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THEORETICAL..RESULTS FOR STARVED ELLIPTICAL CONTACTS*

It was not until the late 1960's and early 1970's that. the
inf luence of lubricant starvation on elastohydrodynamic behavior
received serious consideration. Before this time it was assumed
that inlets te elastohydrodynamic conjunctinns were always fully
flooded. This assumption seemed to be entirely reasonable in
view of the minute quantities of lubricant required to provide
an adequate film. However, in due course, it was recognized
that some machine elements suffered frem lubricant starvation.

The influence of partial filling of the inlet to an elasto-
hydrodynami¢ conjunction on pressure and fiim thickness can
readily be explored theoretically by adopting different starting
positions for the inlet pressure boundary. Orcutt and Cheng
(1965-66) appear to have been the first to proceed in this way
for a specific case corresponding to a particular experimental
situation. Their results Showed that lubricart starvation re-
duced the film thickness. Wolveridge, et al. (1971) used a
Grubin (1949) approach in an analysis of starved elastohydrody-
namic lubricated line contacts, and Wedeven, et al, (1971) ana-

lyzed a starved condition in a ball-on-plane geometry. Castle

*Published as Chapter 9 in Ball Beariny Lubricatfon by
Bernard J. Hamrock and Duncan Dowson, John Wiley & Sons, Inc.,
Sept. 1981.
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and Dowson (1972) presented a range of numerical solutions for
the starved line-contact elastohydrodynamic situation. In these
references the analyses yielded values of the proportional re-
duction in film thickness from the fully flooded condition in
terms of a dimensionless inlet boundary parameter.

In the present chapter, 15 cases in addition to three pre-
sented in Chapter 8 were used in a theoretical study of the in-
fluence of lubricant starvation on film thickness and pressure
in elliptical elastohydrodynamic conjunctions. From the results
a simple and important critical dimensionless inlet boundary
distance at which lubricant starvation becomes significant was
specified. This inlet boundary distance defines whether a fully
flooded or a starved condition exists in the contact. Further-
more it was found that the film thicknass for a starved condi-
tion could be written in dimensionless terms as a function of
the inlet distance parameter and the film thickness for a fully
flooded condition. Contour plots of pressure and film thickness$
in and around the contact are shown for fully flooded and
starved conditions. The theoretieal findings are compared di-
rectly with results reported previously by Wedeven, et al.
(1971). This chapter alse makes extensive use of the work pre-

sented by Hamrock and Dowson (1977b).

.é
|
|
|
|
:
!

SRR S-S e e

e e e i




9.1 Fully.Flooded - Starved Boundary

The computing area in and around the Hertzian contact is
shown in Figure 9.1. In this figure the coordinate X is made
dimensionless with respect to the semiminor axis b of the con-
tact ellipse, and the coordinate Y is made dimensionless with
respect to the semimajor axis a of the contact ellipse as de-
fined in Chapter 7. The ellipticity parameter k is defined as
the semimajor axis divided by the semiminor axis of the contact
ellipse (k = a/b). Because of the dimensionless form of the %
coorainates X and Y the Hertzian contact ellipse-becomes a
Hertzian circle regardless of the value of k. This Hertzian
contact circle is shown in Figure 9.1 with a radius of unity.
The edges of the computing drea, where the pressure is assumed
to be ambient, are also denoted: In this figure the dimension-
less inlet distance M, which is equal to the dimensienless dis-
tance from the center of the Hertzian contact zone to the inlet
edge of the computing area, is also shown,

Lubricant starvation can be studied by simply changing the
dimensionless inlet distance m. A fully flooded condition is
said to exist when the dimensionless inlet distance ceases to
influence the minimum film thickness to any significant extent.

The location of the dimensionless inlet distance at which
the minimum film thickness first starts to change when m is

gradually reduced from a fully flooded condition is called the
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fully flooded - starved boundary position and is denoted by

m*. Therefore lubricant starvation was stuuied Dy using the
basic elas’ iydrodynamic lubrication elliptical-contact theory
developed in Chapter 7 and by observing how a reduction in the
dimensionless inlet distance affected the basic features of the
conjunction.

