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Analytical Design of Multispectral Sensors

DANIEL 3 WIERSMA, MEMBER, 1EEE, AND DAVID A LANDGREBE, FELLOW, IELE

Abstract—An analytical g.occdure for the design of the spectral chan-
nels for multispectral reme e sensor systems is defined. An optimal
design based on the criterron of minimum mean-square representation
error using the Karhunen-Locve expansion was developed to represent
the spectral response functions from a stratum based upon a stochastic
process scene model.  From the overall pattern recognition svstem
perspective the effect of the representation accuraty on a typical per-
formance cnitenion, the probability of correct classification, 1s investi-
gated. The optimum sensor design provides a standard against which
practical (suboptimum) operational sensors can be compared. An ex-
ample design ts provided and its performance 1s sllustrated.

Although the analytical technique was developed primanly for the
purpose of sensor design 1t was found that the procedure has potential
for making important contributions to scene understanding. 1t was con-
cluded that spectral channels which have narrow bandwidths relative to
current sensor systems may be necessary to provide adequate spectral
representation and improved classification performance,

I INTRODUCTION

PATTERN recognition system as used 1n a remotec
Ascnsmg system for earth resources consists of three
fundamental components—the scene, the sensor, and the pro-
cessor {Fig 1) The scene 1s that portion of the earth’s surface
observed by the sensor The desired information i contained
In the spectial, spatial, and temporal variations of the electro-
magnetic energy emanating from the scene  The sensor col-
lects the energy and measures its features The processor 1s
typically a digitally implemented classification algonthm
which makes ¢p appropnate decision based on the feature
measurements provided by the output from the sensor Van-
ous types of arcillary data are also now typically used n the
decision-making process

At present the design of the processor algonithms 15 quite
advanced and provides variety and flexibility for optimal per-
formance given a feature set [4], [5] However, the design of
the best set of features is a complex matter which 1s not well
understood  There are many sensor parameters involved [11,
ch 7] In the current work we himit constderations to the de-
sign of the spectral aspects of features to make the problem
more tractable, leaving other aspects to later occasions

Manuscupt recewved January 4, 1979, revised December 7, 1979 This
work was supported by NASA/Johnson Space Center under Contracts
NAS9-14970 and NAS9-15466

D J Wiersma was with the Departinent of Electrical knginecring and
the Laboratory for Applications of Remote Sensing (LARS), Purdue
University, Lafayctte, IN e 1s now with the Minnecapous Honeywell
Company, Minneapolis, MN

D A Landgrebe 1s with the Department of Llectnical Engincering
and the Laboratosy for Applications of Remote Sensing, Purdue Um-
reraty, West Lafayctte, IN 47907

HATURAL xh £ e}
PATTERNS :Z PROCESSOR
sa":! SENSOR g (CLASSIFIER)
:
y
n

Fig 1 Tattern recognition system

I SricTRAL REPRESENTATION AND OPTIMUM
SENSOR DESIGN

In order to achieve an optumal design of a set of spectral fea-
tures one must have suitat'e analytical representations for
1) the spectral response of the scene, 2) the sensor system,
3j the processor system, and 4) onc must have a suitable,
analytically expressible optimality cnterion  Further, we note
the fotlowing factors which influence the creation of a spectral
feature design procedure

1) The scene 13 very complex 1n the fashion in which 1t re-
flects and emuts optical radiation  Mathematical models which
predict the scene radiant exitance at least to the level of ac-
curacy and precision needed for our problem, ¢o not yet exist
As a result an empincal scene model must be used

2) Because satellste-borne sensor systeins are very expensive
they cannot usually be designed specifically for a cettain ase
or user Rather they must be optimized with regard to a large
number of scenes and uses (Fig 2) The feature space which
the sensor defines inust be adequately detaded, for example,
such that in carly season when agricultur il crop canopies have
achieved only 10-15-percent cover, both the crop species
mapping user and the soils mapper can be served  Ths fact 1s
unportant 1 the choice of optimality criterion, as will be seen
shortly

