N-PERSON DIFFERENTIAL GAMES
PART II: THE PENALTY METHOD

Goong Chen
Wendell H. Mills
Quan Zheng
Wan-Hua Shaw

Contract No. NAS1-15810
April 1983

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665
Operated by the Universities Space Research Association
N-PERSON DIFFERENTIAL GAMES

PART II: THE PENALTY METHOD

Goong Chen*
Wendell H. Mills*,**
Quan Zheng*,#
Wan-Hua Shaw*

ABSTRACT

The equilibrium strategy for N-person differential games can be found by studying a min-max problem subject to differential systems constraints [4]. In this paper, we penalize the differential constraints and use finite elements to compute numerical solutions. Convergence proof and error estimates are given. We have also included numerical results and compared them with those obtained by the dual method in [4].

*Department of Mathematics, Pennsylvania State University, University Park, PA 16802. Supported in part by NSF Grant MCS 81-01892 and NASA Contract No. NAS1-15810, the latter while the first author was in residence at the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665.

**Now at Research and Development Department, Standard Oil of Ohio, Cleveland, OH 44128.

#Permanent address: Department of Mathematics, Shanghai University of Science and Technology, Shanghai, China.
§0. Introduction

In Part I [4], we first gave a min-max equivalent formulation of equilibrium strategies in N-person differential games, and used the dual and the finite element methods to study and compute them. In this paper, we will study N-person games by another important method — the penalty approach.

The application of the penalty method to optimal control problems, which are just a special case of differential games, has been studied in [3], [5], for example; see also the references therein. Nevertheless, there has not been, to our knowledge, any application of the penalty method to saddle point type problems like differential games. The first main objective of our paper is to investigate this feasibility. Our second objective is to combine penalty with finite elements to compute numerical solutions and to compare them with those in [4] obtained from the dual method.

We inherit some notations from [4] and define some new ones below:

\[A(t), B_i(t) \ (i = 1,2,\ldots,N) \] are, respectively, \(n \times n, n \times m_i \) \((i = 1,2,\ldots,N)\) time-varying matrices;

\[C_i(t) \ (i = 1,2,\ldots,N) \] are, respectively, \(k_i \times n \) time-varying matrices;

\[M_i(t) \ (i = 1,2,\ldots,N) \] are, respectively, symmetric \(m_i \times m_i \) time-varying matrices, which induce positive definite linear operators \(M_i : L^2_{m_i} \rightarrow L^2_{m_i} \);

\[z_i(t) \ (i = 1,2,\ldots,N) \] are, respectively, \(k_i \)-vector valued functions;

\[H^k_n \equiv H^k_n (0,T) = \{ y : [0,T] + \mathbb{R}^n \mid ||y|| \leq \sum_{j=0}^k \| \frac{d^j y}{dt^j} \|_{L^2_{m_i}(0,T)} < \infty \} \]

\[(DE) \equiv \dot{x} - Ax - \sum_{j=1}^N B_j u_j - f, \quad x \in H^1_n, \quad u_j \in L^2_{m_j}, \quad j = 1,2,\ldots,N, \quad f \in L^2_n \]
\[(DE)_i \equiv x_i - Ax_i - \sum_{j \neq i}^N B_{ij}u_i - B_{jv_i} - f, \quad x_i \in H^1_n, \quad u_j \in L^2_m (j \neq i), \quad v_i \in L^2_{m_i}\]

\[\sum_{i=1}^N \left| (DE)_i \right|^2\]

\[X \equiv (x^1, x^2, \ldots, x^N)\]

\[H^1_{0n} \equiv H^1_n \cap \{ y \in H^1_n \mid y(0) = 0 \}\]

\[H^1_{n0} \equiv H^1_n \cap \{ y \in H^1_n \mid y(T) = 0 \}\]

\[U \equiv \prod_{i=1}^N L^2_{m_i}\]

\[H \equiv H^1_{0n} \times U \times \left[H^1_{0n} \right]^N \times U; \quad \tilde{H} \equiv L^2_n \times U \times [L^2_n]^N \times U\]

\[\mathcal{L} : H^1_{0n} + L^2_n, \quad \mathcal{L} x \equiv \dot{x} - Ax\]

\[\mathcal{L}^* : H^1_{n0} + L^2_n, \quad \mathcal{L}^* x \equiv \dot{x} + A^* x\]

We proceed as follows.

In §1, we present the fundamental penalty theorem. The rate of convergence with respect to the penalty parameters is determined. Our work here extends and generalizes the earlier result of B. T. Polyak [6].

In §2, we specialize to the linear-quadratic case and formulate the finite element variational approach. Error estimates between the computed and the exact solutions with respect to the penalty parameter \(\varepsilon\) and the discretization parameter \(h\) are given.

The relationship between the penalty method and the dual method is explored in §3. Their computational advantages and disadvantages are also compared.

Numerical results are presented in §4.

 As in [4], for an N-person game with linear dynamics

 \[
 \begin{cases}
 \frac{d}{dt} x(t) = A(t)x(t) + B_1(t)u_1(t) + \ldots + B_N(t)u_N(t) + f(t), \quad 0 \leq t \leq T, \\
x(0) = x_0 \in \mathbb{R}^n,
\end{cases}
\]

(1.1)

let each player have an associated cost functional \(J_i(x,u) \), \(1 \leq i \leq N \), which is continuous with respect to \((x,u) \) in the \(H^1_{n \times U} \) norm. Throughout the rest of the paper we assume that we have made the change of variable \(x(t) = x(t) - x_0 \) so that \(x(0) = 0 \). This change of variable results only in minor changes of \(J_i \).

In this section, the costs \(J_i \) need not be quadratic.

Following the min-max formulation in [4, §1], we consider

\[
\begin{align*}
\inf_{(x,u) \in H^1_{n \times U}} & \sup_{(x,v) \in H^1_{n \times U}} J(x,u;X,v) \\
& \equiv \sum_{i=1}^{N} [J_i(x,u) - J_i(x^i,v^i)] \\
& \text{subject to:} \\
& \quad (DE)_{i=0} \quad 1 \leq i \leq N
\end{align*}
\]

(1.2)

where \((x,v) \equiv (u_1,u_2,\ldots,u_{i-1},v_i,u_{i+1},\ldots,u_N) \in U \). Here, we see that \((DE) = 0 \) and \((DE)_i = 0 \) \((1 \leq i \leq N) \) are \(N+1 \) equality constraints for the inf-sup problem (1.2). Thus, it appears natural for us to penalize the problem as

\[
\begin{align*}
\inf_{(x,u) \in H^1_{n \times U}} & \sup_{(x,v) \in [H^1_{n \times U}]} J(x,u;X,v) \\
& \equiv J(x,u;X,v) \\
& + \frac{1}{\varepsilon_0} \left\| (DE) \right\|_2^2 - \sum_{i=1}^{N} \frac{1}{\varepsilon_i} \left\| (DE)_i \right\|_2^2 \\
& \text{for some } \varepsilon_0, \varepsilon_1, \ldots, \varepsilon_N > 0.
\end{align*}
\]

(1.3)
The most important question remains in determining the validity of the above scheme and, if valid, its rate of convergence. Thus, we consider the fundamental theorem of penalty for N-person differential games below.

The following assumptions will be needed:

(B1) $J(x,u;X,v)$ is strictly convex in (x,u) and strictly concave in (X,v);

(B2) $\inf_{(x,u)\in H_0^1 \times U} \sup_{(X,v)\in [H_0^1]^N \times U} J(x,u;X,v)$ is attained by $(x,\hat{u};X,\hat{v}) \in H$;

By (Bl), this point $(x,\hat{u};X,\hat{v})$ is unique. Also, by [4, Theorem 2.1], there exist Lagrange multipliers $\hat{p}_0, \hat{p} = (\hat{p}_1, \ldots, \hat{p}_N)$ such that

$$J(\hat{x},\hat{u};\hat{X},\hat{v}) = \min_{(x,u)\in H_0^1 \times U} \max_{(X,v)\in [H_0^1]^N \times U} J(x,u;X,v)$$
$$= \max_{p_0 \in L_n^2} \min_{p \in [L_n^2]^N} \min_{(x,u)\in H_0^1 \times U} \max_{(X,v)\in [H_0^1]^N \times U} [J(x,u;X,v)]$$

$$+ \langle p_0, (DE) \rangle + \sum_{i=1}^N < p_i, (DE)_i >$$

(B3) The costs $J_i(x,u)$ are of the form

$$J_i(x,u) = \int_0^T h_i(x(t),u(t)) dt$$

so that $\hat{p}_0 \in H_0^1, \hat{p} \in [H_0^1]^N$;

(B4) The first and second derivatives J', J'' exist, and J'' satisfies the global Lipschitz condition

$$||J''(x_1,u_1;X_1,v_1) - J''(x_2,u_2;X_2,v_2)|| \leq K_1 ||(x_1-x_2,u_1-u_2;X_1-X_2,v_1-v_2)||$$

for some $K_1 > 0$ uniformly for $(x_1,u_1;X_1,v_1), (x_2,u_2;X_2,v_2)$.

Let $\mathcal{A}_0 \equiv \partial^2_x J$, $\mathcal{A}_1 = \partial^2_{xx} J$, $\mathcal{M}_0 \equiv \partial^2_u J$, and $\mathcal{M}_1 \equiv \partial^2_v J$ be second order Fréchet partial derivatives evaluated at $(\hat{x}, \hat{u}; \hat{x}, \hat{v})$. Then $\mathcal{A}_0, \mathcal{M}_0, -\mathcal{A}_1$ and $-\mathcal{M}_1$ are positive definite linear operators on L^2_n, U, $[L^2_n]^N$ and U, respectively. Furthermore, $\mathcal{A}_0 \times \mathcal{A}_1$ maps $H^1_0 \times [H^1_0]^N$ into itself.

(B6) B_1, \ldots, B_N are small relative to $\mathcal{A}_0, \mathcal{M}_0, -\mathcal{A}_1$ and $-\mathcal{M}_1$ (cf. (1.24), (2.10), (2.14)).

(B7) The mixed Fréchet partial derivative operators $\partial_x \partial_x J$, $\partial_x \partial_u J$, ..., etc., evaluated at $(\hat{x}, \hat{u}; \hat{x}, \hat{v})$ are all 0.

Remark 1.1

(i) In (B3), that the J_i's are assumed to be of the form (1.5) is only for the convenience of discussions.

(ii) Making some other assumptions, one can relax the global Lipschitz condition (1.6) to a local one.

(iii) (B7) is assumed here only for the convenience of discussions, cf. Remark 1.5 later.

Theorem 1.2 Under conditions (B1) - (B7), for $\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_N > 0$ sufficiently small, there exists a unique $(\hat{x}_\varepsilon, \hat{u}_\varepsilon; \hat{x}_\varepsilon, \hat{v}_\varepsilon) \in H$ satisfying $J^i_\varepsilon = 0$ such that

(i) $|| (\hat{x}_\varepsilon, \hat{u}_\varepsilon; \hat{x}_\varepsilon, \hat{v}_\varepsilon) - (\hat{x}, \hat{u}; \hat{x}, \hat{v}) ||_H \leq K_2 \left(\max_{0 \leq i \leq N} \varepsilon_j \right) || (\hat{p}_0, \hat{p}) ||_{L^2_n \times [L^2_n]^N}$

(ii) $|| \frac{2}{\varepsilon_0} (\hat{x}_\varepsilon - \hat{A} \hat{x}_\varepsilon - \sum B_i \hat{u}_\varepsilon - f) - \hat{p}_0 ||_{L^2_n} + \sum_{i=1}^N \frac{2}{\varepsilon_i} (\hat{x}_\varepsilon - \hat{A} \hat{x}_\varepsilon - \sum_{j \neq i} B_j \hat{u}_\varepsilon)

- B_i \hat{v}_\varepsilon - f) - (-\hat{p}_i) ||_{L^2_n} \leq K_3 \left(\max_{0 \leq i \leq N} \varepsilon_j \right) || (\hat{p}_0, \hat{p}) ||_{L^2_n \times [L^2_n]^N}$

for some $K_2, K_3 > 0$ independent of $\varepsilon_0, \ldots, \varepsilon_N$.
Proof: We introduce the new variables

\[\xi_0 = x - \hat{x} \]
\[\xi_1 = X - \hat{X} \]

(1.7) \(\eta_0 = u - \hat{u} \)
\[\eta_1 = v - \hat{v} \]

\[\zeta_0 = \frac{2}{\varepsilon_0} (\hat{x} - Ax - \sum_{i=1}^{N} B_i u_i - f) - \hat{p}_0 \]

\[\zeta_1 = -\frac{2}{\varepsilon_1} (\hat{x}_i - Ax_i - \sum_{j \neq i} B_{ij} u_j - B_i v_i - f) - \hat{p}_i \]
\[\zeta_1 \equiv (\zeta_1^1, \zeta_1^2, \ldots, \zeta_1^N) \]

In the above, we first choose \(x \in H_n^2 \cap H_0^1, X \in [H_n^2 \cap H_0^1]^N, \)
\(u, v \in U \cap \prod_{i=1}^{N} H^1_{\Omega_i} \) and then let \((x, u; X, v) \) tend to an element in \(H \).

