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Analytical Design of Multispectral Sensors
DANIEL J W1ERSMA, MEMBER. IEEE, AND DAVID A LANDGREBE, FELLOW, IELE

Abstract-An analytical f racedure for the design of the spectral chan-
nels for multiipcclral remo<e sensor systems is defined. An optimal
design based on the cnler'on of minimum mean-square representation
error using the Karhunen-Locvc expansion was developed to represent
the spectral response functions from a stratum based upon a stochastic
process scene model. From the overall pattern recognition svslcm
perspective the effect of the representation accuracy on a typical per-
formance criterion, the probability of correct classification, is investi-
gated. The optimum sensor design provides a standard against which
practical (suboptimum) operational sensors can be compared. An ex-
ample design is provided and its performance is illustrated.

Although tht analytical technique was developed primarily for the
purpose of sensor design H was found that the procedure has potential
for making important contributions to scene understanding. It was con-
cluded that spectral channels which have narrow bandwidths relative to
cuirenl sensor systems may be necessary to provide adequate spectral
representation and improved classification performance.

I INTRODUCTION

PATTERN recognition system as used in a remote
sensing system for eartli resources consists of three

fundamental components-the scene, the sensor, and the pro-
cessor (Fig 1) The scene is, that portion of the earth's surface
observed by the sensor The desired information is contained
in the spcctial, spatial, and temporal variations of the electro-
magnetic energy emanating from the scene The sensor col-
lects the energy and measures its features The processor is
typically a digitally implemented classification algorithm
which makes ,-n appropriate decision based on the feature
measurements provided by the output from the sensor Vari-
ous types of ancil lary data are also now typically used in the
decision-making process

At present the design of the processor algorithms is quite
advanced and provides variety and flexibili ty for optimal per-
formance given a feature set [4], [5] However, the design of
the best set of features is a complex mat ter winch is not well
understood There are many sensor parameters involved [ I I ,
ch 7] In the current work we limit considerations to the de-
sign of the spcciral aspects of features to make the problem
more tractable, leaving other aspects to later occasions
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II Sl ' ICTRAL RnfRHShNTATION AND OPTIMUM

SENSOR DESIGN

In order to achieve an optimal design of a set of spectral fea-
tures one must have sui tat> ;e analytical representations for
1) the spectral response of the scene, 2) the sensor system,
3) the processor system, and 4) one must have a suitable,
analytically expressible optimahty criterion Further, we note
the following factors which influence the creation of a spectral
feature design procedure

1) The scene 13 very complex in the fashion in which it re-
flects and emits optical radiation Mathematical models which
predict the scene radiant exitance at least to the level of ac-
curacy and precision needed for our problem, do not yet exist
As a result an empirical scene model must be used

2) Because satcllne-borne sensor systems are very expensive
they cannot usually be designed specifically for a ceitain ase
or user Rather they must be optimized with regard to a large
number of scenes and uses (Fig 2) The feature space which
the sensor defines must be adequately detailed, for example,
such that m cai ly season when agncultut il crop canopies have
achieved only 10-15-percent cover, both the crop species
mapping user and the soils mapper ran be served This fact is
important in the choice of optimahty cntcrion, as will be seen
shortly

3) It is highly desirable that the spectral features be designed
in such a way tha t they are maximally efficient in the sense
that a feature set of any given size contain the maximum
amount of useful information possible so that any given
analysis can proceed with the smallest number of features
possible There are at least three reasons for this feature effi-
ciency in this sense tends to decrease the amount of pioccssor
compulation icquircd, it tends to decrease the processor com-
plexity required, and it tends to reduce the amount of training
sample daia needed

4) There are a number of constraints on the design of a
sensor, generally of a practical character, which cannot rea-
sonably be expressed analytically Examples are those result-
ing from optical design considerations, sensor material sensi-
tivity curves, cost factors, spacecraft size and weight

