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ABSTRACT 

With the advent of multigrid iteration, the large linear systems arising 

in numerical treatment of elliptic boundary value problems can be solved 

quickly and reliably. This frees the researcher to focus on the other issues 

involved in numerical solution of elliptic problems: adaptive refinement, 

error estimation and control, and grid generation. Progress is being made on 

each of these issues and the technology now seems almost at hand to put 

together general purpose elliptic software having reliability and efficiency 

comparable to that of library software for ordinary differential equations. 

This paper looks at the components required in such general elliptic 

solvers and suggests new approaches to some of the issues involved. One of 

these issues is adaptive refinement and the complicated data structures 

required to support it. These data struc tures must be carefully tuned, 

especially in three dimensions where the time and storage requirements of 

algorithms are crucial. Another major issue is grid generation. The options 

available seem to be curvilinear fitted grids, constructed on iterative 

graphics systems, and unfitted Cartesian grids, which can be constructed 

automatically. On several grounds, including storage requirements, the second 

option seems preferrable for the well behaved scalar elliptic problems 

considered here. A variety of techniques for treatment of boundary conditions 

on such grids have been described previously and are reviewed here. A new 

approach, which may overcome some of the difficulties encountered with 

previous approaches, is also presented. 

Research reported in this paper was supported by the National Aeronautics 
and Space Administration under NASA Contract No. NASl-17070 while the author 
was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665. 
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1. Introduction 

Library software for ordinary differential equations has been around for 

many years and is now highly refined. The overwhelming majority of ordinary 

differential equation (ODE) problems encountered are readily handled by 

standard library software, such as the Episode program of Alan Hindmarsh. The 

situation for partial differential equation (PDE) problems is quite 

different. For the majority of PDE problems encountered, no library software 

is available, programs must be constructed almost entirely from scratch. 

There seem to be a number of reasons for this dicotomty. The large 

sparse linear systems arising in most PDE discretizations are difficult to 

solve. Applying boundary conditions in PDE problems is a more complex and 

central problem than the analogous problem for ODEs. But the principal reason 

why robust general purpose lihrary software is not available for the hulk of 

simple commonly occurring PDE problems seems to be the difficulty in 

representing complicated two and three dimensional domains and generating 

grids on them. 

This is especially true now with the advent of fast multigrid solvers for 

the large sparse linear systems arising. Similarly, adaptive refinement 

strategies are now quite well understood. Further research is needed on error 

estimates for adaptive refinement, and on the complex data structures involved 

in adaptive multigrid algorithms, but these are not the main issue. 

generation seems to be the bottle neck. 

Grid 

This paper looks at the components which would be required for the 

construction of flexible and reliable solvers for simple elliptic problems in 

geometrically complex. three dimensional domains. There are now a number of 

research efforts aimed at creating analogous two dimensional software. We 

mention the Ellpack project, Haustis and Rice [1980], the Fears project, Zave 
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and Rheinboldt [1979], and especially the adaptive multigrid finite element 

code, PLTMG, Bank and Sherman [1978J. 

These projects provide a model for the development of similar three 

dimensional software, but there are a number of differences complicating the 

development of analogous three dimensional software. The extra dimension 

greatly magnifies the cost of any inefficiencies, and as is well known, the 

grid generation problem is far more acute in three dimensions. 

The plan of this paper is as follows. Section 2 treats the knotty 

problem of grid generation. Several alternative approaches are examined, but 

it is argued that unfitted grids can provide the greatest efficiency and 

simplest user interfaces for well behaved e1liptic boundary value problems. 

Section 3 treats data structures that support efficient adaptive refinement 

algorithms. Finally Section 4 looks at numerical issues. It examines 

multigrid algorithms tuned to the data structures described in Section 3. 

Error estimates for adaptive refinement are also briefly discussed. 

2. Geometry Modelling and Grid Generation 

As argued, grid generation is at the heart of the problem of constructing 

reliable ellptic software for general three dimensional domains. This is so, 

primarily because the other issues involved in solving elliptic problems are 

now fairly well resolved. Fortunately, the problem of grid generation is less 

severe for elliptic problems than for hyperbolic or parabolic problems, for a 

variety of reasons. First, though there can be sharp transitions or boundary 

layers in elliptic problems, these are usually much less severe than those in 

hyperbolic problems. Second, any sharp fronts occurring in elliptic problems 

are stationary, so simple adaptive strategies can resolve them well. Finally, 



finite element discretications work well for elliptic problems, even on grids 

that are quite badly distorted. By contrast, no comparably flexible 

discretizations exist for hyperbolic problems, which can be extremely 

difficult to solve accurately even on Cartesian grids. 

