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CHAPTER I 

INTRODUCTION 

Instability of viscous flows along concave surfaces, like that 

between rotating concentric cylinders , is controlled by the balance 

of induced centrifugal forces and other forces acting on the flow. 

The criteria for instability for such systems was first postulated by 

Rayleigh (1916) for inviscid flows , and examined both theoretically and 

experimentally by Taylor (1923) for circular Couette flow, while Goertler 

(1954) investigated the mode of motion in a boundary layer along a con- 

cave surface. Centrifugal forces induced by curvature effects in these 

systems lead to the instability of the flow in the form of counter- 

rotating, vortex-like disturbances. 

Earlier transition measurements in the incompressible boundary 

layer next to a concave surface, indicate a steady three-dimensional 

vortex-like disturbance with a spanwise periodicity which develops 

according to the linearized theory. Gregory and Walker (1956) were the 

first to observe traces of these vortices by using the China-Clay tech- 

nique, followed by Aihara (1962) and Tani and Sakagami (1962) using 

colored liquids and smoke threads, and Aihara (1961) and Tani (1961) 

using hot-wire measurements. Wortmann (1964) used the telurium method 

to visualize these vortices in a water tunnel. Bippes (1978) and 

Blppes and Goertler (1972) presented detailed observations of these 

vortices using the hydrogen-bubble technique. At compressible speeds, 

evidence of the vortex-like disturbances has been observed by Persen 

(1968) and Ginoux (1970) in quasi two-dimensional flows in regions of 

separated flow reattachments. Zakkay and Calarese (1972) observed 

the presence of these vortices in a hypersonic turbulent 
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boundary layer over an axisymnetric configuration with adverse pressure 

gradient. In their experiments in two Mach 5 nozzles, Beckwith.and 

Volley (1981) showed by using oil flow patterns that these vortices 

persisted to the nozzle exit and that the vortices were involved in the 

transition process. 

Available experimental evidence has shown that the counter-rotating 

vortices affect indirectly the transition from laminar to turbulent flow 

on a concave surface. As steady vortices, they may not lead to transi- 

tion by themselves, but when their growth becomes strong enough, they do 

cause transition by an unknown mechanism. Transition over a concave sur- 

face occurs at Reynolds numbers that are lower than those for flow over 

a convex or flat surfaces (Clauser and Clauser, 1937). Moreover, the 

Goertler number (the nondimensional parameter of interest in this type 

of problems) has to reach a certain critical value before transition 

takes place over a constant curvature surface (Liepmann, 1945). Tani 

indicated that, although their growth is small these vortices cause 

spanwise variation in the velocity field, thus modifying the development 

of unstable waves. Wortmann (1969) concluded that transition was lead 

by a secondary instability that he observed following the appearance of 

the counter-rotating vortices. On the other hand, the observations of 

Bippes (1978) and Aihara (1976) of a sinusoidal motion of the vortex 

axes before turbulence sets in lead Aihara to correlate that with a non- 

linear theory. Nayfe)! (1979) studied the effect of these vortices on 

Tollmien-Schlichting waves , and showed that these vortices have a strong 

tendency to amplify three-dimensional waves having a spanwise wavelength 

that is twice the wavelength of the vortices. 

The instability of boundary layer flow on curved surfaces was first 
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demonstrated theoretically by Goertler (1954) for incompressible flows, 

where he showed that a system of counter-rotating vortices were formed 

parallel and oriented in the streamwise direction. These vortices are 

referred to as Taylor-Goertler vortices or also as Goertler vortices. 

In his analysis, Goertler assumed the boundary layer to be parallel, 

streamwise curvature to be constant with the distance normal to the 

surface, and the vortices to be confined to the boundary layer. In an 

attempt to relax these assumptions , several investigators followed 

Goertler and extended his analysis for incompressible flows. A detailed 

review of these efforts is given by Herbert (1976) and Floryan and Saric 

(1979). 

Various theoretical investigat ions were performed to prov ide an 

accurate mathematical model of the instability nearer to the physical 

reality. Various investigators used the body oriented coordinate sys- 

tem 1 with some assumptions regarding the variation of curvature in 

the direction normal to the flow. The governing equations written.in 

the body oriented coordinate system contain the terms (1 - l(y)‘“, where K 

is the curvature of the surface, and y is the coordinate normal to the 

curved surface. These terms present a singularity when Ky = O(1). Goertler 

(1954) assumed that these terms can be replaced by 1, that is stream- 

line curvature is constant at any normal distance. Smith (1955) and 

Kahawita and Meroney (1977) expanded these terms binomially and kept 

the first two terms, i.e. (1 + nKy), thus effectively transferring the 

singularity to infinity. Fl.oryan and Saric (1979) gave a brief descrip- 

tion of different approaches used in the past using body oriented coor- 

dinate system and utilized a new system of coordinate based on the stream- 

lines and potential lines of the inviscid flow over the curved surface. 
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A typical illustration of this coordinate system is shown in Fig. 2 for 

a circular arc. The shape of the streamline is directly related to the 

system of coordinates. Consequently, different treatments of the stream- 

line curvature are expected to influence the stability characteristics 

of the flow because they are equivalent to changes in the outer flow 

conditions. Larger rates of decay of curvature outside the boundary 

layer causes a reduction of the driving centrifugal forces in the outer 

flow. A similar situation exists by decreasing the streamwise extent of 

the curved flow region (see Herbert, 1976). Both factors considerably 

stabilize the flow. 

The effect of boundary-layer growth was introduced by several 

researchers (e.g. Smith, 1955; Kahawita and Meroney, 1977; Herbert, 

1976; Floryan and Saric, 1979; Ragab and Nayfeh, 1980). The inclusion 

of the normal velocity component of the basic flow in the analysis dras- 

tically changes the location of the neutral curve. Moreover, the stream- 

wise variation of the normal velocity component which appears in the 

leading order stability equations has a strong influence on the stabil- 

ity characteristics. While Smith incorporated the normal velocity com- 

ponent of the basic flow with some of the higher order curvature 

terms, Floryan and Saric based the scaling of the normal disturbance 

velocity component on a viscous scale that contributed a leading order 

effect of the normal velocity component of the basic flow and its stream- 

wise variatfon on the stability analysis. 

In spite of the extensive investigations of Goertler instability in 

incompressible flows, there have been only a limited number of studies 

on the effect of compressibility of the basic flow on this type of distur- 

bance. The compressible linear stability theory now available (Hamnerlin, 

Aihara, 1961; and Kobayashi and Kohama, 1377) for the development of these 



vortices is not reliable and far from being complete. It 

neglects the normal velocity component of the basic flow that proved 

to have a profound effect in reducing the stability of incompressible 

flows. Existing compressible theories treat only the neutral stability 

case which is of limited importance regarding vortex development, pos- 

sible nonlinear interactions, and transition correlation. 

In his compressible stability analysis of boundary layer flow along 

a concave surface, Hammerlin expanded the disturbance equations in power 

series of the square of the freestream Mach number. He kept terms to 

O(d), and obtained a solution to the disturbance equations which is 

valid only for Ftop << 1. He used a power law for the viscosity-temperature 

relation and kept Prandtl number constant in the calculations. His 

results indicated that minimum critical Goertler number increases as 

Mach number increases. Aihara reduced the perturbation equations into 

two extreme cases of the freestream Mach number, namely, M,<< 1, and 

t4.n >> 1. In his analysis, he assumed constant viscosity and Prandtl 

number. His results shows that minimum critical Goertler number de& 

creases as Mach number increases, that is,compressibility effect on 

the stability of the boundary layer is opposite to that predicted by 

Hamnerlin. Kobayashi and Kohama treated the problem over a wide range 

of Mach numbers. They used Sutherland's formula for the temperature 

dependence of the viscosity and assumed constant Prandtl number and 

specific heat. They treated only the neutrally stable disturbances 

showing that the boundary layer becomes more stable (Goertler number 

increases) as Mach number increases. 

Kobayashi (1972,73,74) was the first to examine the effects of suc- 

tion on the stability characteristics of a laminar incompressible boun- 

dary layer along curved surfaces. Although his analysis excluded the 

5 
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effect of normal component of mean velocity due to boundary layer 

growth, it gave insight into the effect of the presence of this velocity 

component due to suction. Using homogeneous suctions Kobayashi found 

that the laminar boundary layer is stabilized (critical Goertler number 

increases). However, the changes in the critical Goertler number re- 

mains much less than the changes in the critical Reynolds number for 

the Tollmien-Schlichting instabilities due to homogeneous suction 

(Hughes and Reid, 1965). So, Goertler instability will probably pre- 

dominate in the laminar boundary layer along the concave wall with suc- 

tion. Floryan and Saric (1979) and Floryan (1980) included the normal 

component of the mean velocity in their analysis and examined the case 

of self similar suction and came to the same conclusion. 

DiPrima and Dunn (1956) examined the effect of cooling and heating 

on the stability characteristics of laminar liquid boundary layer over 

curved surface. Since their analysis was done for liquids, they neglec- 

ted the viscous dissipation and variations in density and came to a 

conclusion that heating or cooling has very slight influence on Goertler 

instability. For compressible boundary layer, Kobayashi and Kohama 

(1977) found that for isothermal walls the ratios of wall to freestream 

temperature has less effect on the critical value of Goertler number as 

Mach number is increased. 

In this article, a basic approximation to a compressible linear 

stability theory is developed for three-dimensional longitudinal type vortices 

in two-dimensional compressible boundary layers along curved surfaces. 

The effect of compressibility on the critical stability limit, growth 

rates, and amplitude ratios of the vortices is evaluated over a range 

of Mach numbers from 0 to 5. The effect of boundary layer growth is 



included in the analysis. The effect of wall cooling and suction on 

the development of Goertler velocities in a compressible boundary layer 

is examined. In Chapter II, a formulation of the stability problem is 

introduced. In Chapter III, the method of solution and numerical pro- 

cedures are outlined. A discussion of the numerical results is given 

in Chapter IV and conclusions are in Chapter V. 
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CHAPTER II 

PROBLEM FORMULATION 

The Spatial three-dimensional stability of laminar incom- 

pressible and compressible two-dimensional boundary layers along 

a slightly curved wall is considered. The wall curvature 

is in the direction of the flow and its variation is assumed to be 

weak to avoid a nonuniform Mach number distribution along the 

wall due to the presence of shock waves that might occur in the case 

of rapid changes. 

The flow field is governed by the Navier-Stokes, energy, 

continuity and state equations written in an orthogonal 

curvilinear coordinate system. The local curvature of the 

streamlines enters the field equations through the appropriate 

coordinate system. Following Floryan and Saric and Ragab and Nayfeh, 

a coordinate system (x, y, z) based on the streamlines and potential 

lines of the inviscid flow over a curved surface is used in this 

analysis. Here x and y are in the direction of stream lines and po- 

tential lines, respectively, and z is the corrdinate normal to the x- 

y plane. Figure 3 shows the direction of the development of 

Goertler vortices in this coordinate system. This coordinate 

system has the advantage of a body oriented coordinate 

system in the wall region and decays to a rectangular Cartesian 

coordinate system away from the wall. 

The compressible field equations written in this coordinate 

system are presented in Appendix A. The local curvature of the 

streamlines enters the field equations through the metric 

coefficients. They are determined from the definition of the 
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arc length to be h, h and 1 in the x, y and z directions,respectively. 

The field equations given in Appendix A are used to formulate the 

disturbance equations. 

