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Abstract

Composite technology applicable to transport
empennage structures has been developed through
contracts sponsored by the NASA Aircraft Energy
Efficiency (ACEE) Program Office. The empennage
components, the horizontal stabilizer for the
Boeing 737, the vertical fin for the Lockheed
L-1011, and the vertical stabilizer for the
Douglas DC~10, have been designed to replace the
existing metal structures without modification of
other parts of the aircraft. A principal element
in the program for each component is an extensive
ground test series of a full size structure. The
programs for two of the components, the 737
Horizontal Stabilizer and the DC-10 Vertical
Stabilizer, include, as objectives, FAA certifi-
cation and airline flight service. The ground
test series for these components are, conse-
quently, essential steps in verifying compliance
with FAA certification requirements. The initial
ground test of each component resulted in struc-
tural failure at less than ultimate design loads.
While such failures represent major program
delays, the investigation and analysis of each
failure revealed significant lessons for effective
utilization of composites in primary structure.
Foremost among these are secondary loads that
produce through-the-thickness forces which may
lead to serious weaknesses in an otherwise sound
structural design. The sources, magnitude, and
effects of secondary loads need to be thoroughly
understood and accounted for by the designers of
composite primary aircraft structures.

Introduction

In recent years, graphite/epoxy composite
material has had widespread application in mili-
tary aircraft and to a more limited degree in
components of commercial transports. Because of
special features of this material, such as high
strength-to-density ratio, good formability and
laminate tailoring, the next generation of mili-
tary and commercial aircraft manufactured with
composites could have significantly better per-
formance than current aircraft. Studies have
shown that the use of composite materials for
transport aircraft structures provides the
opportunity to reduce structural weight by as
much as 25 percent over current aluminum struc-
tures with a corresponding reduction in fuel con-
sumption of 12 to 15 percent (see references 1,
2, and 3).

In order to establish a basis to assess the
potential benefits of composites, the NASA Air-
craft Energy Efficiency (ACEE) Composites Office
sponsored technology development programs with
Boeing Commercial Airplane Company, Lockheed-
California Company, and Douglas Aircraft Company.

The primary objective of the ACEE program was to
develop the essential technologies to permit the
efficient utilization of composites in airframe
structures of future transport aircraft. The
transport manufacturers were challenged to rede-
sign selected secondary and medium-primary com-
ponents on existing aircraft with composite
material and to validate the weight and cost
benefits and structural efficiency of these com-
ponents through serial fabrication and detailed
ground tests.

The secondary component programs have now
been completed (references 4, 5, and 6) and
several components are in flight service on air-
craft on domestic and foreign commercial airlines.
The medium-primary component programs have been
carried through a series of qualification ground
tests. The initial ground test of each compo-
nent resulted in structural failure at Tess
than ultimate design load. Subsequent investi-
gation and analysis of each failure revealed
significant lessons for effective utilization
of composites in large transport structures.
Ground test experience from these medium-primary
component programs will be reviewed in this
paper.

Transport Medium-Primary Component Program

Contracts for the development of composites
technology applicable to empennage structure of
transport aircraft were initiated in 1977 with
the three major airframe manufacturers. The
objective of these contracts and components
selected for development are shown in figure 1.
The components include the vertical fin of the
L-1011 aircraft, the vertical stabilizer of the
DC-10, and the horizontal stabilizer of the 737
aircraft. Significant weight savings were
achieved for the actual composite components
shown in the photographs. These weights ranged
from 22 to 28 percent less than the comparable
aluminum component.

The objective of the medium-primary program
is to provide the opportunity for the transport
manufacturers to obtain the technology and gain
the confidence required for a commitment to pro-
duction of composite structures of generically
similar construction. To achieve this objective
the manufacturers must develop not only know-how
for low-cost fabrication and designs with pre-
dictable performance, but enough test and actual
manufacturing experience to accurately predict
durability for structural warranty purposes and
costs for product pricing. The program must
also demonstrate flightworthiness for certifica-
tion by the FAA and maintainability for accep-
tance by the airlines.



