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ABSTRACT 

Iterative methods are considered for the solution of a coupled pair of 

second order elliptic partial differential equations which arise in the field 

of solid state electronics. A finite difference scheme is used which retains 

the conservative form of the differential equations. Numerical solutions are 

obtained in two ways - by multigrid and dynamic alternating direction implicit 

methods. Numerical results are presented which show the multigrid method to 

be an efficient way of solving this problem. 
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Introduction 

In solid state electronics the designers of PIN diodes are interested in 

the effect on the performance of the diode due to changes in various design 

parameters. An advantage of producing a good mathematical model is that the 

testing, when performed experimentally, could be a lengthy and expensive 

process. A description of the model and the derivation of the equations can 

be found in Aitchison and Berz [2]. The model gives rise to a coupled system 

of elliptic partial differential equations. 

In this paper we consider numerical techniques for the solution of this 

pair of equations. We consider a two-dimensional diode which is defined in 

Cartesian co-ordinates and where it is assumed that the diode is very long in 

the third dimension. After deriving the finite difference equations we 

describe applications of a mu1tigrid method and the dynamic A.D.I. (D.A.D.I.) 

method to obtain numerical solutions. 

2. The Differential Equations 

The problem is formulated in terms of the carrier density c(x,y) and a 

stream function u(x,y). The behavior of diodes which are effectively two-

dimensional and of rectangular cross-section can be described by the following 

equations: 

2 2 
.£...£+1-£= 

2 c, 
ax2 ay 

(1) 

a (1 aU) + --1 (1 aU) ... 0, 
ax c ax ay c ay (2) 

in the region R = {(x,y):O(x(A,O(y(B}. 
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The boundary conditions are 

ac b au au (1+b)~ 0, (3,4) h = (1+b) ay' ax = ay' on x = 

ac -1 au au -(1+b) ac A (5,6) -=-------= ay' on x = ax (l+b) ay' ax b 

ac 0, 0, 0, (7, R) -ay= u = on y = 

ac -1, B, (9,10) -= -sc, u on y ay 

where sand b are positive constants. 

There are two quantities in which the designers of diodes are 

particularly interested. The first is the equipotential check, K(y), given 

by 

K(y) 
A 

= -2b I 1 audx + (b-1)l (c(O,y)) + 1 ( (0 ) (A )) 
(1+b) 2 0 c ay b+1 og c(A,y) og c ,y'c ,y • (11 ) 

Aitchison [1] showed that this quantity is constant. The second quantity of 

interest is the total charge, Q, defined by 

Q II cdxdy. 
R 

We can easily verify that Q can be expressed in the form 

A 
Q = 1 - si c(x,B)dx. 

o 

(12) 

(13) 



3. Finite Difference Approximation 

The finite difference equations are constructed using the integration 

method of Varga [8]. This method was also used by Aitchison [1] who solved 

the problem using Newton's method and a sparse matrix routine. The technique 

is used because the conservative form of Eq. (2) is retained in the finite 

difference scheme. 

We consider a rectangle R in which A ~ 2 and B = 4. The region R 

is covered with a square grid of step size h in both the x and y 

directions where Nh = 2. Let and be the values of c(x,y) 

and u(x,y) at the grid point (xi'Yj) where Xi = ih and Yj = jh. Let the 

region ri,j be defined as lying within R and being bounded by the lines 

x = Xi - liz h, x = Xi + 1/2 h, Y = Yj - liz h and Y = Yj + liz h. In our 

application of the technique the regions ri,j are either square or 

rectangular. Various regions ri,j are shown on Fig. 1. Let Si,j be the 

boundary of the region ri,j. 

We first consider Eq. (1). Integrating Eq. (1) over the region rl,j 

gives 

(14) 

We apply Green's theorem to the first two terms in this integral to obtain 

cdxdy = 0 (15) 

where n is the unit outward drawn normal. 

The finite difference approximation at internal points is therefore given 

by 

3 
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0, (16) 

where 0 < i < N, 0 < j < 2N. This equation can be simplified to give 

(17) 

which is the same as that obtained by using the standard five-point finite 

difference approximation to Eq. (1). 

