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Introduction 

This paper studies a compact finite difference scheme for the solut:f.on of 

the elliptic system 

2 
div v - q u =: 0 

(1.1 ) 

v .- p grad u 0 

when u or its normal derivative are prescribed on the boundary of a domain. 

WhHe important in its own right, this system also provides a prototype for 

the equilibrium equations for elastic materials. We shall show elsewhere that 

the methods described in this paper can be applied without essential 

modification to such equilibria problems. 

The compact finite difference scheme to be described represents a flnite-

volume method which expresses algebraic relationships between average values 

of u on the sides of a computational cell and the average values of the flux 

normal to the sides. The term "compact" refers to the fact that these 

relationships hold without reference to neighboring cells. An advantage of 

such schemes is that any prescribed boundary data may be incorporated with the 

same accuracy as the scheme itself if irregularly shaped cells are employed. 

Unfortunately, the algebraic problem presented by such schemes is 

difficult to treat, especially H fast iterative methods are sought. By a 

process analogous to eliminating the flux v in (1.1) it is possible to 

obtain algebraic relationships solely between the solution variables u in 

neighboring cells. This provides a two-stage iterative process, the first 

concerning cell neighbors in one direction, the second the neighbors in the 

other direction. These equations may be conveniently solved by a Gauss-Seidel 
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type of iterative process or, as will be shown elsewhere, by a mu1tigrid 

method. Both stages may also be combined into one stage. 

We illustrate these features by treating first Laplace's equation 

The combined one-stage method is seen to yield a second-order 

accurate nine-point finite difference scheme for the Laplacian. 

We conclude our discussion by describing the scheme for the more general 

problem (1.1) and indicating the sense in which the scheme is dissipative by 

means of an energy estimate. 

The method described in this paper has its origin in an earlier approach 

(Rose [1]) to which the reader is referred. 

2. 2 A Compact Scheme for V u = 0 

Let 

rectangular cell 

= 8x/2, h = 8y/2. 
y 

Iy-y I ( h }. 
j y 

and let 'IT i,j 

We describe 

denote the 

variables 

associated with the sides of 
'IT i ,j by referencing the center point of the 

side; thus ui ± liz ,j' Ui,j± 1/2 indicate the average values of 

with the sides of 
'IT i ,j • 

The translation operators sand t are defined by 

and we define central average and difference operators by 

}.I 
x 

<5 
x 

(s - s -1 ) /2h , 
x 

<5 
y 

u associated 
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Consider the Dirichlet problem for v2u = 0 in a square domain. In 

system form: if v = (v,w)', then 

div v = 0 

(2.1) 

v - grad u O. 

Corresponding to this system we consider the following compact finite 

difference scheme: in any cell 1T, u, v, ware related by the algebraic 

equations 

a) o v+o w==O x y 

(2.2) b) \1 v - 0 u == 0, 
x x 

\1 w-o u=O 
Y Y 

c) 
2 

how - (\1 - \1 )u = O. 
Y Y Y x 

Equati4)ns (2.2a,b) are clearly consistent with (2.1). Equa tion (2. 2c) 

expresses an O(h2) approximation to the value of u at the center of the 

cell; moti'lration for this particular approximation will be given in Section 6 

where energy estimates are discussed. We may expect this scheme to yield u 

to second-()rder and, noting (2.2b), (v,w) to first-order accuracy. 

Write 

uT 
_ (\1 tl, 0 u, \1 u, 0 u), 

x x y y 

(2.3) 

v
T 

_ (\1 v, 0 v, \1
y 

w, 0 w). 
x x y 
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Then (2.2) may be written in matrix form as 

(2.4) 

where 

If 

p V = Q U 

o 
1 

o 
o 

o 
o 
1 

o 

o 
o 
o 

-1 

the fluxes V may be expressed in terms of U by 

(2.6) V=RU, 
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where, 

0 1 0 0 .!1 
-2 

0 
-2 

0 h -h .!2 
(2.7) R = 0 0 0 1 -

.!3 
-2 0 

-2 
0 -h h .!4 

and 

Now consider the contiguous cells and The value 

Vi,j which is associated with the side common to these cells is given by 

Vi,j = (Il
X 

+h oX) Vi ._ liz ,j x 

(2.13) 

= (11 - h ox) v i+ 112 ,j , x x 

(2.9) (11 - h 0 )s - (11 + h 0 )S-l)V
ij 

= O. 
x x x x x x 

Rec:alling the definitions of IJ ,0 in terms of 
x x s as well as the 

definition of V in (2.3) we may write (2.9) as 

2h (0 p - 11 , 0, O)V = 0 
x x x 
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so that, employing (2.6) and dropping the factor 2hx ' we obtain, in terms of 

the rows .!:.1'.!:2 of R, 

(2.10) 

i.e. , 

(2.10)' 

Similarly, by eliminating the value common to the cells 

and we obtain 

(2.11 ) 

For simplicity let us now assume h = hx = hy • Since 

= 112 _ 1, 
x 

2 
11 - 1 y 

(2.10) and (2.11) assume the simpler form 

(2. 12) 

where is a value on the side common to either 
1T i- 112 ,j' 1T i+ 112 ,j 

Referring to the stencil indicated in Figure 1 

or 



°1 °2 ... 