We consider the basic state to be two-dimensional, viscous, 

compressible flow over a slightly curved surface. The field 

equations aremade dimension)ess using a reference length 

L” = (lg x*/K!9 

and LIZ as reference velocity and(o*~*~)~ as reference 

pressure, where * indicates a dimensional quantity, and v is 

the kinematic viscosity of the fluid. The thermodynamic and 

transport properties of the fluid are made dimensionless using 

their corresponding free stream values. With these definitions 

the characteristic Reynolds number becomes 

R = (u%L*/$) 

We define a small viscous parameter E , and a small curvature 

parameter k as 

6 = l/R, k =(L*K*)'/2 

where Ict is the curvature of the wall. The metric coefficient 

h is related to the curvature parameter k by 

k2 =-hy/h2 at y = 0 

(1) 

(2) 

(3) 

(4) 

2.1 The Mean Flow 

Van Dyke (1960,62) using a body oriented coordinate system, 

showed for incompressible and compressible flows that the leading 
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order approximation of the boundary layer equations is the familiar 

boundary layer equations on a flat plate. 

In terms of the small parameters c and k,.Floryan (1980) showed 

that for incompressible flows the leading order approximation of the 

boundary layer equations (terms of order co and k"), when tz and k are 

of the same order, is the conventional boundary layer equations over 

a flat plate. Modification of the boundary layer profiles due to the 

curvature comes mainly through the normal pressure gradient. This 

pressure gradient is O(k) and it will enter higher order boundary layer. 

Because the aim of this study is to provide a basic approximation 

for the stability of a compressible boundary layer over a curved sur- 

face, therefore the basic approximation for the mean flow is required. 

The compressible boundary layer flow over a flat plate is considered 

to provide a basic approximation for the stability of the compressible 

boundary layer over a curved surface. The mean flow profiles are cal- 

culated for an adiabatic or isothermal flat plate. In case of suction, 

a similar suction parameter y is defined as 

(P*v*)W 
Y= 

(p*U*LR 

and is introduced to the boundary layer equations (see Appendix B). 

Here w indicates Hall conditions, and R is given in Eq. (2). The 

fluId is considered to be a perfect gas with all the thermodynamic 

and transport properties function of temperature. The mean 

viscosity is related to mean temperature through Sutherland for- 

mula. The flow stagnation temperature is kept constant and equal 

to 310K for all Mach numbers under study- 

(5) 
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2.2 The Disturbance Flow 

A steady three-dimensional small disturbance is superposed on 

each mean-flow quantity in the following form 

u^GX,Y 94 = u(x,y) + UOLY~Z) 

v^(X,Yld = V(X,Y) + VOGYJ) 

c;(x,y,z) = 0 + WhYJ) 

&X,Y9Z) = P(X,Y) + P(x,YJ) 

ixX,Y sz) = O(X,Y) + 9 (XsY.4 

&LYJ) = ;(x,Y) + PbLYJ) 

G(X.Y,Z) = lm + g e(xsY94 

@a) 

(6b) 

(64 

(6d) 

(64 

(6f) 

(6d 

In the above equations the order of magnitude of the normal mean veloc- 

ify V is smaller than U by the Reynolds number R, and the disturbance 

quantities are made dimensionless using 

U = u*/& v = v*/RU,, w = w*/RUJ, 

P = p*/R2p*Uz2, 8 = e*/v, p = p*/;z (7) 

The order of magnitude of the disturbance quantities v and w differ 

from ,the disturbance U by the Reynolds number R. The need for differ- 

and Stuart ent disturbance velocity scaling was recogniied by DiPrima 

and observed by Bippes, Bippes and Goertler,and Wortmann 

their experiments. Floryan and Saric and Ragab and Nayfeh 

in 

used this 

type of scaling and as a result the normal velocity component of the 

mean flow affected the leading order stability analysis. With this 

scaling the disturbance motion varies in the 
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x coordinate according to a new scale. 

X = x*/RL* 

Boundary-layer theory combined with the assumed scales, gives the x vari- 

dtlbn-‘ of mean-flow quantities in terms of the new scale. 

Substituting Eq. (6) into the dimensionless field equations, sub- 

tracting the mean flow, linearizing the equations, and keeping the lead- 

ing order terms, that is terms O(l), the following disturbance equa- 

tions are obtained: 

x-momentum gJu)x - wzz + sy - (WY), + gyv 

- 
[ 

l(uux + vuy ) + ( puy)y 8 - iiuyey = 0 
cl2 1 

y-momentum ;(Vx+2UG2)u-cpyux- (c+l)Puyx-Pxuy 

+ % y 0 x - pvzz - (c+NlJv )+p YY Y 

(10) 

z-momentum pxuz+(c+l)pu,,+pyvz+(c+l)pvyz-Pz 

+ cci(ux+vy)ez-~.wx+(c+2hwzz-gwy, 
(11). 

+ hJy)y = 0 ’ 
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Continuity (;)J ;)yt( qzt*( F ox+7 oy- u%.-vY)e 

_ J- (uex+Vay) = 0 (12) 

cl2 

Enersy &G,u-2(y-l)M~uUyuy+;Oyv- -$(uox + WY' 
0 

t (y- 1)Mf$uy)2t~(~oy)y et! e,+ e,, 1 (13) 

By keeping the leading order terms in the disturbance equations, 

the parameters E and k appear only implicitly in the so called Goertler 

number G and consequently Eqs. (9) - (13) are configuration independent 

at this level of approximation. The parameters E and k will appear 

explicitly in a higher order stability analysis. The 'Goertler number 

G is defined by 

G = Rk (14) 

The other parameters.'that appear. in Eqs.(9)-- .(13) are the free stream 

Mach number M,,, Prandtl number P, and 6 = dp/&. The density disturbance 

is eliminated by using the equation of state: 
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Equations (9) - (13) constitute a system of homogeneous linear partial 

differential equations with variable coefficients. The type of distur- 

bance considered in this analysis is periodic in the z-coordinate, 

thus the dependence on z can be eliminated from the equations. The 

scale x may also be separated from the equations by considering the 

mean flow to be quasi parallel. Then the form of the disturbance and 

flow characteristics suggest the normal mode approach. The disturbance 

variables can be written as 

U = 6(y) cos (Bz) exp (Jadx) (15a) 

V = G(y) cos (Bz) exp (Iudx) (15b) 

W = 6(y) sin (Bz) exp (Jadx) (154 

P = i(y) cos (Bz) exp (Iudx) (15d) 

8 = 6(y) cos (Bz) exp (Judx) (154 

where 6 is the dimensionless wave number in z-coordinate, and u is the 

spatial growth rate. The variables i, e, G, ^p, and G should not be con- 

fused with the total flow variables defined in Eq. (6) which will not be 

referred to later on. 

Substituting Eq. (15) into Eqs. (9) - (13) we obtain 

x-momentum 
I: $u + ux) + ld32 1 ii + ($ - P,) Gy - uGyy + $Jy” 

, -[A+” tvuy)i(PJy)y ihJy~y ,= 0 
,+ x ,:- < 1 (16) 

I 



y-momentum ~(Vx+2UG2)-cu~y 6- 1 c (C+h+vx Gy 1 

- =QJv 
[ o2 

x+ VVy+U2G2)+ (c+ l)fiuxy+ cfiyUx 

+ (C+2)(~Vy)y+~xUy+u~U c$J, 

1 
(17) 

+ (c+2)iiVy sy = 0 

z-momentum B 
[ 

(c + 1 h + P x ;+Bpyc+(C?l)B,J~y+ 1 c (c+2)f32P 

+aUn @ w-(~y-~Wy-pWyy-Bi;+cez(ux 
3 

PA 
08) 

+ V,)8 = 0 

Continuity &J-$3,)&l, v^t~yt$~t1(2u~ 
02 Y 

,2v, 
020 x 0 y 

(19) 

- ux - v,-ou)e- e^ 
(32 Y=O 

Enerqy - 2(y- l)M~uUy;y+$ OyG- (20) 

+ (y- l)M2c(U 02 )2t$fi, ) - ao+& a^ 
Y r YY 0 r 1 =o 
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In the limiting case of M, = 0 the above equations reduce to the 

incompressible equations developed by Floryan and Saric, and reduce to the 

basic system of equations developed by Ragab and Nayfeh. The above 

equations also reduce to the compressible equations of Kobayashi and 

Kohama for the neutral stability case (a = 0) and when all normal velo- 

city and streamwise variations of the mean flow are disregarded. 

Eq. (16) - (20) are supplemented with the appropriate boundary 

conditions, which are 

ti = v^ = 9 = 0, and 

iy + Be^ =Oaty=O (21) 

ii,9,9,6 + Oas y -f m (22) 

The function B in the condition (21) depends on the thermal pro- 

perties of both the solid surface and the fluid, as well as the wave 

length of the disturbance. For an adiabatic surface the case where B + 

o(i, = 0 at y = 0 that is to consider "adiabatic disturbance") is con- 

sidered. However, for cases involving surface cooling the case where 

B-+"(g=Oaty = 0 ) is considered. The effect of using the thermal 

boundary condition sy(0) = 0 on the stability characteristics of the 

boundary layer over an adiabatic surface is discussed in section 4.3. 
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CHAPTER III 

COMPUTATIONAL AND NUMERICAL PROCEDURE 

Equations (16 - 22) constitute an eighth-order system of homage,- 

nous linear differential equations with homogeneous boundary conditions 

This forms an eigenvalue problem for the parameters 6, u, and G. 

Equations (16 - 22) are reduced to eight first-order equations in the 

form 

8 

(Zm)y - ,.,E1 amnZn = 0 m = 1, 2, . ..8 (23) 

9 = z3 = z5 = z7 = 0 at Y = 0,for isothermal wall (24) 

or i!l = z3 = z6 = z7 = 0 at Y = 0,for adiabatic wall (25). 

Zl, z3, z5, z7 + 0 asy+m (26) 

where Z's are defined as 

z, = G, z2 = 

= 6, zfj = gy’ z7 = ii, $3 = iy 

and a,, is a variable coefficient matrix, whose nonzero elements are 

al2 = 1 

51 = $ (ux + UU) t 8 

92 =1 v 
u 0 (-- Py) 

“23 ’ u =- 
IJo y 

(27) 

a25 = ‘F ’ L(uux 
C o2 + VUy’ + pu +fiu 

YY YY 3 



“31 =&3,-u 

a33 
=l@ 

0 Y 

A!+1 
a35 0 & + Vy) x + voy’ 

V 
a36 = 0 

2UG2 + 2q.1 
Y 

+ V, + $ ox - av 

- (c + 2)(- al + oxvy + F Qx + @xyu) 
3 

“42 = - up + p + s-5 ox 
x 0 I 

- 2(y - l)MzrVU, 
3 

1 
a43 = - 5 

[ 
ou + PO8 + vy + ;oy - (c+WyPy 

+ po 
YY I 

U2G2 
“45 = ye 

c+2 
- daUy 0 

+ (c + 2) 



a46 =(c+uu-2V, -20 +u +2v + I!!!! 
0 II OY ox x y op 

V CL- 
-iPy-p OY -2 - 3 

v2 + (c+o2)v 
py + cpJx 

+ (c + 2)p 
Y 

a47 = - 2BPy + ; [ BV - (c + 2,Ewy 1 
a4a = au 

‘61 = -$ ox 

a62 = 2(y - l)MzrUy 

a63 
=Lo 

1.10 Y 

“65 
= 82 - ;(fiOy)y t ; -$uox + WY' 

- h - 1)Mj$(Uy)2 
3 

a66 
= I+! _ u _ 

PO y 
ijo ) 

Y 

a7a = 1 

aa1 = 8$vx + 9 ox) 

“83 = a(; lJy +. 9 oy) 

B 
‘84= -p 

aa5 
,c+l 

.o 
v y - $ve, -+ UB,) 1 

c + 1 
aa6 = 0 8v 

"87 
“88 

I!- 



20 

The reduction of the governing equations to a system of eight first- 

order equations requires only the second derivatives of the basic-flow 

quantities. In the work of Kobayashi and Kohama the disturbance 

equations for neutral stability were reduced to three coupled equations, 

the first of second order in G,the second of fourth order in G,and the 

third of second order in 6,and then solved numerically by finite differ- 

ence. The coefficients in their eqtiations contain fourth-order deriva- 

tives of the basic flow, which requires a higher accuracy of the basic 

flow solution than the method used here. 

