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ABSTRACT 

The equilibrium strategy for N-person differential games can be found by 

studying a min-max problem subject to differential systems constraints [4J. 

In this paper, we penalize the differential constraints and use finite 

elements to compute numerical solutions. Convergence proof and error 

estimates are given. We have also included numerical results and compared 

them with those obtained by the dual method in [4]. 
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~O. Introduction 

In Part I [4], we first gave a min-max equivalent formulation of 

equilibrium strategies in N-person differential games, and used the dual and 

the finite element methods to study and compute them. In this paper, we will 

study N-person games by another important method - the penalty approach. 

The application of the penalty method to optimal control problems, which 

are just a special case of differential games, has been studied in [3J, [5], 

for example; see also the references therein. Nevertheless, there has not 

been, to our knowledge, any application of the penalty method to saddle point 

type problems like differential games. The first main objective of our paper 

is to investigate this feasibility. Our second objective is to combine penalty 

with finite elements to compute numerical solutions and to compare them with 

those in [4] obtained from the dual method. 

We inherit some notations from (4] and define some new ones below: 

A(t), B.(t) (i = 1,2, ..• ,N) are, respectively, oxn, nxm.(i = 1,2, ... ,N) time-
1 1 

C.(t) 
1 

varying matrices; 

(i = 1,2, ... ,N) are, respectively, k.xn time-varying matrices; 
1 

Mi (t) (i = l,2, ••• ,N) are, respectively, symmetric m.Xm. time-varying 
1 1 

matrices, which induce positive definite linear operators M.: L 2 
+ L 

2 
; 

1 m. m. 
1 1 

z.(t) (i = 1,2, ..• ,N) are, respectively, k.-vector valued functions; 
1 1 

Hk _ Hk (0, T) _ {y: [ 0, T] + lR. n I 
n n 

(DE) 
N 
LB. u. - f, x E H!, u. E L 

2 
, j = 

j=l J J J mj 
1,2, ••. ,N, 

1 



2 

·i _ Axi N 
xiEHl, u.EL2 (j1i) 2 (DE) . - x I: B .u. - B.v. - f, v.E L 

1. j1i J J 1. 1. n J m. 1. m. 
J 1. 

N 
I(DE).1

2 
[DE] - I: 

i=l 1. 

X:: 
1 2 N (x ,x , ••• , x ) 

HI HI n {y E HI Iy(o) = O} On - n n 

HI HI n {y E HI ly(T) = O} nO - n n 

N 
L2 U - II 

i=l m. 
1. 

HI [HI ]N x U; H 2 [L2]N x U H - x U x - L x U x 
On on n n 

L: HI ~ L2 Lx x -Ax On n' -

* HI L2 * • * L : ~ L x - x + A x nO n' . 

We proceed as follows. 

In §l, we present the fundamental penalty theorem. The rate of 

convergence with respect to the penalty parameters is determined. Our work 

here extends and generalizes the earlier result of B. T. Polyak [6]. 

In §2, we specialize to the linear-quadratic case and formulate the 

finite element variational approach. Error estimates between the computed 

and the exact solutions with respect to the penalty parameter E and the 

discretization parameter h are given. 

The relationship between the penalty method and the dual method is 

explored in §3. Their computational advantages and disadvantages are also 

compared. 

Numerical resul ts are presented in § 4. 



3 

§l. The Penalty Method for N-Person Differential Games. Rate of Convergence. 

As in [4], for an N-person game with linear dynamics 

o ~ t ~ T, 
(1.1) 

let each player have an associated cost functional Ji(x,u), 1 ~ i ~ N, which 

in the HlxU norm. 
n 

is continuous with respect to (x,u) Throughout the 

rest of the paper we assume that we have made the change of variable 

x(t) + x(t) - xo so that x(O) = O. This change of variable results only 

in minor changes of J .• 
1 

(1.2) 

where 

and 

In this section, the costs J. need not be quadratic. 
1 

Following the min-max formulation in [4,§l], we consider 

inf 
1 2 (X,u)EH
O 

xL 
n m. 

1 

(DE)=O 

sup 
i i 1 2 (x ,v )EHOnxL m. 

(DE) i=O 1 

1~1~N 

N [ i i] J(x,u;X,v) = E J.(x,u) - J.(x ,v ) 
i=l 1 1 

Here, we see that (DE) = 0 

(DE). = 0 (1 < i < N) are N+l equality constraints for the inf-sup 
1 = = 

problem (1.2). Thus, it appears natural for us to penalize the problem as 

(1.3) inf 
1 

(x, ~)EHOnXU 

J (x,u;X,v) _ J(x,UjX,v) 
€ 



The most important question remains in determining the validity of the 

above scheme and, if valid, its rate of convergence. Thus, we consider the 

fundamental theorem of penalty for N-person differential games below. 

The following assumptions will be needed: 

(Bl) J(x,u;X,v) is strictly convex in (x,u) and strictly concave in (X,v); 

(B2) inf 
1 

~x,u)EHOnxU 

(DE)=O 

sup 

(X,v)E[ H~ NxU 

[DE] =0 

J(x.u;X,v) loS attained by 

By (Bl), this point (i,G;x,;) 1.5 unique. Also, by [4, Theorem 2.1], 

there exist Lagrange multipliers PO' P = (Pl, ••. ,PN) such that 

(1.4) J(i,~;x,~) = m1.n 
1 

(x,u)EHOnxU 
(DE)::O 

max 

(X'V)E[H~n]Nxu 
[DE1 = 0 

J(x,u;X,v) 

4 

= max m1.n 

POEL! pE[L!l
N 

max (J(x,u;X,v) 

(B3) 

(1.5 ) 

The costs J.(x,u) 1. 

J.(x,u) :: 1. 

+ <PO' (DEh 

are of the form 

T 
!Ohi(x(t),u(t»dt 

so that A E 1 pA E [Hl ]N. Po HnO ' nO' 

N 
+ l: 

i=l 

(X,v)E[H~nJNxu 

< p., (DE). >] 
1. 1. 

(B4) The first and second derivatives J', J" exist, and J" satisfies the 

global Lipschitz condition 

(1.6) 



(B5) if _ 2 A _ ,~~ > , _ ,,2 
Let (;"'0 :: a J, CH1 - (.), ..:, ~ = 0 J, x _ "'~ u and &if :: ~2 J 

~1 -- °v 
5 

~ -J1 order Frechet partial derivatives evaluated at (X,UA,·~,VA). Then ~ m 
A 010' 0' 1 

and -1n'1 are positive definite linear operators on L2, U, [L2JN and U, 
n n 

• 1 FhA ~ Holn x [Hu1n1 N respect1.ve y. urt ermore, ~o x"l maps .into itself; 

(2.10), (2.14» 

(B7) The mixed Frechet partial derivative operators a axJ, a a J, .•. , etc., x x u 
" " '" ,.. evaluated at (x,u;X,v) are all O. 