3) Itis highly desirable that the spectral features be designed
in such a way that they are maximally efficient 1n the sense
that a featurc set of any given size contain the maximum
amount of useful information possible so that any given
analysts can proceed with the smallest number of features
possible There arc at least three reasons for this feature effi-
ciency n this sense tends to decrease the amount of processor
computation tequired, 1t tends to decrease the processor com-
plexity required, and 1t tends to reduce the amount of training
sample data needed

4) There are a number of constraints on the design of a
sensor, generally of a practical character, winch cannot rea-
sonably be ewpressed analytically Examples are those result-
ing from optical design considerations, sensor matenal sensi-
tvity  curves, cost feoctors, spacecraft size and  weight

0196-2892/80/0400-0180%00 75 © 1980 IELE
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Fig 2 A sensor system must be designed to perfonn satisfactonly for
many reasons scenes at various times of the season, 1 ¢, defining fea-
tures spaces detaled cnough to permt successful partitions for vary-
ing applications
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Fig 3 Sensor system design procedure
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considerations, etc , and especially from the mterrelationships
of these types of factors To mutigate thus circumstance we wall
use the sclreme depicted in Fig 3. That 1s, we will determune
optimal sensor charactenstics using entirely analytical means
without regard for their physical reahzabiity These charac-
teristics will then serve as a guide by which to deternmune
nearly equivalent but physically realizable charactenstics which
perform nearly as well

In order to achucve the desired spectral feature design scheme
we must deal specifically with each of these lettered and num-
bered 1tems above

A The Scenc Model

Let us begin by considening the information beanng aspects
of the spectral response function x(X) {8] This response
function (e g, from a single pixel) 1s proportional to the elec-
tromagnetic energy received by the sensor as a function of
wavelength A (Fig 4) Many factors determme the spectral re-
sponse function for a gven observation The irradiance of the
sun, the conditions of the atmosphere, and the reflectance of
the surface features all have important effects on the response
Since a determimstic 1elationship between the response func-
tion and the many factors affecting 1t would be very complex,
the set of functions which are observed in practice are best
modeled as a stochastic process

The ensemble of the stochastic process [13] wall be defined
mn terms of the stratification necessary to apply pattem recog-
nutton methods to the earth observational problem A stratum
S 13 defined as the largest contiguous area which can be classi-
fied to an accepiable level of performance with a single tram-
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Fig 4 Spectral responss function for Mature Wheat collected on
August 4, 1977, over Williams County, ND
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Fig 5 Realizatton of a stratum as the en<semble of spectral ample
functions

ing of the classifier It 1s noted that the sensor must be de-
signed to operate satisfactonily over a large number of such
strata, which vary greatly with time, location and apphication
The collection of all possible strata which a sensor may ob-
serve 1s dennted by S;  Since the set Sy is qute large, 1t 1s
necessary to select a smaller subset which 1s representative in a
statistical sense 1n order to perform the design

The random expeniment for the stochastic process consists
of the observation of a point in a straturn § Each poini in the
stratum 1s mapped into a spectral response function (Fig 5)
The collection of all response functions from a stratum defines
an ensemble The ensemble plus the corresponding piobability
measure defines the stochastic process {13] It 1s appropnate
to assume a Gaussian probability measure for this process [3].