3.1 Eigenvalues and Eiqenvectors 

Outside the boundary layer, i.e. at yLye (e indicates the edge of 

the boundary layer), the coefficients in equations (23) become constant 

since U = lJ = 0 = 1, u = lJe = constant, V = Ve = constant, r = re = 

constant and the x and y derivatives of all mean-flow quantities are 

zero except V,. The nonzero elements of the constant coefficient matrix 
* 

amn are: 

* 
812 = 1 
* 

a21 = (J + B2 
* 

a22 = ve 
* 

a31 = '0 
* 

a35 =o 

ah = v, 
* 

a37 = -B 
* 

a41 = [2G* + V,, - oV,l 
* a4* - -(I 

at6 = (C + 2)(U + reVe2) - Vez 
* 

a47 = BVe 
* 

ab8 =-13 

a& = 1 
* 

a65 = B2 + reU 

a:, = reVe 

Ge = 1 
* 

aa4 = -6 

at5 = (C + 1) &j 
* 

at3 = -(a + 6:) a'86 = (c + 1) BVe 

* 
a45 = G2 + v,, - av, +r a:, = fi2 + u (C + 2)reVe:B2 f a) 

re 
a% = Ve 
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Equation (23) with the constant coefficient matrix acn has a solution 

that can be expressed in the form 

4n = ,I, Dmn Cn exp(Xny) m = 1,2,...,8, y=ye 
(28) 

where D,, is the characteristic eigenvector matrix, c,is arbitrary con- 
* 

stant vector,and Xn are the eigenvalues of the matrix a,,. They are: 

9 
= -fj 

x2 = x3 = +ve + rv,‘+ 4(a + 82)]“2, 

A&$ = +-reve + [rfvz +.4(are + s2) ]1/21 
(29) 

hj = x7 = ;ive + [V,2 + 4(a + B2)p2) 

‘8 = &rev,+ [r$/z+4(0re+B2)$/2j 

We consider the case in which hl, A2, X3 and h,, are negative real numbers 

whereas the other four are positive real numbers. Only negative signs 

satisfy the boundary conditions (26). 

It should be noted that the elgenvalues X2 and X, are repeated. 

Also in the special case when q = BVe four eigenvalues are repeated,i.e. 

11 = ,x2 = x3 = xq = -6 (30) 
hg = X6 = x7 =x0= f3 

Evaluation of the eigenvectors requires special care when the multipli- 

city of the roots is equal to or greater than two. Eigenvectors cor- 

responding to the eigenvalues (29) are glven in Appendix C and those cor- 

responding to the eigenvalues (30) are given in Appendix D.' Eigenvectors are 

'checked by reducing the constant coefficient matrix a* to a Jordan canon- 

ical form using the similarity transformation 

. 

(where D-l 
J = D’la*D (31) 

is the inverse of the eigenvector matrix D). 

When Xn are distinct (which is not the case here), the resulting matrix 
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3 is a diagonal matrix with the diagonal elements as eigenvalues. In 

case of repeated roots, elements of the super diagonals corresponding 

to the repeated roots are nonzeros. 

3.2 Boundary Conditions 

The asymptotic boundary condition (26) as y- demand that the con- 

stants c5 - c8 be zero in the solution (28). This can be expressed as 

8 
c 0,; Zm=O m= 5, 6, 7, 8 Y = Ye (32) 

n=l 

The boundary condition at the wall (24) or (25) can be written in the form 

8 
C e,,Z, = 0 m = l.i 2, 3, 4, y = 0 (33) 

n=l 

where the elements of the 4 x 8 matrix em, are all zeros except ell = 

e2 3 = e36 = es7 = 1 in case of adiabatic wall, and ell = e23 = e35 = 

h7 = 1 in case of isothermal wall. 

3.3 Numerical Procedures 

Equations (23) with boundary conditions (32) and (33) form a two 

point boundary value problem which is solved numerically. We assign values 

for two of the parameters 13, u and G, guess the third one, and use the 

boundary condition (32) to construct a linear combination of the general 

solution (28). A variable stepsize integrator, written by Scott and Watts 

(1977), based on the Runge Kutta-Fehlburg fifth.-order formulas, coupled 

.with orthonormalization is used to integrate equations (23) from y-= ye 

to the wall. At the,wall, the values of the independent solution vectors 

are linearly combined to satisfy all but one of the wall boundary conditions. 

The last wall boundary cond?tion can only be satisfied by this combined 

solution when the exact 
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eigenvalue has been found. A Newton-Raphson procedure is used to de- 

termine this eigenvalue. In the results presented here, a value is, 

always assigned to q to locate contours of constant growth rate 

use either 6 or G as an eigenvalue and determine it to O(10e4). A 

FORTRAN computer program for the stability analysis is giv,en in Appendix F. 

3.4 Adjoint Problem 

The system of equations adjoint to (23) are formed to check the 

eigenvalue. The adjoint system of equations can be written as 

(Zfgy +nfl anmZE = 0 ni = 1, 2, . ...8 
= (34) 

zs = 14 = zg = z#j = 0 at y = 0, for adiabatic wall (35) 

orZ$ 4 = z* = Z" = z* = 0 
6 8 at y = 0, for isothen;lal wall(36) 

Z" 2 9 q , zg , zi -+ 0 asy+m (37) 

Equations (34) - (37) are solved using the same procedures used to 

solve the regular equations (23) - (26). The eigenvectors of the 

adjoint problem are given in Appendix E. 

Eigenvalues calculated by Equations (23) and its adjoint (34) were 

checked, and found to agree to O(10e4), and both were found to be in- 

dependent of the value of ye. However, the value of ye used for the 

adjoint problem (34) to achieve the required accuracy was always higher 

than the value of ye used for the regular problem (23). It was also 

necessary to increase ye as Mach number increases. for example for the 

regular problem ye = 10, 12, 14, 16, 18 and 20 for M, = 0, 1, 2, 3, 4, 

and 5,respectively. The shape of the eigenfunctions was checked in 

order to avoid calculations of higher modes. 
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CHAPTER IV 

NUMERICAL RESULTS AND DISCUSSION 

The results of stability analysis are usually presented as curves 

of Goertler number versus wave number for constant growth rate. Neutral 

stability .curve (a = 0) separates the stable from unstable regions and 

increasing growth rate is akin to moving downstream with the vortices. 

Goertler number which represents viscous and curvature effects can be 

associated with a particular geometry and flow conditions. 

Effect of compressibility of the mean flow on Goertler instability 

is investigated for a range of Mach numbers from 0 to 5. These results 

are reported by El-Hady and Verma (1981a) and discussed in details in sec- 

tions 4.1 and 4.2. An attempt is made in section 4.1 to evaluate 

the effect of the mean density and mean viscosity On the stability charac- 

teristics of the boundary layer. The effect of using different thermal 

disturbance wall boundary conditions is examined in section 4.3. Effect 

of compressibility of the mean flow on the shape of the eigenfunctions 

is discussed in section 4.4, while its effects on the amplitude ratio 

of Goertler vortices is given in section 4.5. The effect of suction and 

cooling of the boundary layer on the development of these vortices is 

given in section 4.6 and 4.7,respectively. 

4.1 Effect of Compressibility on the Neutral Curve 

Figure 4 shows the neutral stability curves for different Mach num- 

bers. Instability of the boundary layer sets in at higher Goertler 

number as Mach number increases for all wavenumhers higher than 0.1. 

The critical value of G below which the flow is stable for any distur- 

bance wavenumber increases as Mach number increases. The stabilizing 
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effect of compressibility is qualitatively in agreement with the results 

of Kobayashi a,nd Kohama, but differs quantitatively due to the effect 

of the boundary layer growth that is included in the present analysis. 

It is worth noting that the incompressible limit, M, = 0, of the neutral 

stability curve agrees with the results of Floryan and Saric and Ragab 

and Nayfeh. 

The rate of heat transfer between the fluid and the wall and the 

subsequent development of a thermal boundary layer in addition to the 

velocity boundary layer, play an important role in a compressible flow. 

The mean-density and the mean-viscosity variations inside the boundary 

layer have different roles in shaping the stability characteristics of 

the flow. Figure 5 shows the variation of the critical Goertler number 

with tj.,, for a neutrally stable disturbance. The mean density is shown 

by curve 3 to locally destabilize the flow (curve 3 is calculated with 

constant mean viscosity). This effect can be predicted from Rayleigh 

criterion for inviscid flows with curved streamlines. His criterion 

for instability modified for a case with density variation is 

Py/F + (r*Um)y/( r*k) > 0 where r* is the radius of curvature of 3 

the surface. This criterion shows that positive density gradient seems 

to destabilize the boundary layer. A compressible mean flow along an 

adiabatic flat plate has a positive density gradient as shown in Fig. 6. 

The figure shows the variation of the mean density and mean viscosity in 

the boundary layer for different Mach numbers. The effect of the mean 

viscosity is shown by curve 2 in Fig. 5 (calculated with constant mean 

density). The mean viscosity has a stabilizing effect compared to the 

mean-density variation. The exclusion of the disturbance viscosity, 

shown by curve 4, has a profound destabilizing effect on the 

boundary layer. It is worth noting that the conditions of 
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curve 4 are similar to the assumptions taken by Aihara in his calcula- 

tions. In spite of that, curve 4 indicates that critical Goertler 

number is increasing as Mach number increases which is opposite to 

that predicted by Aihara. It may be concluded that the stabilizing 

influence of the mean viscosity is more dominant than the opposite 

influence of the mean density, resulting in a more stable boundary layer 

as Mach number increases. 

4.2 Growth Rates of the Goertler Vortices 

The calculation of the initial point of instability or the minimum 

critical Goertler number as a function of mean flow or disturbance 

parameters is not that useful quantity regarding transition dependence. 

The growth of the vortices and not its initial point of instability is 

the decisive factor. It is one of the goals of this investigation to 

study the effect of Mach number on the growth rates of Goertler vortices 

and to present design charts for a range of Mach numbers. 

Figures 7-12 show contours of constant growth rates plotted in the 

G-G plane for a range of Mach numbers from 0 to 5. The stable region 

below u = 0 curve is increasing as Mach number increases. The growth 

rate curves posses .minimum which indicate a trend to higher wavenumbers 

at higher growth rates. They form a locus of the maximum growth rates 

of different wavenumber components. As Mach number increases, 'Figs.7-I2 

indicate that maximum growth rates occur at lower wavenumbers and higher 

Goertler numbers. The locus of the maximum growth rates shifts up and 

to the left of the chart as Mach number increases. 

