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NOTATIM

The following symbols are used in this paper=

A - cyclic strength coefficient;

k - expanding point of the Taylor's sari";

•	 b - fatigue strength exponent;6u ^ ^p

c - fatigue ductility exponent;

E - modulus of elasticity;

f - probability density function;

gq)- failure function of M;

h( • )- function defined by Eq. 21;

kt- stress concentration factor;

k - number of normal equations;

a - number of observations or data sets;

N. No cycles to failure , -service life in cycles;

n s number of random design variables;

p(•) i- probability of;

pf- probability of failure;

S - nominal stress;

s - cyclic strain hardening exponent;

design parameter vector;

Ui defined by Eq. 29;

ui reduced variable;

desing point values;

C1, a - coefficient in polynomial equation, least square estimator;

S - safety index;	 x
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C, c
a 

a strain range, cyclic strain amplitude;

ej a fatigue ductility coefficient;

A - direction cosine;

a, co a stress range, mean stress;

of - fatigue strength coefficient;

m( • )- standard normal cdf;

ft	 Failure domain.
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EXECUTIVE SUMMARY

	 OF POOR QUALITY

Addressed herein is the problem of computing the probability of failure

for a structural component whose design factors are modelled as random vari-

ables. The relationship between the design factors for a particular mode

of failure is complicated; it can be defined only using a computer algorithm,

e.g., finite element analysis, local strain analysis. The situation described

relates especially to fatigue risk assessment in which a local strain analysis

such as strain range partitioning" is used to describe fatigue behavior of a

component. But the procedure is general and can be applied to any mode of

structural or mechanical failure.

As an example, consider the fatigue problem described in the figure.

A harmonic load (zero-to-peak) is applied to the part. The stress in the

bulk of the material remains elastic, but there is cyclic plasticity at

the notch. Local strain analysis, requiring a computer solution, can be

employed to estimate cycles to fatigue crack initiation at the notch. Ran-

dom design factors include (a) the stress amplitude S reflecting statistical

scatter in load data and modelling errors, and (b) the fatigue strength co-

efficient of and fatigue ductility coefficient of representing scatter in

material fatigue behavior. Other sources of uncertainty could include, in

general, modelling error in using Neuber's and Miner's Rule in the analysis

and uncertainties in the -yclic stress strain curve.

Cycles to crack initiation, N, is uncertain (a random variable) because

it depends on other factors which are uncertain (random variables). The

basic goal of a reliability analysis, 	 given the service life, Not

what is the probability of failure, i.e., the probability that N will be

less than N ?
0

r
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A FATIGUE PROBLEM WHERE LOCAL STRAIN ANALYSIS CAN BE EMPLOYED TO PREDICT

FATIGUE CRACK INITIATION

Describes scatter in loading

i,(t)	
as well as modelling errors 7

S(t)

S

	

fa

Nominal

Stress	
time

•

Cyclic Plasticity
at Notch. Fatigue

crack starts here.

P(t)

CYCLIC S'T'RAIN-LIFE CURVE

5 L rii i n	
Describes

Arq)Iitudv	 scatter in
fatigue

: ► 	 data

CYCLIC STRESS-STRAIN CURVE

Stress

Amplitude

Cr
a

/-'  Describes scatter

in a-e data

Lire, N
	

Strain Amplitude, E 
n
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Computer costs for a Monte Carlo solution would be excessive because

the local strain program would have to be run for each random ample

point (maybe 10,000 times). An alternative proposed herein suggests a

simplified scheme for establishing an approximate algebraic relationship

between the design variables. Then an advanced computational rthod

`	 (called the Rackwits-Fiesaler algorithm; is used to estimate the probe-

bility of failure.

The procedure is such faster than Monte Carlo and probably more ac-

curate for typical reliability problems although the latter has yet to

be proven. In addition to fatigue reliability analysis, the method is

thought to be particularly useful in any mechanical or structural problem

where computer analysis is required to relate the random design variables.

E .

ff.
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Numerous methods have been developed during the past decade to de-

scribe structural reliability without having to perform a multiple integration.

For example, Hasofer and Lind [7] introduced the concept of generalized

safety index, S, as a "measure" of reliability which used only mean and	 -

standard deviation of each design variable. However, unless the limit

state is linear and all the random variables involved are normally distrib-

uted, no direct relationship between reliability and the safety index

can be described in the Hasofer-Lind formulation. Distributional informa-

tion is not introduced.

To extend the concept of the safety index, Rackwitz and Fiessler

[12, 13] suggest that non-normal distributed variables can be transformed

to equivalent normal variables in the Hasofer-Lind analysis. The refined

safety index, ^, and the design points are obtained through a convergent

numerical process. An approximation to the actual probability of

failure is provided by letting p  = ^(-^), where 0 is the standard normal

distribution function. A condition is that the failure surface is approxi-

mately linear in the neighborhood of the design point. The theory behind

this well-known R-F algorithm was later formally investigated by Ditlevsen

[3] who called it the "principle of normal tail approximation." Chen and

hind [1] have recently refined the Rackwitz-Fiessler method by employing

an :additional scale parameter for the equivalent normal distribution. A

more arcur.ate approximation of the original distribution is promised.

The performance of the R-F algorithm and the C-L algorithm, both

methods of "fast probability integration," have been investigated [16].