The influence of changes in the dimensionless inlet dis-
tance on the dimensionless minimum film thickness is shown in
Table 9.1 for three groups of dimensionless load and speed
parameters. For all the results presented in this chapter the
materials parameter G was fixed at 4522 and the ellipticity
parameter, at 6. It can be seen from Table 9.1 that, as the
dimensionless inlet distance m decreases, the dimensionless

minimum film thickness Hm also decreases.

in

The influence of the three groups of dimensionless speed
and load parameters considered on the location of the dimen-
sionless inlet boundary distance m* is shown in Table 9.2.
Also given in this table are the corresponding values of the
dimensionless central and minimum film thicknesses for the fully
flooded condition as obtained by interpoiating the numerical
values, The value of the dimensionless inlet boundary position
m* shown in Table 9.2 was obtained by using the data from Table
9.1 when the following equation was satisfied:

Batn = (Hatn),

o 1" = 0.03 (9.1)
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The value of 0.03 was used in equation (9.1) since it was i

ascertained that the data in Table 9.1 were accurate to only +3
percent.

The general form of the equation that relates the dimen-
sionless inlet distance at the fully flooded - starved boundary
m* to the geometry and central film thickness of an ellipfical

elastohydrodynamic conjunction can be written as

s é
ot -1waA K—%) nc] (9.2)

The right side of equation (9.2) is similar in form to the
equations given by Wolveridge, et al. (1971) and Wedeven, et al.
(1971). By applying a least-squares power fit to the data

obtained from Table 9.1 we can write

0.58
2
o* =1+ 3.06&';’5) uJ (9.3)

A fully flooded condition exists when 5‘3 m*, and a starved
condition exists when m < m*. The coefficient of determination
tion ¢ for these results is 0.9902, which is entirely
satisfactory.

If the dimensionless minimum f{ilm thickness is used in

equation (9.2) instead of the central film thickness, we obtain

0.56

ot = ] 4 3.34[(%)2 Hmu.] (9.4)
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The coefficient of determination for these results is 0.9809,
which is again very good.

When Wedeven's expression for the dimensionless inlet dis-
tance at the fully flooded - starved boundary is rewritten in
terms of the variables considered in this text and by Hamrock

and Dowson (1977b), it becomes
2/3

2
n, =1+ 3.52&’{“-) uc] (9.5)

1t is evident that there is close and encouraging agreement be-
tween equattons (9.3) and (9.5). The latter, however, predicts
a slightly higher value for the location of the fully flooded -

starved boundary than is predicted from the present results,

9.2 Equations for Film Thickness in Starved Elastohydrodynamic

Elliptical Conjunctions

Having clearly established the 1imiting location of the
inlet boundary required to ensure fully flooded conditions,
equations (9.3) and (9.4), we can develop an equation defining
the dimensionless film thickness for elliptical conjunctions
operating under starved lubrication conditions. The ratio
between the dimensionless central film thickness in starved and

fully flooded conditions can be expressed in general form as

D
H ~
Cs8 o m-1 )
H, ¢ (ﬂw - (9.6)
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The influence of the ratio of the dimensionless inlet distance
narameter to the dimensionless distance to the fully flooded -
st arved boundary (é”:~i)l(m* - I) on the ratio of central film
thickness in the starved and fully flooded conditions Hc,s/"c
is shown in Table 9.3. A least-squares power curve fit to the

16 pairs of data points i

H 2 - !
i

was used in obtaining values for C and D in equation (9.6).
For these values of C and D the dimensionless central film

thickness for a starved lubrication condition can be written as

5-1 0.29
B, = B (BY) (8.7)

By using a similar approach and the data in Table 9.3 the dimen-
sionless minimum film thickness for a starved lubrication condi-

tion can be written as

Bpin,s * Hmin (%;::li)o.25 (9.8)

Therefore, whenever m ¢ m*, where m* is defined by either
equation (9.3) or (9.4), a starved lubrication conditions
exists, When this is true, the dimensionless central film
thickness is expressed by equation (9.7), and the dimensionless
minimum fi1m thickness 1s expressed by equation (9.8). If

m > m*, where m* is defined by either equation (9.3) or (9.4),
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a fully flooded condition exists. Expressions for the dimension-
less central and minimum film thicknesses for a fully flooded
condition (H. and Hy,) were developed in Chapter 8 and are
expressed in equations (8.41) and (8.23), respectively.