Remark 1.1 

(i) In (B3), that the J. 's are assumed to be of the form (1.5) is only 
1. 

for the convenience of discussions. 

(ii) Making some other assumptions, one can relax the global Lipschitz 

condition (1.6) to a local one. 

(iii) (B7) is assumed here only for the convenience of discussions, cf. 

Remark 1.5 later. 

Theorem 1.2 Under conditions (Bl) - (B7), for EU' E],'''. J ~ > 0 sufficiently 

(i) 

(H) 

-B.v . - f) - (-p.)1 I 2 
1. £1. 1. L 

n 

N 
+ 1: 

i=l 

:; K3 ( max 
O<J'<N .... 

(x
;i Ai A 

- Ax - 1: B.u~. 
J;i J "J 



Proof: 

(1. 7) 

u,v E U 

We introduce the new variables 

.... 
E;o = x - x 

.... 
E;l = X - X 

" nO = u - u 

N 
rO = ~ (x· - Ax - ~ B u - f) - p" ~ t. •• 0 

EO i=l 1 1 

r1i 2(ei 
~ = - - X 

E. 
1 

and then let 

B.u. 
J J 

" B.v. - f) - p. 
111 

(x,u;X,v) tend to an element in H. 

We further let 

(1.8) 

For any (ox,ou;oX,ov) E H, we have 

J'(x,UjX,v) e (ox,OUjoX,ov) = J'(x,UjX,v) e (ox,ou;oX,ov) 
E 

+ ~ < ~ - Ax - L B.u. - f, o~ - A(ox) - L B.(au.) > 
EO 1 1 1 ill 

B.ou. - B.ov. > 
J J 1 1 

B.u. - B.v. - f, oii - A(oxi) 
J J 1 1 

We can use (B4) to write 

6 



(1.9) 

where the remainder r(~,n) (as a linear functional in H) satisfies 

(1.10) r(o,O) = a 

(1.11) I Ir'(~,n) - r'(~,n)1 I :: C111(~ - ~,n - n)11 2 2 
(L x[L ]N) x(UxU) 

n n 

Substituting (1.9) into the first term on the RHS of (1.8) and integrating 

the remaining terms by parts, we get 

(1.12 ) 

(ox,ou;cX,ov) - < (dd + A*) ~ (x - Ax - E B.u. - f), Ox > 
t e:O i 1. 1. 

+ ~ < x(T) - A(T)x(T) - E (B.u.)(T) - f(T), ox(T) > 
e::0 i 1. 1. lRn 

- E<B~ • ~ (x - Ax -1:B.u. - n, ou. > 
i 1. e:O 1. 1. 1. 

+ ~ d * 2 (x·1. _ Axi _ 
i. <edt + A ) • e:. 
i 1. 

B.u. - B.v. - f), oxi > 
J J 1. 1. 

+ 1: 1: < B~ • ~ (xi - Axi - 1: B.u. - B.v. - f), o~ > 
i k~i e:i j~i J J 1. 1. K 

* + E < B. 
i 1. 

2·i i • -- (x - Ax - t B.u. - B.v. - f), oVk > 
e:i j~i J J 1. 1. 

We now substitute (1.7) into the above and note that 

7 

> 
m.n 



(1.13) J'(~,~;X,~) • (ox,ou;OX,ov) - <L.*Po'ox> - ~ < B: PO' QUi> 
1 

*~ i *~ *~ 
-1: <L p.,ox >-1: 1: < B.p.,ou.>-1:<B.p.,ov.>::a 0, 

i 1 i j1i J 1 1 i 1 1 1 

we get that the solution of J'(x,u;X,v) = 0 can be found by solving 

(1.14) 

8 

1: < *ri ° > r < *ri ~ > = B . "1' u. - B. "1 ,uv. 
j1i J J i 1 1 

Note that all the <, > 
]R.n 

terms on the RHS of (1.12) disappear because of 

the arbitrariness of ox(T) and i 
OX (T). By (B5) and (B7), we have 

dJo 0 0 0 r; 
! 0 

0 dI, 0 0 I ;1 
(1.15 ) JII(x,u;~,v)(;0!nO;~1,n1) = 

I nO I 0 0 ?no 0 

0 0 0 71l., ! n1 J 

Therefore, from (1.14), we get 

(1.16) 

Q'lfonO)i * * i -~ (;,n) Bil;O r Bj l;l = 
j1i 

, 1 ~ i ~ N, 

~nl)1 * i Bil;l = -r
4

(;,n) 

where r 1 , r 2 , r 3 , r4 are the respective components of r(;,n) and the 

superscript i denotes the i-th component. 
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Combining (1.16) with (1. 7.5) and (1.7.6), we get the following nonlinear 

"matrix" equation 

clio * ~O --rl(E;,n) 0 0 0 -L 0 0 

0 ell 1 0 0 0 * 0 J r-~"':. t E;1 0 -r2(~,n) 

0 0 mo 0 t13* 
1 

f/;* 
2 nO 0 -r3 (E;,n) 

(1.17) = + 

0 0 0 m1 0 <S; n1 ' 0 -r
4

(E;,n) 

-L 0 <21 0 
e:o 

0 l,;O e:O '" 
I 0 -I -'2 Po 2 I 

r r I 

j 

[-I. ... 0 J Q 2'I.... I 
l,;1' 

~ e:l l' I 
L 0 113 0 ...... e:N ,# 12 P1 ~ ~ 0 

O. 2 -I. o --I 
2 

I: j I • 

e:N " 
'2' PN 

wherein 

-B 1 0 -B 
2 

. . . . . -B 
N 

-B 1 

-B 
2 

-B 1 0 -B 
N 

-B 
2, 

0 

, 
cS1 ' ~2 <:83 - , 

- - " , 
'" " , 

-B N -B 1 -B 
2 

. . . . . 0 .I -B N 

We further abbreviate (1.17) as 

(1.18) 



where 

dI= 

-L -

I -e: 

lao ~:] , m= l~ 

r: L •• •• IN+l)x(N+l) 

e:o 
-I 
2 

0 

e:1 
- -I 2 

o 

. ~ 
- -I 

2 

rr 1 (~, 11)] 
r1(t;,11)= , 

r
2

(t;,11) 

0 

1 ~= [: ~J 11lt 

[ 0 

] (N+l)X(N+l) 

* -* - L 
L = 

. * 
L 

(N+l)X(N+l) 

-, p 
e: 

= 

I 
l 

By (AS), De: is a closed linear operator on 

Lemma 1.3 Under conditions (AS), (A6) and (A7), for all e:O,e:1 , ••• ,e:N > 0 

sufficiently small, the operator D introduced above has an inverse and 
e: 

(1.19) 

10 



11 

f b•• () E (2 ~ 2--; tl) ( ) (2 [Ln2] N). Proo: For an ar 1trar1ly given a,S,y Ln x LLnl x UxU x Ln x 

such that 

(1.20) 

or, in detail, 

(1.21) 

r f; 
I 

l ~ = 

d1 ~ - Z*r, = a 

anti +t:JS~ = a 
-z~ ~Ti + I r, = y. e: 

