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N-PERSON DIFFERENTIAL GAMES

PART 1I: THE PENALTY METHOD

Goong Chen*
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Quan Zheng*’#
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ABSTRACT
The equilibrium strategy for N-person differential games can be found by
studying a min-max problem subject to differential systems constraints [4].
In this paper, we penalize the differential constraints and use finite
elements to compute numerical solutions. Convergence proof and error
estimates are given. We have also included numerical results and compared

them with those obtained by the dual method in [4].
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$0. Introduction .

In Part I [4], ve first gave a min-max equivalent formulation of
equilibrium strategies in N-person differential games, and used the dual and
the finite element methods to study and compute them. In this paper, we will
study N-person games by another important method - the penalty approach.

The application of the penalty method to optimal control problems, which
are just a special case of differential games, has been studied in [3], [5],
for example; see also the references therein. Nevertheless, there has not
been, to our knowledge, any application of the penalty method to saddle point
type problems like differential games. The first main objective of our paper
is to investigate this feasibility. Our second objective is to combine penalty
with finite elements to compute numerical solutions and to compare them with
those in [4] obtained from the dual method.

We inherit some notations from [4] and define some new ones below:

A(t), Bi(t) (i=1,2,...,N) are, respectively, nxn, nxmi(i =1,2,...,N) time~

varying matrices;

Ci(c) (i-=1,2,...,N) are, respectively, k.xn time-varying matrices;
Mi(t) (i=1,2,...,N) are, respectively, symmetric m,Xm, time-varying

matrices, which induce positive definite linear operators M. : Li + Li :
i i

zi(t) (i =1,2,...,N) are, respectively, k;-vector valued functions;

k

k .
k n - d

B2 8 0,0 = ty: [0, » 2| Iyl = 2 11Dl < <}

n n ¥ j=0 dt Li(O,T)

n

N 1 2 2
- Ax - j£1 Bjuj - £, x € Hn, uj € Lmj, j=1,2,...,N, f€ Ln

He

(DE) =



N

- ol i _ - i 1 2 .. 2
(DE)i = x Ax .2' Bjuj Bivi £, x €Hn, quLm.(fo) , ving.
j#iL 3 i
N 2
[E] = & |(DE),]|
N 1
=1
N
X = (xl,xz,...,x )
1 _ .1 1 -
Hy, = H N {y e H |y(0) =0}
1 _ .1 . 1 -
Hno=nnn{>eun |y(T) = 0} _
N
UEIILf1
i=1 i
_ 4l 13N = _ .2 2\N
H:HOnxe[HOn] xU; Bz L2 xUx [L]" xU
L Hl > L%, Lx = x - Ax
On ’ -
%* 1 2 * . %
L Hn0~+ Ln’ LX=Zx+Ax

We proceed as follows.

In §1, we present the fundamental penalty theorem. The rate of
convergence with respect to the penalty parameters is determined. Our work
here extends and generalizes the earlier result of B. T. Polyak [6].

In §2, we specialize to the linear—-quadratic case and formulate the
finite element variational approach. Error estimates between the computed
and the exact solutions with respect to the penalty parameter ¢ and the .
discretization parameter h are given.

The relationship between the penalty method and the dual method is
explored in $3. Their computational advantages and disadvantages are also
compared.

Numerical results are presented in Sa.
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S1. The Penalty Method for N-Person Differential Games. Rate of Convergence.
As in [4 L for an N-person game with linear dynamics

%g x(£) = A(E)x(e) + By(t)u (£) + ... + Bo(t)u (t) + £(t), 0gtgT,

(1.1)
x(0) = x, € R,

let each player have an associated cost functional Ji(x,u), 1 ¢i< N, which

is continuous with respect to (x,u) in the HixU norm. Throughout the
rest of the paper we assume that we have made the change of variable
x(t) » x(t) - Xy so that x(0) = 0. This change of variable results only
in minor changes of Ji'

In this section, the costs Ji need not be quadratic.

Following the min-max formulation in [4,§1], we consider

N

(1.2) inf  sup J(x,u;X,v) = I [Ji(x’u) - Ji(xl,vl)]
(x,u)GHénxLi (xl,vl)euénXLi i=1
i - i
(DE)=0 (DE)4=0
11N

where v' = <ul’u2""’ui-l’vi’ui+l""’uN) € U, Here, we see that (DE) =0

and (DE); =0 (1 Si

nA

N) are N+l -equality constraints for the inf-sup

problem (1.2). Thus, it appears natural for us to penalize the problem as

(1.3) inf sup J_(x,u;X,v) = J(x,u;X,v)
1 1 €
(x,u)€Hy xU (x,ve[H: ]xu
> || om] |2 ; L ek
+= || (DE) - I = (DE)
€ R i1

for some so,el,...,sN > 0.



The most important question remains in determining the validity of the
above scheme and, if valid, its rate of convergence. Thus, we consider the
fundamental theorem of penalty for N-person differential games below.

The following assumptions will be needed:

(Bl) J(x,u;X,v) 1is strictly convex in (x,u) and strictly concave in (X,v);

(B2) inf sup J(x,u;X,v) is attained by (x,u;%,v) € H;
1 11N
kx,u)EHode (X,V)G[Hon] xU
{DE)=0 [DE] =0

A AN AN

By (Bl), this point (x,u;X,v) 1is unique. Also, by [4, Theorem 2.1],

there exist Lagrange multipliers ﬁo, p = (Sl,...,ﬁN) such that

(1.4) J(x,u;%,v) = min max J(x,u;X,v)
1 19N
(x,u)€H; xU (x,vae[HOn] xU
(DE)=0 ‘DE]= 0
|
= max min min max [J(x,u;x,v)
poéLi pG[LilN (x,u)GHénxU (X,V)G[Hén]NxU
N
+ <po: (BE)> + 3§ <« pi, (DE)i >]
i=1

(B3) The costs Ji(x,u) are of the form

T {
(1.5) Ji(x,u) E fohi(x(t),u(t))dt
A 1 - 1N,
so that p, € H, P € [Hno] ;

(B4) The first and second derivatives J', J" exist, and J" satisfies the

global Lipschitz condition
1 . - mm . ! - - . - -
(1.6) |lJ (xl,ul,Xl,vl) J (xz,uz,Xz,vz)ll < Klll(x1 X,y uZ,Xl Xz,v1 v2)||ﬁ

for some K1 > 0 uniformly for (xl,ul;xl,vl),(xz,uz;xz,vz).
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(B5) Let 52 = 3 J, od oy .,,% = 8; J, and i) .’582 J e s.cend

order Fréchet partial derivatives evaluated at (§,G;2,3). Then 040,?n0,-d71

and -Vni are positive definite linear operators on Lﬁ, U, [LZ]N and U,

respectively. Furthermore, d40 xa41 maps Hén X [th]N .into itself;

(86) B.,,...,B_ are small relative to do,mo,-oqi and -ml (cf.(1.24),

1’ N
(2.10), (2.14))

(B7) The mixed Fréchet partial derivative operators axaxJ, axauJ,..., etc.,

A A

evaluated at (x,u;X,v) are all 0.

Remark 1.1

(1) In (B3), that the Ji's are assumed to be of the form (1.5) is only
for the convenience of discussions.

(ii) Making some other assumptions, one can relax the global Lipschitz
condition (1.6) to a local one.

(iii) (B7) is assumed here only for the convenience of discussions, cf.