The retio of the dimensionless inlet distance to the dimen-
sionless location of the fully flooded - starved boundary as
obtained from Wedeven, et al. (1971), expressed as (ﬁ - 1)/

(m, - 1), is also given in Table 9.3. By comparing these
results with those obtained by Hamrock and Dowson (1977b),

(m - 1)/(m* - 1), it can be seen that for group 1 the agreement
is excellent. However, for groups 2 and 3 tha agreement is not
so good. A possible explanation for this difference is that an
approximate expression was used for the Hertzian deformation by
Wedeven, et al. (1971). They indicated that their equation, re-
produced here as equation (9.5), was valid only for small values
of m*, or more specifically, m¥ < 3. In group 2, m* = 3.71

and in group 3, m* = 5,57, Since no such assumption was
necessary in the derivation of equations (9.3) and (9.4), they
would appear to be more general,

The influence of the dimensionless inlet boundary location
parameter on central film thickness is shown in Figure 9.2 for
the Wedeven, et al. (1971) and Hamrock and Dowson (1977b)
results. It can be seen that the Wedeven, et al., (1971) results

predict slightly higher values of the central film thickness




under starved conditions than the Hamrock and Dowson (1977b)

results.

9.3 Contour Plots ot Results

To explain more fully what happens as the degree of lubri-
cant starvation increases, a number of contour diagarams for
pressure and film thickness are presented in Figures 9.3 to
9.8. As in Chapter 8 the + symbol indicates the center of the
Hertzian contact, and the asterisks indicate the Hertzian con-
tact circle. The contours on each figure are labeled, and
tables showing the corresponding values of the dimensionless
pressure or film thickness are given in each figure.

In Figures 9.3(a), (b), and (c) contour plots of dimension-
less pressure (P = p/E') are given for the conditions represen-
ted by the cata recorded as group 1 of Table 9.2 and for dimen-
sionless inlet distances m of 4, 2, and 1.25, respectively.

In these figures the contour values are the same in each plot.
The pressure spikes are evident in Figures 9.3(a) and (b), but
not in Figure 9.3(c). This implies that as the dimensionless
inlet distance m decreases, or as the severity of lubricant
starvation increases, the pressure spike is suppressed. Figure
9.3(a), with m = 4, corresponds to a fully flooded condition;
Figure 9.3(b), with m = ¢, to a starved condition; and Figure

9.3(c), with m = 1.25, to a severely starved condition. Once
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lubricant starvation occurs, the severity of the conditions

within the conjunction increases rapidly as m 1s decreased and
dry contact conditions are approached.

Contour plots of the dimensionless film thickness
(H = h’Rx) for the data presented by results shown in group 1
of Table 9.2 and for conditions corresponding to the three pres-
sure distributions shown in Figure 9.3 are reproduced in Figure
9.4, It is clear that the film shape in the central region of
the elastohydrodynamic conjunction becomes more parallel as lu-
bricant starvation increases and that the region occupied by the
minimum Tilm thickness becomes more concentrated. Note also
that the values attached to the film thickness contours for the
starved condition (Figure 9.4(c)) are much smaller than those of
the film thickness contours for the fully fiooded condition
(Figure 9.4(a)).

In Figures 9.5(a), (b), and (c) contour piots of dimension-
less pressure (P = p/E') are given for the results shown in
group 3 of Table 4.2 and m of 6, 2.5, and 1.5, respectively.
The contour values are the same in each plot. Figure 9.5(a)
depicts a fully flooded condition; and Figure 9.5(c), a severely
starved condition. The following observations can be made about
Figure 9.5:

(1) The distance from the center of the contact to the up-
stream location of the largest contour (labeled H) decreases as

the severity of lubricant starvation increases.
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(2) Contours A, B, and C, which represent pressures in the
region of a pressure spike in fully flooded and partially
starved conditions, are absent in the severely starved condi-
tion shown in Figure 9.5(c) since the pressure in the latter
case is closer to the Hertzian distribution.