0196-2892/80/0400-0180SOO 75 © 1980 IEEE
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Tig 2 A sensor system must be designed to perform satisfactorily for
many reasons scenes at various times of the season, i c , defining fea-
tures spaces detailed enough to permit successful partitions for vary-
ing applications
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Fig 3 Sensor systjm design procedure

considerations, etc , and especially from the interrelationships
of these types of factors To mitigate this circumstance we will
use the scl'eme depicted in Fig 3. That is, we will determine
optimal sensor characteristics using entirely analytical means
without regard for their physical reahiability These charac-
teristics will then serve as a guide by which to determine
nearly equivalent but physically realisable characteristics which
perform nearly dS well

In order to achieve the desired spectral feature design scheme
we must deal specifically with each of these lettered and num-
bered items above

A The Scene Model

Let us begin by considering the information branng aspects
of the spectral response function .v(X) |8] This response
function (e g , from a single pixel) is proportional to the elec-
tromagnetic energy received by the sensor as a function of
wavelength X (Fig 4) Many factors determine the spectral re-
sponse function for a given observation The irradiance of the
sun, the conditions of the atmosphere, and the reflectance of
the surface features all have important effects on the response
Since a deterministic iclationship between the response func-
tion and the many factors affecting it would be very complex,
the set of functions which are observed in practice are best
modeled as a stochastic process

The ensemble of the stochastic process [13] will be defined
in terms of the stratif ication necessary to apply pattern recog-
nition methods to the earth observational problem A stratum
S is defined as the largest contiguous area wluch can be classi-
fied to an acceptable level of perfoiTnance with a single train-

Fig 4 Spectral response function for Mature Wheat collected on
August 4, 1977, over Williams County, ND

Fig 5 Realization of a s tratum ai> the ememble of spectral sample
functions

ing of the classifier It is noted that the sensor must be de-
signed to operate satisfactorily over a large number of such
strata, which vary greatly with time, location and application
The collection of all possible strata which a sensor may ob-
serve is denoted by S0 Since the set S0 is q 'nte large, it is
necessary to select a smaller subset which is representative in a
statistical sense in order to perform the design

The random experiment for the stochastic proceis consists
of the observation of a point in a stratum 5 Each point in the
stratum is mapped into a spectral response function (Fig 5)
The collection of all response functions from a stratum defines
an ensemble The ensemble plus the corresponding piobabihty
measure defines the stochastic process [13] It is appropriate
to assume a Gaussian probability measure for tlus process [3].

B The Sersor System Model

Next we choose a mathematical model for the sensor to
represent the spectral response function for each observation
Let the sensor be represented by a set of A'filter functions or
basis functions (0,(X)} such that the output of each filter is
given by (Fig. 6)

0)

The output of the sensor model is a sequence, {.t|,Xi,
xN} = X, which represents the spectral response by the
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fidelity with which the output of the sensor represents the
input We will choose the set {<£,(X)} such that for a given
JC(A) the approximation J?(X) is as close as possible to the true
spectral response function One may think of this approach as
one intended to minimize the information loss through the
sensor even though it cannot be known to the sensor designer
what the information is Ir passing fromx(X) to {*,} there is
no information loss if x(X) is recoverable from {AT,}

A common criterion for representation accuracy is the ex-
pected mean-square representation error given by

(3)

However, it is desirable at this point to generalize this criterion
by introducing a weight function w(X) on the spectral interval
As will be seen, the weight associated with each X can be used
to introduce into the analysis a pnan knowledge corcerning
the spectrum Thus (1) and (3) become [16].

x . . t i ' X -
•x.e-.iu

Sensor system model

XUIIUl
Tig 7 Approximation of the spectral response function by a set of

four basic funclioiis

approximation

"-1- (la)

(2)

A simple il lustration of the concept is given in Fig 7 How-
ever, by relaxing the usual restrictions on the shape of the
{0n(X)l. considerable advantage tan be obtained There is no
theoretical or practical reason, for example, for the {$,i(X)} to
be nonoverlapping What is needed is to d-iermme the ordered
set of basis functions which are optimal with regard to a mean-
ingful system performance cntenon

C The Optimalitv Cntenon Including the Processor Model

A key consideration is the choice of the optimahty cntenon
It is desirable to optimr/e the sensor design with respect to an
overall system (including the scene and processor) pciformance
criterion The probability of correct classification is the cri-
terion to be used here This choice is made because it is an ob-
jective indicator of desired performance in a practical sense for
a large proportion of applications, and it is perhaps the best
studied and understood in a theoretical sense In selecting this
performance measure there must also be associated with it a
processor (classifier) model, in this use we chose the maxi-
mum likelihood rule, for the same reasons