Remark 1.5 later. b

Theorem 1.2 Under conditions (Bl) - (B7), for T TRRETL R 0 sufficiently

N ~

small, there exists a unique (xe,ue;ie,ve) € H satisfying Jg = 0 such that

(i) (£_,8 ;% ,v.) ~ (X,4;%,%) s K,(max ¢, )|](p |
|l g eere || 2 0<j<N 0’ Isz[LZ]
W) |12 G -k -zBG, - £) -5 +§||3 G-t -z B,
gg € € i€l 0 L2 i=1 € ihi j &)
n
-B,v_, - £) = -p)H < K, (max €)]|[G,,p) s
i'ei n 3 0<i<N J 0 “LZx LZ N

for some K,, K3 > 0 independent of €gseees



Proof: We introduce the new variables

Eg = X~ X
£, =X - X
(L.7) g =y -u
”1 =y -9
%9 " (x-4Ax- 1 B -f)-p, B
0 i=1
i = _ .g- oi. - ].. _ - - - ad = 1 2 N
<) ng Ax .z' Bjuj B;v, £) P; 85 = (cl,cl,...,;l).
i j#i
. 2 1 2 1l 4N
In the above, we first choose x ¢ Hn N Hy,» X € [Hn n HOn] s
o1
u,ve U N T H and then let (x,u;X,v) tend to an element in H.
i=1 ™
We further let
For any (8x,8u;8X,8v) € H, we have
(1.8) Jé(x,u;x,v) e (8x,8u;8X,6v) = J'(x,u;X,v) * (8x,0u;S8X,d8v)

2 . .
+ €0< X - Ax - ? Biui - £, 8x - A(Sx) - ? Bi(Gui) >

2 i i_ _ _ oi i
= < X Ax L B.u. Bivi £, ox A(Sx™)

+ 3
i€ i 13

- Z B.6u. - BiGVi >
j#i

We can use (B4) to write



(1.9) J'(x,u;X,v) = 5'(k,0;%,v) ¢+ J"(?:,G;ﬁ,&)(;,O,no;il,nl) « t(g,n),

where the remainder (£,n) (as a linear functional in H) satisfies

(1.10) r(0,0) =0

aiy e En - e Enll s ollE-En-mll

o) ) x(UxU)

1

z = - 1 N
JYEM, (G €@ x [m 1T x o).

Substituting (1.9) into the first term on the RHS of (1.8) and integrating

the remaining terms by parts, we get

(1.12) LHS of (1.7) = [J'(X,0;%,%) + 3,88, 9)(8g, 055, m)) +r(E,m)].

d * 02 .
(8x,8u;8X,8v) - < ('&'E +A) E; (x - Ax - f Bju, - £), 8&x >

+ %—(—)— < x(T) - A(T)x(T) - i: (Biui)(T) - £(T), &x(T) >]R“

* 2 . _ _
§<1;i % (% - Ax ZBiui £), 6ui>

d *0002 el 1 _ _ i
+§<(d—t-+A) 2 (x Ax L B.u, =By, - f), & >

i j#i 1 d t
-z -ﬁ— <ZHT) - AMENT) - 1 B (D) - (Bv, (D) - £(T), &xM(T) >
i 3 1 R"
* 2 . i
+ZL I <B, *=(x -Ax - I B.u. -B.v, - £f), Su_ >
ik F 8 P I R E
+ ? < B: . %T (il - Axt - .z. Bju. - Bivi - £), 6vk >
i i j#i

We now substitute (1.7) into the above and note that



(1.13) J'(x,u;X,v)  (6x,8u;8X,0v) - <L p0,6x> - Z-<Bi Pg> Gui >
i
A i 2N kPN
~Z <L P8 > 1 L < Bop;,8u;>= Z<Bip;,evi>=0,
i i j#i i
we get that the solutionm of J'(x,u;X,v) = 0 can be found by solving

(1.14) [J"(:?,G;fc,w?)(Eo,no;‘él,nl) + o(E,M)] © (8x,0u;6x,8v) - <L*co, x>

L <B g ,8u,.> - Z<L*Ci,5xi >-L IX< B.}.‘Ci,su. >~ I<Bigh gy.> =
. i70° 1 . 1 . s ge 1° 73 . i’
i i i j#1 i

Note that all the <, > _ terms on the RHS of (1.12) disappear because of
R

the arbitrariness of &§x(T) and &§x*(T). By (B5) and (B7), we have
r 9

r-
de © 0 0 lgo

wed A, ~ .r -
(1.15) J (x,u,z,v)(EO:no,sl,nl)
0 0 mo 0 noi
(0o o o M | N,
Therefore, from (1.14), we get
[ AoEy = Lo, = =r. (E,N)
0°0 070 17
% 3
AN L I
(04151)1 051 1'2(5,“)
(1.16) J
i ow *# i _ _d
an,n,) B;Sy = I BjCl = 3(«E,n) , LSign,
j#i
Gﬂln )i - B*Ci = -r, (E,N) 1 <i<N
\ 1 i’1 472 ’ =1 3 N,
where r), Ty, T4, T, are the respective components of r(£,N) and the

superscript 1 denotes the i-th compoment.
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Combining (1.16) with (1.7.5) and (1.7.6), we get the following nonlinear

"matrix' equation

(1.17)

wherein

2

> B2

0 0
0 0
mo 0
0 anl
dBl 0
o‘
)6 8
o -8,
-8, 0
s‘Bl "Bz

We further abbreviate (1.17) as

g

(1.18) D_|n

c

A o -*
o M &
I B oI

-L
* x
qsl 052 n0
%
0 n
€° C
-i-I 0 ; 0
El !
3L e
0 fo :‘e—N]Jn la
2
e s s e -BNq
_BN
| B
..... 0 .
£ 0 -Sl(i,n)
n=o * -;2(E,n)
d P 0

.-rl(g,ﬂ) )
-rz(g,ﬂ)
-r3(§,n)

-ra(g,ﬂ)
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where
0o 0 # O & °
oA = , = , A=
0 Gﬂi 0 z@_ éb, 433
L 0 % 0
~ [ L I R
L = . L = .
0 *f J(N+1)x(N+1) 0 ¢ L* (N+1)X(N+1)
—8 1
0
-Z—I 0
€
_2_1.1
I = .
€
N
0 TT L] (N+L)X(@+L)
_Soa ]
2 Po
'rl(i,n) r3(£,n) e -
;l(ggn)f s ;Z(E,Tl) = ’ EE = '2'""P1 .
rz(g,ﬂ) rh(g,n)
o .
\ 2 pN4

By (A5), D is a closed linear operator on (Li x [Lﬁ]N) x (UxU) x (Li X [Li]N)

. . - 1 1 ;N 1 1IN
with domain  dom(D ) = (M x [Hg]™) x (Ux0) x (W o x [H I,
Lerma 1.3 Under conditions (A5), (A6) and (A7), for all €gs€psre sy > 0
sufficiently small, the operator De introduced above has an inverse and

-1
(1.19) HD€ l| < K4

for some K4 > 0 independent of eo,el,...,eN.

-



. o 2 o2 L2 [ 2)N
Proof: For an arbitrarily given (a,B,y) € (Ln x [L|7) x (0eg) % L x [Ln] ).

. . P o3 1 13N 1 1IN
we wish to find some (§,n,g) € (Hon x [Hon] ) x (UxU) x (Hno x [Hn(J )

such that
Mk
(1.20) D n = B i,
z Y
or, in detail, 3
Ae -t = o
(1.21) ML +BT = 8
I B +IT = .