In Figures 9.6(a), ‘b), and (c) contour plots of the dimen-
sionless film thickness (H = h/R,) are shown for the same set
of results and the same dimensionless inlet distances m as in
Figure 9.5. In the fully flooded condition (Figure Y.6(a)) the
minimum fiim thickness is located to the sides of the conjunc-
tion in two areas that are midway between the center of the con-
tact and the Hertzian ellipse. In the severely starved condi-
tion shown in Figure 9.6(c) the central portion has roughly par-
allel contours in the direction of motion, with one minimum-
film-thickness area directly behind the axial center of the con-
tact and near the edge of the Hertzian ellipse. Ranger, et al.
(1975) found a similar distribution of contours. Note the
similarity between the film thickness contours of Figure Y.4(c)
(group 1 of Table 9.2) and those of Figure 9.6(c) (group 3 of
Table 9.2). It can be seen from the labels of the contours in
Figure 9.6 that the film thicknesses for the starved condition
are much lower than the film thicknesses for the fully flood~d
condition.

In Figures 9.7(a) and (b) the dimensionless pressure

(P = p/E*) distribution along the X axis is shown for three val-

1"

A A

|
g

. —.an‘i' e o amama L



ues ot m and for conditions represented by the data in groups
1 and 3 of Table 9.2, respectively., The value of Y was held
cunstant at a value representative of conditions close to the
axis of symmetry of the conjunction for these calculations. The
pressure spike diminishes as the severity of starvation in-
creases and dry contact conditions are approached.

In Figures 9.8(a) and (b) the dimersionless film thickness
(H = hIRx) on the X axis is shown for three values of ® and i
for conditions represented by the data for groups 1 and 3 of 1

Table 9.2, respectively. Once again the value of Y was held

fixed and close to the axis of symmetry of the contact in these
calculations. It is clear, particularly in Figure 9.8, that the
central region becomes flatter as starvation develops. Also in
going from a fully flooded condition to a starved condition the

film thickness decreases substantially.

e A i e e

9.4 Inlet Boundary Condition

The results presented thus far in this chapter demonstrate

PP AU TN

the influence of lubricant starvation on the performance of

elastohydrodynamic conjunctions. This situation may be encoun-

4 oam e —

tered in a number of ball bearing applications, particularly
where the lubricant supply is restricted. For example, in pre- . :
cision gyroscopes used for inertial navigation the miniature

ball bearings are often initially charged with a small amount of C
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lubricant within a porous separator or cage. In.such cases the
minute reservoir of lubricant-available at the ball-race con-
Junction is most unlikely to represent a fully flooded situation.

Even in less demanding ball bearing applications, lubricant
starvation can represent a severe problem. fhe lubricant is
generally supplied infrequently as oil or grease, and in the
latter case the bearing has to operate for long periods of time
without being recharged. Even when oil is supplied as a jet or
a mist, the passage of a ball over the race sweeps aside the
main layer of lubricant “o leave a thin film on the surface that
may recover only partially before the arrival of tne next ball.
The question of lubricant film recovery on the races of bearings
has been examined theoretically by Chiu (1974).

The major problem with assessing the influence of lubricant
starvation on film thickress in elastohydrodynamic conjunctions
is that the degree of starvation is rarely knewn with any accu-
racy in practical situations., The correction factors presented
in this chapter can readily be introduced, provided the location
of the inlet meniscus is known in relation to the scale of the
Hertzian contact zone. Such information can often be derived
directly from laboratory Studies of elastohydrodynamic contacts

involving the use of transparent components and interferometry,

but practical bearing situations are more difficvit to deal with.... ... .