4



Both are considered to be effective and accurate for general reliability

purposes in design. The method is fast in that numerical integration is

avoided; convergence to the design point is rapid. However, the schema

becomes very inefficient or very difficult to apply in some cases where

the limit state cannot be expressed in a closed form equation. An alterna-

tive is to use Monte Carlo simulation which is able to provide approximate

solutions to any difficult problem. Unfortunately, Monte Carlo is costly,

particularly when additional computation must be made to define the limit

state. To compound the problem, very large sample sizes are required in

order to get sufficient resolution in the tail areas to approximate the

low probabilities typical of structural application (e.g., 10 3 to 10-5

To overcome the difficulties associated with Monte Carlo and a full

distributional approach, a numerical method is proposed whereby the limit

state is approximated as a polynomial in the neighborhood of the design

point. Then the fast probability integration technique can be applied

effectively to estimate pf.

DEFINITIONS AND PROBLEM FORMULATION

i
Let	 - (Ul , U2 ,	 Un) denote the vector of design factors which

i

are, in general, random variables. It will be assumed that all U  are un-

correlated with known distributions. The failure function, Z - 9 V of

random design factors is formulated so that the event of failure is,

1t

Ig 
(g) * O

J
	(1)•
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The probability of failure is defined as,

P  - P [ gv 01	 (3)	 -

P  can be evaluated from the following multiple integral

Pf - ff	 dJ	 (4)

where fM (M) is the joint probability density function of the random vector,

^; 0 is the failure domain in design parameter space.

In general, evaluation of Eq. 4 requires numerical integration.

The operation is particularly difficult if the number of the random variables

exceeds two. And in practice, the failure function does not necessarily

have to be expressed in explicit form. An example presented herein is

a computation of reliability for a fatigue problem for which the local

strain approach is used to determine cycles to failure in a notched member to

which a constant amplitude oscillatory load is applied. Fatigue crack initia-

tion life N at the notch (point of stress concentration) which experiences

cyclic plasticity is predicted using the following three equations [2, 6]

1. Neuber's rule:

(ktS)2
ac -	

E	 (5)

2. Cyclic stress-strain curve:

1/ sav
E - E +	

(6)
A /

6
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3. Strain-life curve which defines fatigue strength,

c/b

ca 
of 

E o° (2N)b + ( of--,  0)	 cf (2N) c	(7)
of

where

k  - stress concentration factor

S - nominal stress

E - modulus of elasticity

a	 local stress

E - local strain

A - cyclic strength coefficient

s - cyclic strain hardening exponent

ea - cyclic strain amplitude

o - mean stress
0

of - fatigue strength coefficient

of - fatigue ductility coefficient

b - fatigue strength exponent

c - fatigue ductility exponent

The details of computing fatigue initiation life is described by Collins

[2] and by Fuchs and Stephens [6]. The algorithm is complicated, and a

computer program is required. Therefore, an algebraic expression of the

failure function g%) is not immediately available.

To simplify the reliability problem, assume that only Rf, Ef and

S (applied nominal stress range of a constant amplitude process) are random

variables. The remaining parameters are constant. It will be assumed

7
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al g o that the mean stress effect is negligible due to stress relaxation;

a0 - 0. it is important to note that in the example which follows, it is

possible, with no extention of the theory, to include, for example,

kt , A t s, and even 
a0 

as random variables.

A local strain analysis computer program is the only practical way of

computing cycles to failure N as a function of af, Ef, and S. A closed

form expression of

N - H (S, off, E f)	 (8)

does not exist. Given that the desisn life is N0 , the event of failure

is (N _ No ) and the limit state is (N - N0) .

Eqs. 5 to 7 could be expressed implicitly as:

S - h(Qf, E f , N), etc.	 (9)

If the closed form expression of h were given the R -F algorithm could

be used effectively to estimate p f given (N - N0). The scheme presented

here is to construct an approximation of h in the neighborhood of the de-

sign point and then use the R -F method. Monte Carlo is used as a check

on the R-F compsitations.

MONTE CARLO METHOD

To estimate probabilities associated with a complicated function of

J

random variables, a Monte Carlo solution can be used. Consider

Z - gV
	

(10)

where k 
is a vector of random variables. The computer generates a random

sample of k i ; i - 1 5 J, where J is typically a large number, e.g., 10,000.

8



ORWNNAL Rt4t c i4

OF POOR QULITY

Eq. 10 is employed to obtain a random sample of Z  of size J. To estimate

P(Z ! 0), for example, one can take the number of Z  having a value less

than zero and divide by J. Moreover, the empirical cumulative distribution

function (CDF) of Z can be plotted on probability paper.

It is a well known fact that the Monte Carlo solutions tend to be

expensive relative to the accuracy obtained. Often a large sample size

is required, particularly in structural reliability analysis when the

values of the probability of failure are typically small. For example,

it might require 104 samples to provide a reasonable estimate of probability

of failure in the range of p f > 10-3. If the failure function is compli-

cated so that a costly analysis is required for each Zi t Monte Carlo be-

comes impractical. Nevertheless, the method is easy to apply, able to

solve complicated problems, and therefore is a valuable tool for design

and for research.

A limited Monte Carlo analysis is employed later to check the results

of the proposed method.

FAST PROBABILITY INTEGRATION TECHNIQUE

The Rackwitz-Fiessler (R-F) algorithm, used herein, is well documented

in literature (9, 12, 13, 14). The following procedures are the summary

of the method.

1. Transformation of the basic variables to the reduced variables,

.	 Ui - ui	
(11)i	 of

9
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where v  and o f are the :wean and the standard deviation of U 

respectively. Note that u  are random variobles having a mean

of zero and standard deviation of unity.