Let ~(t,s) be the fundamental n x n matrix solution satisfying 

{ a at ~(t,s) = A(t)~(t,s) 

~(s,s) = I nxn 

It is easy to see that ~ is invertible with inverse 

- -1 (LJ A = 
t 

b 

Thus, we have from (1.21.3), 

(1.22) 

Substituting (1.22) into (1.21.1), we get 

1 X(s)ds. 

(N+l)X(NX1) 



--L u--1 ..:k)_ 11--1 d1 f. qjft + 'Off. I - f. l; = a +Qff. y. e: 

12 

The integrodifferential operator -* -1 f. -~f. I is easily seen to be invertible 
e: 

for e: = (eu,e:l' •.• '€N) sufficiently small, thus we have 

(1.23) 

Substituting (1.23) into (1.21.2), we get 

Now we invoke (B6): since nt is invertible, if ~ ~s relatively smaller 

than m such that 

(1.24) is invertible 

(for e: sufficiently small), we have 

(1.25 ) 

where 

(1.26) f. _ Z*-A--f.-lI • e: ~ e: 

Using (1.25) in (1.22) and (1.23), we obtain 



Therefore, D is invertible, with 
e: 

-1 
D = 

e: 

Z-lf,8J-\s*Z-l 
e: e: 

+ I Z:l fdlZ-~S*Z - I) 1 
e: ~ e: 

J-l *--1 
e: tB I.e: 

--ll:ftrl --1 
I. ~ +11.. 

e: e: e: 

13 

z-t<A!:~*Z-JA Z - I + I Z-.l 
e: e: e: e: 

l.A--L.....J\'--l" 'A--l] 
.~l. a1~ I. - I~t. 

J -l ~--~--l 
e: :a I.e: U' l. 

--1(A--1 *--1 ) 
l. '(Ifl. ~ c;S I. - I cIIZ-"tIJ.t 1 '-f--L..a*--l --1 

'17ft. '6"0 l. - I~l. 
e: e: e: e: 

-1 Since each entry of the matrix D 
e: 

is bounded, we have proved that 

is bounded for e: sufficiently small. 

We will need the following lemma from [6]: 

Lemma 1.4 Let 'J{, be a given Hilbert space and T be a densely defined closed 

linear operator from dom(T) £]1, onto 31. with a bounded inverse II T-lil ~ c1, 

and let rex) be a nonlinear (Fr~chet) differentiable operator on H such 

that rCO) = 0, II r' (x)1I S c211 x II for all x E 3(.. Then for any a E 'H. 

, the equation 

Tx = a + rex) 

has l.n the sphere II x II < 4clll a II a unique solution " x E dom(T) satisfying 

o 

We note that although in [6, p.6, Lemma 2] , it is assumed that T be 

bpunded, a careful examination of the proof shows that that assumption is 

redundant. 



Using T = De' c1 = K4 and c2 D K1 in Lemma 1.4 and applying it to 

(1.1S), we obtain that for 

II P ell 2 [ 2 N 
L xL] n n 

which is clearly satisfied if 

2 
E. 

J 

, 

(1.20) has a solution ~ ~ ~) E [Hl ]N+lx u2 x [Hl ]N+l (<'C",n""/';,,, 
~ ~ ~ on nO 

satisfying 

14 

E j) II (-PO' p) II [L 2] N+ 1 
n 

From (1.7), writing 

~ ~ 

xe = x 

~ ~ 

uE = u 

we obtain that for 

max 
O~j~N 

~ 

+ ~E,O 

.... 
+ nE,O 

-AX 

E· 
J 

e: 

~ ~ .... , XE = X 
+ ~e,l 

'" 
,.. 

+ n 1 v E = v e, 

'" - E B.u . 
i 1. E,l. 

1 :: i :: N, 

[2K
1
K! II (po,p)1I [L2]N+l]-l 

n 



15 

'" "" " " J'(x U 'X v ) = 0 and e: e:' e:' e:' e: 

II x - x II 2 = II ~e: 0 II 2 
e: L 'L 

n n 

e:·)11 (po,p)1I 2 N+l 
J [L ] 

n 

similarly, 

II 2 ;." " )" II -- (x - Ax - E B,ue: . - f - Po 2 e:O e: e: i 1 , 1 L 
n 

c 
The proof of Theorem 1.2 is complete. 
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Remark 1.5 From the proof given above, we see that assumption (B7) can be 

relaxed; we need only require that the mixed partial derivative operators 

a axJ,a a J, .•• ,etc., be dominated by a2 J, a2J, ax
2J, av

2 J at (x,u;X,v). x x u x u 
CJ 

Remark 1.6 Although Je(x,u;X,v) is concave in (x,v) for all 

in general it is not necessarily true that Je(x,u;X,v) 1S convex 1n (x,u). 

Thus 
A A ,... ,... 

(x€,ue;Xe,ve ) need not be a saddle point for J e • Compare Lemma 2.2 later. 

a 

Corollary 1.7 Under the conditions of Theorem 1.2, assume, in addition, that 

J(x,u;X,v) is quadratic in the sense that 

J(i,u;x,v) = J(x,u;X,v) + 2J'(x,u;X,v) • (x-x, u-u; X-X, v-v) 

+ < J"(x,u;X,v) • (x-x, u-u; X-X, v-v), (x-x, u-u; X-X, v-v) > 

holds for all (x,u;X,v), (i,u;X,v) E H~n x U x [H~n]N x U. Then Theorem 1.2(i) 

can be strengthened to 

(1.27) 

Proof: Since J is quadratic, so 

of Theorem 1.2. By (1.18), we have 

'" 
F,:e 

(1.28) '" D ne = e 

'" 
l;€ 

Thus 

1S J 

a 

a 

p€ 

e· 

K' ( max 
2 

O:sj~N 

Therefore r(;,n) = a in the proof 
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For EO""'~ sufficiently small, it is easily seen that there exist 

such that 

(1.29) Ksli (f;,n,l,;)II 2[ 2]N+1 2 [ 2]N+l + !! DE(f;,n,l,;)112 [2]N+l 2 [ 2]N+1 
L xU x L L xU x L 

n n n n 

~ ~II (f;,n,l,;)112 [ 1 ]N+1 2 [1 ]N+1 
HO xU x H 

n no 

( ~ r) E [H1 ]N+1xU2X[H1 ]N+1 for all ~,n,~ on nO' thanks to the coercivity 

Combining (1.28) and (1.29) with Theorem 1.2(i), we conclude (1.27). 0 

§2. Penalty for Linear Quadratic Differential Games. Finite Element Error 

Analysis. 

For each (the i-th) player, we let his cost functional be of the same 

form as in [4]: 

T 
J.(x,u) = ~ f [!c.(t)x(t) - z.(t)!2 + < M.(t)u.(t), u.(t»] dt. 

