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SUMMARY

A prototype of a custom-designed computer to be used as a processing ele-
ment in a multi-processor-based jet engine simulator is described in this re-
port. The computer was custom-designed to give it the speed and versatility
required to simulate a jet engine in real-time. Real-time simulations are
needed for closed-loop testing of digital electronic engine controls. The
prototype computer has a microcycle time of 133 nanoseconds. This speed was
achieved by: (1) prefetching the next instruction while the current one is
executing, (2) transporting data using high-speed data busses, and (3) using
state-of-the-art components such as a VLSI multiplier. However, some other
features usually found in commercially available computers, but not neces-
sarily required in a simulator, were left out of the custom design to reduce
cost and system complexity. These include complex interrupt structures, byte
addressability, and a large memory addressing range.

The report discusses processing element requirements, design philosophy,
the architecture of the custom-designed processing element, the comprehensive
instruction set, the diagnostic support software, and the development status
of the custom design. Problem areas encountered in designing the processing
element, along with logic circuitry used to eliminate those problems, are
pointed out. By doing so, the authors hope that the reader may gain some in-
sight into the kinds of difficulties that might be expected when undertaking
the development of a custom-designed computer to meet special application
needs.

INTRODUCTION

Even though the rapid growth in microelectronic technology in recent years
has made it possible to build compact high-speed digital computers, accurate
real-time digital simulations of modern airbreathing engines and their controls
are still difficult to achieve. Because of the large number of complex non-
linear calculations required in such a simulation and the sequential nature of
digital computers, real-time execution of these calculations requires simpli-
fication of the engine model and/or the use of an extremely fast, dedicated
mainframe computer (e.g., ref. 1l).

The technique of parallel processing seems to show promise for real-time
simulation. Several computers concurrently operating on different portions of
the simulation can effectively reduce the computation time and may provide
real-time response of the simulation (ref. 2). Parallel computation may permit
real-time execution of simulations heretofore considered too complex for such
execution speeds. The use of low-cost mini or microcomputers can make this
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approach cost-effective relative to current approaches (i.e., use of mainframe
computers).

The design of a real-time digital simulator (RTDS), to be used as a re-
search tool for the development and testing of airbreathing engines and their
controls, is being pursued at the NASA Lewis Research Center (LeRC). A concep-
tual design of a possible Lewis RTDS is presented in reference 3. A block
diagram of this design is shown in figure 1.

Basically, the RTDS consists of several processing elements (PE's) synch-
ronized on a high-speed data transfer bus by a transfer controller. A1l but
two of the processing elements can be used to perform concurrent simulation
computations. One of the two remaining processing elements is dedicated to
input/output functions. The Tast processing element serves as the real-time-
extension (RTX) of the front-end-processor (FEP). It is a special purpose
processor linking low-speed operator interaction with the high-speed simulator
core. The FEP provides the interface between the operator and simulator that
permits the operator to control the simulation execution. The FEP, based on
the Motorola MC68000 microprocessor, handles such functions as peripheral com-
munications and mode control. In addition, a host computer interface allows
the downlinking and uplinking of data and programs between a host computer and
the simulator. At LeRC the host computer is an International Business Machine
(IBM) 370/3033.

This report describes the design of a prototype computer meant to be used
as a processing element (PE) in a multi-processor-based jet engine simulator.
The custom design provides computation speeds and programming flexibility not
obtainable using commercially available computers. The report discusses the
requirements for a PE to be used in a RTDS, the Lewis design philosophy, the
architecture of the custom-designed computer and its support software, and the
development status of the custom design.

PROCESSING ELEMENT REQUIREMENTS

The custom-designed processing element (PE) was required to satisfy several
basic requirements. The first and foremost requirement was computational
speed. The kinds of engine control research for which the simulator would be
used require the simulation calculations to be performed.in less than 10 milli-
seconds. This requirement pointed to a maximum microcycle time of 250 nano-
seconds. Since the PE was to be used not only as the principal computing ele-
ment in the simulator but also as a tool in future hardware and software re-
search, every effort was made to minimize the microcycle time. '

Another requirement was that the PE be versatile and convenient to use.

The PE must be flexible enough to accommodate both hardware and software
changes. Because the simulator is intended to be a research tool, the PE must
be compatible with different simulator hardware configurations. The PE design
must allow changes to its instruction set to evaluate its effects on system
operation. :

Because the PE is to be used in a parallel processing system, the PE mem-
ory access must be sufficiently fast. Otherwise, a disproportionate amount of
time will be required to transfer the data among the elements comprising the
simulator. Finally, the prototype design must be inexpensive to build.