There are a number of potential ways of constructing grids for general 

three dimensional domains. Several possibilities are examined in the next 

subsection. Following that, we focus on unfitted grids, which may be the most 

viable alternative for general three dimensional elliptic software. 

2.1 Alternate Approaches to Grid Generation 

The most widely used grid generation technique for curved domain is to 

construct a mapping from a uniform rectangular grid onto the given domain. 

This approach has the advantage of having very simple data structures, and is 

more flexible than one might first think. However, there are several 

disadvantages. First, construction of the grid mapping can be a complicated 

process requiring sophisticated interactive graphics. Second, grids generated 

in this way are often highly distorted. Even with elliptic problems, severe 

grid distortions are undesirable. Finally, this simple approach is not 

universally applicable; some geometries cannot be treated in this way. 

TIlere are several alternative approaches one might consider. The first 

is the use of simplicial or tetrahedral grids, Figure 2.1. Any polyhedron can 

be decomposed into a union of tetrahedrons, so this approach is completely 

general. It may also be possible to generate such grids automatically, with 

no user intervention. 

3 
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There are two main disadvantages with this simplicial approach. First, 

the data structures are complex and costly. With each grid point it is 

necessary to keep a list of all neighboring grid points, together with the 

corresponding finite element matrix elements. This might entail storing 50 or 

more pointers and coefficients per mesh point. The storage requirements can 

already be a problem with the two dimensional adaptive finite element code 

PLTMG, which uses triangular grids. 

The second problem with the simplicial approach is that there is no 

natural way to perform refinement or construct multigrid levels in this 

approach. The two dimensional code PLTMG refines triangles by the "regular" 

refinement process shown in Figure 2.2. There is no direct analog of this 

process for tetrahedrons; every decomposition of a regular tetrahedron into 

subtetrahedrons generates irregular subtetrahedrons with sharper angles than 

the original tetrahedron. 

The second general approach which may be considered is the use of block 

structured grids. See, for example, Rubbert and Lee [1982], Figure 2.3 shows 

such a grid. In this approach one decomposes the domian into a union of cells 

or regions, each of which is a distorted cube. A rectangular grid may be 

imposed on each mapped rectangular cell by standard algebraic grid generation 

techniques. 

Figure 2.1. Simplicial Grid 

.' 
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Figure 2.2. Regular Refinement of a Triangle 

Figure 2.3. Block Structured Grid 

Figure 2.4. Decomposition of a Tetrahedron 

( 
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This approach is extremely flexible and has a number of advantages. 

Figure 2.4 shows that a tetrahedron can be decomposed into four distorted 

cubes. Thus any polyhedral domain can be viewed as a union of mapped 

rectangular cells. 

Another advantage is that the data structures are far less expensive than 

those required for simplicial grids. Data structure information need be 

stored only for each cell, which may contain thousands of mesh points, rather 

than separately for every mesh point. It is also quite easy to perform 

adaptive refinement with this grid structure and to construct multigrid grid 

levels. 

However, there seem to be three problems with this approach. First, the 

construction of such grids is still complex, requiring sophisticated 

interactive graphics. Second, it is extremely hard to generate grids of this 

type which are not severely distorted. In complicated regions, strong grid 

distortions which severely limit solution accuracy are almost inevitable. 

Finally, though less storage is needed than for simplicial grids, the storage 

requirements are still substantial. Typically 20 or 30 coefficients mlst be 

stored per mesh point with second order finite elements, and somewhat less for 

finite difference formulas. 

Figure 2.5 shows an unfitted grid, which is the third general alternative 

we wish to examine. There are two major advantages to this type of grid. 

First, grid generation can be completely automatic. No complex interactive 

graphics are needed. 

requirements greatly. 

Second, the use of a Cartesian grid reduces storage 

This is especially true for constant coefficient 

problems, but holds for variable coefficient problems as well. 

The problems with this type of grid are well known. The major problem is 

the difficulty in imposing boundary conditions. The next two subsections are 

4., 
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devoted to this issue. It is also somewhat harder to perform adaptive 

refinement in this setting, because of the boundary treatments, although there 

seem to be no serious obstacles here. 

