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SUMMARY

An explicit time/space finite difference procedure is used to model the propaga-
tion of sound in a quasi one-dimensional duct containing high Mach number subsonic
flow. Nonlinear acoustic equations are derived by perturbing the time-dependent
Euler equations about a steady, compressible mean flow. The governing difference
relations are based on a fourth-order, two-step (predictor-corrector) MacCormack
scheme. Difference equations for the source and termination boundary conditions are
derived from the appropriate characteristic relationships. The solution algorithm
functions by switching on a time harmonic source and allowing the difference equa-
tions to iterate to a steady state. A significant advantage with this approach is
that the nonlinear terms can be retained and evaluated with only modest additional
computer cost above that required for a linear model calculation.

The principal effect of the nonlinearities was to shift acoustical energy to
higher harmonics. With increased source strengths, wave steepening was observed.
This phenomenon suggests that the acoustical response may approach a shock behavior
at a higher sound pressure level as the throat Mach number approaches unity. Where
applicable, comparisons were made with the calculations from a linear finite element
algorithm. On a peak level basis, good agreement between the nonlinear finite dif-
ference and linear finite element solutions was observed, even though a peak sound
pressure level of about 150 dB occurred in the throat region. Nonlinear steady state
waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic
theory.

INTRODUCTION

It has been customary in computational duct acoustics to base calculative pro-
cedures on steady state linear equations using direct implicit numerical schemes.
The Galerkin/weighted-residual method summarized in reference 1 is a state-of-the-art
example of this approach. Such direct methods, whether based on finite element or
finite difference methodology (ref. 2), produce a large set of coupled linear equa-
tions, which are usually solved by matrix manipulations, that is, inversion/
decomposition procedures. However, many practical aeroengine duct modeling situa-
tions require extremely large numbers of degrees-of-freedom for accurate resolution.
Not only are the direct methods costly in computer time for these problems, but in
many instances, the computer core storage limitations are exceeded, and expensive
out-of-core solution algorithms are necessary.

Recently, Baumeister (refs. 3 to 5) advocated the use of explicit time-dependent
difference methods for steady state duct acoustic calculations. With these methods,
the time-dependent equations, subject to a harmonically varying source boundary con-
dition, are iterated over a time/space difference discretization grid until steady
state is achieved. Such procedures have the advantage of tremendously reducing core
storage requirements. In addition, both linear and nonlinear equations can be
handled, since the nonlinear terms are simply retained in the difference relations
and evaluated during each iterative calculation step with a minimum of additional
cost.



In this paper, an explicit time/space finite difference procedure is used to
simulate the propagation of sound in a quasi one-dimensional variable area duct con-
taining high Mach number subsonic flow. For this physical situation it has been
shown, both analytically and experimentally (refs. 6 to 8, for example), that signif-
icant intensification of the acoustic wave structure occurs in the throat region as
the flow velocity approaches sonic value. In fact, linear theory is singular for a
throat Mach number of unity (ref. 6) and is therefore invalid in the throat region.
Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equa-
tions about a steady compressible state. The acoustic equations are then cast into a
nondimensional form and discretized in space and time by a fourth-order, two-step
(predictor-corrector) MacCormack difference scheme (ref. 9). Numerical boundary
conditions are derived for the source and termination sections from the appropriate
characteristic relationships. The solution algorithm functions by switching on a
real time harmonic source and allowing the difference equations to iterate to a
steady state condition.

Calculated results are presented for several area reduction ratios, throat Mach
numbers, and acoustic source sound pressure levels. Where applicable, comparisons
are made with the results calculated by a linear Galerkin/weighted-residual finite
element algorithm. At higher sound pressure levels and throat Mach numbers approach-
ing unity, for which nonlinear effects become significant, results calculated by the
finite difference procedure are compared with the asymptotic theory developed by
Callegari and Myers (ref. 10).