PROCESSOR OVERVIEW

The custom-designed computer presented in this report satisfies all of
these requirements. Speed was acquired by building the PE with state-of-the-
art (VLSI multiplier, e.g.) and employing innovative circuitry to reduce the
execution time. As will be seen Tater, the prototype design, with its micro-
cycle time of 133 nanoseconds, is capable of executing a sequence of code two
to three times faster than a Digital Equipment Corporation (DEC) PDP 11/70
computer. In addition the custom-designed PE provides the programmer with a
very powerful and complete instruction set for simulating jet engine behavior.

Almost 300 different instructions, each with an easy to understand natural
mnemonic name, cover the spectrum of arithmetic, logical, and conditional
operations. Many operations which would normally require multiple instructions
on other computers are available on this custom design as a single command.
Selecting the maximum of two values, MAX, for example, is a single instruction
on the custom-designed PE.

Instructions are not hardwired in the custom-designed PE, but reside in
the PE as microcode. No hardware changes are required to modify the instruc-
tion set. In addition, all circuit connections on all circuit boards are
wirewrap connections. Thus, soldering is unnecessary when modifying wiring on
the computer boards.

The PE design will permit the transfer of data between PE's to be carried
out quickly and orderly in the simulator, the process consuming an acceptable
portion of the computation update cycle. The hardware meets this high-speed
data transfer requirement by using pipelining, 45 nanosecond memory, and
Schottky TTL components. Costs were kept to a minimum by building the proto-
type PE inhouse at LeRC. The hardware for the system cost approximately '
$11 000. This includes the chassis, circuit boards, components, wire, etc.
for the PE; it does not include any support hardware or diagnostic equipment.
A photograph of the prototype hardware is included as figure 2.

Salient features of the design include: a 133 nanosecond microcycle time;
an advanced microcycle controller to minimize the number of cycles associated
with instructions involving conditionals; an enhanced instruction set that
permits rapid execution of simulation-related functions (SELECT MAX or SELECT
MIN executed in 166 nsec, for example), and a very-large-scale integrated
(VLSI) 16-bit multiplier that permits three different types of multiplication
to be executed in 400 nanoseconds each,

DESIGN PHILOSOPHY

The emergence of moderately priced, very high speed metal-oxide-
semiconductor (MOS) and transistor-transistor-logic (TTL) memories has made
possible the design of moderately-priced memory modules with access times of
80 to 100 nanoseconds. As a result, traditional minicomputer design guide-
lines, which assume that the arithmetic logic unit (ALU) is at least twice as
fast as the memory, have become obsolete. Therefore, to achieve ALU cycle
times that are compatible with the speeds of these advanced memories, one could
use the latest emitter-coupled-logic (ECL) bit-slice devices. However, these
devices are very expensive, consume a considerable amount of power, and require
special circuit boards. They also lack standardization and have poor noise
immunity. TTL bit-slice circuit elements, like the Advanced Micro Devices
(AMD) 2900, for example, offer noise immunity but lack the speed needed to
take advantage of the high speed memories. An alternate approach to achieving



high-speed computation would be to use parallel ALU's. The Plessy MIPROC-16
computer is an example. However, to achieve reasonable speed (a 250 nano-
second microcycle time) at low cost, the MIPROC-16 incorporates a single ac-
cumulator, a l6-bit instruction word length, and an awkward addressing mode.
This limits the computational power of the machine and requires many cycles
for complex operations.

Thus, to provide the required speed and programming flexibility for the
real-time simulator, it was necessary to custom design a processor. Making
the design compatible with TTL and ECL bit-slice architectures would leave
open the possibility for incorporating new bit-slice technology as it becomes
available to improve performance and/or lower costs. The basic processor de-
sign is a 16-bit computer with a 32-bit instruction word length. The design
incorporates saturated logic of the Schottky and low-power Schottky TTL family.
Current packaging technology restricts the flexibility of available VLSI and
LSI devices. Hence, our custom-designed computer features mostly medium-scale
integrated (MSI) circuits in the ALU. The micro-programmable architecture
employs instruction prefetch and permits pipelining of processor control sig-
nals to increase speed and provides the ability to modify the instruction set
when necessary.