1 01 1 11 1 

By (1.3), we have 



N 
(2.1) JE(x,u;X,v) - t ! 

iZl1 

T 
1 [Ic.(t)x(t) - zl·(t)12 + < M.(t)u.{t), u.(t) > o 1 1. 1. 1. 

Consider 

(2.2) 

- B.v. - f/l 2
, 

1. 1. 

min max 

(X'V)X(H~nJNxu 

Using the notations in §1, we have 

J = a2 J - c*c + + c*c ~O x - 1 1 .•. N N 

o 

011 
o 

[

M1 ". 0 ] 

o .~ 
= -

B.u. 
J J 

[

M1 ". 0 1 
o .~. 

From now on, assume that the operators * C.C., 1 < i <_ N, are all invertible. 
1 1. 

Then .JO' -~, '1Ilo and -1\ are positive definite, and (BS) will be met. 

For any given (x,u) E H~ x U, define 

(2.3) max 

(X, v)€ [H~n] NxU 

if the maximum is-attained. 

18 
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Lemma 2.1 (i) J€(x,u) in (2.3) is well-defined. 

(ii) If Bl, .•. ,BN are relatively smaller than Ml""'~' then J€(x,u) is strictly 

convex in (x,u), and 

(2.4) 
lim 

lI(x,u) II 1 
HOnx U 

:a + 00. 

Consequently, min J€(x,u) has a unique solution. 
1 (x,u)EHonxU 

Proof: Since Jg(x,u;X,v) is strictly concave in (X,v), negatively coercive, 

i.e. , 

lim Jg(x,u;X,v) 
II (X,v)lI~ 

= _ (X) , 

we see that for any given (x,u), max J€(x,u;X,v) is uniquely attained at some 
(X,v) 

" " (Xg(x,u),Vg(x,u». Solving max Jg(x,UjX,v) is equivalent to solving 

(2.5) max 

(X,v)E [H~ NxU 

(X,v) 

~ [J ( i ) + L II x· i _ Axi " . x ,ul '.·. u. l' v. , u. 1 J ••• , ll... i ~ ~- ~ ~+ N gi 

B.u. -B.v. - f 112). 
J J ~ ~ 

For any given uIJ""~' we choose -1 -N - - -x , •.• ,x ,v1' v2 , ••• ,vN_l such that 

(2.6) 

Then 

.. 
-~ x 

(2.5) 

-i 
Ax 

> 

E 
j;i 

N 
E 

i=l 

B.u. - B.v. - f = 0, 
J J ~ ~ 

~i(O) = 0, i = 1,2, ••. ,N. 

- E B.u. - B.v. - f 112] 
'.1.' J J ~ ~ Jr1 



::: - L 
i 

From (2.6), we have 
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t t 
J ~(t,s) [L B.(s)u.(s)]ds + J ~(t,s)[B.(s)v.(s) + f(s)]ds. 
o j ri J J 0 1. 1. 

Thus 

(2.5 ) > - L J.(xi,ul,.··,u. 1,v'Ju'+1""'~.) • 1. 1.- 1. 1. ~ 
1. 

t t 
= - E {II C.( J ~(t,s) [l: B.(s)u.(s)]ds + J ~(t,S)(B.(s)V.(S) 

i 1. 0 j isi J J 0 1. 1. 

+ f (s)] ds) - z. (t) 112 + < M. v. , v . >} • 
1. 1. 1. 1. 

Hence 

.JE(x,u)::: E J.(X,U) + L II x - Ax - E B.u. - fl\2 + (2.5) 
1. 1. EO i 1. 1. 

{E (IIC.X - Z.1I2+ < H.u.,u.>] 
.1.1. 1. 1. 1. 
1. 

+.L II i - A.'C - E. B.u. - fll2 
EO 1. 1. 1. 

t 
- II C. ! ~(t,S) [l: B.(S)U.(s>]dsIl 2 } 

1. 0 jri J J 

t t 
- 2{ E<C. J ~(t,S) E B.(s)u.(s)ds, ! ~(t,S)[B.(s)v.(S) + f(s)]ds>} 

i 1.0 '.J.' J J 0 1. 1. 
JT1. 

-+ remaining terms involving only v. and f. 
1. 

As II (x,u) II 1 ~ ~, the first parenthesized term, which is quadratic, 
HQnXU 

dominates the second. Since we have assumed that Ml"'.,MN are positive 

definite and sufficiently larger than Bl ••..• BN, we see that the first 

parenthesized term is positive definite in ul •••• '~. Hence (2.4) is proved. 0 



Lemma 2.2 If Bl, ••• ,BN are relatively smaller than Hl' ••• 'MN such that 

Je(x,u;X,v) is strictly convex and coerive in (x,u) for each given v, then 

the saddle point property 

(2.7) 

holds for all E. 

= max 

(X,v)E[Hl ]NxU 
On 

J (x,u;X,v) 
E 

Proof: We know that Je(x,u;X,v) is always strictly concave and negatively 

coercive in (X,v). From the proof of Lemma 2.1, we easily see that when 

strictly convex and coercive in (x,u) for each given (X,v). 

The saddle point property (2.7) follows in the some manner as the proof 

of Theorem 4.4 in [4]. 

Now it is not hard to see that all of the assumptions of Theorem 1.1 are 

met, and by Lemmas 2.1 and 2.2 we see that the saddle point (i£'~e:;x£,~£) 

is determined by solving 

= 0 , 

= 0 , 

= 0 

Thus we can make a direct variational analysis on Je: and obtain 
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c 



" A ~ "" Je:'(X ,U ;X ,V ) • (OX,OU;OX,OV) • 0 e: e: e: e: 

= 
N 

[ ~ ~ ~i 
E < C.Xe: - Z. ,C. (OX) > + < H.u . ,ou. > - < C.Xe: 

i=l ~ ~ ~ ~ e:,~ ~ ~ 
Z. ,C. (OX~) > 
~ ~ 

22 

2 ~ • - < M.v .,ov.>J + - <x - AXe: - E B.u . - f,o~ - A(Ox) - EB.(ou.) > 
1 e:,~ 1 EO e: i 1 e:,1 ~ ~ 

N 
- E 

i=l 

- E B. (ou .) - B. (ov.) > 
·4· J J 1 1 Jr1 

for all (ox,ou;oX,ov) E s5n x U x [~n]N x U. This gives the following 

variational equation 
,. 

-ox OX x e: 

t\: eU eu 
(2.8) ae: ( ) = e e: ( ) 

Xe: oX oX 

0e: OV OV 

where a is a bilinear form defined by 
e: 

~l ~2 

~l ~2 N 
a ( ) E [<c.£ ,C.~ > + <M·~l ., > C ~i - ~2 . < i'::'l' E 

=h =2 i=l ~ -1 1 2 ~ ,1 ,1 

V 1 L V2 

and 6e: is a linear form defined by 

C ::i> 
i-2 
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; 
II 

[< <z. ,C. ?:i> ] 2 • e ( ) = E z. ,C.;> - +- < f, ;-M,;-E B·ll· > £ .. 
i 1. l. 1. l. £0 1. 1. 

