"IE 
120.00 160.00 200.00 240.00 280.00 
SECONDS 31( 1 0 1 

Figure 5. Sensor failure detection with sensor noise 
by Kalman filter technique. 



59 

failure detection technique quickly identified the failure even when 

there was a 10% modeling error in all the eigenvalues. Figure 6 is 

typical showing the identification of a failure in sensor one when 

all the eigenvalues of the Kalman filter are incorrectly modeled by 

10%. Again as the number of eigenvalues incorrectly modeled increased 

and the percentage error increased, the performance was degraded but 

the degradation was not noticed until all the eigenvalues were changed 

more than 10%. 

In summary, the Kalman filter detection technique developed in 

Chapter 2 works extremely well for a wide range of actuator and sensor 

failures except soft failures. Also, changing the system input seemed 

to have no effect on failure detection. This method also worked well 

in the presence of sensor noise and when there was significant modeling 

error. The major disadvantage of this method of failure detection is 

that every failure must be modeled and all the models must be run in 

parallel which can become overwhelming computationally. 

4.3 Failure Detection Filter Technique Simulation and Results 

The boiler system in Chapter 2 was also simulated for both actuator 

and sensor failures using the FDF technique developed in Chapter 3. 

The different types of actuator failures simulated included large 

and small biases and zero failure of an actuator, all of these both with 

and without sensor noise. The failures were also simulated with the 

desired inputs being either a step or ramp. The no failure state and 

failures were identified regardless of the input, as long as the residue 

was large enough to exceed the threshold, for large and small biases 
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and zero inputs when there was no sensor noise. Figure 7 is typical 

showing the no failure state correctly identified and a failure in 

actuator one being correctly identified when a small bias 1s applied 

to the actuator. However, when sensor noise is added, the performance 

was poor for all cases except for very low noise levels. This was not 

totally unexpected because the FDF was not optimized for performance 

in noisy environments; however, the no failure configuration is 

extremely unreliable. This is primarily due to the difficulty of 

determining the threshold which distinguishes the no failure state 

from the failure state. The threshold must be changed whenever the 

magnitude of the failure becomes small or the sensor noise level 

changes which makes this technique for identifying the no failure 

configuration very difficult to implement. Figure 8 shows a correct 

identification of the no failure configuration and a small bias failure 

for actuator two; however, the SNR was in the order of 10000:1. With 

noise levels greater than this, the technique could not distinguish 

the no failure case with any reliability. 

The actuator failure was also simulated in the presence of 

modeling error. Unlike the Kalman filter technique, the FDF technique 

is very sensitive to modeling error. The largest modeling error that 

the FDF technique could consistently tolerate and still identify the 

no failure and failure configurations was about 5% in one eigenvalue. 

Figure 9 shows the identification of the no failure configuration and 

the failure of actuator one in the presence of a 5% modeling error of 

one eigenvalue. 
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The different types of sensor failures simulated were large and 

small biases of a sensor, a zero failure and increased noise on a 

sensor. Each of these failures were simulated with various amounts 

of sensor noise and both step and ramp inputs. The failure detection 

technique was not affected by the type of failure as long as it created 

a residue large enough to exceed the failure threshold. The failure 

detection technique was also impervious to changes in the input; 

however, low level sensor noise did cause the performance to degrade 

significantly. The no failure detection technique was very sensitive 

to low levels of noise which made it useless. The failure detection 

technique was also sensitive to sensor noise but to a much lesser 

degree. Figure 10 shows the detection of the no failure state and a 

failure of sensor 3 when there is no sensor noise. Figure 11 demon

strates that the no failure state is unreliable when sensor noise is 

present. The no failure configuration is identified as a failure in 

sensor 3. The failure configuration in Figure 11 is quickly and 

correctly identified. The FDF technique will detect a soft failure in 

a sensor as shown in Figure 12. Again note that the no failure con

figuration identification does not give any reliable information. 

Sensor failures were also simulated in the presence of modeling 

error. The results were disappointing because the FDF technique shows 

no tolerance for any modeling error. Figure 13 shows a failure in 

sensor one at t=760 seconds which is incorrectly identified as a 

failure in sensor three when there is a 1% modeling error in one 

eigenvalue. This result should not be surprising because the FDF 
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developed by Beard can also be designed to detect changes in the A 

matrix. A change in the plant will cause a random error in all the 

filter residues in addition to any error associated with a failure 

and therefore may cause an incorrect identification. 

In summary, the failure detection filter technique can detect a 

large number of failures with various inputs in the presence of noise. 

This technique can also detect soft failures in sensors. These bene

fits are overshadowed by the disadvantages. The no failure detection 

technique is very sensitive to sensor noise and small levels of sensor 

noise make it unreliable. Also, the FDF technique is also very sensi

tive to small changes in the eigenvalues. 



5. CONCLUSIONS 

This report is intended to show that the estimator part of the 

control algorithm developed by Zwicke, et al. for the B737 can adapt 

to sensor failures. In addition it is intended to explore potential 

usefulness of the Kalman filter identification technique adapted from 

the estimator of the B737 control algorithm and the FOF technique 

developed in this thesis for failure detection in the B737 project. 

The B737 control algorithm is shown to work well during a sensor 

failure in the presence of sensor noise; however, the main disadvantage 

is that all failure modes must be modeled which can make this technique 

hard to implement. 