Let &(t,s) be the fundamental n X n matrix solution satisfying

3% o(t,s) = ACE)O(t,s) ,0<8<tE<T
d(s,s) = Inxn'

It is easy to see that L 1is invertible with inverse

¢(t,§) 0
~=1 t SN
(L) "2 = 6' ‘.
0 ¥(e,s)
(N+1)x(Nx1)
Thus, we have from (1.21.3),
(1.22) E =t @i+ IZ-Y).

Substituting (1.22) into (1.21.1), we get

11

A(s)ds.
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v - ~ . ~ -
adu}srw AL lle- IVE =a+dly.

The integrodifferential operator Z"-AZ-]'Ie is easily seen to be invertible

for g = (eo,el,...,eN) sufficiently small, thus we have
(1.23) L= ()T IR - ).
Substituting (1.23) into (1.21.2), we get

(e " - ) AT B = 8 + B (L S i TR IS O

Now we invoke (B6): since M is invertible, if @ is relatively smaller

than M such that
o~k ~— -1, ~
(1.24) m+ d;(z. -fL lIS) é?[, 10'3 is invertible

(for € sufficiently small), we have

~1
(1.25) n=J (8 + &L @+l
where
~ S P ~ g el
(1.26) JE =M+ B -HL lle) ATB, L= 147 I

Using (1.25) in (1.22) and (1.23), we obtain

g o= e - 1 N TRET! - D]+ B - 1 WIS s

+ (@6 AL - 1 1 T BE T - T )

€ € £ €



g =10 (G BB - Do +ALBI8 + GUBETT - DTN

Therefore, D€ is invertible, with

~

Z-lm;]w*z;-l Z-lw-l + IEZ;}
€
~=], =l Fn
+ Il L bg L~ D] ,oqz-bj::l]
D;]' =
-1 %~-] -1
- Joae J-
W - D oS!

Since each entry of the matrix D;1 is bounded, we have proved that D;

is bounded for € sufficiently small.

We will need the following lemma from [6]:

Z-%Q&f;%j*zgéﬂz -1+ Ieze
AT RE T - 1Y

1 =l =1
Je 3 Leodz.
uZ‘Jeca*Zgl .

1

13

-1

Lemma 1.4 Let # be a given Hilbert space and T be a densely defined closed

linear operator from dom(T) ¢ # onto X with a bounded inverse || T-1I| e

and let r(x) be a nonlinear (Fréchet) differemtiable operator on # such

that £(0) = 0, [[e* GOl £ <,
” a“ s é , the equation
4c1c2

Tx = a + r(x)

| x| for all x € H. Then for any a € ¥ ,

has in the sphere || x|| < 4c1|]a || a unique solution % € dom(T) satisfying

~ C
1% s 2 all.

We note that although in [6, p.6, Lemma 2] , it is assumed that T be

bounded, a careful examination of the proof shows that that assumption is

redundant.

-1
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Using T = De’ e = K4 and c, = Kl in Lemma 1.4 and applying it to

(1.18), we obtain that for

Bl 5 on
Lnx[Ln] 4 14 ’
which is clearly satisfied if
. 2 2 ~ ~
0<jgN sz[Lz]N
n

. . 2 o 7 1 9N+l 2 1 yN+1 satisfying
(1.20) has a solution (&.,N.,C.) € [Hon] x U° x [HnO]

| A ~ A K[‘_

[(E.,n.,5 )l < — (max e.) || (-p,,p) ||

€Ye’’e [L2]N+1XUZX[L2]N+1 4 0<j<N 3 0’ [LZ]N+1
n n- == n

From (1.7), writing

X =x+¢ X =X+¢

Xe EE,O > EE,I ’

u. =u + ns,o s Ve BV + ne,l s

2_'(5‘8 - A% -zBiGel-f)=£ +SO

) 1 ? €,0

2 '.‘].. ’\]., ~ PS Ai ~ <

— - - . - . - = - - . l1=1i¢:= N

e, (g - Axg J‘;*;l Biue 5 7 BiVe,i £) “e,1 T Py o

we obtain that for

2 g ~ "1 A~ A
max . < [2K K- ( ) (il - = le,,al ,




15
~ ~ A l

a point (xe,u ;X ,vs) € Hyo

1R
x X 1
X 1) [HOn] x U has been found for which

Je(xe’ue Xe:’ve:> = 0 and

Hg, - 20, =18 ol , <l Euig.Ell
€ Li €,0 L2 €’'e’’¢ [L21N+1xuzx[L2]N+1
n n n
A ~ A
< — (max e (a0l ;
4 0<j<N J 0 [L2]N+1
similarly,
%
6. - Gll, ¢ == (max )] (0]l
€ U 4 0<j<N h| 0’ [L§]N+l ’
~ ~ 4
Il % - x]| $ 7 Cmax el (3.2l
SRR S LYY N 5
A A K4
v, -V < — (max e.)]|| (8,0 |l
” € ”U 4 0<j <N j 0’ [ §]N+1 !
. Ky,
2 A ~ A A PN
| == (X.- Ax. - £ B.,u. ., - £) - p < 2 (max e) ]G0l
& € € § i€ OllLi 0<j<N 3 0’ [LZ]N+1
2 ai_ ai Ao oy oen
He G e = B B30, 8%, = 0 - B
n

K,
< — ( max €; Y B,y DP) .
4 0<J<N 0’ ” [LIZJ N+l

The proof of Theorem 1.2 is complete.
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Remark 1.5 From the proof given above, we see that assumption (B7) can be
relaxed; we need only require that the mixed partial derivative operators

BXBXJ,axauJ,...,etc., be dominated by B;J, BiJ, 3§J, aéJ at  (%,9;%,9).

Remark 1.6 Although J.(x,u;X,v) 1is concave in (X,v) for all €p2€1s - 2Eys

in general it is not necessarily true that Je(x,u;X,v) is convex in (x,u).

Thus (ﬁs,ﬁe;ﬁe,Ge) need not be a saddle point for J.- Compare Lemma 2.2 later.

»]

Corollary 1.7 Under the conditions of Theorem 1.2, assume, in addition, that

J(x,u3;X,v) 1is quadratic in the sense that
J(%,0;%,v) = J(x,u;X,v) + 23'(x,u;X,v) * (%-x, G-u; X-X, ¥=-v)
+ < J"(x,u;X,v) ° (x-x, u-u; X=X, v-v), (x-x, 0-u; X-X, v-v) >
. e 1 1 1N .
holds for all (x,u;X,v), (x,u;X,v) € HCn x U x [HOn] x U. Then Theorem 1.2(i)

can be strengthened to

(1.27) ., 658,90 - GG, < K (max el Gaup) i
e 189 Ve U 4a, had . s
€ H 2 0<j<N ] 0 [Li]N+l
for all EO’GI""’EN sufficiently small.
Proof: Since J 1is quadratic, so is Je’ Therefore r(£,n) =0 in the proof

of Theorem 1.2. By (1.18), we have

.ge. o
(1.28) D, |7, = 0
I Ee J L 13e:- )
Thus
10 Eesfies | T < I

2 1 )
[Li]N+le2x[Ln]N+ [L§1N+l
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For €+ 2€y sufficiently small, it is easily seen that there exist

KS‘ K6 > 0 such that

(1.29) I €,n,2)]|? + || p_(g,n,0)]|?
KS [Li]N+1xU2x[L§]N+1 € [Li]N+1xU2x[L§]N+1

> K6||(5,U,C)||2 1 N+l .2 r.1 N+l
[Hon] xU x[Hno]

for all (&,n,%) ¢ [Hén]N+1xuzx[HiO]N+l , thanks to the coercivity

I Zel2 > KlEl? 1w
[, 1" L

2l s 2 el
n0 n0

Combining (1.28) and (1.29) with Theorem 1.2(i), we conclude (1.27). a

§2. Penalty for Linear Quadratic Differential Games. Finite Element Error
Analysis.
For each (the i-th) player, we let his cost functional be of the same

form as in [4]:
— T 2
Ji(x,u) =% % [lci(t)x(t) - zi(t)l + < M (B)u, (1), ui(t)>] dt.