ARCHITECTURE OF THE CUSTOM-DESIGNED PROCESSING ELEMENT

The architecture of the custom-designed PE is presented in figure 3. It
consists of an arithmetic logic unit (ALU), high-speed data busses, a high-
speed TRW MPY16HJ multiplier, a status register with an associated status logic
generator, an exponent generator/zero detector, a microprogram controller for
sequencing execution of microcoded instructions and a 32K-by-16-bit memory.
These components and associated design considerations will be discussed further
in the following sections of this report. Also included in the PE architecture
are a program counter, which points to the next instruction to be executed,
and a memory address register, which keeps track of memory access. Associated
with each of these is an adder which can be used to increment or decrement the
program counter or memory address register. Access to the PE is provided by
an input/output port and an external memory port. Through these paths the
programmer not only may monitor parameter values being used by the PE, but he
is also provided with a means of modifying those which he feels need adjusting.

The Status Register

At any instant during execution, a special register gives the current
condition and mode of operation of the computer and the calculations taking
place. It also provides the programmer with control over the execution of the
program by allowing him to select and/or change the mode of operation. In the
custom-designed computer this special register, called the status register, is
16 bits long. Its layout is shown in figure 4. Notice that by setting bits
12 through 15, the programmer can enable various levels of interrupts and/or
overflow limiting. When overflow limiting is enabled, any calculation that
would over-flow is restricted to its full scale value. Bits 7 through 11 are
a series of flags that allow different actions to be taken depending on
whether they are set or reset. Bits 5 and 6 are the overflow latch and
overflow latch enable, respectively. When the overflow latch is enabled (bit
6 set), an overflow will cause the overflow latch (bit 5) to be set and remain
set until it is specifically reset by an action taken by the operator or the



program itself. Bit 4 acts as a carryout bit; that is, it is a storage loca-
tion for a bit which may be lost in a calculation due to limited register size.
For example, in a 16-bit machine, adding the hexidecimal words FFFF and FFFE
(-1 plus -2 decimal) results in FFFD (-3 decimal) with the carry bit (bit 4)
set because a bit is "“carried out" of the calculation. The final four bits
(bits O through 3) are designated as the condition code. Generally, for
arithmetic operations bit 3 indicates whether an overflow has occurred, and
bits 0 through 2 indicate whether the result is positive, zero, or negative,
respectively. Generally, for logical operations comparing A with B, the con-
dition code bits O through 2 indicate whether A is greater than B, equal to B,
or less than B. A summary of status register characteristics is presented in
table I.

Status Logic Capabilities

Comparisons. - A unique feature of the PE is that circuitry has been in-
cluded in the design which allows valid, logical comparisons of arbitrarily
large, multiple-precision signed-words, as well as single-precision signed-
words. That logical comparisons of signed-words cannot be made by just sub-
tracting one word from another in the ALU and checking the sign of the result
is well-known. To do so can result in an error. To prevent these kinds of
errors, an external zero detector circuit has been included as part of the PE
hardware. The inputs to the zero detector include: (1) the words to be com-
pared; (2) the output bits, Uyy, of the ALU; and (3) bit 1 of the status
word, SW1, which is set when, at the time the status word is updated, all bit
of the current ALU output are zero (indicated as, Uyx = 0). '

The logical comparison is based on the relationship that if B is not
greater than A (B > A) and B is not equal to A (ZERO), then B must be
less than A. ZERO denotes the output from the external zero detector circuit.
When performing single-precision comparisons and when operating on the least
signficant 16 bits of multiple-precision words, the ZERO signal will be true
if any of the Uyy bits output from the ALU are set. When operating on the
more significant 16-bit portions of multiple-precision words being compared,
ZERO represents the current status of a running test on the multiple-precision
comparison. Here the ZERO signal is based not only on the current 16 bits be-
ing compared (indicated as Uyx), but also on the previously compared 16 bits
(indicated as SW1). The ZERstignal then satisfies the relationship

ZERO = SW1 » (Uyyx = O) (1)

For both single and multiple-precision comparisons, the B > A signal is deter-
mined by the sign bit and the carryout bit from the ALU subtraction. Thus, the
logical comparison approach used in the PE is valid for both single and
multiple-precision comparisons. The multiple-precision comparisons reduce to a
series of multiple-precision subtractions in the ALU together with the use of a
running condition code.