~ ~ 
~ ~ 

t& 
~ 

~ 

Figure 1. 



To construct the finite difference approximation along x = 0 we need to 

consider the following integral 

b 
= (1+b) {u(O,(j+I/2 )h) - u(O,(j_I/z )h)} 

(1~) 

where 0 < j < 2N. In deriving F.q. (18) we have used boundary condition (3) 

and the approximation u(O,(j+I/z)h)'" (uO,j+uO,j+I)/2. Using Eq. (18) we 

obtain the following finite difference approximation to Eq. (1) along x = 0: 

where 0 < j < 2N. In a similar fashion we can obtain finite difference 

approximations to Eq. (1) along other parts of the boundary of R. 

We now consider the discretization of Eq. (2). Integrating Eq. (2) over 

the region ri,j yields 

II {-l(l aU) + -l(l aU)}dxd = ax c ax ay c ay y o. 
ri,j 

(19) 

Applying Green's theorem to this equation we obtain 

I 1 au ds 0 
c an =. (20) 

Si,j 

The finite difference approximation to Eq. (2) at internal points is therefore 

5 
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ui +1,1 - Ui,j + ui ,1+1 - ui ,1 + ui - 1,1 - ui ,1 + ui ,1-1 - ui ,1 _ 0, 

c i +1,j + Ci,j Ci ,j+1 + Ci,j Ci _1,j + Ci,j Ci ,j_1 + Ci,j 

where 0 < i < N, 0 < j < 2N. 

(21) 

To construct the finite difference approximation along x = ° we 

consider the following integral 

Yj+ 1/2 1 ac 
(l+b)f c(O,y) ay (O,y)dy 

Yj- 1h 

= (1+b ) {10 g ( c( 0, (j+ 1h ) h) ) -10 g ( C (0, (j - 1/2 ) h) ) } 

C + C 
== (1+b)1og ( 0, j+1 0, j) (22) 

CO,j_1 + cO, j 

In this calculation we have made use of boundary condition (4). So the finite 

difference approximation to Eq. (20) along x = 0 is given by 

Co j 1 + CO,j) 
- (l+b)log( ,+ - = 0, 

CO,j_1 + CO,j 

where 0 < j < 2N. 

Similarly we obtain finite difference approximations to Eq. (2) along 

x = 2 using the boundary condition given by Eq. (6). 

and 

Along y = 0 and y - 4 we have 

U i 0 = 0, , 

U i ,2N = -1, 



respectively where 0 < i < N. 

Let Kj 

K( (j+ % )h) 

be the discrete form of K(U+ 1/Z)h) for j .. 0,1, ••• ,2N - 1. 

is discretized using the trapezoidal rule. The resulting 

discretization is given by 

K = -2b ~"( ui • .1+1 -Ui,j ) + b 1 Co .1+1 +c j 
L -- -- (-=-)log (. 0,) 

j (1+b)2 i=O % (ci ,j+l +ci,j) b+1 CN,j+l +~,j 

(23) 

where the summation notation is defined by 

Aitchison (1) shows that Kj is a constant independent of j and so the 

above difference scheme exactly conserves this constant. To calculate the 

total charge Q we discretize Eq. (13), again using the trapezoidal rule. 

A A 

Let Q be the discrete form of Q, then Q is given by 

4. A Mu1tigrid Algorithm 

N" 
Q = 1 - sh I 

i=O 
(24) 

We consider a mu1tigrid method of solution to this coupled system of 

equations using a natural extension of the accommodative Full Approximation 

Storage (F.A.S.) cycling algorithm of Brandt [3). The mu1tigrid method is a 

numerical strategy to solve partial differential equations by switching 

7 



8 

between finer and coarser levels of discretization. The characteristic 

feature of the method is the combination of a smoothing step and a coarse grid 

correction. During the smoothing step the residuals are not necessarily 

decreased but smoothed. In the following correction step the discrete 

solution is improved by means of an auxiliary equation on a coarser grid. 

This results in an iterative method that is usually very fast and effective. 

A detailed description of the mu1tigrid method can be found in Brandt [3] and 

Hackbusch [7]. 