We further let

\[\xi = (\xi_0, \xi_1), \eta = (\eta_0, \eta_1), \zeta = (\zeta_0, \zeta_1) \]

For any \((\delta x, \delta u; \delta X, \delta v) \in H, \) we have

(1.8) \[J'(x, u; X, v) \cdot (\delta x, \delta u; \delta X, \delta v) = J'(x, u; X, v) \cdot (\delta x, \delta u; \delta X, \delta v) \]
\[+ \frac{2}{\varepsilon_0} \left< \hat{x} - Ax - \sum_{i} B_i u_i - f, \delta \hat{x} - A(\delta x) - \sum_{i} B_i (\delta u_i) \right> \]
\[+ \frac{2}{\varepsilon_1} \left< \hat{x}_i - Ax_i - \sum_{j \neq i} B_{ij} u_j - B_i v_i - f, \delta \hat{x}_i - A(\delta x_i) \right> \]
\[- \sum_{j \neq i} B_{ij} \delta u_j - B_i \delta v_i > \]

We can use (B4) to write
(1.9) \[J'(x,u;x,v) = J'(\hat{x},\hat{u};\hat{x},\hat{v}) + J''(\hat{x},\hat{u};\hat{x},\hat{v})(\xi_0,\eta_0;\xi_1,\eta_1) + r(\xi,\eta), \]

where the remainder \(r(\xi,\eta) \) (as a linear functional in \(H \)) satisfies

(1.10) \[r(0,0) = 0 \]

(1.11) \[|r'(\xi,\eta) - r'(\xi,\eta)| \leq c_1 |(\xi - \tilde{\xi}, \eta - \tilde{\eta})| \]

\[(L^2_n \times [L^2_n]^N) \times (U \times U) \]

\[\forall (\xi,\eta), (\tilde{\xi},\tilde{\eta}) \in (H^1_{0n} \times [H^1_{0n}]^N) \times (U \times U). \]

Substituting (1.9) into the first term on the RHS of (1.8) and integrating the remaining terms by parts, we get

(1.12) \[\text{LHS of (1.7)} = \left[J'(\hat{x},\hat{u};\hat{x},\hat{v}) + J''(\hat{x},\hat{u};\hat{x},\hat{v})(\xi_0,\eta_0;\xi_1,\eta_1) + r(\xi,\eta) \right]. \]

\[(\delta x, \delta u; \delta x, \delta v) - \frac{2}{\varepsilon_0} \left(\frac{d}{dt} + A^* \right) \left(x - Ax - \Sigma B_{i_{j_{k}}i} u_{j_{k}} - f \right), \delta x > \]

\[+ \frac{2}{\varepsilon_0} < \dot{x}(T) - A(T)x(T) - \Sigma (B_i u_i)(T) - f(T), \delta x(T) >_{\mathbb{R}^n} \]

\[- \Sigma < B_i^* \frac{2}{\varepsilon_0} (x - Ax - \Sigma B_i u_i - f), \delta u_i > \]

\[+ \Sigma < \left(\frac{d}{dt} + A^* \right) \cdot \frac{2}{\varepsilon_i} (x^j - Ax^j - \Sigma B_{i_{j_{k}}j} u_{j_{k}} - B_i v_i - f), \delta x^j > \]

\[- \Sigma \frac{2}{\varepsilon_i} < \dot{x}^j(T) - A(T)x^j(T) - \Sigma (B_{i_{j_{k}}j} u_{j_{k}})(T) - (B_i v_i)(T) - f(T), \delta x^j(T) >_{\mathbb{R}^n} \]

\[+ \Sigma \Sigma < B_k^* \frac{2}{\varepsilon_i} (x^i - Ax^i - \Sigma B_{i_{j_{k}}i} u_{j_{k}} - B_i v_i - f), \delta u_k > \]

\[+ \Sigma < B_i^* \frac{2}{\varepsilon_i} (x^i - Ax^i - \Sigma B_{i_{j_{k}}j} u_{j_{k}} - B_i v_i - f), \delta v_k > \]

We now substitute (1.7) into the above and note that
we get that the solution of $J'(x,u;X,v) = 0$ can be found by solving

\[J''(\hat{x},\hat{u};\hat{X},\hat{v})(\xi_0,\eta_0;\xi_1,\eta_1) \cdot (\delta x, \delta u; \delta X, \delta v) = <\xi_0^*, \delta x > - \sum_i < B_i^*, \delta u_i > - \sum_{i,j} < B_i^*, B_j^*, \delta u_i \delta u_j > = 0, \]
Combining (1.16) with (1.7.5) and (1.7.6), we get the following nonlinear "matrix" equation

\[
\begin{bmatrix}
0 & A_0 & 0 & 0 & -L^* & 0 \\
0 & A_1 & 0 & 0 & 0 & -L^* \\
0 & 0 & m_0 & 0 & B_1^* & B_2^* \\
0 & 0 & 0 & m_1 & 0 & B_3^* \\
-\lambda & 0 & B_1 & 0 & e_{1/2} I & 0 \\
0 & \begin{bmatrix}
-\lambda & 0 \\
0 & -\lambda \\
\end{bmatrix}
\begin{bmatrix}
B_2 & B_3 & 0 & e_{1/2} I & e_{N/2} \\
0 & 0 & -L^* & 0 & 0 \\
\end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
\xi_0 \\
\xi_1 \\
\eta_0 \\
\eta_1 \\
\zeta_0 \\
\zeta_1 \\
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-\frac{\varepsilon_0}{2} & 0 \\
-\frac{\varepsilon_{1/2}}{2} & \hat{p}_1 \\
\end{bmatrix} + \begin{bmatrix}
-r_1(\xi, n) \\
r_2(\xi, n) \\
r_3(\xi, n) \\
r_4(\xi, n) \\
0 \\
0 \\
\end{bmatrix}
\]

(1.17)

wherein

\[
\begin{align*}
&\mathcal{B}_1 \equiv \begin{bmatrix}
-B_1 \\
-B_2 \\
\vdots \\
-B_N \\
\end{bmatrix}, \\
&\mathcal{B}_2 \equiv \begin{bmatrix}
0 & -B_2 & \cdots & -B_N \\
-B_1 & 0 & \cdots & -B_N \\
\vdots & \vdots & \ddots & \vdots \\
-B_1 & -B_2 & \cdots & 0 \\
\end{bmatrix}, \\
&\mathcal{B}_3 \equiv \begin{bmatrix}
-B_1 & -B_2 & \cdots & 0 \\
\end{bmatrix}.
\end{align*}
\]

We further abbreviate (1.17) as

\[
\begin{bmatrix}
\xi \\
\eta \\
\zeta \\
\end{bmatrix} \equiv \begin{bmatrix}
A & 0 & -L^* \\
0 & m & \mathcal{B}^* \\
-\lambda & \mathcal{B} & I_\varepsilon \\
\end{bmatrix}
\begin{bmatrix}
\xi \\
\eta \\
\zeta \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
-\tilde{r}_1(\xi, n) \\
\end{bmatrix} + \begin{bmatrix}
r_2(\xi, n) \\
0 \\
0 \\
\end{bmatrix}
\]

(1.18)
where

\[A = \begin{bmatrix} A_0 & 0 \\ 0 & A_1 \end{bmatrix}, \quad M = \begin{bmatrix} M_0 & 0 \\ 0 & M_1 \end{bmatrix}, \quad B = \begin{bmatrix} B_0 & 0 \\ B_2 & B_3 \end{bmatrix} \]

\[\tilde{L} \equiv \begin{bmatrix} L & 0 \\ 0 & \cdots & L \end{bmatrix}_{(N+1) \times (N+1)} , \quad \tilde{L}^* \equiv \begin{bmatrix} L^* & 0 \\ 0 & \cdots & L^* \end{bmatrix}_{(N+1) \times (N+1)} \]

\[I_\varepsilon \equiv \begin{bmatrix} \varepsilon_0 I/2 & \vdots & \varepsilon_1 I/2 & \cdots & \varepsilon_{N-1} I/2 \\ \varepsilon_1 I/2 & \cdots & \varepsilon_{N-1} I/2 \end{bmatrix}_{(N+1) \times (N+1)} \]

\[\mathbf{r}_1(\xi, \eta) \equiv \begin{bmatrix} r_1(\xi, \eta) \\ r_2(\xi, \eta) \end{bmatrix}, \quad \mathbf{r}_2(\xi, \eta) \equiv \begin{bmatrix} r_3(\xi, \eta) \\ r_4(\xi, \eta) \end{bmatrix}, \quad \tilde{p}_\varepsilon = \begin{bmatrix} -\varepsilon_0 \hat{p}_0 \\ \cdots \\ -\varepsilon_N \hat{p}_N \end{bmatrix} \]

By (A5), \(D_\varepsilon \) is a closed linear operator on \((L_n^2 \times [L_n^2]^N) \times (U \times U) \times (L_n^2 \times [L_n^2]^N) \)

with domain \(\text{dom}(D_\varepsilon) = (H_{0n}^1 \times [H_{0n}^1]^N) \times (U \times U) \times (H_{n0}^1 \times [H_{n0}^1]^N) \).

Lemma 1.3 Under conditions (A5), (A6) and (A7), for all \(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_N > 0 \) sufficiently small, the operator \(D_\varepsilon \) introduced above has an inverse and

\[\| D_\varepsilon^{-1} \| \leq K_4 \]

for some \(K_4 > 0 \) independent of \(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_N \).
Proof: For an arbitrarily given \((\alpha, \beta, \gamma) \in (L_n^2 \times [L_n^2]^N) \times (U \times U) \times (L_n^2 \times [L_n^2]^N)\), we wish to find some \((\bar{\xi}, \bar{\eta}, \bar{\zeta}) \in (H_{0n}^1 \times [H_{0n}^1]^N) \times (U \times U) \times (H_{n0}^1 \times [H_{n0}^1]^N)\) such that

\[
[D_{\bar{c}} \begin{bmatrix}
\bar{\xi} \\
\bar{\eta} \\
\bar{\zeta}
\end{bmatrix}] = \begin{bmatrix}
\alpha \\
\beta \\
\gamma
\end{bmatrix},
\]

or, in detail,

\[
\begin{cases}
\mathcal{A}\bar{\xi} - \bar{\zeta}^* = \alpha \\
\mathcal{A}\bar{\eta} + \mathcal{B}\bar{\zeta} = \beta \\
-2\bar{\xi} + \mathcal{B}\bar{\eta} + I_{\varepsilon}\bar{\zeta} = \gamma.
\end{cases}
\]

Let \(\Phi(t,s)\) be the fundamental \(n \times n\) matrix solution satisfying

\[
\begin{cases}
\frac{\partial}{\partial t} \Phi(t,s) = A(t)\Phi(t,s), \\
\Phi(s,s) = I_{n \times n}.
\end{cases}, \quad 0 \leq s \leq t \leq T
\]

It is easy to see that \(\bar{L}\) is invertible with inverse

\[
(\bar{L})^{-1} = \int_0^t \begin{bmatrix}
\Phi(t,s) & 0 \\
0 & \Phi(t,s)
\end{bmatrix} \lambda(s)ds.
\]

Thus, we have from (1.21.3),

\[
(1.22) \quad \bar{\xi} = (\bar{L})^{-1} \mathcal{B}\bar{\eta} + I_{\varepsilon}\bar{\zeta} - \gamma.
\]

Substituting (1.22) into (1.21.1), we get...
\[A \tilde{L}^{-1} \bar{\eta} + (A \tilde{L}^{-1} I_\varepsilon - \tilde{L}^*) \zeta = \alpha + A \tilde{L}^{-1} \gamma. \]

The integrodifferential operator \(\tilde{L}^* - A \tilde{L}^{-1} I_\varepsilon \) is easily seen to be invertible for \(\varepsilon = (\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_N) \) sufficiently small, thus we have

\[(1.23) \quad \bar{\zeta} = (\tilde{L}^* - A \tilde{L}^{-1} I_\varepsilon)^{-1} [A \tilde{L}^{-1} \bar{\eta} - (\alpha + A \tilde{L}^{-1} \gamma)]. \]

Substituting (1.23) into (1.21.2), we get

\[[\mathcal{M} + \mathcal{G}^*(\tilde{L}^* - A \tilde{L}^{-1} I_\varepsilon)^{-1} A \tilde{L}^{-1} A] \bar{\eta} = \beta + \mathcal{G}^*(\tilde{L}^* - A \tilde{L}^{-1} I_\varepsilon)^{-1}(\alpha + A \tilde{L}^{-1} \gamma). \]

Now we invoke (B6): since \(\mathcal{M} \) is invertible, if \(\mathcal{G} \) is relatively smaller than \(\mathcal{M} \) such that

\[(1.24) \quad \mathcal{M} + \mathcal{G}^*(\tilde{L}^* - A \tilde{L}^{-1} I_\varepsilon)^{-1} A \tilde{L}^{-1} A \]

is invertible (for \(\varepsilon \) sufficiently small), we have

\[(1.25) \quad \bar{\eta} = \mathcal{J}_\varepsilon^{-1} [\beta + \mathcal{G}^* \zeta^{-1}] \]

where

\[(1.26) \quad \mathcal{J}_\varepsilon \equiv \mathcal{M} + \mathcal{G}^*(\tilde{L}^* - A \tilde{L}^{-1} I_\varepsilon)^{-1} A \tilde{L}^{-1} A, \quad \tilde{\zeta}_\varepsilon \equiv \tilde{L}^* - A \tilde{L}^{-1} I_\varepsilon. \]