However, because of the design factor pointed out in item
(2) and Fig 2, we find it desirable to define an intermediate
optimality criterion Because the sensor m^st function over a
varied collection of strata using anv of a large collection of
cljssifieis, a criterion wai chosen which is a measure of the

I [x(\)-x(\)\* w(X)</XJ (3a)

We want to choose the set of basis functions (0,(X)} which
is optimal with respect to the spectral icpiescnta'-on criterion
of expected mean-square error £ {cr} Merc specifically, it is
desired that the representation be complete in the sense that
the expected mean-squaie error for any function in the en-
semble be made arbitranly ''mall simply by including enough
terms, that convergence of the approximation to the original
response be rapid in the first few terms, and, without loss of
generality, we may aho ask that the basis functions be
orthogonal to each other

A technique for deternv.mg the set of optimal basii func-
tijns for an ensemble which satisfies the desired propones is
based on the weighted Karhunen-Loeve expansion [2J , (16],
[17] The solution to the homogeneous linear integral
equation is

*(A. (4)

with the covanance function of the stochastic process, A'(X, £),
as kernel is a set of eigenfunctions (0,(X)} with corresponding
eigenvalues ~f, If the eigenvalues are arranged in descending
order, the corresponding sequence of eigenfunctions can be
used to *"orm a linear combination of the eigenfunctions which
converges to the origins) spectral response function with arbi-
trardy small expected mean-square error Furthermore, be-
cause of the ordering of the eigenvalues, convergence in the
first few terms is very rapid This rap-d convergent allows
truncation of the series expansion after a finite number of
terms N with mean-square error minimized over all possible
choices of/V basis functions The mean square error is given by
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SIIKC the unmodified (w(X) = 1) Karhuncn-Locve expansion is
a well-siudied technique and satisfies the desired properties for
finding the basis functions, a sound analytical method is pro-
vided for determining the optimal set of basis functions

The optimal sensor design problem may be solved on a digital
computer using empirical data taken by field measurements
Some approximations must be made in order to take into con-
sideration some practical constraints First the response func-
tions arc not available as continuous functions but aro ob-
tained in the field by sampling the spectrum with an instru-
ment that uses very narrow spectral windows Secondly, the
parameters of the process arc not known a pnon, hence, it is
necessary to est imate the mean and covanance functions using
a representative sample from the ensemble Finally, because
the data will be stored and processed digitally it is necessary to
qu.mti7e the ampli tude of the response at cacn of the spectral
sample points Each of these constraints potentially can con-
t r ibu te to the representation error It has been shown that
wi th reasonable care in selecting a suff ic ient ly high spectral
sampling rate, a large enough sample from the ensemble, and a
large number of quantisation intervals that the contribution of
these factors to the representation error is small [16] The
integral equation (4) becomes the matr ix equation

183

<s>r = (6)

where <$> is the mamx of eigenvectors, I is the diagonal matrix
of eigenvalues, K is the covanance mat r ix , and U'ls the diago-
nal matrix of weight coefficients

I I I R F L A T I O N S H I I ' B u v M - r N THI S P I C T R A L
Rl 1'Kt.SI N T A P I O N \Hf> S Y b l h M Pl.R hORM ANC h

The performance of the overall system is ul i imately what we
wish to optimi/c For this purpose, as previously indicated the
probabil i ty of rorrcct classification Pr has been chosen as the
performance ind ica to r to be optmiutd If the vector X is an
observation from one of M classes C,, i - I, 2, , M with
a pnon probabilities />,, the probabili ty of correct classifica-
tion, using the maximum likelihood rule is given by

(7)= max {plP(X\C,)]dX

where p(V|C,) is the conditional (mul t ivanant ) probability
densi ty func t i on lor class / The integral in (7) is over the
observation space

The analyt ical procedure based on the weighted Karhunen-
Loeve expansion has prescribed a sensor design which mini-
ITH/-CS the mean-square representation error One would like
to know how the abili ty to represent a process influences the
classification performance To study this relationship the
graph of the probabili ty of correct classification versus ex-
pected mcan-squa'v- error is introduced (Fig 8) We will
brief ly discuss some of its character is t ics