The major elements of the technology devel-
opment program are identified in figure 2. Vari-
ous material options were evaluated before
selecting one and then extensive testing was con-
ducted to develop an adequate data base of mate-
rial design properties. The material selected
by the three manufacturers was the Thornel 300
fiber with Narmco 5208 resin. Numerous design
options for major subcomponents (covers, spars,
and ribs) of the empennage structures were
evaluated on the basis of weight efficiency,
fabricability, maintainability and inspectability,
and design options were narrowed through analysis
and a varied spectrum of development tests on
small and large elements. The program also
included the development of a suitable production
process including economical laminate preparation
and the appropriate combination of temperature
and pressure during cure of the structural parts.
Tools were designed and fabricated, and full-
scale components were then manufactured for
ground qualification tests, flight tests, and
airline service. Though serial production was
limited in this program, fabrication included
five shipsets of 737 horizontal stabilizers and
three units each of the L-1011 vertical fin and
the DC-10 vertical stabilizer. Most of the ele-
ment, subcomponent and component test data and
associated analyses are included in a report sub-
mitted to FAA for flight-certification, which
must precede airline service. Inspection and
repair methods to insure adequate maintenance in
service were also part of the development pro-
gram. Principal results from the ground quali-
fication tests on the three empennage structures
are the focus of this paper.

Component Designs

737 Composite Horizontal Stabilizer.- The
structural configuration of the 737 composite
horizontal stabilizer is shown in figure 3. This
component is the smallest of the three medium- .
primary structures and measures 4 feet at the
root chord by 17 feet in span. The cgvers are
I-stiffened with the stiffeners and skin inte-
grally cured, whereas the front and rear spars
are precured channel sections secondarily bonded
back-to-back with web stiffeners mechanically
attached. The ribs are also channel sections
and have honeycomb stabilized webs. A1l compo-
nents are assembled with mechanical fasteners.
Load transfer from the stabilizer to the fuselage
carry-through structure is by thick graphite lugs
with metal face-plates, two on the front spar and
three on the rear spar. Concentrated loads from
the lugs are dispersed into the spar web by thick
precured chord elements indicated by section A-A
in figure 3. Component design and manufacturing
details are reported in references 7 through 11.

L-1011 Composite Vertical Fin.- The struc-
tural arrangement of the fin is shown in figure 4.
The vertical fin is the largest in planform of
the three empennage structures and measures
approximately 9 feet at the root by 25 feet in
span. A1l subcomponent parts of the structural
box are fabricated with graphite-epoxy except
the aluminum truss members of seven truss ribs.

The design features integrally cured hat-stiffened
covers and stiffened web spars. The integrally
formed composite I-shaped spars replace 35 metal
parts and over 2200 fasteners required in the
metal design. The covers, spars, and ribs are
mechanically joined during final assembly. Com-
ponent design and manufacturing details are
reported in references 12 through 16.

DC-10 Composite Vertical Stabilizer.- The
structural configuration of the stabilizer is
shown in figure 5. Since aerodynamic Toads from
the stabilizer are transmitted to the airframe
structure at four discrete spar locations in the
metal design, retention of the multi-spar concept
was necessary. Thus, in order to achieve a sig-
nificant weight reduction, the composite design
incorporated sine wave webs for all spars and
ribs, and honeycomb sandwich covers. The covers
consist of a grid of thick laminates which mate
with and become an extension of the spar and rib
caps and Nomex honeycomb core sandwich skins
between spar and rib caps. Each of the subcom-
ponents are integrally cured although the three
longest spars are cured in two parts and spliced .
at a spanwise station. The spars and ribs are
assembled as shown in the figure by secondary
bonding along the webs of the spar/rib interfaces
without the use of mechanical fasteners. The
covers, when mechanically attached to the spar
and rib caps, complete the assembly. Additional
details on the DC-10 composite stabilizer are
given in reference 17.

Qualification Tests

Ground Test Load Introduction.- Methods of
applying simulated aerodynamic loads to the full-
scale components during ground tests were differ-
ent for each structure. These methods are shown
schematically in figure 6. Static loads to the
DC-10 vertical and the 737 horizontal stabilizers
were applied to the covers through a whiffletree
arrangement. Tension "whiffling" was used with
the 737 horizontal stabilizer while compression
"whiffling" was used with the DC~10 vertical
stabilizer. 1In each case, Toads were transmitted
into the covers at pads bonded to the surface.
Compression pads on the DC-10 component were
restricted to Tocations over the spars to avoid
concentrated loads on the honeycomb areas of the
covers, whereas pads on the 737 stabilizer were
placed at random to provide the best distribu-
tion of internal Toads. Primary loads to the
L-1011 fin were applied along the front spar web
through a yoke device shown by the insert in
figure 6. Simulated rudder kick Toads on both
vertical fin components were imposed by load
Jjacks attached directly to the rudder hinges.