SYMBOLS

A area variation

c speed of sound

f frequency

J number of grid points

j node index, x = (j - I) Ax

k wave number, k = _0/co

L length of flow duct

M Mach number

N number of time steps

n time index, t = n At

p acoustic pressure

S source amplitude

TI,T2 characteristic quantities, equations (19) and (21)

t time



u acoustic particle velocity

acoustic streaming velocity

x axial coordinate

y ratio of specific heats

Ax = L/(J - 1)

E perturbation factor

p acoustic density

circular frequency, _ = 2_f

Subscripts:

j quantity evaluated at jth node located at x = (j - 1) Ax

o ambient property

s mean flow property

t throat quantity

Superscripts:

n quantity evaluated at time t = n At

(1) predictor quantity

A tilde (~) over a symbol indicates a dimensional variable. A caret (^) over a
symbol indicates a small acoustic perturbation.

ANALYSIS

In the appendix the quasi one-dimensional equations governing acoustic propaga-
tion through a variable-area flow duct are developed. The physical system is illus-
trated in figure I. An acoustic source located at x = 0 (j = I) propagates sound
upstream (in the positive x direction) against a steady, high subsonic Mach number,
isentropic, compressible mean flow. The mean flow, travelling in the negative x
direction, accelerates in the throat section as controlled by the area variation
A(x).

Acoustics Equations

The governing propagation equations, derived in the appendix, are as follows:

+ . +upl. + +up)dA5t _(Ps u UsP l(PsU UsP _-_= 0 (1)
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u u2_--£+_ u +T + c + = 0
Ps 2 _Ps/ (2)

p = c + p (3)
s 2 Ps

where subscript s indicates a steady state mean flow quantity. All variables and
coefficients in equations (I) to (3) have been nondimensionalized. (See the

appendix.) Briefly, density has been nondimensionalized by Po' velocity by Co,
pressure by PoCk, length by multiplying by k, and time by multiplying by _. It
should also be observed that the equations are nonlinear.

Conservative form.- For the purpose of applying a finite difference scheme,
equations (I) and (2) can be expressed in the following conservative form:

_p+ _r
_t -_ + g = 0 (4)

_u 5s
_--£+_ = 0 (5)

where

r(x,t) = psu + u p + up (6)s

s(x't) u u +U2s T + c2[p y - 21p___2]
= + (7)

SLps 2 Ps/J

g(x,t) = _ psu + U p + us _ (8)

Boundary conditions.- A harmonically varying source is assumed at x = 0

p(0,t) = S sin t (t > 0) (9)

where the amplitude S is calculated to give a specified source strength as dis-
cussed later. A termination condition

p(L,t) - u(L,t) = 0 (10)
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is applied at x = L which, for a steady state, harmonically varying solution,

reduces to the usual nonreflective impedance condition. Thus, the solutions for p
and u are obtained from these equations, and p is substituted into equation (3)
to get the pressure p.

Numerical Method

A fourth-order MacCormack differencing scheme (ref. 9) is used to generate a
numerical solution of equations (4) to (8). The process has two steps applied at
At/2 intervals. The first step involves a backward predictor and a forward cor-
rector (BPFC). The second step uses a forward predictor with a backward corrector
(FPBC).

Consider equation (4) for the acoustic density and the discretization model

illustrated in figure I. Let p_ be the numerical value of p(x4,n At), where
j = I, 2, ..., J and n = 0, I, 2..... N. Assume that the values for p9 have
been calculated, and it is desired to calculate the corresponding values aS the

_n+l
next At time step, that is, pj .