B The Sersor System Model

Next we choose a mathematical model for the sensor to
represent the spectral response function for each observation
Let the sensor be represented by a set of N filter functions or
basis functions {¢,(A)} such that the output of each filteris
given by (Fig. 6)

~

X, = j A\ ¢, (\) dA )
A

The output of the senscr model 1s a sequence, {x;,X3, ,
xy}=X, which represents the spectral response by the
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\
I'ig 7 Approumation of the spectral response function by a sct of
four Lasic functions

approximdtion

x(A)=x 9N +x28,(M)+ -t xnon(N

N
=Y xa6(N)=5M)

=1

2

A simple tllustration of the concept 1s given in Fig 7 How-
ever, by relaxing the usual restrictions on the shape of the
{¢, (M)}, considerablc advantage can be obtamned There isno
theoretical or practical reason, for example, for the {¢, (W)} to
be nonoverlapping  What is needed ts to d.termune the ordered
set of basis functions which are optimal with regard to a mean-
mgful system performance criterion

C The Optimality Critenon Including the Processor Model

A key consideration s the choice of the optimality cnterion
It 15 desirable to opuinnze the sensor design with respect to an
overall system (including the scene and processor) peiformance
cnterion  The probability of correct classification 1s the cn-
terion to be used here  This choice 1s made because it 15 an ob-
jective indicator of desired performance n a practical sense for
a large proportion of applications, and 1t 1s perhaps the best
studicd and undcrstood 1n 4 theoretical sense  In selecting this
performance measure there must also be associated with 1t a
processor (classifier) model, i this case we chose the maxi-
mum likelthood rule, for the same reasons

However, because of the design factor pointed out tn 1tem
(2) and Fig 2, we find 1t desirable 1o define an ntermediate
optumality criterion  Because the sensor mast function over a

varted collection of strata using anv of a large collection of
classifiets, a criterion was chosen which 15 a measure of the

'
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fidelity with which the output of the sensor represents the
mnput  We will choose the set {¢,{A)} such that for a given
x(A) the approxtmation X(X) 1s as close as possible to the true
spectral response function One may think of this approach as
one intended to munimize the information loss through the
sensor even though 1t cannot be known to the sensor designer
what the information 1s  Ir passing from x(A) to {x,} thereis
no information loss if x (X} 1s recoverable from {x,}

A common cnterion for representation accuracy 1s the ex-
pected mean-square representation error given by

Ele)=E { [ - 201 dx} @)

A

However, 1t 1s desirable at this point to generalize this criterton
by introducing a weight function w(X; on the spectral nterval
As will be seen, the weight associated with each A can be used
to mtroduce mto the analysis a prion knowledge corcerming
the spectrum Thus (1) and (3) become [16].

X, = fX(k)dn()\) w(A) dA (1a)
A
E{e}=E { f Ix(N) - XV ? w(d) dx} (3a)
A

We want to choose the set of basis functions {,{A)} which
15 optimal with respect to the spectral iepiesentatsn cnitenon
of expected mean-square error £ {¢,} Mcre specifically, it 1s
desired that the representation be complere in the sense that
the expected mean-square error for any function in the en-
semble be made arbitranly small sumply by mcluding enough
terms, that convergence of the approximation to the ongmal
response be rapid in the first few terms, and, wathout loss of
generaity, we may also ask that the basis funcuions be
orthogonal to each other

A technique for deterrrung the set of optimal basis func-
toons for an ensemble which satisfies the desired propsities 1s
based on the weighted Karhunen-Loeve expansion (2], {16},
[17})  The solution to the homogeneous lnear ntegral
equation 18

o(N = f KO\ E) @u8) wB) d @

A

with the covariance function of the stochastic process, K (A, £),
as kernel is a set of exgenfuactions { ¢,(A)} with corresponding
eigenvalues 7, If the eigenvalues are arranged in descending
order, the corresponding sequence of eigenfunctions can be
used to form 4 binear combination of the eigenfunctions which
converges to the ongnal spectral response functon with arbi-
tranily small expected mean-square error  Furthermors, be-
cause of the ordenng of the eigenvalues, convergence in the
first few terms 1s very rapid  This rap'd convergenre aliows
truncation of the series expansion after a finite number of
terms N with mean-square error niuninuzed over all possible
choices of N basis functions The mean square error s given by