Figure 7 (M, = 0) and Fig. 10 (M, = 3) show constant growth rate 

curves calculated by excluding all terms due to the growth of the 
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boundary layer. These terms greatly influence the neutral stability 

curve specially at high Mach number. The effect of these terms dimin- 

ishes as the growth rate of the disturbance increases. 

For different Mach numbers, Fig.13 shows the variation of the 

vortex growth rate with the Goertler number. The values plotted in 

Fig. 13 correspond to the minimum of the growth rate curves. The figure 

indicates that the vortex becomes more sensitive (its growth rate) to 

changes in Goertler number as Mach number increases. The influence of 

compressibility on reducing the growth rates is very small at high 

Goertler numbers. Fig.13 also shows that compressibility has its 

maximum stabilizing influence when the vortex is weak. This conclusion 

is best illustrated by Fig. 14 where the parameter (Go, -Gc)/Goc is used 

as ordinate to indicate the stabilizing effect (increase of critical 

Goertler number) as Mach number increases compared with Got, the critical 

Goertler number at M, = 0 at the corresponding value of the growth rate o. 

It should be reminded that the present definition of Goertler num- 

ber is based on the reference length L* defined in Eq.(l),..whereas the 

original parameter identified by Goertler is based on the momentum thick- 

ness of the boundary layer. For the purpose of comparison with data re- 

ferenced to the displacement thickness 61 or the momentum thickness 62, 

.the following relations are used: 
2 

'n = 'L*n 

where the subscript L denotes data based on the reference length L*, 

and n denotes data based on the displacement thickness dl, or the momen- 

tum thickness 62 as reference length. The following table gives values 
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for the conversion factor An for different Mach numbers, and freestream 

stagnation temperature of 310'K, where A, = 6,/L. A2 = 62/L 

Moo O 1 2 3 4 5 

A1 J .720 2.129 3.365 5.48 8.504 12.393 

*2 0.663 0.656 0.643 0.641 0.645 0.646 

4.3 Effect of the Wall Boundary Condition of the Thermal Disturbance on 

The Stability Characteristics 

All the results presented so far are for an adiabatic wall. 

The wall boundary condition of the temperature disturbance requires a 

solution of the heat conduction equation very close to the surface. This 

leads to a boundary condition in the form of Eq. (Zl), that should be 

applied to a particular solid and a specified disturbance wavenumber. A 

detailed study of this boundary condition, with its two extreme cases 

of B + 0 (e,= 0, the wall is a perfect insulator), and B -+ 00 (0 = 0, 

the wall is a perfect conductor), leads to the conclusion that local 

stability near to the neutral region is dependent on the temperature 

fluctuation and the boundary condition imposed on it in a compressible 

boundary layer. At M, = 3, Fig.15a shows a comparison between neutral 

stability curves calculated using the wall condition Oy(0) = 0 and 

8(O) = 0. Apart from the differences in the value of the critical 

Goertler number, large discrepencies also appear for disturbances 

having low wavenumbers. The reason is that for low wavenurnber distur- 

bances the thermal fluctuation can penetrate large distances into the 

solid wall, and hence, the wall temperature cannot remain at the wall 
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temperature of the mean boundary layer. Figure 15b shows the effect of 

the thermal wall boundary condition on critical Goertler numbers of 

neutrally stable disturbances. The wall condition ej(0) = 0 shows 

always a locally stabilizing effect in a compressible boundary layer 

compared to the condition 6(O) = 0, regarding the neutral stability 

curve. Using the full thermal boundary condition, Eq. 21 , the actual 

neutral stability characteristics will lie, probably, somewhere between 

the curves presented in Figs. 15a and 15b. It is of interest to notice 

that the effect of the thermal boundary condition vanishes with the 

growth of the disturbance. Figure 15c shows that for M, = 3 which is 

typical for all the range of Mach numbers under investigation. 

4.4 Effect of Compressibility on Eigenfunctions 

Figures 16a-16d give a comparison of the shape of the eigenfunctions 

of u, ^v, G, and &respectively at different Mach numbers for a distur- 

bance having a wavebumber B = 0.3 and a growth rate u = 5. The cor- 

responding Goertler numbers are G = 13.4637, 12.9289, 12.0844, 11.5310, 

11.4786, and 11.7611 at M, = 1, 2, 3, 4, and 5, respectively. The 

values of 6, i, i, and ^e are normalized with the maximum of the u^ com- 

ponent at the corresponding k. Figure 16 shows that the location of 
A h A 
U max , v min , w max' and 'min move away from the wall as Mach number in- 

creases. The case of neutral stability (not shown) indicates a persis- 

tence of the disturbance outside the boundary layer that increases as 

llach number increases. At M,, = 3, Fig. 16a shows the shape of the 

eigenfunction 2 when terms due to boundary layer growth are neglected 

for a neutrally stable as well as a growing disturbance of o = 5. The 

effect of the boundary layer growth is to move the location of cm,, 

away from the wall leading to a slow decay of the disturbance outside 

the boundary layer. 
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In their study on the influence of suction or cooling on Goertler 

instability in compressible boundary layers, El-Hady and Vet-ma (1981b) 

showed that high suction or cooling rates bring the location of cmax 
h 
'min' 2( max' and imin nearer to the wall and result in stabilizing the 

boundary layer. The stabilizing mechanism here is different from that 

due to compressibility. The effect of suction and cooling js further 

discussed in sets. 4.6 & 4.7. 

4.5 Effect of Compressibility on the.-Alnplitude Ratio 

In this section, the growth of the measured by the amplitude 

ratio is considered since the growth rate alone is of little help 

in correlating transition. The logarithmic derivative of the amplitude 

of any disturbance quantity q in Eq. (15) is 

(Jn 41, = (J (38) 

In terms of G instead of x and introducing a for q 

In (a/so) = (4/3) JE (u/G) dG 
0 

where a, and Go are the amplitude and Goertler number at the beginning 

of the unstable region, and the integration is carried out along a 

particular growth path. 

In all experiments of fncompressiblia flows along concave surfaces, the 

growth path of the vortex was determined from the conservation of 

its dimensional wavelength X* that was observed in the flow direction. 

With lack of corresponding information for compressible flows and for 

comparison purposes, we assume the same criterion to hold. Since 

the dimensionless wavenumber B = 4*L* varies with x* for constant 

A*, the dimensionless wavelength 

A=” !i?2! (y/2 
Q) 
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is used instead. In the G-B plane, lines of A = const. are straight 

with slope 3/2. The locus of maximum growth rates closely coincide 

with these lines for the corresponding Mach number. We assume that a0 

in Eq139)is independent of A and G so that the dependence of a on A 

and G will be the same as that of a/a,. For different Mach numbers, 

a Seri’eS Of amplitude ratio curves are calculated by integrating Eq. (39) 

for constant A up to G = 20. Figure 17 shows a reduction in the maximum 

value of the amplitude ratio as well as a shift of the most unstable 

wavelength to higher value as Mach number increases. Fig. 17 shows 

also an inc,rease in the upper band of the disturbance wavelength that 

is always attenuated (cut off wavelength) as Mach number increases. 

It is a known fact that the stability theory cannot predict which 

disturbance wavelength will actually appear for a given surface con- 

figuration and flow conditions. For incompressible flows along con- 

cave surfaces, the wavelength of the distrubance appears to be deter- 

mined by the particular edge effects of the experimental apparatus 

(Tani and Sakagami , 1962) or by the oncoming disturbances (Bippes, 

7978). Based on incompressible experimental data (Tani and Sakagami 

1962; Tani, 1961), Floryan and Saric (1980) suggested that the wave- 

length selection mechanism (which decide the vortex growth path) may 

be based on the maximum growth rate of the disturbances.. However, 

the selection process may be very easily affected by the properties of 

the experimental apparatus that determine the entry location to the 

locus of the maximum growth rate. For different Mach numbers, we 

integrate Eq. (39) along the locus of the maximum growth rate. The results 

are shown in Fig. 18 as function of the Goertler number. The integra- 

tion is carried up to G = 20 for comparison purposes. The figure 
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shows a stabilizing effect as Mach number increases in terms of lower 

values of ln(a/a,). It is worth to notice that the values of ln(a/ao) 

at G = 20 for different Mach numbers following the path of maximum 

growth rates in Fig. 18 are almost indentical with the corresponding 

values at the most unstable wavelengths in Fig.17 . 

4.6 Effect of Suction on the Stability Characteristics 

Itwas shown by Goertler (1354) and H'bmmerlin (1955) that the curve 

of neutral stability depends insensibly upon the basic velocity profile 

in the laminar compressible boundary layer, when the changes in its 

momentum thickness is very small. However, Kahawita and Meroney (1977) 

showed that the inclusion of the normal velocity terms change the 

location of the neutral curve drastically. In section 4.2, the same 

conclusion was reached for the compressible boundary layer. Terms due 

to boundary layer growth have large effect near the neutral stability 

region specially at high Mach numbers. Therefore, it is expected that 

variation of the velocity profile due to suction (which does not affect 

the momentum thickness but changes the normal velocity term) may change 

the critical Goertler number. 

The effect of suction of the laminar boundary layer on Goertler 

instability is examined at M, = 0.8 and 3. The self similar suction 

parameter y defined in Eq. (5) is used for this purpose. Figures I9 and 

20 show the change in the location of tile neutral stability curves for 

different values of the suction parameter at M, = 0.8 and 3 respective- 

JY* It is observed that critical Goertler number first decreases with 

increasing suction (destabilizes the boundary layer). The boundary layer 

with a suction given by y = -0.45 and -1.3 is the most unstable at 

kY = 0.8 and 3, 
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respectively,as far as the critical Goertler number is concerned. By 

increasing the suction parameter above these levels for each Mach num- 

ber, the critical Goertler number increases. Fig. 21 shows how the . 

critical Goertler number changes with y for different Mach numbers. The 

level of suction that is required for a noticeable increase of the 

critical Goertler number increases as Mach number increases. This 

suction level is of higher order of magnitude than the suction required 

to stabilize Tollmien-Schlichting waves (see Saric and Nayfeh, 1977 for 

M, = 0). This leads to the conclusion that with these levels of suction, 

Tollmien-Schlichting waves are practically eliminated, and Goertler 

vortices may dominate the flow. 

At M, = 3, Figs. 10, 22, and 23 show waves of constant growth rates 

for y = 0, -1.2 and -1.6. By increasing suction, curves of small growth 

rates are compressed and moved to higher Goertler numbers. Curves of 

high growth rates are slightly affected by suction especially at high 

Mach numbers. 

To see the overall effect of suction, the growth of the vortices 

should be taken into account as they develop downstream. For Plm=3, 

Fig. 24 shows the amplitude ratio of the vortices as a function of 

Goertler number. Integration of the growth rates is performed using 

Eq. (39) to G = 20 for comparison purposes. It is clear that despite 

indications of the destabilizing effect of small suction for all Kach 

numbers regarding the critical Goertler number (see Fig. 20), the 

overall effect of suction is to stabilize the boundary layer as shown 

by Fig. 24 for "1, = 3 and by Floryan and Saric for r(r, = 0. Although 

a suction corresponding to y = -1.2 which is near to the critical value 

of the suction parameter at Mm = 3, locally destabilizes the boundary 

layer in terms of the critical Goertler number, it 
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reduces the amplitude ratio by about twenty-two percent thus sta- 

bilizing the boundary layer. 