2. Determine the minimum distance, 8, from the origin to the limit

state on the reduced coordinates.

3. Obtain the "equivalent normal" values of u  and of for those

random design factors which do not have a normal or lognormal

distribution. This is done by imposing the conditions that the

density and distribution functions of the equivalent normal

are the same as the basic variable at the design point.

4. Repeat steps 1. to 3. until B converges.

The point on the limit state closest to the origin is called the desi

point. B is called the satsty index and is considered to be a measure of

reliability because it is inversely proportional to the probability of

failure.

It is a common practice to calculate B by iteratively solving the

following equations (9, 141

F-L,
^(isj
i  	 j ^'

ui • BA i 	(13)

g(A18, X2 0, . . . An0) ' 0	 (14)

where the partial deri%ates are calculated at the design point, k'; Ai

are the direction cosines of the vector that defirc the design point.

10
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Note that this scheme requires computati of irtial derivatives of the

failure function, g. In the case when the failure function cannot be ex-

pressed explicitly, the method becomes inefficient. Furthermore, in many

practical situations the failure function may not be explicitly differenti-

able, and it is necessary to use numerical differention. Again the failure

function needs to be known.

B can also be computed by solving the constrained optimation problem:

j
s - min.	

n
E u 	 (15)

i-1

g 	 - 0	 (16)

The computations of partial derivatives are avoided (e.g., see Ref. 11).

For a complicated failure function, it is suggested that this scheme be

adopted and the failure function be approximated by a closed form alge-

braic expression so that a and k'can be effectively obtained.

A probability of failure computed by

p f - t(—a)
	

(17)

provides a reasonable estimate of the "exact" value of p  for many cases

[4, 161. A study of the R-F algorithm has demonstrated that for many

cases, (a) estimate of p f are "good,"to "excellent" and (b) R-F computer

costs are a fraction of Monte Carlo, e.g., 1/50 for some examples [16).

POLYNOMIAL APPROXIMATION TO THE FAILURE FUNCTION

If the failure function can be approximated by a simple (e.g., poly-

nomial) equation, S can be determined effectively by solving the optimiza-

tion problem (F7s 15 and 16). The entire process of computing a and then

I\

11
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gW - Uo - h (Ul , U2 , . . . U n ) - 0

By substituting Eq. 21 into Eq. 19, it follows that

12
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OF POOR QUALITY.
p f is summarized by the block diagram of Fig. 1. The method will be de-

veloped and demonstrated by solving a sample problem.

Assume, in general, that there are n + 1 variables involved in a

failure function expr sion

g(Uo , Ul , . .	 U n ) - 0	 (18)

Assume also that the failure function is differentiable with continuous

partial derivatives in the whole domain. By expanding it at a point

0 ) '11'	
aT) by Taylor series, the following polynomial results:

g(k) = g() + E aL (Ui - ai) + 2 E â -- (Ui - ai)
2

i=0 i	 i-0 au 

n-1 n	 2
+ 2 E E	

a3Ug W	
( Ui - ai) (U j

1-0 j=i+l	 i i

In order to compute s using the optimization

it is necessary to rewrite the equation such

is a function of the remaining variables. 7

- aj) + H.O.T.(higher order terms)

(19)

scheme of the R-F algorithm,

that any one of the variables

ius Eq. 18 becomes, when one

chooses U
0

U0 - h (U 
l' 

U2 , . . . Un )	 (20)

such that the failure function is
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FIGURE 1. Block Diagram for Computation of the Safety Index, B, when

the Failure Function is Not Available as a Closed Algebraic

Form.

Specify the random design factors.

(The distribution types and parameters.)

W.

ii

Select several points for each variable

where a solution is desired. The points

should embrace the design point, but one

has to guess where that will be.

Obtain a solution, using computer analy-

sis, at each one of the selected point

sets.

Curve fitting: Use a polynomial to

approximate the failure function.

The limit state is thereby defined.

Improve the accuracy of B by

selecting more appropriate

points using design point values.

The R-F algorithm is applied to com-

pute the design point and safety

in.;ex, B.

f
	

The estimate of the probability of

failure is P  = 0(•-6)
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Uo-h(0 +r av(Ui- ai) +Z 	2E a2 (Ui - ad
i-1 aUi

n-1 n	 2
+ 2 E E	

a h	
(U - a )(Uj - aj ) + H.O.T.	 (22)

i-1 j-i+l aUiaUj k i	 i

Simplifying,

n	 n	 2
U  - ao + E a  (Ui - a i ) + E 

an+i 
(Ui - ai)

i-1	 i-1

n-1 n	 (iJ

+	

- a 
i ) (U- aj ) + H.O.T.

i=	al j-i+1	 (n-2)(i+l)+j i	 23)

where the a's are defined by comparing Eq. 22 and Eq.. 23, Eq. 23 can be

further simplified as

k
U  - a  + E a  xi + Error (H.O.T.) 	 (24)

i-1

where

i=Ui - ai	 for i- 1, n

=(U i  - a1) 2	 for i - n + 1, 2n

_ (U i - a  )(U i - a  ) for i- 2n+ 1, k = ((n + 2)(n+ 1)/21-1

This is the familiar multiple linear regression model where x i are inde-

pendent random variables. (Note: The model is linear in the parameters

(the a's) regardless of the shape of the surface it generates.) The least
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square normal equation may be written in matrix notation as (see e.1

Ref. 10)

(26)

where

[X]T[X] [a ] _ [X ]T No]

1 x
11 x12	 X 

. x21 x22	 x 2

[X]

1 xml 
xm2	 xmk

a 
	

(Uo)1
al	 (Uo)2

[a] _	 . [Uo]

"k	 (U0)m J

Note that there are k + 1 normal equations, one for each of the unknown

ai . m is the number of observations or data sets. Given the data sets xis

and (Uo ) i , the solution will be the least square estimators, ai.