By (1.3), we have
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N T
(2.1) J(x,u;X,v) = % ifl é [lci(c)x(t) - zi(t)lz + < Mi(t)ui(t), ui(t) >

- le ()% (e) = 2,(6)]2 = < M (EDv, (£), v, E) >]

1 . 1 oi i
+ = le - Ax - Z B.u, - £ IIZ- r= |l x* - Axt - ¥ B.u.
%o i+t i ei“ #0033

- 2
- Bivi f“ .

Consider
min max Je(x,u;x,v).

(2.2)
(x,u)éH(])'nXU (X,V)X[Hén]NXU

Using the notations in {1, we have

% %
=932 3 = .
040 < J=CC + .t CC

171 NN
[c*c 0 |
171
= 2 = - ) M
‘ﬂl ax J ‘.
M ¥*
| 0 CxCy ]
M1 0 Ml 0

mﬂ=323= , =32 J == .
u . .
0 My =2 0 My
*
From now on, assume that the operators Cici’ 1 < i< N, are all invertible.

Then ., -041,77{0 and —ml are positive definite, and (BS) will be met.

For any given (x,u) € Hén x U, define

(2.3) je(x,u) = max Je(x,u;x,v)

(X,v)€[Hén]NxU

if the maximum 18- attained.
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Lemma 2.1 (i) 3e(x,u) in (2.3) is well-defined.

(ii1) 1If Bl""’BN are relatively smaller than Ml""’MN’ then 3é(x,u) is strictly
convex in (x,u), and
J _(x,u) =+ =,
(2.4) ||(x,u)1|jf:1 U e 0
On
Consequently, min je(x,u) has a unique solution.
(x,u)éﬂénxu

Proof: Since J.(x,u;X,v) 1is strictly concave in (X,v), negatively coercive,
i.e.,
lim J (x,u;X,v) = =@,

| o)l €

we see that for any given (x,u), max J.(x,u;X,v) 1is uniquely attained at some

(X,v)
(ﬁe(x,u),ce(x,u)). Solving max Jeg(x,u;X,v) 1is equivalent to solving
x,v)
. 1 . .
(2.5) max - ; [Ji(xl’“1’°"ui-l’vi’ui+1’""uN) t e H £ - axt
CROTI P % t
- - 2
—j;:i Bius = Byv, - £ 1z].
For any given u we choose #! NS, v and v, such that
1""’“N’ seceaf 9Vys VoseeenVaag N
21 ~i ~ ~i .
(2.6) X -Ax - L Bau,=-Bwv.-£f=0, x(0)=0,1i=1,2,...,N.

P s R A

Then

~i ~ 1 :-i "‘i
[Ji(x ’ul""’ui-l’vi’ui+1""’uN) t e ||x - Ax

- I Bju, - BV, - f 2]
j#i
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1 ~
- f Ji(x ul,...,ui_l,vi,ui+l,...,uN) .

From (2.6), we have

~i £ t ~
ey = fote,e) [ I Balusted]as + fote,0)[5;(0)7;(a) + £(a)]ds.

it
Thus
(2.5) > -fJi(:zl,ul,...,ui_l,ai,um,...,un)
= -3 {]|ec.¢( }:4’(!: $) [ I B.(s)u.(s))ds +f (t,s)B. (s)¥. (s}
: itg Ut I 0 SRRt ARl é At
j#i
+ f(s)]ds) - zi(t)H2 + < Mivi’vi>} .
Hence
Tk =L 3, (xu) +i= |12 - ax - L Bu, - £l[2+ (2.5)
g™ . i € . 11 :
1 0 1
> {z[llc.x =z, 0|2+ < Mu,,u.>] + L | % - ax - £ B.u, - £]|2
< : i i i1’ € P e 1
1 0 1
[ e, | Nk
- Jle, S o(t,s) [ £ B.(s)u,(s))ds|[*}
to #0040
t t ~
-2{<¢c [ o(t,s) .2. Bj(s)uj(s)ds, é Q(t,s)[Bi(s)vi(s) + f(s)]ds>} ‘
1 0 J#l
+ remaining terms involving only ;i and £.
As ||(x,u)|| 1 + » , the first parenthesized term, which is quadratic,

Bon'

dominates the second. Since we have assumed that Ml""’MN are positive
definite and sufficiently larger than B;»---5By, we see that the first

parenthesized term is positive definite in Upseee Uy Hence (2.4) is proved. O
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Lemma 2.2 If Bl""’B are relatively smaller than Hl,...,MN such that

N
Je(x,u;X,v) 1is strictly convex and coerive in (x,u) for each given v, then
the saddle point property

(2.7) min1 max, J (x,u;X,v)
(x,u)ely xU (X,v)é[non] xU

= max min Je(x,u;x,v)
x,v)€[ad |Mxu  (x,u)ea xu _
? On Bl

holds for all e.

Proof: We know that Je(x,u;x,v) is always strictly concave and negatively
coercive in (X,v). From the proof of Lemma 2.1, we easily see that when
Bl""’BN are relatively smaller than Ml,...,MN, Je(x,u;x,v) is
strictly convex and coercive in (x,u) for each given (X,v).
The saddle point property (2.7) follows in the some manner as the proof
of Theorem 4.4 in [4]. -
Now it is not hard to see that all of the assumptions of Theorem 1.l are

met, and by Lemmas 2.1 and 2.2 we see that the saddle point (ge’ae;ﬁe’se)

is determined by solving

axJe P ~ A A = 0 ?
(xgsugiXesVe)
3 J =0
el A A~ a a ’
4 (xgsug;Xe,Ve)
0.J =0
x € ~ ~ A A ’
(xe’ue;xe’ve)
avJ A A A A = 0 *
¢ (% rug;Xesve)

Thus we can make a direct variational analysis on Je and obtain
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Je(xe,u ;Xe,ve) * (8x,06u;0X,8v) = 0

€

N . .
A A AL 1
= <C. -z, . . . . D> - . - Z. .
.2 [ Clx€ zl,Cl(Gx) > + < qus l,6u1> <Clxe zl,Cl(Gx ) >

i=1 ?

-< MG L,ovo] v2 k- AR - IBE_ . - £,6% - A(Sx) - IB,(u;) >
L B.u -B.v. . ~ f,aii - A(Gxi)

- Z .(8u.) - B. .
it BJ( uJ) Bl(le) >

for all (68x,8u;d8X,dv) ¢ Hén x U x [Hén]N x U. This gives the following

variational equation

r§€1 "% ] [ 6% ]
4. Su Su
(2.8) a ( s )= 06_( )
€ & X € lsx
Loe ) SV | [ SV ]

where a, is a bilinear form defined by

£, ] sz-
H H2 N .
a_ ( ) = <C. E > RTH - <c.z+, ¢,z
€ z, ’ Z, 151 [ C;8:6:8> * HiMp,ie Mg Ci=p0 6557
L Wy L V2
2
- <M . > += < - Af, - .
V1,i0 Vp,i ] g, <51 T AR T EBW 408 T AL, - I B>
-z I L Z B.u - B.v i A=i Z B.p - B,v >
- : . ? - — .
i & 1 1 e J71,] 171,17 72 2 o] jt2, 172,1

and ee is a linear form defined by
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13
e_ ( E ) = L [< z.,C.5> - <z.,C.Ei>] $ 2 £, £ - Af - L By, >
€ = i 1" 1 1° 1 Eo 11
\VJ
-z Lo, it ozt - 5 B, -8By, >,
i € j#i i%]3 i1

z .z .z 1 11N
for (g)ur-,\’), (Elsul"‘lavl) and (Ez:uzs"z’vz) € HOHXUX[HOﬂ] X

We assume that 3T > 0 such that for all € sufficiently small, a_ satisfies

g1 &,
(H1) inf sup a_ (1M}, 2 1y >T> 0.
Ez i-gl El Ez
M, M1 Vi vy
e gt 0] e
v v,

How realistic is the above assumption? This is partly answered in

Proposition 2.3 If Bl""’BN are comparatively smaller than Ml""’MN’

then (H1) is wvalid.