Un'fitted grids have inherent disadvantages in resolving sharp boundary 

layers. But for the well behaved elliptic problems we are considering, their 

advantages seem to outweigh their disadvantages. The cost per mesh point is 

significantly lower than for curved grids, the user interface is comparatively 

trivial, and for problems with smooth solutions high order accuracy can be 

achieved. 

Figure 2.5. Unfitted Cartesian Grid 

2.2 Treatment of Boundary Conditions on Unfitted Grids 

Though unfitted grids have significant advantages, as we have argued, 

there are major problems with them as well. The principal problems are that 

applying boundary conditions on these grids is quite complicated, and it is 

more difficult to approximate boundary conditions to high order on these 

grids. A number of approaches to imposing boundary conditions on such grids 

have been suggested. Three of these approaches are reviewed in this 

section. A new approach, which seems to offer a number of advantages, is 

7 
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described in the next section. 

The oldest method of applying boundary conditions on unfitted grids is to 

use special difference or interpolation formulas at the boundary. For a good 

overview of this approach see Forsythe and Wasow [1960]. This approach is 

simple and effective for Dirichlet boundary conditions. Suppose, for example, 

we wish to impose the Dirichlet condition 

u = q on an 

with the two dimensional geometry shown in Figure 2.6. One approach used is 

to compute the solution value at mesh points near the boundry, such as point 

o shown, by an interpolation formula rather than by the finite difference on 

finite element formula used at other interior points. See Collatz [1955]. A 

related approach is to apply a modified difference formula at mesh points 

adjacent to the boundary. For example, at point 0 shown, the Laplacian 

could be approximated by the five point star difference formula for variable 

mesh spacing: 

l'luO 
2 (U1- Uo + u3 - uo) + 

2 (U2 - uo u4 - uo) 
= + 

hI + h3 hI h3 h2 + h4 h2 h4 

Here ul and u2 are known Dirichlet boundary values. 

- -- """ ~I 3 
:----

0 

'\ 4 

\ 
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\ 

Figure 2.6. Boundary Treatment on Two Dimensional Unfitted Grid 



Related but far more complicated approaches can be used for Neumann or 

mixed boundary conditions. See Forsythe and Wasow [1960] for details. Though 

this simple approach works well for Dirichlet problems, it is quite 

complicated and problematical for mixed or Neumann conditions. Alternatives 

are clearly needed. 

Two elegant alternative approaches have been derived in the finite 

element context. TIle simplest of these is the penalty method. See Strang and 

Fix [1973], page 132, or Babusha [1971] for details. To see how this approach 

works consider the model prohlem 

flu = f on rl, 

{2.2.1} 

u = g on an. 

In the penalty method, one seeks the function uh in a finite element space 

Mh which minimizes the functional 

(2.2.2) 

where A > 0 is a penalty parameter. Taking the first variation, the 

minimizing discrete solution must satisfy 

JJ(u v + u v - 2wfv) + AJ (u-g)v = 0 n x x y y an 

for all test function v in the finite element space Mh. Clearly, if one 

lets A + 00, the discrete solution is forced to closely satisfy the 

Dirichlet boundary condition. 

9 
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There seem to be two basic problems with this method. From a practical 

point of view it is quite complex, requiring element integrals both in the 

domain interior and along the boundary. Since the interior integrals must be 

done only over ~,quadrature on elements meeting the boundary is quite 

complicated to perform. 

There is also a mathematical difficutly with this method. The true 

solution of the model problem (2.2.1) does not minimize the functional (2.2.2) 

for any finite A. Thus in addition to the usual truncation error, one now 

has an error term due to the penalty parameter. Because of this, the optimal 

finite element rate of convergence is not usually attained by this method. 

This mathematical difficutly is overcome by a more subtle finite element 

treatment of unfitted boundaries using the idea of Lagrange multipliers. See 

Babuska [1973], Babuska and Aziz [1972] or Strang and Fix [1973]. Applying 

this method to the model problem (2.2.2), one seeks the stationary point of 

the indefinite functional 

F(u,A} 

The Lagrange multiplier here runs over all admissible functions on the 

boundary. 

To apply this method, one must construct two finite element spaces, the 

usual spline space on the domain ~, and a spline space of 

functions defined on the boundary. Moreover, the boundary spline space Bh 

must consist of "coarser" elements than those of the interior space Mh. 