SELECTION OF THE DATA POINTS

Assume that the failure function is to be approximated by a truncated 	 i

polynomial equation. In a general data analysis problem, data obtained

from experiments are subject to random errors. A statistical analysis

A

of estimators a  are required to validate the model. In such cases,

accuracy of the model will be heavily dependent upon the sample size, m.

15
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In this study, however, the data sets x ij s(uo) i are those values which

satisfy the exact failure function. Therefore, smooth functions are

anticipated and statistical analysis is not necessary. The number of

data sets for curve fitting can be chosen relatively small. More pre-

cisely, the minimum number of data sets (m) is equal to the number of

a 

The key to constructing an effective approximating model is to cho

for curve fitting, data points (centered around the expanding point k)

from a domain that is relatively small to give satisfactory agreement

between the exact and the approximating limit state, but wide enough to

cover the unknown design point. When R-F algorithm is used, the model

need be accurate only in the region of the design point rather than the

whole domain. If the expanding point, t, which must be chosen at the

outset, is relatively close to the design point, "accurate" results can

be expected.

In the general case, the design point may be difficult to predict in

advance. However, it is reasonable to assume that design point values of

stress variables would be greater (may be much greater) than its mean or

median. Similarly, design point values of strength variables would be

less than its mean. Hence, one can at least make a reasonable first guess

of the neighborhood of the design point. Another observation which is

useful is that the failure functions are expected to be relatively smooth

and unlikely to have discontinuities or other significant nonlinearities

in the neighborhood of the design point. Therefore, it seems reasonable

16
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to use a quadratic polynomial model to approximate the failure function. On

the other hand, it is worth mentioning that the simple relationship be-

tween p  and B of Eq. 17 is a good approximation when tha limit state sur-

face can be approximated by a tangent hyperplane at the design point

[5]. In such cases it is evident that a quadratic model will be suffici-

ent to approximate the limit state in the region close to the design point.

As an example of solving a  using minimum of data points, consider

the case where there are four design variables involved. If the quadratic

polynomial without interaction terms (or mixed terms, e.g., (U1 al).

(U2 - a2), . . . etc.) is chosen, the model is

Uo = a  + al (UI - al) + a2 (U2 - a2 ) + a3 (U3 - a3)

+ a4 (U1 - a1 ) 2 + a5 (U2 - a2 ) 2 + a6 (U3 - a3 ) 2	(27)

The expanding point k has been chosen and it is required to compute the

estimates, ao . . . a6 . These estimates can be computed by calculations

relating the design parameters at the following specific points.

U1

al

a1 + AU1

a1 - AUl

al

al

a1

al

U2

a2

a2

a2

a2 + AU 

a,

a,
19

a,
e

U3	
U 

a3	 (Uo)1

a3	 (Uo)2

a3	 (Uo) 3

a3	 (Uo)4
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The AU 's must be chosen. They must be large enough to embrace the design

point, but not too large so as to introduce significant errors in the poly-

nomial approximation. Here the analyst must again use his intu'_tion.

Finally, the estimates of a's are computed by noting the following.

a  is the value of U  at the expanding point; al and a4 can be determined

when U2 = a2 and U3 = a3 , . . . etc. Thus, a  can be determined from the

above seven data sets by choosing appropriate values of ± AU  which define

the range of data for each variable.

In general, one can solve ai using matrix operations (Eq. 25), where

x matrix for the example is

1 0 0 0 0 0 0

1 AUl 0 0 AU  0 0

1 -AUl 0 0 AU2 0 0

[X] = 1 0 AU2 0 0 AU20 (28)

1 0 -AU2 0 0 AUJ 0

1 0 0 AU  0 0 AU3

1 0 0 -AU 0 0 AU3

If the interaction terms are included, a minimum of three more data

sets are required to determine a
7
 to a9 . As an example,

Ul	U2	 U3	 U 

a1 + AU 	 a2 - AU 	 0	 (U 0 ) 8
a1 - AU 	 0	 a3 + AU 
	 (Uo)9

0	 a2 + AU 	 a3 - AU 
	

(U 0 ) 10

Similar tables can be easily constructed when the number of design variables

(n + 1) is greater than four. In general, the minimum number of data sets

required is 2n + 1 if the interaction terms are excluded, and is

(n + 2)(n + 1)/2 for a complete quadratic equation.

18



When using the minimum number of data points to generate the model,

the values at the data points of the model are exact. Then the curve

fitting procedure ?!ascribed above is actually an effort of trying to

approximate the exact surface by interpolation. To determine suitable

values of the three data points for each variable, namely, the expanding

point and the other two points which define the "interpolation range,"

consider the following example. Assume that a stress random variable

U has a known distribution, but no information is available about the

value of the design point. As shown in Fig. 2, a decision is made to

choose the interpolation range from the median of U (data point 1) to the

value of U where its CDF is 0.9999 (data point 3), and let the expanding 	 1

point to be in the middle (data point 2). For a strength variable, points

2 and 3 should be chosen at the left tail region. In doing this, it is

anticipated (as a first approximation) that the design point will lie with-

in the interpolation range. To improve the approximation, a new range

may be chosen if the design point lies outsida this range in the first

reliability computation by the fast probability integration technique.