Using (1.25) in (1.22) and (1.23), we obtain

\[\tilde{\xi} = \tilde{L}^{-1} \{ [\mathcal{G} \tilde{L}^{-1} \mathcal{J}_\varepsilon^{-1} + I] \tilde{L}^{-1} (\tilde{L}^* \mathcal{G}^* \tilde{L}^{-1} - I) \alpha + [\mathcal{G} \tilde{L}^{-1} + I \tilde{L}^{-1} A \mathcal{G} \tilde{L}^{-1} \mathcal{J}_\varepsilon^{-1}] \beta \]

\[+ [\mathcal{G} \tilde{L}^{-1} \mathcal{J}_\varepsilon^{-1} A \tilde{L}^{-1} - I + I \tilde{L}^{-1} \mathcal{G} \tilde{L}^{-1} \mathcal{J}_\varepsilon^{-1} - I] \tilde{L}^{-1} \mathcal{J}_\varepsilon^{-1} + I \tilde{L}^{-1} \mathcal{G} \tilde{L}^{-1} \mathcal{J}_\varepsilon^{-1} \} \]
\[
\zeta = \zeta^{-1}_e \{ (\zeta^{-1}_e B \zeta^{-1}_e - I) \alpha + \zeta^{-1}_e \zeta^{-1}_e \beta + (\zeta^{-1}_e B \zeta^{-1}_e - I) \zeta^{-1}_e \gamma \}.
\]

Therefore, \(D^{-1}_e \) is invertible, with

\[
D^{-1}_e = \\
\begin{bmatrix}
\zeta^{-1}_e B \zeta^{-1}_e & \zeta^{-1}_e + I \zeta^{-1}_e & \zeta^{-1}_e (\zeta^{-1}_e B \zeta^{-1}_e - I + I \zeta^{-1}_e) \\
\zeta^{-1}_e B \zeta^{-1}_e + I \zeta^{-1}_e (\zeta^{-1}_e B \zeta^{-1}_e - I) & \zeta^{-1}_e B \zeta^{-1}_e & \zeta^{-1}_e (\zeta^{-1}_e B \zeta^{-1}_e - I) \\
\zeta^{-1}_e (\zeta^{-1}_e B \zeta^{-1}_e - I) & \zeta^{-1}_e B \zeta^{-1}_e & \zeta^{-1}_e (\zeta^{-1}_e B \zeta^{-1}_e - I)
\end{bmatrix}
\]

Since each entry of the matrix \(D^{-1}_e \) is bounded, we have proved that \(D^{-1}_e \) is bounded for \(\varepsilon \) sufficiently small.

We will need the following lemma from [6]:

Lemma 1.4 Let \(\mathcal{H} \) be a given Hilbert space and \(T \) be a densely defined closed linear operator from \(\text{dom}(T) \subseteq \mathcal{H} \) onto \(\mathcal{H} \) with a bounded inverse \(||T^{-1}|| \leq c_1 \), and let \(r(x) \) be a nonlinear (Fréchet) differentiable operator on \(\mathcal{H} \) such that \(r(0) = 0 \), \(||r'(x)|| \leq c_2 ||x|| \) for all \(x \in \mathcal{H} \). Then for any \(a \in \mathcal{H} \), \(||a|| \leq \frac{1}{4c_1^2 c_2} \), the equation

\[
Tx = a + r(x)
\]

has in the sphere \(||x|| < 4c_1 ||a|| \) a unique solution \(\hat{x} \in \text{dom}(T) \) satisfying

\[
||\hat{x}|| \leq \frac{c_1}{2} ||a||.
\]

We note that although in [6, p.6, Lemma 2], it is assumed that \(T \) be bounded, a careful examination of the proof shows that that assumption is redundant.
Using $T = D_c$, $c_1 = K_4$ and $c_2 = K_1$ in Lemma 1.4 and applying it to (1.19), we obtain that for
\[
\| \hat{\phi}_\varepsilon \|_{L_n^2 \times [L_n^2]^N} \leq \frac{1}{4K_1^2K_4},
\]
which is clearly satisfied if
\[
\min_{0 \leq j \leq N} \frac{2}{\varepsilon_j} \geq 4K_1^2K_4 \| (-\hat{\phi}_0, \hat{\phi}) \|_{L_n^2 \times [L_n^2]^N},
\]

(1.20) has a solution $(\hat{\xi}_\varepsilon, \hat{\eta}_\varepsilon, \hat{\zeta}_\varepsilon) \in [H_{0n}^1]^{N+1} \times U^2 \times [H_{0n}^1]^{N+1}$ satisfying
\[
\| (\hat{\xi}_\varepsilon, \hat{\eta}_\varepsilon, \hat{\zeta}_\varepsilon) \|_{[L_n^2]^{N+1} \times U^2 \times [L_n^2]^{N+1}} \leq \frac{K_4}{4} \left(\max_{0 \leq j \leq N} \varepsilon_j \right) \| (-\hat{\phi}_0, \hat{\phi}) \|_{[L_n^2]^{N+1}}.
\]

From (1.7), writing
\[
\hat{x}_\varepsilon = \hat{x} + \hat{\xi}_\varepsilon, 0, \quad \hat{x}_\varepsilon = \hat{x} + \hat{\zeta}_\varepsilon, 1,
\]
\[
\hat{u}_\varepsilon = \hat{u} + \hat{\eta}_\varepsilon, 0, \quad \hat{v}_\varepsilon = \hat{v} + \hat{\eta}_\varepsilon, 1,
\]
\[
\frac{2}{\varepsilon_0} \left(\hat{x}_\varepsilon^i - A\hat{\xi}_\varepsilon^i - \sum_i B_i \hat{u}_\varepsilon^i, i - f \right) = \hat{\eta}_\varepsilon^i, 0,
\]
\[
\frac{2}{\varepsilon_i} \left(\hat{x}_\varepsilon^i - A\hat{x}_\varepsilon^i - \sum_{j \neq i} B_j \hat{u}_\varepsilon^j, i - B_i \hat{v}_\varepsilon^i, i - f \right) = \hat{\xi}_\varepsilon^i, l - \hat{\rho}_i, 1 \leq i \leq N,
\]
we obtain that for
\[
\max_{0 \leq j \leq N} \varepsilon_j \leq \left(2K_1K_4 \| (-\hat{\phi}_0, \hat{\phi}) \|_{[L_n^2]^{N+1}} \right)^{-1} \left(\| (-\hat{\phi}_0, \hat{\phi}) \| = \| (-\hat{\phi}_0, \hat{\phi}) \| \right),
\]
a point \((\hat{x}_e, \hat{u}_e, \hat{x}_e, \hat{v}_e) \in H^i_{0n} \times U \times [H^1_{0n}]^N \times U\) has been found for which

\[J'(\hat{x}_e, \hat{u}_e; \hat{x}_e, \hat{v}_e) = 0 \]

and

\[
\| \hat{x}_e - \hat{x} \|_{L^2_n} = \| \hat{x}_{e,0} \|_{L^2_n} \leq \| (\hat{x}_e, \hat{v}_e, \hat{e}_e) \|_{[L^2_n]^{N+1} \times U^2 \times [L^2_n]^{N+1}} \leq \frac{K_4}{4} \left(\max_{0 \leq j \leq N} \epsilon_j \right) \| (\hat{p}_0, \hat{p}) \|_{[L^2_n]^{N+1}};
\]

similarly,

\[
\| \hat{u}_e - \hat{u} \|_U \leq \frac{K_4}{4} \left(\max_{0 \leq j \leq N} \epsilon_j \right) \| (\hat{p}_0, \hat{p}) \|_{[L^2_n]^{N+1}};
\]

\[
\| \hat{x}_e - \hat{x} \|_{[L^2_n]^N} \leq \frac{K_4}{4} \left(\max_{0 \leq j \leq N} \epsilon_j \right) \| (\hat{p}_0, \hat{p}) \|_{[L^2_n]^{N+1}};
\]

\[
\| \hat{v}_e - \hat{v} \|_U \leq \frac{K_4}{4} \left(\max_{0 \leq j \leq N} \epsilon_j \right) \| (\hat{p}_0, \hat{p}) \|_{[L^2_n]^{N+1}};
\]

\[
\| \frac{2}{\epsilon_0} \hat{x}_e - A \hat{x}_e - \sum_i B_i \hat{u}_e, i - f \|_{L^2_n} \leq \frac{K_4}{4} \left(\max_{0 \leq j \leq N} \epsilon_j \right) \| (\hat{p}_0, \hat{p}) \|_{[L^2_n]^{N+1}};
\]

\[
\| \frac{2}{\epsilon_i} \hat{x}_i - A \hat{x}_i - \sum_{j \neq i} B_j \hat{u}_e, j - B_j \hat{v}_e, i - f \|_{L^2_n} \leq \frac{K_4}{4} \left(\max_{0 \leq j \leq N} \epsilon_j \right) \| (\hat{p}_0, \hat{p}) \|_{[L^2_n]^{N+1}};
\]

The proof of Theorem 1.2 is complete.
Remark 1.5 From the proof given above, we see that assumption (B7) can be relaxed; we need only require that the mixed partial derivative operators
\[\partial^2_{x_{2j}} J, \partial^2_{x_{2j}} \partial_{u_j}, \ldots, \text{etc.,} \]
be dominated by \(\partial^2_{x_{2j}} J, \partial^2_{u_j} J, \partial^2_{v_j} J \) at \((\hat{x}, \hat{u}; \hat{x}, \hat{v}) \).

Remark 1.6 Although \(J_{\varepsilon}(x, u; X, v) \) is concave in \((x, v) \) for all \(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_N \), in general it is not necessarily true that \(J_{\varepsilon}(x, u; X, v) \) is convex in \((x, u) \).
Thus \((\hat{x}_{\varepsilon}, \hat{u}_{\varepsilon}; \hat{x}_{\varepsilon}, \hat{v}_{\varepsilon}) \) need not be a saddle point for \(J_{\varepsilon} \). Compare Lemma 2.2 later.

Corollary 1.7 Under the conditions of Theorem 1.2, assume, in addition, that \(J(x, u; X, v) \) is quadratic in the sense that
\[J(\tilde{x}, \tilde{u}; \tilde{x}, \tilde{v}) = J(x, u; X, v) + 2J'(x, u; X, v) \cdot (\tilde{x} - x, \tilde{u} - u; \tilde{x} - X, \tilde{v} - v) \]
\[+ \langle J''(x, u; X, v) \cdot (\tilde{x} - x, \tilde{u} - u; \tilde{x} - X, \tilde{v} - v), (\tilde{x} - x, \tilde{u} - u; \tilde{x} - X, \tilde{v} - v) \rangle \]
holds for all \((x, u; X, v), (\tilde{x}, \tilde{u}; \tilde{x}, \tilde{v}) \in H_0^1 \times U \times [H_0^1]^N \times U \). Then Theorem 1.2(i)
can be strengthened to
\[(1.27) \quad \| (\hat{x}_{\varepsilon}, \hat{u}_{\varepsilon}; \hat{x}_{\varepsilon}, \hat{v}_{\varepsilon}) - (\hat{x}, \hat{u}; \hat{x}, \hat{v}) \|_{H_0} \leq K_2 \left(\max_{0 \leq j \leq N} \varepsilon_j \right) \left\| (\hat{p}_0, \hat{p}) \right\|_{[L_n^{2N+1}]^N} \]
for all \(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_N \) sufficiently small.

Proof: Since \(J \) is quadratic, so is \(J_{\varepsilon} \). Therefore \(r(\xi, \eta) = 0 \) in the proof of Theorem 1.2. By (1.18), we have
\[\begin{bmatrix} \hat{\xi}_{\varepsilon} \\ \hat{\eta}_{\varepsilon} \\ \hat{\zeta}_{\varepsilon} \\ \hat{\nu}_{\varepsilon} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \tilde{p}_{\varepsilon} \end{bmatrix}. \]
Thus
\[\| D_{\varepsilon}(\hat{\xi}_{\varepsilon}, \hat{\eta}_{\varepsilon}, \hat{\zeta}_{\varepsilon}) \|_{[L_n^{2}]^{N+1} \times U \times [L_n^{2}]^{N+1}} \leq \| \tilde{p}_{\varepsilon} \|_{[L_n^{2}]^{N+1}}^2. \]
For \(\varepsilon_0, \ldots, \varepsilon_N \) sufficiently small, it is easily seen that there exist \(K_5, K_6 > 0 \) such that

\[
(1.29) \quad K_5 \| (\xi, \eta, \zeta) \|_2^2 \left[[L^2_n]^N \times \mathbb{U} \times [L^2_n]^N + 1 \right] + D_e(\xi, \eta, \zeta) \|_2^2 \left[[L^2_n]^N \times \mathbb{U} \times [L^2_n]^N + 1 \right]
\]

\[
\geq K_6 \| (\xi, \eta, \zeta) \|_2^2 \left[[H^1_0 n]^N \times \mathbb{U} \times [H^1_n_0]^N + 1 \right]
\]

for all \((\xi, \eta, \zeta) \in \left[[H^1_0 n]^N \times \mathbb{U} \times [H^1_n_0]^N + 1 \right] \), thanks to the coercivity

\[
\| \tilde{\zeta} \xi \|_2^2 \left[[H^1_0 n]^N + 1 \right] \geq K_7 \| \xi \|_2^2 \left[[H^1_0 n]^N + 1 \right]
\]

\[
\| \tilde{\zeta} \xi \|_2^2 \left[[H^1_0 n_0]^N + 1 \right] \geq K_7 \| \xi \|_2^2 \left[[H^1_0 n_0]^N + 1 \right]
\]

Combining (1.28) and (1.29) with Theorem 1.2(i), we conclude (1.27).