At different Mach numbers, Fig. 25 displays the amplitude ratio 

of the vortices at G = 20 Over a range of the suction parameter y. The 

amplitude ratio of the vortices reduces as suction increases. With 

increasing Mach number, it becomes more difficult to stabilize the . 

boundary layer (reducing the amplitude ratio of the vortices) unless 

very high suction is used. Figure 25 shows that at t& = 5 the ampli- 

tude ratio is hardly influenced by suction in the range of O<y<2. 

At M,= 3, Fig. 26a-26d show a comparison of the shape of the 

eigenfunctions c, e, i, and g,respectively,for different values of 

the suction parameter y(normalized with the maximum of u component). 

These eigenfunctions are for a neutrally stable disturbance having a 

wave number 8 = 0.3. The corresponding Goertler numbers are G = 

1.1155, 1.7549, 3.5193 at y = -0.6, -1.6, -2.0,respectively. 

Figure 26 shows that the location of imax, imin, imax, and Gmin 

move towards the wall as suction increases. 

The normal velocity component,if directed away from the wall (the case 

of no suction), tends to destabilize the flow by encouraging penetration 

into the free stream where viscous dissipation is small. By increasing 

suction the thickness of the boundary layer decreases, and the distur- 

bance-,is confined to a region closer to the wall where dissipative 

action is strong, thereby increasing the stability of the flow. 

4.7 Effect 

At M, = 3, Fig. 27 shows how the location of the neutral curve varies 

with different cooling rates. The cooling parameter Ow/Gad is used for 

this purpose, where Q/Oad = 1 represents no cooling, and 'w/Oad < 1 re- 
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presents cooling. Small cooling has a destabilizing influence; however 

as cooling increases, the neutral curve moves upward indicating a sta- 

bilizing influence as far as the critical Goertler number is concerned. 

For wavenumbers approximately greater than 0.4, Fig. 27 shows that cool- 

ing always destabilizes the boundary layer (Goertler number decreases). 

It should be noted here that in section 4.3 we arrived at the con- 

clusion that neutral stability curve is dependent on the wall boundary 

condition of the thermal disturbance. Therefore, one may think that 

comparing neutral curves in case of cooling, where the wall is consi- 

dered completely conducting and the wall boundary condition of the ther- 

mal disturbance is 0 = 0, with that in case of no cooling, where the wall 

is considered ideally insulated and the wall boundary condition of the 

thermal disturbance is ey = 0, is somewhat misleading. The neutral sta- 

bility curve is calculated for a no cooling case with the thermal boun- 

dary condition 8 = 0 at y = 0, and is shown in Fig. 27 for comparison. 

Previous conclusions regarding effect of cooling on the critical Goertler 

number are still valid. 

At M, = 3, Fig. 28-30 show contours of constant growth rates for the 

cooling parameter G/oad = 0.75, 0.25, and 0.15,respectively. These 

figures display the influence of cooling on the vortices at different 

stages of their growth. Conclusions are summarized in Fig. 31, where the 

parameter (Gnc - Gc)/Gnc is used as ordinate to indicate the stabilizing 

or destabilizing effect (increase or decrease in critical Goertler num- 

ber) as cooling increases compared with Gnc, the critical Goertler num- 

ber at Gw/Oad = 1 for the corresponding values of the growth rate o. 

Fig. 31 shows that at M, = 3, weak vortices (small growth rates) are more 
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influenced by cooling. Cooling parameters l>Gw/oad>O.75 seems to de- 

stabilize the boundary layer. As cooling increases (Gw/@ad<G.75), Fig. 

31 shows a stabilizing influence of cooling on weak vortices; however, 

cooling has almost no influence on strong vortices (high growth rates). 

The above conclusions represent a local effect of cooling on the sta- 

bility limit as well as growth rates of the vortices. It is important 

to estimate the effect of cooling on the total growth of the vortices 

by calculating the amplitude ratios. Again, Eq. (39) is used to in- 

tegrate the growth rates along the locus of maximum growth to G = 20. 

At M, = 3, Fig. 32 shows a comparison of the amplitude ratios for 

different cooling parameters. The figure shows that stabilizing the 

boundary layer with respect to Goertler vortices can hardly be achieved by 

using very high cooling. At G = 20, the amplitude ratio of the vor- 

tices reduces by about 2 % at G/Oad = 0.25 and by 5.6 % at Q/Gad = 

0.15. The case of %/Oad = 0.75 shows a destabilizing effect at this 

Mach number. 

Fig. 33 shows the effect of cooling on the amplitude ratio of 

Goertler vortices for different Mach numbers. The figure clearly dem- 

onstrates that moderate cooling has almost no influence on the stabil- 

ity. However, high cooling influences low Mach numbers more than high 

Mach numbers. At @w/Gad = 0.25, the amplitude ratio is reduced by 13.4% at 

I&, = 0.8, by 2.8% at F%, = 3, and increased by 2.6% at Moo = 5. 

It is clear from Figs. 32 and 33 that the effect of moderate cool- 

ing is relatively small considering the strong temperature dependence 

of the viscosiqy and density and the corresponding large variation of 

both in the boundary layer. At M, = 3, Fig. 34 shows the distribu- 

tion of viscosity and density of the mean boundary layer flow for differ- 
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ent cooling parameters. In contrast to the insulated wall, where the 

density gradient is positive and the viscosity is large at the wall, 

the density profile in the cooling case has not only positive but neg- 

ative gradients. The viscosity profile has also two regions where 

P > 1 and P < 1. The negative density gradient may have a stabilizing 

effect according to the Rayleigh inviscid criterion, but the varia- 

tion of both density and viscosity in the cooling case are complica- 

ted enough to compare with the case of no cooling. 

The small effect of moderate cooling shown in Figs. 32 and 33 

is in marked contrast to the results for the Tollmien-Schlichting(TS) 

type instability which is extremely sensitive to wall temperature 

(see Fig. 7 in Mack, 1975). This is ultimately due to the presence 

of an inner critical layer in TS disturbances through which the eigen- 

function varies rapidly. Therefore, stability characteristics depend 

critically on the local properties of the mean-flow velocity, viscosity, 

and density distributions which are very sensitive to the wall tempera- 

ture. For Goertler instability, however, there is no inner critical 

layer and the centrifugal force is the controlling factor. This insta- 

bility depends only on the overall properties of the mean flow, such 

as the average velocity gradient, which are much less influenced by 

the wall temperature. 

At I&, - 3, Figs. 35a-35d give a.comparison of the shape of the 

eigenfunctions of C, G., i, and 6, respectively, for different values Of 

the parameter ew/oad* These eigenfunctions are for a neutrally stable 

disturbance with wavenumber B = 0.3. The corresponding Goertler num- 

bers are G = 1.463, 1.301, 1.205, and 1.213 for ew/@ad = 1, 0.75, 0.50 

and 0.25,respectively. The values of ti, G, Gj, and G are normalized 

with the maximum of u-component at the corresponding cooling 
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parameter. The figure shows that the location of imax, in,ax, and 

$min move towards the wall as cooling increases. The velocity compo. 

nest G shows a persistance outside the boundary layer. 

Comparing the shape of eigenfunctions due to cooling in Ftg. 35, 

with that due to suction in Fig. 25, shows that at I%, = 3, both high 

suction and high cooling stabilize the boundary layer by con- 

fining the disturbance to a highly dissipative region nearer to 

the wall. Suction may be more effective than cooling as it brings 

the disturbances more close to the wall. 
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CHAPTER V 

CONCLUSIONS 

A leading order approximation of a compressible stability theory 

of boundary-layer flow along a concave surface is presented and solved 

numerically. The compressible boundary layer equations along a flat 

plate are used to represent the mean flow. The results of the stability 

analysis are summarized as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

Instability of the boundary layer with respect to Goertler 

vortices sets in at higher Goertler number as Mach number 

increases. 

The local stability near to the neutral region is dependent on 

the wall boundary condition imposed on the temperature fluctu- 

ation in a compressible boundary layer. 

At high Mach number, the growth of the vortices is sensitive 

to small changes in Goertler number. 

Compressibility has its maximum influence on the vortex when 

it is weak. 

Terms due to boundary layer growth have large local effect 

near the neutral stability region specially at high Mach numbers. 

Compressibility reduces the maximum amplitude ratio by about 

20% as Mach number increases from 0 to 5. 

With increasing Mach number, the most unstable and cut off 

wavelengths shift to higher values. 

Suction may have a local destabilizing effect on the boundary 

layer as far as the critical Goertler number is concerned, if 

its level is below a critical value. This critical level of 
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suction, where local effect becomes stabilizing increases 

with Mach numbers. 

9. In Contrast with local suction effects, suction of the boun- 

dary layer has always a stabilizing influence on the total growth 

of Goertler vortices. The amplitude ratios of the vortices 

reduce with any level of suction used. 

10. Suction of the boundary layer is more effective in stabilizing 

the flow at low Mach numbers than at high Mach numbers. It 

becomes increasingly difficult as Mach number increases to 

reduce the amplitude ratios of the vortices unless very high 

levels of suction are used. 

11. Wall cooling, like suction, has a local destabilizing effect 

on the boundary layer as far as the critical Goertler number 

is concerned. 

12. At low Mach numbers, small cooling applied to the wall 

(&/Oadz 0.75) has no influence on the amplitude ratios 

of Goertler vortices. A noticeable reduction in the ampli- 

tude ratio starts with moderate cooling (&/oad 2 0.5). 

13. At high Mach numbers, it seems almost impossible to stabilize 

the boundary layer using practical rates of wall cooling. 

The amplitude ratios of.the vortices increase and the boun- 

dary layer becomes more unstable with small or moderate cooling. 

14. Goertler instability is more difficult to influence and control 

by suction or cooling than Tollmien- Schlitching instability. 

The rea.son is that Goertler instability which is referred to 

as centrifugal type instability, depends on the velocity differ- 

ence between the inner and outer region of the boundary layer 
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and not on the shape of the boundary layer profile as in the 

case of TOllmien-Schlitching instability. 
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Figure 1 Body oriented coordinate system. 
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APPENDIX A 

This appendix contains the dimensional field equations for com- 

pressible flow (see Hughes and Gaylord, 1964) written in the specified 

system of coordinates x, y, z. The velocities are given by u, v, w, 

and the metric coefficients are h, h, 1 in the x, y, z directions re- 

spectively. The Prandtl number I' and specific heat cp are taken con- 

stant in the stability analysis. The ratio c of the second to the first 

mean flow viscosity coefficients is defined as c = 2(e - 1)/3, e is 

taken equal to 0.8. 

x-momentum 

y-momentum 

-$(vh,-uhy) 1 = - kx 

t ;$Jv l v)x+L 

h2 I: 
W+Jx+-$ hy)jx 

t {uh[(;),+ (#y]ly+ Iph2(uZ+; wx))z 1 

'hxhy 
C 
%J t v v twv,tL(vhx-uhy) 

h2 1 = - ; Py 

1 
+ G'vh(ji- 'y'$ x y h )> + I~h2(~wy+vz)& 1 
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z-momentum Phxhy z 
C 

gw t 'wtw = 1 - P,+dW v& 

+ r 
h* 

fJ[;w,+v,)I, 

+ 12ph2wzIz 
3 

Enerqy = ; p,+; Py+wP* 

y )'+(;vy+-$ h )*tw; x 
3 

+ IJ +vz) 
2 

t 24 ux+-$ hy)tLh Vy++ hx)+(; 'Jx 

t+hy)wz+(;vy+Lh )w ] 
h 

h2 x z 3 

+ 3 
h2r 

(ia,), + (uoy)y+ h2h@,), 1 

Continuity (hdx + (hdy + h*(w), = 0 

where 

v.v=l 
h2 

(hu), + (hv)y + h'w, 
3 
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APPENDIX B 

The two-dimensional compressible boundary layer equations for 

zero pressure gradient together with the equation of state for a perfect 

gas are reduced to the following set of ordinary differential equations. 