E{el}= i v

iv N+t

)
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3 Since the unmodified (w(X) = 1) Karhunen-Locve expansion 1s o OF FOOR QUALITY
; a well-studied techniquee and satisfies the destred properties for
L finding the basts functions, a sound analyucal method s pro- §
¢ vided for determning the optimal set of basis functions g
, The optimal sensor design problem may be solved on a digital §
,:l computer using empincdal data taken by field measurements 3
4 Some approximations must be made 1n order to take into con- 13
- sideration some practical constraints  First the response func- g
S tons are not avatlable as continuous functions but are ob- z
Y taned n the field by sampling the spectrum with an nstru- £
g ment that uses very narrow spectral windows Secondly, the é
- parameters of the process dare not known a pnon, hence, 1t 1s
L necessary to estimate the mean and covanance funcuons using Expected Mcan-Square Error
, . -
5 a representative sample from the ensemble  Finally, because
Er P : p y Fig 8 Probabiiny of a correct classification as a fun.uon of expected
5 the data will be stored and processed digitally it 15 necessary to mecan-square representation error
quantize the amplitude of the responsc at cacn of the spectral
3 sample points  Each of these constraints potenuially can con-
; tnbute to the representation error It has been shown that  the performance provided that the stochastic process 1s com-
; with reasonable care m selecting a sufficientiy high spectral  pletely known  If after N terms the improvement in per-
: sampling rate, 4 large enough sample from the ensemble, and a  formance is small compared to the reduction in representation
E ]argc number ofquan(udl|on tntervals that the contribution of  etror, then the representation 1s suffictent  Thus 1s ilustrated
! these factors to the representation error 1s small {16] The by case 4 of Fig 8 in which the threshold 7 indicates the
- integral equation (4) becomes the matnx equation mmmum required £ [e,]  However, 1 the performance 1s
: showing sigmificant improvement for o small decicase in the
@r=awo ) mean-square error, case B of Fig 8, mo.e terms are necessary
. 0 sentation
3 where @15 the maunx of eigenvectors, 115 the diagonal matnix to complete the representati
Since the parameters of the stochdstic process must be esti-
/ of eigenvalues, K 1s the covartance matrin, and Wis the diago-
b - mated from 1 sample of the ensemble, the effect of the size of
nal matrix of weight coefficients
the sample relative to the dimensionahty of the system s .-
Hl RFLATIONSHIP BEIWEeN THE SPICTRAL portant Hughes {10} has shown that 1f the sample size 1s tov
3 RI PRESI NTATION AND SYSTEM PLRFORMANCE small, the classification performance may actually be degraded
by adding terms to the expansion Thus 1t 1s necessary to
The performance of the overall system s uliimately what we y & 4 Y
mmuntdin a large set of sample functions from which to esti-
wish to optimize  For this purpose, as previously indicated the
N mate the statistics
probability of correct classification P, has been chosen as the
The chowce of mfurmation classes also influences the per-
performance indicdtor to be optinuzed  If the vector X 1s an formance of the patlern recognition sysie For pur ¢
m of the patter m 0ses v
observation frum one of M classes C,, 1= 1, 2, , M with p BI ys purpose
classifying the data . ~to distinct classes 1t 1s required that the
a pnont probabilittes P,, the probabiity of correct classifica-
class list have the following properties simultaneously [11]
tton, using the mastmum likehhood rule 1s given by
1) Each class must be of interest to the user, 1¢, of n-
formational vaiue
P.= 4x (|C); d 7
3 ¢ m, {Pp(XIC); dX M 2) The classes must be separable in terms of the features
available
where p(XiC,) 1s the conditional (multvariant) probabihity  3) The list must be exhaustive, 12, there must be a class to
; density function for class ¢ The ntegral in (7) 1s over the  whichitis logical to assign each pixel in the scene
observation space The classes may be arranged tn a huerarchual tree structure in
2 The analytical procedure based on the weighted Karhunen-  which case classes deeper in the trec require different repre-
- Loeve expanston has prescnibed a sensor design which mini- sentation accuracics to achieve a given level of classification
g mizes the mean-square representation error  One would like  performance
- tu know how the ability to represent a process influences the The area of the ground resolution element 1s determined by
3 classification performance  To study this relationship the such sysiem charactenstics as the nstanitaneous field-o%-view
. graph of the probability of correct classification versus ex- (IFQV), the altitude of the sensor, the scan rate, and the ve-
pected mean-square error 15 introduced (Fig 8)  We will  loctty of the sensor  These are examples of spatial representa-
1 tnefly discuss some of 1ts characteristics tion parameters The size of the objects which can be 1dent-
The add:ition of terms to the series expansion causes a  fied and the enerzy available are influenced by the chowe of
monotomic decrease n the spectral representation crror, but  ground resolution clement cize. If a typical object which one
the effect of the addivonal terms on the overall systems per-  wishes to 1dentfy 15 smaller than the ground resolution ele-
formance must be determined It can be shown that increasing ment size, then it s very difficult to dassify that object
the number of terms in the representation will never decrease  Mobassen [12] has investigated the effect of the area of the
A . . :
£ vt e S DY G . U A . R S SV E- N JAUNR ST . PRI R R b MIE L - T Y. AV
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resolution element on classification performance Increasing
the arca often :mproves the signal-to-noise ratio which in turn
can tmprove the classification performance