BPFC phase.- In order to calculate pn+l, the intermediate values pn+(1/2) are
calculated for At/2 by using the backwar_ predictor/forward corrector p_ase of the

differencing algorithm. The difference relations are (j = I, 2, ..., J)

(73 3 n > At n(I) n At/2 + rj_2 - _--gj (11)pj = pj _ _ r - 8r -I

2 j Pj _-_x\ j - _rj+1 + j+2/ - 2-- gj
(12)

(I) Flux
The predictor quantities are denoted by a superscript (I), for example, pj .

and force values based on predictor quantities are denoted in a similar manner, for

example, r(I) and (I) (See eqs. (6) and (8).)j gj •

The predictor values p_1) at the next At/2 are computed from equation (11).J
Since j = I, 2, ..., J, this requires flux values r0 and r_1 at the two extra
grid points ahead of the source plane (j = I). These are computed using third-order
backward extrapolation as follows:

n n n n n
r 0 = 4r1 - 6r 2 + 4r 3 - r 4 (13)

n = 4ro _ 6rI + 4r2 _ r3 (14)r_I



(I) are used in equation (12) to calculate the correspondingThe predictor values pj

corrector values p_+(I/2) at the n At + (At/2) time step.

FPBC phase.- The next step is to use the corrector values p9+(1/2) at
n At + (At/2) in the forward predictor/backward corrector phase _f the scheme to

calculate pjn at n At + At. The required relations are (j = I, 2, ..., J)

(I) n+(I/2) At/2/. n+(I/2) I/2) n+(I/2)) At n+(I/2)PJ = PJ + 6--_klrj - 8r3++(I + _j+2 - _--gj (15)

n+1 1 [n+(1/2) (1) At/2 C7r(1) _ 8r!1)1 + --(1)h At (1)1
PJ = 5 + PJ - _xx k J 3- rj_2) - _- gj j (16)

The predictor values p(1) in this case require flux values rj+1 and rj+2 at the3
two extra grid points beyond the termination plane (j = J). These are calculated
using third-order forward extrapolation of the variables pn+(1/2) from the BPFC
step. These relations are as follows: J

r(I) = 4r(I) _ 6r(I) + 4r(I) _ r(1)
J+1 J J-1 J-2 J-3 (17)

r (I) = 4r(I) _ 6r(1) + 4r(II - r(1)J+2 J+1 J J- J-2 (18)

The same type of differencing relations (eqs. (11) to (18)) is applied to equa-
tions (5) and (7) in order to compute the acoustic particle velocity u_. Since it
is a straightforward matter to replace p9 by ug, these equations are3not given

n 3 n 3 n is calculatedherein. Once the solutions for pj and uj have been obtained, pjfrom equation (3).

Numerical boundary conditions.- In order to satisfy the source (eq. (9))
and termination (eq. (10)) boundary conditions, the characteristic variables
P/Ps + U/Cs (for right-moving waves) and p/p - u/c (for left-moving waves) are

F • sused. or example, at any tlme t the instantaneous density fluctuation at the
source (x = 0) is given by equation (9). Thus, for the finite discretization, the
source boundary condition is

PI = S sin t



The amplitude S is determined so that the pressure level at the source peaks at the
desired decibel level (reference 2.0 x 10-5 N/m2). In the FPBC and BPFC sections of
the difference algorithm, the quantity

Pl Ul

T1 - (19)
Psl Csl

is calculated at a previous time step where p = p(0,t), u_ = u(0,t), Psl = PS(0)I

and Csl = Cs(0). Therefore, at any time t _e source density is given by equa-
tion (9), and the corresponding acoustic particle velocity is obtained from equa-
tion (19); that is,

I 1
= c --- T (20)

Ul sl Psl

At the termination section x = L, a nonreflective boundary condition is
imposed. For a harmonic steady state this requires that the impedance of an outgoing
wave be unity or, in other words, that p = u (eq. (10)). The required boundary
conditions are obtained by calculating

pj uj

T2 - +-- (21)
PsJ Csj

at a previous time step. This value for T2 together with equation (10) and the
linearized form of equation (3) yields the following boundary relations for pj
and uj:

T
2

PJ: c + (i/Psj) (22)sJ

2
c T
sJ 2

u = (23)

j c +C11PsalsJ

where pj = p(L,t), uj = u(L,t), PsJ = Ps(L)' and Csj = Cs(L). Note that the
values of TI and T2 are computed at time [n - (I/2)] At. The physical boundary
conditions, however, are imposed at time n At.
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DISCUSSION OF RESULTS

The finite difference analysis discussed previously is applied in this section
to a variable area duct containing high-speed subsonic flow and a high-intensity
propagating acoustic wave.