Proof: For any given (El,ul;El,vl) € H with unit norm, if we choose

(112

€ [HénJN such that

ii ot 21 ~i
2.9 E7 - AEC - I B, - B.v, ., = =& A_ + I B, + B.v, .
(2.9) 1T T 1,5 "BV, TR i 1,5 * BV,
thus
HOEEC GRS f o(t,s) [Jﬁz By o *+ Byvy glds,
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then & |29} gl gl
1
(2.10) sup a (|H Hafy > ( W, il )
€ = {'1= = ( g, = ’
£, E, z, ” €1 JHIS 1, P” z, z,
I H2 | -1 vy V2 v, v,
21" H
Vg
1 N
- Cr e, cgpove My ;w02

| ErumpsEr,-vnll,  i=t

t

+ < CE 1, Ci[ -2 é o(t,s) (Jil Bk o+ Blvl’i)d3]> +My) L, vl’i>]
s 2|8 -ag, -5 B 12 vz lEoazt - 5 B L -By, L2,
EO 1 1 i i"1,1 i Ei 1 1 j#i J 1,3 il,i

But

t
i S z >
&1 ZCi 3 (t,s) (j¢i Bjul’j + Bivl,i)ds

1V

e R e A A O

. t
5% e.8%%-2 zlle, S ®Ce,s) (£ B.u, . + B.,v. .)ds|l?.
Pl -2 glleg o (2 a5 vny el
The second term above can be absorbed into a fraction of

z [<Miul,i’ H1,i > + < Mivl,i’ vl,i>] provided that Ml,...,MN are comparatively
1

larger than B ,BN, i.e., we have

12"

N
1
= af I |[<C.E, CE >
I g~y 5k [<o;e)s oF)

(2.11) LHS of (2.14) >

< M.y, . >+ < =i 2 e -
My ge By g > F <G B, G >+ < MV 50 V1L >]+ & g, -ag

- % B, 2 o B.u, . -~
L By 5ll% + E & Iz - jgi M1,3

%

1 1 i

for some a: 0 < a < %.
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Let B € (0,1) be fixed. For the terms on the RHS of (2.il), if

(51’“1331'°1) satisfies

1 : - 2 o 2
o g, - ag ; By ;17 28l gy - ag 1)
(2.12)
1 :‘:i - =i - - 2 -;:-i - :i 2 PR
& Iy - a5 jii Bay - By gll® 2 BlET - agll?, 1=y,

then we easily observe that
(RHS) of (2.11) >T>9 , for some I' independent of (gl,ul;sl,\’l),
is satisfied.

If, on the contrary, say, for i = 1, we have

(1]e

1 - N 2 -
(2.13) & [ A:i-jfznjul’j - Blvl,lﬂz < B |l5] - a3

while the rest of (2.12) remains valid, then (2.13) gives

* N L ] L ] p—
(2.14) ||s{— AEiHZ -+|lj£2 By 5 * Blvl,luz < Be [|5] - As}]|2 + 2 < 5} - AE],
N
B. . B,V >
jiz 1,5 * BiV1,n

N ) N
- Sl _ ARY2 4 || 3 2 2l o AELlj2 s 2
(1-Be ) fl&] - A= Hj=2 Byby,y + Byvy,1ll® =%l - A3 + 4”j=23j“1,j + Byl
. N
- - Sl ARL|2 2
(1 - Bey = %) [|=1- AE|2 = 3 Hjiz Bykp, 5 + ByYp,ql%

Hence

N 1 l .
2 - - - =l . az=ll]2
I j§2 Bjul,j + Blvl,lu 2 3 (1 351 4) ||~1 1” .

Because M., 1 < i < N are positive definite operators considerably larger than

B., 1 < i <N, we have .

i’
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(2.15) Q'E [<Mi“l,i’ Mgt <Miv1,i’vl,i] > || jjé Bowy 5 * Blvl,lll2

for some @';: 0 < @' < 1. Therefore, for some ¢§" < g, " >0, we have

(LBS) of (2.11) > i L oz [<c,E,,CiE >
EpupsE,-plly i
i
R T P O T v 5oV )
slojl & -ag -z N7+ D sl £ - adi?
LIS I LT 2, PlE 1

1 TS -
+3 (1 - Bey - Z)ll:;- ICHI RS

Hence the LHS of (2.11) is again > p> 0 for some [, independent of

(El,ul;El, vl) and €pr e s Sy Therefore (Hl1) is realistic. a

We now let S0

h C Hi(O,T) be a (To,l)-system ([l], [4]) and let

S; c Li (o1T), 1 =1,2,...,8N be (T,0)-systems, and denote

i
0 N ¥ 0 Ny
(2.16) S, =8 x (I 8)x (I 8 )x ( II s)
h h .. °h .. "h . h
i=1 1=1 i=1
We assume, furthermore, that
- .h r.h 1
g ] &
Uh uh
(H2) inf sup 1 2
F h - h ag ( . ) 3 Fh 2T >0, Yh
1 =2
h h
) U N W
I =t |l Il =1 Re! 72 ]
ch =h
=2 1
h h
| Vy LV
h h_h h h _h__h h

wherein (El,ul,:l,vl), (gz,uz;:z,vz) € S}, It should be noted that if

26
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B,,...,B . are sufficiently small compared with M ...,Mﬁ then (H2) is

1

also valid.

N

We consider
(2.17) min max Je(x,u;x,v).
(x, u)éshx( H S ) (X,v)e( H S Ix( H S )
1=1 1-1 i= 1

Arguing in the same manner as in the early part of this section, we see that

(2.17) leads -to finding the solution (xe,ﬁg,ﬁg,vh) of the variational equation

B e 5t
~h h h
ue Su ) Su h-h .h -h
(2.18) a_ ( s ) = ee ( ), (8x,8u ,8X ,8v ) € Sy *
es sx® sxP
B B A | svh
. i I
Let {¢t°}?° {¢11} L {¢ } -1 be a basis for Sg X Si X ,e. X Sg.
10=1 11=l

Then (2.18) is a matrix equation ﬁg ah = 52 , where the matrix ﬁg and the

vector 52 have entries

[ﬁg]ij = a (%) 3 Wya¥5 € Sy

- ~ ~ i
~1, ~i ~ N
b=, (¢11,...,¢ ), @, 7 P2 T, @i,y )

. . j -'.' -‘7 -'.' ~7 ~".' J
L S PR e N (R S PN O P A AP )

=h .
Bl = 6,905 v; € S,

N
for all 1, j: 1 <1, j< (N + l)Io +2 I 1I., where in the above,
i=l
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i 3 1 Ay 1 N iy *’ 1. 1