Because the custom-designed PE is a research-oriented computer, it has been
designed to be extremely flexible when it comes to logical operations. For
example, it has been designed to permit the multiple-precision comparisons to
be performed from the most significant words to the least significant words.

In some applications this can result in increased speed. The general procedure
is similar to that just discussed. In this case, however, the procedure can
stop after comparison of the most significant words is made, provided an in-
equality is detected. As before, the status register is updated after each
subtraction in the ALU. SWO is used in this case to indicate if a previous
word comparison determined that B > A. If SW1 is set, all less significant
words compared thus far have been equal. And since the less significant words
of multiple-precision integers are unsigned, inequality may be detected by
simply observing the carryout bit of the ALU upon subtraction. If the carryout
bit is reset, B 1is greater than A.

Multiplications. - Since the custom designed PE uses the TRW MPY16HJ mul-
tiplier which has no built in overflow indicator, logic to sense multiplication
overflow, MPYOVFL, had to be included in the custom design. The only possible
way to overflow in an integer (scaled fraction) multiplication on the custom-
designed PE is to try to multiply minus full scale by minus full scale. In
scaled fraction notation, this amounts to trying to perform the calculation
-1*-1=*1. The result, *+1, overflows the scaled fraction format, and hence,
causes a multiplication overflow condition. To determine multiplication over-
flow all that needs to be done is to determine when minus full scale is fed to
each input of the TRW multiplier. Since this multiplier is separate from the
ALU, the ALU can be used to add both multiplier inputs while the multiplication

is taking place. The multiplication overflow indication, then, can come from
the relationship

MPYOVFL = OVFL « (U,, = 0) (2)

since, when minus full scale is added to minus full scale, both an overflow (OVFL)
occurs in the ALU and the Uy, output of the ALU is zero. Notice that this is
the only set of inputs to tﬁe ALU that will result in these conditions.

The Instruction Set

Normally, instructions reside in a computer as an integral part of its hard-
ware. Thus, the programmer must be satisfied with the instruction set built into
the computer he is using. He may be able to construct some other instructions by
building PROCEDURES or MACROS using the instructions provided to him by the manu-
facturer. This may necessitgte the use of awkward constructs that require extra
execution time and more core'storage. In a time-critical simulation application,
this may not be acceptable. The custom-designed PE includes a microcoded instruc-
tion set which offers several advantages over a system with conventional hard-
wired instructions. As mentioned previously, the PE was designed for use as a
research tool to develop and evaluate parallel processor hardware and software.
Having the instruction set reside in software complements the versatility of the

design. Instructions can be conveniently added or deleted from the instruction
set as the need arises. :



The instruction set residing in microcode in the custom-designed PE gives
the jet engine simulation programmer extraordinary computing power with which
to do his work. The highlights of this instruction set are summarized in
table II. The set includes 285 instructions in all. There are 22 different
arithmetic instructions. These include the basic operations of addition, sub-
traction, multiplication, and division operating on integer (including scaled
fraction) or floating point inputs, both single precision and double precision.
The enabling and controlling of the interrupt structure and data transfer con-
trol of the machine is governed by 11 different control instructions. These
instructions also control input/output to the PE.

The following instructions are unique to this machine insofar as they are
extremely fast and provide the programmer with powerful one instruction com-
puting capability.

Data type conversions are provided by 22 data conversion instructions.
These allow any of the data types: integer (scaled fraction), floating-point,
both single and double precision, to be converted to any other data type auto-
matically. These instructions allow automatic scaling and descaling between
integer and floating-point. Implementation of integration schemes used in the
simulations can be facilitated by 14 instructions which perform multiple-
precision, cumulative addition and subtraction.

Block move instructions allow the moving of the contents of blocks of mem-
ory around within memory using only a single instruction. Single instructions
also allow fast implementation of complex multiconditional jumps. The jump
will occur on status word condition true. The status word condition is field
selectable on four fields with 16 different combinations on each field.

Instructions operating on integer input data are very fast. They require
at most two machine microcycles to execute, with most requiring only one. The
multiply instruction using the TRW MPY16HJ multiplier requires 3 microcycles
to execute and the divide instruction executes in only 19 microcycles in this
custom-designed machine. Likewise, select maximum/minimum requires only one
microcycle for 16-bit integers.