Nevertheless a useful approach has been developed by

Dowson, et al. (1979) in relatien to nominal line or rectargular
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conjunctions. There is now considerable evidence to support tne
view that an elastohydrodynamic conjunction initially charged
with a fixed amount of lubricant gradually adjusts itseif until
the inlet meniscus sits at a location at which reverse flow just
ceases. Castle and Dowson (1972) and Dowson (1975) have devel-
oped this zero-reverse-flow inlet boundary condition and con-
firmed its merit in disc machine experiments (Dowson, et al.,
1979).

The zero-reverse-flow inlet boundary condition requires the
lubricant-air meniscus at the entry to the lubricated conjunc-
tion to be located at a position where the velocity distribution

at some location in the film satisfics the requirement that

.d—u.
U= 0

The ratio of the inlet film thickness hi to the film
thickness at the point of maximum pressure hm, where
dp/dx = 0, is then given by

3

- z (909)
2% - '62)1/

454

where

,‘_‘,.“a‘ub
ua-l-ub

and u, and u, represent the velocities of the bearing

surfaces. Inh pure rolling u = 0 and, if one of the solids is
stationary while the other moves with velocity u, U= 1. For

these conditions hi’hm adopts the values 3 and 1.5; respec-
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tively. These film thickness ratios enable the location of the

inlet meniscus to be determined for either rigid or elastohydro-
dynamic conditions,

For rigid cylinders in line contact a degree of lubricant
starvation consistent with the zero-reverse-flow boundary condi-
tion causes the minimum film thickness to be reduced to about
48 percent of the fully flooded value in pure rolling. For the
elastohydrodynamic lubrication of cylinders the corresponding

minimum-fiIm-thickness reduction factor is about 71 percent.

The approach is particularly useful when the film thickness. . .

is to be calculated in machine elements in which the conjunc-
tions are starved but the degree of starvation is unknown. The
zero-reverse-flow inlet boundary condition has a sound physical
basis, and there is evidence to suggest that a corjunction ini-
tially charged with lubricant will graduaily adjust itself in
terms of lubricant disposition until the condition is satis-
fied. Film thicknesses calculated on this basis thus represent

conservative estimates of the real situation.

9.5 Closure

The theory and numerical procedures outlined in Chapter 7
have been used to investigate the influence of lubricant starva-
tion on minimum film thickness in starved elliptical elastohy-

drodynamic conjunctions, This-study of lubrieant starvation was

15
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performed by moving the inlet boundary closer to the center of
the conjunction and calculating the resulting pressure distribu-._.
tions and film shapes. The'r¢ ts show that the critical loca-
tion of the dimensionless inlet boundary which forms a demarca-
tion between fully flooded and starved conditions m* can be
expréssed simply as

2
nt ~ 1 + 3.06K%‘-) HJ

or

k=14 3.34[(%")2 %ﬁ]o‘“

That s, for a dimensionless inlet distance m less than m*,
starvation occurs and, for m > m*, a fully flooded condition
exists. Furthermore it has been.possible to express the central
and minimum film thicknesses for a starved lubrication condition

as
Ce8 ¢ \uk - 1

. 0.25
Hatn,e = Patn (5)
Contour diagrams for the pressure and film thickness ih and
around the contact have been presented for both fully flooded
and starved eonditions. It is evident from the contour diagrams

that, as the severity of starvation increases, the pressure

OF POULK Quiiuii ¢
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spike becomes suppressed, the film shape becomes more nearly
parallel over a substantial part of the Hertzian contact el-
lipse, and the film thickness decreases substantially.

Atterntion hHas been drawn to the significance of a particu-
lar inlet boundary condition corresponding to a solution of zero
reverse flow. Studies of line contacts have indicated that many
elastohydrodyriami¢ conjunctions initially charged with lubricant
or provided with restricted quantities of fluid operate close to

this unique boundary condition.
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SYMBOLS

constant.used in equation (3.113)

relaxation coefficients

drag area of ball, m2

semimajor axis of contact ellipse, m
a/2m

total conformity of bearing
semiminor axis of contact ellipse, m
b/2m

dynamic load capacity, N

drag coefficient

constants

19,609 Nfcn® (28,440 1bf/in’)

ORIGINAL PAG® g
OF POOR QUALITY

number of equal divisions of semimajor axis

distance between race curvature centers, m

material factor
defined by equation (5.63)
Deborah number

ball diameter, m

number of divisions in semiminor anis

overall diameter of bearing (Figure 2.13), m

bore diameter, m

pitch diameter, m

pitch diameter after dynamic effects have acted on ball, m

{nner-race diameter, m

outer-race diameter, m

18
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E modulus of elasticity, N/m?