As demonstrated later, it is thought that one or two tries will be suf-

ficient for generating satisfactory results.

In the first attempt, in general, one would like to choose a wide

interpolation range to ensure that the range will cover the design point.

However, it is obvious that a wider interpolation range may result in

s	 poorer approximation. In addition, if significant nonlinearities exist

.	 in the range, the quadratic curve or surface may turn into an inappropri-

ate direction very fast which may result in a problem of obtaining

k

19
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unreasonable design point. It is helpful to have a good physical feel

of the problem. Consider the example of fatigue reliability analysis

mentioned before. For a given life N, fatigue strength (defined by t)

should increase if of being increased. In other words, ac/acf should

always be positive. Suppose a linear polynomial model is chosen. As a

first approximation, the data points (c i s of, .	 ) will be fitted by a

straight line on the two dimensional coordinates plane (e.g., e - o'
f

plane). But the data are exact, and it follows that the sign of at/ac f

will be preserved. Hence, the linear model is excellent in preserving

the basic functional relationships between strength and stress variables.

In general, however, the quadratic model is more appropriate because

of the wide range of good fit of the failure surface. But it is also

clear that the slopes or (first) partial derivatives of a second degree

equation can be positive, negative, or zero. Therefore, when a "strictly

monotone" nonlinear function is approximated by a quadratic equation, it

is no longer a strictly monotone function. As a result, there exist

certain domains in which a strength variable will behave like a stress

variable, and vice versa. Consequently, there is a possibility that the

design point will converge to the undesirable domain where very poor ap-

proximation of the limit state is unavoidable, resulting in unreasonable

design point. Therefore, it is important to examine the model before

calculating S.

Instead of checking the result of the curve fitting by plotting, it

is more efficient to calculate the "effective domain" of the model where

the basic functional relationships mentioned above are preserved. As
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illustrated in Fig. 3 the effective range can be determined for each

variable by calculating the value at which ._i partial derivative is zero.

For instance, recall Eq. 27 for a quadratic polynomial with no interaction

terms. Consider U  as the dependent variable, and U 1 , U2 , U3 as the in-

dependent variables. From the conditions of 8Uo /au i M 0, the "critical

points" of loo , denoted by Ui , are

*	 al
U1 

a172a4	(29)

a

U2 a2 2a	 (30)
5

CL

U3 a3 2a
6	

(31)

Thus, the effective range can be easily determined. Similar results can

be immediately inferred when more design variables are involved.

By introducing interaction terms to form a complete quadratic equa-

tion, Eq. 29 is replaced by

U1 
M (al 2a4 )	 2a4 (U2 - a

2) 2a4 (U3 - a3)	 (32)

Considering the extremes of the interpolation range where Ui = 
a  ± 

w
 

for U2 and U 3 , Eq. 32 becomes,

U1 = 
(a l 2n

4
	2a 4
	 4

)	 (± AU 2)2a (± AU 3)	 (33)

therefore, at least at one of the extremes, U 1 will be

U1 
(al 2a	 - 2a
 AU

- 2a 
AU3	

(34)
4	 4	 4

which is at best, equal to the value obtained from Eq. 29. Similar argu-

ments can be used for the other U i , and for the case of more variables.
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Thus, while the introduced interaction terms have the promises of improv-

ing the accuracy of the model, the effective range becomes smaller.

A general rule regarding the quality of the polynomial expression

is that the model is good if all Ui are located well outside the interpola-

tion range (See Fig. 3). It is clear that the effective range will be

much wider than the interpolation range if the failure function is approxi-

mately linear in the interpolation range. On the other hand, when U i lies

inside the data range, it is implied that significant nonlinearity exists

in the interpolation range. A "bad fit" results in some region of the

interpolation range. Likely the fit is worse in the "extrapolation range."

Using the information of effective range, there are several ways of

overcoming this "nonlinearity problem": (a) Restrict the value of the

variable within its effective range. This will be demonstrated in the

following example of the fatigue life reliability analysis; (b) Use linear

model as a first approximation followed by a quadratic model using more

appropriate interpolation range; (c) Use a piecewise (splines) model by

splitting the interpolation range. In the limiting case, si,y curve can be

considered as connected by a series of straight lines.

The methods <a ove are useful when a range of p  need be estimated,

and a single quadratic curve is unable to provide a good fit in the

relatively wide domain because of the nonlinearity of the failure function.

For the case of single design-point checking problem, "range reduction"

can be very effective simply because a narrower interpolation range always

provides a better effective range.

In conclusion, it in thought that generally the quadratic polynomial

curve fitting is an appropriate method to approximate the failure function.
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Furthermore, because the interaction terms tend to reduce the effective

range and more data point sets are required for modeling, it is recom-

mended that a quadratic polynomial model without the interaction terms

may be adopted for an efficient estimation of p f and the design point

values. Using a minimum amount of data points, this model will be

applied in the following example to demonstrate its effectiveness. It

will be shown that critical values, U i , are useful for validating and

improving the model. Finally, it is believed that accurate a can be

effectively obtained through the "design-point searching" and the

"interpolation-range reduction" processes regardless of the complexity and

nonlinearity of the failure function.