For each (the \(i \)-th) player, we let his cost functional be of the same form as in [4]:

\[
J_i(x, u) \equiv \frac{1}{2} \int_0^T \left[\| C_i(t)x(t) - z_i(t) \|^2 + < M_i(t)u_i(t), u_i(t) > \right] dt.
\]

By (1.3), we have
Consider
\begin{equation}
(2.2)
\min_{(x,u) \in H^1_{0n} \times U} \max_{(X,v) \in [H^1_{0n}]^N \times U} J_{\varepsilon}(x,u;X,v).
\end{equation}

Using the notations in §1, we have
\begin{align*}
A_0 &= \frac{\partial^2}{\partial x} J = C_1^*C_1 + \ldots + C_N^*C_N, \\
A_1 &= \frac{\partial^2}{\partial x} J = - \begin{bmatrix}
C_1^*C_1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & C_N^*C_N
\end{bmatrix}, \\
M_0 &= \frac{\partial^2}{\partial u} J = \begin{bmatrix}
M_1 & \ldots & 0 \\
0 & \ddots & \vdots \\
0 & \ldots & M_N
\end{bmatrix}, \\
M_1 &= \frac{\partial^2}{\partial v} J = - \begin{bmatrix}
M_1 & \ldots & 0 \\
0 & \ddots & \vdots \\
0 & \ldots & M_N
\end{bmatrix}.
\end{align*}

From now on, assume that the operators $C_i^*C_i$, $1 \leq i \leq N$, are all invertible.

Then A_0, A_1, M_0, and M_1 are positive definite, and (B5) will be met.

For any given $(x,u) \in H^1_{0n} \times U$, define
\begin{equation}
(2.3)
\tilde{J}_{\varepsilon}(x,u) = \max_{(X,v) \in [H^1_{0n}]^N \times U} J_{\varepsilon}(x,u;X,v)
\end{equation}
if the maximum is attained.
Lemma 2.1
(i) $\tilde{J}_\varepsilon(x,u)$ in (2.3) is well-defined.

(ii) If B_1,\ldots,B_N are relatively smaller than M_1,\ldots,M_N, then $\tilde{J}_\varepsilon(x,u)$ is strictly convex in (x,u), and

$$\lim_{\|(x,u)\| \to \infty} \tilde{J}_\varepsilon(x,u) = +\infty.$$

Consequently, $\min_{(x,u) \in H_0^1 \times U} \tilde{J}_\varepsilon(x,u)$ has a unique solution.

Proof: Since $J_\varepsilon(x,u;X,v)$ is strictly concave in (X,v), negatively coercive, i.e.,

$$\lim_{\|(X,v)\| \to \infty} J_\varepsilon(x,u;X,v) = -\infty,$$

we see that for any given (x,u), $\max_{(X,v)} J_\varepsilon(x,u;X,v)$ is uniquely attained at some (X,v)

$$(\hat{x}_\varepsilon(x,u),\hat{v}_\varepsilon(x,u)).$$ Solving $\max_{(X,v)} J_\varepsilon(x,u;X,v)$ is equivalent to solving

$$(2.5) \max_{(X,v) \in [H_0^1]^{N \times U}} \left[-\sum_i J_i(x^i,u_1,u_{i-1},v_i,v_{i+1},\ldots,u_N) + \frac{1}{\varepsilon_i} \|x^i - Ax^i\| - \sum_{j \neq i} B_j u_j - B_{i_1} v_i - f \|2\|.\right]$$

For any given u_1,\ldots,u_N, we choose $\tilde{x}_1,\ldots,\tilde{x}_N,\tilde{v}_1,\tilde{v}_2,\ldots,\tilde{v}_{N-1}$ and \tilde{v}_N such that

$$\tilde{x}_i - Ax_i - \sum_{j \neq i} B_j u_j - B_{i_1} v_i = 0,\ \tilde{x}_i(0) = 0,\ i = 1,2,\ldots,N.$$

Then

$$(2.5) \geq \sum_{i=1}^N \left[J_i(\tilde{x}_i,u_1,u_{i-1},\tilde{v}_i,v_{i+1},\ldots,u_N) + \frac{1}{\varepsilon_i} \|\tilde{x}_i - Ax_i\| - \sum_{j \neq i} B_j u_j - B_{i_1} v_i - f \|2\|.\right]$$
From (2.6), we have

\[\dot{x}_i(t) = \int_0^t \phi(t,s) \left[\sum_{j \neq i} B_j(s)u_j(s) \right] ds + \int_0^t \phi(t,s) \left[B_i(s)\tilde{v}_i(s) + f(s) \right] ds. \]

Thus

\[(2.5) \geq - \sum_i \left\{ \| C_i \| \int_0^t \phi(t,s) \left[\sum_{j \neq i} B_j(s)u_j(s) \right] ds + \int_0^t \phi(t,s) \left[B_i(s)\tilde{v}_i(s) + f(s) \right] ds \right\} - z_i(t)^2 + \langle M_i \dot{v}_i, v_i \rangle \}

Hence

\[\bar{J}_\epsilon(x,u) = \sum_i J_i(x,u) + \frac{1}{\epsilon_0} \| \dot{x} - Ax - \sum_i B_i u_i - f \|^2 + (2.5) \]

\[\geq \left\{ \sum_i \left\{ \| C_i \| \| \dot{x} - z_i \|^2 + \langle M_i \dot{u}_i, \dot{u}_i \rangle \right\} + \frac{1}{\epsilon_0} \| \dot{x} - Ax - \sum_i B_i u_i - f \|^2 \]

\[- \| C_i \| \int_0^t \phi(t,s) \left[\sum_{j \neq i} B_j(s)u_j(s) \right] ds \|^2 \}

\[- 2\left\{ \sum_i \int_0^t \phi(t,s) \sum_{j \neq i} B_j(s)u_j(s) ds, \int_0^t \phi(t,s) \left[B_i(s)\tilde{v}(s) + f(s) \right] ds \right\} \]

+ remaining terms involving only \(\tilde{v}_i \) and \(f \).

As \(\| (x,u) \|_{H_0^1 \times U} \to \infty \), the first parenthesized term, which is quadratic, dominates the second. Since we have assumed that \(M_1, \ldots, M_N \) are positive definite and sufficiently larger than \(B_1, \ldots, B_N \), we see that the first parenthesized term is positive definite in \(u_1, \ldots, u_N \). Hence (2.4) is proved. \(\Box \)
Lemma 2.2 If B_1, \ldots, B_N are relatively smaller than M_1, \ldots, M_N such that $J_\epsilon(x,u;X,v)$ is strictly convex and coercive in (x,u) for each given v, then the saddle point property

\begin{equation}
\min_{(x,u) \in \mathbb{H}^1_0 \times U} \max_{(X,v) \in [H^1_0]^N \times U} J_\epsilon(x,u;X,v)
= \max_{(X,v) \in [H^1_0]^N \times U} \min_{(x,u) \in \mathbb{H}^1_0 \times U} J_\epsilon(x,u;X,v)
\end{equation}

holds for all ϵ.

Proof: We know that $J_\epsilon(x,u;X,v)$ is always strictly concave and negatively coercive in (X,v). From the proof of Lemma 2.1, we easily see that when B_1, \ldots, B_N are relatively smaller than M_1, \ldots, M_N, $J_\epsilon(x,u;X,v)$ is strictly convex and coercive in (x,u) for each given (X,v).

The saddle point property (2.7) follows in the same manner as the proof of Theorem 4.4 in [4].

Now it is not hard to see that all of the assumptions of Theorem 1.1 are met, and by Lemmas 2.1 and 2.2 we see that the saddle point $(\hat{x}_\epsilon, \hat{u}_\epsilon; \hat{x}_\epsilon, \hat{v}_\epsilon)$ is determined by solving

\[
\begin{align*}
\frac{\partial J_\epsilon}{\partial x}(\hat{x}_\epsilon, \hat{u}_\epsilon; \hat{x}_\epsilon, \hat{v}_\epsilon) &= 0 , \\
\frac{\partial J_\epsilon}{\partial u}(\hat{x}_\epsilon, \hat{u}_\epsilon; \hat{x}_\epsilon, \hat{v}_\epsilon) &= 0 , \\
\frac{\partial J_\epsilon}{\partial x}(\hat{x}_\epsilon, \hat{u}_\epsilon; \hat{x}_\epsilon, \hat{v}_\epsilon) &= 0 , \\
\frac{\partial J_\epsilon}{\partial v}(\hat{x}_\epsilon, \hat{u}_\epsilon; \hat{x}_\epsilon, \hat{v}_\epsilon) &= 0 .
\end{align*}
\]

Thus we can make a direct variational analysis on J_ϵ and obtain
\[J'_\epsilon(\hat{X}_\epsilon, \hat{U}_\epsilon; \hat{X}_\epsilon, \hat{V}_\epsilon) \cdot (\delta x, \delta u; \delta x, \delta v) = 0 \]

\[
\sum_{i=1}^{N} \left[< C_i \hat{X}_\epsilon - z_i, C_i (\delta x) > + < M_i \hat{U}_\epsilon, i, \delta u > - < C_i \hat{X}_\epsilon - z_i, C_i (\delta x^i) > \right]
- < M_j \hat{U}_\epsilon, i, \delta v_j > + \frac{2}{\epsilon_0} < \hat{X}_\epsilon, -A \hat{X}_\epsilon - \sum_{i} B_i \hat{V}_\epsilon, i > - f, \delta x - A(\delta x) - \sum_{i} B_i (\delta u_i) > \\
- \frac{2}{\epsilon_1} < \hat{X}_\epsilon, -A \hat{X}_\epsilon - \sum_{j \neq i} B_j (\delta v_j) - B_i (\delta v_i) > \\
- \sum_{j \neq i} \frac{2}{\epsilon_1} < \hat{X}_\epsilon, -A \hat{X}_\epsilon - \sum_{j \neq i} B_j (\delta v_j) - B_i (\delta v_i) > \\
\]

for all \((\delta x, \delta u; \delta x, \delta v) \in H^1_0 \times \mathbb{U} \times [H^1_0]^N \times \mathbb{U} \). This gives the following variational equation

\[
(2.8) \quad \begin{bmatrix} \hat{X}_\epsilon \\ \delta \epsilon \\ \hat{U}_\epsilon \\ \delta V \end{bmatrix} = \begin{bmatrix} \delta x \\ \delta u \\ \delta x \\ \delta v \end{bmatrix} = \begin{bmatrix} \theta_\epsilon \\ \delta \theta_\epsilon \end{bmatrix} \\
\]

where \(a_\epsilon \) is a bilinear form defined by

\[
a_\epsilon \left(\begin{bmatrix} \xi_1 \\ \mu_1 \\ \Xi_1 \\ \nu_1 \end{bmatrix} , \begin{bmatrix} \xi_2 \\ \mu_2 \\ \Xi_2 \\ \nu_2 \end{bmatrix} \right) \equiv \sum_{i=1}^{N} \left[< C_i \xi_1, C_i \xi_2 > + < M_i \mu_1, i, \mu_2, i > - < C_i \Xi_1, C_i \Xi_2 > \right]
\]

and \(\theta_\epsilon \) is a linear form defined by
\[\theta_\varepsilon \left(\begin{bmatrix} \xi \\ \mu \\ \Xi \\ \nu \end{bmatrix} \right) = \Sigma_i \left[< z_i, c_i \xi > - < z_i, c_i \Xi > \right] + \frac{2}{\varepsilon_0} < \varepsilon_1, \xi > - \Delta \xi - \Sigma B_i \mu_i > \\
- \Sigma_i \frac{2}{\varepsilon_i} < f, z_i > - \Delta z_i - \Sigma \Sigma j \neq i B_j \mu_j - B_i \nu_i >, \]

for \((\xi, \mu; \Xi, \nu), (\xi_1, \mu_1; \Xi_1, \nu_1)\) and \((\xi_2, \mu_2; \Xi_2, \nu_2) \in H^1_0 \times \mathbb{R}[H^1_0]^N \times \mathbb{R}._j\)

We assume that \(\exists \Gamma > 0\) such that for all \(\varepsilon\) sufficiently small, \(a_\varepsilon\) satisfies

\[
(H_1) \quad \inf \left[\begin{bmatrix} \xi_2 \\ \mu_2 \\ \Xi_2 \\ \nu_2 \end{bmatrix} \right]_{H=1} \sup \left[\begin{bmatrix} \xi_1 \\ \mu_1 \\ \Xi_1 \\ \nu_1 \end{bmatrix} \right]_{H=1} a_\varepsilon \left(\begin{bmatrix} \mu_1 \\ \Xi_1 \\ \nu_1 \end{bmatrix}, \begin{bmatrix} \mu_2 \\ \Xi_2 \\ \nu_2 \end{bmatrix} \right) \geq \Gamma > 0.
\]

How realistic is the above assumption? This is partly answered in

Proposition 2.3 If \(B_1, \ldots, B_N\) are comparatively smaller than \(M_1, \ldots, M_N\), then \((H_1)\) is valid.