This Lagrange multiplier method achieves the optimal finite element order 

of convergence, but is extremely complex to program. In two dimensions the 

programming complexities are manageable, but for general three dimensional 
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geometries the complexity of the required programming seems prohibitive. For 

three dimensional problems, one must first construct a grid on the boundary 

surface. Then one must compute both the usual interior quadratures and the 

quadratures of surface elements against interior elements. For the latter, 

one must perform quadratures on the intersection of each curvilinear surface 

element with every interior element it meets. 

complex computational geometry task. 

This is clearly a highly 

2.3 Least Squares Boundary Conditions for Unfitted Grids 

A number of other approaches to imposing boundary conditions on unfitted 

grids have been described previously. For example, approaches specific to a 

given physical problem, such as transonic flow, have been described. However, 

the three approaches reviewed in the last section seem to be the most fully 

developed, and are fairly representative. 

Though there are some numerical difficulties with the approaches 

desc ribed, any of thes e approaches could, in pri ncip Ie, yield any order of 

accuracy desired. The real problem with these methods is that the programming 

required is very complex and the resulting code would be quite inefficient. 

Even the simple finite difference approach described requires geometric 

information which is difficult to extract. One must compute the intersections 

of each mesh line with the boundary surface. This ordinarily requires the use 

of a Newton-like method to solve the nonlinear equations involved. 

A new finite element approach, designed to overcome these geometric 

difficulties, is proposed here. The idea of the method is first to extend the 

computational domain beyond the true domain. This is done by including in the 

computational domain all mesh points which are adjacent to the boundary but 



12 

outside the domain. These points are shown in Figure 2.7. One then applies 

the usual finite element formulas at all interior points. Simultaneously, one 

asks that the boundary conditions be satisfied in the least squares sense at 

all exterior points. 

To make these ideas precise, consider the model Dirichlet problem 

(2.2.1). Let Mh be the spline space of bilinear finite elements on the 

domain shown in Figure 2.7. Let be the subspace of consisting of 

functions vanishing at the darkened boundary points in Figure 2.7. Finally 

let n be the true domain and let "IT be the extended computational domain 

shown in this figure. Then the method proposed is to compute the discrete 

solution uhEMh minimizing 

(2.3.1) 

subject to 

(2.3.2) for all 

Since the solution uh is sought in the space Mh, while the test function 

range over the subspace 
h 

MO' equation (2.3.2) constitutes an under-

determined linear system. Minimization of the boundary integral (2.3.1) 

determines a unique solution. 

Though theoretical error bounds for this approach are not available, this 

method offers a number of practical advantages, and appears to offer the 

potential of high order convergence. To see the practical advantages, note 

first that equation (2.3.2) involves only integrals on the extended domain 

n. Thus element integrals on partially cutoff elements near the boundary are 

.' 
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Figure 2.7. Least Squares Boundary Treatment 

avoided. This is clearly a violation of the finite element philosophy, but 

the alternative, computing integrals on partially cutoff elements, is less 

practical. 

The second advantage is that the boundary integral (2.3.1) here is quite 

easy to approximate and no boundary grid generation is required. Consider a 

two dimensional model problem of the form (2.2.1) and suppose the boundary is 

given parametrically as 

an = {y(t},tE[O,1]} 

for some mapping 

1 2 y: R + R • 

Then we may take as quadrature points the point set 

If we are using a Cartesian grid, as in Figure 2.7, it is easy to decide which 

element each quadrature point falls in. Thus the computation of the element 
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intergrals needed for (2.3.1) is simple and efficient. Exactly the same 

conclusions hold for the analogous method in three dimensions. 

Notice that only low order quadrature can be performed in this way, since 

the quadrature is done without regard to the boundaries between elements. The 

order of quadrature could be increased by shifting to elements with higher 

inter-element continuity, such as C1 or C2 cubic elements, but this is 

probably unnecesary. The accuracy of the quadrature may be of relatively 

little importance, and in any case, large numbers of quadrature points can be 

used since the cost per quadrature point is minimal. 

The last practical advantage of this appproach is that the least squares 

minimization required in (2.3.1) and (2.3.2) is easy to perform when the 

interior equation (2.3.2) is solved iteratively. After each relaxation sweep 

on the interior equations, one performs one or more relaxation sweeps on the 

boundary equations (2.3.1). Numerical experiments designed to assess the 

speed of different boundary iterations, and the impact of different quadrature 

approximations are currently under way. 

3. Data Structure for Adaptive Block Structured Grids 

In this section, we look at data structures equally applicable to the 

block structured fitted grids discussed in subsection 2.1, or to block 

structured adaptive unfitted grids. The fundamental premise here is that 

while adaptive refinement is important, keeping track of data structure 

information for every mesh point or finite element is far too expensive. 