For a given remote sensing problem the signaf 1s the part of
the recewved response whuch 1s information bearing, and the
noise 1s that part which 1s noninformation beanng The n-
fluence of the s'gnal-to-noise ratio where the noise 1s white,
Gaussian and additive was demonstra.cd by Ready et al {14]
Results show that overall classification performance decreased
with an increase 1n the nosse level A class which was difficult
to 1dentify under low noise level conditions suffered the most
degradation when noise was added

IV EXPLRIMFNTAL SYSTM

An experimental software system has been set up to imple-
ment the analytical procedure that has been developed The
software system has been implemented on an IBM 370 com-
puter at the Laboratory for Applications of Remote Sensing
(LARS) at Purdue University, Lafayette, IN

A collection of field data consisting of spectral response
functions on three dates from Wilhams County. ND, and three
dates from Finney County, KS, was available from the field
measurements hbrary at Purdue/LARS More than one thou-
sand spectra were avalable from each location and collection
date  The response functions were sampled 1n wavelength
using narrow windows of 002 upm over the range 04 <
AS24um

The optimal set of basis functions 1s found numerically by
estimating the covaniance matnix from the sample response
function  Maximum lkelihood estimates of the mean and
covanance matnces are given by

_ ~ 1 N.
X=F{X}=X=—Y X, (8)
Ny S
and
1 Ng A A
.. v w\T

K=— - X)X - X) ©®

NJ‘1=I

where N 1s the number of sample functions evailable and X, 1s
the 1th sample vector The covanance s the kernel in the
linear integral equition whose solutions are the optimal basis
tunctions or eigenvectors A remarkably stable and accurate
method tor numencally computing the cigenvalues and eigen-
vectors was pubhished by Grad and Brebner |6}

The etgenvectors are used to perform the hnear transformation

y=aT (X~ X) (10)

on the data set  The class conditional staustics are computed
using the transformed data

In order to compare the performances of two systems an
algorrrhm which esumates the probabihty of correct classifica-
uon for an M class problem, given the class conditional multi-
variate Gaussian statistics, was used [16}  This algonthm,

which 1s based on the straufied postenor esumator {15}, was
found to be accurate within one-haif of 1 percent

The expenimental system also included an abinty to simu-
late (suboptimal) practical sensors Although nearly any sensor