V 

_ 'to 2 f ~i 
t. - < , 
i £i 

A=i 'to B B - no::! - t. .ll. - .V. >, 
j'/'i J J 1. 1 

We assume that 3r > 0 such-that for all £ sufficiently small, a£ satisfies 

;1 E;2 

(Hl) inf sup a ( ll1 112 ) > r > o. 
r E;1 

E -
S2 =-1 -2 

II 
112 

II H=l l ~l V1 V2 
.. II ?:1 IIH=l 
-2 

V2 V1 _ 

How realistic 1.S the above assumption? This is partly answered in 

Proposition 2.3 If Bl, •.. ,BN are comparatively smaller than Ml, ••• ,MN, 
then (Hl) is valid. 

(2.9) 

thus 

such that 

• 
3l.

1
· - AEl.

1
· - E B.ll

l 
. - B,V

1 
. = -~11' + A?:i + E B.ll

1 
. + B

1
V

1
,l." 

j'/'i J , J 1,1 1 j;i J , J 

31

1
' (t) = -?:1.

1
· (t) + 2 fot ~(t,s) [E B.lll . + B,Vl .]ds, 

j;i J,J 1,1 
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then t,;l ~2 f;1 f;1 

(2.10) J..l1 J..l2 ) 
1 

J..l 1 J..l 1 sup a ( > II (f;1 .J..lr;~I' -v~IIH 
a ( ) 

;2 e: 
=1 

e: 
':'2 ':'1 ':'1 

II 
ll2 VI V2 V1 VI 
=2 II H=l 

V2 

t 
+ < C';=~l' J c'.; [=~l' - 2 f <I>(t.s) (E B·J..ll . + Bl VI .)ds]> + < M,V

l 
. J VI .>] 

...... 0 j ~i J J J J ~ ~ • ~ J ~ 

+ L II tl - A;l - E B .lll . 112 + E L II 2~1' - A=~l - E B .lll . - B. VI .112. 
e:O i ~ ,~ i e:i j~i J , J ~, ~ 

But 

> 

The second term above can be absorbed into a fraction of 

E [<M'll l ., III • > + < M''''l ., Vl .>] provided that Ml , ••• ,M-- are comparatively . ~,~,~ ~.~,~ -~ 
1 

larger than Bl, ••• ,BN, i.e., we have 

(2.11) LHS of (2.14) > 

+ < M 11 11 > + < c:: i c:: i > < M ,,>] 2 II; E i~l,i' ~l,i i-I' i-I + iVI,i' vl,i + e:O ~l - A 1 

for some a: 0 < a < ~. 
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Let a E (0,1) be fixed. For the terms on the RHS of (2.11), if 

(2.12) 

i III 1, ••• ,N, 

then we easily observe that 

(RHS) of (2.11) Zf>O , for some r independent of (E;l' 11 ; =1' "1) , 

is satisfied. 

If, on the contrary, say, for i = 1, we have 

(2.13) 

while the rest of (2.12) remains valid, then (2.13) gives 

(2.14) 1I§1- ABlll2 + II ~ B.ll • + B1"l,l 112 ~ a€111311- AB11112 + 2 < 3i - AB~, 
1 1 j=2 J l,J 

N 

~ B·~l . + B1"1,1 > 
j=2 J ,J 

N • N 
(1-~e1)IIEll - AS1111 2 + II Z Bj~1 j + B '\)1 1"2 :s ~IIS11 - ASlll2 + 411 ! B ~ + B

1
"1,1"2 

j =2 ' 1, 1 j =2 j l,j 

N 
(1 - ~~\ -!t;) 1I~1_ ASl1l2:s 3 II.Z Bj~l j + B1"1,1"2. 

J=2 ' 

Hence 

1. (1 - a~ - 1) 11-_:1
1 - A=11112 . 3 "'1 '4 n,;; 

Because M., 1 < i < N are positive definite operators considerably larger than 
1. 

B., 1 < i < N, we have 
1. - -



(2.15) a'1: 
i 

N 
[<M'~l ., ~1 .> + <M'''l ""1 .J ~ II 1: B·).11 . + B1"11112 

1. , 1. , 1. l., 1. , 1. j =2 J , J , 

for some a I ;: 0 < a I < 1. Therefore, for some a" < a, a" > 0, we have 

+ < M·).11 ., 
1. ,1. 

Hence the LHS of (2.11) is again ~ r> 0 for some f, independent of 

W& now let be a (TO,l)-system ([lJ, [4J) and let 

. 2 
Shl. C L (O,T), i = 1,2, ... ,N be Ct',O)-systems, and denote m. 

1. 

(2.16) 
o N i NON 

Sh = Sh x ( IT Sh) x ( IT Sh) x ( IT S~ ) 
i=l i=l i=l 

We assume, furthermore, that 

f,h 
1 

f,h 
2 

h h 
lH~) inf sup 

a- ( 
).11 ).12 

) ~ fh ~ f > 0, 'V h, 
f,~ 1 f,h Co 

, 
...h =h 1 -1 -2 

h h h h 
1/ 

).12 
II H=l II 

111 
II H=l "1 "2 

~h =h 
=2 -1 

h 
"2 

h 
"1 

wherein h h ~h h 
(f,l,lll;=l'''l)' 

h h ~h h 
(f,2,1l2;=2'''2) E Sh' It should be noted that if 

26 



Bl, ••• ,BN are sufficiently small compared with M1"'.,MN, then (H2) is 

also valid. 

We consider 

(2.17) min 
ON. 

(x,u)EShx(.II S~) 
~=1 

max Je(x,u;X,v). 
NON • 

(X,v)E( IT Sh)x( IT S~) 
i=l i=l 

Arguing in the same manner as in the early part of this section, we see that 

27 

(2.17) leads-to finding the solution of the variational equation 

"h oxh 
xe: 

"h ouh 

(2.18) a e ( 
ue: 

"h OXh 
X€ 

( ) , h h h h (ox ,au ,ox ,ov ) E She 

"h ovh 
ve: 

Let be a basis for So x Sl x x 
h h··· 

Then (2.18) is a matrix equation ~ qh = e~ , where the matrix ~ and the 

-h vector 8e; have entries 

[~J .. = a (~.,~.) e: ~J e: ~ J ; ~·,W· E Sh' 
~ J 

for all 

- - - i 
~ = (,,,io i ,,,iN ~~l ~i2 ~iN J.i 1 J.i 2 - N» 

i "'0' (W1
1
'···''''N ), ("'0 ' "'0'···' 1jI0 ), ("'1 ''''2 ,···,WN 

N 
i, j: 1 ~ i, j ~ (N + 1)1

0 
+ 2 E 

j=1 
I., where in the above, 

J 



28 

Blockwise, we can write 

~(lJl) ~(1,3) -h 
Me:(l,4) 