Instead we track cells, which are small rectangular grids, typically about 

10 by 10 by 10. Such cells can be viewed in the finite element context as 

large macro-elements. Such a cell is shown in Figure 3.1. 



15 

The main advantage in the use of adaptive grids based on such blocks or 

cells is that the required data structures are relatively inexpensive. While 

each cell can require 1000 to 30000 real variables, only about 100 data 

structure variables are required per cell. There can also be advantages to 

the use of this type of grid from the point of view of vector or parallel 

processing, Gannon and Van Rosendale [1983]. 

Figure 3.1. Macro-element Cell 

~~~~.: /:7//.-F/-___ .T' 
-;L,-,""./ //-./ ,.-. i 

t-

Figure 3.2. Adjacent Cells with Different Mesh Size 

Figure 3.3. Explicit Pointer Scheme 
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Adaptive grids can be constructed with such cells, since cells of 

differenct mesh size can be abutted, as in Figure 3.2. Using finite elements, 

there are no mathematical difficulties here. Finite element theory requires 

only that the spline spaces constructed maintain CO continuity. It also 

turns out that multigrid iteration is quite natural in this context. The 

remainder of this section focuses on the data structure issues involved. 

Section 4 looks at a multigrid adaptive algorithm which can be used with this 

data structure. 

3.1 Adjacency Information 

With the block structured grids considered here the hardest problem is 

keeping track of which cells are in contact. Dynamic allocation of cells for 

adaptive refinement is quite simple, but generating and maintaining adjacency 

information is not. 

Two basic schemes for tracking adjacency information have been considered 

and programmed. For convenience, we will refer to these as the implicit and 

explicit schemes. In the explicit scheme each cell maintains pointers to all 

cells it abutts. Thus for the geometry in Figure 3.2 we would have the 

pointer structure shown in Figure 3.3. 

Though this explicit data structure is natural, it tends to be quite 

complex to use. In the multigrid algorithm described in Section 4, we permit 

a cell to be on more than one mu1tigrid grid level. This reduces storage 

requirements, but complicates this explicit scheme. A cell will have one set 

of pointers for its neighbors on one grid level and another for its neighbors 

on another level. 

J. 



There is also a problem with this scheme if the grids are not logically 

Cartesian. For example, in Figure 2.4 where the decomposition of a 

tetrahedron into cells is illustrated, only four cells meet at the interior 

vertex instead of the usual eight. In such cases, the adjacency pointers must 

also carry orientation information. 

An alternative scheme, which overcomes many of these difficulties, is 

available. In this scheme, we associate with each cell 27 vertices. These 

vertices are the 8 corners, the midpoints of the edges and faces, and cell 

center. If these vertices are globally numbered then all adjacency 

information is implicit. For example, if one cell has an edge containing 

vertices 23 and 96 and another cell has an edge containing these same two 

vertices then these two cells are in contact along that edge. The use of this 

data structure for the geometry of Figures 3.2 and 3.3 is illustrated in 

Figure 3.4. 

This implicit scheme overcomes both of the problems cited regarding the 

explicit scheme. To work, it requires that adjacent cells in the same grid 

differ by at most a factor of two in mesh size. More precisely, if binary 

refinement is performed, two cells in the same multigrid grid level that share 

an edge or face must differ by at most one in their level of refinement. 

This implicit scheme is surprisingly easy to program. One needs to be 

able to perform dynamic allocation of cells, allocation of vertex numbers, and 

one needs a procedure: 

procedure pair __ find (var cells: cell __ list; vl,v2: integer); 

Given the integer labels of two vertices, this procedure produces a list of 

all cells sharing those vertices. This procudure can be performed quite 

efficiently if associated with each labelled vertex we store a list of all 

17 
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cells that vertex belongs to. Then procedure pair_find only needs to merge 

the lists of the two vertices it is passed. 

/ 
, • ..r • , 

• -' • , • ~ 

• 
• • • 

• ./ 
,...., 

• 
• • • 

.......v 

Figure 3.4. Implicit Vertex Labelling Scheme 

--
Figure 3.5. Subdivision of a Cell 

3.2 Adaptive Refinement 

The data structure using labelled vertices just described is designed to 

keep track of cell adjacencies during adaptive refinement. It is also 

designed to support lIJ.lltigrid interation although additonal information must 

be stored in order to permit this. In this subsection the data manipulations 

needed to perform adaptive refinement are considered, and the additional data 

structure information necessary for multigrid iteration is described. 

To perform adaptive refinement, whenever the truncation error on a cell 

is too large we refine it, using the subdivision shown in Figure 3.5. This 

refinement operation creates 8 new cells, which we call the "children" of the 