TABLE 1
SPECTRAL BanD LOCAT'ONS FOR TwO PRACTICAL SENSOR DEsiGns®

Seasor Rumber 1 Seosotr Number 2

Band Vavelength 2end Vavelength

* ln to ld k lu to Xd

1 3 to 6im 1 43 to N

2 -6 to i 2 52 to  b0m

b 7 to Sim 3 63 to  69m

L3 2 to 1 Iim 4 76 o 0um
5 15 tol m
6 208 to 2 I5m

*The band edges of these sensors were sclected to comncide wath the
nominal bandwidths of the MSS of Landsats 1, 2, and 3, and those of
the TM of Landsat D

characteristic could be simulated, most of the sensors which
we.e simulated consisted of a small st of rectangular basis
functions, 1 e,

10.
00,
where the Ay and Ay, are the lower and npper linits of the

spectral bands  The spectral bands of two suboptimal sensors
which were implemented are listed 1n Table |

Mk S A Ax
otherwise

w,(x)={ ¢an

V ResuLTs

It became necessary dunng this research to create a means
for incorporating certam types of anculary information mto
the optimization process The reason tor this can best be iffus-
trated with an example We first deterimne the opumaul feq-
tures, {¢x (M)}, for a data set using the umform weight func-
tion of Fig 9 Plots of the first four eigenvectors for this case
are shown in Fig 10 Now the shape of an eigenfunction 1s
mstructive 1n tus application because whenever an eigenfunc-
tion 15 targe (either positive or negative) at a given X, it imphes
that that wavelerigth 1s important  representiny the given
ensemble and, therefore, perhaps also 1n classifying 1t

It was obseived 1n thus example that the eigewvectors are
dominated at least in the case of K = 1 and 4 by components in
the bands near 1 4 and 1 9 um  These bands are dominated by
water absorption in the atmosphere, and 1t 1s known a prion
that very hittle solar flux reaches the earth’s surface in them
Thus these regtons ncar J 4 and I 9 um represent noise rather
thun signal, and urder test, the eigenvectors which were sensi-
tive to these bands contnbuted very hittle to the classification
performance Using a second weight function which ass.gns a
very small weight in the water abscrption bands (Fig 11) the
influence of the spectrum in the water absorption bands 1s
significantly reduced, and a marked improvement 1n classifica-
tion performance (e g, a classificauon error rate reduction
from 19 6 percent to 11 8 percent for a six-feature classifica-
tien) 1s observed

It 15 a charactenstic of the Karhunen-Loeve representation
that spectral wtervals with the greatest ensemble variation are
gven greatest emphasis  Some of this ensemble vanation may
be expected 15 be information-beanng (signal) and some not
(notse). As czn be seen by thus example, the weighting fune-
tion provides a convenient means to incorporate into the fea-
ture destgn paror knowledge about whether ensemble vana-
tions 1n a given range are signal or noise  In the remainder of
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15,

oA 14 24
Wavelength (pm]

Fig. 9 Weight function number |

N |

Egervactor t Eigenvector 2

1 o]

0, 2

§ T
.1 .
i 73 y 4 z4
Exgonvectar 3 Eigernector 4
Wavatangth (pm) Wavetergth (pm)}

Fig 10 Fust four optimum basis functions using weight function
number 1 over Willams County, May 8, 1977, data

SRR

04 14 24
Vavelength L}

Fig 11 Weight function number 2

the results presented, the weighting funcuion of Fig 11 was
used Two other weighting functions have been tested [16],
the choice of which 1s the best weighting function 1s thought
to depend on a number of factors not all of which are well
understood

Results for the design of the opuimal sensor for one of the
six sets of data are presented in Figs 12-14.' The data from
the stratum was collected over Williams County, ND, on May
8, 1977 The three classes represented n this d»ta set were
spring wheat, summer fallow, and pasture Since the data were
taken relatively early 1n the growing season, the wheat canopy
was stil quite sparse which leads one to expect the wheat class
to resemble spectrally bare suil or fallow In Fig 12 the ex-
pected mean square error 18 plotted as & functon of the sum-