Let G1' ••• '~ be a sequence of grids approximating the region 

R = {(x,y):O(x(2,O(y(4} with corresponding mesh sizes h1, ••• ,hM• Let hk = 

2hk+1 for k = 1, ••• ,M-1. The problem is discretized on each grid ~ using 

the technique described in the previous section. Let the discrete operators 

L~ and L~ define the resulting discretizations of equations (1) and (2) 

respectively on where depends on For k < M we solve an 

auxiliary equation on Gk (cf. Algorithm 1). The steps of the algorithm are 

given below. 

Algorithm 1 

(a) Set k = M, the initial working level and choose €k to be a 

suitable tolerance. Choose initial approximations ck and uk to c and 

u respectively. Set fk 
1 and fk 

2 equal to zero since Lfck = 0 and 

k k 
L

2
u = O. On coarser grids fk 

1 
and will denote the modified right-hand 

sides (see Eqs. (25) and (26». 

(b) Set ~ = 1030. 

(c) Perform one relaxation sweep over all the equations. Compute the 

12-norm of the residuals, ek' where 



(d) If ~ < Ek i.e. relaxation has sufficiently converged on the 

current level, go to Step (f). If not, and if convergence is still fast, i.e. 

-where n is fixed and chosen later, set ek = ~ and go to Step 

(c). The parameter n is known as the switching parameter. If convergence 

is slow i.e. e
k 

> ne
k 

and we are not on the coarsest grid go to Step (e). 

If convergence is slow and we are on the coarsest grid go to Step (c) to 

perform another relaxation sweep. 

(e) Decrease k by 1. Transfer the current approximations on level 

k + 1 to the new level k as follows: 

k 
c 

k 
u 

I
k k+l 
k+l

c 

I
k k+l 
k+l

u 

where denotes some transfer of values from the fine grid. The right-

hand sides for the new level are defined by 

Lk k + 4Ik (fk+l_Lk+l k+l) 
1 c k+1 1 1 c , (25) 

Lk k + 4Ik (fk+l_Lk+l k+l) 
2u k+1 2 2 u • (26) 

The factor 4 appearing in the above equations is a scaling factor which is 

introduced because we multiplied through by before defining the 

difference operators. Set Ek = o~+1 to be the tolerance for the problem on 

the new level where 0 is some parameter. Go to Step (b). 

9 
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(f) If k" M, the algorithm is terminated since the problem has been 

solved to the required tolerance. If k < M we correct the approximation on 

the next finer grid Gk+1• Put 

k+1 '" k:+1 + Ik+l (k_Ik k+1) 
c c k c k+1 c , 

k+l 
u k+1 + Ik+1( k_ Ik k+1) 

'" u k u k+1u , 

where the and k+1, u s on the right-hand sides are the previous 

approximations on the level k + 1 and is some interpolation of 

values. Increase k by 1 and go to Step (c). 

Multigrid Components 

We use "non-standard" multigrid techniques introduced by Foerster, Stuben 

and Trottenberg [6] and developed by Foerster and Witsch [5]. 

(i) relaxation 

Pointwise Gauss-Seidel relaxation is used with the points ordered in the 

checkerboard (even-odd) manner. The relaxation of the equations is performed 

in the following order: 

(1) relax the equation L~uk = f~ at the white (even) points i.e. those 

points (xi,yj ) for which i + j is even; 

(2) relax the equation Lk k = fk 
2u 2 at the black (odd) points i.e. those 

points (xi,yj ) for which i + j is odd; 

(3) relax the equation Lkck = 
1 

fk 
1 at the white points; 

(4) relax the equation Lk k c ::II 

1 
fk 

1 at the black points. 

This is just one of a number of ways of performing checkerboard Gauss-Seidel 

relaxation on these equations. We experimented using several alternatives and 



found that the above order of relaxation was slightly more efficient than the 

others. At the end of the relaxation sweep the residuals of the equation 

Lk k = fk 
1 c 1 are zero at the black points since at this stage all the black 

point equations are simultaneously satisfied. 