0 0 1 0 1 1 1,1 .
q"o b ] w » ‘po s ey wo 6 {‘PO } 1! qll ? \‘/1 ’ ‘l’l ] \{/l € {¢1 }il=l; ee 0y
b oo Jw N IN
LA w € {¢y

Blockwise, we can write

- -h - ~h
B, W, H,3) HaL,e)

i#(2.1) (2,2 #(2,3) 2(2,4)

Mz =
- -] —h -
B, G2 BREn 16,
- - ~h -
| e, 1,2 #(4,3) 4,8
~ =<h
Ge(l)
=h
_ 6 _(2)
5 = € ,
=h
6€(3)
=h
, A 68(4)
wherein
vl = 3 1o Jo 2 iy i 5 io
[JMS(l,l)]iojo k£1[< Ckwo’ Ckwo >+ e <Py Ay Y, ¢0 - Ay >] :
L <igsdg S Ips
i i :
- - _ 2 o0 0 ng _ .
[l{}e‘(z’l)l max(l,l-l) = -e-(-)' <¢0 A‘po', Bl‘pl >, 2; - 1,2,...,N,
io £ I.*sgn(j-1)+j,]
121 3
]
a
if a#0
lgioglo; 15525115 sgn a E{m
o if a = 0;




M2(3,1) = 0;
H2(4,1) = 0;
[ (2,2)]
max(1l,4-1) mzza:x(l,p-l)
<j§1 I.-sng(j-1)+ig)( 2 Ik'sgn(k-1)+1p)
i i i i
= 2’ p>+ 2— 2’ P - - - 2_
6P£<M2'\p2 , wp 5 < By, qu;p > igl(l 619.) 1 sip) =
b N
i i
. % P
< Bzwg , Bpwp >,
l < ’ oQ' < N; i . : .
=P 22 Pehp sy lod <L
[@3,2)]
m%x(l,ﬂ,-l)
(j=l Ij-sgn(j-l)+i2)(sgn(p-l)‘(p-1)10+ip)
= (1- 2z Y 'ip_ ..
(1 spg) ) < B,y ¥, Awo >3
1<p,8 <N; 1% ig <L 1< ip < Iy
M P4,2)]
(max(l,l l)I.-sgn(j-l)+i )(mg'}‘(l’p—l)lk-sgn(k-l)*'i )
1= J L k=1 p
J
- - (12 2 il ,ip
Q1 sz) e <Bo¥y ,prp >
1 <p,8 <N 1< 12 < IO’ 1< lp < Ip'
[©(3,3)] _ _
(sgn(l-l)'(2-1)IO+12)(sgn(p-l)'(p-1)10+1p)
i i i i 1 i
a - 2 Po_2_ 0% _ X 2P _ a0 P,
? < Cbo 7 Cgbg > e, Yo T A Yo T A >
1 <p,8 <N 1< i < IO; 1< lp < Ip;

29
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[4,3)]

max(1,p~1)
(sgn(z-l)‘(2—1)I0+i2)(k£1 Ik'Sgn(k-l)+ip)
. 2 ‘il il 'ip_ ip .
5P2. Ez < \po A‘po :‘Pp A‘JJP > 3

Lgp,l SN 12ip Iy 1<i <1

[ (4,4)] - ma(Lph)
€ (mg"(l’l’ 1)1j~sgn(j‘1)+ig)(.2 i

=1

j°sgn(j-1)+ip)
i=1

i i i, 1
= - 2— 'Q' p 2" p .
Glp[ez <Byly"sBoUL P>+ <Hpu i >]

1<p,2 <N; 1¢1

o
and ﬁ%(q,r) = ﬁg (r,q) for q < r, 1<q,r <é4;

N . . .
=h i 2 o] 1 .
- . R ——— O - .
[es(l)]io i£1< 2;,C;¥p0 + = <f, Go- aplo>; 1< g < I
i
[52(2)] = - %— < f, Bzwlz >
(mgx(l,ﬂ-l) I.esgn(j=1)+i ) 0
j=1 J 2
1 <92 <N; 1< 12 < Il;
—h o b 2 T AT
[96(3)]((2-1)‘sgn(2-1)'I0+i2) "<2g0 Co¥y 2 B <Es Yy~ AT >

1 <2 <N 1

IN
H
A
[l

L -0
max(l,2-1) €y L 'AS A
(: Ij°sgn(j-l)+i2)
j=1



Theorem 2.4 Let {sh } be a one-parameter family of finite element spaces

as mentioned in (2.16). Let (xe,ah xh 82) € Sh be the solution of (2.18)

~

Assume that (xe,ue,xe,se), the solution of (2.8) (or (2.2)), belongs to

8, N s, s, N N s, . nm
Hn x(IIH ) X ([ ] ) x (I Hm ). Let (x,3;%,v) be the solution of (1.2)
i=} i=1 i

Under (Hl) and (H2), we have

2.19) &2 =&l [+ 18- Gy IR - KD Ly + ISR -
H [°]
n n
K
1 8
< 1+ F-Q—IE,;F'N—-E:: ”(x S’V )
== s1 8, s,N N s,
H_x( H H )x[H u x(COH )
i=1 i i=1 "i

+ K (max )0 G0
2 0<j<N J 0 EL§]N+1

for some constant K8 > 0 1independent of h,€ and (§€,G€;ﬁ€,3€), where
H= min(To-l,T,Sl-l,sz), (ﬁo,ﬁ) is the dual multiplier, and Ké is the same

constant as in (1.27).

Proof: We use the triangle inequality
(2.20) || &h,62:80,90) - Q&89
AhAhA A A A A A A A A D A
< M2, el 2,0 - GLLagk., vl gt PR, 0) = G619 -

Since a€ satisfies
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la 4.0 < === llolly [lvlly

min E:
O<1<N

for some Kg > 0 for all ¢, Y€H, by assumptions (Hl) and (H2), and

[1,p.186], we have

K

Ah Ah /\h '\h .];-——.—8—— u

(2.21) ll( 3% V) - (xé,ue xé’vé)I'H s @+ p min €i)h
0<i<N

'” (xe’vé Xé,v )” s, N s, s, N N s

1 2
Ho TR Ix[E ] x(IH ).
Bog=p M R ] i=1 M

with u = min((TO-l),r,sl—l,sz).

Combining (2.20), (2.21) and Corollary 1.7, we conclude (2.19). o
From Theorem 2.4, we see that if
lim +0“ (xe,ue,xe,v )” 8 s, N : . 32) <®
EOionogsN H X( n H )x([H ] % 'I—I Hm.
i=1 93 i=]1 i

then the error estimate is of the order of magnitude

A A “
(2.22) II(“h Gt Xh “h) - &880, = « mig — + max g), Ve, Vh.
ocicy 0sisN

Thus if we choose 80'=€1 = .. =gy Z € and ¢ =(9(hu/2), the RHS of

(2.22) is optimal and we have

I &2,6888,80 - ®a2.00, =0a".
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§3. Duality and Penalty
The relationship between penalty has already been indicated in Theorem 1.2:
we see that the Lagrange multipliers 30""’§N are actually the strong limits
of (some scalar multiples of) the penalized differential equation, and the rate
of convergence is J(€).
Let us explore this relationship a little further here. Consider, as in (2.2),

min max Je(x,u;x,v)

(3.1)
1 11N -
(x,0)€H; XU (x,v)E[HOn] XU

N .
= % 1il[l| Cix = z Il +<Miui’ui> - “ Cixl - ziuz -<Mi.vi.’ vi>
2 I.i i 2 1 . )
- —jlx" - A" - I B.u., - B.v. - f“ ] +—”x - Ax -=B.u. - f” .
i i 33 11 € ;i

We can regard the above as a primal min-max problem subject to constraints

x = %F X, il = %E xl,..., iN = %E xN. Thus, formally, we introduce Lagrange

multipliers PgsPys+- Py and consider

(3.2) max min min1 max1 Le(po,p;x,u;x,v)
2 24N \ N
poely  pe[L ] (x,u)€H XU (x,v,e[uon] xU
where
d . N i ed
(3.3) Le(po,p;x,u;x,v) 2 J(x,u;3X,v) *<Pgs FL X T X> 4 i§1< Pjp» g X~ X >,

p = (pl,...,pN).