~(2.1) ~(2,2) ~(2,3) ~(2,4) 
-h 
}f- = 

e: 

~(3,l) ~(3,2) -h Me:(3,3) ~(3,4) 

~(4,1) ~(4,2) -h Me:(4,3) ~(4,4) 

e~(l) 

6:(2) 

e~(3) 

e~(4) 

wherein 

r, h N i o ' 2 i i . 
lM (1,1)]. . = E [< CkIjJO' C IjJJo > + - <~ 0 - AljJoO, ~ojo - AIjJJ o >] 

e: 10Jo k=l k 0 e:O 0 

R. = l,2, •.. ,N; 

_ 

{
laToa sgn a 

if a::f 0 

if a = 0; 



~(3,1) :: OJ 

~(4,1) :: OJ 

[~(2,2)] 
E max(1,t-1) max(1,p-1) 

(j~1 Ij.Sng(j-1)+it)(k~1 ~-sgn(k-l)+ip) 

i1 iii 
=Opn<MnIVn, IVP>+!....<BIV t BIV P >- ~ (1-0.) (1-0.)!.... 

~ ~ ~ P EO 1 l' P P i=l 11 1p Ei 

it i 
0< B1IVt ' B IV P >, 

P P 
1 ::: p, i < N· 1 < ii ::: Ii; 1 < - , - - i < I . 

P p' 

2 it i i = (1-6 ) -- < B ,I, J. P-kla P >. pi E i~i '~O % ' 
i 

1 < i < 10 ; 
p -

[M-h (4 ,2)] 
E (max(1,t-1)I (. 1)+· )(max(1,p-1)L (k 1)+· ) E .-sgn J- 10 E -k-sgn - 1 

j=1 J ~ k=1 P 

i i 
= - (1-0 )!.... <B IV i B 1jJ P >. 

Pi Ei t 1 ' p p , 

1 5 p,i 5 N; 1 < i < I . 
- P - P 

29 
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1 :s p,t ~ N; 

[~(4,4)] (1 1) max(1,p-1)I (. 1) . ) 
E max ,p- I _ (·-1)+·)( ~ J.- sgn J- +1p ( L . sgn J 1t.~ 

J J=l j=l 

1 ~ p,t :s N; 

* 
and ~(q,r) = M~ (r,q) for q < r, 1 5 q,r 5 4; 

= 
N 1· 2 • • 
~ C ,I. 0 + _ < f -1 1 ~ < z., ·'YO Eo ,\jJOO- A\jJOO>; 

i=l 1. 1. 

1 ~ t :s N; 



31. 

Theorem 2.4 Let {Sh} be a one-parameter family of finite element spaces 

as mentioned ~n (2.16). Let be the solution of (2.18) 

Let (x,u;i,v) be the solution of (1.2) 

Under (HI) and (H2), we have 

(2.19) II x~ - ill HI + II ~~ - ~II U + IIX~ - xII [Hl]N + II;~ - ;11 U 
n n 

SI N s2 S N N s2 
Hx(IIH )X[H]x(IIH) 

+ K' ( max 
2 

O~j~N 

n i=l mi n i=l mi 

for some constant KS > 0 independent of h,€ and (x€,~€;X€'~€)' where 

~ = min(TO-1,T,sl-1,s2)' (PO,p) is the dual multiplier, and K2 is the same 

constant as in (1.27). 

Proof: We use the triangle inequality 

Since a satisfies 
€ 



for some KS > 0 for all <\>, \jJ E H, by assumptions (Hl) and (H2), and 

[1,p.1S6], we have 

with ~ = min«~O-1)'T,Sl-1,S2). 

K 
(1 +! . 8 )h~ r m\1). e:. 

O~i~N ~ 

Combining (2.20), (2.21) and Corollary 1.7, we conclude (2.19). 

From Theorem 2.4, lve see that if 

then the error estimate is of the order of magnitude 

( 
N s2 

H ) x .IT
l 

m. 
~= ~ 

32 

o 

< co 

(2.22) 
h~ 

( min 
O<i<N 

+ max e: . . 
1 0<1<N 

e:.), 'V e:, 'Vh. 
1 

- -

Thus if we choose e:0 ,=e: l = ••• = e:N = e: and € =~(h~/2), the RHS of 

(2.22) is optimal and we have 
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§3. Duality and Penalty 

The relationship between penalty has already been indicated in Theorem 1.2: 

we see that the Lagrange multipliers 
,.. ,.. 
PO, ••• ,PN are actually the strong limits 

of (some scalar multiples of) the penalized differential equation, and the rate 

of convergence is O(€). 

Let us explore this relationship a little further here. Consider, as in (2.2), 

(3.1) max J€(x,u;X,v) 

(X,v)~[H~nlNxu 

- t ~ [II C.x - z. 
i=l 1. 1. 

112 +<M.u.,u.> - II C.xi - z.1I2 -<M.v., v.> 
1. 1. 1. 1. 1. 1. 1. 1. 

_Lllx·i_Ax i _ ~ B B f112] l. .u. - .v.-
€i j~i J J 1. 1. 

- :B.u. 
i 1. 1. 

We can regard the above as a primal min-max problem subject to constraints 

• d ·1 d 1 ·N x = dt x, x = dt x , ••• , x 

mUltipliers 

(3.2) 

where 

and consider 

min 
1 (x,u)EH xu 
On 

Thus, formally, we introduce Lagrange 

(3.3) 
d • N d i ei 

- J€(x,u;X,v) +< PO' -dt x - x> + 1: < P1..' - X - X > 
i=l dt 

For given PO,Pl"",PN E H~O' proceeding formal variational analysis as in 

[4], we get 
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N * A A * Ai ~ 1 A ~ 
L; {<I::. (C.Xe: - z.),ax> +<M.u ., au.> -<c.(c'Xe: - z.), ux >-<M~vj:';' uv.> 

i=l ~ ~ ~ ~ ~ ~ ~ ~ ~ • ~ 1 

• 
A A * Ai _ AxAi A 

E B kUI="1, - B;vj:'~ - f), Qu.>-<B.(x e: - E Bku<:,tJ. 
k#i ~ • ~ J ~ E k;i ~ 

• N • A A A * A A A 
av.>]} + L« ox> -- BiVe;i - f), x

E -Ax - E B .ue:,j - f, <A (x
E -Ax 

~ EO E j=l J E 

A N * ~ A - E A 
au.>} • - E B.u . - f), ox> - E < B. (XE -Ax Bkue;k - f), - <Po' ox > 

J E,J E 
J j=l J k J 

N 
< d ~ > ~ [ ~ • i d ~xi» 

- dt Po' uX - t.. <Pi' uX> +<Wi' U = a 
i=l 

Thus, we get, for i = 1,2, •.• ,N, 

. 
* "- 2 * A -AX BjUE.J f) d (3.4) E c. (C ,xE - z. ) - - A (x - E - - Cit P = 0 
J J J EO E E j j 

(3.5) * "i z· ) 2 * ~i - AX~ E B.u . - B.v . f) d -c. (C. x
E - + - A (x - - - dt Pi = a 

~ 1 1 E. E E j;i J e;.J ~ 9-
~ 

(3.6) M.u . 
~ E~ 

B~(i - AX - E B.O . - f) + E 1 [B:(iE
i - Aii - E Bku~k 

~ e: E j J 1) j;i Ei J E k;i ~ 

(3.7) 

(3.8) 

(3.9) 

- B,ve:' - f)1 = a 
~ t1 

2 :.. 
-Po + €: (xE - AXE - E B.O . - f) = a 

o j J E)J 

B.O . 
J E).l 

B.v . - f) ::0 0 
~ er , 1 < i S N. 



