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Symbol Explanation
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Symbol Explanation

X Coordinate in the streamwise direction
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v Kinematic viscosity
£ Small viscous parameter; € = 1/R * *
(pv)w
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(DU)@

) Mean flow density

p Disturbance density

0 Nondimensional mean flow temperature
(See Appendix B)

0 Disturbance -temperature
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1o} Spatial growth rate

aAn Eigenvalue

6] Displacement thickness

62 Momentum thickness

A Wavelength of vortices (See Figure 3)
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~ Amplitude of disturbance quantity (Eq. 15)

or total disturbance quantity (Eq. 6)

Subscripts

) Free-stream conditions
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X Derivative in the streamwise direction
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CHAPTER I
INTRODUCTION

Instability of viscous flows along concave surfaces, 1ike that
between rotating concentric cylinders, is controlled by the balance
of induced centrifugal forces and other forces acting on the flow.

The criteria for instability for such systems was first postulated by
Rayleigh (1916) for inviscid flows, and examined both theoretically and
experimentally by Taylor (1923) for circular Couette flow, while Goertler
(1954) investigated the mode of motion in a boundary layer along a con-
cave surface. Centrifugal forces induced by curvature effects in these
systems lead to the instability of the flow in the form of counter-
rotating, vortex-like disturbances.

Earlier transition measurements in the incompressible boundary
layer next to a concave surface, indicate a steady three-dimensional
vortex-1like disturbance with a spanwise periodicity which develops
according to the linearized theory. Gregory and Walker (1956) were the
first to observe traces of these vortices by using the China-Clay tech-
nique, followed by Aihara (1962) and Tani and Sakagami (1962) using
colored liquids and smoke threads, and Aihara (1961) and Tani (1961)
using hot-wire measurements. Wortmann (1964) used the telurium method
to visualize these vortices in a water tunnel. Bippes (1978) and
Bippes and Goertler (1972) presented detailed observations of these
vortices using the hydrogen-bubble technique. At compressible speeds,
evidence of the vortex-1ike disturbances has been observed by Persen
(1968) and Ginoux (1970) in quasi two-dimensional flows in regions of
separated flow reattachments. Zakkay and Calarese (1972) observed

the presence of these vortices in a hypersonic turbulent
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boundary layer over an axisymmetrié configuration with adverse pressure
gradient. In their experiments in two Mach 5 nozzles, Beckwith .and
Holley (1981) showed by using oil flow patterns that these vortices
persisted to the nozzle exit and that the vortices were involved in the
transition process.

Available experimental evidence has shown that the counter-rotating
vortices affect indirectly the transition from laminar to turbulent flow
on a concave surface. As steady vortices, they may not lead to transi-
tion by themselves, but when their growth becomes strong enough, they do
cause transition by an unknown mechanism. Transition over a concave sur-
face occurs at Reynolds numbers that are Tower than those for flow over
a convex or flat surfaces (Clauser and Clauser, 1937). Moreover, the
Goertler number (the nondimensional parameter of interest in this type
of problems) has to reach a certain critical value before transition
takes place over a constant curvature surface (Liepmann, 1945). Tani
indicated that, although their growth is small these vortices cause
spanwise variation in the velocity field, thus modifying the development
of unstable waves. Wortmann (1969) concluded that transition was lead
by a secondary instability that he observed following the appearance of
the counter-rotating vortices. On the other hand, the observations of
Bippes (1978) and Aihara (1976) of a sinusoidal motion of the vortex
axes before turbulence sets in lead Aihara to correlate that with a non-
1inear theory. Nayfeh (1979) studied the effect of these vortices on
Tollmien-Schlichting waves, and showed that these vortices have a strong
tendency to amplify three-dimensional waves having a spanwise wavelength
that is twice the wavelength of the vortices.

The instability of boundary layer flow on curved surfaces was first



demonstrated theoretically by Goertler (1954) for incompressible flows,
where he showed that a system of counter-rotating vortices were formed
parallel and orien;ed in the streamwise direction. These vortices are
referred to as Taylor-Goertler vortices or also as Goertler vortices.

In his analysis, Goertler assumed the boundary layer to be parallel,
streamwise curvature to be constant with the distance normal to the
surface, and the vortices to be confined to the boundary layer. In an
attempt to relax these assumptions, several investigators followed
Goertler and extended his analysis for incompressible flows. A detailed
review of these efforts is given by Herbert (1976) and Floryan and Saric
(1979).

Various theoretical investigations were performed to provide an
accurate mathematical model of the instability nearer to the physical
reality. Various investigators used the body oriented coordinate sys-
tem 1 with some assumptions regarding the variation of curvature in
the direction normal to the flow. The governing equations written. in
the body oriented coordinate system contain the terms (1 - Ky)~", where K

is the curvature of the surface, and y is the coordinate normal to the

curved surface. These terms present a singularity when Ky = 0(1). Goertler

(1954) assumed that these terms can be replaced by 1, that is stream-

1ine curvature is constant at any normal distance. Smith (1955) and
Kahawita and Meroney (1977) expanded these terms binomially and kept

the first two terms, i.e. (1 + nKy), thus effectively transferring Lhe
singularity to infinity. Floryan and Saric (1979) gave a brief descrip-
tion of different approaches used in the past using body oriented coor-
dinate system and utilized a new system of coordinate based on the stream-

lines and potential lines of the inviscid flow over the curved surface.



A typical illustration of this coordinate system is shown in Fig. 2 for
a circular arc. The shape of the streamline is directly related to the
system of coordinates. Consequently, different treatments of the stream-
line curvature are expected to influence the stability characteristics
of the flow because they are equivalent to changes in the outer flow
conditions. Larger rates of decay of curvature outside the boundary
layer causes a reduction of the driving centrifugal forces in the outer
flow. A similar situation exists by decreasing the streamwise extent of
the curved flow region (see Herbert, 1976). Both factors considerably
stabilize the flow.

The effect of boundary-Tayer growth was introduced by several
researchers (e.g. Smith, 1955; Kahawita and Meroney, 1977; Herbert,
1976; Floryan and Saric, 1979; Ragab and Nayfeh, 1980). The inclusion
of the normal velocity component of the basic flow in the analysis dras-
tically changes the location of the neutral curve. Moreover, the stream-
wise variation of the normal velocity component which appears in the
leading order stability equations has a strong influence on the stabil-
ity characteristics. While Smith incorporated the normal velocity com-
ponent of the basic flow with some of the higher order curvature
terms, Floryan and Saric based the scaling of the normal disturbance
velocity component on a viscous scale that contributed a leading order
effect of the normal velocity component of the basic flow and its stream-
wise variation on the stability analysis.

In spite of the extensive investigations of Goertler instability in
incompressible flows, there have been only a limited number of studies
on the effect of compressibility of the basic flow on this type of distur-

bance. The compressible linear stability theory now available (Hammerlin,

Aihara, 1961; and Kobayashi and Kohama, 1377) for the development of these



vortices is not reliable and far from being complete. It
neglects the normal velocity component of the basic flow that proved
to have a profound effect in reducing the stability of incompressible
flows. Existing compressible theories treat only the neutral stability
case which is of limited importance regarding vortex development, pos-
sible nonlinear interactions, and transition correlation.

In his compressible stability analysis of boundary layer flow along
a concave surface, Hammerlin expanded the disturbance equations in power
series of the square of the freestream Mach number. He kept terms to
O(ME), and obtained a solution to the disturbance equations which is
valid only for My << 1. He used a power law for the viscosity-temperature
relation and kept Prandtl number constant in the calculations. His
results indicated that minimum critical Goertler number increases as
Mach number increases. Aihara reduced the perturbation equations into
two extreme cases of the freestream Mach number, namely, M, << 1, and
Mo >> 1. In his analysis, he assumed constant viscosity and Prandtl
number. His results shows that minimum critical Goertler number de-
creases as Mach number increases, that is,compressibility effect on
the stability of the boundary layer is opposite to that predicted by
Hammerlin. Kobayashi and Kohama treated the problem over a wide range
of Mach numbers. They used Sutherland's formula for the temperature
dependence of the viscosity and assumed constant Prandtl number and
specific heat. They treated only the neutrally stable disturbances
showing that the boundary layer becomes more stable (Goertler number
increases) as Mach number increases.

Kobayashi (1972,73,74) was the first to examine the effects of suc-
tion on the stability characteristics of a laminar incompressible boun-

dary layer along curved surfaces. Although his analysis excluded the
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effect of normal component of mean velocity due to boundary layer
growth, it gave insight into the effect of the presence of this velocity
component due to suction. Using homogeneous suctions Kobayashi found
that the laminar boundary layer is stabilized (critical Goertler number
increases). However, the changes in the critical Goertler number re-
mains much less than the changes in the ¢ritical Reynolds number for
the Tollmien-Schlichting instabilities due to homogeneous suction
(Hughes and Reid, 1965). So, Goertler instability will probably pre-
dominate in the laminar boundary layer along the concave wall with suc-
tion. Floryan and Saric (1979) and Floryan (1980) included the normal
component of the mean velocity in their analysis and examined the case
of self similar suction and came to the same conclusion.

DiPrima and Dunn (1956) examined the effect of cooling and heating
on the stability characteristics of laminar liquid boundary layer over
curved surface. Since their analysis was done for liquids, they neglec-
ted the viscous dissipation and variations in density and came to a
conclusion that heating or cooling has very slight influence on Goertler
instability. For compressible boundary layer, Kobayashi and Kohama
(1977) found that for isothermal walls the ratios of wall to freestream
temperature has less effect on the critical value of Goertler number as

Mach number is increased.

In this article, a basic approximation to a compressible linear

stability theory is developed for three-dimensional longitudinal type vortices
in two-dimensional compressible boundary layers along curved surfaces,

The effect of compressibility on the critical stability limit, growth
rates, and amplitude ratios of the vortices is evaluated over a range

of Mach numbers from 0 to 5. The effect of boundary layer growth is



included in the analysis. The effect of wall cooling and suction on
the development of Goertler velocities in a compressible boundary layer
is examined. In Chapter II, a formulation of the stability problem is
introduced. In Chapter III, the method of solution and numerical pro-
cedures are outlined. A discussion of the numerical results is given

in Chapter IV and conclusions are in Chapter V.



CHAPTER 11
PROBLEM FORMULATION

The Spatial three-dimensional stability of laminar incom-
pressible and compressible two-dimensional boundary layers along
a slightly curved wall is considered. The wall curvature
is in the direction of the flow and its variation is assumed to be
weak to avoid a nonuniform Mach number distribution along the
wall due to the presence of shock waves that might occur in the case
of rapid changes.

The flow field is governed by the Navier-Stokes, energy,
continuity and state equations written in an orthogonal
curvilinear coordinate system. The local curvature of the
streamlines enters the field equations through the appropriate
coordinate system. Following Floryan and Saric and Ragab and Nayfeh,
a coordinate system (x, y, z) based on the streamlines and potential
lines of the inviscid flow over a curved surface is used in this
analysis. Here x and y are in the direction of stream lines and po-
tential lines, respectively, and z 1is the corrdinate normal to the x-
y plane. Figure 3 shows the direction of the development of
Goertler vortices in this coordinate system. This coordinate
system has the advantage of a body oriented coordinate
system in the wall region and decays to a rectangular Cartesian
coordinate system away from the wall.

The compressible field equations written in this coordinate
system are presented in Appendix A. The local curvature of the
streamlines enters the field equations through the metric

coefficients. They are determined from the definition of the



arc length to beh,h and 1 in the x, y and z directions,respectively.
The field equations given in Appendix A are used to formulate the
disturbance equations.

We consider the basic state to be two-dimensional, viscous,
compressible flow over a slightly curved surface. The field

equations are made dimensionless using a reference length

L* = (vi x*/U%) (1)

and U% as reference velocity and (p"U*?), as reference
pressure, where * indicates a dimensional quantity, and , 1is
the kinematic viscosity of the fluid. The thermodynamic and
transport properties of the fluid are made dimensionless using
their corresponding free stream values. With these definitions

the characteristic Reynolds number becomes
R = (UEL*/V%) (2)

We define a small viscous parameter ¢ , and a small curvature

parameter k as

e = 1/R, k =(L*k*)1/2 (3)

where K* is the curvature of the wall., The metric coefficient

h is related to the curvature parameter k by

K =-n /h? at y = 0

(4)

2.1 The Mean Flow

Van Dyke (1960,62) using a body oriented coordinate system,

showed for incompressible and compressible flows that the leading
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order approximation of the boundary layer equations is the familiar
boundary layer equations on a flat plate.