The 737 horizontal stabilizer was tested with a
production elevator in place which was Toaded
through a whiffletree in the same fashion as the
main structural box.

Special care was taken to attach the compo-
nents to test fixtures which would simulate as
nearly as possible the reaction loads and stiff-
ness characteristics of attachments on the air-
craft, This was readily accomplished with the



737 horizontal stabilizer where a production
center carry-through section was employed. The
stabilizer was mated with the carry-through
structure at the front spar with two lug pins

and at the rear spar with three Tug pins (see
figure 3). A dummy stabilizer was loaded simul-
taneously to produce duplicate reaction Toads at
opposite lugs. Aerodynamic loads on the DC-10
vertical stabilizer are reacted at the four spars
which, on the aircraft, are attached to "banjo
frames" that house the aft engine. In the ground
test setup, the stiffness properties of the banjo
frames are simulated by aluminum tubes carefully
designed to duplicate reaction loads and deflec-
tions at the four spar attachments. Loads from
the L-1011 fin are carried into the airframe at
both front and rear spars and along the cover and
in order to simulate this reaction detailed
transition structure was required (see figure 6).
The aluminum transition structure was very stiff
in the spanwise direction, but had sufficient
flexibility in the chordwise direction to avoid
stress concentrations at the graphite/aluminum
interface.

737 Composite Horizontal Stabilizer.- The
ground test article was subjected to a series of
static and fatigue tests at ambient conditions to
assess performance of the all-composite stabilizer
under several flight conditions for direct com-
parison with calculated results. Initially,
design Timit Toad was applied representing three
different critical flight conditions (i.e., shear,
torsion, and bending) followed by one-half Tife-
time of spectrum fatigue loads. The article was
then subjected to damage tolerance tests following
visible surface damage inflicted on the covers
and spars. These tests included one Tifetime of
spectrum fatigue followed by tests in bending to
design ultimate Toad (150 percent of limit load).
After damage tolerance testing, several fail-safe
tests were conducted where the stabilizer was
loaded to limit Toad with lug pin removed at the
spar attachment to the carry-through structure.
The stabilizer failed on the fourth and last of
these tests at 91 percent of 1imit load.

The fail-safe test configuration of the
rear spar lug when failure occurred is shown in
figure 7. The upper Tug pin was removed from the
rear spar and the stabilizer was loaded in bend-
ing. The arrows depict the direction of reaction
loads at the two pinned lugs. Failure was
initiated in the web between the lug chords and
propagated along the span. However, damage was
constrained within the web of the rear spar. A
photograph of the damaged spar is shown in fig-
ure 8 and the extent of crack propagation on
both interior and exterior webs and at the web
midplane is shown in figure 9. Two modes of
failure are shown by the photographs in figure
10. The tension failure of the web, shown by
Section B, is at the region of highest strain.
Farther outboard from the lugs, at Section A,
the failure was a delamination of the web plies
that wrap around the lug chord. Strain measure-
ments at two locations on the rear spar web are
shown in figure 11. These data confirm the high
diagonal tension strain near the point of failure

initiation and indicate nonlinear behavior at this
location after about 50 percent of limit load.

Post-test analysis with a fine grid finite
element model confirmed the high strain concentra-
tion region and led to the incorporation of a
steel plate as shown in figure 12 to provide the
additional margin on strength. Based on the
analysis and margin predicted with this design
change, the FAA proceeded to address certifica-
tion without requiring further ground tests and
certification was granted in August 1982.

L-1011 Composite Vertical Fin.- The ground
test plan for the L-1011 fin included 1limit load
tests in three flight load conditions (i.e.,
shear, torsion, and bending) followed by a test
to 106 percent of design ultimate load in bend-
ing, two Tifetimes of fatigue tests to study
damage growth, and finally residual strength test
in bending. The 6 percent increase in ultimate
Toad was imposed to account for the absence of
moisture and temperature in the ground test
series.