For comparison purposes, the time required to execute typical instructions
with the custom-designed PE and various commercially available machines is
presented in table III. The table shows the superior speed advantage of the
PE.

The Memory and Addressing Modes

As mentioned earlier, the PE has a 32K-by-16-bit memory. Included in the
Pt architecture is an external memory port interface which allows access to
the PE memory via external data busses (see fig. 3).

Memory addressing is aided by the powerful addressing modes which allow
flexibility in specifying memory locations. Memory may be specified as a base
location, as a relative displacement, as a relative location specified in an
index register, or as a combination of all three. In addition, memory loca-
tions may be specified as an absolute address offset by a relative location
specified in an index register.

In the base address mode of referencing memory, the memory address is ob-
tained by adding together the contents of two registers - one known as a base
register, the other known as an index register - plus a 12-bit displacement
specified as a constant in the operand field of the instruction. As shown in
figure 3, the contents of the base and index registers for memory calculations
are transported on the RA and RB register busses, respectively. The displace-
ment comes directly from the instruction register. The reason for two regis-—




ters is to allow the addressing of a block of data. The base register holds a
reference location which acts as an origin for determining the addresses of
the other memory locations. The contents of the index register acts as an
index, just as its name implies, allowing the programmer to address a block of
memory. He may also address a pattern of memory locations by changing the
contents of the index register in some prearranged fashion. .

In the absolute address mode of referencing memory, the memory address is
obtained by adding together a 16-bit constant and the contents of an index
register. For the memory address calculation these data are transported on
the RA and RB register busses, respectively. The result of this summation is
an absolute memory reference relative to the first location used by the simu-
lation. Either of these addressing modes may be used in a simulation at any
time. The programmer is free to intermix them, using the one he feels is most
suited to his application in that particular portion of the simulation.

Microprogram Control Logic

The microprogram control logic (MPCL) which coordinates execution of the
PE microcoded instructions, can be considered as a computer within the PE.
Each PE instruction has associated with it a sequence of microcode commands
which carry out the desired PE operation. When the microprogram requests an
operation to be performed, sufficient cycles are granted to allow that opera-
tion to be carried out. The microprogram memory is 1lK-by-72-bits. Each
microprogram instruction is 72 bits long. The MPCL is displayed in figure 5.
The op-code for the next PE instruction is directed from the prefetch latch to
the microprogram control shifter. The microprogram control shifter sets the
microprogram counter to the correct microprogram address in order to begin
executing the sequence of code which will perform the operation. Inputs are
sent to the ALU via high-speed busses where the arithmetic operations then take
place. Included in the MPCL is a prioritizer which controls the operations.
It will halt other operations if it determines that: (1) the system has been
master cleared, (2) transfer of data between PE's is in progress, (3) a halt
has been requested, (4) a parity error has been detected, (5) the op-code for
the next instruction is not available from the instruction prefetch, (6) an
external interrupt has occurred, or (7) a system pause has been requested by
the operator.

The select logic for the microprogram next address control is shown in
figure 6. Depending on whether a special microprogram bit is set or reset in
the microprogram instruction word, one of two paths is selected as shown in
the figure - either tier A or tier B. Furthermore, depending on whether con-
dition code bits ccl and cc2 are set or not, various options can arise in
selecting the address of the next microprogram instruction to be executed.
For example, suppose that tier B is being followed. If ccl is reset, then the
condition for a conditional jump is not satisfied. The jump is not taken and
the next microprogram instruction to be executed is the next microprogram
instruction in the program sequence. However, if ccl is set and cc2 is also
set, then the condition for a jump is also satisfied. A jump is taken to the
address indicated (pipeline address), and the microprogram instruction con-
tained therein is the next microprogram instruction to be executed. If cc2 is
reset, the microprogram incrementer (shown in fig. 5) advances the micro-
program counter by one and the next microprogram instruction in the sequence
is executed as the next instruction.



If the tier A path is followed and ccl is reset, interrupts may be ser-
viced. If an interrupt has occurred, a jump is made to the interrupt map to
determine the cause and the action to be taken. Examples include: HALT, to
stop execution of the program; MASTER CLEAR, to clear registers and reinitia-

lize the PE; a parity error having occurred; transfer of data among PE's about
to take place.