In terms of the small parameters € and k, .Floryan (1980) showed
that for incompressible flows the leading order approximation of the
boundary layer equations (terms of order €° and k°), when € and k are
of the same order, is the conventional boundary layer equations over
a flat plate. Modification of the boundary layer profiles due to the
curvature comes mainly through the normal pressure gradient. This
pressure gradient is O(k) and it will enter higher order boundary layer.

Because the aim of this study is to provide a basic approximation
for the stability of a compressible boundary layer over a curved sur-
face, therefore the basic approximation for the mean flow is required.
The compressible boundary layer flow over a flat plate is considered
to provide a basic approximation for the stability of the compressible
boundary layer over a curved surface. The mean flow profiles are cal-
culated for an adiabatic or isothermal flat plate. In case of suction,

a similar suction parameter y is defined as

i (0*v")y (5)
i (0w
and is introduced to the boundary layer equations (see Appendix B).
Here w indicates wall conditions, and R is given in Eq. (2). The
fluid 1s considered to be a perfect gas with all the thermodynamic
and transport properties function of temperature. The mean
viscosity is related to mean temperature through Sutherland for-
mula. The flow stagnation temperature is kept constant and equal

to 310k for all Mach numbers under study.
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2.2 The Disturbance Flow

A steady three-dimensional small disturbance is superposed on

each mean-flow quantity in the following form

Uex,y,z) = U(x,y) + u(x,y,z) (6a)
V(x,y,2) = V(x,y) + v(x,y,2) (6b)
w(x,y,z) =0 + w(x,y,z) (6c)
p(x,¥,2) = P(x,¥) + p(x,y,2) (6d)
0(x,y,2) = o(x,y) +o(x,y,z) (6e)
p(x,y,2) = B(x,y) + p(x,y,2) (6F)
n(x,y,z) = u(e) + % 6(x,y,2) (69)

In the above equations the order of magnitude of the normal mean veloc-
ity V is smaller than U by the Reynolds number R, and the disturbance

quantities are made dimensionless using

u = ur/U¥, v = v*¥/RUX, w = w*/RU*,

P*/Rzp*U;Z, 9 = e*/e;, p = p*/"); (7)

©
"

The order of magnitude of the disturbance quantities v and w differ

" from the disturbance U by the Reyno]ds number R. The need for differ-

ent disturbance velocity scaling was recogn1zed by DiPrima and Stuart
and 6bserved by Bippes, Bippes and Goertler,and Wortmann in

their experiments. Floryan and Saric and Ragab and Nayfeh used this

type of sca11ng and as a result the norma] velocity component of the
mean flow affected the 1ead1ng order stab111ty analysis. With this

scaling the disturbance motion varies in the
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X coordinate according to a new scale.

X = x*/RL* (8)

Boundary-layer theory combined with the assumed scales, gives the x vari-
atidn~ of mean-flow quantities in terms of the néw scale.

Substituting Eq. (6) into the dimensionless field equations, sub-
tracting the mean flow, linearizing the equations, and keeping the lead-
ing order terms, that is terms 0(1), the following disturbance equa-

tions are obtained:

1 Voo L]
X-momen tum é—(Uu)x -pu,, * oty (““y)y 6va (9)
- -]_. 11 -11 2] =0
[ez(UUx + VUy) + (qu))Zle qu y
- 1 2 - )
y-momentum 5(Vx+ 2UG%)u - Chy Uy (c+ ])“u_yx MUy
s vy v Sy —uv - (c+2)(uv, )\ p
¢} y 0'x 2z yy Ty

1 2.2 ~ + e
-[-G)—Z-(UVX+VYy+U G™)+ (c+1)qux Cqux (10)

+ (c+2)(v )+ ﬁXUJJ 6 - iU 6, -[cuux_
+ (c+2)ﬁv)] ey- CUyW, - (C”)“wyz:O »

uu, +(c+ uuy +uy, + (c+ ])uvyz -p,

Z-momentum

(11)

. y |
+ cﬁ(Ux + Vy)ez --g—_ Wt (c+ 2)uw22 "B wy“':

+ ('Uwy)y' =0
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: 2 + ¥ .
Continuity (_(l;_) _+(é_) +(%) +.]—2(-§-e 5 oy-U Vy)
X y z ©
L = (12)
- == (Us_+Ve,)
02 X y
tnergy 1 1
Ener %)—0 u=-2(y- 1)M uU u + = eyv [e (Uex+VG)y)
- 2,1/~ U, _u
¢ (y- DMEI(, )2 + (i) ) [0+ 8, - T 07,
(13)
v 1. N
+ (@ Oy y F(U )

By keeping the leading order terms in the disturbance equations,
the parameters € and k appear only implicitly in the so called Goertler
number G and consequently Eds. (9) - (13) are configuration independent
at this level of approximation. The parameters € and k will appear
explicitly in a Higher order stability analysis. The Goertler number

G is defined by

G= Rk' | - (14)

The other parameters that appear in Eqgs.(9) - (13) are the free stream

Mach number My, Prandtl number ', and {i = du/do. The density disturbance

is eliminated by using the equation of state.
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Equations (9) - (13) constitute a system of homogeneous linear partial
differential equations with variable coefficients. The type of distur-
bance considered in this analysis is periodic in the z-coordinate,

thus the dependeﬁce on z can be eliminated from the equations. The
scale x may also be separated from the equations by considering the
mean flow to be quasi parallel. Then the form of the disturbance and
flow characteristics suggest the normal mode approach. The disturbance

variables can be written as

u = d(y) cos (Bz) exp (Sodx) (15a)
v = v(y) cos (Bz) exp (fodx) (15b)
w = w(y) sin (Bz) exp (Sodx) (15¢)
p = ply) cos (8z) exp (fodx) (15d)
8 = 8(y) cos (Bz) exp (Sfodx) (15e)

where B is the dimensionless wave number in z-coordinate, and o 1is the

spatial growth rate. The variables a, C, Q, B, and 6 should not be con-
fused with the total flow variables defined in Eq. (6) which will not be
referred to later on.

Substituting Eq. (15) into Eqs. (9) - (13) we obtain

. A . A A 1 A
x-momen tum [%(OU U )+ uB?':]u + (%_ ny )G, - ul + g0V
| . . A_“'"A‘;=' ‘ .
-[gf(uuvauy) * (“Uy))]e “ny’y 0 (16)



s

y-momen tum [%(Vx + 2UGZ) - ccu)] u- [(c +1)op+ ug] ﬁy

A

1 2o [V .
+ 3w, vou+ ) o & e+ 2],

- v - w-(c+ W+
(c+2)uvyy Cu, BW (c T)quy ﬁy
Loy, + v +U262) + (c+ 1)iu,, + cii U
- 62 X y Hoyy Yy X
+ (c+2)(ﬁvy)y+ﬁxuywﬁuge-[cﬁux ()
+ (c+2)av£|“ey =0
z-momentum B[(C +1)ou+ u;J u+ Buy3+ (c+1 )Bqu +[(C +2)8%,
oU| » Via ” ~ (18)
) _O._:lw' (uy - GWy -y, - BP + cBiI(Uy
+ vy)e =0
- 1 Yow.Looels (B, ¥ 20 v (19)
Continuity é{o—e ex)u 62 OyV+§Vy+e w+62(e o, * % Oy
A v A -
i ”x‘vy"’”)e'@_z 8, =0
Ener Lod-2(y- 1M G+l o 0-| Lo, +ve,) (20)
=Derdy 0 "X Y ©""y'y 07y 62 X Y
+ (y- M) 2 + 0, ). - o, 82ug
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In the limiting case of M, = O the above equations reduce to the
incompressible equations developed by Floryan and Saric, and reduce to the
basic system of equations developed by Ragab and Nayfeh. The above
equations also reduce to the compressible equations of Kobayashi and
Kohama for the neutral stability case (o = 0) and when all normal velo-
city and streamwise variations of the mean flow are disregarded.

Eq. (16) - (20) are supplemented with the appropriate boundary

conditions, which are

i=¢=w=0, and
§y+B§=0aty=O (21)
G,0,W,0 » Qas y » (22)

The function B in the condition (21) depends on the thermal pro-
perties of both the solid surface and the fluid, as well as the wave
length of the disturbance. For an adiabatic surface the case where B >
0(6y =0 at y = 0 that is to consider "adiabatic disturbance") is con-
sidered. However, for cases involving surface cooling the case where
B+ (6 =0aty =0) is considered. The effect of using the thermal
boundary condition éy(O) = 0 on the stability characteristics of the

boundary layer over an adiabatic surface is discussed in section 4.3.
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CHAPTER III
COMPUTATIONAL AND NUMERICAL PROCEDURE

Equations (16 - 22) constitute an eighth-order system of homoge-
nous linear differential equations with homogeneous boundary conditions
This forms an eigenvalue problem for the parameters g, o, and G.

Equations (16 - 22) are reduced to eight first-order equations in the

form
8 .
(Zn)y - 4= amnZn = O m=1, 2, ...8 (23)
1y =23 =15 =127 =0 at y = 0,for isothermal wall (24)
or 2y =123 =1725=127 =0 at y = 0,for adiabatic wall (25)
1y, 135 15, Z3 + O as y + o (26)
where Z's are defined as
Z-I"U, 22=uy: Z3=V’ Z4=p
(27)

and ag, is a variable coefficient matrix, whose nonzero elements are

ay, = 1

qpq = 1&5 (Ux + agl) + 32
622=%(%-uy)

s = 50,

]
=-—| S(Uu. + VU ) + + i
v [ —( U U ) uqyy quy]
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=_B
626--qu
=—]-9 ~a
a3 0 “x
=1
a33—(3@y
oUu .1 .2
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=V
3% ~ o
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a4-|- G)[ZUG +20u +V +o ex oV
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al,, - ) Oy) + Cqu

+

(c +2) [(ﬁvy)y - ;‘g—mey)y]+ (W, + W)

+

N N . 12
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The reduction of the governing equations to a system of eight first-
order equations requires only the second derivatives of the basic-flow
quantities. In the work of Kobayashi and Kohama the disturbance
equations for neutral stability were reduced tb three coupled equations,
the first of second order in u,the second of fourth order in V,and the
third of second order in 8.and then solved numerically by finite differ-
ence. The coefficients in.their equations contain fourth-order dériva-
tives of the basic flow, which requires a higher accuracy of the basic
flow solution than the method used here.

3.1 Eigenvalues and Eigenvectors

Outside the boundary layer, i.e. at y >ye (e indicates the edge of
the boundary layer), the coefficients in equations (23) become constant
since U =M =90 =1, ¥ = Ve = constant, V = Vo = constant, I = T, =
constant and the x and y derivatives of all mean-flow quantities are

zero except Vyx. The nonzero elements of the constant coefficient matrix

*
amn are:
=1 ays = (C + 2)(0 + TgVp?) - Vg2
12
*
a = RgY
32‘1 =g + BZ :7 B e
* a4, =-B
dzp = Ve '
a5, = =0 256 = 1
31 % _
a* =g ) a:5.= BZ + reo
35 =
dgs = IV
*
* a =
237 = -8 70 = 1
*
* a £ o
aty = [262 + Vyo = oVe] | N 8
a:z 2 =g ’ aGS = (C"’ 1) Bu

*

aty = -(o + %) 3 = (C+1) BVe
| .
us =G+ Vie = OVp ¥ iﬁ_i_leelscgi toy = pZ+ o
. ' . . e .

ays
* -

ags = Vo



Equation (23) with the constant coefficient matrix a. has a solution

mn

that can be expressed in the form
8

Iy = El Dyn Sn exp(rpy) m = 1,2,...,8, Y=Y (28)
n:
where D, is the characteristic eigenvector matrix, Cnis arbitrary con-

stant vector and A, are the eigenvalues of the matrix a;n. They are:

Ay = A =-1{-v + [V24-4(o-+32)]]/2}

A4 -;{ TeVq +[r v +4(oT,+8 2)11/2y
(29)

=g

A, 1/2,

A6 = gV-+W +M0+B)]

1
rg = 7TV + [12VE + 4(ar_ + 8%)11/2)

We consider the case in which )A,, X, A; and A, are negative real numbers
whereas the other four are positive real numbers. Only negative signs
satisfy the boundary conditions (26).

It should be noted that the eigenvalues ), and A¢ are repeated.

Also in the special case when ¢ = BV, four eigenvalues are repeated,i.e.

