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FLUX-BASED ACCELERATION OF THE EULER EQUATIONS

Gary M. Johnson

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A new coarse-grid acceleration scheme for the Euler equations is pre-
sented. This flux-based scheme eliminates the need, exhibited by previous
accelerators, for computing flux vector Jacobian matrices. The method is de-
rived and implemented in <., two-dimensional flow algorithm. Numerical results

w	 are presented for both subcritical and shocked, supercritical flow. These re-
sults demonstrate that the flux-based accelerator is more efficient than its
Jacobian-based counterpart. Generalization to three dimensions is immediai•c.
Construction, of flux-based accelerators for the Navier-Stokes equation is also
discussed.

INTRODUCTION

One approach to the solution of the steady Euler equations is to cast them
in their unsteady form and apply a numerical time-marching procedure to the
resultant purely hyperbolic initial-boundary value problem. In this way, the
difficulties associated with the iterative solution of the first-order, mixed
elliptic-hyperbolic boundary value problem posed by the steady equations of
motion may be avoided.

Whereas methods for the time-accurate solution of hyperbolic systems of
conservation laws are fairly well established, current research focuses on the
development of stratagies for reaching the temporally asymptotic steady state
with minimal computational expense.

The unsteady equations of motion may be modified so as to induce nonphys-
ical transient behavior and, by this means, arrive at the physically-correct
steady solution more rapidly. Alternatively, a numerical integration scheme
with a stability bound in excess of the CFI limit may be employed to advance
the unmodified Euler equations over larger time intervals than would otherwise
be admissable. Here both implicit and explicit schemes are possible. The im-
plicit schemes are generally unconditionally linearly stable but incur large
operations counts, may suffer unacceptable accuracy loss when operating at
large time steps or may have stability constraints imposed through the bound-
ary condition implementation. The explicit schemes have low operations counts,
lead to very flexible algorithms and are easy to code and to vectorize. How-
ever, they are generally conditionally stable.

This report deals with explicit convergence acceleration procedures for
the Euler equations, in the spirit introduced by Ni [1] and generalized by
Johnson [2] to [4]. In particular, a new flux-based coarse-grid acceleration
scheme is introduced. This scheme eliminates the need, exhibited by previous
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accelerators, for computing flux vector Jacobian matrices and, as a conse-
quence, outperforms its Jacobian-based predecessors.

EQUATIONS OF MOTION

The Euler equations may be written in conservation-law form as

qt = .-( fx + gy )	 (1)

where:

e	 pu	 pv

pu	 put + p	 puv
q =	 f =	 9 =

pv	 puv	 pv2 + p

E	 (E + p)u	 (E + p)v

Here p , u, v, p and E are, respectively, density, velocity components in
the x- and y-directions, pressure and total energy pee r unit volume. This lat-
ter quantity may be expressed as

E=p C a+2 (u2+v2)]

where the specific internal energy, e, is related to the pressure and density
by the simple law of a calorically perfect gas

p = (Y - 1)pe

with y denoting the ratio of specific heats.

Although, for simplicity, the equations of motion are presented here writ-
ten in Cartesian coordinates, this does not pose any restriction on the gener-
ality of the results to be discussed subsequently.

COARSE-GRID ACCELERATION

Given-a basic fine grid on which a numerical solution of Eq. (1) is re-
quired and an explicit, CFL-limited solution procedure,* the coarse-grid accel-
eration concept is to construct a sequence of successively coarser grids by
means of which the fine grid solution may be rapidly advanced, while respecting
the stability limits on all grids.

Y

*Less restrictive hypotheses are possible. See, for example, Stubbs [5].
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Jacobian-Based-Accelerator

Ni r1] introduced a one-step Lax-Wendrof,
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scheme which may be written as

Aq

7.	 7

Aq

+ 7

(2)

+	 I At A - At
B Aq

	

Ax	 Ay ) i+,^+

+ [(I-AtA+
Ay

B Aq	 t

where:

Aq	 p-At (f

x 

+g)

i +
	 +^	

yi+^+

	of 	 B 
21

	

A A aq	 aq

Further details on this scheme may be found in (1] and [2]. Attention here is
restricted to the observation that Eq. (2), when rewritten in a coarse-grid
setting, may be used to accelerate the convergence of the fine-grid solution.

Given the fine-grid corrections, sq, we wish to use successively coarser
grids to propagate this information throughout the computational domain, thus
accelerating convergence to the steady state while maintaining the accuracy
determined by the fine-grid discretization. Given a basic fine grid with the
number of points in each direction expressible as n(2 p ) + 1 for p and n
integers such that p > 0 and n > 2, where p is the number of grid cop rsen-
ings and n is the number of coarsest-grid intervals, let successively coarser
grids be defined by successive deletion of every other point in each coordinate
direction.

The coarse-grid acceleration scheme replaces the coarse-grid canrputation
of Aq with a restriction of the latest fine-grid value of sq. The effect of
this restricted fine-grid correction is then distributed according to a coarse-
grid version of Eq. (2) to obtain a coarse-grid correction. This is, in turn,
prolonged to the fine grid to become the yew fine-grid correction and update
the fine-grid solution. One time-cycle of the multiple-grid scheme is composed

3
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of an application of the fine—grid solution procedure followed by an applica-
tion of the coarse—grid acceleration scheme to each successively coarser grid.

In the basic integration scheme, a correction at one grid point affects
only its nearest neighbors while, in a k—level multiple—grid scheme, the same
correction affects all points up to 2 k- 1 mesh spacings'distant. Further-
more, since the coarse—grid scheme simply propagates the effects of fine—grid
corrections, fine grid accuracy is maintained.