Proof: For any given \((\xi_1, \mu_1; \Xi_1, \nu_1) \in H^1_0 \times \mathbb{R}[H^1_0]^N \times \mathbb{R}._j\), and \(\Xi_1 \in [H^1_0]^N\) such that

\[
(2.9) \quad \Xi_1 = A \Xi_1 - \Sigma \Sigma j \neq i B_j \mu_j - B_i \nu_i, i = -\Xi_1 + A \Xi_1 + \Sigma \Sigma j \neq i B_j \mu_j + B_i \nu_i, i,
\]

thus

\[
\Xi_1(t) = -\Xi_1(t) + 2 \int_0^t \Phi(t, s) \left[\Sigma \Sigma j \neq i B_j \mu_j + B_i \nu_i, i \right] ds,
\]
then

\[
\sup_{\xi_2} \epsilon \left(\begin{bmatrix} \xi_1 \\ \mu_1 \\ \Xi_1 \\ \nu_1 \\ \mu_2 \\ \Xi_2 \\ \nu_2 \end{bmatrix}, \begin{bmatrix} \xi_2 \\ \mu_1 \\ \Xi_2 \\ \nu_2 \end{bmatrix} \right) \leq \frac{1}{\| (\xi_1, \mu_1; \Xi_1, -\nu_1) \|_H} \alpha \left(\begin{bmatrix} \xi_1 \\ \mu_1 \\ \Xi_1 \\ \nu_1 \end{bmatrix}, \begin{bmatrix} \xi_1 \\ \mu_1 \\ \Xi_1 \\ \nu_1 \end{bmatrix} \right)
\]

\[
\frac{1}{\| (\xi_1, \mu_1; \Xi_1, -\nu_1) \|_H} \{ \sum_{i=1}^{N} \langle c_i \xi_1, c_i \xi_1 \rangle + \langle M_1 \mu_1, i, \mu_1, i \rangle
+ \langle c_i \Xi_1, c_i \Xi_1 \rangle - 2 \epsilon \int_{0}^{t} f(t, s) (\sum_{j \neq i} B_j \mu_1, j + B_1 \nu_1, i) ds \rangle + \langle M_1 \nu_1, i, \nu_1, i \rangle \rangle
+ \frac{2}{\epsilon_0} \| \xi_1 - A \xi_1 - \sum_{i} B_1 \mu_1, i \| ^2 + \sum_{i} \frac{2}{\epsilon_i} \| \xi_i - A \xi_i - \sum_{j \neq i} B_j \mu_1, j + B_1 \nu_1, i \| ^2
\]

But

\[
\sum_{i} \langle c_i \xi_1, c_i \xi_1 \rangle - 2 \epsilon \int_{0}^{t} f(t, s) (\sum_{j \neq i} B_j \mu_1, j + B_1 \nu_1, i) ds \rangle \geq \frac{1}{2} \sum_{i} \| c_i \xi_1 \| ^2 - 2 \epsilon \sum_{i} \| c_i \xi_1 \| ^2 - 2 \epsilon \| \sum_{j \neq i} \int_{0}^{t} f(t, s) (\sum_{j \neq i} B_j \mu_1, j + B_1 \nu_1, i) ds \| ^2
\]

\[
= \frac{1}{2} \sum_{i} \| c_i \xi_1 \| ^2 - 2 \epsilon \sum_{i} \| c_i \xi_1 \| ^2 - 2 \epsilon \sum_{i} \| c_i \xi_1 \| ^2 - 2 \epsilon \| \sum_{j \neq i} \int_{0}^{t} f(t, s) (\sum_{j \neq i} B_j \mu_1, j + B_1 \nu_1, i) ds \| ^2
\]

The second term above can be absorbed into a fraction of

\[
\sum_{i} \langle c_i \xi_1, c_i \xi_1 \rangle + \langle M_1 \nu_1, i, \nu_1, i \rangle \] provided that \(M_1, \ldots, M_N \) are comparatively larger than \(B_1, \ldots, B_N \), i.e., we have

\[
\text{LHS of (2.14)} \geq \frac{1}{\| (\xi_1, \mu_1; \Xi_1, -\nu_1) \|_H} \alpha \{ \sum_{i=1}^{N} \langle c_i \xi_1, c_i \xi_1 \rangle
+ \langle M_1 \nu_1, i, \nu_1, i \rangle
+ \langle c_i \Xi_1, c_i \Xi_1 \rangle + \langle M_1 \nu_1, i, \nu_1, i \rangle \} + \frac{2}{\epsilon_0} \| \xi_1 - A \xi_1
- \sum_{i} B_1 \mu_1, i \| ^2 + \frac{2}{\epsilon_i} \| \xi_i - A \xi_i - \sum_{j \neq i} B_j \mu_1, j + B_1 \nu_1, i \| ^2 \}
\]

for some \(\alpha: 0 < \alpha < \frac{1}{2} \).
Let \(\beta \in (0,1) \) be fixed. For the terms on the RHS of (2.11), if
\[(\xi_1, \mu_1 ; \Xi_1, \nu_1) \] satisfies
\[
\frac{1}{\varepsilon_0} \| \xi_1 - A \xi_1 - \sum_{i=1}^{N} B_i \mu_1, i \|^2 \geq \beta \| \xi_1 - A \xi_1 \|^2 ,
\]
(2.12)
\[
\frac{1}{\varepsilon_i} \| \xi_i - A \xi_1 - \sum_{j \neq i}^{N} B_{j} \mu_1, j - B_i \nu_1, i \|^2 \geq \beta \| \xi_i - A \xi_1 \|^2 , \quad i = 1, \ldots, N,
\]
then we easily observe that
\[
(\text{RHS}) \text{ of (2.11)} \geq \Gamma > 0 , \quad \text{for some } \Gamma \text{ independent of } (\xi_1, \mu_1 ; \Xi_1, \nu_1),
\]
is satisfied.

If, on the contrary, say, for \(i = 1 \), we have
(2.13)
\[
\frac{1}{\varepsilon_1} \| \xi_1 - A \xi_1 - \sum_{j=2}^{N} B_j \mu_1, j - B_1 \nu_1, 1 \|^2 \geq \beta \| \xi_1 - A \xi_1 \|^2 ,
\]
while the rest of (2.12) remains valid, then (2.13) gives
(2.14)
\[
\| \xi_1 - A \xi_1 \|^2 + \| \sum_{j=2}^{N} B_j \mu_1, j + B_1 \nu_1, 1 \|^2 \leq \beta \varepsilon_1 \| \xi_1 - A \xi_1 \|^2 + 2 \leq \xi_1 - A \xi_1 , \\
\sum_{j=2}^{N} B_j \mu_1, j + B_1 \nu_1, 1 >
\]
\[
(1 - \beta \varepsilon_1) \| \xi_1 - A \xi_1 \|^2 + \| \sum_{j=2}^{N} B_j \mu_1, j + B_1 \nu_1, 1 \|^2 \leq \frac{1}{4} \| \xi_1 - A \xi_1 \|^2 + 4 \| \sum_{j=2}^{N} B_j \mu_1, j + B_1 \nu_1, 1 \|^2
\]
\[
(1 - \beta \varepsilon_1 - \frac{1}{4}) \| \xi_1 - A \xi_1 \|^2 \leq 3 \| \sum_{j=2}^{N} B_j \mu_1, j + B_1 \nu_1, 1 \|^2 .
\]

Hence
\[
\| \sum_{j=2}^{N} B_j \mu_1, j + B_1 \nu_1, 1 \|^2 \geq \frac{1}{3} (1 - \beta \varepsilon_1 - \frac{1}{4}) \| \xi_1 - A \xi_1 \|^2 .
\]

Because \(M_i, 1 \leq i \leq N \) are positive definite operators considerably larger than
\(B_i, 1 \leq i \leq N \), we have
(2.15) \[\alpha' \sum_i \left[<M_1^1, \mu_1, \nu_1, \xi_1, \eta_1> + <M_1^1, \nu_1, \eta_1, \xi_1, \mu_1> \right] \geq \left\| \sum_{j=2}^N B_{ji} \mu_{1,j} + B_{i} \nu_{1,i} \right\|^2 \]

for some \(\alpha'; 0 < \alpha' < 1 \). Therefore, for some \(\alpha'' < \alpha, \alpha'' > 0 \), we have

\[
\text{(LHS) of (2.11)} \geq \frac{1}{\| (\xi_1, \mu_1; \eta_1, \nu_1) \|_H} \alpha'' \left\{ \sum_i \left[<c_{i1} \xi_1, c_{i2} \xi_1 > + <M_1^i, \mu_1, \nu_1, \xi_1, \eta_1> \right] \right. \\
+ \frac{1}{\epsilon_0} \| \xi_1 - A \xi_1 - \sum B \mu_{1,i} \|^2 + \sum_{i=2}^N \beta \| \xi_1 - A \xi_1 \|^2 + \frac{1}{3} \left(1 - \beta \epsilon_1 - \frac{1}{4} \right) \| \xi_1 - A \xi_1 \|^2 \}.
\]

Hence the LHS of (2.11) is again \(\geq \rho > 0 \) for some \(\rho \), independent of \((\xi_1, \mu_1; \eta_1, \nu_1) \) and \(\epsilon_0, \ldots, \epsilon_N \). Therefore (H1) is realistic.

We now let \(S_h^0 \subset H^1_0(0,T) \) be a \((\tau_0, 1)\)-system ([1], [4]) and let \(S_h^i \subset L^2_{m_i}(0,T), i = 1, 2, \ldots, N \) be \((\tau, 0)\)-systems, and denote

\[
(2.16) \quad S_h = S_h^0 \times \left(\prod_{i=1}^N S_h^i \right) \times \left(\prod_{i=1}^N S_h^0 \right) \times \left(\prod_{i=1}^N S_h^i \right).
\]

We assume, furthermore, that

\[
(\text{H.}^1) \quad \inf \left[\begin{array}{c} \xi_1^h \\ \xi_2^h \\ \mu_1^h \\ \mu_2^h \\ \eta_1^h \\ \eta_2^h \\ \nu_1^h \\ \nu_2^h \\ \zeta_1^h \\ \zeta_2^h \end{array} \right] \geq \sup \left[\begin{array}{c} \xi_1^h \\ \xi_2^h \\ \mu_1^h \\ \mu_2^h \\ \eta_1^h \\ \eta_2^h \\ \nu_1^h \\ \nu_2^h \\ \zeta_1^h \\ \zeta_2^h \\ \zeta_1^h \\ \zeta_2^h \\ \zeta_1^h \\ \zeta_2^h \end{array} \right] \geq \Gamma_h \geq \Gamma > 0, \quad \forall h,
\]

wherein \((\xi_1^h, \mu_1^h; \eta_1^h, \nu_1^h), (\xi_2^h, \mu_2^h; \eta_2^h, \nu_2^h) \in S_h^1 \). It should be noted that if
are sufficiently small compared with \(M_1, \ldots, M_N \), then (H2) is also valid.

We consider
\[
(2.17) \quad \min_{(x,u) \in S^0_h \times \prod_{i=1}^N S^i_h} \max_{(X,v) \in \prod_{i=1}^N S^0_i \times \prod_{i=1}^N S^i_h} J_e(x,u;X,v).
\]

Arguing in the same manner as in the early part of this section, we see that (2.17) leads to finding the solution \((\hat{x}_e^h, \hat{u}_e^h, \hat{v}_e^h, \hat{\psi}_e^h)\) of the variational equation
\[
(2.18) \quad a_e (\begin{bmatrix} \hat{x}_e^h \\ \hat{u}_e^h \\ \hat{v}_e^h \\ \hat{\psi}_e^h \end{bmatrix}, \begin{bmatrix} \delta x^h \\ \delta u^h \\ \delta v^h \\ \delta \psi^h \end{bmatrix}) = \theta_e (\begin{bmatrix} \delta x^h \\ \delta u^h \\ \delta v^h \\ \delta \psi^h \end{bmatrix}), \quad (\delta x^h, \delta u^h, \delta v^h, \delta \psi^h) \in S_h.
\]

Let \(\{\phi_i^0\}_{i=1}^{I_0} \times \{\phi_i^1\}_{i=1}^{I_1} \times \cdots \times \{\phi_i^N\}_{i=1}^{I_N} \) be a basis for \(S^0_h \times S^1_h \times \cdots \times S^N_h \).