A1 = A2 = A3 = Ay = -3 ' (30)
As =g = Ay = Ag = B
Evaluation of the eigenvectors requires special care when the multipli-

city of the roots is equal to or greater than two. Eigenvectors cor-

respohd{ng to the'e1géhva1ués (29) are given in Appendix C and those cor-
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responding to the eiéénva]ues'(BO) are given in Appendik D. Eigenvectors are

checked by reducing the constant coefficient matrix a* to a Jordan canon-
ical form using the similarity transformation

- ‘ J = p~1a*p | (3
(where D-1 is the inverse of the eigenvector matrix D).

When A, are distinct (which is not the case here), the resulting matrix
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J is a diagonal matrix with the diagonal elements as eigenvalues. In
case of repeated roots, elements of the super diagonals corresponding

to the repeated roots are nonzeros.

3.2 Boundary Conditions

The asymptotic boundary condition (26) as y»« demand that the con-

stants ¢cs - cg be zero in the solution (28). This can be expressed as

8
z Dﬁa Ip=0 m=5,6,7,8 y-=ye (32)
n=1
The boundary condition at the wall (24) or (25) can be written in the form
8
n§1 €unln = O m=1;2,3,4, y=0 (33)

where the elements of the 4 x 8 matrix €nun are all zeros except ey =

€3 = €3 = €47 = 1 in case of adiabatic wall, and e;; = e,3 = e35 =

1 in case of isothermal wall.

ey 7

3.3 Numerical Procedures

Equations (23) with boundary conditions (32) and (33) form a two
point boundary value problem which is solved numerically. We assign values
for two of the parameters B8, o and G, guess the third one, and use the
boundary condition (32) to construct a 1inear cpmbination of the general
solution (28). A variable stepsizg integrator, written by Scott and Watts
(1977), based on the Runge Kutta-Fehlburg fifth-order formulas, coupled
with orthonormalization is used to integrate equations (23) from y = y,
to the wall. At the wall, the values of the independent solution vectors
are linearly combined to satisfy all but one of the wall boundary conditions.
The Iast wall boundary condition can only be satisfied by this combined

solution when the exact
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eigenvalue has been found. A Newton-Raphson procedure is used to de-
termine this eigenvalue. In the results presented here, a value is,
always assigned to o to locate contours of constant growth rate

use either B or G as an eigenvalue and determine it to 0(10'4). A

FORTRAN computer program for the stability analysis is given in Appendix F.

3.4 Adjoint Problem

The system of equations adjoint to (23) are formed to check the

eigenvalue. The adjoint system of equations can be written as
8
(Z,’ﬁ)y +n§1 apmlk = 0 m=1, 2, ...,8 (34)
5 = 1§ = It = 1§ = 0O at y = 0, for adiabatic wall (35)
or 25 = Zz = Zg = Z§ =0 at y = 0, for isothernal wall(36)
25-, Zz R Zg . Z§ +0 as y > o (37)

Equations (34) - (37) are solved using the same procedures used to
solve the regular equations (23) - (26). The eigenvectors of the

adjoint problem are given in Appendix E.

Eigenvalues calculated by Equations (23) and its adjoint (34) were
checked, and found to agree to 0(10‘4), and both were found to be in-
dependent of the value of y,. However, the value of Yo used for the
adjoint problem (34) to achieve the required accuracy was always higher
than the value of Ye used for the regular problem (23). It was also
necessary to increase yo as Mach number increases. For example for the
regular problem y, = 10, 12, 14, 16, 18 and 20 for M, = 0, 1, 2, 3, 4,
and 5, respectively. The shape of the eigenfunctions was checked in

order to avoid ¢alculations of higher modes.
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CHAPTER 1V

NUMERICAL RESULTS AND DISCUSSION

The results of stability analysis are usually presented as curves
of Goertler number versus wave number for constant growth rate. Neutral
stability curve (o = 0) separates the stable from unstable regions and
increasing growth rate is akin to moving downstream with the vortices.
Goertler number which represents viscous and curvature effects can be
associated with a particular geometry and flow conditions.

Effect of compressibility of the mean flow on Goertler instability
is investigated for a range of Mach numbers from O to 5. These results
are reported by El-Hady and Verma (1981a) and discussed in details in sec-
tions 4.1 and 4.2. An attempt is made in section 4.1 to evaluate
the effect of the meﬁn density and mean viscosity on the stability charac-
teristics of the boundary layer. The effect of using different thermal
disturbance wall boundary conditions is examined in section 4.3. Effect
of compressibility of the mean flow on the shape of the eigenfunctions
is discussed in section 4.4, while its effects on the amplitude ratio
of Goertler vortices is given in section 4.5. The effect of suction and
cooling of the boundary layer on the development of these vortices is

given in section 4.6 and 4.7, respectively.

4.1 Effect of Compressibility on the Neutral Curve

Figure 4 shows the neutral stability curves for different Mach num-
bers. Instability of the boundary layer sets in at higher Goertler
number as Mach number increases for all wavenumbers higher than 0.1.
The critical value of G below which the flow is stable for any distur-

bance wavenumber increases as Mach number increases. The stabilizing



effect of compressibility is qualitatively in agreement with the results
of Kobayashi and Kohama, but differs quantitatively due to the effect

of the boundary layer growth that is included in the present analysis.
It is worth noting that the incompressible limit, M, = 0, of the neutral
stability curve agrees with the results of Floryan and Saric and Ragab
and Nayfeh.

The rate of heat transfer between the fluid and the wall and the
subsequent development of a thermal boundary layer in addition to the
velocity boundary layer, play an important role in a compressible flow.
The mean-density and the mean-viscosity variations inside the boundary
layer have different roles in shaping the stability characteristics of
the flow. Figure 5 shows the variation of the critical Goertler number
with M, for a neutrally stable disturbance. The mean density is shown
by curve 3 to locally destabilize the flow (curve 3 is calculated with
constant mean viscosity). This effect can be predicted from Rayleigh
criterion for invisg¢id flows with curved streamlines. His criterion
for instability modified for a case with density variation is
5&/5 + (r*Um)y/(r*Um) >0 , where r* is the radius of curvature of
the surface. This criterion shows that positive density gradient seems
to destabilize the boundary layer. A compressible mean flow along an
adiabatic flat plate has a positive density gradient as shown in Fig. 6.
The figure shows the variation of the mean density and mean viscosity in
the boundary layer for different Mach numbers. The effect of the mean
viscosity is shown by curve 2 in Fig. 5 (calculated with constant mean
density). The mean viscosity has a stabilizing effect compared to the
mean-density variation. The exclusion of the disturbance viscosity,
shown by curve 4, has a profound destabilizing effect on the

boundary layer. It is worth noting that the conditions of

25
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curve 4 are similar to the assumptions taken by Aihara in his calcula-
tions. In spite of that, curve 4 indicates that critical Goertler
number is increasing as Mach number increases which is opposite to

that predicted by Aihara. It may be concluded that the stabilizing
influence of the mean viscosity is more dominant than the opposite
influence of the mean density, resulting in a more stable boundary layer

as Mach number increases.

4.2 Growth Rates of the Goertler Vortices

The calculation of the initial point of instability or the minimum
critical Goertler number as a function of mean flow or disturbance
parameters is not that useful quantity regarding transition dependence.
The growth of the vortices and not its initial point of instability is
the decisive factor. It is one of the goals of this investigation to
study the effect of Mach number on the growth rates of Goertler vortices
and to present design charfs for a range of Mach numbers.

Figures 7-12 show contours of constant growth rates plotted in the
G-8 plane for a range of Mach numbers from O to 5. The stable region
below o = 0 curve is increasing as Mach number increases. The growth
rate curves posses minimum which indicate a trend to higher wavenumbers
at higher growth rates. They form a locus of the maximum growth rates
of different wavenumber components. As Mach number increases, figs.7-12
indicate that maximum growth rates occur at lower wavenumbers and higher
Goertler numbers. The locus of the maximum growth rates shifts up and
to the left of the chart as Mach number increases.

Figure 7 (M, = 0) and Fig. 10 (M, = 3) show constant growth rate

curves calculated by excluding all terms due to the growth of the
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boundary layer., These terms greatly influence the neutral stability
curve specially at high Mach number. The effect of these terms dimin-
ishes as the growth rate of the disturbance increases.

For different Mach numbers, Fig.13 shows the variation of the
vortex growth rate with the Goertler number. The values plotted in
Fig. 13 correspond to the minimum of the growth rate curves. The figure
indicates that the vortex becomes more sensitive (its growth rate) to
changes in Goertler number as Mach number increases. The influence of
compressibility on reducing the growth rates is very small at high
Goertler numbers. Fig.13 also shows that compressibility has its
maximum stabilizing influence when the vortex is weak. This conclusion
is best illustrated by Fig. 14 where the parameter (G, 'Gc)/Goc is used
as ordinate to indicate the stabilizing effect (increase of critical
Goertler number) as Mach number increases compared with Goc, the critical

Goertler number at M, = 0 at the corresponding value of the growth rate o.

It should be reminded that the present definition of Goertler num-

ber is based on the reference length L* defined in Eq.(1),. whereas the

original parameter identified by Goertler is based on the momentum thick-
ness of the boundary layer. For the purpose of comparison with data re-
ferenced to the displacement thickness &3 or the momentum thickness 82,

the following relations are used:

3/2 .
6, = 6.8, B, * B8, n = %Ln

where the subscript L denotes data based on the reference length L*,
and n denotes data based on the displacement thickness &;, or the momen-

tum thickness 8, as reference length. The following table gives values
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for the conversion factor A, for different Mach numbers, and freestream

stagnation temperature of 310 K, where 4y = §,/L, 8, = 8,/L

M 0 1 2 3 4 5

=]

8, 1.720 2.129 3.365 5.48 8.504 12.393
A, 0.663 0.656 0.643 0.641 0.645 0.646

4,3 Effect of the Wall Boundary Condition of the Thermal Disturbance on

The Stability Characteristics

A1l the results presented so far are for an adiabatic wall.
The wall boundary condition of the temperature disturbance requires a
solution of the heat conduction equation very close to the surface. This
leads to a boundary condition in the form of Eq. (21), that should be
applied to a particular solid and a specified disturbance wavenumber. A

detailed study of this boundary condition, with its two extreme cases

of B+0 (9y= 0, the wall is a perfect insulator), and B + = (6 = 0,
the wall is a perfect conductor), leads to the conclusion that local
stability near to the neutral region is dependent on the temperature
fluctuation and the boundary condition imposed on it in a compressible
boundary layer. At M. = 3, Fig.15a shows a comparison between neutral
stability curves calculated using the wall condition Gy(O) = 0 and
8(0) = 0. Apart from the differences in the value of the critical
Goertler number, large discrepencies also appear for disturbances
having low wavenumbers. The reason is that for low wavenumber distur-

bances the thermal fluctuation can penetrate large distances into the

solid wall, and hence, the wall temperature cannot remain at the wall



temperature of the mean boundary layer. Figure 15b shows the effect of
the thermal wall boundary condition on critical Goertler numbers of
neutrally stable disturbances. The wall condition ey(o) = 0 shows
always a locally stabilizing effect in a compressible boundary layer
compared to the condition 6(0) = 0, regarding the neutral stability
curve. Using the full thermal boundary condition, Eq. Z1 , the actual
neutral stability characteristics will lie, probably, somewhere between
the curves presented in Figs. 15a and 15b. It is of interest to notice
that the effect of the thermal boundary condition vanishes with the
growth of the disturbance. Figure 15c shows that for M, = 3 which is

typical for all the range of Mach numbers under investigation.

4.4 Effect of Compressibility on Eigenfunctions

Figures 16a-16d give a comparison of the shape of the eigenfunctions

~ ~ ~

of u, v, w, and G,respectively at different Mach numbers for a distur-
bance having a wavebumber 3 = 0.3 and a growth rate o = 5. The cor-
responding Goertler numbers are G = 13.4637, 12.9289, 12.0844, 11.5310,
11.4786, and 11.7611 at M, =1, 2, 3, 4, and 5, respectively. The
values of U, v, w, and 8 are normalized with the maximum of the u com-
ponent at the corresponding M,. Figure 16 shows that the location of

~ ~

u s W , and 8

nax min move away from the wall as Mach number in-

max’ Vmin
creases. The case of neutral stability (not shown) indicates a persis-

tence of the disturbance outside the boundary layer that increases as
Mach number increases. At M, = 3, Fig. 16a shows the shape of the

eigenfunction G when terms due to boundary layer growth are neglected
for a neutrally stable as well as a growing disturbance of o = 5. The
effect of the boundary layer growth is to move the location of Gmax

away from the wall leading to a slow decay of the disturbance outside

the boundary layer.