Duct Geometry

The duct configuration is sketched in figure I and has an overall length of
about 1.518 m. The two uniform sections on each end of the duct have a square cross
section 0.0508 m on each side. The width of the duct is maintained constant
(0.0508 m) as the height is gradually reduced to give a 2/1 area reduction at the
throat (x/L = 0.50). Thus, the throat is rectangular (0.0508 x 0.0254 m).

The duct contour was designed so that a linear Mach number variation is achieved
when the inlet (x/L = 0.25) and throat (x/L = 0.50) Mach numbers are 0.3 and 1.0,
respectively. With this flow distribution, the one-dimensional gas dynamics equa-
tions (eqs. (At) to (A3)) can be solved to yield a closed form expression for the
corresponding area variation A(x). For a uniform section

and for the variable area section

I

G(x---_2 2-- G2(x - I _ (25)
A(x)

where G(x) is given by

G(x) = 1- I.34857J_ - lJ (26)

Sample Calculation

In order to illustrate the finite difference algorithm, a calculation for the
mean flow distribution shown in figure 2 is presented. Here the mean throat Mach

number was arbitrarily set at 0.85. The distribution was then calculated by solving
the one-dimensional gas dynamics equations using the area variation A(x) given by
equations (24) to (26). The Mach number increases from about 0.28 at x/L = 0.25
to 0.85 at the throat and then drops to about 0.28 at x/L = 0.75. Hence, the cal-
culated mean flow is symmetric about the throat (x/L = 0.50). For the acoustic data

which follow, a negative throat Mach number is indicated (Mt = -0.85) to emphasize



that the flow is in the negative x direction, opposite to the propagation of acous-
tic waves from the source. This corresponds to the aeroengine inlet situation.

Figure 3 shows the acoustic pressure distribution calculated by the nonlinear
finite difference algorithm (eqs. (11) to (23)) for a 135-dB acoustic source oscil-
lating at 500 Hz. For comparison, the results of a linear finite element calculation
are also shown. The finite element algorithm is based on the Galerkin/weighted-
residual method using one-dimensional, isoparametric, Hermite elements of third order
(see ref. 11, for example).

Owing to the nonlinear character of the finite difference model, the solid curve
in figure 3 is actually the fundamental (500 Hz) component (sin t) of the acoustic
pressure. The two calculations, nonlinear finite difference and linear finite ele-
ment, are in close agreement. This is unexpectedly true in the high-intensity throat
region. Spectral data are also presented in table I for the fundamental and first
three harmonics of the nonlinear finite difference pressure calculation. Comparison
of these data indicates that a considerable amount of energy is shifted into the
higher harmonics. For example, at x/L = 1.00, the amount of energy contained by the
first harmonic (sin 2t) is about 16.5 percent of that contained in the fundamental.

A plot of the acoustic particle velocity is shown in figure 4, and the acoustic
streaming velocity component is presented in figure 5. With a linear acoustics model
driven sinusoidally, the acoustic velocity would have zero mean. With nonlinearities
present, however, the acoustic velocity exhibits, in addition to higher harmonics, a
nonzero mean component termed the streaming velocity. A nonzero streaming velocity
indicates a transfer of acoustical energy to the mean flow. As shown in figure 5,
the acoustic streaming velocity for the present case peaks in the throat region, but
compared with the mean flow (fig. 2), is quite small.