(pUyly + gu - YU 
Y Y 

p 0 ) + go + 2p(uy)2 
ryY Y 

- yoy = 0 

(Bl) 

032) 

9Y 
- t pu = 0 (B3) 

U = 0, 9 =O,andO =Oor 
Y 

0 = 0, aty=O 

U +l, O+O aSJf-kYe 

by using the transformation 

y = OJpJ; x * ‘6* (P*/P*,) dy* 1 

(B4) 

(85) 

036) 

as well as a stream function to satisfy the continuity equations. Here 

o = (i* - iE)/(iie - ii), where i*, iz are the fluid enthalpy and stag- 

nation enthalpy respectively, and e denotes conditions at the edge of 

the boundary layer. Equations Bl-B5 are integrated numerically with 

the thermodynamic and transport properties of the perfect gas compu- 

ted at each integration step. The variation of perfect gas properties 

with temperature are taken from (Hilsenrath, Beckett, et al., 1955). 
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APPENDIX C 

This appendix contains the nonzero elements of eigenvector matrix 

D for the case when X2 and X6 are repeated. 

J = 1,5 

O3J = -B/AJ 

O4J = B[U + B2 + AJ(ve - xJ)l/x$ 

O7J = 1.0 

08J = hJ 

J = 2,6 

DgJ = -BhJ 

O7J = 1.0 

08J = XJ 

J = 3,7 

‘1J = B(v, - 2xJ)(1 - xJ/B~)/(~G~ t vxe)xJ 

O2J = lJDIJ 

O3J = 1.0 

D~J = (ve - 2AJ)/8 

O7J = l.o/xJ - xJ/fi - ~$J/B 

08J = 1 + XJD~J 

J = 4,8 

O4J = -XJ[O + B2 ’ xJ(ve - ~J)]D~J/B~ 

O5J = 1.0 

063 = J 

‘7J = -AJD~J/~ + b + xJv,)/fi 

08J = XJD7J 
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APPENDIX D 

This appendix contains the nonzero elements of the eigenvectors 

matrix D for the special case a = We where>tI, X2, X3, and Q are 

repeated. 

3 = 1,5 

D7J = -AJIB 

08~ = -(3 

J = 2,6 

01~ = 1 

O2J = xJ 

033 = 1 

C&J = 2 

063 = 2x3 

O7J = -AS/B 

08~ = -B 

J = 3,7 

03~ = 1 

D4J = 2 

'7J = -tl + AJ)/B 

O8J = 'AJ(xJ ' *I,'@ 

J = 4,8 

D3J = 1 

O4J = XJ(2XJ + 3)/p 

‘5J = 4/G2 

D6J = ~XJ/G~ 

O7J = -(I + xJ)/B D8J = -(I + xJj2/6 
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APPENDIX E 

This appendix contains the nonzero elements of the eigenvectors 

matrix for the 

J = 1,3 

OlJ = 

‘2J = 

033 = 

‘4J = 

O5J = 

D6J = 

073 = 

J = 3,7 

Adjoint Problem (34). 

‘sJ$(uVe - 2G2 - Vxe) - U(U 'B2 ) ' (0 ' B')D~J I 

8 

[$oV, - 2G2 - V,,) - $11 ' 
XJVe 'U ) 

- &II(ure +B~)D~ + (C + 210~ + 5 +$(G' + Vxe - V,U+ 

(C + 2)Ve(rU+B2 )I 

Te(ul- “exJ)[xJ(?! - $ - +.q - five2 - g + (c + 2) 

reVe(Ve8 - y1 

Ove 

01~ = +' +B2)(+ - 1.0) + (UXJ + 2G2 + Vxe)D4J 

O2J = 1.0 

O5J = b -Lc(reu'B2)D6J + [(' t Z)V,(reU tB2 ) t G2 t V,, t 

(C + *)+1D4~1 

D(jJ = lG2 t VW, - (C t 2)vp (r& t Af - r& -B2)p4~ 

( reve + AJ 2- rea -8’) 
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‘73 = 
B- A.+/, + AJ) 

xJ - 
D4J 

D8J = 34J 

J = 4,8 

‘5J = -(reVe + AJ) 

D6J = 1.0 

; 

! 

, 

- 



APPENDIX F 

FORTRAN PROGRAM FOR STABILITY-ANALYSIS. 

THIS PROGRAM CALLS SUBROUTE JOCK (LINE A 430) WHICH 

IS A VARIABLE STEP SIZE INTEGRATOR WRITTEN BY SCOTT AND WATTS (1977). 

PRCGRAH STATIC (INPUT,OUTPUT,TAPE S=INPUT,TAPf 6*CtJTPUT,TAPFlO) A 
REAL K(BrB)rKK(B,B)~KNTyKNTB~KT~~flACH,nU,nUP A : 
OIIIENSION 2(9plOl), A(4pP), ALPHA(4) B R(4,8), BETA(41, KARRAY(f)r A 3 

lC(8,8), CCC(8,81r FF(R,B), DD(R,B)r X1(8) A 4 
DIflENSION WORK(lOOOO), IUORK(150) A 5 
DIMENSION PV(8)r IK(301, CDL81 A 6 
COMMON /AAA,/ KNT,BET,VELF,GG,f"ACH,CC,PXIPY A 7 
COMMON /<BB8/ XSAVE,KLIINDEX A 8 
COHHON /C.CC/ V~101),VP~101~,VPP~1Ol~~DUX~lOl~~DUPX(10l~~DVX~lOl~~D A 9 

lTX(101),DT.PX(101),DtlUX~lOl~~DALFX(lOl1 A 10 
COIIMON ,/DOD/ Y~1~1~,Ut101~,UP~101~,UPP~lOl~~TtlOl~~TP~lOl~~TPP~lOl A 11 

1~,PRANDL~1011,MU~10l~tnUP~lOl~~ALFA~lOl~~ALFAP~lOl~ A 12 
COrMON /FFF/ IE,MCJD A 13 
COIIMON /EEEC ACC,FACT A 14 
NAMELIST /GoRTLR/ GG,KNT,l3FT,ACC,MOD,ITRJINDEXINITIILH~FACT A 15 

C***********t*************************~****************** A 16 
c A 17 
C MOD INDICATES DIFFERENT MODELS A 18 
(I f!OD=l WIfHOUT TERMS DUE TC ROUNDARY LAYER GROWTH A 19 
C roD=2 WITH TERMS DUE TO BOUNDARY LAYER GRUWTH A 20 
C ITR INDICATES ITERATION APPLIED TO A 21 
C ITP=l- GG. KY,T=CONSTANT A 22 
C ITR=Z KNT GG=CON-STANT A 23 
C INDEX INDICATES TYPE OF PROSLEM A 24 
C INDEX=1 HOMOGENE.OUS PROBLEM A 23 
c IN.DEX=Z ADJOINT HOtl. PROQLEM A 26 
c NOTE- I.NDEX=l,2 ARE VALID FOR MODa ONLY A 27 
c NIT=MAX. NO. OF ITERATION A 28 
C IN IS NO OF ITFRATIONS A 29 
C It!=0 CONVERGENCE A 30 
C IE=NO OF POINTS IN THE Y DIRECTION A 31 



C 

E 
C 
C 
C 

: 
C 
C 
\C 
C 
C 
,C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

E 
C 
.C 
C 
C 

Iibl NO CONVE.R.GENCE 
IL IS COUNTFR FOR THF NO OF POINTS ON PLOT 
ILt’ IS TIAX,. NO OF POINTS ON THE PLOT 
GG=GOERTLER NUWBFR 
KNT- WAVE NUMBER 
HACH- MACH NUKBER 
FU. = VISCOSITY 
XL(I )- EIGFNVA,LUF ARRAY 
C(B,9lmCONSTANT COEFFICIENT MATRIX 
K(.B,B)-EIGENVECTOR MATRIX 
.BET -GROWTH PATE 
VELF -NORflAL VELOCITY CCKPONENT ClUTSIDE THE B.L. 
cc -CONSTAtiT=O.4./3. 
bCC *ACCUPAC’Y 

‘,FACT -A PARAHETER WHICH DFTERHINES THF STFP SIZE 
IN NEVTON-RAPHSON ITERATIVE YETHCD.SEE SUBROUTINE 
ITRN. 

SUFFIX P DENDTES DERIVATIVES WITH RESPECT TO Y 
COORDINATE. 

SUFFIX X DENOTES DERIVATIVE WITH RESPECT TO X 
CC3RL’INATE. 

THUS UP AN@ UPP ARE FIRST AND SECOND DERIVATIVES 
YITH RESPECT TO Y AND DVX AND @TX ARF THF X 
DERIVATIVE OF .THE NORMAL COKPONENT OF VELOCITY 
AND TEMPERATURF 

FRANDL=PRANDTL NUMBER 
AL FA mDERIVATIVE OF flFAN VISCOSITY WITH WEAN 

fEf!PE,RATURE. 

C*S~*S***t+***S*t*S****~******************************* 
READ (10) EfA,MACHtIE 
READ 110) (Y(I),I=l,IE) 
READ (10) (U(I)rI=l,IE) 
READ (10) (UP(I),I=l,IE) 
READ 410) ‘(UPP(I),I=l,IE) 
READ (10) (T(II,I=l,IE) 

\o 
0 

A 32 
A 33 
A 34 
A 35 
A 36 
b 37 
A 38 
A 39 
A 40 
A 41 
4 42 
4 43 
A 44 
A 45 
A 46 
A 47 
b 4R 
A 49 
A 50 
A 51 
A 52 
4 53 
A 54 
A 55 
A 56 
A 57 
A 58 
A 59 
A 60 
A 61 
A 62 
A 63 
A 64 
A 65 
A 66 
A 67 



READ (10) (TP(I),I=lpIE) 
READ 110) (TPP(I),I=l,IE) 
READ (10) (PRANDLfIY~I-1,IE) 
READ (10) (HU(I),I=l,IF) 
READ 110) (MUP(I~~I=l,IE) 
READ (10) (ALFb(I),I=l,IE) 
READ (10) (ALFAP(I),I-~JIE) 
READ (10) (DUX(I)~I=lrIE) 
READ (10) (DUPX(I),Irl,IF) 
READ (10) (DTX(I)eI-l,IE) 
READ (101 (DTPX(I),I=l,IF) 
READ (10) (DHUX(I1,I=l,IF) 
READ (10) (DALFX(I),I=lrIF) 
READ (10) (V(Il,I~lrIE) 
READ (10) fVP(I),I=l,IE) 
READ (10) (VPP(I)rI=l,IE) 
READ (10) (DVX(Il,I=l~IE) 

CSt*S*S**S+S**S************************************** 
C 
C INPUT PARAMETERS 
C 
CS*****ttt+*****S******~***********~*~************* 