29
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In their study on the influence of suction or cooling on Goertler

instability in compressible boundary layers, E1-Hady and Verma (1981p)

~

showed that high suction or cooling rates bring the location of U ax

min® “max® and @ nearer to the wall and result in stabilizing the

boundary layer. The stabilizing mechanism here is different from that

v min

due to compressibility. The effect of suction and cooling is further

discussed in secs. 4.6 & 4.7.

In this section, the growth of the measured by the amplitude

ratio is considered since the growth rate alone is of little help

in correlating transition. The logarithmic derivative of the amplitude

of any disturbance gquantity q in Eq. (15) is

(Ingqg), =0 (38)
In terms of G instead of x and introducing a for q
- G .
In (a/ao) = (4/3) IGO (0/G) dG (39)

where a and G0 are the amplitude and Goertler number at the beginning
of the unstable region, and the integration is carried out along a
particular growth path.

In all experiments of tncompressible flows along concave surfaces, the
growth path of the vortex was determined from the conservation of
its dimensional wavelength A* that was observed in the flow direction.
With lack of corresponding information for compressible flows and for
comparison purposes, we assume the same criterion to hold. Since
the dimensionless wavenumber B = B*L* varies with x* for constant

A*, the dimensionless wavelength

v r

Uua



31

is used instead. In the G-B plane, lines of A = const. are straight
with slope 3/2. The locus of maximum growth rates closely coincide
with these lines for the corresponding Mach number. We assume that a,
in Eq{39)is independent of A and G so that the dependence of a on A
and G will be the same as that of a/ao. For different Mach numbers,
a series of amplitude ratio curves are calculated by integrating Eq. (39)
for constant A up to G = 20. Figure 17 shows a reduction in the maximum
value of the amplitude ratio as well as a shift of the most unstable
wavelength to higher value as Mach number increases. Fig. 17 shows
also an increase in the upper band of the disturbance wavelength that
is always attenuated (cut off wavelength) as Mach number increases.

It is a known fact that the stability theory cannot predict which
disturbance wavelength will actually appear for a given surface con-

figuration and flow conditions. For incompressible flows along con-

cave surfaces, the wavelength of the distrubance appears to be deter
mined by the particular edge effects of the experimental apparatus

(Tani and Sakagami , 1962) or by the oncoming disturbances (Bippes,

1978). Based on incompressible experimental data (Tani and Sakagami

1962; Tani, 1961), Floryan and Saric (1980) suggested that the wave-

length selection mechanism (which decide the vortex growth path) may

be based on the maximum growth rate of the disturbances. However,

the selection process may be very easily affected by the properties of

the experimental apparatus that determine the entry location to the

locus of the maximum growth rate. For different Mach numbers, we
integrate Eq. (39) along the locus of the maximum growth rate. The results
are shown in Fig. 18 as function of the Goertler number. The integra-

tion is carried up to G = 20 for comparison purposes. The figure
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shows a stabilizing effect as Mach number increases in terms of lower

values of 1n(a/ay). It is worth to notice that the values of 1n(a/a0)
at G = 20 for different Mach numbers following the path of maximum
growth rates in Fig. 18 are almost indentical with the corresponding

values at the most unstable wavelengths in Fig.17 .

4.6 Effect of Suction on the Stability Characteristics

It was shown by Goertler (1954) and Hammerlin (1955) that the curve
of neutral stability depends insensibly upon the basic velocity profile
in the laminar compressible boundary layer, when the changes in its
momentum thickness is very small. However, Kahawita and Meroney (197.7)

showed that the inclusion of the normal velocity terms change the
location of the neutral curve drastically. In section 4.2, the same
conclusion was reached for the compressible boundary layer. Terms due
to boundary layer growth have large effect near the neutral stability
region specially at high Mach numbers. Therefore, it is expected that
variation of the velocity profile due to suction (which does not affect
the momentum thickness but changes the normal velocity term) may change
the critical Goertler number.

The effect of suction of the laminar boundary layer on Goertler
instability is examined at M, = 0.8 and 3. The self similar suction
parameter y defined in Eq. (5) is used for this purpose. Figures 19 and
20 show the change in the location of the neutral stability curves for
different values of the suction parameter at M» = 0.8 and 3 respective-
ly. It is observed that critical Goertler number first decreases with
increasing suction (destabilizes the boundary layer). The boundary layer
with a suction given by y = -0.45 and -1.3 is the most unstable at

M, =0.8 and 3,
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respectively.as far as the critical Goertler number is concerned. By

increasing the suction parameter above these levels for each Mach num-
ber, the critical Goertler number increases. Fig. 21 shows how the
critical Goertler number changes with y for different Mach numbers. The
level of suction that is required for a noticeable increase of the
critical Goertler number increases as Mach number increases. This
suction level is of higher order of magnitude than the suction required
to stabilize Tollmien-Schlichting waves (see Saric and Nayfeh, 1977 for
Mo = 0). This leads to the conclusion that with these levels of suction,
Tollmien-Schlichting waves are practically eliminated, and Goertler
vortices may dominate the flow.

At M = 3, Figs. 10, 22, and 23 show waves of constant growth rates

for y = 0, -1.2 and -1.6. By increasing suction, curves of small growth
rates are compressed and moved to higher Goertler numbers. Curves of
high growth rates are slightly affected by suction especially at high
Mach numbers.

To see the overall effect of suction, the growth of the vortices
should be taken into account as they develop downstream. For M, = 3,
Fig. 24 shows the amplitude ratio of the vortices as a function of
Goertler number. Integration of the growth rates is performed using
Eq. (39) to G = 20 for comparison purposes. It is clear that despite
indications of the destabilizing effect of small suction for all Mach
numbers regarding the critical Goertler number (see Fig. 20), the

overall effect of suction is to stabilize the boundary layer as shown

by Fig. 24 for M_ = 3 and by Floryan and Saric for M, = 0. Although
a suction corresponding to vy = -1.2 which is near to the critical value
of the suction parameter at M, = 3, locally destabilizes the boundary

layer in terms of the critical Goertler number, it
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reduces the amplitude ratio by about twenty-two percent thus sta-
bilizing the boundary layer.

At different Mach numbers, Fig. 25 displays the amplitude ratio
of the vortices at G = 20 over a range of the suction parameter y. The
amplitude ratio of the vortices reduces as suction increases. With
increa§ing Mach number, it becomes more difficult to stabilize the
boundary layer (reducing the amplitude ratio of the vortices) unless
very high suction is used. Figure 25 shows that at M, = 5 the ampli-

tude ratio is hardly influenced by suction in the range of 0<y<2.

At M, = 3, Fig. 26a-26d show a comparison of the shape of the
eigenfunctions ﬁ, Q, Q, and §,respective1y,f0r different values of
the suction parameter y(normalized with the maximum of u component).

These eigenfunctions are for a neutrally stable disturbance having a

wave number 8 = 0.3. The corresponding Goertler numbers are G =
1.1155, 1.7549, 3.5193 at y = -0.6, -1.6, -2.0, respectively.
Figure 26 shows that the location of Urax® Ymin® Ymax® and em.

aX m ma m

move towards the wall as suction increases.

The normal velocity component,if directed away from the wall (the case
of no suction), tends to destabilize the flow by encouraging penetration
into the free stream where viscous dissipation is small. By increasing
suction the thickness of the boundary layer decreases, and the distur-
bance-is confined to a region closer to the wall where dissipative

action is strong, thereby increasing the stability of the flow.

4,7 Effect of Cooling on the Stability Characteristics

At Ms = 3, Fig. 27 shows how the location of the neutral curve varies
with different cooling rates. The cooling parameter 0,/9;4 is used for

this purpose, where 6,/034 = 1 represents no cooling, and 6,/0,,< 1 re-
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presents cooling. Small cooling has a destabilizing influencej however
as cooling increases, the neutral curve moves upward indicating a sta-
bilizing influence as far as the critical Goertler number is concerned.
For wavenumbers approximately greater than 0.4, Fig. 27 shows that cool-
ing always destabilizes the boundary layer (Goertler number decreases).

It should be noted here that in section 4.3 we arrived at the con-
clusion that neutral stability curve is dependent on the wall boundary
condition of the thermal disturbance. Therefore, one may think that
comparing neutral curves in case of cooling, where the wall is consi-
dered completely conducting and the wall boundary condition of the ther-
mal disturbance is 6 = 0, with that in case of no cooling, where the wall
is considered ideally insulated and the wall boundary condition of the
thermal disturbance is By = 0, is somewhat misleading. The neutral sta-
bility curve is calculated for a no cooling case with the thermal boun-
dary condition 6 = 0 at y = 0, and is shown in Fig. 27 for comparison.
Previous conclusions regarding effect of cooling on the critical Goertler
nuimber are still valid.

At M, = 3, Fig. 28-30 show contours of constant growth rates for the
cooling parameter 0y/0,4 = 0.75, 0.25, and 0.15, respectively. These
figures display the influence of cooling on the vortices at different
stages of their growth. Conclusions are summarized in Fig. 31, where the
parameter (Gpc - G.)/Gpc is used as ordinate to indicate the stabilizing
or destabilizing effect (increase or decrease in critical Goertler num-
ber) as cooling increases compared with Gpe, the critical Goertler num-
ber at 6,/034 = 1 for the corresponding values of the growth rate o.

Fig. 31 shows that at M, = 3, weak vortices (small growth rates) are more
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influenced by cooling. Cooling parameters 1>0,/0,4>0.75 seems to de-
stabilize the boundary layer. As cooling increases (Gw/ead<0.75), Fig.
31 shows a stabilizing influence of cooling on weak vortices; however,
cooling has almost no influence on strong vortices (high growth rates).

The above conclusions represent a local effect of cooling on the sta-
bility 1Timit as well as growth rates of the vortices. It is important
to estimate the effect of cooling on the total growth of the vortices
by calculating the amplitude ratios. Again, Eq. (38) is used to in-
tegrate the growth rates along the locus of maximum growth to G = 20.
At M, = 3, Fig. 32 shows a comparison of the amplitude ratios for
different cooling parameters. The figure shows that stabilizing the
boundary layer with respect to Goertler vortices can hardly be achieved by
using very high cooling. At G = 20, the amplitude ratio of the vor-
tices reduces by about 2 % at §,/034 = 0.25 and by 5.6 % at 0,/0a34 =
0.15. The case of 0,/0ad = 0.75 shows a destabilizing effect at this
Mach number.

Fig. 33 shows the effect of cooling on the amplitude ratio of
Goertler vortices for different Mach numbers. The figure clearly dem-
onstrates that moderate cooling has almost no influence on the stabil-
ity. However, high cooling influences low Mach numbers more than high
Mach numbers. At 0,/0a4 = 0.25, the amplitude ratio is reduced by 13.4% at
M. = 0.8, by 2.8% at M, = 3, and increased by 2.6% at Mo = 5.

It is clear from Figs. 32 and 33 that the effect of moderate cool-
ing is relatively small considering the strong temperature dependence
of the viscosity and density and the corresponding large variation of
both in the boundary layer. At M, = 3, Fig. 34 shows the distribu-

tion of viscosity and density of the mean boundary layer flow for differ-



ent cooling parameters. In contrast to the insulated wall, where the
density gradient is positive and the viscosity is large at the wall,
the density profile in the cooling case has not only positive but neg-
ative gradients. The viscosity profile has also two regions where

B> 1 and ¥ < 1. The negative density gradient may have a stabilizing
effect according to the Rayleigh inviscid criterion, but the varia-

tion of both density and viscosity in the cooling case are complica-

ted enough to compare with the case of no cooling.

The small effect of moderate cooling shown in Figs. 32 and 33
is in marked contrast to the results for the Tollmien-Schiichting (TS)
type instability which is extremely sensitive to wall temperature
(see Fig. 7 in Mack, 197%). This is ultimately due to the presence
of an inner critical layer in TS disturbances through which the eigen-
function varies rapidly. Therefore, stability characteristics depend
critically on the local properties of the mean-flow velocity, viscosity,
and density distributions which are very sensitive to the wall tempera-
ture. For Goertler instability, however, there is no inner critical
layer and the centrifugal force is the controlling factor. This insta-
bility depends only on the overall properties of the mean flow, such
as the average velocity gradient, which are much less influenced by
the wall temperature.