The Arithmetic Logic Unit (ALU)

The ALU logical arrangement is shown in figure 7. The ALU is responsible
for performing the actual arithmetic and/or logical operations requested in
the instruction operation code. Inputs to the ALU come via two high-speed
data busses (A-bus and B-bus in fig. 3). Output from the ALU goes to a multi-
plexer/shifter where the final output is shaped as to whether it is to have
its bits reversed, passed as is, or shifted left or right. These values are
then stored in registers and/or memory via high-speed data busses for use in
future calculation, as appropriate. An overflow detector checks the output to
determine whether an overflow has occurred. If overflow limiting is in effect,
a result which overflows is limited to its corresponding full scale value with
appropriate sign. The output also goes to the status logic generator so that
the status register may be updated to reflect the calculation just completed
in the ALU. Information necessary for the ALU to carry out its duties is sup-
plied to the ALU control via high-speed data busses from the program instruc-
tion register, the microprogram control, the status register, and the PE
memory.

High-Speed Data Busses

Information is moved around within the custom-designed PE structure via
high-speed data busses. The layout of the bus system is shown in figure 3.
The A and B-busses are used to transmit input information to the ALU. The
B-bus also supplies the TRW high-speed multiplier with input information.
These busses receive register information from the register busses (RA and RB
busses) through a system of latches also shown in figure 3. The RA and RB
busses also transmit register information for memory storage and for memory
address calculation. Address information is transmitted via the memory ad-
dress bus to the high-speed multiplier, to the instruction address register
through the prefetch latch, and to memory.

A special pair of busses are used to transfer data between PE's in the
digital parallel processor. The data being transferred is transmitted over
the transfer data bus, and the address from which the data came is transmitted
over the transfer address bus. The transfer control is used to signal the

system when a computation cycle is completed, so that a data transfer cycle
may begin.

Data Transfer Between Processing Elements

When a data transfer cycle begins, the transfer control logic increments
the address register every 100 nanoseconds. To meet this high rate of data

transfer between PE's, pipelining, special 45 nanosecond memory, and Schottky
TTL circuitry are used.



The memory configuration during a transfer cycle is shown in figure 8.
The address of the data to be transferred is transmitted to the source memory
from the transfer controller via the transfer address bus. Once this command
is received, the data is latched at the source memory output. Then the PE
places its latched data onto the 16-bit high-speed data transfer bus. The
destination PE's latch in the data and store it. The storage location of the
data received is determined by the local destination address register. Before
a transfer cycle occurs, each PE initializes this local register and auto-
matically increments the memory address after receiving each 16-bit data word.

Because pipelining is used during the data transfer cycle, a data transfer
to as many as nine different destination processors can take place every 100
nanosecond clock cycle. After the first cycle, which is needed to initialize
the pipeline, the source PE will gate the source data onto the data transfer
bus. Those PE's designated as destinations then latch the incoming data.
After incrementing their local addresses, they clock in a new command word and
thus prepare for the next cycle. When the transfer cycle is completed, the
control logic reinitializes the address register.

Diagnostic Test Software

Several diagnostic programs have been written to check that the custom-
designed PE hardware is operating properly. A complete memory test was car-
ried out at the bit level using a generalized memory test algorithm (ref. 4).
Using a similar algorithm, a complete register test at the bit level was also
carried out. These diagnostics checked the hardware and the microcode soft-
ware to make sure that for each register or memory location every bit could
be set and cleared; and that while a bit pattern was being stored in one word,
bits were not being erroneously cleared and/or set elsewhere. The system,
undergoing testing, is shown in figure 9.

Once it was determined that the PE registers and memory were working prop-
erly, the checkout of the microcode software for each instruction was initia-
ted. The philosophy followed for checking the instructions was to execute
each instruction with every possible combination of the sign bit and the two
most significant data bits of the instruction input parameters. The test was
run once with the remaining data bits set, and then again with the remaining
data bits cleared. It was felt that if a wiring error existed in the hardware
or if an error existed in the microcoded instruction, it would manifest itself
using this set of input parameters for the diagnostic test. The output from
each instruction for each set of input data was then checked against a table
of hand calculated values of predicted PE outputs. Anytime a discrepancy be-
tween the PE computed value and the table value occurred, the error was
flagged. If no discrepancy occurred, using the input values described above,
the instruction was considered to have passed the error test. That is, it was
assumed that the instruction was microcoded correctly and that it was executing
correctly.