J. 



original "parent" cell. The natural data structure for tracking this 

refinement process is the oct-tree structure. In this data structure each 

parent cell contains pointers to its eight children, and each child contains a 

back pointer to its parent. The multigrid projection and injection 

operations, carrying data between coarser and finer grid levels, follow these 

pointers. 

19 

Only one other type of data structure information needs to be stored. It 

is necessary to know which grids belong to each multigrid grid level. We wish 

here to allow cells to belong to more than one mul tigrid grid level. Thus 

there are two reasonable ways of keeping trach of which cells belong to each, 

grid level: 

1. For each grid level we can maintain a list of all cells constituting 

that grid level. 

2. For each cell we can maintain two integers, min_lev and max_lev, 

which indicate the range of grid levels this cell belongs to. 

Both of these schemes work well, so the choice between them is unimportant. 

We now look in detail at the operation of adaptive refinement, which is 

the most complex and important data structure operation to be performed. The 

basic steps required are: 

1. Estimate the truncation error for each cell in the fine grid. 

2. Flag all fine grid cells with excessive truncation error. 

3. Flag neighboring cells of flagged cells, where necessary, so that 

after refinement adjacent cells will never differ by more than one in 

their level of refinement. 

4. Refine all flagged cells. 

5. Adjust the data structure so that fine grid cells which were not 

refined become part of the new fine grid. 
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Step 4 here, refining flagged cells, is clearly the most difficult. The rest 

of this subsection focuses on this step in detail. 

In order to perform step 4 we require a new basic procedure. The 

procedure is: 

procedure find mid (var vO: integer; vI' v2: integer); 

Given two vertices, vI and v2' this procedure searches through the data 

structure to see if any cell has a label for the midpoint of the line segment 

joining these two vertices. If VI and v2 are the ends of an edge of a 

ce~l, or are diagonally opposite corners of a face, find_max returns the label 

of the center of that edge or face. Given procedure pair_find already 

discussed, procedure find_mid is quite easy to program. 

Using procedure find __ mid, the refinement operation is straight forward. 

Associated with each cell we have 27 labelled vertices, as shown in Figure 

3.4. Thus when the B children are dynamically allocated, the labels for their 

corner vertices are known. The remaining 19 (= 27-B) vertices of each child 

mayor may not have labels already allocated in the data structure. This is 

where procedure find_mid is used. 

On each of the eight childern we first allocate a label for the center 

vertex, since that vertex cannot occur anywhere else in the data structure. 

Secondly, on each child we look at each edge and face in turn. For each edge, 

we call procedure find_mid using the labelled corner vertices at its ends, to 

find a label for the edge midpoint. Similarly, for each face we call 

procedure find __ mid using diagonally opposite corner vertices on that face to 

find a label for the face center. Whenever find mid cannot locate a label for 

an edge midpoint or face center, none exists and one must be allocated. 



4. Adaptive Multigrid Solution Algorithm 

The data structures described in the last section can be used to solve 

elliptic boundary value problems adaptively using any iterative algorithm. 

However, the arguments in favor of using multigrid iteration for regular 

meshes are compounded for the locally refined grids created by adaptive 

refinement. For elliptic problems, the condition number of the finite element 

stiffness matrix K ordinarily satisfies 

-2 
K(k) = hi. 

mn 

Thus, on the locally refined grids generated by adaptive refinement, the 

stiffness matrix can be quite badly conditioned even when the total number of 

unknowns is not particularly large. 

All iterative methods, except multigrid, seems quite sensitive to the 

condition number of the linear system being solved. Even preconditioned 

conjugate gradient iteration has not performed well on locally refined 

grids. However, experimental evidence suggests that multigrid algorithms 

perform almost as well on locally refinds grids as they do on uniform grids. 

Thus multigrid iteration is clearly the iterative algorithm of choice for 

adaptive elliptic solvers. 

This section looks at adaptive multigrid algorithms which can be 

effectively imbedded in the data structures just described. The first 

subsection considers the type of lIIlltigrid algorithm to employ. The second 

looks at the data movements required in residual or interpolation 

calculations. The last subsection considers briefly error bounds required for 

adaptive refinement. 

21 
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4.1 Multigrid Solution Algorithm 

A variety of multigrid algorithms have been applied to locally refined 

finite element grids, Bank and Sherman [1978], Gannon and Van Rosendale 

[1983], with good experimental results. This section describes one such ,. 