Substituting PO' Pl"",PN from (3.8), (3.9) into (3.4) - (3.7), we get 

(3.10 ) d * N * A 

-dt Po = -A P + 1: c. (C,xe: - z.) o i=l ~ ~ ~ 

and for i = 1, 2, ••. , N, 

(3.11) 

(3.12) 

(3.13) 

" -1 * u . = M. B.(PO + 1: p.) 
E;. ~ ~ 'J.' J 

JT~ 

A -1 * v . = -H. B. p. , 
e:,~ ~ ~ ~ 

. 35 

wherein for p., i = 0, 1, .•• , N, the terminal conditions p.(T) = 0 has 
~ ~ 

been imposed. 

Comparing (3.10), (3.11), (3.12) and (3.13), respectively, with [4, 

(3.9), (3.6), (3.10) and (3.7)],we find that they are correspondingly 

identical. If we assume as in [ 4, (A1») that 

(3.14) * C.C. (1 < i ~ N) are positive definite, 
~ ~ 

then we have 

(3.15 ) * !Co - 1: C.C.; 
i ~ ~ 

• * " (3.16) xe: = A[!C~l(p + A p + 1: c.z. )J 
~ ~ 

+ 1: [ -1 * B. M. B. (PO 
~ ~ 1 

+ 1: 
e:O 

Pj)J + f + -p 2 0 i i j=i 

Ai -1 • * * * (3.17) xe: = -!C. (p. + A p. - C.z.). !C. - C.C. , 1 ~ i ~ N; 1 ~ 1 1 ~ 1 1 1 1 

(3.18) 

-1 * e:i 
- B.M. B.p. - --2 P1" 

1 1 1 1 
1 < i < N. 
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d. d i ·i 
Integrating by parts for the last terms <PO' dt x - X> + ~ < Pi' dt x - x > 

1. 

in (3.3) and using (3.15) (3.18) to substitute Pi' Pi' 0 < i < N for 

..... .......... .... 
ue;l , ... • u~, v~, •.• ) v~, we get 

-
Lg(PO'p) : min1 

(x,u)EHOnxU 
maxl N 

(X,v)E[H" ] xU 
vn 

1· * -1· * + -2 E<P1.. + A p., ~. (p. + A p.) > 1. 1. 1. 1. 
1. 

-1 * + <PO + E Pi' E B.M. B.p.> 
i i 1. 1. 1. 1. 

* -1 N * • * -1 * - < P + A PO' ~O E C.z. >- E< p. + A p., ~. C.z. > 
0 i=1 1. 1. • 1. 1. 1. 1. 1. 

1. 

1 a:-1(E * * + 1 E II z. 112 - < Po + 1: Pi' f> < C. z. ), 1: C.z.> 2 o . 1. 1. 1. 1. 2 . 1. 
1. 1. 1. 1. 

which differs from [4, (4.3)] only by - t eu II Po 112 + t ~ gi II Pi 112. (The 
1. 

term < Po (0) + ~ Pi (0), xO> vanishes because Xo = 0). These two terms do 
1. 

-
not affect the convexity of Po and the concavity of P in Lg(PO'p). Thus 

we conclude that the dual of the penalized problem is just an g-perturbation 

of the dual problem. 

We compare briefly the amount of computing involved in the dual and the 

penalty methods. Assume that in the error estimate (2.19) 8 1 and s2 are 

sufficiently large and that 

lim 
~O S2 

H ) 
m. 

1. 

< "". 



For simiplicity, we only consider n ~ m1 ... ... ~ • 1. In order 

that ~, the penalty solution, converges to i with the same rate as 

II ~ - x II in [4, (6.21) ](where ~ is the duality solution), we must choose 

e: -e: ... 
U 1 

... ,.. 0.,. ht(h~/2) • •• c.
N 

v 
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, with ~ ... ~ in (2.19) and ~ ... 2~, where ~ is the same ~ in [4, (6.21»). 

This implies that 

- -TO - 1 = T = ~ = 2~. 
Assume also that in [4,Theorem 6.2] that t is sufficiently large so that ~ ... ~ - 1. 

Thus, using the same h = TIM in both approaches by dividing the interval 

[o,TI into M equal parts, the finite element space Sh (in [41 Theorem 6.2) 

has (N + 1) • (~+ 1 ) basis elements, while the finite element space 

Sh in (2.16) has (N + 1) • (2~ + 1 ) + 2N[(21J.-1) M + 11 basis 

elements, assuming that = S~ = a (~,O)-system. Thus the 

corresponding matrix equations 

(3.19) (cf. [4,(6.10)]) 

(3.20) 

have respective sizes 

~: [(N+1). (~+1)]2 

~: [(N+1) • (2~+1) + 2N(2~-1)M+2N12 

Thus the ratio of computing time between (3.19) and (3.20) is 

(3.21) [ (N+1) (M!J.+1) J3 
(N+1)(2MIJ.+l)+2N(2~-1)M+2N 
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It appears to us that even after we take into account the sparseness 

and block structures of the matrices Mb -e and Mb, the above ratio is still 

valid asymptotically. Therefore we see that the dual method is much more 

efficient than the penalty method, especially when the number of players 

N is large. 

Nevertheless, the dual method is feasible only under assumption 

(Al) in [4], which requires the invertibility of El, ••• ,EN and is 

therefore quite restrictive. Computationally, the penalty method is 

not restricted by such a condition. 



4. Numerical Results 

Example 1 We consider the very same example as in [4,§7,Examp1e 1] 

(4.1) 

{

X(t) 

x(O) = 0 

o < t < T, T = n/4 

which is a 2-person non zero-sum game and is known to have a unique 

equilibrium strategy for all T > o. 