The L-1011 fin failed at 98 percent of design
ultimate load during the planned test to 106 per-
cent of design ultimate in bending. Failure
caused separation of the cover and front spar
along the entire length of the spar (see figure 13)
as well as considerable internal damage to rib
structure. After an investigation, the cause of
failure was determined to be due to secondary
loads, of which the principal contributor probably
was Tocal buckling of the cover near the front
spar interface. While local buckling beyond Timit
load was allowed in the design, the influence of
Toads caused by buckling on the integrity of the
structure was unexpected. Interlaminar tension
forces caused delamination of the spar cap as
shown by the insert in figure 13 and ultimate
separation along the 1ine of fasteners.

A post-failure study was conducted to assess
the strength of the cover/spar design when sub-
jected to stresses imposed by secondary loads
causing interlaminar tension and transverse ten-
sion. Segments of the cover/spar design were
tested as shown by figure 14. Secondary loads
causing transverse tension could be induced by
Poisson's effect and those causing interlaminar
tension may be generated by local buckling of the
cover or by rotation of the spar web caused by
the method of load introduction. The first tests
were on virgin material that had no prior loading
and measured loads at failure indicated adequate
margin. The estimated maximum interlaminar ten-
sion load expected in flight was 68 pounds per
fastener. The second series of tests on undamaged
segments of the failed spar, which had undergone
several cycles of load, showed large reductions
in strength. This apparent influence of load
cycling was verified by a third test on specimens
subjected to load cycles similar to those of the
ground test article prior to failure. This degra-
dation in strength is an apparent result of a
design weakness in the spar cap. In retrospect
the 10 plies of zero degree oriented fibers (see
figure 13) do not contribute to interiaminar



strength and, in fact, provide the actual delami-
nation plane. Interlaminar strength may have

been enhanced if 45 degree plies or even 90 degree
plies had been interspersed in the zero degree

ply stack.

After the cause of failure was properly
identified the ground test program was continued
with a second fin. The composite fin was not to
be certificated by FAA nor placed in flight ser-
vice and redesign of the front spar and subsequent
fabrication would have imposed unnecessary delays
and cost to the program. Consequently, the
second fin was reinforced to suppress the mode of
failure of the first ground test article. The
reinforcements, shown in figure 15, include
aluminum doublers on the external surface of the
cover, along the front and rear spar flanges, and
at the rib attachment flange on the spar web.

The primary purpose of the cover plate doubler was
to provide extra material thickness so that run-
out flanges of the hat-stiffened cover (see fig-
ure 4) could be mechanically fastened in the area
where the cover is only 10 plies thick.

The second fin was subjected to a series of
damage tolerance tests which included 1ightning
damage and field repair prior to final test for
residual strength. Details of the damage toler-
ance program are shown in figure 16. The model
was impacted at five locations on the surface to
cause visible damage and then tested for one
Tifetime of spectrum fatigue loading. This was
followed by simulated lightning damage consisting
of vaporizing resin in the first four plies and
a punch through as shown in figure 16. The com-
ponent was then loaded in bending to 1imit load,
repaired with an external patch as shown in the
figure, subjected to a second lifetime of
fatigue loads and then tested to failure,

The failed component, shown in figure 17,
carried 119.7 percent of design ultimate load
which was only slightly less than the predicted
failure load of 121 percent. The mode of failure
of the first unit was totally suppressed in this
test and the failure did not propagate to other
parts of the component. However, the failure
mode included buckling of the cover as well as
disbonding of some of the hat stiffeners. The
stiffener disbond shown by NDI markings in fig-
ure 18 included flanges of two hat stiffeners
and the disbond extended from the point of
initiation at the front spar over most of the
stiffener length to the root end. Again, secon-
dary interlaminar tension loads at the stiffener/
cover interface were of sufficient magnitude to
cause failure. The influence of these loads may
be a major design driver in future application
of composites to primary structures.