The addition of terms to the series expansion causes a
inonotonic decrease in the spectral representation error, but
the effect of the addi t iona l term;, on the overall s\sten: per-
formance must be determined It can be shown that increasing
the number ol terms in the representat ion will never decrease

ORIGINAL PAGE IS
OF POOR QUALITY

Expected Mean-Square Eirw

Probability of a correct classification as a fun-iion of expected
mean-square representation error

the performance provided that the stochastic process is com-
pletely known If after A' terms thp improvement in per-
formance is small compared to the reduction m representation
ciror, then the representation is sufficient This is illustrated
by case A of Fig 8 in which the Threshold T indicates the
minimum required K [er] However, if the performance is
showing significant improvement for i small decease in the
mean-square error, case B of Fig 8, mo.e terms are necessary
to complete lite representation

Since the parameters of the stochastic process must be esti-
mated from j sample of the ensemble, the effect of the size of
the sample relative to the dimensionality of the system is im-
portant Hughes [10] has shown that if the sample sue is too
snidll, the classification performance may actually be degraded
by adding terms to the expansion Thus it is necessary to
mimtain a large set of sample functions from winch to esti-
mate the statistics

The choice of information classes also influences the per-
formance of the pattern recognition system For purposes of
classifying the data i - to distinct classes it is required that the
class list have the following properties simultaneously [ I I ]

1) Each class must be of interest to the user, i e , of in-
formational value

2) The classes must be separable in terms of the features
available

3) The list must be exhaustive, i e , there must be a class to
which it is logical to assign each pixel in the scene
The classes may be arranged in a luerarchial tree structure in
which case classes deeper in the tree require different repre-
sentation accuracies to achieve a given level of classification
performance

The area of the ground resolution element is determined by
such system characteristics as the instantaneous field-or-vicw
(IFOV), the al t i tude of the sensor, the scan rate, and the ve-
locity of the sensor These are examples of spatial representa-
tion parameters The size of ihe objects which can be identi-
fied and the energy available are influenced by the choice of
ground resolution clement niie. If a typical object wluch one
wishes to identify is smaller than the ground resolution ele-
ment si/e, »hen it is veiy difficult to classify that object
Mobassen [12] has investigated the effect of the area of the
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resolution element on classification performance Increasing
the area often improves the signal-to-noise ratio which in turn
can improve the classification performance

For a given remote sensing problem the signal is the part of
the received response -vhich is information bearing, and the
noise is that part which is nonmformation beating The in-
fluence of the s'gnal-to-noisc ratio where the noise is white,
Gaussian and additive was demonstrated by Ready et al [14]
Results show that overall classification performance decreased
with an increase in the noise level A class which was difficult
to identify under low noise level conditions suffered the most
degradation when noise was added

IV E X P H R I M F N T A L SYS^M

An experimental software system has been set up to imple-
ment the analytical procedure that has been developed The
software system has been implemented on an IBM 370 com-
puter at the Laboratory for Applications of Remote Sensing
(LARS) at Purdue University, Lafayette, IN

A collection of field data consisting of spectral response
functions on three dates from Williams County. ND, and three
dates from Finney County, KS, was available from the field
measurements library at Purdue/LARS More than one thou-
sand spectra were available from each location and collection
date The response functions were sampled in wavelength
using narrow windows of 0 02 pm over the range 04 <
X < 2 4 Mm

The optimal set of basis functions is found numerically by
estimating the covanance matrix from the sample response
function Maximum likelihood estimates of the mean and
covanaiKC matrices are given by

(8)

and

f\ ^ " j V ^ » j

N, *r, '
(9)

where W, is ihe number of sample functions available and X, is
the ith sample vector The covanance is the kernel in the
linear integral cquition whose solutions are the optimal basis
(unct ions or eigenvectors A remarkably stable and accurate
method lor numerically computing the eigenvalues and eigen-
vectors was published by Grad and LUebner |6]

The eigenvectors arc used to perform the linear transformation

y , * i T ( X ~ \ ) (10)

on the data set The class conditional statistics are computed
using the transformed data