(ii) fine-to-coarse transfer 

Since checkerboard Gauss-Seidel relaxation produces highly oscillating 

residuals it is not advisable to simply transfer the residuals by injection to 

a coarser grid. Instead we transfer the residuals by full-weighting to the 

coarse grid because the coefficients of Eq. (2) are variable. For this 

transfer the operator is defined by 

( k k k k 
+ 1/16 v2i+1,2j-1+v2i-1,2j-1+v2i+1,2j+1+v2i-1,2j+1). 

(iii) coarse-to-fine transfer 

Bilinear interpolation is used to transfer the correction to the fine 

grid to provide a new approximation there. 

5. A Dynamic A.D.!. Algorithm 

We now show how the dynamic A.D.I. (D.A.D.I.) method of Doss and Miller 

[4] can be used to obtain a numerical solution to this problem. The A.D. I. 

approach first converts Eqs. (1) and (2) to the parabolic equations 

(27) 

11 
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(28) 

We assume that as t + m the solution of these time-dependent equations tends 

to the steady state solution, if one exists. The parameter A appearing in 

Eq. (28) is used to control the interaction between the equations. When these 

equations are discretized in time it means that, effectively, we use different 

time steps for the two equations. The right-hand sides of Eqs. (27) and (28) 

are discretized using the technique described earlier. We note that the 

systems of equations which we solve in this A.D.l. process are tridiagonal and 

diagonally dominant. This means that the necessary matrix inverses exist and 

the solution of the systems by Gaussian elimination is stable without the need 

for interchanges. Detailed discussions of the A.D.l. method and its 

implementation can be found in Varga [8] and Young [9]. 

Each step of the D.A.D. I. method comprises two double sweeps of the 

A.D.I. iteration with time step ~t together with a bookkeeping double sweep 

of the A.D.I. iteration with time step 2~t. At the end of the step we use a 

computerized strategy to determine how to change ~t for the next step. Here 

we define a double sweep of the A.D. I. iteration to be a double sweep of 

A.D.I. performed on Eq. (28) followed by a double sweep of A.D.I. performed on 

Eq. (27). The method we have described in this section is a form of decoupled 

D.A.D.I. method where, in a given iteration , we have preferred to iterate 

firstly on u and then on c. A true D.A.D.I. method for this system would 

solve simultaneously for both unknowns. In this case we would solve systems 

which are block tridiagonal with 2 x 2 blocks. The procedure we use is 

described briefly in Algorithm 2. 



Algorithm 2 

(a) Choose an initial time step 

h 2/t.t for Eq. (27) and 

t.t = t.tO. 

h 2/ (At.t) 

The acceleration parameters 

are then for Eq. (28). Set k = 0 

where k is the total number of time steps we have advanced. Let € be the 

required tolerance. Choose initial approximations c 
(k) and (k) 

u • 

(b) Start a step of the D.A.D.I. process with current approximations 

c 
(k) 

and u 
(k) 

(c) Perform two double sweeps of the A.D.I. iteration with time step 

t.t. Let c(k+4) and u(k+4) be the new approximations obtained. Compute 

e, the ~2-norm of the residuals of the steady state equations. 

(d) If e < €, then the residuals are sufficiently small and the 

* algorithm is terminated. If e ) €, set t.t = 2t.t and determine the 

corresponding acceleration parameters. 

* (e) Perform a double sweep of the A.D.I. iteration with time step t.t 

starting with approximations and to obtain c(k+4) and ~(k+4) u 

respectively. This is the bookkeeping part of the D.A.D.I. process. 

(f) Compute the test parameter TP given by 

TP = .; [SUM/ ASUM] , 

where 

SUM = "c(k+4) _~(k+4),,2 + Ilu (k+4) _~(k+4),,2 
2 2 

and 

ASUM = "c(k+4) _c(k),,2 + "u (k+4) _u(k)n 2 
2 2 

(g) It TP > 0.6, then we reject the present D.A.D.I. step, replace 

t.t by 1/16t.t and go to Step (b). If TP ( 0.6, then we accept the present 

D.A.D. I. step and change t.t by the factor of 4,2,13, liz ,1/4 for the next 

13 
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step if TP falls in the intervals (-~,O.05],(O.05,0.I],(0.I,0.3],(0.3,0.4], 

(0.4,0.6] respectively. Go to Step (b). This is the computerized strategy 

for changing ~t. 