DC-10 Composite Vertical Stabilizer.- Full
scale tests of the DC-T0 composite vertical
stabilizer were selected to demonstrate adequate
structural performance at critical flight con-
ditions, and to verify compliance with FAA
requirements for commercial flight certifica-
tion. The test plan included vibration tests,
static tests to design 1imit load, two fatigue

lifetime spectra, and a fail-safe limit load test.
For the static test, which began in December 1981,
the full-size stabilizer was loaded in three

flight critical design Timit load conditions. Two
Timit load tests, inducing critical shear and
critical torsion loading in the structure were suc-
cessfully completed. The third 1imit load test,
inducing critical bending in the structure, was
applied to design 1imit load. While recording

data at this load level, the structure failed.
External damage included fractures of the compres-
sion cover and failure of the rear spar web. After
removal of the cover, a detailed inspection
revealed the failed spar and rib areas shown shaded
in figure 19.

The failure investigation initially considered
possible discrepancies in the following areas:
design and analysis, test loads, material quality,
and manufacturing. A preliminary analysis showed
margins of safety in the structure to be adequate
at design 1imit load. Loads data showed loading
throughout the structure to agree with the planned
test load distribution. Measured strains and
deflections were found to be within design Timits
for the structure. Quality control records and
inspection of failed parts revealed no correlation
between part quality and observed failure modes.
The investigation next focused on close examina-
tion of the failed areas identified in figure 19.
The only failure found in the rear spar was a
diagonal shear failure in the rear spar web in the
bay immediately above the lower rudder actuator
and a splice in the rear spar. A photograph of
the spar web at this bay (figure 20) shows the
failure extending diagonally across the web and
through an access cutout.

The stabilizer was analyzed using a global
finite element model to establish a failure
scenario which would be consistent with all the
failed elements on the structure. The failure
sequence was established by deleting each struc-
tural member in the finite element model found to
have a negative margin of safety as a result of a
previous failure. When the rear spar was selected
as the first failure the analysis indicated a
progression of failures as shown by the numbered
elements in figure 19. Each distinct failure
observed in the structure was predicted in this
manner and no other failure scenario produced
the actual areas of failure.

The rear spar web is a thin sine-wave lami-
nate, and contains access cutouts required to
complete assembly of the structure and subsequent
inspection and maintenance. There are seven such
cutouts on the rear spar. Locations and details
of the cutouts are shown in figure 21. These
cutouts, about 4 by 5 inches in dimensions, are
located in flat, reinforced areas in the spar
web. Each cutout is fitted with a flat Taminate
cover which is attached to the web by bolts as
shown in the diagram. - This cover is designed to
carry loads in the spar web as an integral part
of the structure. Post-test examination of the
spar web failure revealed a discrepancy in the
bolt hole size both in the cover and in the spar



web. These holes were 0.057 to 0.072 inches
larger in diameter than the bolt.

To adequately analyze the sine-wave web rear
spar area and the loose fit cover, a detailed
finite element model was developed (figure 22).
This model included fine grid detail of the spar
cap, sine-wave web, flat web area, and cutout.
The web cutout cover, not shown, was also
modeled in detail. Loads were applied to this
model while the web-to-cover interface was ana-
lytically varied to simulate various bolt fits.

A reference case with no door installed was also
run. Results of the analysis are shown in fig-
ure 23 where web shear failure loads and cutout
perimeter strains are shown for three cases:

(1) cover attached with tight holes; (2) cover
attached with loose holes; and (3) cover off.

The test failure shear load in the web, which was
calculated from measured strain gage data, is
also shown for comparison with calculated values.
The spar web actually failed at a shear Toad
somewhat higher than the calculated value for
loose holes. The calculated load and strain
values show that the cover with loose holes and
the cutout without cover were almost equally
ineffective in carrying required design load in
the web. The cover attached with tight holes was
predicted to provide adequate margin for failure
load and to reduce strains at the hole perimeter
to an acceptabie level.

A test program was developed to verify the
effect of cover fastener fit on the initial rear
spar failure, and to evaluate the structural sta-
bility of the sine-wave web. These tests were
also used to validate the detailed finite element
model of the rear spar. A rib component having a
sine-wave web and access cutout similar to the
rear spar was used for the tests. The rib was
mounted in the picture frame fixture shown in
figure 24 and tested first without the cover, and
then with the cover installed with oversize holes
to match the rear spar configuration, and finally
with a redesigned cover installed. The redesign
cover, shown in figure 25, is flanged to provide
added out-of-plane stiffness, and is permanently
installed over the spar web cutout using an
adhesive bond together with mechanical fasteners.
The small hole in the redesigned cover will pro-
vide necessary access for inspection.