EXAMPLE - FATIGUE LIFE RELIABILITY ANALYSIS

Demonstrated here is the general method of producing a quadratic

polynomial model where i.i,,eraction terms are neglected. The sample problem

involves fatigue reliability using local strain analysis to predict life.

A zero-to-peak constant amplitude load producing the nominal stress history

as shown in Fig. 4 is applied to the notched member. The peak stress S

is not known exactly, and is considered to be a random variable. An il-

lustration of the basic equations of local strain analysis (Eqs. 5 to 7)

are provided in Figs. 5 and 6. Fig. 5 shows that a and a are determined

from Neuber's rule and the cyclic stress-strain curve. Fig. 6 illustrates

the relationship between strain amplitude at the notch (e a) and cycles

to failure (N) for a given of and r.f. Both of and of are considered to be

random variables, describing the scatter in fatigue data.

Three different applied stress conditions are examined using the pro-

posed method described herein. The results are compared with those using
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Monte Carlo method where 100 samples are generated in each case to plot

the empirical CDF.

Case A:

The material analyzed is Waspaloy B at: .1000° F. The median nominal

ti
stress is S - 310 MPa (45 ksi), The data is tabulated in Table 1. To

obtain wide range of effectiveness of the polynomial fit, data points

are chosen as described in Fig. 7.

Cycles to failure N is computed using a local strain analysis program.

Seven data sets for curve fitting (analysis is repeated seven times) are

given in Table 2. The scale of N has been changed for easier data handling.

Once the data sets are generated, any variable can be treated as the de-

pendent variable. In this example, S was chosen,

S = ao + al (of - al) + a2 (Ef - a2) + a 3 (log N - a3)
(35)

+ a4 (Qf - al ) 2 + a5 (C f - a2 ) 2 + 
0
6 (log N - a3) 2

where the expanding point values, a i , can be found in Table 2. By the

transformation of 
xl of - al , etc., as defined in Eq. 24, S can also be

written as

S -ao +al xl +	 a6 x6	(36)	 s

i

	

Therefore, a i can be solved simultaneously from Eq. 25 where the X matrix 	 3
a

can be constructed using data in Table 2. The result is:

S = 497.7 + 0.268 (Qf - al ) + 20.8 (Ef - a2 ) - 168 (log N - a3)
(31/

+ 0.000027 (of - al ) 2 - 4.52 (,f - a2 ) 2 + 37.5 (log N - a3)2

i
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TABLE 1. Data Information for Example

(a) Random Variables

Parameter Distribution Type Median Coefficient of Variance

S lognormal 310.2 MPaa 0.20
(45 ksi)

Qf lognormal 1841 MPa 0.05
(267 ksi)

lognormal 3.47 0.43

L414 MPa (60 ksi) for Case B,	 551 MPa (80 ksi) for Case C

(b) Constants

Parameter Value Parameter Value

Kt

b

E

3.0

-0.0843

206820 MPa
(30,000 ksi)

s

c

A

0.108

-0.9126

1518 MPa
(220.4 ksi)

Note: 0	 - 0
0
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TABLE 2. Data Point Sets for Curve Fitting 	
OR POOR QUALITY

Set Number S, in MPa
a 
	 in MPa of log,ON, in cycles b

la 497.7 1674 2.069 3.859

2 310.2 1674 2.069 6.191

3 685.1 1674 2.069 2.935

4 497.7 1507 2.069 3.611

5 497.7 1841 2.069 4.149

6 497.7 1674 0.668 3.644

7 497.7 1674 3.470 3.984

Interpolation 310.2-685.1 1507-1841 0.668-3.47 2.935-6.191
Range

a Expanding point

bComputed using a local strain analysis program originally written
by W. R. Brose.
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Now examine the quality of the polynomial expression. Consider the

effective range for each independent variable. Using Eqs. 29 to 31, the

values at aS/aof - 0, etc., are

(of, e i , log N)* - (-3290, 4.4, 6.1)

The value of (af)* is negative implying the nonlinear effect of of 
is

very small. The value of (ef)* when compared with the interpolation range

of of shown in Table 2 also suggests that the nonlinear effect of Ef is

not significant. Thus, the quadratic model seems to be satisfactory for

of and Ef in the chosen ranges of interpolation. The value of (log N)*

is close to the interpolation range implying a moderate nonlinear effect

of log N in its chosen range.

The R-F algorithm was used to compute p f for several values of No.

The results are shown in Table 3. It is noted that the highest value of

log No is chosen to be 5.5, a value less than (log N) * , 6.1. This point

is inside the interpolation range and reasonable p f estimates are expected.

There is no limitation for choosing lower log No . The values listed in

Table 3 are in the range where comparisons can be made with Monte Carlo

results, i.e., where the lowest possible estimate of p f is about 1%.

Observing that all the estimated design point values in Table 3 are well

within the interpolation range shown in Table 2 one notes that perhaps

accuracy could be further improved by reducing the interpolation ranges.

Monte Carlo was used as an independent check on the quality of results
..

of the proposed method. Unfortunately, each trial requires running the

I'

	

	
local strain analysis program with a random sample of S, af, and E f . This

process is extremely costly and inefficient. Therefore, only a sample of

size 100 was obtained.

r^
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TABLE 3. Results of the Reliability Analysis for Case A Using the

Proposed Method

Design Point
Probability of

failure, %No (cycles) log No S, in MPa a;, in MPa of

3,160 3.5 605 1779 2.88 0.026

10,000 4.0 520 1785 2.95 0.34

31,600 4.5 454 1793 3.04 2.2

100,000 5.0 407 1802 3.13 7.3

316,000 5.5 378 1810 3.21 14.2



Computed values of pf from the R-F algorithm are plotted in Fig. 8.