Then (2.18) is a matrix equation \(N^h_e \varphi_h = \vartheta^h_e \), where the matrix \(N^h_e \) and the vector \(\vartheta^h_e \) have entries
\[
[N^h_e]_{ij} = a_e (\psi_i, \psi_j) \quad ; \quad \psi_i, \psi_j \in S_h,
\]
\[
\psi_i = (\psi_{i0^0}, (\psi_{i1^1}, \ldots, \psi_{iN^N}^N), (\psi_{0^0}, \psi_{0^1}, \ldots, \psi_{0^N}^N), (\psi_{1^1}, \psi_{2^2}, \ldots, \psi_{N^N}^N))
\]
\[
\psi_j = (\psi_{j0^0}, (\psi_{j1^1}, \ldots, \psi_{jN^N}^N), (\psi_{0^0}, \psi_{0^1}, \ldots, \psi_{0^N}^N), (\psi_{1^1}, \psi_{2^2}, \ldots, \psi_{N^N}^N))
\]
\[
[\vartheta^h_e]_{i} = \theta_e (\psi_i) \quad ; \quad \psi_i \in S_h,
\]
for all \(i, j : 1 \leq i, j \leq (N + 1)I_0 + 2 \sum_{j=1}^{N} I_j \), where in the above,
Blockwise, we can write

\[
\begin{pmatrix}
\frac{M^h(1,1)}{N^c(1,1)} & \frac{M^h(1,2)}{N^c(1,2)} & \frac{M^h(1,3)}{N^c(1,3)} & \frac{M^h(1,4)}{N^c(1,4)} \\
\frac{M^h(2,1)}{N^c(2,1)} & \frac{M^h(2,2)}{N^c(2,2)} & \frac{M^h(2,3)}{N^c(2,3)} & \frac{M^h(2,4)}{N^c(2,4)} \\
\frac{M^h(3,1)}{N^c(3,1)} & \frac{M^h(3,2)}{N^c(3,2)} & \frac{M^h(3,3)}{N^c(3,3)} & \frac{M^h(3,4)}{N^c(3,4)} \\
\frac{M^h(4,1)}{N^c(4,1)} & \frac{M^h(4,2)}{N^c(4,2)} & \frac{M^h(4,3)}{N^c(4,3)} & \frac{M^h(4,4)}{N^c(4,4)}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{\delta^h(1)}{\delta^c(1)} \\
\frac{\delta^h(2)}{\delta^c(2)} \\
\frac{\delta^h(3)}{\delta^c(3)} \\
\frac{\delta^h(4)}{\delta^c(4)}
\end{pmatrix}
\]

wherein

\[
\left[\frac{M^h(1,1)}{N^c(1,1)}\right]_{i_0,j_0} = \sum_{k=1}^{N} \left[C_{ik} \psi^0, C_{kj} j^0 \right] + \frac{2}{\varepsilon_0} \left[\psi^0 - A \psi^0, j^0 - A j^0 \right];
\]

\[
1 \leq i_0, j_0 \leq I_0;
\]

\[
\left[\frac{M^h(2,1)}{N^c(2,1)}\right]_{\max(1,\ell-1)} = -\frac{2}{\varepsilon_0} \left[\psi^0 - A \psi^0, B_{\ell} \psi_{\ell} \right]; \quad \ell = 1, 2, \ldots, N;
\]

\[
1 \leq i_0 \leq I_0; \quad 1 \leq j_\ell \leq I_\ell; \quad \text{sgn } a = \begin{cases} \frac{a}{|a|} & \text{if } a \neq 0 \\ 0 & \text{if } a = 0; \end{cases}
\]
\(\tilde{M}_h^{(3,1)} \approx 0; \)

\(\tilde{M}_h^{(4,1)} \approx 0; \)

\([\tilde{M}_h^{(2,2)}]\)

\[
\max(1,\ell-1) \left(\sum_{j=1}^{I_1} I_j \cdot \text{sgn}(j-1)+i_{\ell} \right) \left(\sum_{k=1}^{I_2} I_k \cdot \text{sgn}(k-1)+i_{p} \right)
\]

\[
= \delta_{p \ell} < \chi_\ell \psi_\ell, \psi_p > + \frac{2}{\epsilon_0} < B_\ell \psi_\ell, B_p \psi_p > - \sum_{i=1}^{N} (1 - \delta_{i \ell}) (1 - \delta_{i p}) \frac{2}{\epsilon_i}
\]

\[
\times < B_\ell \psi_\ell, B_p \psi_p >,
\]

\(1 \leq p, \ell \leq N; \quad 1 \leq i_{\ell} \leq I_\ell; \quad 1 \leq i_p \leq I_p; \)

\([\tilde{M}_h^{(3,2)}]\)

\[
\max(1,\ell-1) \left(\sum_{j=1}^{I_1} I_j \cdot \text{sgn}(j-1)+i_{\ell} \right) \left(\text{sgn}(p-1) \cdot (p-1)I_0+i_{p} \right)
\]

\[
= (1 - \delta_{p \ell}) \frac{2}{\epsilon_\ell} < B_\ell \psi_\ell, \psi_p - A\psi_0 >;
\]

\(1 \leq p, \ell \leq N; \quad 1 \leq i_{\ell} \leq I_\ell; \quad 1 \leq i_p \leq I_0; \)

\([\tilde{M}_h^{(4,2)}]\)

\[
\max(1,\ell-1) \left(\sum_{j=1}^{I_1} I_j \cdot \text{sgn}(j-1)+i_{\ell} \right) \left(\sum_{k=1}^{I_2} I_k \cdot \text{sgn}(k-1)+i_{p} \right)
\]

\[
= - (1 - \delta_{p \ell}) \frac{2}{\epsilon_\ell} < B_\ell \psi_\ell, B_p \psi_p >;
\]

\(1 \leq p, \ell \leq N; \quad 1 \leq i_{\ell} \leq I_\ell; \quad 1 \leq i_p \leq I_p; \)

\([\tilde{M}_h^{(3,3)}]\)

\[
\left(\text{sgn}(\ell-1) \cdot (\ell-1)I_0+i_{\ell} \right) \left(\text{sgn}(p-1) \cdot (p-1)I_0+i_{p} \right)
\]

\[
= - \sum_j < c_j \psi_0, c_j \psi_0 > - \frac{2}{\epsilon_\ell} < \psi_\ell, \psi_0 - A\psi_0 >;
\]

\(1 \leq p, \ell \leq N; \quad 1 \leq i_{\ell} \leq I_\ell; \quad 1 \leq i_p \leq I_0; \)
\[N^h_{e}(4,3) \]
\[\max(1,p-1) \]
\[(\text{sgn}(l-1) \cdot (l-1) I_0 + i_{l}) \left(\sum_{k=1}^{\text{max}(1,p-1)} I_k \cdot \text{sgn}(k-1) + i_{p} \right) \]
\[= \delta_{l,p} \frac{2}{\epsilon_{l}} < \psi_{0}^{l}, \text{A} \psi_{0}^{l}, \psi_{p}^{l}, \text{A} \psi_{p}^{l} > ; \]
\[1 \leq p, l \leq N; \quad 1 \leq i_{l} \leq I_{l}; \quad 1 \leq i_{p} \leq I_{p}; \]

\[N^h_{e}(4,4) \]
\[\max(1,p-1) \sum_{j=1}^{\text{max}(1,p-1)} I_j \cdot \text{sgn}(j-1) + i_{l} \]
\[= -\delta_{l,p} \frac{2}{\epsilon_{l}} < B_{l} \psi_{l}^{l}, \psi_{p}^{l} > + < M_{l} \psi_{l}^{l}, \psi_{p}^{l} > ; \]
\[1 \leq p, l \leq N; \quad 1 \leq i_{l} \leq I_{l}; \quad 1 \leq i_{p} \leq I_{p}; \]

and \[N^h_{e}(q,r) = N^h_{e}(r,q) \] for \(q < r, \quad 1 \leq q, r \leq 4; \)

\[[\hat{a}_{e}^{h}(1)]_{i_0} = \sum_{i=1}^{N} < z_{i}, C_{i} I_{0}^{i} + \frac{2}{\epsilon_{0}} < f, \psi_{0}^{i} - \text{A} \psi_{0}^{i} > ; \quad 1 \leq i_{0} \leq I_{0}; \]

\[[\hat{a}_{e}^{h}(2)] = -\frac{2}{\epsilon_{0}} < f, B_{l} \psi_{l}^{l} > ; \]
\[\left(\sum_{j=1}^{\text{max}(1,l-1)} I_j \cdot \text{sgn}(j-1) + i_{l} \right) \]
\[1 \leq l \leq N; \quad 1 \leq i_{l} \leq I_{l}; \]

\[[\hat{a}_{e}^{h}(3)]((l-1) \cdot \text{sgn}(l-1) I_0 + i_{l}) = -< z_{l}, C_{l} \psi_{0}^{l} > - \frac{2}{\epsilon_{l}} < f, \psi_{0}^{l} - \text{A} \psi_{0}^{l} > ; \]
\[1 \leq l \leq N; \quad 1 \leq i_{l} \leq I_{l}; \]

\[[\hat{a}_{e}^{h}(4)] \max(1,l-1) \]
\[\left(\sum_{j=1}^{\text{max}(1,l-1)} I_j \cdot \text{sgn}(j-1) + i_{l} \right) \]
\[= \frac{2}{\epsilon_{l}} < f, B_{l} \psi_{l}^{l} > ; \]
\[1 \leq l \leq N; \quad 1 \leq i_{l} \leq I_{l}. \]
Theorem 2.4 Let \(\{ S_h \} \) be a one-parameter family of finite element spaces as mentioned in (2.16). Let \((x_h^e, u_h^e, \hat{x}_h^e, \hat{u}_h^e) \in S_h \) be the solution of (2.18)

Assume that \((\hat{x}_h^e, \hat{u}_h^e; \hat{x}_e^e, \hat{v}_e^e)\), the solution of (2.8) (or (2.2)), belongs to

\[
H_n \times (\Pi_{i=1}^m N) \times (\Pi_{i=1}^m N). \quad \text{Let } (\hat{x}, \hat{u}; \hat{x}, \hat{v}) \text{ be the solution of (1.2)}
\]

Under (H1) and (H2), we have

\[
\| x_h^e - \hat{x} \|_{H_n} + \| u_h^e - \hat{u} \|_U + \| \hat{x}_h^e - \hat{x} \|_{[H_n^1]} + \| \hat{v}_h^e - \hat{v} \|_U \\
\leq (1 + \frac{1}{\min_{0 \leq i \leq N} \varepsilon_i}) K_8 h^\mu \| (\hat{x}_h^e, \hat{v}_h^e; \hat{x}_e^e, \hat{v}_e^e) \| \\
+ K_2^1 \left(\max_{0 \leq i \leq N} \varepsilon_i \right) \| (\hat{p}_0^e, \hat{v}) \|_{[L_n^N]}^{2N+1}
\]

for some constant \(K_8 > 0 \) independent of \(h, \varepsilon \) and \((\hat{x}_h^e, \hat{u}_h^e; \hat{x}_e^e, \hat{v}_e^e)\), where

\[
\mu = \min(\tau_0 - 1, \tau, s_1 - 1, s_2), \quad (\hat{p}_0^e, \hat{v}) \text{ is the dual multiplier, and } K_2^1 \text{ is the same constant as in (1.27)}.
\]

Proof: We use the triangle inequality

\[
(2.20) \quad \| (x_h^e, u_h^e; \hat{x}_h^e, \hat{v}_h^e) - (\hat{x}, \hat{u}; \hat{x}, \hat{v}) \|_H \\
\leq \| (x_h^e, u_h^e; \hat{x}_h^e, \hat{v}_h^e) - (\hat{x}_h^e, \hat{u}_h^e; \hat{x}_e^e, \hat{v}_e^e) \|_H + \| (\hat{x}_h^e, \hat{v}_h^e; \hat{x}_e^e, \hat{v}_e^e) - (\hat{x}_h^e, \hat{u}_h^e; \hat{x}_e^e, \hat{v}_e^e) \|_H.
\]

Since \(e \) satisfies
\[|a(\phi, \psi)| \leq \frac{K_8}{\min_{0 \leq i \leq N} \varepsilon_i} \|\phi\|_H \|\psi\|_H \]

for some \(K_8 > 0 \) for all \(\phi, \psi \in H \), by assumptions \((H1)\) and \((H2)\), and [1,p.186], we have

\[(2.21) \| (\hat{x}_c^h, \hat{u}_c^h, \hat{x}_c^h, \hat{v}_c^h) - (\hat{x}_c, \hat{u}_c, \hat{x}_c, \hat{v}_c) \|_H \leq (1 + \frac{1}{\tau} \min_{0 \leq i \leq N} \varepsilon_i) \mu h^\mu \]

with \(\mu = \min((\tau_0 - 1), \tau, s_1 - 1, s_2) \).

Combining (2.20), (2.21) and Corollary 1.7, we conclude (2.19).