Results of the rib web shear test are shown
in figure 26 where strains measured at the edge
of the cutout (as shown in the inset diagram) are
plotted as a function of web shear Toad. With
the cover not installed, strains were extremely
high and the test was stopped at a Tow load to
avoid failing the specimen. With both the cover
and web fastener holes drilled oversize to repre-
sent the ground test configuration, strain was
somewhat reduced but still quite high. These
results clearly show the importance of the
fastener fit in transferring load across the
shear web and reducing strains.

With the redesigned cover attached over the
rib web cutout and adhesively bonded as well as
mechanical fastened, the rib element was tested

to failure. The strains for this test were much
Tower than for the other configurations and the
web failed in the thin sine-wave section, well
away from the reinforced cutout area. A detailed
finite element analysis of the modified cover con-
figuration agrees closely with the test data, con-
firming the adequacy of the finite element grid to
represent the complex sine-wave web configuration
and cutout cover. The results of the rib tests
together with the analysis of the stabilizer and
the rear spar web confirm the failure theory that
the oversize holes in the cover reduced the
ability of the cover to carry Toads across the
rear spar web, resulting in high stress concentra-
tion at the edge of the cutout.

Design modifications which have been incor-
porated on subsequent stabilizer units include, in
addition to the redesigned covers for all cutouts,
secondarily bonded ply reinforcements of selected
internal spar and rib webs to increase their
margins of safety (see reference 17). A second
ground test article has now successfully completed
all limit load tests and is scheduled to have com-
pleted fail-safe testing by July 1983.

Implications of Full Scale Ground Tests

One of the important features of the ACEE
Composites Program is that it is recognized as a
means to develop a level of understanding and con-
fidence in the performance of composites for
application to transport structures, and, conse-
quently, structural failures of full scale com-
ponents are unique opportunities to identify fail-
ure modes peculiar to composite structures. The
medium-primary program provided opportunities for
the composites industry to develop a keener
insight into requirements for design, manufactur-
ing, and testing of composites which should not
only enhance understanding but should identify
requirements for developing a data base which will
assure the "safety of flight" already established
for metais. The following discussion will review
some of these insights, which although are not
necessarily new, were manifested with this ground
test experience.

The designers of composite structures lack
the extensive "standard practice" foundation that
accompanies metal designs and, consequently, they
must incorporate considerable intuitive knowledge
until adequate design quides are developed and
validated. It is agreed among designers that
there is a general state of uncertainty with com-
posites as to the source, magnitude, and effects
of secondary loads. Yet, secondary loads are
virtually impossible to eliminate from a complex
built-up structure. While these loads can be
safely ignored in metal structures, the sensi-
tivity of current composite materials to inter-
laminar forces can lead to serious weaknesses
being overlooked in the design of composite
structures. Such loads may be produced by eccen-
tricities, irregular shapes, stiffness changes,
and discontinuities, and their effects are magni-
fied by the brittle nature of composites, which
precludes load redistribution associated with
plasticity effects. Unfortunately, detailed



problems in composites require fine-grid finite
element models which are frequently complex to
generate and expensive to run. However, for
strength critical structures selective finite
element modeling is essential to identify poten-
tial problems early in the design phase. The
real challenge may be in selecting the areas to
analyze. Areas for consideration should include
regions of intense load gradients and regions of
unusual structural complexity.

Criteria for assembly of composite struc-
tures are generally more demanding than those in
metals. The nonyielding aspects of composites
makes the determination of load distributions in
mechanically fastened joints and the redistribu-
tion of loads difficult. Since mechanical
fasteners are still the primary method of final
assembly, the quality of drilled holes and control
of hole tolerance are critical in the assembly
process and can be key factors in performance.

Simulation of aerodynamic and inertia loads
on full scale composite test articles is always a
problem due to the necessity to apply loads at
discrete points. Careful consideration must be
given to whether the representation of distributed
Toads permits proper and adequate interrogation
of the composite structure. Finesse is required
for load introduction to insure that unacceptable
secondary Toads are not induced. On the other
hand, load introduction schemes may mask real
secondary failure modes.

Subcomponent tests should not be used as the
exclusive method of full scale validation because
of secondary and off-angle loads introduced into
a built-up structure during deflection, while
under load, which may not exist in a subcomponent
test. The basic problem is the difficulty in
duplicating important details, such as edge
restraint and loading, that are required to
maintain a functional relationship between the
subcomponent and full scale structure.