."J P PI 2 

'"'Q "'Q 
4 3 

Figure 1 

(2.12) indicates that 

(2. 13) 4u(P) 

Utilizing (2.12) to express u(Q) in terms of its neighbors as well we obtain 

(2.14) 

whilch is a familiar second-order accurate nine-point expression for 
2 V u = o. 

In the more general case to be described in a later section (2.13) appears 

in the mor.:~ complex form 

(2.15) 
4 

u(P) = L ai u(Qi) + f\ u(P1) + 82 u(P2)· 
i=1 

In this ca:se the simplified discussion of iterative solutions of (2.12) to be 

giv.~n in the next section will, of course, not apply. Nevertheless the 

analysis in indicative of the more general situation. 

7 
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3. Iterative Methods 

Here the structure of the difference equations obtained in the previous 

section is investigated in order. to devis~ appropriate iterative methods for 

their numerical solution. 

We first rewrite (2.12) in the form 

a) (1 -].I ].I )u i ' j = 0, x y , 

(3.1) 

b) (1 -].I ].I )ui j' = O. x y , 

Equations (3.1a) and (3.1b) represent difference equations for values of u 

defined respectively at the vertical and horizontal mid-points of the sides of 

the computational cells 1T i ,j. 
The problem is certainly fully determined 

since at each grid point we have either an equation or a boundary value. 

We define a partition of the system (3.1) as follows: 

(1) Let p denote the vector of those unknowns defined at mid-points of 

vertical mesh lines. Equations (3.1a) represent finite difference 

equations defined at these points. 

(ii) Let q denote the vector of these unknowns defined at mid-points of 

horizontal mesh lines. Equations (3.1b) represent finite difference 

equations defined at these points. 

With this partition (3.1) may be written in the following matrix form 

(3.2) [-:: +---4: ] [~] - [:J 



where B is an N(N-I) x N(N-I) matrix and I is the N(N-I) x N(N-I) 

identity matrix. The elements of B are negative and they contain at most 

four non-zero entries per row, these all being -1. The vectors band c 

contain boundary values. 

The c04~fficient matrix of the system (3.2) is symmetric, positive definite 

and consistently ordered. The fi.rst two properties are important since then 

the convergence of the S.O.R. method is obtained for any value of the 

relaxation factor W in the range 0 < W < 2 (see Young [3J). The property 

of consistE!Ot ordering is important in the theory of the S.O. R. method because 

at present the calculation of the optimum relaxation factor is possible only 

for consistently ordered matrices. Results related to the determination of 

the optimum relaxation factor for the S.O.R. method are proved by Young [3J. 

Equation (3.2) illustrates the fact that each equation defined at a 

horlzontal mid-point is not coupled to any other unknowns at horizontal mid-

points. The same is true for equations defined at vertical mid-points. 

We no tie that this system is not equivalent to the one obtained by 

discretizing Laplace's equation using the rotated five-point formula on a 

uniform mesh. One reason for this is that the coefficient matrix of this 

system is reducible whereas that of (3.2) is not. 

Equation (3.1) may be written in component form as follows 

4p + Bq b, 

(3.3) 

T 
B P + 4q = c. 

'rhese equations· have thus been cast in a form which is amenable to many of 

the standard iterative methods of solution. Equation (3.2) may be solved 

9 
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using the following two-stage iterative process: 

4p(n+1) + Bq(n) = b ( 
(n+1) (n) ) 

Ui',j = ~x ~y Ui',j , 

(3.4) 

= c ( (n+1) (n+1») 
Ui,j' = ~x ~y Ui,j' • 

This is the Gauss-Seidel method for solving the system (3.2). 

Each of the equations in the sys tern (3.2) defines a rotated Laplacian 

operator acting on the value of u at the mid-points of the cells. The 

authors have had some experience with this operator while working with the 

Cauchy-Riemann equations. In that application serious problems with con-

vergence were encountered. These difficulties appear to be due to treating 

only the first stage of a two-stage process. A similar effect is seen in 

A.D. I. methods for parabolic equations where the use of only one of the two 

steps leads to instabilities. 