The empirical CDF generated from Monte Carlo method is also plotted on the'

same lognormal probability paper. Assuming that the p f of the present method

are accurate, the upper and lower 1% points for the maximum likelihood

estimator (MLE), p, of p are given. The calculation is similar to that

of a confidence interval for the binomial. If the circled points in Fig. 8
E •

are accurate, then there is a 982 chance that p obtained from an experiment

would lie in the interval shown. Even though the algorithm used to esti-

mate pf was really (i - 2) /n, not exactly the MLE, the evidence of Fig. 8
suggests good agreement between the present method and Monte Carlo.

The median of S in this case was sufficiently small so that generally

the deformation of the material is in the elastic range. However, because

S has a large coefficient of varience, some plasticity is expected for

samples having a higher than average stress. The platicity effect (ef term)

could be important in highly stress specimens. Hence, the lower tail of the

OF of N is not a straight line as it would be on lognormal paper if S

were deterministic. This exercise demonstrates that extrapolating p f using

Monte Carlo results will likely produce inaccurate estimates of p f . This

is a principal reason why the number of simulations should be larger when

the pf to be estimated is smaller and why Monte Carlo can be so expensive.

Case B

The data is the same as in Case A (See Table 1) but the median of

nominal stress is increased to 414 We (60 ksi) so that more cyclic plas-

ticity is expected at the notch.e .
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The data points for S are (414, 663, 013) MPs. The method for com-

puttng these was described in Fig. 7. Following the same procedures as

in Case A, seven data points were obtained. The expanding point of log N

is 3.0, and the data of log N ranges from 2.5 to 4.7.

The result of the curve fit, choosing S as the dependent variable, is

S - 663 + 0.217 (of - al) + 106 (Ef a2) - 425 (log N - a3)
^

	

	 (38)

+0.000074 (of - a l ) 2 - 34.1 (Ef - a2 ) 2 + 164 (log N - a3)2

The values at W N, - 0, etc., are

(af , Ef, log N)* - (207, 3 . 6, 4.3)

Again, both (of) * and (EW values are well-outside the interpolation
range shown in Table 2 implying satisfactory effective ranges for of and E 

However, (log N ) * is inside the interpolation range (2.5, 4.7),

suggesting the possibility of a poor fit in some regions because of sig-

nificant nonlinearity between S and log N in the interpolation region.

Therefore, in forming the limit states of Eq. 38, values of log No should

be limited to, say 4 . 0 as higher errors may result for larger log No.

The design points and p f for several values of log No were computed

using the same met hod as described for Case A. The results of this first

approximation is shown in Table 4(a). Values of the p f are plotted on

Fig. 10 as the dashed line.

The fact that the (log N) * value lies inside the interpolation range

implies that the degree of nonlinearity between S and log N is significant

In this range. A higher degree polynomial equation is required to in- 	 e

prove the fit unless the range can be reduced. Suppose, for instance,

the goal of the reliability analysis of log N o ranges from 3.0 to 4.5.
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The design point information generated from the first approximation

(Table 4(a)) reveals that the interpolation ranges may be reduced to gen-

erate improved, second approximation. It should be emphasised that when

only point estimate is required (e.g., log No - 3.0), the interpolation

range for the second approximation can be made very small so that the

quadratic model becomes a good a;;: ,ximation. In this study, however,

the narrower interpolation range is chosen to be wide enough to cover the

region of log No of interest in this study.

Using the design point information in Table 4(a), the new and reduced

interpolation ranges are determined as shown in Table 4(b). The improved

quadratic model becomes:

S - 551 + 0.212 (vf - al) + 19.3 (Ef - a2) - 165 (log N - a3)
(39)

+ 0.000074 (a; - al ) 2 - 4.08 (Ef - a2 ) 2 + 55.1 (log N - a3?

where the expanding point values can be found in Table 4(b). The values

at f - 0, etc., are

(of, Ef, log N) * - (390, 4.6, 5.2)

By comparing these values with the interpolation ranges shown in Table

4(h) it is found that the effective ranges for al l three variables are

satisfactory, suggesting that the model has been improved. To demon-

strate the improvement made in the model, the exact and the approximate

S - N curves are drawn in Fig. 9 for both the first and the second approxi-

mation (Note: Values of of and cf are at the expanding point). The figure

clearly shows that the model is much better when (log N) * lies outside the

Interpolation range suggesting that (log N) * , etc., which defines the ef-

fective range, is a convenient index of "measuring" the quality of the
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TABLE 4. Results of the Reliability Analysis Using the First Approximating

Model, and the Data Range for Generating Second Approximating

Model (Case B).

/e1 2^...1t m i/ais.n itirn* AnnrrhvimAtina Mndmbl

Design Point Probability of

failure, %No (cycles) log No S, in MPa af, in MPa of

1,000 3.0 658 1806 1.75 0.19

1,778 3.25 587 1811 1.95 1.14

3.162 3.5 539 1816 2.20 3.97

5,623 3.75 508 1820 2.47 8.93

10,000 4.0 490 1823 2.69 14.2

IM natm Rnnon fnr []&"arso n* Soennd Annrnwimatina Medpl

Variables Data Range Expanding Point

S, in MPa 655	 -	 448 551

O f', in MPa 1806	 -	 1834 1820

Ef 1.75	 -	 2.80 2.275

alog N 3.15	 -	 4.58 3.686

aCorresponding Values
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model, and the degree of nonlinearity in the failure function.