E' effective elastic modulus, 2/ e vi + L v§ R Nlmz
E, Ep

Ea internal energy, mzlsz |

t processing factor |

Ey l:("Tmin = Hyin) IHpind x 100

¥ 4 elliptic integral of second kind with modulus (1 - ll.k?.)llz

r approximate elliptic integral of second kind

e dispersion exponent

F normal applied load, N

F* normal applied load per unit length, N/m

F lubrication factor

F integrated normal appTied Yoad, N

Fe centrifugal force, N

Fmax maximum normal applied load (at ¢ = 0), N

Fr applied radial load, N

Ft applied thrust load, N

FW normal applied load at angle ¥, N

s elliptic integral of first kind with modulus (1 - mz)u 2

5 approximate elliptic integral of first kind

f race econformity ratio

fy rms surface finish of ball, m

f. rms surface finish of race, m

G dimensionless materials parameter, af

G* fluid shear modulus, N/m2

(4 hardness factor

g gravitatienal constant, m/s°

19
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dimensionless elasticity parameter,

W8/3 2

dimensionless viscosity parameter, sw3luz

dimensionless film thickness, h/Rx

dimensionless film thickness, l-l(u/u)2 = an/uzngki

dimensionless central film thickness, thRx

dimensionless central film thickness
lubrication condition

frictional heat, N m/s

dimensionless minimum f{11m thickness
elliptical-contact theory

dimensionless minimum film thickness
contact

dimensionless minimum film thickness
lubrication condition

dimensionless central film thickness
least-squares fit of data

dimensionless minimum film thickness
Teast-squares fit of data

dimensionless central-fiim-thickness
ch-o.s

dimensionless minimum-f1iIm-thickness

-005
Hminu

for starved

obtained from EHL

for a rectangular

for starved

obtained from

obtained from

- speed parameter,

- speed parameter,

new estimate of constant in film thieckness equation

f4ilm thickness, m
central film thickness, m

inlet film thickness, m

20
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film thickness at point of maximum pressure, where
dp/dx = 0,. m

minimum £ilm thickness, m

constant, m

diametral interference, m

ball mass moment of inertia, m N s2

integral defined by equation (3.76)

integral defined by equation (3.75)

function of k defined by equation (3.8)

mechanical equivalent of heat

polar moment of inertia, m N s2

load-deflection constant

ellipticity parameter, a/b

approximate ellipticity parameter

thermal conductivity, N/s °C

lubricant thermal conductivity, N/s °C

fatigue life

adjusted fatigue life

reduced hydrodynamic 1ift, from equation (6.21)

lengths defined in Figure 3.11, m

fatigue life where 90 percent of bearing pepulation will
endure

fatigue 1ife where 50 percent of bearing population will
endure

bearing length, m

constant used to determine width of side-leakage region

moment, Nm

21
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gyroscopic moment, Nm

dimensionless load-speed parameter, Hu'°‘75

torque required to produce spin, N m

mass of ball, N szlm

dimensionless inlet distance at boundary between fully
flooded and starved conditions

dimensionless inlet distance (Figures 7.1 and 9.1)

number of divisions of semimajor or semiminor axis

dimensionless inlet distance boundary as obtained from
Wedeven, et al, (1971)

rotational speed, rpm

number of balls

refractive index

constant used to determine lengtn of outlet region

dimensionless pressure

dimensionless pressure difference

diametral clearance,

free endplay, m

dimensionless Hertzian pressure, Nlm2

pressure, Nlm2

maximum pressure within contact, 3F/2zab, N/m2

jsoviscous asymptotic pressure, N/m2

solution to homogeneous Reynolds equation

thermal loading parameter

dimensionless mass flow rate per unit width, QnOIpOE'R2

reduced pressure parameter

volume flow rate per unit widtn in x direction, m2/s

22
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volume flow rate per unit width in y direction, mzls
curvature sum, m