Figure 6 shows time histories of the acoustic pressure at five axial locations
after steady state was achieved by the finite difference algorithm. Figure 6(a),
shown for reference, is the source pressure time history, which varies sinusoidally
at 500 Hz (sin t). The peak amplitude corresponds to a level of 135 dB. At station
x/L = 0.25 (fig. 6(b)), which is located at the beginning of the area variation, the
pressure response is still very close to a pure sine wave. For example, table I
shows a first harmonic level of 107.1 dB or about 27.7 dB lower than the fundamental
(134.8 dB).

At the throat (fig. 6(c), x/L = 0.50), the pressure shows appreciable distor-
tion from a pure sine wave. Here the pressure peaks at about 150.1 dB (table I and
fig. 3). The results of the linear finite element indicate a peak of approximately
150.0 dB. The first harmonic (137.4 dB) in this instance is only about 12.7 dB lower
than the fundamental (150.1 dB). It thus appears, by virtue of the increased har-
monic content, that the nonlinearities are becoming more important, although the
linear solution still adequately predicts the peak level in the throat region.

Further upstream at the end of the area variation (x/L = 0.75), as shown in
figure 6(d), considerable harmonic distortion remains although the peak level has
dropped rapidly to about 134.6 dB. Here the first harmonic (126.5 dB) is only about
8.1 dB lower than the fundamental (134.6 dB). Finally, at the termination
(fig. 6(e), x/L = 1.00), about the same picture prevails, although the beginning of
a steepening in the wave is noticeable.
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This wave steepening behavior is examined further in figure 7, where the source
strength is varied from 134 to 137 dB. Here a very definite nonlinear steepening
appears in the pressure time history at the termination. This indicates that by
increasing the source strength, the acoustic response approaches a shock condition.

Comparisons With Asymptotic Theory

As discussed previously, the finite difference algorithm was compared with a
linear finite element solution for the classical small amplitude linear acoustics
case. Here a check is made for a typical nonlinear situation by comparing the finite
difference solution with the asymptotic theory of Callegari and Myers (ref. 10). The
typical nonlinear situation arises at higher sound pressure levels for throat Mach

numbers approaching unity. In this theory 11 - IMtll is taken as the (small) per-
turbation parameter.

A slightly different geometry was used for these calculations. As shown in
figure 8, the constant area entrance and termination sections were eliminated, and
the area variation is given by equation (25) where

For this geometry, the area reduction ratio is about 1.32/I, so that for an entrance
Mach number of about 0.51, the flow accelerates linearly to a sonic velocity at the
throat. Hence, this area variation provides a much more gradual choking of the flow
than does the configuration (eqs. (25) and (26)) used in the earlier calculations.

Results are presented in figures 9 to 11 for three combinations of source
strength and throat Mach number. In each case, the acoustic velocity divided by
11 - IMtil2 at x = 0.75L and x = L is shown after steady state had been achieved

by the differencing al_orithm. For the cases presented, the quantity 11 - JMtll2
is of the order of 10-_ or less. Hence, the calculations are accurate to at least
three decimal places. The solid lines in figures 9 to 11 indicate the finite differ-
ence solution. The circular and square symbols indicate the calculated values based
on the asymptotic theory of Callegari and Myers (ref. 10).

The comparisons for a throat Mach number of Mt = -0.90 are graphed in fig-
ures 9 and 10. The strengths, for an equivalent pressure source located at x = 0
(fig. 8), are 130 and 140 dB, respectively. In both cases, no shocks were predicted
or, for that matter, were expected, and the finite difference calculation agrees very
well with the asymptotic theory. At 140 dB, as shown in figure 10, a severely dis-
torted time history occurs at x/L = 0.75, and the agreement is excellent.