At M, = 3, Figs. 35a-35d give a.comparison of the shape of the
eigenfunctions of i, v, W, and 8, respectively, for different values of
the parameter 6,/0,4. These eigenfunctions are for a neutrally stable
disturbance with wavenumber 8 = 0.3. The corresponding Goertler num-
bers are G = 1.463, 1.301, 1.205, and 1.213 for 6,,/054 = 1, 0.75, 0.50
and 0.25,respectively. The values of U, ¥V, W, and 8 are normalized

with the maximum of u-component at the corresponding cooling
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parameter. The figure shows that the location of ug,y.» Woaxe and

8 n Move towards the wall as cooling increases. The velocity compo.

mi
nent v shows a persistance outside the boundary layer.

Comparing the shape of eigenfunctions due to cooling in Fig. 35,

with that due to suction in Fig. 25, shows that at Ms = 3, both high

suction and high cooling stabilize the boundary layer by con-

fining the disturbance to a highly dissipative region nearer to

the wall. Suction may be more effective than cooling as it brings

LA

the disturbances more close to the wall.
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CHAPTER V
CONCLUSIONS

A leading order approximation of a compressible stability theory

of boundary-layer flow along a concave surface is presented and solved

numerically. The compressible boundary layer equations along a flat

plate are used to represent the mean flow. The results of the stability

analysis are summarized as follows:

1.

7.

Instability of the boundary layer with respect to Goertler
vortices sets in at higher Goertler number as Mach number
increases.

The local stability near to the neutral region is dependent on
the wall boundary condition imposed on the temperature fluctu-
ation in a compressible boundary layer.

At high Mach number, the growth of the vortices is sensitive
to small changes in Goertler number.

Compressibility has its maximum influence on the vortex when
it is weak.

Terms due to boundary layer growth have large local effect
near the neutral stability region specially at high Mach numbers.
Compressibility reduces the maximum amplitude ratio by about
20% as Mach number increases from 0 to 5.

With increasing Mach number, the most unstable and cut off
wavelengths shift to higher values.

Suction may have a local destabilizing effect on the boundary
layer as far as the critical Goertler number is concerned, if

its level is below a critical value. This critical level of



10.

11.

12.

13.

14.
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suction, where local effect becomes stabilizing increases

with Mach numbers.

In contrast with local suction effects, suction of the boun-
dary layer has always a stabilizing influence on the total growth
of Goertler vortices. The amplitude ratios of the vortices
reduce with any level of suction used.

Suction of the boundary layer is more effective in stabilizing
the flow at low Mach numbers than at high Mach numbers. It
becomes increasingly difficult as Mach number increases to
reduce the amplitude ratios of the vortices unless very high
levels of suction are used.

Wall cooling, like suction, has a local destabilizing effect

on the boundary layer as far as the critical Goertler number

is concerned.

At low Mach numbers, small cooling applied to the wall

(04/0ad 2 0.75) has no influence on the amplitude ratios

of Goertler vortices. A noticeable reduction in the ampli-

tude ratio starts with moderate cooling (6y/0ad < 0.5).

At high Mach numbers, it seems almost impossible to stabilize
the boundary layer using practical rates of wall cooling.

The amplitude ratios of. the vortices increase and the boun-

dary Tayer becomes more unstable with small or moderate cooling.
Goertler instability is more difficult to influence and control
by suction or cooling than Tollmien- Schlitching instability.
The reason is that Goertler instability which is referred to

as centrifugal type instability, depends on the velocity differ-

ence between the inner and outer region of the boundary layer



and not on the shape of the boundary layer profile as in the

case of Tollmien-Schlitching instability.

41
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Figure 3

Goertler vortices in a flow along a concave wall.
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Figure 14 Effect of compressibility on local
stability.
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APPENDIX A

This appendix contains the dimensional field equations for com-
pressible flow (see Hughes and Gaylord, 1964) written in the specified
system of coordinates x, y, z. The velocities are given by u, v, w,
and the metric coefficients are h, h, 1 in the x, y, z directions re-
spectively. The Prandtl number T and specific heat cp are taken con-

stant in the stability analysis. The ratio c of the second to the first

mean flow viscosity coefficients is defined as ¢ = 2(e - 1)/3, e is

taken equal to 0.8.

1
x-momen tum p[%ux +%u + wu,, - ;“12_(th - uhy')] = - —ﬁpx
c 1 1 v
* F(”V ) v)x+? [{Z“h(ﬁux+h2 h.V)}x
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c 1 UIPTIN P
Rl v)y+;2'[{“h[(h)x+ (h)y] b

2,1
+ G vy g )+ Gy )

PN PO 1 2
Ca [ b By ey



Z-momentum

Energy

Continuity

<

p[% WxJ'-ﬁ'"'yJ'w""z]= - ppreluvev),

h

+ {Zuhzwz}z ]

m:p(h N h 0, +wo, ) = p +Fp +wWp,

. (c+z)u[(‘ gy,

1

+ ‘]g[{uh(uz +;1;‘ w )l o+ {uh(%— Wy ¥ vz)}.y

u 2
—?- hX) +w

2
z

+u[(,1, wy+V) +(u, + ;,-W) ), )y ¥

1 v 1 u 1
+ 2cl(uct g by )G vyt ) (&
v
+;7"51)‘”z‘“(h v *hz h, W, }]

+ 200, (0,), 2e,), |

(hou), + (hev), + h*(pw), =

where

Vovs -h—]f[(hu)x + (h) + hzwz]

u
X

J
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APPENDIX B

The two-dimensional compressible boundary layer equations for
zero pressure gradient together with the equation of state for a perfect

gas are reduced to the following set of ordinary differential equations.

+ -

(qu)y gUy YUy (B1)
¥ +go, +2p(U )% -yo, =0

(7 Oy)y QOy u( y) Y9, (B2)
gy-i_pU=0 (B3)
U=0,g=0, and Oy =0 or

0=06, aty=0 (B4)
U>1,050 asy s Ye (B5)

by using the transformation
J
*
y = (VA% x*)%z (0" /05) dy* (B6)

as well as a stream function to satisfy the continuity equations. Here
0= (i* - i;)/(i;e - i;), where i*, i; are the fluid enthalpy and stag-
nation enthalpy respectively, and e dendtes conditions at the edge of
the boundary layer. Equations B1-B5 are integrated numerically with
the thermodynamic and transport properties of the perfect gas compu-
ted at each integration step. The variation of perfect gas properties

with temperature are taken from (Hilsenrath, Beckett, et al., 1955).



APPENDIX C

This appendix contains the nonzero elements of eigenvector matrix

D for the case when Ay and Ag are repeated.

J=1,5
D3g = -B/Ag
Dgg = BLo + 8% + A3(Ve - X3)1/A]
D7g = 1.0
Dgy = Ag
J=2,6
D35 = -8/
D7g = 1.0
Dgy = Ay
J = 3,7

Dy = BV - 22))(1 - Aj/Bz)/(ZG2 + Vyeldy
D2 = 2301y

D3y = 1.0

Dgg = (Ve - 2)4)/8

D7g = 1.0/25 - Ay/8 - aDy4/8

Dgg = 1 + 23074
J=4,8
- G282 + V, B
D3a = Dl + AaVe) - 3580 ’\J(V) -3 US‘-_B’T

Dag = -Mglo + B2 + A (Vg - 23)1D3,4/8%
Dgg = 1.0

Dea = |

D7J = -AJD3J/B + (0 + AJVe)/B

Dgy = AgD7g

85



APPENDIX D

This appendix contains the nonzero elements of the eigenvectors

matrix D for the special case o = gV, wherei;, X2, A3, and )g are

repeated.

J=1,5
D7g = -Ny/B
Dgy = -8

Jd =2,6
Dyg = 1
D29 = Xy
D3y = 1
Dsg = 2
Deg = 2%
D79 = -X3/8
Dgy = -8

J = 3,7
D3g = 1
D,, =2

08\] = —AJ(AJ + 2)1,8

J=4,8
D3y = 1
Day = Ay(2x, + 3)/86?
Dg; = 4/G?
Dgg = 41,/G?

D79 = -(1 + 1;)/8 Dgg = -(1 + 1A4)2/8



87

APPENDIX E

This appendix contains the nonzero elements of the eigenvectors

matrix for the Adjoint Problem (34).

J=1,3

D19

-
=

<1 ¢
‘Ta[%("ve - 262 - Vo) - olg ;sz ) + (g + g2)0,; ]

= E_ - 2 . _i 1
P20 = [glote = 267 - Vo) - G, =5

D3y
D4y

Dsyg

D6y

D749
J = 3,7

it

(c +82)/8
8/2y

- llore 670065 + (C + 2)og + &+ B2 + Vg - Voo +

B Ag
(c + 2)Veo(ro +82 )]

1 rr o (2Ves _ GF _ Vyay > _ o2
Felo - Varg1tM( 5 BT a) Vet m gt (e 2)
reVe(Ves - Q%J)]

-Ve

%3[(0 +8) (57 - 1.0) + (9hy + 26° + Vyg)Dyy

1.0

( 2y
o8 49

A
Ve +2
526z + Vxe)
'%Ef(réo-+BZ)DGJ + [(c + 2)Va(Teo +B8% ) + G + Vyq +
(e + 2)\30]Dg,]

[G2+ Ve = (c * 2)Vo (TaVa + A} - Tpo ~82)]Day
(r'eVe + Adz- I‘eo -62) I
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APPENDIX F
FORTRAN PROGRAM FOR STABILITY ANALYSIS.
..THIS PROGRAM CALLS SUBROUTE JOCK (LINE A 430) WHICH
IS A VARIABLE STEP SIZE INTEGRATOR WRITTEN BY SCOTT AND WATTS (1977).

PRCGRAM STA#IC(INPUT’DUTPUTpTAPES-INPUT:TAPFb-DUTPUT9TAPF10)

REAIl NMIA. RV . KNIR. AV . KUNT_ KNTR._KTR_MACU. MIT. MIID
[ =y~ § 9 NYVUF O IRV FUFIFIFRIVIFI NN LUFTNNTLFIIRLGIIFHIGYIIUT

DIMENSION Z2(8,101)s A(4sR)y ALPHA(4)» B(4yB8)y BETA(4)s KARRAY(T),
1C(8,8)s CCC(Bs8)y FF(ByB)» DD(B»B)y XL(B)

DIMENSION WORK({10000), IWORK(150)

DIMENSION PV(B)» IK(30), CD(8)

COMMNON /7AAA/ KNTH»BETHVELF»GGsMACHsCCsPXsPY

COMMON /8887 XSAVEsKLyINDEX

COMMON /CCC/ V(101)sVP(101)»VPP(101)»DUX(101),DUPX(101),DVX(101),D
1TX(101),DTPX(101),DMUX(101),DALFX(101)

COMMON /DDD/ Y(101),U(101),UP(101),UPP(101),»T(101),TP(101),TPP(101}
1), PRANDL(101),MU(101)sMUP(101),ALFA(101),ALFAP(101)

COMMON /FFF/ TIE,MOD

COMMON /EEE/ ACC,FACT

NAMELIST /GORPTLR/ GGsKNTsBFT,ACCoMON»ITRIINDEX,NIT,ILMyFACT

CRERRRERRE R R Rk R KRR R kAR ARk R R KRR kR

MOD INDICATES DIFFERENT MODELS
MOD=1 WITHOUT TERMS DUE TC BOUNDARY LAYER GPROWTH
“OD=2 WITH TERMS DUE TO BOUNDARY LAYER GROWTH
ITR INDICATES ITERATION APPLIED TO
ITP=l- GG. KNT=CONSTANT
ITe=2 KNT  GG=CONSTANT
INDEX INDICATES TYPE OF PROBLEM
INDEX=1 HOMDGENEQUS PROBLEM
INDEX=2 ADJOINT HOM. PROBLEM
NOTE- INDEXs1,2 ARE VALID FOR MOD=2 ONLY
NITsMAX, NO. OF ITERATION
IN IS NO OF ITFRATIONS
IM=0 CONVERGENCE
IEsND OF POINTS IN THE Y DIRECTION