In order to compare the performances of two systems an
algon'hm which esiimates the probability of correct classifica-
tion for an M class problem, given the class conditional multi-
vanate Gaussian statistics, was used (16) This algorithm,
which is based on the stratified posterior estimator [15], was
found to be accurate within one-half of 1 percent

The experimental system also included an ability to simu-
late (suboptimal) practical sensors Although nearly any sensor

TABLE I
SPECTRAL BAND LOCAT'ONS FOR Two PRACTICAL SENSOR Dtsicss*

S«BI

too

t

1

2
)
4

Mr ttivb«r 1

lUolenttb S.

*li to *ol
J to tl»

.6 to Tim
t to 6,.
8 to 1 li»

ScoMt Huad

IQd L'«ve

! X

45

52
61
76

1 55
} 06

btr 2

eflSth

to X

0 }?J»

o b9ui
o 10u»
o 1 75iB
o I J5i«

'The band edges of these sensors were selected to coincide with the
nominal bandwidths of the MSS of Landsals I, 2. and 3, and those of
the TM of Landsal D

characteristic could be simulated, most of the sensors which
we.e simulated consisted of a small set of rectangular basis
functions, i e ,

10 . X , » < X < X U ) !

0 0, otherwise (11)

where the X/fc and XuA are the lower and 'ipper limits of the
spectral bands The spectral bands of two suboptimal sensors
which were implemented are listed in Table I

V RKSULTS

It became necessary during this research to create a means
for incorporating certain types of ancillary information into
the optimization process The reason (or this can best bi illus-
trated with an example We firsi determine the optimal fea-
tures, (cijt(X)}, for a data set using the uniform weight func-
tion of Fig 9 Plots of the first four eigenvectors for this case
are shown in Fig 10 Now the shape of an eigenfunction is
instructive in this application because whenever an eigenfunc-
tion is 'arge (either positive or negative) a! a give/) X, i! implies
•that that wavelength is important in representing the given
ensemble and, therefore, perhaps also in classifying it

It was obseived in this example that the eigenvectors are
dominated at least in the case of k = ] and 4 by components ;n
the bands near 1 4 and 1 9 urn These bands are dominated by
water absorption in the atmosphere, and it is known a priori
that very little solar flux reaches the earth's surface in them
Thus these regions near J 4 and I 9 /jm represent noise rather
than signal, and under test, the eigenvectors which were sensi-
tive to these bands contributed very lit t le to the classification
performance Using a second weight function which assigns a
very small weight m the water absorption bands (Fig 11) the
influence of the spectrum in the water absorption bands is
significantly reduced, and a marked improvement in classifica-
tion performance (e g, a classification error rate reduction
from 19 6 percent to 11 8 percent for a six-feature classifica-
tion) is observed

It is a characteristic of the Karhunen-Loeve representation
that spectra) intervals with the greatest ensemble vacation are
given greatest emphasis Some of this ensemble variation may
be expected to be information-bearing (signal) and some not
(noise). As can be seen by this example, the weighting func-
tion provides a convenient means to incorporate into the fea-
ture design pnor knowledge about whether ensemble varia-
tions in a given range are signal or noise In the remainder of
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Fig. 9 Weight function number 1
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Fig 10 First four optimum basis functions using weight function
number 1 over Williams County, May 8, 1977,data

14 IA
VfenknethUmi

Fig 11 Weight function number 2

the results presented, the weighting function of Fig 11 was
used Two other weighting functions have been tested [16],
the choice of which is the best weighting function is thought
to depend on a number of factors not all of which are well
understood

Results for the design of the optimal sensor for one of the
six sets of data are presented in Figs 12-14.' The data from
the stratum was collected over Williams County, ND, on May
8, 1977 The three classes represented in this d»ta set were
spring wheat, summer fallow, and pasture Since the data were
taken relatively eaily in the growing season, the wheat canopy
was still quite sparse which leads one to expect the wheat class
to resemble spectrally bare soil or fallow In Fig 12 the ex-
pected mean square error is plotted as .-. function of the num-