algorithm which has been found to work well. 

The first major question in applying multigrid iteration to locally 

refined grids is the way grid levels are defined. The two major alternatives 

are indicated in Figure 4.1, where simple two dimensional grids are shown. In 

Figure 4.1a, the multigrid levels are local grids, while in Figure 4.1b all 

grids are global. Theoretical arguments lead one to believe the global grids 

in Figure 4.1b are superior, although local grids, as in Figure 4.1a, seem to 

perform about as well in practice. We follow here the more justifiable 

approach of using globally defined grids. 

There are several other problems to deal with here.· First there is the 

problem of calcuating residuals on locally refined grids like the fine grid in 

Figure 4.1b or the grid in Figure 3.2. This issue is dealt with in the next 

subsection. 

/?3?a~ 
I I I 

I I I 

~L{za~?P" 

a) local grids b) global grids 

Figure 4.1. Locally Refined Multigrid Grid Levels for Locally Refined Grids 



Second there is the problem of choosing the type of mu1tigrid cycle. The 

adaptive finite element program PLTMG uses a recursive algorithm in which many 

more smoothing iterations are performed on coarse grids, during each cycle, 

than on fine grids. This type of algorithm is also known as a W-cycle. The 

alternative is an V-cycle in which equally many smoothing iterations are 

performed on each grid level. 

Numerical tests do not show large differences between these approaches, 

Gannon and Van Rosendale [1973]. However, the recursive W-cycle can run into 

a problem on highly refined grids. If the number of tIllltigrid levels is 

large, because of adaptive refinement, an excesive number of iterations on the 

coarsest grid occurs, and can dominate the computation time. Thus, the non­

recursive V-cycle seems the more practical. 

A final issue relates to allowing cells to belong to more than one grid 

level. In most mu1tigrid algorithms, an approximation to the solution is 

computed on the finest grid. On the second finest grid corrections to the 

fine grid solution are computed. And in general, on the i-th grid a 

correction to the {i+1)st grid solution is required. When a cell belongs to 

a number of grid levels, it would thus need to store a number of different 

types of solution vectors. 

There is a simple solution to this problem. One can use the full 

approximation storage scheme (FAS scheme) of Brandt [1977]. Though designed 

primarily for nonlinear problems, this scheme greatly simplifies code design 

for locally refined grids. In this scheme, coarse grid levels contain 

approximations to the solution, rather than correction vectors. Thus there is 

no difficulty in having cells belong to more than one grid level. 
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4.2 Interpolation and computation of Residuals 

The basic steps in the multigrid algorithm here are injection and 

projection between grid levels, and performance of relaxation iterations. We 

consider here the weighted injection and projection operations natural in the 

finite element context. For the relaxation interations we suppose a simple 

Jacobe on simultaneous desplacement iteration is employed. These operations 

are quite simple and easy to program for uniform rectangular grids. However, 

with the data structures for adaptive refinement described in Section 3, these 

operations become relatively involved. This section describes how such 

operations are performed. 

Of the three operations, injection, projection and calculation of 

residuals, the simplest by far is injection. The complex data structures 

needed for local refinement have little effect on it, and the programming 

required is similar to that required in the uniform grid case. 

Projection and residual computation are more complex operations. As it 

turns out, these two operations are quite similar. A residual calculation 

involves the application of a finite difference stencil, or its finite element 

analog, at every mesh point. The projection operation is begun exactly the 

same, except the weights or coefficients in the stencils used are different. 

Following this, the projection operation is completed by transfering the 

results to the next coarser grid. 

Because of this similarity, we content ourselves with describing in some 

detail the residual calculation. This calculation is formally the computation 

where r(k), u(k) and f(k) are vectors corresponding to functions in the 
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finite element space M(k). This is the finite element space for the k-th 

multigrid level and A(k) is the corresponding stiffness matrix. 

It is inefficient to actually assemble the sparse martix A(k). Instead 

we form only the matrices corresponding to the separate cells in the block 

structured grid. Since cells may be thought of as finite element macro-

elements, we can form the element matrices for these macro-elements. Let 

{Ci}~=l be the cells in the grid and let {A~k) }~=1 be the corresponding 

macro-element stiffness matrices. 

A(k)u(k) = 

for certain matrices {Q(k)}m 
i i=l 

Then we have 

{ (k)}m 
and Pi i=l· On uniform grids, the 

matrices {Q~k)}, {pik)} simply relate the global mesh point numbering to the 