Two factors which appear critical to the
widespread use of composites in aircraft struc-
tures are the essentially elastic stress-strain
nature of composites to ultimate failure Toad
and their susceptibility to failure in inter-
Taminar tension and shear. Work is in progress
to evolve a composite material system with
improved ductility and interlaminar toughness,
and yet retains desirable features such as
adequate mechanical properties, processability,
environmental stability, and solvent resistance
(see reference 18).

Concluding Remarks

The major transport manufacturers have
undertaken the development of technology required
for the application of composites to empennage
structure of large transport aircraft. Struc-
tural components which have been designed and
manufactured as direct replacements for existing
metallic parts have demonstrated weight reduc-
tions of more than 22 percent. In the ground
test programs, the performance of full scale

composite components was assessed for various
static loads simulating critical flight condi-
tions, damage tolerance conditions, spectrum
fatigue loadings, and fail-safe conditions. Each
of three ground test articles failed at loads less
than expected, but detailed investigations of the
failures identified the cause of failure and
failure sequence.

The ground test results provided insight into
a number of problems that must be addressed before
composites can be successfully applied to primary
structure. The brittle nature of composites and
their relative weakness in interliaminar tension and
shear will be major design concerns until at least
partially alleviated by material improvements.
These features were instrumental in each of the
early failures and in two of the three components
the failure modes were not evident from subcom-
ponent tests. Design modifications have been made
on all three structural components and two of the
components have successfully completed all ground
tests.
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TRANSPORT MEDIUM PRIMARY COMPONENTS
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OBJECTIVE

PROVIDE THE TECHNOLOGY AND CONFIDENCE
SO THAT COMMERCIAL TRANSPORT
MANUFACTURERS CAN COMMIT TO PRODUCTION
OF COMPOSITES IN THEIR FUTURE AIRCRAFT.
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Figure 1 - Composite primary aircraft structures in the
NASA aircraft energy efficiency (ACEE) program.
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Figure 2 - Medium primary component development program.
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Figure 3 - 737 composite horizontal stabilizer -
assembly methods.
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Figure 4 - L-1011 composite vertical fin -
structural configuration,
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Figure 5 - DC-10 composite vertical stabilizer -
structural configuration.
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Figure 6 - Full-scale ground test load techniques.
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Figure 7 - 737 composite horizontal stabilizer -
fail-safe test configuration.

Figure 8 - 737 composite horizontal stabilizer -
rear spar failure of ground test article.

11



e WEB CRACKS, INTERIOR FACE

® WEB CRACKS, MID-PLANE

® WEB CRACKS, EXTERIOR FACE

Figure 9 - 737 composite horizontal stabilizer -
crack propagation in ground test article.
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Figure 10 - 737 composite horizontal stabilizer -
rear spar web failure.
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Figure 11 - 737 composite horizontal stabilizer -
rear spar strain data.
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Figure 12 - 737 composite horizontal stabilizer -
steel reinforcement of rear spar.
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Figure 13 - L-1011 composite vertical fin static test
failure at 98% design ultimate Toad.
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Figure 14 - L-1011 composite vertical fin -
influence of Toad cycling on interlaminar strength.
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Figure 15 - L-1011 composite vertical fin -
ground test article modifications.
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Figure 16 - L-1011 composite vertical fin -
damage and repair.
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Figure 17 - L-1011 composite vertical fin -
static test failure at 119.7% design ultimate load.

Figure 18 - L-1011 composite vertical fin -
post-failure NDI.
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REAR SPAR WEB _
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Figure 19 - DC-10 composite vertical stabilizer -
ground test failure sequence.

Figure 20 - DC-10 composite vertical stabilizer -
rear spar static test failure at limit load.
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Figure 21 - DC-10 composite vertical stabilizer -

failure initiation at rear spar access cutout.
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Figure 23 - DC-10 composite vertical stabilizer -
rear spar web strains and shear loads,

Figure 24 - DC-10 composite vertical stabilizer -
shear web test article,
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Figure 25 - DC-10 composite vertical stabilizer -
shear web cutout cover redesign.
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Figure 26 ~ DC-10 composite vertical stabilizer -
access cutout strain data.
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