We call the coarse—grid version of Eq. (2) a Jacobian—based accelerator
because of the presence of A and B, the flux vector Jacobian matrices. Their
computation and storage and multiplications with them may be interpreted as
causing inefficiencies in the coarse—grid accelerator. The flux—based accel-
erator described below is presented as a more efficient alternative.

Flux—Based—Accelerator

A Lax—Wendroff—type coarse—grid scheme may be expressed as

ot2

6q coarse = °tqt +  2 - qtt

By introducing Eq. (1), this may be rewritten as

_ et 2	g
dgcoarse = —nt(f

x + gy )	 2
	 (1x + Y)t

Recalling that

eq = —ot (fx + gy )

and temporally differencing the second—order term, we obtain

ag coarse = ag — 2t f(f x + gy)n+1

	

(fx + gy)n}	 (3)

This is a flux—based coarse—grid acceleration scheme where nq is approximated
by a restriction of the latest fine—grid value of sq and

fn = f ( qn ) , gn = g(qn)

fn+1 = f ( qn + oq ) , gn+1 = g ( qn + oq)

In this way the computation and storage of A and B and multiplications
with them are eliminated. In place of these operations, we need only compute
fn+1 and gn+1 , which may be immediately obtained from q n + nq. All other
quantities are known.

4
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NUMERICAL RESULTS

In order to facilitate performance comparisons with results obtained pre-

viously using the Jacobian—based accelerator, the subcrit . ical and shocked,
supercritical flow test cases described in detail in [2] and [4] have been re-

computed using the flux—based accelerator.

The physical problem consists of a straight channel section with a 10

percent half—thick circular arc airfoil mounted on its lower wall. The sub—
critical case has an isentropic inlet Mach number of 0.5 while that for the

supercritical case is 0.675. The basic fine grid has 65 nodes in the stream—

wise direction and 17 in the transverse direction. When grid coarsening by
successive deletion of every other grid line in each direction is employed,

the 65 x 17 fine grid a l lows the generation of three coarser grids with the

coarsest grid having 9 x 3 nodes.

With the explicit, two—step Lax—Wendroff scheme due to MacCormack [6] used

as a fine—grid solution procedure, both the flux—based and the Jacobian—based
accelerators produce the same converged solutions. This indicates that, as ex-

pected, the new flux—based accelerator does not adversely affect the accuracy

of the multiple—grid solutions. The physical details of the solutions are not
presented here. The interested reader may find them in [2] and [4].

The main advantage of the flux—based coarse—grid scheme lies in its lower

operations count. For example, in computations using a three—grid sequence,

the ratio of coarse—grid work to total work was reduced by approximately 40

percent of its previous, Jacobian—based, value. In the same computations, the
convergence rate was improved by 7 to 20 percent. Additionally, the flux—based
scheme requires less storage than the Jacobian—based scheme.

Comparisons of the flux—based and Jacobian—based results yielding the best

work reduction factors for the two test cases are presented in Tables I and II.

a
N

TABLE I. — SUBCRITICAL RESULTS

Accelerator Coarse—grid work Time cycles for
convergence

Work
reduction

factor

Optimal

sequence

length

Total work

Jacobian—based 0.39 1020 5.1 3

Flux—based 0.23 950 6.9 3

a

TABLE II. — SUPERCRITICAL RESULTS

Accelerator Coarse—grid work Time cycles for
convergence

Work
reduction

factor

Optimal
sequence

length

Total work

Jacobian—based 0.31 1220 2.1 4

Flux—based 0.14 1130 2.9 3
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By work reduction factor we mean: the ratio of the work required to produce a

converged solution on a single fine grid to that required on 'the multiple—grid

sequence which minimizes work. Note further that the convergence criterion

used here requires the average absolute value of the fine—grid residual in ou
to be less than 10'- 6 . This represents a decrease of approximately five dec-
ades from its initial value. This requirement could be relaxed by at least two
decades without any significant accuracy deterioration.

Observe that the work reduction factor for , the subcritical case has been
improved from 5.1 to 6.9 and that for the supercritical case has been raised
from 2.1 to 2.9. These represent performance advantages of the flux—based
scheme amounting to approximately 35 percent.

GENERALIZATIONS

The derivation of the flux—based accelerator may be extended without dif-

ficulty to three dimensions.

The construction of a flux—based accelerator for the Navier—Stokes equa-

tions may also be carried out in a fashion analogous to that illustrated here
t for the Euler equations. 	 This would result in a full	 coarse—grid scheme,	 in

the sense described in [3].	 Such a scheme would, no doubt, be more efficient
than a Jacot , ian—based full coarse—grid scheme. 	 However, the issue becomes com-

plicated by the existence of the Jacobian—based convective course--grid scheme.*

This scheme,	 based on the inviscid flux vector Jacobians, 	 is quite efficient. A

flux—based analog remains to be formulated.

The successful derivation and implementation of the flux—based coarse—

grid scheme as described in this report suggests the possibility of construct-
ing other, perhaps more efficient, schemes in this class.

CONCLUSIONS

A new coarse—grid acceleration scheme for the Euler equations has been
presented.

This flux—based scheme is more efficient than its Jacobian —based analog.

Results to substantiate this claim have been presented for two—dimensional

subcritical and shocked, supercritical flows. 	 Performance improvements of ap-

proximately 35 percent have been obtained.

Generalizations of the flux—based coarse—grid scheme to three dimensions

and to the Navier—Stokes equations are possible.

*For details see [3].
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