PP >R PR

b = b ped ped
SFWNHOODNTWM D WMN -

N = b b s
QO O W~NO W

W NNYNNDYN
OCO®~NOWVMPWN-

W
[

68



IM=1 NO CONVERGENCE

IL IS COUNTFR FOR THF NO OF POINTS ON PLOT

ILM IS MAX NO OF POINTS ON THE PLOT

GG=GOERTLER NUMBFER

KNT= WAVE NUMBER

MACHs MACH NUMBER

MU. = VISCOSITY |

XL(I)s EIGENVALUF ARRAY

C(8,8)=CONSTANT COEFFICIENT MATRIX
K(B8s8)=EIGENVECTOR MATRIX

BET  =GROWTH RATE

VELF =NORMAL VELOCITY CCMPONENT DUTSIDE THE B.l.
cc «CONSTANT=0.4/3,

ACC  =ACCURACY

'FACT =A PARAMETER WHICH ODETERMINES THE STEP SIZE

IN NEWTON-RAPHSCN ITERATIVE METHCD.SEE SUBROUTINE

ITRN,

~SUFFIX P DENOTES DERIVATIVES WITH RPESPECT TO Y
COORDINATE.,

SUFFIX X DENOTES OERIVATIVE WITH RESPECT TO X
CCORDINATE,

.. THUS 'UP AND UPP ARE FIRST AND SECOND DERIVATIVES
WITH RESPECT TO Y AND DVX AND OTX ARF THF X
DERIVATIVE OF THE NORMAL COMPONENT OF VELOCITY
AND TEMPERATURF

- PRANDL=PRANDTL NUMBER

ALFA =DERIVATIVE OF MFAN VISCOSITY WITH MEAN
' TEMPERATURE,

t*#**####tt*#ﬁt#**###*###***##*##*###*##*t#**##**####*

READ (10) ETA;MACH,IE
READ (10) (Y(I),Is1,IE)
READ (10) (U(I)sI=1,IE)
READ (10) (UP(I),I=1,TE)
READ (10) (UPP(I)sI=1,1E)
READ (10) (T(I)sI=1,1E)

P> PP PDDPDDDE PP DD

32
33
34
35
36
37
38
39
40
41
42
43
46
45
46
47
48
49
50
51
52
53
54
55

57
58
59
60
61
62
63
64
65
66
67

06




READ (10) (TP(I),I=1,1E)

A 68
READ (10) (TPP(I),I=1,IE) A 69
READ (10) (PRANDL(IY,I=s1,IF) A 70
READ (10) (MU(I)sI=1,1F) A T
READ (10) (MUP(I),Ial,IE) A T2
READ (10) (ALFA(I)sI=1,1E) A 73
READ (10) (ALFAP{I),I=1,1F) B T4
READ {(10) (DUX(I)»I=1,1E) A 75
READ (10) (DUPX{I)sI=1,IF) A T8
READ (10) (DTX(I),I=1,1E) A 77
READ (10) (DTPX(I)sI=1,IE) A 78
READ (10) (DMUX(I)yI=1,I1F) A 79
READ (10) (DALFX(I)sIs=l,IF) A 80
READ (10) (V(I)»Isl,IE) A 81
READ (10) (VP(I)»I=1,IF) A 82
READ (10) (VPP(I),I=1,IE) A 83
READ (10) (DVX(I)yI=1,IE) A 84
i d 22222322 222 2232222232222 22 23222222222 A 85
C A 86
c INPUT PARAMETERS A 87
C A 88
o E 333333333 333 R332 St i 2222222222222 2 A 89
PX=0,0 A 90
PY=0.0 A 91
CCa=0.4/3.0 A 92
CCl=CC+1, A 93
CC2=CC+2, A 94
PR1sPRANDL (1) A 95
VELF=V(1) A 96
IL=0 A 97
READ (5,GORTLR) A 98
IF (EOF(5)) 4551 A 99
1 CONTINUE A 100
WRITE (6»GORTLR) A 101

16



3

CONTINUE

IF (ABS(BET).EQ.ABS(KNT*VELF)) STOP
IN=0

WRITE (6556)

CCNTINUE

IM=0

CHRRREEERRR R R AR R Rk Rk kR R kR AR ARk Rk ek Rk

c

PARALLEL AND NON PARALLEL BRANCHING

Ch¥rkdkkkrkkrb bk rhbkkbrkhbbkrbrbbkkkrkkkkbkkrks

4

5

IF (MOD.NE.1l) GO TC 5
D0 & Is=1,IE
V(I)=0,0
VP(I)=0.0
VPP(I)=0.0
pVX(1)=0,0
DUX(I)=0,0
DUPX(1)=0,.0
DTX(I)=0.0
DTPX(I)=0,0
DMUX(I)=0.0
DALFX(I)=0.0
CONTINUE
VELF=V (1)
CONTINUE

CHErkkkc kbbb kbbb rhr bk khkkhkkrkhkbhkrkkkrrkkkkF

C

CONSTANT COEFFICIENT MATRIX

CRekkkkhrhbt kb khkkkkkhcn ke rkkkhhkhkkbbbhkhk ek

D0 6 I=1,8

00 6 J=1,8
C(I»J)=0.0
C(ls2)#1.0
C(251)=sKNT*#%24+BET
C(252)sVELF
C(351)==-BET
C(355)=BET
C(3,6)=VELF
C(3,7)s=KNT

)Dbbbbbbbbb)bbbbb)bbbbbbbbb)bbbbbD)Pb

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
13g

6



Clarl)m=2,0%GGO**2+BET*VELF=-DVX(1) A 139
Cl4y2)==-BET A 140
Cl493)s=KNT**2-RET A 141
Clas5)aGC**¥24DVYX (1) -VFLF*RET+CC2*VELF*®(PRI*RFT4+KNT*%*2) A 142
Clas6)=CC2*(RETH+PRI*VELF*%2)-VELF¥%x2 A 143
Cl4s7)sKNT*VELF A 1464
Cl4sB8)==KNT A 145
C{556)=1,0 A 146
C(69s5)sKNT**2+BET*PR] A 147
C(656)=PR1*VELF A 148
C(7,8)=1.0 A 149
ClB8s4)m=KNT A 150
C(Bs5)=CCL*KNTH*BFT A 151
C(Bsb6)SCCI*KNTHVELF A 152
C(Bs7T)sKNT**24RET A 153
C(8s8)=VELF A 154
IF (MOD.EQ.1.AND.RETLEQ,0.0) GO TO 20 A 155
KNTBe(VELF*%2+4 ,0%(BET+XKNT*%2))%%0,5 A 156
KTB={ (PRANDL (1 )*VELF)**2+4¢4,0*%(BET*PRANDL (1 )+KNT%%2) )*%,5 A 157
CHERBRETRRRERRrr Rk kbbb kxR bbb bk bk h kb kb kbbb kR kR AR R A K% A 158
c EIGENVALUES A 159
I Yy Y YN eI Y Y I s 311211221223 21T%1T) A 160
XL(1)==KNT A 161
XL(2)2=0,5%(=VELF+KNTR) A 162
XL(3)e=0,5%(-VELF+KNTB) A 163
XL(&)==0, 5% (PRANDL(1)*(=VELF)+KTB) A 164
XL{5)aKNT A 165
XL(6)=0 5% (VELF+KNTB) A 166
XL{T7)®0, 5% (VELF+KNTB) A 167
XL(B)=0,5%(PRANDL(1)*VELF+KTB) A 168
IF CINDFX.EQ.2) GO TO 13 A 169
PS=2 ,0*GG**2+DVX (1) A 170
PP {GG*KNT ) *%24+DVX(]1)®XKNT*%?2 A 171
C A1T2
DO 12 J=1,8 A 173
XLL=XL(J)*XL(J) A 174
GO TO (75859910579859910)» J A 175

€6



Cretkkrrb kbbb h bk bbbk kb kbhbkhkh bbbk kb kkkkrhdkikk

o

EIGENVECTOR MATRIX ELEMENTS

C#*########tt*##******#**i*#****###*#*#*t*#***######*#*#**

c
7

10

K(15J)=0.0
K(25J)=0.0
K{35J)==KNT/XL(J)
K(4s JYsKNT*{(BET+KNT*#2}+XL(J)¥(VELF=XL(J)))/XLL
K(55J)=0.0
K(65J)=0,0
K(75J)=1.0
K(B8syJd)=XL(J)

60 10 11
K(l15J)=0,0
K(29J)=0.0
K(3»J)==KNT/XL(J)
K(45J)=0.0
K(55J)20.0
K(6»J)=0.0
K(75J)=1.0
K(8yJd)=XL(J)

60 TO 11

X1= (KNT*(VELF=2.0*XL{J))*(1.0=(XL{J)/KNT)*%*2))/(PS*XL(J))
K(lpJ)=X1

K(2sJ)eXL(J)%xX]

K(3sJ)»=1.0

K(asJ)s(VELF=2,0%¥XL(J))/KNT

K(5»J4)=20,0

K(65J)=20.0

K(79Jd)m1,0/%L(J)=XLUJ)/KNT=-BET*X1/KNT
K(PpJ)=1,04XL{J)*K(T79J)

GO T0 11

XoxBET+KNT*¥2+ XL {J)*(VELF=XL(J))

K(1sJ)=0.0

K(25J)=0.0
K(39Jd)=(XLUJI®R(BET+XL(JI*®VELF)=(PP/X&) )/ (XL(J)*%2-KNT*%2)

P> DDP>D>DD> >R DD DD

176
177
178
179
180
181
182
183
184
185

186

187
188
189
190
191
192
193
194
195
19¢
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

%6



KEGy J)maXb®XL (JI*K(3, )/ (KNTH%2 )+ (BETHXL(IIFVELFI*((CC+1.0)+X&/KNT
1%%2)
K(55J)=1.0
K(6sJd)aXL(J)
K(79Jd)o=XL(J)*¥K(3,J)/KNT+(BET+XL(J)*VELF)/KNT
K(BsJ)eXL(J)*K(T5J)
11 CONTINUE
12 CONTINUE
60 TO 29
C
13 CONTINUE
CRERRRBARERRRRR SRR R bR Rk bRk Rk RNk h R kR k R kb bk ok kE

c ADJOINT PROBLEM ETGFN-VECTORS

o I Ty E T T Ty T P T TP YT T Y
BKNsBET+KNT**2
BPKeBET*PRI4KNT**2
D0 19 Js=1,8

GO TO (14515516517514515516517), J

14 CONTINUE

K(2»J)=s(KNT*(BET*VELF=2,0%GG**2=-DVYX(1))/XL(J)=BET**2/KNT)/(XL{J)*V
1ELF=-BET)

K({lsJd)oe=((KNT/XL(J))*(BETHVELF-2,0%¥CG**2-DVX(1))-BET*RKN/KNT+BKN*K
162,30 /7XL 1)

K(35J3)=8KN/KNT

K({&sJ)=KNT/XL(J)

KGOy J)m (XL (J)*( 2, O%¥VELF*BET/KNT-GG**¥2/KNT=DVX{1)/KNT)-KNTHVELF *#%2-
1BET#%*2/KNT+CC2*PR1*VELF* (VELF*KNT-BET*XL(J)/KNT) )/ (PRI*(BET=VELF*X
2L(J4)))

K(5sJ)=={BPKE*K (6, J)+CC2*BETEKNT+BET*#2/KNT+(KNT/XL(J))*(~VELF*BET+
1CC2*VELF*BPK+GC**24DVX(1)))/XL(J)

K(7»J3)e=VELF

K(8sJ)=1,0

GO 70 18

15 K(lyJ)a=(VELF+XL(J))
K(25J)=1.0

» > PP EPEEPEPIEEPDEBEDDPD PP

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
2641
262
243
244
245
247
248

G6



K(3,3)=0.0
K(45,J)=0.0
K{55J)=0.0
K(65J)=0.0
K(7,J)=0.0
K{85J)=0.0
GO 70 18

16 BPR= (PRI*VELF+XL(J))*XL(J)=-BPK
K(4sJ)m=(VELF+2.%¥XL{J))}/(2.0%GG**24DVX (1))
K(2sJ)=1.0
K(LlsJ)m(BKN*(1o/XL(J)=1,0)+(BET*XL(J)+2,0%CG**24DVX(1))*K(4yJ))/XL
1(3)
K(3sJ)s(BKN/YL(J))*K(4,y])
K(6sd)=(GG**2+DVX(1)-CC2*VELF*BPR)*K(4,J)/BPR

K(S59J)e—(BPK*K(6,J)+{CC2*VELF*BPK+GG**2+DVX(1)+CC2*XL(J)*BET)*K (4
WIN/xLd)

K(7sJ)m(KNT=XL(J)*(VELF+XL(J))/KNT)*K(4,J)
K(8sJ)=(XL(J)/KNT)I*K(4,J)

GO TO 18

C

17 K(1l,J)=0.0
K({2,J4)=0,0
K(354)=0.0
K(4yJ)=0.0

K(553)s=(PRI#VELF4XL(J))
TTK(6sd)=1.0

K(753)=0.0

K(BsJ)w0,0
18 CONTINUE
19  CONTINUE
c

G0 TO 29
20 CONTINUE
T3St 2232222322222 2222222222 2322232222238 S
c EIGENVECTORS FOR RET=0 & MOD=1
c FOUR REPEATED ETGENVALUES
Crekkkbrkkbhkbkhkbh kb khkkhkkrkbktbbkkhkk bbbt krhkkhkbbhknbkkk