As an alternative to the scheme (3.4) we may eliminate p from (3.3) to 

obtain the following nine-point scheme for q 

(3.5) 

i.e., Aq = d 

At interior points we have the folloWing finite difference equation 

+ (qi+1,j+3/2 + qi+1,j_1/2 + qi-1,j+3/2 + qi-1,j_1/z) - 12q
i ,j+ 1/2 = 0, 



at the poi.nt (xi'y j+ liz ). We note that this is not the higher order nine

point approximation to Laplace's equation; rather (3.6) is second-order 

accurate. Eoundary conditions are to be incorporated into interior equations 

in the usual fashion. The matrix A appearing in (3.5) is irreducibly 

diagonally dominant and so both the point Jacobi and point Gauss-Seidel 

iteration matrices are convergent and the associated iterative methods are 

comrergent for any initial approxi.mation (see Varga [2]). This is 

evident, also, from the fact that (3.6) expresses qi,j+ liz as a weighted 

average of its eight neighbors. 

It is interesting to note that although the coefficient matrix of the two-

stage scheme (3.4) is consistently ordered, the coefficient matrix for the 

ninl~-point scheme (3.6) is not. An estimate of the optimum relaxation factor 

for the higher-order nine-point formula has been obtained by van de Vooren and 

V1iE!genthart [4] using separation of variables. 

The ra.te of convergence of the two-stage scheme (3.4) is 

Convergence: may be accelerated by employing the S.O. R. method with optimum 

re181xation factor, in which case the rate of convergence increases to be 

o (h). 

When h :f:. h or in the more general treatment of (1.1) to be described x y 

below the observation that the equations defined at the two sets of points are 

decoupled will no longer be true. In this case the equations corresponding to 

(2.8a) and (2.8b) will assume the more general form (2.15). This structure 

suggests the use of line relaxation as a method of solution; this would 

involve reJLaxing (2. 8a) along horizontal lines and (2. 8b) along vertical 

lines. 

11 
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4. Numerical Results 

Here we demonstrate the performance of the two-stage method on a simple 

model problem. We consider Laplace's equation defined in the unit square with 

Dirichlet boundary conditions such that the true solution is given by 

u(x,y) 
-1fy = e sin(1fx). 

The S.O.R. method was applied to this problem with the optimum choice of 

relaxation factor. This choice of relaxation factor is given by 

00 = 

where 

2 

cr cos(1f~). 
12 

The reader is referred to Young [3] for the derivation of this formula. 

The algorithm was terminated when the magnitude of the maximum difference 

i 1 h 10-4. between success ve iterates was ess t an Table I shows the dependence 

of the relaxation factor, 00, and the number of iterations on the mesh length. 

The behavior observed is typical of that of S.O.R. methods. We now have 

an effective relaxation method for solving the compact scheme in a form which 

should permit the development of a multigrid algorithm and thereby obtain an 

efficient means for solving the class of problems in this paper. We will 

report 011 this development separately. 



Table I 

h (j) No. of Iterations 

1/8 1.57 19 

1/16 1.76 34 

1/32 1.87 67 

1/64 1.93 129 

5. The Geltleral Problem 

The discussion of V
2
u = 0 given in Section 2 can be easily adapted to 

the more glmeral system (1.1). 

Assume hx = hy = h and introduce the abbreviations 

(5.1) 

Con:3ider the 

(5.2) 

compact 

a) 

b) 

c) 

cr 
x 

scheme 

1 

IJ P, x 

0 v+ x 

2 d) h 2(o w -2"q IJ y y 

0 
Y 

u) 

w - 1. q2(IJ + IJ )u == 
2 x Y 

IJ v - cr 0 u == 
x x x 

IJ w - cr 0 u == y y y 

- (cr IJ ) u IJ - cr = y y x x 

0 

0 

0 

O. 

As before, (a), (b), and (c) are clearly consistent with (I. 1 ) and (d) is a 

consistent center-point approximation of u to terms O{h2). 

Using the definitions of U, V given by (2.3) we may again express (5.2) 

in matrix form and, as a result, express V in terms of U by V == R U 

13 
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where R is the matrix described below. The result of eliminating Vi,j 

and Wi,j at points common to neighboring cells is again of the form 

(5.3) 

b) ( <5 r3 - j..l r 4) U = 0, y- y-

(c.f. (2.20» in which £i is a row of R. 