JE(x,u;X,v) is given as in (2.1). We choose for a 

f d . 1· .. f 1 d 2 system 0 qua rat1C sp 1nes as approx1mat10n spaces or x, x an x, 

and for s~, s~ a (L,O) = (2,0) system of piecewise linear finite elements 

as approximation spaces for ul ,u2,vl and v2• 

It is not difficult to see that conditions (B1) - (BS) and (B7) in 

§1 are all satisfied. We are, however, unable to verify (B6); similarly, 

nor are we able to verify the validity of (Hl) and (H2) in §2. 

Our numerical results are plotted in the following figures. We 

n E = E = E :: E. use h = -/32 and 4 012 

In the first three figures, we use E = 10-1 , 10-2 , 10-3 , -4 10 and 10-S 

respectively. 

Figure 1 contains graphs of ul' versus time t, for various values of E. 

Figure 2 contains graphs of u2• 

Figure 3 contains graphs of x. 

The trajectories of u1' u2 and x versus various values of E cluster closer 

and closer as E becomes small. 
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Figure 4 shows two graphs of ul • The solid line represents numerical 

data obtained from duality in [4}, with (4,1)-cubics and h = t/32. The 

broken line represents data obtained from penalty, with (3,1)-quadratics 

for state and (2,0) piecewise continuous linear elements for strategies 

also with h = ~/32, and 

Figure 5 shows two graphs of u2 ' obtained in the same fashion as Ule 

~ Figure 6 contains two graphs of x. 

From Figures 4 and 5, we see that numerical results for ul and u2 obtained 

from duality and penalty show remarkable agreement. In Figure 6, we see 

that the two graphs of x agree very well everywhere except at the initial 

and terminal time 0 and T, where the duality graph is rougher and less 

accurate. 
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We list values of at selected points in Table 1. 

All of our calculations were carried out with double precision. 

The values of J€ are obtained as follows: 

J = 0.5159708038688868 x 10-1 , e: = 10-1; 
e: 

Je: = 0.5698840889975811 x 10-1, e: = 10-2 ; 

Je: = 0.8583978319547797 x 10-3, e: = 10-3 ; 

Je: = 0.3287468594749820 x 10-3 , e: = 10-4 ; 

Je: = - 0.1245174244833003 x 10-3, e: = 10-5 . 
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TT 
In the following table, we use h = 4/32 and use the following to denote 

P
l

: penalty solution with e: =E: =e: =10-3 
012 

P
2 

: penalty solution with e: =e: = e: =10-5 
0 1 2 

D: duality solution 

1 1T 1 1T 3 1T 1T 
t = - • - t = - • - t = - . - t = - = T 

4 4 2 4 4 4 4 

P
1 

-2.077473 -1.238577 -0.562432 0.000086 

u1 
P

2 -2.078433 -1.239262 -0.562789 -0.004539 

D -2.064450 -1.229223 -0.556116 0.0 

Pl ().440848 0.285103 0.131847 -0.000053 

P2 0.441103 0.285264 0.131923 -0.002366 
u2 

D 0.436094 0.281693 0.129746 0.0 

P1 -0.125946 -0.136808 -0.053823 0.118535 

x P2 -0.125870 -0.136707 -0.053713 0.118661 

D -0.126924 -0.137191 -0.053709 -0.250000 

Table 1 

Re~ark: The above are rounded-off figures with 6 decimal place accuracy. 

Example 2 (The Primal-Finite Difference Method) 

We return to the primal approach in Part I [4]. Consider the same example as 

in Example 1: 

(4.2) min max J(x,u;X,v) 
(x,u) (X,v) 
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uhere (x,u;X,v) is subject to the differential constraints (DE) = 0, 

[DE) = 0, x(O) = 0, X(O) = o. 

We discretize the differential constraints by the crude Euler finite 

difference scheme. For example, (DE) = 0 is discretized as 

(4.3) 
x(t i +l ) - x(t i ) N 

h = A(t.)x(t.) + E B.(t.)u.(t.) + f(t.) , i = O, .•. ,M-l. 
~ ~ j=l J ~ J ~ ~ 

Substituting (4.3) (and others) into (4.2), we proceed to solve the min-max 

problem. 

We use M = 32 and h = */32 and the primal approach to compute Example 1. 

The following values are obtained at selected points: 

1 7T 1 7T 3 7T 
t = l!. = T t = - • - t = - • - t = - • -4 4 2 4 4 4 4 

u
1 -2.0416074 -1. 2191050 -0.5541710 0.0 

u
2 0.4394483 0.2837087 0.1311784 0.0 

x -0.1244138 -0.1363107 -0.0565919 0.1097617 

Table 2 

The reader may compare the values in Table 2 with those in Table 1. 

Example 3: Consider again the following 2-person nonzero-sum game 

{

X(t) = x(t) + cos t . u1 (t) + sin t . u2(t) + 1, 

x(O) = 0, 
T 1 2 1 2 

J 1 (x,u)= f [Ix(t) - d1 (cos t + 2) I + 3 u1(t)]dt, 
o 

T 
J 2 (x,u)= f [Ix(t) - d2 o 

sin 
212 

tl + 2 u2(t)]dt, 

-- ----

o ::: t ::: I, 



43, ' 

where T - 2rr and (d1 ,d2) - (-1,0.9), as in [4,§7,Examp1e 3]. It 

is not clear to us whether the assumptions in [4] or in this paper are 

satisfied by this problem. However, as noted in [4,§7,Examp1e 3J, the 

values of L seem to be divergent. 

Let us manage to compute the numerical solutions in a straightforward 

manner, using h = 2rr/32. In Figures 7-9, the graphs of u1 ,u2 and x 

are plotted. The solid lines always represent the duality solutions of 

ul ,u2 and x, while the broken lines represent the penalty solutions of 

and x, using -3 and -4 u1 , u2 e = e = e = e = 10 10 ,respectively. 0 1 2 

It can be seen from these graphs that smaller values of e cause 

futher deviations between the penalty and duality solutions, if h is 

not adjusted according to e. This offers partial evidence that e and h 

are coupled in the error bounds (2.19). 

We have also plotted the graphs of 

t with e = 10-1 , 10-2, 10-3, 10-4 and 

The computed values of J e are 

J = 0.4582465783358920, e 

J = 0.2730100141206180, e 

J = 0.1231759476555612, e 

J = 0.9989590297527213, e 

J ~ 0.301145ll25450394x103, e 

Compare the results in [3]. 

u1 , u2 and x, respectively, versus 

10-5 , in Figures 10, 11 and 12. 

e = 10-1 • , 

e = 10-2• , 

e = 10-3• , 

e = 10-4 • , 

e = 10-5 
• 

We see that when -5 e = 10 , the "numerical solutions" become completely 

meaningless. o 
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Throughout Figures 1, 2 and 3, we use the following legend: 

EPS1 •.. EPS2 ... EPS3 +++ EPS4 XXX E?S~ t.t 
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Throughout Figures 4, 5 and 6, the solid curve (1) represents the 

duality solution while the broken curve (2) represents the penalty 

-3 n solution, with €0=€1=€2= 10 , both use h = 4/32. 
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