'Th< reiults for the other five data sets, which were from different
time* of the yeir at the North Dakota site and a Kansas site, are con-
tained m 116)

her of terms in the expansion Rapid convergence in the first
few terms is demonstrated in thus graph

The first eight weighted eigenvectors are plotted in Fig 13
Note that the magnitude of the first eigenvector has the gen-
eral shape of a typical spectral response of soil, since the pre-
dominant response in two of the three classes is soil, this first
eigenfunction may be thought of as the average response over
the ensemble The second eigenvector tends to divide up the
spectrum into three to four relatively broad regions As the
number of terms in ihe expansion is increased, the terms that
arc added require higher spectral resolution to reduce mean-
square error, indicating that spectral fine structure may be in-
creasingly important. We will comment further on tlus later.

In Fig 14 the estimated probability of correct classification
is graphed as a function of the expected mean-square error Jt
is seen that at least the first eight basis functions contribute
significantly to the classification accuracy The numbers in
parentheses on Fig 13 indicate the order in which the features
were chosen by a feature selection processor2 The relatively
broad bands of 02M

 are indicated as of greatest importance
to class discrimination but aoparently rather quickly there-
after the finer spectral structure represented by 06(X) be-
comes important

To complete the design illustration, the procedure was used
to determine a set of physically realizable rectangular spectral
bands Six to ten bands were required based on a study of the
dimensionality An initial ^el of band edges was chosen based
on an examination of the eigenvectors of the May 8 data set
From (la) it is observed that regions of the spectrum that are
significantly different from zero for a particular eigenvector
may contain important information This, together with the
feature ordering determined by a standard feature selection
algorithm, indicates spectral mteivals important for discrimi-
nation Zero crossings of the eigenvectors may be possible in-
dicat. jns of band edges

Based upon such a study of the optima* • unctions a se! of
rectangular spectral bands was chosen. The final set of band
edges foi the example design is presented in Table II In
Fig !5, comparison of the two simulated senbors of Table I
and the optimum set is made on the basis of classification per-
formance for the May 8 data The first ten optimal basis func-
tions were used from the optimal design, where 10 features
provide a small mean-square error yet keep the computational
difficulties involved with high dimensional systems to a rea-
sonable le\el As shown in Fig 15, the four-band sensor 1
compares rather poorly with the best four3 optimal basis func-
tions, showing sensor 1 to be far from optimal for this set of
classes Sensor 2 is an improvement over sensor 1, but still
somewhaJ lower in performance than desirable The eight-
band example design, however, demonstrates very good per-
formance relative to the performance of the ten feature
optimal set. Also, the expected mean-square error is signifi-
cantly reduced over that of sensors I and 2 It should be

JThe feature selection scheme is bawd upon maximizing the average
intenbss-pair divergence The details are in 1161

3The term "be*1" refers here to those chosen by a feature selection
t for discriminating botwccn the design set classes

Uiuad*
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Fig 1 2 Expected mean-square error as a function of the number of
terms in the Karrmnen-Loeve expansion for WiUiams County, Way 8,
1977, using weight function number 2

rntowcrrmi
EICEHVECTOR 1

( l)
EICEHVECTCX 2 UWO1IK.IH IRtO

EICEKVECTOR 5

£T» iriu
EIGEKVECTOH 3

sm tit*a
ElCEttVXCTOit 4 EIGEWVECTOa 7 IICZ1WECTOR S

Fig 13. First eight eigenvectors for Wilbamj County, May 8.1977, unas weght fvmctioji aunbor 2.



'*-

WIERSMA AND LANDGREBE DESIGN OF MULTISPECTRAL SENSORS

I.

.8

.0

.7

.8

.5

187

ORIGINAL :-Y\Cc ?"
OF POOR QUAUrY

IB8 IB* IB*

ICRN-SOURR£ tFBWR

IB3

Fig 14 Estimate of probability of correct classification versus ex-
pected mean-squaie error Williams County, May 8, 1977, using weight
function number 2

IjO

s
?
S-
€•

£

I

^

s?e

I!
Fig 15 Comparison of sensor performance Wilbams County, May 8,
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TABLE II
SPECTRAL BAND LOCATIONS FOR THE EXAMPLE DESIGN
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Fig 16 Comparison of sensor performance Average of six cases

pointed out that these comparisons of classification per-
formance are based on a particular set of information classes
and the results may be different if different classes were
chosen The reduced representation error may imply in-
creased robustness in performance for differing information
classes