PX=O.O 
PYmO.0 
cc=-0.4/3.0 
CCl=CC+l. 
cc2=cc+2. 
PRlrPRANDLfl) 
VELF=V(l) 
IL=0 
READ (5,GORTLR) 

IF (EOF(5)) 45el 
1 CONTINUF 

WRITE (6rGORTLR) 

A 68 
A 69 
A 70 
A 71 
A 72 
A 73 
b 74 
A 75 
A 76 
A 77 
A 78 
A 79 
A 80 
A 81 
A 82 
A 83 
A 84 
A 85 
A 86 
A 87 
A 88 
A 89 
A 90 
A 91 
A 92 
A 93 
A 94 
A 95 
A 96 
A 97 
A 98 

4 99 
A 100 
A 101 



2 CONTINUE 
IF (ABS(BET).EO.ABS(KNT*VELF)) STOP 
IN=0 
WRITE (6,561 

3 CONTINUE 
Itl-0 

CS*****S*SS***S***S***************************** 
C PARALLEL AND NON PARALLEL @RANCHING 
c************+********************************** 

IF (HOD.NE.1) GO TC 5 
DO 4 I=l,IE 
V(I)-0.0 
VP(I)=O.O 
VPP(I)=O.O 
DVXtI)=O.O 
DUX(I)=O.O 
DUPX(Il-0.0 
DTX(I1mO.O 
DTPX(I)=O.O 
DMUX(I)-0.0 
DALFX(1)mO.O 

4 CONTINUE 
VEL'F-V(1) 

5 CONTINUE 
c*+**********+********************************* 
C CONSTANT COEFFICIENT FATRIX 
C********St**S********************************** 

DO 6 I-1,8 
DO 6 Jm1,8 

6 C(1,J)mO.O 
C(1,t)ml.O 
C(Z,l)-KNT**Z+BET 
C(ZrZ)=VELF 
C(3,1)=-BET 
C(3rS)=BET 
C(3rb)=VELF 
C(3r7)=-KbfT 

w 
t-4 

A 102 
A 103 
b 104 
A 105 
A 106 
A 107 
A 108 
A 109 
A 110 
A 111 
A 112 
A 113 
b 114 
A 115 
A 116 
b 117 
A 118 
A 119 
A 120 
A 121 
A 122 
A 123 
A 124 
A 125 
A 126 
A 127 
A 128 
4 129 
A 130 
A 131 
A 132 
4 133 
A 134 
A 135 
A 136 
A 137 
A 13@ 



C(4pl)m-Z.O*GG**Z+BET*VELF-DVX(1) 
C(4rZ)m-BET 
C(4r3)m-KNT**Z-PET 
C(4,5)mGG*t2+DVX(l)-VFLF*BET+CC2*VELF*(PRl*BFTtKNT**Z) 
C(4,b)mCC2*(9ET+PRl*VELF**2)-VFLF**2 
C14,7)=KNT*VELF 
C(Sr8)=-KNT 
C(5,b)ml.O 
C(be?i)mKNT**2*BET*PRl 
C(6,b)=PRl*VELF 
Cf7r8)=1.0 
Ct8,4)m-KNT 
C(8,5)=CCl*KNT*BET 
C(Brb)=CCl*KNT*VELF 
C(Br7)mKNT**Z+RET 
C(8,8)=VELF 
IF ~MOD.EO.l.A~D.EET.EQ.O.0) GO TO 20 
KNTB-(VELF**2+4.0*(BET+~NT**2))**0.5 
KTB-((PRANDL(l)*VELF)**Z+4.O*(BET*PRbNDL(l)+KNT**2))**.5 

Ct****SS*St**t*S****$**************************************** 
C EIGENVALUES 
CS**tS***SS*tS*****t**************************************** 

XL(l)--KNT 
XL(Z)=-0.5*(-VELF+KNTe) 
XL(3)=-0.5*(-VELF+CNTB) 
XL(I) m-O.S*(PRANDL(l)*(-VELF)+KTB) 
XL(5)-KNT 
XL(b)=0.5*(VELF+KNTB) 
XC(7)m0,5*(VELF+KNTB) 
XL(B)mO.5*(PRANDL(l)*VELF+KTB) 
IF (INDFX.E0.2) GO TO 13 
PS=Z.O*GG**Z+DVX(l) 
PPm(GG*KNT)**ttDVX(l)*KNT**2 

C 
DO 12 Jm1,8 
XLL=XL(J)*XL(J) 
GO TO (7,8r9~10,7,8,9rlO), J 

4 139 
4 140 
A 141 
A 142 
A 143 
A 144 
A 145 
A 146 
A 147 
A Y4.P 
A 149 
A 150 
A 151 
A 152 
A 153 
A 154 
A 155 
A 156 
A 157 
A 158 
A 159 
A 160 
A 161 
b 162 
A 163 
A 164 
6. 165 
A 166 
b 167 
A 168 
b 169 
A 170 
A 171 
b 172 
A 173 
A 174 
A 175 



C+t**S**S*tS********************************************** 
C EIGENVECTOR MATRIX ELEMENTS 
Ct*S***S*SS*t*S+*********~******************************** 
C 
7 K(1rJ)mO.O 

K(ZrJ)-0.0 
K(3,Jl m-KNT/XL(JI 
K(4rJ)=KNT*((BETtKNT**?~+XL(J~*~VELF-XL~J~~~/XLL 
K(SrJ)=O.O 
K(b,J)-0.0 
K('lrJ)=l.O 
K(BrJ)-XL(J) 
GO TO 11 

8 Y(l,J)-0.0 
K(2,J)mO.O 
K(3,J)m-KNT/XL(J) 
K(4,J)fO.O 
K(5,J)mO.O 
K(6rJ)mO.O 
K(7rJ)-1.0 
K(@rJ)=XL(J) 

GO TO 11 
9 Xl-(KNT*(VELF-2.0*XL(J))*(l.O-(XL(J)/KNT)**?))/(pS*XL~J)) 

K(l,J)=Xl 
K(ZrJ)=XL(JI*Xl 
K(3,J)=l.O 
K(4rJ)m(VELF-?.O*XL(J))/KNT 
K(S,J)-0.0 
R(6t~)=0.~ 
K(7rJl=l.O/XL(JI-XL(J)/KNT-BET*Xl/KNT 
K(P~J)=l.O+XL(J)*K(7,J) 
GO TO 11 

10 X4=BFTtKNT**ZtXL(J)*(VFLF-XL(J)) 
K(l,J)=O.O 
K(Z,J)=O.O 
K(3,J)=(XL(J)*(BETtXL(J)*VELF)-(PPIX4))/(XL(J)**Z-KNT**2) 

A 176 
A 177 
A 178 
A 179 
A 180 
A 181 
A 182 
A lR3 
A 184 
A 185 
A 186 
A 187 
A 188 
A 189 
A 190 
A 191 
A 192 
A 193 
A 194 
A 195 
A 196 
A 197 
A 198 
A 199 
A 200 
A 201 
A 202 
A 203 
A 204 
P 205 
A 206 
b 207 
A 208 
A 209 
A 210 
A 211 



K(4rJ) r-X4*XL(J)*K(3,J)/(KNT**7)+(0ET+XL(J~*VELF)*((CC+l.O)+X4/KNT 
1**23 

K(5rJ)=l.O 
K(6rJ)rXL(J) 
K(7rJ) =-XL(JI*K(3,J)/KNT+(BET+XLfJI*VELF)/KNT 
K(8,JI=XL(JI*K(7rJI 

11 CONTINUE 
12 CONTINUE 

GO TO 29 
C 
13 CONTINUE 
~SS***S**SSt***S****************************************** 
C AOJOINT PROBLEII EIGFN-VECTORS 
~S*SSSS***S**S****************************************~* 

BKN=BET+KNT**2 
BPKmBET*PRl+KNT**Z 
DO 19 J=l,f3 
GO TO ~14,15,16,17~14r15,16~17~~ J 

C 
14 CONTINUE 

K(2,J)-(KNT*(BET*VELF-2.O*GG**2-DVX(l))/XL(J)-BET**2/KNT)~(XL(J)*V 
lELF-BET) 

K(lrJ) =-~~KNT/XL~J~~*~BET*VELF-2.OtGG**2-DVX~1~~-BET*BKN/KNl+BKN*K 
1(2~3))/XLtJ) 

K(3,JI=BKN/KNT 
K(lrJ)=KNT/XL(J) 
K(6,J)=(XL(J)t(2.0*V~LF*BET/K~T-GG**2/KNT-~VX(l)/KNT)-KNT*VELF**2- 

lBET**2/KNTtCC2*PRl*VELF*(VELF*KNT-BET*XL(J)/K~T))/(PRl*(BET-VELF*X 
?L(J))) 

K(SrJ)=-(BPK*K(6,J)+CC2*BET*K~TtBET**2/KNT+(KNT~XL(J))*(-VELF*BETt 
1CC2*VELF*BPKtGE**2+DVXo)I/XL(J) 

K(7,J)=-VELF 
K(8,J)-1.0 
GO TO 16 

15 K(l,J)=- (VFLFtXL(J)I, 
K(2,J)=l.O 

A 212 
A 213 
A 214 
A 215 
b 216 
A 217 
A 218 
A 219 
b 220 
A 221 
A 222 
A 223 
4 224 
A 225 
A 226 
A 227 
A 228 
4 229 
A 230 
A 231 
A 232 
A 233 
A 234 
A 235 
A 236 
A 237 
A 238 
A 239 
A 240 
A 241 
4 242 
A 243 
A 244 
A 245 
A 247 
A 248 



K(3rJ)=O.O 4 249 
K(4,JI=O.O A 250 
K(5rJImO.O A 251 
K(6rJ)=O.O A 252 
K(7rJI=O.O A 253 
K(B,JI=O.O A 254 
GO TO 18 A 255 

C A 256 
16 BPR=(PRl*VELFtXL(J)l*XL~J~-BPK A 257 

K(4rJ) --(VELFt2.+XL~J~)/(2.O*GG**2tDVXo) A 758 
K(2,J)=l.O A 259 
K~lrJ~~~BKN*~1./XL~J~-I.O~t~BET*XL~J~t2.O*GG**2t~VX~l~~*K~4~J~~/XL A 260 

l(J) b 261 
K13,J)=(BKN/XL(J))*K(4,J) A 262 
K(6,JI-(GG**2+DVX(l)-CC2*VELF*BPR)*K(4,JI/BPR b 263 
K(5,J) --(BPK*K(6,J)t(CC2*VELF*BPKtGG**2t~VX(l)tCC2*XLfJ)*BFT~*K(4~ A 264 

lJ))/XL(J) A 265 
K(7,J)-(KNT-XL(J)*(VELF+XLo)/KNT)SK(4,J~ b 266 
K(B,J)-(XL(J)/KNT)*K(4,5) 4 267 
GO TO 18 A 268 

C A 269 
17 K(l,Jl-0.0 A 270 

K(2rJ)*O.O A 271 
K(3,J)rO.O A 272 
K(4rJ)rO.O A 273 
K(SrJ)=-(PRl*VELFtXL(J)I A 274 

-K(b,J)=l.O A 375 
K(7pJI=O.O b 276 
K(@,J)-0.0 A 277 

It! CONTINUE A 278 
19 CONTINUE A 279 
C A 280 

GO TO 29 A 381 
20 CONTINUE A 282 
C*S+**S***S*t*******************~************************ b 283 
C EIGENVECTORS FOR RFT=O E MOO-1 A 284 
C FOUR REPEATED EIGENVALUFS A 285 
CS****S***t+******************************************** A 286 