Figure 11 illustrates a similar comparison for a 130-dB source when the throat

Mach number is increased to Mt = -0.95. This situation is very close to shock for-
mation (ref. 10). Here the comparison is still very good. However, there are some
minor differences between the asymptotic theory and the finite difference algorithm
near t _ _/2 for x/L = 0.75.
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For this latter case (fig. 11), a further increase in the throat Mach number (or

an increase in the source strength) will precipitate a shock and a resulting loss of

acoustical energy. For weak shocks, the energy relation given by equation (3) might

suffice. Stronger shocks, manifested by appreciable loss in acoustical energy and

increase in entropy, will require that the general energy equation (ref. 12) be sub-

stituted in lieu of equation (3). In both instances a "shock" jump condition must be

added to the finite difference code.

J

Finally, it should be noted that the asymptotic theory of reference 10 is

extremely accurate when (1 - IMtl) approaches zero; that is, when the throat Mach
number approaches unity. It is precisely these situations which present the most

computational difficulty for the finite difference algorithm, since axial wavelengths

become increasingly small, which necessitates extremely fine time/space meshes.

Therefore, the comparisons presented in figures 9 and 10 are thought to represent a

stringent test of the differencing procedure to simulate the nonlinear acoustics

case. The finite difference algorithm is more effective in handling the calculations

for larger values of (I - IMtl). With these situations the asymptotic theory is less
accurate. Hence, these two independent methods nicely complement one another.

CONCLUDING REMARKS

An explicit finite difference algorithm based on a MacCormack scheme was used to

solve numerically the one-dimensional nonlinear acoustic equations for a variable

area duct. The procedure iterated over the time/space discretization grid until a

steady state solution was achieved. Sample calculations were presented for several
combinations of area reduction ratio, throat Mach number, and source sound pressure

level.

The principal effect of the nonlinearities was to shift acoustical energy to

higher harmonics. With increased source strengths, wave steepening was observed.

This phenomenon suggests that the acoustical response may approach a shock behavior

at a higher sound pressure level as the throat Mach number approaches sonic value.

Where applicable, comparisons were made with the calculations from a linear finite

element algorithm. On a peak level basis, good agreement between the nonlinear
finite difference and linear finite element solutions was observed, even though a

peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear,

steady state waveform solutions were shown to be in excellent agreement with a non-

linear asymptotic theory.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

June 9, 1983
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APPENDIX

DERIVATION OF NONLINEAR ACOUSTIC EQUATIONS

In the following, the one-dimensional compressible fluid continuum equations are
used to derive the governing acoustic propagation relations.

Fluid Continuum Equations

The one-dimensional compressible flow equations for an isentropic fluid may be
expressed in terms of the density p and velocity u (ref. 12). The equation of
continuity is

+4C_ul+pu__=0 CAI__: _x _ dx

and the balance of momentum is given by

=0-g _x_2+ _ y CA21
Po

The pressure is determined from

PO _y=27 CA3_
Po

In the above equations Po and Po are the ambient pressure and density,
respectively.

Acoustic Perturbations

In equations (At) to (A3) let

_(£,£)=_s(£)+E_(£,£)

u(£,_) = Us(_) + € u(x,_) (A4)

p(x,t) = Ps(X) + E p(x,t)
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APPENDIX

where a caret (^) over a symbol indicates a small acoustic perturbation about the

basic steady flow state, denoted by a subscript s. The steady state flow equations
are

N --

_(_s_)+psUsd_ 0 (AS)_x _ dx

S + _ Po ~y- = 0 (A6)
y- I y PS

Po

PO ~y (A7)_s _Ps
Po

Substituting equations (A4) into equations (AI) to (A3) and expanding and then sub-
tracting steady state terms (eqs. (A5) to (A7)) gives the final nonlinear acoustic
equations

( ^^> )-- 5 ~ ^ UsP + £up + 1 ~ - dA_P + _ psu + psu + UsP + Eup --_ = 0 (AS)
8[ 5x dx

--_+ + + _ + E y - 2 0 (A9)Su -- _-

at = Lps =\ s/jj
The acoustic pressure is given by the relation

~2 P---p (AI0)
= Cs + E PS

where the local speed of sound is given by

-2 _s _ YPo -y-1 (A11)
y Ps

Cs- Ps Po

13



APPENDIX

The parameter E denotes a nonlinear acoustic term. With £ = 0, equations (A8)

to (AI0) give the usual one-dimensional linear acoustic solution. Whereas with
£ = I, a nonlinear solution is obtained.