6. Numerical Results 

When s = 0, Eqs. (1) and (2) together with the boundary conditions (3) 

to (10) possess an analytic solution which is given by 

c(x,y) 

u(x,y) 

{bcosh(2-x)+cosh(x)} 
= -----;4,.....(~I'":"+b:-")·s--:i-n";""h7.( 2~)~-

when A = 2 and B = 4. These functions are used as our initial 

approximation to the solution of the problem for s '" O. Numerical results 

are presented for s = 5. The constant b was given the fixed value 2.7. 

In the mul tigrid method we define a work unit to be the computational 

work in one relaxation sweep over the finest grid. The step size on the 

coarsest grid is h = 1. The values of the parameters nand 0 in 

Algorithm 1 were chosen to be 0.5 and 0.3 respectively. It was found that the 

choice of nand 0 was not critical in the sense that values of these 

parameters in the neighborhood of the chosen values produced similar 

efficiency of the algorithm in terms of the number of work units. 

The algorithms were terminated when the R. 2-norm of the residuals was 

less than 10-6• The results in Table I indicate the variation with h of the 

values of c and u at the center of the diode, the values of c at the 

corners, and the values of the constants Q and K. In Table II we give 



details of the multigrid method of solution. Details of the D.A.D.I. method 

of solution are given in Table III for A = 1 and A = 0.05. The results 

were obtained on the Oxford University reL 2980 computer. 

Various values of A were tried in the D.A.D.I. method and it was found, 

by experiment, that the value A = 0.05 produced the fastest convergence. It 

can be seen from the computational details in Table III that this value of A 

is considerably better than A = 1 for the smallest mesh size h = 0.125. 

However, even with this value of A, the multigrid method performs much better 

than the D.A.D.I. method on this problem. 

The values of the asymptotic convergence factor are a little higher than 

typical for multigrid methods. Experiments were performed fixing each of the 

variables in turn to determine how the convergence rate behaves for a single 

equation. The results of this investigation are given in Table IV. In this 

table we give the asymptotic convergence factors per work unit for different 

values of h. We see that for the single equations the typical multigrid 

rates are realized. Closer examination revealed that the higher convergence 

factors of the system were due to the coupling through the boundary 

conditions. A more effective treatment of the boundary conditions in the 

multigrid context will be the subject of future work. 

The methods described here are not restricted to use on square grids. 

These grids were chosen since there were no advantages in using non-uniform 

grids for this problem. A qualitative discussion of what one learns about the 

diode from this solution appears in Aitchison [IJ. 
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e(1,2) 

u(1,2) 

c(0,0) 

e(2,0) 

e(0,4) 

e(2,4) 

Q 

K 

h 

0.5 

0.25 

0.125 

Details of 

TABLE I 

the solution for different values 

h = 0.5 h = 0.25 

0.0890 0.0906 

-0.5542 -0.5550 

0.2018 0.2071 

0.1203 0.1228 

0.0591 0.0682 

0.0196 0.0203 

0.7831 0.7871 

-1.6415 -1.6074 

TABLE II 

Details of Multigrid Method 

Number of work units 

46 

56 

65 

of h. 

h ... 0.125 

0.0910 

-0.5520 

0.2086 

0.1253 

0.0749 

0.0209 

0.7884 

-1.5984 

Time (sees.) 

0.9 

2.3 

7.3 



h 

0.5 

0.25 

0.125 

c 

u 

equation 

equation 

system 

TABLE III 

Details of D.A.D.I. Method 

Number of D.A.D.I. steps 

A = 1 

84 

140 

216 

Asymptotic 

h = 0.5 

0.42 

0.45 

0.72 

A = 0.05 

64 

98 

122 

TABLE IV 

convergence factors 

h = 0.25 

0.45 

0.35 

0.75 

Time (sees.) 

A = 1 

2.3 

14.0 

155.7 

h = 0.125 

0.46 

0.35 

0.77 

A = 0.05 

1.9 

9.7 

88.6 
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