arithmetical mean deviation defined in equation (4.1), m
operational hardness of bearing material

effective radius in x direction, m

effective radius in y direction, m

race curvature radius, m

radii of curvature, m

cylindrical polar coordinates
spherical polar coordinates
defined in Figure 5.4

geometric separation, m
geometric separation for line contact, m
empirical constant

shoulder height, m

0/ Pmax

tangential (traction) force, N
temperature, °C

ball surface temperature, °C
average lubricant temperature, °C

ball surface temperature rise, °C

/
(xg pmax)k 1

viscous drag force, N
time, s
auxiliary parameter

velocity of ball-race contact, m/s
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velocity of ball center, m/s | 4
dimensionless speed parameter, “O“IE'Rx ‘
surface velocity in direction of motion, (ua + ub)/z, m/s

number of stress cycles per revolution

sliding velocity, Uy = Ups m/s

surface velocity in transverse direction, m/s

dimensionless load parameter, FIE'R2

surface velocity in direction of film, m/s

dimensionless coordinate, x/Rx

dimensionless coordinate, lex

dimensionless grouping from equation (6.14)

external forces, N

constant defined by equation (3.48)

viscosity pressure index, a dimensionless constant
coordinate system

pressure-viscosity coefficient of lubrication, m2/N
radius ratio, Ry/Rx

contact angle, rad

free or initial contact angle, rad

fterated value of contact angle, rad

curvature difference

viscous dissipation, N/m2 S

total strain rate, s‘1
elastic strain rate, s‘1

viscous strain rate, s‘1
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flow angle, deg

total elastic deformation, m

lubricant viscosity temperature coefficient, o1

elastic deformation due to pressure difference, m

radial displacement, m

axial displacement, m

displacement at some location x, m

approximate elastic deformation, m

elastic deformation of rectangular area, m

coefficient of determination

strain in axial direction

strain in transverse direction

angle between ball rotational axis and bearing
centerline (Figure 3.10)

probability of survival

absolute viscosity at gauge pressure, N slm2

dimensionless viscosity, “/"0

viscosity at atmospheric pressure, N s/m2

6.31x10°% N s/m?(0.0631 cP)

angle used to define shoulder height

film parameter (ratio of film thickness to composite
surface roughness)

equals 1 for outer-race control ana 0 for inner-race
control

second coefficient of viscosity

Archard-Cowking side-leakage factor, (1 + 2/3 c‘)’l

relaxation factor
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OF POOR QUALITY

coefficient of sliding friction

o/n

Poisson's ratio

divergence of velocity vector, (aufax) + (av/ay) + (aw/az), s-1

lubricant density, N szlm4

dimensionless density, p/po

density at atmospheric pressure, N szlm4

normal stress, N/m2

stress in axial direction, N/m2

shear stress, N/mé

maximum subsurface shear stress, N/m2

shear stress, Nlm2

equivalent stress, Nlmz

limiting shear stress, N/m2

ratio of depth of maximum shear stress to semiminor axis of
contact ellipse

py3/¢

(9) i3

auxiliary angle

tnhermal reduction factor

angular location

limiting vaiue of ¥

absolute angular velocity of inner race, rad/s

absolute angular velocity of outer race, rad/s

angular velocity, rad/s

angular velocity of ball-race contact, rad/s

angular velocity of ball about its own center, rad/s
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Subscripts:
a

b

c

bc

IE

IR

S

Xy ¥s2

Superscript:

(7))

angular velocity of pball around shaft center, rad/s

ball spin rotational velocity, rad/s

solid a

solid b

central

ball center
isoviscous-elastic regime
isoviscous-rigid regime
inner race

Kapitza

minimum

iteration

outer race
piezoviscous-elastic regime
piezoviscous-rigid regime
for rectangular area

for starved conditions

coordinate system

approximate
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