Fifteen diagnostic programs were developed to cover the checking of the
various classes of instructions in the custom PE's library. Each instruction
was checked by one of the diagnostic programs. In addition to the memory and
register diagnostic programs already mentioned, separate diagnostic programs
covering the checking of jump instructions, shift instructions, status word
modification instructions, and Boolean logic instructions were developed. The
remaining diagnostic programs were used to check the arithmetic instructions.
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STATUS OF THE CUSTOM-DESIGNED PROCESSING ELEMENT

At the current time, prototype hardware for the custom-designed processing
element is built, and most of the instructions operating on either integers or
scaled fractions are operational. The Boolean logic, shift, and jump instruc-
tions also execute satisfactorily. The arithmetic operations of addition and
subtraction are operational. Problems have been experienced with the divide
instructions and multiply instructions. The divide instruction executes cor-
rectly as long as both inputs are from registers. If one of the inputs is from
memory, however, the result of the division is incorrect. The source of the
error has not yet been found. But because the divide instruction does execute
correctly in the all-register-input case, the basic divide algorithm does not
seem to be the source of these errors. More than likely the problem is being
caused by a hardware wiring error or incorrect microcoding.

Still to be checked out are floating-point instructions. Having floating-
point instructions available would be very convenient because the programmer
wouldn't have to be concerned about scaling the parameters in his engine simu-
lation. However, floating-point capability is not considered critical in the
PE. Although it takes more time for the programmer to set up a fixed-point
simulation because of the required scaling, simulations using integer or scaled
fraction arithmetic generally will execute faster. And as mentioned earlier,
achieving high execution speed was a major consideration in designing a PE for
real-time simulation of jet engines and their controls.

CONCLUDING REMARKS

This report describes a prototype of a custom-designed computer to be used
as a processing element in a multi-processor-based jet engine simulator. The
purpose of the custom-design was to give the computer the speed and versatility
required so that it could be used as a research tool for the development and
testing of airbreathing engine digital electronic controls. Speed was of ut-
most importance in designing this custom computer. Using state-of-the-art
components and innovative circuitry, a computer computation cycle time of 133
nanoseconds was achieved.

Problem areas encountered in designing the processing element, along with
logic circuitry used to eliminate those problems, are pointed out. These may
give the reader some insight into the kinds of difficulties that might be ex-
pected when undertaking the development of a custom-designed computer to meet
special application needs. The authors hope that this report proves helpful
and facilitates that kind of development. In the future, undertakings of this
kind will be prompted more and more by the rapid advances being made in the
area of microelectronic technology. Powerful integrated circuitry is becoming
available on more dense and less costly chips. These powerful, inexpensive
chips will act like building blocks which the designer will be able to Tink
together in many different configurations, giving him the capability of custom
tailoring a computer to his exact needs.
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TABLE I. - STATUS REGISTER SUMMARY

40 Instructions for direct manipulation of the status register
Conditional jumps and Tinks

il Field selectable on 4 fields

2) 16 Combinations within each field

Overflow flag and overflow latch with enable

Auto overflow limiting with enable

5 Program flags - 4 with external set

4 Condition code bits plus a carry bit

3 internally vectored interrupts

Running conditionals for multiple-precision operations
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TABLE II. - HIGHLIGHTS OF MACHINE INSTRUCTION SET

22 Basic arithmetic instructions
11 control instructions
22 data conversion instructions
14 integration instructions
5 Addressing modes
Block move instructions
Complex functional jumps
Fast 1-2 cycle integer instructions
3 1/3 Cycle multiply
19 Cycle divide

1 Cycle 16-bit integer select maximum/minimum
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TABLE III. - COMPARISONS OF MICROPROCESSORS
FOR REAL-TIME SIMULATOR COMPUTATIONS

Basic Function Estimated time/function (usec)

7.5 MHz 8 MHz 6 MHz | 10 MHz | 68000/Custom
Lewis Motorola | ZILOG INTEL PE ratio
Custom PE 68000 28002 | 8086

Add/sub ‘| 16-bit variables 0.25 1.43 1.55 1.61 5.7
16-bit constants .133 1.0 1.17 1.3 7.5
32-bit variables .35 1.93 2.52 3.22 5.5
Compares 16-bit integer .33 2.68 2.60 2.27 8.1
Mult./Div. | 16-bit integer .88 13.2 15.3 14.0 15.0
Integration | 32-bit .80 4.75 8.6 6.4 5.9
48-bit .93 11.0 14.5 8.9 11.8
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