! The results for the other five data seis, which were from different
times of the year at the North Dakota site and a Kansas site, are con-
tasned 1 [ 16)

o
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ber of terms in the expansion Rapid convergence 1n the first
few terms 1s demonstrated 1n thus graph

The first eight weighted esgenvectors are plotted 1n Fig 13
Note that the magntude of the first eigenvector has the gen-
eral shape of a typical spectral response of soil, since the pre-
donunant response 1n two of the three classes is soil, this first
eigenfunction may be thought of as the average response over
the ensemble The sccond eigenvector tends to divide up the
spectrum into three to four relatively broad regions As the
number of terms 1n he expansion is increased, the terms that
are added require higher spectral resolution to reduce mean-
square error, nidicating that spectral fine structure may be in-
creasingly important. We will comment further on tlus later,

In Fig 14 the estimated probability of correct classification
1s graphed as a function of the expected mean-squ=re error It
1s scen that at least the first eight basis functions contnibute
significantly to the classification accuracy The numbers n
parentheses on Fig 13 indicate the order in which the features
were chosen by a feature selection processor 2 The relatively
broad bands of ¢,(A) are indicated as of greatest importance
to class discnmmation but anparently rather quickly there-
after the finer spectral structure represented by ¢g(A) be-
comes important

To complete the design illustration, the procedure was used
to determine a set of physically reauzable rectangular spectral
bands Six to ten bands were required based on a study of the
dimensionality  An mutial set of band edges was chosen based
on an examination of the eigenvectors of the May 8 data set
From (1a) 1t 1s observed that regions of the spectrum that are
sigruficantly different from zero for a particular cigenvector
may contam important mformation This, together with the
feature ordenng determined by a standard feature selection
algonthm, ndicates spectral intervals mmportant for discrimi-
nation Zero crossings of the eigenvectors may be possible in-
dicat. uns of band edges

Based upon such a study of the optimz! -unctions a set of
rectangular spectral bands was chosen. The final set of band
edges for the example design 1s presented 1in Table JI In
Fig 15, companson of the two simulated sensors of Table I
and the optunum set 1s made on the basis of classification per-
formarce for the May 8 data The first ten optimal basis func-
tions were used from the optimal design, where 10 features
provide a small mean-square crror yet keep the computational
difficulties involved with high dimensional systems to a rea-
sonable lesel As shown in Fig 15, the four-band sensor !
compares rather poorly with the best four® optimal basis func-
tions, showing sensor 1 to be far from optimal for this set of
classes Sensor 2 1s an tmprovement over sensor !, but stll
somewhat lower in performance than desirable The eight-
band cxample design, however, demonstrates very good per-
formance relative to the performance of the ten feature
optimal sel. Also, the expected mean-square crror ts sigmifi-
cantly reduced over that of sensors 1 and 2 It should be

2The feature sclection scheme 1s based upon maximizing the average
interclass-pair divergence  The detads arean [16]

3The temn “'best” refers here to those chosen by a feature sclection
algonthrn as best for discrinunating between the design set classes
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Fig 12 Expected mean-square error as a function of the number of
terms 1n the Karhunen-Loeve expansion for Withams County, May 8,
1977, using weight function number 2 ,
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Fig 14 Estimate of probability of correct classification versus ex-
pected mean-square error Willlams County, May 8, 1977, using weight
function number 2
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TABLE I
SPECTRAL BAND LocaTions FOrR THE EXxampPLE DEesiGa

Fig 15 Companson of sensor performance Willams County, May 8,
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Fig 16 Companson of sensor performance Average of six cases

pointed out that these compansons of classification per-
formance are based on a particular set of information classes
and the results may be different if different classes were
chosen  The reduced representation error may »mply -
creased robustness in performance for differing information
classes

The performance was evaluated for the six data sets and the
average performance for each of the sensors 1s shown in Fig
16  Again the expenmental sensor 1s quite close in perfor-
mance to the optimal, a difference of about one percent.
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g 17 Correlation cocfficients versus wavelength for Willlams County, May 8,1977