)bb)DDDDDD)DDDDDPDDDDDDDDDDDbb)DDD)DDD

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

96



WRITE (65100) XL1sXL2»XL3sXL&sXLS»XLO6sXLT7pXLE A 287
DD 21 J=1,4 A 288
XL(J)Ye=KNT A 289
D0 22 J=5,8 A 290
XL(J)sKNT A 291

A 292
DO 28 Js=1,8 A 293
GO TD (23524925+26923924525926)s J A 294

A 295
K(1,J)=0.,0 A 296
K(2,J3)=0,0 A 297
K{(35J)=1.0 A 298
K({4sJ)=0,0 A 299
K{55J)=0,0 A 300
K(65J3)=0,0 A 301
K(7sJd)a=XL{J)/KNT A 302
K{8sJ)==KNT A 303
GO TO 27 A 304

A 305
K(lsJ)=1.0 A 306
K(2sJd)=XL(J) A 307
K(3,J)=1,0 A 308
K{4sJ)=0,0 A 309
K(55J4)22,.0 A 310
K(6sJ)=22,0%XL(J) A 311
K{7sJd)e=XL{J)/KNT A 312
K{8sJ)u=KNT A 313
GO TO 27 A 314

A 315
K(1yJ)=0,0 A 316
K(2»J)=0,0 A 317
K{3sJ)e1,0 A 318
K{4s3)=2,0 A 319
K(55J)=0.0 A 320
K(625J)=0,0 A 321
K{(79J)e=(1a0+XL{J))/KNT A 322
K({B8pJd)e=XLUJY®(XL(J)+2,0)/KNT A 323

L6



27
28

e Ne) S w

A0

GO TO 27

K(ly,J)=0.0

K(2,J)%0.0

K{35J)=1,0

K(ayd)eXL (J)*(2.0%XL(J)+43,0)/KNT*%x?2
K{5»J)ub,0/GG*%*2

K{6sJ)mb ,0%XL(J)/GG**2
K(T793¥==(1.0+4XL(J))/KNT
K(BsyJ)m=(1,04XL(J))%%2/KNT

CONTINUE

CONTINUE

CONTINUE

DO 30 L=1,8

DO 30 I=1,8

KK(IsL)=K(TI,L)

WRITE (65100) ({(K(IsL)sL=1y8)y1I%1,8)
CALL MATINV (8,8,Ky09CDyCsDETR,CS»PV,IK)
WRITE (65203) DETR

WRITE(65100) ({(K(I,L)sL=1,B8)s121,8)

KARRAY{(1)=20

KARRAY(2) =8

KARRAY(3) =8

KARRAY(4) =8

KARRAY(5)=8

KARRAY(6) =8

KARRAY(7)=8

CALL MATOPS (KARRAY»KsCHFF)

CALL MATOPS (KARRAYyKK,K,DD)

CALL MATOPS (KARRAY,FFsKK,CCC)

WRITE (65100) ((C(IsL)slL=1s8)yI=1,8)
WRITE (65100) ((DD(IsL)sL=1y8)yI=1,8)
WRITE (65100) ((FF(IsL)sL=1yB8)yInl1,8)

Crekrkrbshphkttxbkk bkt ik kb khskhbkbhhhknbrbhbrhhhnsk

C

ELEMENTS OF INVERTED MATRIX

CREREB ARt bb bRk kbR Rk kR bk bk k kbR bR AR h k¥

D> PR REDEDDEPDDD PP DD

224
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

26



31

Alls131=K(S5,1)
A{l,2)=K(5,2)
Al(ly3)=K(5,3)
Alls%)=K(5,4)
A(l,5)=K(5,5)
A(ls6)=K(5,6)
Alls7)=K({5,7)
A(l,8)aK(5,8)
Al251)=K(6)51)
A{252)sK(Ey2)
Al253)=K(6,3)
Al254)sK(6,54)
A{2s5)K(655)
A(2s6)=K(6,y6)
A(257)sK(6,7)
A(258)3K(6,58)
A(3,1)sK{7,51)
A(3,2)=K(7,2)
A(353)=K(7,3)
A{354)sK(Ts4)
A(3,5)=K(T,5)
A(356)=K(Ty6)
A(357)=K(7,7)
A(3,8)=K(T7,8)
A{4s1)=K(B)y1)
A(4s2)3K(By2)
A(4y3)aK(8,3)
A{b4s4)=K(8,y4)
A{4sp5)=K(8,5)
A(4s6)=K(Byb)
Al4y, 7)=K(8B,7)
A{4s8)=K(8,8)
CO 31 1Is=1,4
DO 31 J=1,8
B(IsJd)=0,0

IF (INDEX.EQ.2) GO TD 32

PP PP PP PR DR DD DD DD

360
361
362
363
364
365
366
367
368
369
370
7
372
373
374
375
376
3717
3re
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

66



X I 2222122323332 2232222223332 2222232222222 222
c OUTER BOUNDARY CONDITION FCR REGULAR PROBLEM
Chkkkkkbkhkkbkkkrkbkbkkb ok kb kbbb kkk kb kb kkrkkkkx

B(1»1)=1.0

B(25,3)=1,0

B(3,5)=1,0

B4y 7)e1.0

G0 TO 33
32 CONTINUF
Crebkktrh bk bk kb ok bk kb bk bbk bk ehkhkrkk
c DUTER BOUNDARY CONDITION FOR ADJOINT PROBLEM
Crebkbkpbkbkthbbkhb kb kkrr bbbk bkbe bk ke

B(152)=1,0

B(254)=1.0

B(3,5)=1,0

B(4s8)=1,0
33 CONTINUE

__D0 34 Is1,4

ALPHA(I)=0.0
34 BETA(I)=0.0
CEx¥srrkbkhshhnbhkpb bk kbbb kbbb bkbkkhkkkkpkerkkn
c PARAMETERS FOR JOCK
CRekkkkkekrhhkk kb krkhkkkk kbbb kkhkk kb k bk bkrkkhkkk

NY=TE

IFLAG=0

AE=ACC

RE=ACC

INGRK({1)=10

IWORK(11)=1

DO 35 I=1,10

35 WORK(I)=Y(9%I+1)
XSAVE=0.0
Ki=1

C

CALL JOCK (Z5B9BsYsNYsAsboALPHA»4»By4sBETA»GLyOREHAESIFLAG)WORK,1O0
1000, IWORK150,0)

bb))b)bb))’b’))b)PDDDDPDDDDDDD)DPDD)

396
397
398
399
400
401
402
403
404
405
406
%07
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0ot



36

37

38
39

40
41

OO O

IF (INDEX.EQ.2) GO TO 36
MNVe INORK (1)
MNW=IWORK (2)

AD=2 (2,NY)
DAS2(T,NY)/AD

60 TO 37

CONTINUE

MNVeINORK (1)
MNW=IWORK(2)

AD=T7 {1.NY)
DAsZ(8,NY)/AD

CONTINUE

IF (ITR.NE,1) GO TO 38

CALL ITRN (GGsKNT,DAyIN,IM,ITP,IFLAG)MNV,MNW)

GD 7O 39

CALL TITRN (KNTsGGsDAsIN)IMyITRyIFLAGyMNVyMNN)

CONTINUE

IF CINLEQ.NIT)Y GO TO 60

IF (IM,EQ.1) GO TO 3

IF (INDEX.EC.2) GO TO 40

NN=?2

GO TO 61

NNs=]

CONTINUE

DO 42 J=1,NY

DO 42 L=],8
Z(Ls»Jd¥=Z(LsJ)/Z{NNsNY)

WRITE (6,5,53)

DO 43 J=1,NY»5

PRINT 58y Y(J)s(Z(LsJ)sl=1,8)
WRITE(G6s78)

WRITE (£»100)((KK(IosL)sL=1,8)5I=1,8)
WRITE(6,81)
WRITE(6,100)((CCC(IsL)rL=158)y1=1,8)
WRITE (6,5,59)

WRITE (6554) (XL(I)sI=1,8)
PRINT 55, 1IN

D> DB EDPDEDDIPDEPDDEREEDDDDD > DD PP

432
433
434
435
436
437
438
439
440
441

442
443
44
445
446
447
448
449
450
451
452
453
454
455
456
457
458
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460
461
462
463
464
465
466
467
468
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o4

45

46

47

48

49

50
51
52

53
54
55

NUMDRT=IWORK(1)

PRINT 57y KNT,GG»BET:
WRITE (6»100) Z(1,NY)

GO0 TO 44

sTop

CONTINUE

CONTINUE

IF (0e2.LToKNT,ANDeO.S5«GE.KNT) GO TO 46
IF (KNT.LE.O0.2) GO TO 47
IF (KNT.GF.1.0) GO TO 48
IF (0e5.LToKNT4ANDs1.0GTKNT) GO TO 49
KNT=KNT-0,050

G6=66-0.20

GO0 TO 52

KNT=sKNT=0,02

GG=GG+0.1

GO TO 52

KNT=KNT-0,20

G6G*G6G6-0.3

GO TO 52

IF (BET.LE.2.0) GO 1O 50
KNTaKNT=-0.05

GO0 70 51

KNT=sKNT-0,05

GG=GG-0.3

CONTINUE

IL=IL+1

IF (IL.GE.ILM) STOP

G0 YO 2

sSTOP

FORMAT (/7515HEIGEN FUNCTIONS,//)
FORMAT (8X»8E15.6)

FORMAY (//510Xs17HNO OF ITERATIONS=,12,//)

PP P>DP>D>D> D> PP DD P> D>>»

469
470
41
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

491
492
493
494
495
496
497
498
499
500
501
502
503

201



56 FORMAT (B8X»2HINs10X,2HDAS12X»2HX1p10Xs2HX2512Xs5HSLOPES12X»3HDELy]

12Xy SHIFLAGY 8X» 3HMNV Xy 3HMNW, /)
57 FORMAT (10Xp4HKNTeyF10e6s5Xs3HGG2s F10eb95Xs4HRET=yF10.65/)
58 FOPMAT (F5.1»8F14,5)
59 FORMATY (//51H »8X,12HEIGEN VALUES//)
END
SUBROUTINE ITRN (X1sX2»DAsINsIMyITRyIFLAGyMNV,yMNW)
Chrerkrdrbrhbkhk bk kbbb kkkkk ek kkkkk ek kpkkgrk
o ITERATION BY NEWDTON RAPHSON METHOD
c ACC IS THE ACCURACY
C ITR DEPENDING ON THE VALUF 0OF TITR ITERATION IS PERFORMED ON
o KNT OR Go X2 REMAINS CONSTANT THROUGHOUT THE ITERATION,
C AL=DEL/X1 IS THE PARAMETER WHICH IS CHECKED FOR ACCURACY
CEEFXX XX SRR FERRE RN RN R R R ARk bk Rk kR h Rk Rk hp kb Rk kb kk kR h ke bk kR kR kk
COMMON /JEEE/ ACC,FACT
IF (IN.GEL.1) GO TO 1
DAA=DA
DEL=0,005%*X]
X1=X1+DEL
IN=IN+1
IMe]
RETURN
1 SLOPE=(DA-DAA)/DEL
DEL=~-DA/SLOPE
AL=DEL/X]
WRITE (696) INyDAyX1yX2,SLOPESDELy IFLAGH)MNV,yMNW
IF (ABS(AL)JLELACC) GO TO ¢
2 IF (ABS(DEL)LJLEL(FACT*X1)) GO 70O 3
DEL=DEL*C,7
GO TO 2
3 CONTINUE
GO Y0 5
4 IN=0
RETURN
5 CONTINUE
DAAsDA

DO ODOPO P OO PTOEORDODOTDODR OEDOODMEP OB D> DD

504
505
506
507
508
509~

DD~ W

10
11
12
13

15
16
17
18

20
21
22
23
264
25
26
27
28
29
30
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X1=X1+DEL
IN=IN+1
IM=]
RETURN

FORMAT (BXsT392XsE1S 469t XoFBeS5sbXsFB554XsF15.604XsF10e554Xs16)08X)
114,8Xs14)

END

SUBROUTINE FMAT (XsS,SP,IGOFX,EsEP)
REAL KNT,MACH, MU, MUP

DIMENSION S(1), SP(1)» E(1)» EP(1)