The performance was evaluated for the six data sets and the
average performance for each of the sensors is shown in Fig
16 Again the experimental sensor is quite close in perfor-
mance to the optimal, a difference of about one percent.
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Pig 17 Correlation coefficients versu« wavelength for Williams County, May 8,1977

Although the primary purpose of this work was to develop a
design procedure for sensors, important contributions to the
understanding of the scene can be gamed Properties such as
signal dimensionality for a given stratum, maximum possible
cla^s separability, the spectral resolution required, and the
accuracy of spectral representation required to obtain a given
level of performance can be studied

The dimensionality of the ensemble can be defined as the
number of terms in the expansion necessary to represent the
original wavefoim to the desired accuracy For the informa-
tion classes used on the six data sets the dimensionality was
between six and eight Some of the strata required fewer
terms in (he expansion to obtain a good representation and
good performance while others required more terms

A review of the eigenvectors of Fig 13 shows an unexpected
amount fine structure, particularly in the region from 0 66
to 1 26 pm as previously noted Up to this time it had often
been observed that spectral bands very near to one another
tend to be highly correlated and thus redundant To investi-
gate this structure a bit fur ther the correlation coefficient be-
tween each band of width 002 pm and its nearest neighbor
was calculated The results are shown in Fig 17 Based upon
previously knoAti results one might expect the graph of the
figure to deviate l i t t le from uni ty The fact that it does de-
viate significantly from umly Changing significantly in very
narrow bands may be fur ther evidence that there is useful in-
formation in the spectral fine structure

VI CONCLUSION

The design of the spectra! bands for multispectral instru-
ments has been an important matter for a number of years In
the past such design has of necessity been carried out as a
spectral band selection problem using in a subject"e manner
the direct application of experience and judgment Nonovtr-
lapping bands were selected one-by-one based upon the cur-
rent understanding of reflec'ance phenomena Each band was
generally selected on its ow(i individual meters because evalu-
ating sets of bands is difficult to do without computational
aids A typical example of this process was the design of the
Thematic Mapper bands [7] Although this procedure has
served adequately to thr time, as !he level of sophistication of
applications and, therefort, of dat? needs continues to grow, it
seems clear that more quantitative and objective design tools
are needed It was this need to which (he work reported
herein was directed

A: has been seen the design technique which resulted
utilizes an empirical stochastic scene model as the best cur-
rently feasible means for defining quantitatively the scene and
its information and noiiC content Since not all sensor system
limitations can be analytically specified, the technique ulilues
an optimal design calculation but it still requires engineering
judgment as the best means for resolving the tradeoff of more
tangible factors with those which are less tangible it is by no
means intended as an "automatic" design procedure
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The optimal design calculation was established utilizing an
overall performance measure, probability of correct classifica-
tion, and an intermediate one, spectral representation error
averaged over the ensemble. One can argue that it is overall
system performance which is, after all, the most important.
However, a specific performance measure calculation can only
be earned out with regard to a specific set of classes Different
applications frequently require the same data set to be classi-
fied into different class sets; thus ore desires robustness with
regard to various class sets as well m a feature set. The hy-
pothesis used here is that a concern for representation ac-
curacy will tend to insure thio robustness, thus the bilateral
approach to performar.ee index

The demonstration presented here of the design technique
appea.s to warrant the conclusion that the calculation pro-
cedure provides a substantial aid to the overall design process
With relatively limited effort a feature set with good overall
performance was obtained On the other hand, the band set
given in Table II should by no means be regarded as worthy of
consideration for implementation as is The ensemble defini-
tion and sampling were not an important point in this work
and would require much more detaJed and careful con-
sideration than they received here The same is true of the
band set and its comparison to alternative choices

And finally, we again draw attention to the use of the tools
of this design procedure for carrying out more basic research
into understanding the scene itself and its spectral cnaractens-
tics By being able to determine and quantitatively assess the
information-bearing attributes of scene spectral characteristics,
the ability to study potentially important characteristics of
the scene is greatly facilitated
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