The Kalman filter technique presented in Chapter 2 has some 

major advantages over the FOF technique present in Chapter 3. First 

the Kalman filter technique works extremely well in the presence of 

sensor noise. Also, small modeling errors do not affect the perform

ance of the technique. This is a major concern for this particular 

application since the plant models are linearized and will seldom be 

a perfect match to the actual plant. This failure detection technique 

does require a model for each failure mode which can make detection 

unwieldy. 

The FOF technique presented in Chapter 3 also has advantages but 

they are outweighted by the technique's limitations. The FOF technique 

can detect a wide range of failures including soft failures with a 

small number of filters. This technique can also distinguish between 

a zero input and the zero failure of an actuator. Failures are 
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detected with reliability quicker than they are using the Kalman 

filter technique; however, the no failure configuration detection 

technique developed in Chapter 3 is not satisfactory because the 

failure threshold is difficult to set when sensor noise is present. 

The most serious problem with this failure detection technique is 

that the plant models must be too accurate to allow for the estimated 

parameters and the changes in the plant as the plane goes through 

its flight envelope. 

In summary, the failure detection filter technique as it is 

presented in this thesis can not provide reliable failure detection 

for the B737 primarily because of its need for an extremely accurate 

plant model. The Kalman filter technique although cumbersome to 

implement can accurately detect actuator or sensor failures for this 

type of system. 



6. RECOMMENDATIONS FOR FURTHER STUDY 

It is hoped that this Ireport will not be the end of research in 
I 

this area, but will be a continuing part of the research effort in the 

flight control and failure detection areas. The following areas are 

recommended for further study. 

First, the B737 model developed by Zwicke, et al. was not designed 

considering the possibility of actuator and sensor failures. Therefore, 

the model needs to be modified so that all the information necessary 

for control of the aircraft is still available after any sensor failure. 

In addition to the work needed on the failure model, the Kalman 

filter detection technique used in the B737 project needs further study. 

Since the Kalman filter approach requires a fa~lure model for each 

failure and there are almost an infinite number of ways actuators and 

sensors can fail (bias of 10%, 11%, etc.), there needs to be a deter-

mination of how accurate each failure model must be and how many 

similar failures can one model detect. 

The failure detection filter technique developed in this thesis 

also needs further study. First and foremost, a better no failure 

configuration detector needs to be developed. A hybrid system using 

the Kalman filter technique for the no failure state detection and the 

FOF technique to detect failures appears to be a promising approach. 

In addition, in the FOF technique an assumption that equation (3.5.2) 

could be approximated by a Gaussian density function was made. This 

should be investigated further to see if the assumption is indeed 

valid and if a "better" approximation may be found. 
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Finally, this report has shown that the FDF technique works 

extremely well. However, the classes of problems for which this 

technique is applicable are severely restricted. Therefore, FDF 

theory needs to be extended so that it can be applied to nonlinear 

and time varying systems. 
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APPENDIX A. FINDING THE MAXIMAL GENERATOR 

The algorithm for finding the maximal generator is developed by 

Beard (1) and a brief synopsis is presented in this appendix. The 

algorithm depends on the orthognal reduction process and it is reviewed 

before the maximal generator algorithm is given. 

The orthognal reduction of an nxn positive definite matrix n by 

the rows of an nxn matrix V, where 

V = 

V T 
i 

V T 
n 

(A-I) 

and Vi are nxl arbitrary vectors, generates a matrix nf whose range 

space coincides with the null space of V. The nxn matrix nf is found 

by the following steps. 

1) Any auxiliary vector wI is defined by 

where nl is the positive definite matrix n. 

2) Solve the following equation for n2 

3) The following steps are iterative 

i) With ai from the previous iteration, form the 

auxilary vector. 
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(A-2) 

(A-3) 
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ii) If w. ~ 0, then solve the following equation for n. 1 l. l.+ 

T 

01+1 .. 0i -
w

1
w

1 (A-4) 
T 

wi Vi 

iii) If wi - 0, then set 

01+1 .. °i (A-5) 

This orthognal reduction process 1s completed if all n rows of V have 

been processed. 

The algorithm for finding the maximal generator is given by the 

following steps. 

1) Find M', and MkT where M' is given by equation (3.2.14) and 

where 

where q' is defined by equation (3.2.16). 

2) Form the starting matrix 

n ,. I 
nxn 

(A-6) 

(A-7) 

3) Perform the orthognal reduction of n by the rows of M'. 

,4) When the reduction process is complete, nf is the range 

scale of f. 

The next four steps are for finding the maximal generator. 
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5) Reduce nf by the rows of MkT' All the auxiliary vectors of 

nf will be zero except for one. 

6) The maximal generator is formed by the last nonzero auxiliary 

vector before termination, given by the equation 

11.1 -i 
(A-8) 

th Where v is the detection order of f and C
j 

is the j row 

of C. 

7) The magnitude of wi must be adjusted to satisfy 

CAV-lg _ CAuf (A-9) 

where u is defined by 

CAjf .. 0 j .. 0, ••• , u-l (A-IO) 

CAuf ; 0 (A-ll) 

8) The maximal generator g is 

g • [ 

u 

1 Wi 

C
j 

A_f 

v-I 
CjK wi 

(A-12) 
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