Although the primary purpose of this work was to develop a
design procedure for sensors, important contributions to the
understanding of the scene can be ganed Properties such as
signal dimensionality for a gven stratum, maximum possible
class separability, the spectral resolution required, and the
accuracy of spectral representation required to obtain a given
level of performance can be studied

The dimensionality of the ensemble can be defined as the
number of terms in the expansion necessary to represent the
ongmal waveform to the desired accuracy  For the informa-
tion classes used on the six data sets the dumensionality was
between six and eight Some of the strata required fewer
terms in the expansion to chtain a good representation and
good performance while others required more terms

A review of the cigenvectors of Fig 13 shows an unexpected
amount fine structure, particularly in the region from 066
to 1 26 pm as previously noted Up to this time 1t had often
been observed that spectral bands very near {0 one another
tend to be hghly correlated and thus redundant  To investi-
gate this structure a bit further the correlation coefficient be-
tween cach band of width 002 um and 1ts nearest neighbor
was calcuilated  The results are shown in Fig 17 Based upon
previously known results one mught expect the graph of the
figure to deviate httle from umty The fact that it does de-
viate significantly from umty changing sigmificantly i very
narrow bands may be further evidence that there 15 useful 1n-
formation in the spectral fine structure

VI CoNCLUSION

The design of the spectral bands for multispectral mstru-
ments has been an important matter for 2 number of years In
the past such design has of necessity been carried out as a
spectral band selection problem using in a subiect’ e manner
the direct apphcation of expenence and judgment Nonover-
lapping bands were selected one-by-one based upon the cur-
rent understanding of reflectance phenomena Each band was
generally selected on its owa mdividual meters because evalu-
ating sets of bands 1s difficult to do without computational
aids A typical example of this process was the design of the
Thematic Mapper bands {7]  Although ttus procedure has
served adequately to tin* time, as the level of sophistication of
applications and, therefore of data needs continues to grow, 1t
seems clear that more quantitative and objective design tools
are needed It was this need to wlich the work reported
nerein was directed

Ac has been scen the design techmique which resulted
utilizes an empirical stochastic scene model as the best cur-
rently feasible means for defining quantitatively the scene and
its information and none content  Since not all sensor system
limitations can be analytically specified, the technique utihzes
an optimal design calculation but 1t still requires engineering
judgment as the best means for resolving the tradeoff of more
tangible factors with those which are less tangible It is by no
means intended as an “automatic” design rrocedure
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The optimal design calculation was established utilizing an
overall performance measure, probability of correct classifica-
tion, and an ntermediate one, spectral representation error
averzged over the ensemble. One can argue that 1t 15 overall
system performance whuch s, after all, the most important.
However, a specific performance measure calculation can only
be carried out with regard to a specific set of classes Different
applications frequently require the same data set to be classi-
fied into different class sets; thus ore desires robustness with
regard to vanous class sets as well in a feature set. The hy-
pothesis nsed here 1s that a <.acern for representation ac-
curacy will tend to insure thi, robustness, thus the bilateral
approach to performar.ce index

The demonstration presented here of the design technique
appea.s to warrant the conclusion that the calculation pro-
cedure provides a substantial aid to the overall design process
With relatively hmited effort a feature set with good overall
performance was obtained On the other hand, the band set
given 1n Table Il should by no means be regarded as worthy of
consideration for implementation as 1s  The ensemble defini-
tion and sampling were not an mmportant point in this work
and would require much more detaded and careful con-
sideration than they received here  The same 1s true of the
band set and its comparison to alternative choices

And finally, we again draw attention to the use of the tools
of this design procedure for carrying out more basic research
into understanding the scene itself and its spectral cnaracteris-
tics By beiwng able to determine and quantitatively assess the
information-beanng attributes of scene spectral charactenstics,
the ability to study potentially smportant charactenistics of
the scene 1s greatly facilitated
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