Nondimensional Acoustic Equations

Equations (A8) to (AI0) are nondimensionalized by using the following
transformations:

-%

Po

G¢_,_)
U(X,t) =

co

p(x,t) = p(x,t)2
PoCo

x = k_

us(x) (AI2)
Us(X)=

co

i(_)
A(x) =-

At

ps(X)
ps(X)=_ Po

t = _0_

_s
c s =

cO
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APPENDIX

Substituting equations (A12) into equations (A8) to (At0) yields the nonlinear acous-
tic equations in a final nondimensional form

5t _ su + UsP + Eup +_ su + UsP + Eup _xx = 0 (A13)

5u 5 U y- 2___ 2
5-_ + _ su + _ _--+ + E = 0 (A14)Ps 2 Ps

211 y - I )p__p (A15)p = cs + € 2 Ps

2 YPs
c = -- (AI 6)

s Ps

In terms of these nondimensionalvariables,the instantaneouslocal Mach number M
is

u + Eus
S = (A17)x=!

(Ps + £p) 2
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TABLE I.- ACOUSTIC PRESSURE FOR 135-dB SOURCE

[Mt = 0.85; f = 500 Hz]

Nonlinear finite difference, dB Linear
x finite

L element,
Fundamental 1st harmonic 2d harmonic 3d harmonic dB

0.00 135.0 135.0
.25 134.8 107.1 84.7 90.3 134.7
.50 150.1 137.4 127.9 102.2 150.0
.75 134.6 126.5 116.9 105.6 135.2

1.00 134.7 126.9 117.1 105.4 135.3
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Acoustic Termination
source section
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Figure I.- Variable area flow duct.

1.00 --

.75 --

.50 --

_z

.25 --

J I I J
0 .25 .50 .75 1.00

Axial distance, x/L

Figure 2.- Mean flow Mach number. M_ = 0.85.L.
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Nonlinear finite difference

O Linear finite element
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Figure 3.- Acoustic pressure. 135-dB source; Mt = -0.85; f = 500 Hz.
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Figure 4.- Acoustic particle velocity. 135-dB source; Mt = -0.85; f = 500 Hz.
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Figure 5.- Acoustic streaming velocity. 135-dB source; Mt = -0.85; f = 500 Hz.
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(a) Source; x/L = 0.
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(b) Beginning of area variation; x/L = 0.25.

Figure 6.- Acoustic pressure. 135-dB source; Mt = -0.85; f = 500 Hz.
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(c) Throat; x/L = 0.50.
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(d) End of area variation; x/L = 0.75.

Figure 6.- Continued.
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(e) Termination; x/L = 1.00.

Figure 6.- Concluded.
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Figure 7.- Acoustic pressure at x/L = 1.00 (termination). Mt = -0.85;
f = 500 Hz.

2.0 --

1.5 --

<

o_
1.0 --

>

,5--

I I I l
0 .25 .50 .75 1.00

Axial distance, x/L

Figure 8.- Area variation used for comparison with asymptotic theory.
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.8 -- D Asymptotic theory (ref. i0), x/L = 0.75

O Asymptotic theory (ref. I0), x/L = 1.00

Finite difference

.4 --

0

-.4 m

-.8 I l I l
7/2 _ 3_/2 2_

Time, t

Figure 9.- Acoustic velocity. 130-dB source; Mt = -0.90; f = 452.2 Hz.
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Figure 10.- Acoustic velocity. 140-dB source; Mt = -0.90; f = 452.2 Hz.
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Figure 11.- Acoustic velocity. 130-dB source; Mt = -0.95; f = 452.2 Hz.
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