From (5.2) we find 

0 

(1. 
2 

q2 + h-2a ) 
x 

(5.4) R = 0 

-2 -h a 
x 

Thus (5.3) leads explicitly to 

or, using the identity 

and the definitions of a ,a , to x y 

a 
x 

0 

0 

0 

-h 

(t q 
2 

0 

-2 a 
y 

0 

+ h-2 a ) 
y 

o 

o 

a 
y 

o 



a) 
2 1 222 

(ll p) u + -2 q h II u = II (ll P)ll) u 
x x x y y 

(5.,5) 

Refere,nce to Figure 1 shows that eq. (5.5) involves u at all of the 

center points of 

reduces to (2.10) 

the sides of 1f i± liz ,j 

and (2.11) when P = 1 

and Clearly, (5.5) 

and and retains the 

essential properties required to adapt to these equations the same iterative 

methods described earlier. 

6. An En.ergy Est:imat:e 

Let 

and 

2 
Lu - - div P grad u + q u 

Gre!en's theorem applied to (1.1) yields, after multiplication by 

familiar estimate for the energy norm lIuli given by 

(6.1) II ull 2 = J u Lu dxdy + J 
D r 

uu ds. 
n 

u, the 

In addition to providing a uniqueness argument for the solution of Lu = 0, 

(6.1) forms the basis for many :tmportant properties of the solution of this 

elliptic problem. 

15 
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In this section we shall show that the compact difference scheme (5.2) (or 

(2.2» yields an identity closely related to (6.1). 

With respect to the operators ~, 0 in a cell we shall write, if 

v (v,w), 

(6.2) div
h 

v = 0 v + 0 w, 
- x y 

and also write the discrete form of Gauss' theorem as 

(6.3) L v·n /).s. 
r 

Summation-by-parts is accomplished by the use of the identity 

(6.4) 0(<1>1/1 ) 

Finally, recall the definitions 

(J - ~ p, 
x x 

from (5.1) and set 

(6.5) 

(6.6) 

We proceed as follows: first, multiply ~ u by ~x u and employ (5.2d) 

to obtain 
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- (~ u 0 v + ~ u 0 w). x x y y 

Next, using (5.2b,c) (6.3), and (6.7), we may sum over cells in D to obtain 

(6.7) 

L uu ~s + I ~ u Lju~n, 
r n D x 

so that 

(6.8) 

where the inequality is strict unless u = O. 

This inequality implies the uniqueness and existence of the solution to 

(5.2). We leave it to the reader to adopt standard arguments to (6.8) to 

ver:Lfy thBlt the solution of the compact scheme provides a second-order 

approximation to (1.1) 

In ordE!r to help understand the effect of the dissipative term 

(6.110) 

in (6.7) ,again consider (2.2) where p = 1, q = o. In place of (2.2c) 

consider 

(2.2c)' 1 a h2 0 w - (~ - ~ }u = 0 2 y y x 
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together with (2. 2a, b) • Let £ denote the error between the solution of h,<X 

the modified compact scheme and the solution of the example discussed in 

Section 4. 

Table II compares lI£h II as a function of h and also of <x. ,<X For this 

example the dissipative term (6.10) has the form 

i.e., the dissipation is directly proportional to <x. 

Table II 

Values of 11£ II 
h,<X for different values of h and <X 

<X h = 1/8 h = 1/16 h = 1/32 

8 0.0581 0.0169 0.0044 

1 0.0123 0.0030 0.0009 

1/8 0.0048 0.0012 0.0003 

1/16 0.0042 0.0012 0.0009 

1/32 0.0031 0.0024 0.0025 

0 0.2798 0.2858 0.2871 

The effect of the dissipative term is clearly evident in the results given 

in Table II. For values of <X of 0(1 ) the convergence of the scheme is 

O(h 2) • However, for sma 11 values of <X for which the dissipative term 

becomes less than O(h2) the convergence deteriorates. A particularly 

interesting feature occurs when <X = 0, in which case the scheme fails to 



converge. These results indicate that the dissipative term is required for 

convergence of the scheme and should be O(h2) in magnitude in order to 

convergence. 

A closer examination of the transmission matrix for this example shows 

that R becomes singular for a'~ O. As a result the compact scheme and the 

flux-elimination scheme are no longer equivalent in this limit. 

Conclusions 

We hav'e described a compact system of finite difference equations for 

treating (1.1) and have shown how a related noncompact finite difference 

system provides an equivalent formulation. An energy estimate explains that 

the compact scheme is dissipative and also can serve to show that the solution 

app:t"oximatE~s the solution of (1.1) to second-order accuracy. 

For V
2

u = 0 standard relaxation methods can be adopted to solve the non

compac t scheme either as a two-stage method or, more direc tly, as a one-stage 

method. Both appear to be adaptable to multigrid solution methods. 

The methods described in this paper also apply, with little modification, 

to the equilibrium equations of elastic materials and appear to offer an 

intE!resting approach to convective-diffusion equations as well. 

report on these applications elsewhere. 

Aclmowledgment: 
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