local numbering in each cell, a standard operation in finite element 

programming. On locally refined grids, these matrices also perform the 

interpolations on cell boundaries required to enforce inter-element 

continuity. 

These matters become fairly transparent when viewed in the right way. It 

is helpful to think of "residual" as a fluid generated in each finite element 

and squirted to its corners. As shown in Figure 4.2, element residuals are 

combined to give partial residuals on each cell. Doing this, we get residuals 

at all points in the cells including the circled boundary points, even though 

there are no nodal variables at these circled points as that would violate the 

inter-element continuity requirement. Residual data at these circled points 

is then moved to adjacent boundary points, following the curved arrows 

shown. 
/"F 

Finally residual information is shared along the dashed lines to 

complete the computation of A(k)u(k). 
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Figure 4.2. Data Movement During Residual Calculation 

Though Figure 4.2 is two dimensional, there is no difference in treating 

three dimensions. There is also no real difference in treating the projection 

operation, except that less computation is required, since the value of the 

projection is required only at the points of the next coarser grid. 

Notice that there is some wasted effort here, since residuals, or the 

value of the projection operator are computed, redundantly on cell 

boundaries. Both cells sharing a face, or all cells sharing a vertex compute 

the same resu1 ts. With three dimensional cells of size 10 by 10 by 10, 

approximately 30% of the computation time is wasted in redundant 

calculation. Using larger cells, the percentage of redundant computation 

would drop, but adaptive refinement would become less effective. 

4.3 Error Bounds for Adaptive Refinement 

The accurate estimation of the error present in a numerical solution is a 

subtle mathematical problem, frequently as difficult as generating the 

numerical solution in the first place. In adaptive finite element algorithms, 



one produces a sequence of trial solutions u(1),u(2),···,u(k), ••• , converging 

to the exact solution. Each trial solution u(k) is on a different grid Gk , 

and belongs to the corresponding finite element space Mk. We need error 

estimates here both to determine how to construct the successively refined 

grids G1,G 2,···, and to decide when a sufficiently accurate numerical 

solution has been obtained so the computation can be terminated. 

Ideally, one would like to have three kinds of error estimates. First, 

one would like an extimate at the global error as a termination criterion. 

Second, one needs an estimate of the local truncation error, or error in 

energy at each point, since this is essential in deciding which points of the 

grid to refine. Finally, one would also like an estimate of the pointwise 

convergence rate of the descrete solutions to the exact solution, so that one 

can optimally allocate grid refinement. 
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The motivation for this third type of estimate is more subtle than the 

motivations for the other two. Our goal in adaptive refinement is to meet a 

given global error tolerance at least cost. Since it is nearly impossible to 

know which sequence of refinements will achieve this, we look instead for the 

refinement at each step which will minimize some weighted average of local 

errors at the next step. Since the rate of convergence is poorer in regions 

where the solution is singular, we can only select near optimal refinements if 

we know the approximate rate of convergence of the discrete solutions at each 

point. With out this information, excessive refinement will be concentrated 

in singular regions. 

Considerable research has been focused on local and global error 

estimation. For approaches to global error estimation see Pereyra (1968), 

Lentini and Pereyra [1975) , Lindberg [1976) or Stetter [1974'1". These 

references also discuss local error estimation, since this is a necessary 
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l'Ol11l'llIwnt In global error estimat lone For otiH'r references on local error 

t'stlll1:ttlon especially relevant to adaptive refInement see Babuska and 

Rht'lnholdt [1978A), [1978B]. 

5. Conclusion 

The data structures, adaptive refinement strategies, unfitted grid 

generation approach, and multigrid solution algorlthms descrihed in this paper 

constitute building blocks for general numerical software for elliptic PDEs in 

complex three dimensional domains. Two dimensional experience with the Fears 

and Ellpack projects, and with the adaptive multigrid code PL'lMG suggest the 

potential of this line of research. The difficulty of constructing three 

dimensional software makes the need for general purpose three dimensional 

elliptic solvers that much more urgent. Such software might prove as general 

and reliable as current ODE software, at least for simple scalar elliptic 

problems such as the Poisson and Helmholtz equations, on general three 

dimensional domains. 
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