For given PysPys« - sPy € Hio, proceeding formal variational analysis as in

[4], we get
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“* ~ - -~ - * ,\i - ]' - ~
E {<~..i(Cix€ zi),6x> +<Mi“e,i’ Gui> <Ci(Cix€ zi), Sx™ > <MV 5vi>

i=1 &i’

o R A~ ~ . *:. Al n N
_%.[q? -Ax . - IB.u_.~B.v_.-f{, 6x1>-<A(xé-A:5]é- £B.a_. - £), &'

€ ¥ e g
P Prias B AL 41 3 o
- z<3’?(ié -akl -z B kg ~ BV ) <Su.>-<13’;(:’ii€ -axk - g B, G
i 9 KL J kfL © K
- B,v.. - £), 6v;>]} +2—-[<§.E-A;:-§Bﬁ g, s> - a*G - A
§1 ! € € € o1 3 &3 ? € €
0 j=1
-ZB.u_., - £f) 6x>-§<B*(§ - A%. -LBda. -f) 5u>l <p §x >
s s\&e e s s - )
; igi j=1 J Kk k™8k ] 0
d N i d i
“<qe Por 870 I (<p;0 8%%> +<gppy, 8] =0

Thus, we get, for i =1,2,...,N,

(3.4) 5 C(CR -2) -2 A"k - ax
3 31 i % €

% l\i 2 = 21 Al PN A
(3.5) -C.{(C.X_ - z.) +=—A (X -AxX. - L B.U..-B.¥_ ., = f) - =~ =0
1 1€ ei € £ 3¢ 1§] 161 dc Pi
A 2 * 2 A " * A A A
(3.6) M.G_., ~= B.(X -AX -IBG ,-f)+ r =—|[B.(x. -4 - I B
iei gy 1€ e 1 gl j#i € € € kA k gk

(3.7) -M.¥_. + —
(3.8) - +-2—-(;.E -AX -IB.G .-£)=0
* po € - . .

2 2
(3:9) ~py =g G- ARD -z B =B -0 =0 L 1lgigh
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Substituting Pg» Pys---2Py from (3.8), (3.9) into (3.4) - (3.7), we get

N
d o % * -
(3.10) 5T Po = "A P + iil c; (C;x, - zi)

and for 1 =1, 2, ..., N,

(3.11) d _ ¥ * A1
TP = APy - O (Cxp - z))

S I
(3.12) Uy = M. B.(py + I pj)

(3.13) v

]
1
=
w
-

ef i °iPi
wherein for P;» i=0,1,..., N, the terminal conditions pi(T) =0 has
been imposed.

Comparing (3.10), (3.11), (3.12) and (3.13), respectively, with [4,
(3.9), (3.6), (3.10) and (3.7)],we find that they are correspondingly

identical. If we assume as in [ 4, (Al)] that

%*
(3.14) C.C; (1 £ i <N) are positive definite,

then we have

(3.15) ?:E = Eal(fp + A*p + f Ci‘"‘i); T, = i c"i‘ci;

(3.16) e = Aleg' + A" +rzcz)) + 2 B, [M;'B; (p, + Iop) 4 ;—0
i i j=i

(3.17)  %i = ~u; (p; + A'p; - Cizy); € o=Cc, lgigh;

(3.18) :’E:: = A[—E;l(ﬁi + A*pi - C:zi)] + jf‘i Bj[MJTIB’;(pO + kﬁipk)] + £

s 1<1igN.



Integrating by parts for the last terms <Pqe %E

. d i
X -x + §< pi, It X" - x>
1

in (3.3) and using (3.15) - (3.18) to substitute p,, ﬁi’ 0<ic<N for

Ai A1 AN /.\N ~ . A A
xe, xe, Xgy Xgyeers Xy Xy Uggseeey Uy Ve,],""’ VE,N, we get
Le(Po’p) = min max, Le(po,p;x,u;x,v)

(x, u)en1 xU (X v)€[H ]qu

1 . * -1,, * 1. - * -1, %
5 <Py * A Py Eo (p0 + A p0)> * 5 §<pi *+Ap,, T (pi + A pi) >

-l<p + £ p., S(py + Z p:)> +<p, + I p; ZBM-IB*p>
2°F0 Iy i’ 0 ;i 0 ; i’ : il i1

-1

* -1 *
- <
p0+Ap0, ‘EO

Z > - .
C z; I< p + A P;» mi Cizi
i=1 i

- <Py * IP;s f> - L < m (Z C.z

% % 1
£ 2 PR 1)’ ; Cizi> * 2 ? ”Zi“2
i i i

Fellegllz + 5 fsillpillz
which differs from [4, (4.3)] only by - % sollpouz +% L e I pillz. (The
i

term < po(O) + ; pi(O)’ x0> vanishes because Xy = 0). These two terms do

not affect the convexity of Pg and the concavity of p in Ee(po,p). Thus

we conclude that the dual of the penalized problem is just an E-perturbation

of the dual problem.

We compare briefly the amount of computing involved in the dual and the

penalty methods. Assume that in the error estimate (2.19) 8 and s, are
sufficiently large and that

éig I (xe,u Rs,v i s; N Sz s, N N s, =

ux(na x[H ] x(I H_ )
i=1 ©® i=1 i
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For simiplicity, we only congsider n = m ... Tm 1. 1In order

that xﬁ, the penalty solution, converges to X with the same rate as

“ﬁh - %|| in [4,(6.21)](vhere ih is the duality solution), we must choose

€ "1

= = £ ‘= ﬁ/z
L) ‘-N a(h )
, with p=p in (2.19) and U = 2y, vhere g is the same y in [h, (6.21)].

This implies that

10 -1=21T=u= 24.

Assume also that in [4,Theorem 6.2] that £ is sufficiently large so that p = 7t - 1.
Thus, using the same h = T/M in both approaches by dividing the interval

[0,T] into M equal parts, the finite element space Sy (in [4] Theorem 6.2)
has (N + 1) . (Mt +1 ) Dbasis elements, while the finite element space

S, in (2.16) has (N + 1) * (2Md + 1) + 2N[(20-1) M + 1] basis

h
elements, assuming that S; = Si = .., = Sg = a (§,0)-system. Thus the
corresponding matrix equations
(3.19) Maq = 8 (cf. [4,(6.10)])
=€ =€ . =€
(3.20) M9y eh (2.18)

have respective sizes
B (1) - (D) ]2

HS: (1) - (2M4) + 2N(2u-1)Me2N]?

Thus the ratio of computing time between (3.19) and (3.20) is

[ (N+1) (Mu+1) ]3

(3.21) (V1) (2Mu+1)+2N (2p-1) M+2N
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It appears to us that even after we take into account the sparseness

and block structures of the matrices <ﬁh and 'ﬁ;, the above ratio is still

valid asymptotically. Therefore we see that the dual method is much more

efficient than the penalty method, especially when the number of players

N is large.