From Theorem 2.4, we see that if

\[\lim_{\varepsilon_0, \ldots, \varepsilon_N \to 0} \| (\hat{x}_c^h, \hat{u}_c^h, \hat{x}_c^h, \hat{v}_c^h) \|_H^s_1 \times (\Pi_{i=1}^{s_2} \Pi_{i=1}^{s_2}) \times (H_n) \times (\Pi_{i=1}^{s_2} \Pi_{i=1}^{s_2}) < \infty, \]

then the error estimate is of the order of magnitude

\[(2.22) \| (\hat{x}_c^h, \hat{u}_c^h, \hat{x}_c^h, \hat{v}_c^h) - (\hat{x}, \hat{u}; \hat{x}, \hat{v}) \|_H = \left(\frac{h^\mu}{\min_{0 \leq i \leq N} \varepsilon_i} + \max_{0 \leq i \leq N} \varepsilon_i \right), \forall \varepsilon, \forall h. \]

Thus if we choose \(\varepsilon_0 = \varepsilon_1 = \ldots = \varepsilon_N = \bar{\varepsilon} \) and \(\bar{\varepsilon} = O(h^{\mu/2}) \), the RHS of

\[(2.22) \]

is optimal and we have

\[\| (\hat{x}_c^h, \hat{u}_c^h, \hat{x}_c^h, \hat{v}_c^h) - (\hat{x}, \hat{u}; \hat{x}, \hat{v}) \|_H = O(h^{\mu/2}). \]
§3. Duality and Penalty

The relationship between penalty has already been indicated in Theorem 1.2: we see that the Lagrange multipliers \(\hat{p}_0, \ldots, \hat{p}_N \) are actually the strong limits of (some scalar multiples of) the penalized differential equation, and the rate of convergence is \(\mathcal{O}(\varepsilon) \).

Let us explore this relationship a little further here. Consider, as in (2.2),

\[
\min_{(x,u) \in H_0^1} \max_{(X,v) \in [H_0^1]^N} J_\varepsilon(x,u;X,v) \\
= \frac{1}{2} \sum_{i=1}^{N} \left(\| C_i x - z_i \|^2 + \langle M_i u_i, u_i \rangle - \| C_i x^i - z_i \|^2 - \langle M_i v_i, v_i \rangle \right) \\
- \frac{2}{\varepsilon} \| \dot{x}^i - Ax^i - \sum_{j \neq i} B_{ij} u_j - B_{ii} v_i - \varepsilon \| \|^2 \right) + \frac{1}{\varepsilon_0} \| \dot{x} - Ax - \sum_{i} B_{ii} u_i - \varepsilon \| \|^2 .
\]

We can regard the above as a primal min-max problem subject to constraints

\(\dot{x} = \frac{dx}{dt} x, \dot{x}^1 = \frac{dx}{dt} x^1, \ldots, \dot{x}^N = \frac{dx}{dt} x^N \). Thus, formally, we introduce Lagrange multipliers \(p_0, p_1, \ldots, p_N \) and consider

\[
\max_{p \in L_2^n} \min_{(x,u) \in H_0^1} \min_{(X,v) \in [H_0^1]^N} \max_{(x,u) \in H_0^1} L_\varepsilon(p_0, p; x, u; X, v)
\]

where

\[
L_\varepsilon(p_0, p; x, u; X, v) \equiv J_\varepsilon(x, u; X, v) + \langle p_0, \frac{dx}{dt} x - \dot{x} \rangle + \sum_{i=1}^{N} \langle p_i, \frac{dx}{dt} x^i - \dot{x}^i \rangle ,
\]

\(p = (p_1, \ldots, p_N) \).

For given \(p_0, p_1, \ldots, p_N \in H_0^1 \), proceeding formal variational analysis as in [4], we get
Thus, we get, for $i = 1,2,\ldots,N$,

(3.4) $\sum_{j} C_{i}^{*}(C_{i}^{*}x_{c} - z_{j}) \bigg\{ \frac{2}{\varepsilon_{i}} A^{*}(x_{c}^{i} - Ax_{c}^{i} - \sum_{j} B_{j}^{i}e_{j} - f) \bigg\} - \frac{d}{dt} p = 0$

(3.5) $-C^{*}_{i}(C_{i}^{*}x_{c}^{i} - z_{i}) + \frac{2}{\varepsilon_{i}} A^{*}(x_{c}^{i} - Ax_{c}^{i} - \sum_{j} B_{j}^{i}e_{j} - f) \bigg\} - \frac{d}{dt} p_{i} = 0$

(3.6) $M_{i}^{*}e_{i}^{i} - \frac{2}{\varepsilon_{i}} B_{i}^{*}(x_{c}^{i} - Ax_{c}^{i} - \sum_{j} B_{j}^{i}e_{j} - f) + \sum_{j \neq i}^{1} \frac{1}{\varepsilon_{i}} \bigg\{ B_{j}^{i}(x_{c}^{i} - Ax_{c}^{i} - \sum_{k \neq i}^{1} B_{k}^{i}e_{j} - f) \bigg\} - B_{i}^{i}e_{i}^{i} = 0$

(3.7) $-M_{i}^{*}e_{i}^{i} + \frac{2}{\varepsilon_{i}} B_{i}^{*}(x_{c}^{i} - Ax_{c}^{i} - \sum_{j \neq i}^{1} B_{j}^{i}e_{j} - f) = 0$

(3.8) $-p_{0} + \frac{2}{\varepsilon_{i}} (x_{c}^{i} - Ax_{c}^{i} - \sum_{j} B_{j}^{i}e_{j} - f) = 0$

(3.9) $-p_{i} - \frac{2}{\varepsilon_{i}} (x_{c}^{i} - Ax_{c}^{i} - \sum_{j \neq i}^{1} B_{j}^{i}e_{j} - B_{i}^{i}e_{i}^{i} - f) = 0, \quad 1 \leq i \leq N.$
Substituting P_0, P_1, \ldots, P_N from (3.8), (3.9) into (3.4) - (3.7), we get

\begin{equation}
\frac{d}{dt} P_0 = -A^*_p + \sum_{i=1}^{N} C_i^*(C_i^*\hat{x}_c - z_i)
\end{equation}

and for $i = 1, 2, \ldots, N,$

\begin{equation}
\frac{d}{dt} P_i = -A^*_p - C_i^*(C_i^*\hat{x}_c - z_i)
\end{equation}

\begin{equation}
\hat{\psi}_i = M^{-1}_i B_i^*(P_0 + \sum_{j \neq i}^{} P_j)
\end{equation}

\begin{equation}
\hat{\psi}_i = -M^{-1}_i B_i P_i,
\end{equation}

wherein for $p_i, i = 0, 1, \ldots, N,$ the terminal conditions $p_i(T) = 0$ has been imposed.

Comparing (3.10), (3.11), (3.12) and (3.13), respectively, with \[4, (3.9), (3.6), (3.10)\] and (3.7), we find that they are correspondingly identical. If we assume as in \[4, (A1)\] that

\begin{equation}
C_i^* C_i (1 \leq i \leq N) \text{ are positive definite,}
\end{equation}

then we have

\begin{equation}
\hat{x}_c = \xi_0^{-1}(\hat{p} + A^* p + \sum_{i=1}^{N} C_i z_i); \quad \xi_0 \equiv \xi C_i^* C_i;
\end{equation}

\begin{equation}
\hat{x}_c = A[\xi_0^{-1}(\hat{p} + A^* p + \sum_{i=1}^{N} C_i z_i)] + \sum_{i=1}^{N} B_i [M_i^{-1} B_i^*(P_0 + \sum_{j \neq i}^{} P_j)] + f + \frac{e_0}{2} P_0
\end{equation}

\begin{equation}
\hat{x}_c = -\xi_1^{-1}(\hat{p}_i + A^*_p - C_i^* z_i); \quad \xi_1 \equiv C_i^* C_i, \quad 1 \leq i \leq N;
\end{equation}

\begin{equation}
\hat{x}_c = A[\xi_1^{-1}(\hat{p}_i + A^*_p - C_i^* z_i)] + \sum_{j \neq i}^{N} B_j [M_j^{-1} B_j^*(P_0 + \sum_{k \neq i} P_k)] + f
\end{equation}

\begin{equation}
- B_i M_i^{-1} B_i p_i - \frac{e_i}{2} p_i, \quad 1 \leq i \leq N.
\end{equation}
Integrating by parts for the last terms \(\frac{d}{dt} x - \hat{x} \) in (3.3) and using (3.15) - (3.18) to substitute \(p_i, \hat{p}_i, 0 \leq i \leq N \) for
\[
\hat{x}_e, \hat{x}_e, \hat{x}_e, \hat{x}_e, \ldots, \hat{x}_e, \hat{x}_e, \hat{u}_e, \ldots, \hat{u}_e, \hat{v}_e, \ldots, \hat{v}_e,
\]
we get
\[
\tilde{L}_e(p_0, p) \equiv \min_{(x, u) \in H_0} \max_{(X, v) \in [H_0]} L_e(p_0, p; x, u; X, v)
\]
\[= - \frac{1}{2} \langle p_0 + A^* p_0, \xi_0^{-1}(p_0 + A^* p_0) \rangle + \frac{1}{2} \sum_i \xi \langle p_i + A^* p_i, \xi_i^{-1} p_i + A^* p_i \rangle \]
\[= - \frac{1}{2} \langle p_0 + \sum_i p_i, S(p_0 + \sum_i p_i) \rangle + \langle p_0 + \sum_i p_i, \sum_i B_i M_i^{-1} B_i p_i \rangle \]
\[= - \frac{1}{2} \langle p_0 + \sum_i p_i, f \rangle - \frac{1}{2} \langle \xi_0^{-1}(\sum_i c_i^* z_i), \sum_i c_i^* z_i \rangle + \frac{1}{2} \sum_i \xi \| z_i \|^2 \]
\[- \frac{1}{2} \varepsilon_0 \| p_0 \|^2 + \frac{1}{2} \sum_i \varepsilon_i \| p_i \|^2,
\]
which differs from [4, (4.3)] only by
\[- \frac{1}{2} \varepsilon_0 \| p_0 \|^2 + \frac{1}{2} \sum_i \varepsilon_i \| p_i \|^2.\]
(The term \(\langle p_0(0) + \sum_i p_i(0), x_0 \rangle \) vanishes because \(x_0 = 0 \).) These two terms do not affect the convexity of \(p_0 \) and the concavity of \(p \) in \(\tilde{L}_e(p_0, p) \). Thus we conclude that the dual of the penalized problem is just an \(\varepsilon \)-perturbation of the dual problem.

We compare briefly the amount of computing involved in the dual and the penalty methods. Assume that in the error estimate (2.19) \(s_1 \) and \(s_2 \) are sufficiently large and that
\[
\lim_{\varepsilon \to 0} \| (\hat{x}_e, \hat{u}_e, \xi_e, \hat{v}_e) \| = \begin{pmatrix} s_1 \end{pmatrix}_{N} \begin{pmatrix} s_2 \end{pmatrix}_{N} \begin{pmatrix} s_1 \end{pmatrix}_{N} \begin{pmatrix} s_2 \end{pmatrix}_{N}.\]
For simplicity, we only consider \(n = m_1 = \ldots = m_N = 1 \). In order that \(\hat{x}_h^e \), the penalty solution, converges to \(\hat{x} \) with the same rate as
\[
\| \hat{x}_h - \hat{x} \| \quad \text{in} \ [4, (6.21)] \text{(where } \hat{x}_h \text{ is the duality solution), we must choose}
\[
\epsilon_0 = \epsilon_1 = \ldots = \epsilon_N = O(h^{\mu/2})
\]
with \(\mu = \mu \) in (2.19) and \(\mu = 2\mu \), where \(\mu \) is the same \(\mu \) in \([4, (6.21)]\). This implies that
\[
\bar{\tau}_0 - 1 = \bar{\tau} = \mu = 2\mu.
\]
Assume also that in \([4, \text{Theorem 6.2}]\) that \(\ell \) is sufficiently large so that \(\mu = \tau - 1 \). Thus, using the same \(h = T/M \) in both approaches by dividing the interval \([0,T]\) into \(M \) equal parts, the finite element space \(S_h \) (in \([4, \text{Theorem 6.2}]\) has \((N + 1) \cdot (M\mu + 1)\) basis elements, while the finite element space \(S_h \) in (2.16) has \((N + 1) \cdot (2M\mu + 1) + 2N(2\mu - 1)M + 1\) basis elements, assuming that \(S_h^1 = S_h^2 = \ldots = S_h^N = a (\mu,0)-\text{system. Thus the corresponding matrix equations}
\[
\begin{align*}
(3.19) \quad &\tilde{M}_h^e q_h^e = \tilde{\theta}_h^e \quad \text{(cf. } [4, (6.10)]) \\
(3.20) \quad &\tilde{M}_h^e q_h^e = \tilde{\theta}_h^e \quad (2.18)
\end{align*}
\]
have respective sizes
\[
\tilde{M}_h^e: \ [(N+1) \cdot (M\mu+1)]^2
\]
\[
\tilde{M}_h^e: \ [(N+1) \cdot (2M\mu+1) + 2N(2\mu-1)M+2N]^2
\]
Thus the ratio of computing time between (3.19) and (3.20) is
\[
(3.21) \quad \left[\frac{(N+1)(M\mu+1)}{(N+1)(2M\mu+1)+2N(2\mu-1)M+2N} \right]^3
\]
It appears to us that even after we take into account the sparseness and block structures of the matrices $\overline{M_h}$ and $\overline{M_h^s}$, the above ratio is still valid asymptotically. Therefore we see that the dual method is much more efficient than the penalty method, especially when the number of players N is large.