The new design points and the associated p f using Eq. 39 are shown in

Table 5. The design point values of Ef as well as the value of S when

log No ! 3.0 are outside the data ranges indicating the extrapolating values

of Eq. 39 are being used. However, these values are well within the ef-

fective ranges and closer to the interpolation range. Therefore, it is not

unreasonable to assume that good approximation can still be obtained.

Values of p  of the improved model are also plotted on Fig. 10.

Following the same procedure as in Case A, a 98% interval on the estimates

of p  is constructed which covers the Monte Carlo results. The improve-

ment of the model seems justified. By using more appropriate data ranges

or splitting the data range into two parts, accurate Rackwitz-Fiessler values

of B can be obtained for a wide range of fatigue life. For a specified

single value of design life, it is believed that no more than two tries

are necessary to obtain satisfactory results.

Case C

For the previous examples, the median nominal stress is further increased

to 551 MPa (80 ksi) so that even more cyclic plasticity is expected.

Otherwise, the parameters are the same as in Cases A and B.

Applying the same methods as described in previous cases, the data

points for S are (551, 885, 1218) MPa. The corresponding expanding point

value of log N is 2.55, and the interpolation range of log N is from 2.05

to 3.48. The result of the curve fit is:
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TABLE 5. Improved Results of the Reliability Anelysis for Case B Using

the Proposed Method.

Design	 int^ `
First

Improved Estimates
No (cycles) log No S, in MPa af, in MPa Ef, pf, % %of pf'

1,000 3.0 700	 1808 3.05 0.34 0.19

1,778 3.25 645	 '.810 3.08 1.12 1.14

3,162 3.5 596	 1814 3.13 2.96 3.97

5,623 3.75 555	 1817 3.18 6.43 8.93

10,000 4.0 520	 1821 3.23 11.7 14.2

17,782 4.25 493	 1825 3.28 18.2 -----

31,622 4.5 472	 1828 3.32 24.7 -----
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FIGURE 10. Reliability Analysis of Fatigue Life (Case B); A Comparison of the

Present Method with Monte Carlo.
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S 885 + 0.133 (vf - al) + 210 (ef - a2) + 702 (log N - a3)
(40)

+ 0.000012 (af - al ) 2 - 77.1 (ef - a2) + 370 (log N - a3)2

The values at 8S/8af = 0, etc., are

(af , ef, log N)* - (-3870, 3.43, 3.5)

Thus, satisfactory effective ranges for of and of result. The value of

(log N) * is approximately equal to the value at right end of the interpola-

tion range suggesting that the range of interpolation of S is too wide.

To improve the model, a decision can be made to reduce the interpolation range

either before or after the design points are estimated using Eq. 40. The

method of improving the accuracy through range reduction process has been

demonstrated in Case B, therefore it is not repeated here.

To obtain the first estimation of reliability analysis of N, several

values of log No are chosen to form the limit states. The highest value is

restricted to 3.25 which is somewhat less than the value of (log N)*. The

design points and p f using R-F algorithm are shown in Table 6. The values

of of and of indicate that cyclic plasticity indeed plays the dominant role

in the region of high p f . pf values are plotted in Fig. 11. A 98% interval

on the estimates of p f , and the Monte Carlo results are also plotted. It

is noted that for this high stress case, lower tail CDF of No should approach

a straight line on the lognormal paper if the elasticity effect is being

neglected. Thus, the result of the first estimation is reasonable.

SUtOMY

A numerical procedure is proposed for estimating risk for the case

when the failure function is not available as a closed algebraic form.

The safety index s is computed by the R-F algorithm after the
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TABLE 6. Results of the Reliability Analysis for Case C Using the Proposed

Method.

Design Point
Probability of

failure, %No (cycles) log No S, in MPa af, in MPa of

178 2.25 927 1825 1.25 0.015

316 2.5 786 1828 1.46 0.28

562 2.75 706 1831 1.75 1.8

1000 3.0 663 1833 2.06 5.7

1778 3.25 641 1834 2.30 10.5
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failure function is approximated as a simple polynomial equation. The proposed

method is described by the following step by step procedures (refer to Fig. 1):

1. Specify the random design factors.

2. Make a somewhat conservative but reasonable first guess of the design

point to define the range of interpolation. Select several points

from the range for each variable where a solution is required.

3. Solve the failure function, using computer analysis, to obtain a

solution at each one of the point sets selected. The data sets

for curve fitting are thereby provided.

4. Obtain a polynomial equation using a curve fitting technique. It

is recommended that a quadratic equation without the interaction

terms may be adopted for an efficient estimation.

S. Check the quality of the polynomial fit (e . g., define effective

ranges) as an aid in forming the limit state where a reasonable

agreement between the exact and the approximating equation can be

anticipated. A reduction of the ranges of the selected points

may be required if the failure function is highly nonlinear in

the selected interpolation range.

6. Apply R-F algorithm to the approximating limit state to compute

the design point and S.

7. Compare the design point values with the ranges of the selected

points. To improve the approximation in the region of design point,

go to Step 2, but adjust the values and ranges of the points for

each variable. In general, accuracy can be improved by reducing

a	 the ranges which should still embrace the design point.

S. Estimate the probability of failure using p f M
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