Nevertheless, the dual method is feasible only under assumption
(Al) in [4], which requires the invertibility of cl,...,mN and is
therefore quite restrictive. Computationally, the penalty method is

not restricted by such a condition.
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4. Numerical Results

Example 1 We consider the very same example as in [4,§7,Examp1e 1]

( x(t) = x(t) + u (£) + 2u,(t) + 1, 0<t<T, T=rm/4
x(0) =0

T
4.1) 4 30w = £ ] x(e) - (eos £+ |7+ 5 o)) ae

J,(x,u) = i [lx(t) - sin £f? + 2|u2(t)|2] dt,

v
which is a 2-person non zero-sum game and is known to have a unique
equilibrium strategy for all T > 0.

Js(x,u;x,v) is given as in (2.1). We choose for Sg a (To,l) = (3,1)

system of quadratic splines as approximation spaces for x, xl and x2,

and for Si, 82 a (7,0) = (2,0) system of piecewise linear finite elements

h

as approximation spaces for U5y, and Ve

It is not difficult to see that comnditioms (Bl) -~ (B5) and (B7) in
§1 are all satisfied. We are, however, unable to verify (B6); similarly,
nor are we able to verify the validity of (H1l) and (H2) in §2.
Our numerical results are plotted in the following figures. We
LS -
= e = € =€ = €
use h 4/32 and € 2 .

0 1
-1 -2 -3

In the first three figures, we use € = 10 -, 10 -, 10 °, 1074

and 107,

respectively.
Figure 1 contains graphs of u,, versus time t, for various values of €.
Figure 2 contains graphs of u,.

Figure 3 contains graphs of x.

The trajectories i
] of U, U, and x versus various values of € cluster closer

and closer as € becomes small.
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Figure 4 shows two graphs of u;. The solid line represents numerical

data obtained from duality in [4], with (4,1)-cubics and h = %/32. The

broken line represents data obtained from pemalty, with (3,l)-quadratics
for state and (2,0) piecewise continuous linear elements for strategies
-3

1 = T € =€ =€ =
also with h 4/32, and 0 =51 =% 10

Figure 5 shows two graphs of Uy obtained in the same fashion as u; .
Figure 6 contains two graphs of x.

From Figures 4 and 5, we see that numerical results for uy and u, obtained
from duality and penalty show remarkable agreement. In Figure 6, we see
that the two graphs of x agree very well everywhere except at the initial
and terminal time 0 and T, where the duality graph is rougher and less

accurate,

We list values of ul,uz,vl,vz,x,xl,x2 at selected points in Table 1.

All of our calculations were carried out with double precision.

The wvalues of Je are obtained as follows:

J, = 0.5159708038688868 x 107" € =10
J. = 0.5698840889975811 x 1071, e =107
3 = 0.8583978319547797 x 107, e =107;

-3 A
3, = 0.3287468594749820 * 107>, € =107%
Jo = - 0.1245174244833003 x 107>, e =107,
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In the following table, we use h =-%/32 and use the following to denote

Pl: penalty solution with EIO=€1=€:2=10-3
. . =5
. € =€ = € =
Pz. penalty solution with 05" & 10
D: duality solution
1,1 L, 1 =3.1 =1
t=z's | *tz2°'z | *7i°'z | vt *°°T
-2.077473 =1.238577 -0.562432 0.000086
-2.078433 -1.239262 -0.562789 -0.004539
-2.064450 -1.229223 -0.556116 0.0
0.440848 0.285103 0.131847 -0.000053
0.441103 0.285264 0.131923 -0.002366
0.436094 0.281693 0.129746 0.0
-0.125946 -0.136808 -0.053823 0.118535
-0.125870 ~0.136707 -0.053713 0.118661
-0.126924 -0.137191 -0.053709 -0.250000

Table 1

Remark: The above are rounded-off figures with 6 decimal place accuracy.

Example 2 (The Primal-Finite Difference Method)

We return to the primal approach in Part I [4]. Consider the same example as

in Example 1:

(4.2) min max J(x,u;X,v)

(x,u) (X,Vv)
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wvhere (x,u;X,v) is subject to the differential constraints (DE) = 0,

[bE] = 0, x(0) = 0, X(0) = 0.

We discretize the differential constraints by the crude Euler finite

difference scheme.

x(t.+1) - x(t.)

(4.3)

Substituting (4.3) (and others) into (4.2), we proceed to solve the min-max

problem.

We use M =32 and h = %/32 and the primal approach to compute Example 1.

The following values are

h

obtained at selected points:

N
= Ale))x(e) + %
=1

For example, (DE) = 0 is discretized as

B.(ti)uj(ti) + f(ti) , 1=20,...,M-1.

—i'l‘: =l.£ =-3—.uT—T =1T-=
t=%°% t=3°% t=z‘'gz |t=z°T
ul -2.0416074 -1.2191050 -0.5541710 0.0
u, 0.4394483 0.2837087 | 0.1311784 | 0.0
x | -0.1244138 -0.1363107 | -0.0565919 | 0.1097617
Table 2

The reader may compare the values in Table 2 with those in Table 1.

Examgle 3:

Consider again the following 2-person nonzero-sum game

x(t) =
x(0) = 0,
T
Jl(x,u)s fo
T

x(t) + cos ¢t

- ul(t) + sin t

\ I, (x,u)= fo [|x(t) - d, sin t|2 +

1 2

. uz(t) +1, 0=t
[]x(8) - d(eos & +3) | + 3 ui(o) lat,

E uz(t) ]dta

1A

T,
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where T = 2% and (dl,dz) = (-1,0.9), as in [4,§7,Example 3]. It
is not clear to us whether the assumptions in [4] or in this paper are
satisfied by this problem. However, as noted in [4,§7,Example 3], the
values of 1, seem to be divergent.

Let us manage to compute the numerical solutions in a straightforward
and x

manner, using h = 2w/32. In Figures 7-9, the graphs of u,,u

1°72

are plotted. The solid lines always represent the duality solutions of
and x, while the broken lines represent the penalty solutions of

and X, using ¢ = €g = & T E, = 10-3 and 10-4, respectively.

u;,u,
Y10 Y2
It can be seen from these graphs that smaller values of ¢ cause
futher deviations between the penalty and duality solutions, if h is
not adjusted according to ¢. This offers partial evidence that ¢ and h
are coupled in the error bounds (2.19). Compare the results in {3].
We have also plotted the graphs of u;» U, and x, respectively, versus
¢ with &=10"1, 1072, 1072, 107* and 10 °, in Figures 10, 11 and 12.

The computed values of J5 are

3, = 0.4582465783358920, e =101,

J_ = 0.2730100141206180, e = 1072,

J_ = 0.1231759476555612, e = 1073,

J_ = 0.9989590297527213, e = 1074,

3, = 0.3011451125450394x10°, & = 107>,
-5

We see that when & = 10 ~, the "numerical solutions" become completely

meaningless. o
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STATE X
-0.018

0.119

0.051

-0.084

~0.151

0.00 0.39 Q.79

=13
R

Figure 3: The Penalty Solution of the State x

Throughout Figures 1, 2 and 3, we use the following legend:

EPST ... EPS2 es» ERS3 +++ EPS4 XXX EPSS .,

where €0=€1=€2=EPSI, I=1, 2,3, 4, 5 and

1 2 -3 4

EPSl = 10 -, EPS2 = 10 <, EPS3 = 10 ~, EPS4 = 10 ', EPS5 = 10

=5
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Throughout Figures &4, 5 and 6, the solid curve (1) represents the

duality solution while the broken curve (2) represents the penalty

solution, with ¢.=¢ =¢. = 10-3

= X
0=517% , both use h = 4/32.
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