Nevertheless, the dual method is feasible only under assumption (Al) in [4], which requires the invertibility of $\mathcal{E}_1, \ldots, \mathcal{E}_N$ and is therefore quite restrictive. Computationally, the penalty method is not restricted by such a condition.
4. Numerical Results

Example 1. We consider the very same example as in [4, §7, Example 1]

\[
\begin{cases}
\dot{x}(t) = x(t) + u_1(t) + 2u_2(t) + 1, & 0 \leq t \leq T, \ T = \pi/4 \\
x(0) = 0
\end{cases}
\]

(4.1)\[J_1(x,u) = \int_0^T [|x(t) - (\cos t + \frac{1}{2})|^2 + \frac{1}{2} |u_1(t)|^2] \, dt \]
\[J_2(x,u) = \int_0^T [|x(t) - \sin t|^2 + 2|u_2(t)|^2] \, dt, \]

which is a 2-person non zero-sum game and is known to have a unique equilibrium strategy for all \(T > 0. \)

\(J_\varepsilon(x,u;x,v) \) is given as in (2.1). We choose for \(S^0_h \) a \((\tau_0,1) = (3,1)\) system of quadratic splines as approximation spaces for \(x, x^1 \) and \(x^2 \), and for \(S^1_h, S^2_h \) a \((\tau,0) = (2,0)\) system of piecewise linear finite elements as approximation spaces for \(u_1, u_2, v_1 \) and \(v_2 \).

It is not difficult to see that conditions (B1) - (B5) and (B7) in §1 are all satisfied. We are, however, unable to verify (B6); similarly, nor are we able to verify the validity of (H1) and (H2) in §2.

Our numerical results are plotted in the following figures. We use \(h = \frac{\pi}{4}/32 \) and \(\varepsilon_0 = \varepsilon_1 = \varepsilon_2 \equiv \varepsilon. \)

In the first three figures, we use \(\varepsilon = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} \) and \(10^{-5} \), respectively.

Figure 1 contains graphs of \(u_1 \) versus time \(t \), for various values of \(\varepsilon. \)

Figure 2 contains graphs of \(u_2. \)

Figure 3 contains graphs of \(x. \)

The trajectories of \(u_1, u_2 \) and \(x \) versus various values of \(\varepsilon \) cluster closer and closer as \(\varepsilon \) becomes small.
Figure 4 shows two graphs of u_1. The solid line represents numerical data obtained from duality in [4], with $(4,1)$-cubics and $h = \frac{\pi}{4}/32$. The broken line represents data obtained from penalty, with $(3,1)$-quadratics for state and $(2,0)$ piecewise continuous linear elements for strategies also with $h = \frac{\pi}{4}/32$, and $\epsilon_0 = \epsilon_1 = \epsilon_2 = 10^{-3}$.

Figure 5 shows two graphs of u_2, obtained in the same fashion as u_1.

Figure 6 contains two graphs of x.

From Figures 4 and 5, we see that numerical results for u_1 and u_2 obtained from duality and penalty show remarkable agreement. In Figure 6, we see that the two graphs of x agree very well everywhere except at the initial and terminal time 0 and T, where the duality graph is rougher and less accurate.

We list values of $u_1, u_2, v_1, v_2, x, x_1, x^2$ at selected points in Table 1.

All of our calculations were carried out with double precision.

The values of J_ϵ are obtained as follows:

\[
J_\epsilon = 0.5159708038688868 \times 10^{-1}, \quad \epsilon = 10^{-1};
\]

\[
J_\epsilon = 0.5698840889975811 \times 10^{-1}, \quad \epsilon = 10^{-2};
\]

\[
J_\epsilon = 0.8583978319547797 \times 10^{-3}, \quad \epsilon = 10^{-3};
\]

\[
J_\epsilon = 0.3287468594749820 \times 10^{-3}, \quad \epsilon = 10^{-4};
\]

\[
J_\epsilon = -0.1245174244833003 \times 10^{-3}, \quad \epsilon = 10^{-5}.
\]
In the following table, we use \(h = \frac{\pi}{4}/32 \) and use the following to denote

\[P_1: \text{penalty solution with } \varepsilon_0 = \varepsilon_1 = \varepsilon_2 = 10^{-3} \]

\[P_2: \text{penalty solution with } \varepsilon_0 = \varepsilon_1 = \varepsilon_2 = 10^{-5} \]

\[D: \text{duality solution} \]

<table>
<thead>
<tr>
<th></th>
<th>(t = \frac{1}{4} \cdot \frac{\pi}{4})</th>
<th>(t = \frac{1}{2} \cdot \frac{\pi}{4})</th>
<th>(t = \frac{3}{4} \cdot \frac{\pi}{4})</th>
<th>(t = \frac{\pi}{4} = T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1)</td>
<td>(P_1)</td>
<td>-2.077473</td>
<td>-1.238577</td>
<td>-0.562432</td>
</tr>
<tr>
<td></td>
<td>(P_2)</td>
<td>-2.078433</td>
<td>-1.239262</td>
<td>-0.562789</td>
</tr>
<tr>
<td></td>
<td>(D)</td>
<td>-2.064450</td>
<td>-1.229223</td>
<td>-0.556116</td>
</tr>
<tr>
<td>(u_2)</td>
<td>(P_1)</td>
<td>0.440848</td>
<td>0.285103</td>
<td>0.131847</td>
</tr>
<tr>
<td></td>
<td>(P_2)</td>
<td>0.441103</td>
<td>0.285264</td>
<td>0.131923</td>
</tr>
<tr>
<td></td>
<td>(D)</td>
<td>0.436094</td>
<td>0.281693</td>
<td>0.129746</td>
</tr>
<tr>
<td>(x)</td>
<td>(P_1)</td>
<td>-0.125946</td>
<td>-0.136808</td>
<td>-0.053823</td>
</tr>
<tr>
<td></td>
<td>(P_2)</td>
<td>-0.125870</td>
<td>-0.136707</td>
<td>-0.053713</td>
</tr>
<tr>
<td></td>
<td>(D)</td>
<td>-0.126924</td>
<td>-0.137191</td>
<td>-0.053709</td>
</tr>
</tbody>
</table>

Table 1

Remark: The above are rounded-off figures with 6 decimal place accuracy.

Example 2 (The Primal-Finite Difference Method)

We return to the primal approach in Part I [4]. Consider the same example as in Example 1:

\[
(4.2) \quad \min_{(x,u)} \max_{(X,v)} J(x,u;X,v)
\]

\((x,u) \) \((X,v) \)
where \((x,u;X,v)\) is subject to the differential constraints \((DE) = 0, [DE] = 0, x(0) = 0, X(0) = 0.\)

We discretize the differential constraints by the crude Euler finite difference scheme. For example, \((DE) = 0\) is discretized as

\[
\frac{x(t_{i+1}) - x(t_i)}{h} = A(t_i)x(t_i) + \sum_{j=1}^{N} B_j(t_i)u_j(t_i) + f(t_i), \quad i = 0, \ldots, M-1.
\]

Substituting (4.3) (and others) into (4.2), we proceed to solve the min-max problem.

We use \(M = 32\) and \(h = \frac{\pi}{32}\) and the primal approach to compute Example 1. The following values are obtained at selected points:

<table>
<thead>
<tr>
<th></th>
<th>(t = \frac{1}{4} \cdot \frac{\pi}{4})</th>
<th>(t = \frac{1}{2} \cdot \frac{\pi}{4})</th>
<th>(t = \frac{3}{4} \cdot \frac{\pi}{4})</th>
<th>(t = \frac{\pi}{4} = T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1)</td>
<td>-2.0416074</td>
<td>-1.2191050</td>
<td>-0.5541710</td>
<td>0.0</td>
</tr>
<tr>
<td>(u_2)</td>
<td>0.4394483</td>
<td>0.2837087</td>
<td>0.1311784</td>
<td>0.0</td>
</tr>
<tr>
<td>(x)</td>
<td>-0.1244138</td>
<td>-0.1363107</td>
<td>-0.0565919</td>
<td>0.1097617</td>
</tr>
</tbody>
</table>

Table 2

The reader may compare the values in Table 2 with those in Table 1.

Example 3: Consider again the following 2-person nonzero-sum game

\[
\begin{cases}
\dot{x}(t) = x(t) + \cos t \cdot u_1(t) + \sin t \cdot u_2(t) + 1, & 0 \leq t \leq T, \\
x(0) = 0, \\
J_1(x,u) = \int_0^T |x(t) - d_1(\cos t + \frac{1}{2})|^2 + \frac{1}{3} u_1^2(t) dt, \\
J_2(x,u) = \int_0^T |x(t) - d_2 \sin t|^2 + \frac{1}{2} u_2^2(t) dt,
\end{cases}
\]
where \(T = 2\pi \) and \((d_1, d_2) = (-1, 0.9)\), as in [4, §7, Example 3]. It is not clear to us whether the assumptions in [4] or in this paper are satisfied by this problem. However, as noted in [4, §7, Example 3], the values of \(L \) seem to be divergent.

Let us manage to compute the numerical solutions in a straightforward manner, using \(h = 2\pi/32 \). In Figures 7-9, the graphs of \(u_1, u_2 \) and \(x \) are plotted. The solid lines always represent the duality solutions of \(u_1, u_2 \) and \(x \), while the broken lines represent the penalty solutions of \(u_1, u_2 \) and \(x \), using \(\varepsilon = \varepsilon_0 = \varepsilon_1 = \varepsilon_2 = 10^{-3} \) and \(10^{-4} \), respectively.

It can be seen from these graphs that smaller values of \(\varepsilon \) cause further deviations between the penalty and duality solutions, if \(h \) is not adjusted according to \(\varepsilon \). This offers partial evidence that \(\varepsilon \) and \(h \) are coupled in the error bounds (2.19). Compare the results in [3].

We have also plotted the graphs of \(u_1, u_2 \) and \(x \), respectively, versus \(t \) with \(\varepsilon = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} \) and \(10^{-5} \), in Figures 10, 11 and 12. The computed values of \(J_{\varepsilon} \) are

\[
\begin{align*}
J_{\varepsilon} &= 0.4582465783358920, & \varepsilon &= 10^{-1}; \\
J_{\varepsilon} &= 0.2730100141206180, & \varepsilon &= 10^{-2}; \\
J_{\varepsilon} &= 0.1231759476555612, & \varepsilon &= 10^{-3}; \\
J_{\varepsilon} &= 0.9989590297527213, & \varepsilon &= 10^{-4}; \\
J_{\varepsilon} &= 0.3011451125450394 \times 10^3, & \varepsilon &= 10^{-5}.
\end{align*}
\]

We see that when \(\varepsilon = 10^{-5} \), the "numerical solutions" become completely meaningless.
Figure 1: The Penalty Solution of u_1

Figure 2: The Penalty Solution of u_2
Throughout Figures 1, 2 and 3, we use the following legend:

EPS1 ... EPS2 *** EPS3 +++ EPS4 XXX EPS5 ...

where \(\epsilon = \epsilon_1 = \epsilon_2 = \text{EPSI} \), \(I = 1, 2, 3, 4, 5 \) and

\[
\text{EPS1} = 10^{-1}, \quad \text{EPS2} = 10^{-2}, \quad \text{EPS3} = 10^{-3}, \quad \text{EPS4} = 10^{-4}, \quad \text{EPS5} = 10^{-5}.
\]
Figure 4: Comparison of the Penalty and Duality Solutions of u_1

Figure 5: Comparison of the Penalty and Duality Solutions of u_2
Throughout Figures 4, 5 and 6, the solid curve (1) represents the duality solution while the broken curve (2) represents the penalty solution, with $\varepsilon_0 = \varepsilon_1 = \varepsilon_2 = 10^{-3}$, both use $h = \frac{\pi}{4}/32$.

Figure 6: Comparison of the Penalty and Duality Solution of x
Figure 7.1 Comparison Between the Penalty and Duality Solutions of u_1, $\varepsilon = 10^{-3}$.

Figure 7.2 Comparison Between the Penalty and Duality Solutions of u_1, $\varepsilon = 10^{-4}$.

Figure 8.1 Comparison Between the Penalty and Duality Solutions of u_2, $\varepsilon = 10^{-3}$.
Figure 8.2 Comparison Between the Penalty and Duality Solutions of u_2, $\varepsilon = 10^{-4}$.

Figure 9.1 Comparison Between the Penalty and Duality Solutions of x, $\varepsilon = 10^{-3}$.

Figure 9.2 Comparison Between the Penalty and Duality Solutions of x, $\varepsilon = 10^{-4}$.
Figure 10 u_1 in Example 3 for various values of ε.

Figure 11 u_2 in Example 3 for various values of ε.
Throughout Figures 10, 11, and 12, we use

$$\text{EPS1} = 10^{-1}, \text{EPS2} = 10^{-2}, \text{EPS3} = 10^{-3}, \text{EPS4} = 10^{-4} \quad \text{and} \quad \text{EPS5} = 10^{-5}.$$
REFERENCES

The equilibrium strategy for N-person differential games can be found by studying a min-max problem subject to differential systems constraints [4]. In this paper, we penalize the differential constraints and use finite elements to compute numerical solutions. Convergence proof and error estimates are given. We have also included numerical results and compared them with those obtained by the dual method in [4].
End of Document