COMMDN /7AAA/ KNTSBRETSVELF»GGsMACHyCCoPXPY
COMMON /BB8/ XSAVE,KL»INDEX

%01

CREtbkdnr bbbk dr bbbk hbb kb hkk bk bbbk kR kb kk kb kb bk rky

C EIGHT FIRST ORDER EQUATIONS FOR REGULAR AND ADJOINT PROBLEM

c AND THEIR COEFFICIENTS

CEHRRRERRRRRRRRR AR RN R bR R AR AR AR KRR R RN AR RSN R ARk k Rk kR A kR kX%
CCl=CC+1.0
CC2=CC+2.0
GAM=]1,4

EC= (GAM=]1.,0)*MACH*%*2

IF (XSAVE.EQ.X) GO TO 1

IF (XSAVE.LT.X) KL=l

XSAVEs=sX

CALL PROF (X»UsUP,UPPyT,TP,TPPsPRANDL,MUSMUP,ALFA,ALFAP,DUX,DTX,DM

1UXs DALFX» Vs VP,DVX» VPP DUPXsDTPX,sKL)
PR=PRANDL

TPTX=sTP*V+DTX*U
AG4LPobL 0¥ TP*TPTX/T*%3-2,0%(TPP*V+DTPX*U+TP*VP4DTX*UP)/T**2-TP*(DUX
14VP)/T*%24 (DUPX4VPP)/TH+UP*¥BET/T=U*BET*TP/T**2

IN ABOVE LINE TERM -U*TP/T**2 WAS DELETED AT THE END

A21=KNT#*2+ (BET*U+DUX )/ (T*MY)
A22=(V/T=MUP) /MU

A23sUP/ (MU*T)

A24eN,0

VOO OONOIOONODOOOOO0O OO D®PORD PRI D®



OO

A25s=( (UsDUX+VH*UP) /T** 2+ ALFA*XUPP+ALFAP*UP) /MU
A26==ALFA*UP/MU

A27=0,.0

A28=0,0

A31e~{(BET=-DTX/T)

A32=0,0

A33=TP/T

A34=0,0
A3SsUSBET/T+(DUX+VP)/T=2.0%TPTX/T*%2
A36sV/T

A37=-KNT

A38=0,0

A41e=DVX/T=2,0%U*GG**2/T=(DTX/T)*(V/T-CC2*¥MUP)+BET*(V/T=2,0%MUP ) +M
1UCC2% (TP*(DTX/T=BET) /T+PR*V*(DTX/T=EC*PX)/ (MU*T)+DTPX/T~TPXDTX/T*
2%2)

A5 (V/T-CC2*MUP)I* (2, 0%TPTX/T**#2-(DUX+VP)/T-U*BET/T)+MU¥CC2¥((PR*V
1/7(MU*T) )% (U*BET/T+MUSKNT* %2 /PR=TPTX/T**2-EC*ALFA*UP**2-TP¥ALFAP /PR
2=ALFA*TPP/PR)=(TP/T)*(2.0%TPTX/T**2-(DUX+VP)/T=U¥BET/T)+A44P)+ALFA
3%(CC1*¥DUPX+CC2*VPP+BET*UP )+ (U*DVX+VAVP+{U*GG)*%2 )/ (T**2 )+DALFX*UP+
QALFAP*(CC*DUX+CC2%*VP)

IN THE ABOVE LINE U*GG**2 WAS MODIFIED AS (U*GG)*%¥2

A4BRe~KNT*MU
AGbn=NV.(V/T=CC2*¥MUP) /T+MURCC2* (TP*V/T**2=2 ,0¥TPTX/T**24+({DUX+VP)/T+
IUBET/T4+PR*¥V¥(V/T=MUP/PR=ALFA*TP/PR)/(T*MU)+VP/T=VETP/T*%2)+ALFA*(
2CC*DUX+CC2%VP)

AGT7TsKNTRY ) T=2 ,C¥KNT*MUP-MUXCC2*KNT*TP/T
AG2=sCC1*MU*BET+DMUX+MU*CC2*(DTX/T=BRET=2,0%PR*VXECRXUP/T)
AG3n=YU*BET/T=MU*KNT*%2<VP/T=(TP/T)*¥(V/T=CC2*¥MUP) +MUSCC2%(PR*¥VX(TP/
I1T=FC*PY)/ (MUXT)+TPP/T)

At4=0,0

AG1=PR*(DTX/T=~EC*PX)/MU
A62==2,0%¥PR&EC*UP

OO OO OO OO DIOOOTOONOOOODO0

29
30
31
32
33
34
35
36
37
3e
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
b4
65

501



-0

A63=PR*(TP/T=EC*PY) /MU

A64%0.0
AG5=PRE(USBET/T+MUKKNT %2 /PR=TPTX/TH*2-ECHXALFA*UP**2-ALFA*TPP/PR-A
1LFAPXTP/PR) /MU

A66=PR*(V/T=MUP/PR=ALFA*TP/PR) /MU

16720,0

A6820,0

ABl=DMUX*KNT/MU+CCL*KNT*DTX/T

A82=0.0

AB3sKNT*MUP/MU+KNT*CC1*TP/T

AB4=~KNT/MU

ABSeALFA*XKNT*CC*(DUX4VP) /MU=KNT*CC1*(2,0*%TPTX/T**%2-(DUX+VP)/T=-U*BE
INNAR

AB6EsKNT*CC1*V/T

ABT7sUXBET / (T*MU)+KNT#%2

ABR=V/ (T*MU)=MUP /ML

WRITE (65100) A44PyA&1,A45,A465A6)1,5A81,A85

CONTINUE

IF (INDEX.EQ.2) GO TO 2

SP(1)=S(2)
SP(2)sA21#S(1)+A22%S(2)+A23*S(3)+A24*S(4)+A25%S(5)+A26%S(6)+A27%S(
17)+A28%S(8)
SP(3)®A31%S(1)+A32%S(2)+A33%S(3)+A36%S(6)+A35%S(5)+A36*S(6)+A37%S5¢(
17)+A38%S(8)
SPU&)=AL]*S(1)+A62%S(2)+A43*S(3)+A0L*S(4)+AL5KS(5)+A4LE*S(6)+ALT*S(
17)+A48%5(8)

SP(5)=S(6)
SPU6)=AG1*S(1)+A62%S(2)+A63%S(3)+A64%S(4)+A65%S(5)+A66%S(6)+A6T*S (
17)+A68%5(8)

SP(7)=5(8)
SPIB)=AB1*S(1)4AB2%S(2)+AB3*S(3)+AB4*S(4)+ABS*S(5)+AB6%S(6)+ABT*S(
17)+A88*S(R)

RETURN

OO0 AOMAOOOOOOOOOONOOOD OO0 MNO

66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
84
85
86
87
8e
89
90

91
92
93
94
95
96
97
98
99
100

901



r4 CONTINUE

SP(1)a-A21%S(2)-A31*S(3)-A61%S(4)-A61%S(6)-AE1%S5(8)
SP(2)3=S(1)-A22%S(2)-A32%S(3)-A42*5(4)=-A62%S(6)-AB2*S(8)
SP(3)==A23%5(2)-A33%S5(3)-A43%S5(64)-A63%S(6)-AB3*5(8)
SP(4)a=A24%S(2)-A34%S(3)-A44*S(&)-A6L*S(6)-ABL*S(8)
SP(5)8=-A25%S(2)=-A35%S(3)-A45*S(6)-A65%5(6)~AB5*%5(8)
SP(6)e=A26%S(2)=A36%S(3)=A4b*S(&L)-A66XS(6)-AB6*S5(B)=-5(5)
SP(7)==A27%S(2)-A3T7*S(3)-A4T*S(4)=-Ab6T*S(6)=-ABT*S(8)
SP(8)s~A28%S(2)-238%S(3)-A4B8%S(4)-A68%S(6)-A8B%S5(8)-5(7)
RETURN

END R
SUBROUTINE GVEC (X,G)
DIMENSION G(8)
RETURN
END
SUBROUTINE PROF (YARG»SUy»SUPsSUPPsSTs»STPySTPP»SPRAND,SMU,SMUP, SALF
1Ay SALFPsSUX»STXs SMUXy SALFXy)SVySVPsSVXpSVPPsSUPXy STPXsKL)
REAL INTER,MU,MUP
COMMON /DDD/ Y{(101),U(101),UP(101)sUPP(101)»T(101),TP(101),TPP(101
1))PRANDL(101)sMU(101)sMUP(101)»ALFA(101)sALFAP(101)
COMMON /FFF/ IE,MOD
COMMON 7CCC/7 V(101),VP(101)sVPP(101),DUX(101),DUPX(101),DVX(101)sD
1TX(101),DTPX(101),DMUX(101),DALFX(101)
R T T I ImImMI I I nI  I  ry T r P T T T T
o SUBROUTINE TO CALCULATE VALUES CF UsMU,T ETC AND THEIR
C DERIVATIVES AT A PARTICULAR Y LOCATION BY INTERPOLATION
CRERRRABERRREE R RS R R bR AR ARk R ke Fahkpd bk kb kR R Rk kbR kbbb kR R khEE
DO 1 J=KL»IE
I=J
IF (YARG.GT,.Y(J)) GO TO 2
IF (YARG.,EQ.Y(J)) GO TO 3
1 CONTINUE
2 MIN=I-3
IF (I.LEs3) MIN=]
IF (TI«GEo(IE~2)) MIN=IF-¢
SUsTNTER({YsUs YARG»E»MIN)
SUP=INTER(Y,UP»YARGy6,MIN)
SUPP=INTER(Y,UPPs YARGy 6y FIN)

mmmmmmmmmmmmmmmm-ﬂmmmmmmcoc:’nnnnnnnnnnnn
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ST=INTER(Y, Ty YARGs6»MIN)
STP=INTER(Y, TPy YARGs6 s MIN)
STPP=INTER(Y,yTPP,YARGs»6sMIN)

SPRAND=INTER(Y,»PRANDLs YARG»6sMIN)

SMUs INTER(Y,MUs» YARGyHyMIN)
SMUP=INTER(Y,MUP,YARGy6,MIN)
SALFASINTER(Y» ALFA» YARGs6,MIN)
SALFPsINTER(YsALFAP,YARGyHsMIN)
IF (MOD.EQ.1) GO TO &
SUX=INTER(Y,DUX»YARGsb6sMIN)
SV=INTER(Y»VyYARGs6sMIN)
SVXsINTER(YsDVXsYARG,6,MIN)
SVP=INTER(Ys VP YARG,HsMIN)
SVPP=INTER(YsVPP,YARGs6,sMIN)
SUPX=INTER(YyDUPXs YARGs6s»MIN)
STX=INTER(Y,DTX» YARG» 6, MIN)
SMUX=INTER{(Y,DMUX»YARG» 6, MIN)
SALFX=INTER(YsDALFX,YARGs6,MIN)
STPXesINTER(Y,)DTPXyYARG»6sMIN)
KL=1

RETURN

SuU=Ut(I)

SUP=UP (1)

SUPP=UPP(I)

ST=T(1)

STP=TP(1I)

STPP=TPP(I)

SPRAND=PRANDL(I)

SMUsMULT)

SMUP=MUP(I)

SALFAsALFA(I)

SALFP=ALFAP(I)

If (MDD.EQ,1) GO TO ¢
SUPX=DUPX(T)

STXsDTX(I)

STPX=DTPX(I)

SMUX=DMUX(T)
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SALFX=DALFX(TI)
SV=V({1)
SUX=DUX(I)
SVXsDVX(I)
SVP=sVP(T)
SVPP=VPP(I)
KL=]
RETURN
CONTINUE
Svs0.0
SvP=0.0
SVPP=0,0
SVX=0,0
SUX=0,0
SuPX=0,0
STXx=0.0
STPX=0,.0
SMUX=0,0
SALFX=0.0
KL=1
RETURN
END

REAL FUNCTIONINTER(X,YyXARG,IDEG,MIN)

DIMENSION X(151)s Y(151)
FACTOR=1,0

MAY=MIN+IDEG

DO 2 J=MINsMAX

IF (XARG.NE.X(J)) GO TO 2
INTER=Y(J)

RETURN
FACTOR=FACTOR*(XARG=-X(J))
YEST=0,0

DO & IsMIN,MAX
TERM=Y(I)*FACTOR/(XARG=X(1))
DD 3 JsMIN,MAX

IF (T.NE.J) TERM=TERM/(X(I)=X(J))
YESTsTERM+YEST

INTER=YEST

PETUPN

END

ONODOD DO DD OO DOD mrnn1mrﬂmrﬂw1m11n1mrnmrn1|mﬂ1mrnﬁ1m
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