C 

21 

22 
C 

C 
23 

C 
24 

C 
25 

WRITE (6,100) XL~~XL~,XL~,XLC,XLS,XL~PXL~,XLB 
DO 21 J=lr4 
XL(J)=-KNT 
DO 22 J=5,B 
XL(J)=KNT 

DO 28 J=1,8 
GO TO (23,24,25.26r23,24,25126), J 

K(1, J)=O.O 
K(2r J)=O.O 
K(3,J)=l.O 
K(4,J)mO.O 
K(5,J)=O.O 
K(6,JlmO.O 
K(7rJ) =-XL(J)/KNT 
K(BrJ)=-KNT 
GO TO 27 

K(l,J)=l.O 
K(2rJ)=XL(J) 
K(3,J)ml.O 
1(4rJl=O.O 
K(5,J)=2.0 
K(6rJ)=Z,O*XL(J) 
K(7rJ)=-XL(J)/KNT 
K(BrJ)=-KNT 
GO TO 27 

K(1,J)mO.O 
K(P~J)=O.O 
K(3,J)=l.O 
K(4,J)=2.0 
K(5,JI=O.O 
K(6, JlmO.0 
K(7rJ) l -(l.O+XL(J))/KNT 
K(8,J) =-XL~J)~lXLlJ)+Z.O)/KNl 

A 287 
4. 286 
A 289 
A 290 
A 291 
A 292 
A 293 
A 294 
b 295 
A 296 
b 297 
b 298 
A 299 
b 300 
A 301 
A 302 
A 303 
A 304 
b 305 
b 306 
A 307 
A 308 
4 309 
A 310 
A 311 
A 312 
A 313 
A 314 
b 315 
A 316 
A 317 
A 318 
4 319 
A 320 
b 321 
b 322 
A 323 



C 
26 

27 
28 
29 

GO TO 27 

Kfl,J)=O.O 
K(2rJ)-0.0 
K(3rJ1=le0 
K(4~J)=Xl(J)*:('2.0*XL(J)t3.O)/KNT**2 
K(5,J)=4.O/GG**2 
K(brJ)=4,0*XL(J)/GG**2 
K(7,J) --(l.OtXL(J))/KNT 
K(B,J)=- (l.O+XL(J))**2/KhT 
CONTINUE 
CONTINUE 
CONTINUE 
DO 30 L=l,B 
DO 30 I=lrB 
KK(IsLl*K(T,L) 
URITE (6,100) ((K(I,L),L-l,B),I=l,B) 
CALL fIATINV (B,B,K,O,CD,C,DETR,CS1PVIIK) 
WRXTE (6,203) DETR 
WRITE(6,lOO) ((K(I1L),L=l,8),1=1,8) 
KbRRAY(l)-20 
KARRAY(2)-8 
KARRAY(31=8 
KARRAY(4)=8 
KARRAY(S)=B 
KARRAY(b)=B 
KARRAY(7)=8 
CALL mATOPS tKAPRAY,K,C,FF) 
CALL HATOPS (K~RPAYIKK,K,DD) 
CALL HATOPS (KARRAY,FF,KK,CCC) 
WRITE (6,100) ((C(I,L),L=l,B),I=l,B) 
WRITE (6,100) ~(DD~I,L)~L=1~8)~1=118) 
WRITE (6,100) ((FF(I,L),L-l,B),I=l,B) 

c ELEMENTS OF INVERTED MATRIX 
C+**S*t****+t****tS***~**************************** 

A 324 
A 325 
b 326 
A 327 
A 328 
4 329 
A 330 
4 331 
A 332 
b 333 
A 334 
A 335 
A 336 
b 337 
A 338 
A 339 
b 340 
A 341 
A 342 
A 343 
A 344 
A 345 
A 346 
A 347 
A 34B 
b 349 
A 350 
A 351 
4 352 
A 353 
A 354 
A 355 
b 356 
A 357 
A 358 
A 359 



A(lnlI=K(S,l) 
A(1,2)=K(5r2) 
A(lp3)=K(5,3) 
A(lr4)=K(5,4) 
b(l,S)=K(5,5) 
A(ls6)=K(5,6) 
A(ls7)=K(5,7) 
A(l,ft)=K(5,8) 
A(2,l)=K(6rl) 
A(2,2)=K(Cp21 
A(2r3)=K(6,3) 
A(2,4)=K(6r4) 
bf2,5)=K(6r5) 
A(2,6l=K(6,61 
A(2r7)=K(br71 
A(2,8)=K(6,8) 
A(3rl)=K(7,1) 
A(3,2)=K(fr2) 
A(3,3)=K(tr31 
A(3,4)=K(trb) 
A(3r5)=K(7,5) 
A(3,6)=K(fr6) 
A(3rl)=K(7,7) 
A(3,B)=K(f,Bl 
A(4,1I=K(B,l) 
A(4rZ)=K(BrZ) 
A(4,3)=K(Br3) 
A(4r4I=K(B,4) 
A(4~5)=K(8,5) 
A(4r6)=K(B,61 
A(4,7)=K(Bp7) 
A(4,B)=K(BrB) 
CO 31 1=1,4 
00 31 J=l,B 

31 BtI~J)=O.O 
IF (INOFX.E0.2) GO TO 32 

A 360 
b 361 
A 362 
b 363 
b 364 
A 365 
4 366 
A 367 
b 368 
4 369 
b 370 
A 371 
A 372 
A 373 
b 374 
b 375 
b 376 
b 377 
A 378 
A 379 
b 380 
A 381 
A 382 
b 363 
4 384 
A 385 
b 386 
4 387 
A 388 
A 389 
A 390 
A 391 
4 392 
A 393 
A 394 
A 395 



8 ~S*S***~**SSt*****tS******************************** A 396 
C OUTER BOUNDARY CONDITION FCR REGULAR PROBLEM b 397 
~SS*S****+******S*******~~************************** A 398 

B(l,l)=l.O A 399 
B(2r3)=1.0 A 400 
B(3r5)=1.0 A 401 
B(4p7)ml.O A 402 
GO TO 33 4 403 

32 CONTINUF A 404 
~*S*StS****+*******t*******************~********** A 405 
C OUTER BOUNDARY CONDITION FOR ADJOINT PROBLEtI A 406 
C*S**tS*tSS*************************************** A 407 

B(1,t)ml.O A 408 
8(2*4)=1.0 A 409 
B(3rS)ml.O A 410 
8(4rB)=l.O b 411 

33 CONTINUE A 412 
00 34 I=lr4 A 413 

bLPHA(I)=O.O A 414 
34 BETA(I)=0.0 A 415 
C*S*S**S*tS*S**************************************** b 416 
C PARAflETERS FOR JOCK A 417 
~S**t**S*SSSS******S********************************** A 418 

NY=IE A 419 
IFLAG-O A 420 
bE=ACC A 421 
RE=ACC A 422 
IWORK( A 423 
IUORK(ll)=l A 424 
DO 35 I=ltlO A 425 

35 UORK(I)=Y(9*1*11 A 426 
XSAVE=O.O b 427 
KL=l A 428 

C A 429 
CALL JOCK ~Z,B,B,Y,NY,A,4,ALPHA,4,9r4,8ETA,4101RF,AE~IFLbG~UORK~lO A 430 

10001 IUORK, 150~0) b 431 



36 

37 

38 
39 

40 
41 

42 

43 
C 
C 
C 
C 

IF (fNOEX.EQ.2) GO TO 36 
b!NV=IUORK(l) 
MNW-IUORKIE) 
40=2(2rNY) 
DA=‘t(?rNY 1 /AD 
GO 10 37 
CONTINUE 
tlNV=IYORK~ll 
FNW-IUORK(2) 
bD=Zfl~NY) 
DA=Z(B~NY)/AD 
CONTINUE 
IF tITR.NE.l) GO TO 38 
CALL ITRN (GG,KNTtDA, IN,IW,ITP,IFLAG,?'NVI~NV) 
GO TO 39 
CALL ITRN (KNT,GG,DA~IN,It".,ITR~IFLbG~~NV,nNW) 
CONTINUE 
IF (-IN.EO,NIT) GO TO 60 
IF (IM.EQ.1) GO TO 3 
IF (INDEX.EC.2) GO TC 40 
NN-2 
GO TO 41 
NN-1 
CONTINUE 
DO 42 J=l,NY 
00 42 L=l,B 
Z(L~J)=Z(L~J)/Z(NN,NY) 
URITE (6153) 
DO 43 J=lrNY,S 
PRINT 589 Y(J),(Z(L,J)rL=l,B) 
WRITE(6r78) 
URITF f6~100~~~KK~I~L~~L=1~B~~~=l~B~ 
URITE~6rBl) 
URIfE(6,100)((CCC(I,L)~L=l~B~~I=l~B) 
WRITE (6,591 
WRITE (6,541 (XLfI),I=l,B) 
PRINT 55, IN 

A 432 
A 433 
b 434 
A 435 
A 43b 
A 437 
A 43F' 
A 439 
A 440 
A 441 
4 442 
4 443 
A 444 
A 445 
b 446 
b 447 
A 448 
E 449 
A 450 
A 451 
A 452 
A 453 
A 454 
A 455 
A 456 
A 457 
b 458 
A 459 
1 460 
A 461 
A 462 
A 463 
A 464 
b 465 
4 466 
A 467 
4 468 



C 

C 

44 
45 

46 

47 

48 

49 

50 
31 
52 

C 
53 
54 
55 

NUMORT=IUORK(l) 
PRINT 579 KNTIGG,BET, 
:;I;; ;t,lOO) 211,NY) 

STOP 
CONTINUE 
CONTINUE 
IF (0.2.LT.KYT.AND.0.5.GE.KNT) GO TO 46 
IF (KNT.LE.0.2) GO TO 47 
IF fYNT.GF.l.0) GO TO 48 
IF ~O.5.LT.KNT.4ND.1.0.GT.KNT) GO TO 49 
KNT=KNT-0.050 
GG-GG-0.20 
GO TO 52 
KNf=KNf-0.02 
GG=GC*O.l 
GO TO 52 
KNT=KNT-0.20 
GG=GG-0.3 
GO TO 52 
IF (BET.LE.2.0) GO TO 50 
KNT-KNT-0.05 
GO TO 51 
KNT=KNT-0.05 
66-66-0.3 
CONTINUE 
IL=IL+l 
IF (IL.GE.ILM) STOP 
GO TO 2 
STOP 

FORMAT (/I,lSHEIGEN FUNCTIONSI//) 
FORMAT (BXpBF15.6) 
FORHAT (//rlOX,17HNO @F ITERATIONS=~I2~1/) 

A 469 
A 470 
A 471 
A 472 
A 473 
A 474 
4 475 
A 476 
A 477 
A 478 
b 479 
b 480 
b 481 
b 482 
A 4B3 
A 484 
A 485 
A 486 
4 4B7 
4 468 
A 489 
A 490 
A 491 
b 492 
A 493 
A 494 
A 495 
A 496 
A 497 
A 498 
A 499 
A 500 
A 501 
A 502 
A 503 



56 FORHAT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A 504 
~~X~~HIFL~GSBX,~HMNV~FX~~HMNU~/) A 505 

57 FORMAT (lOXp4HKNT=,F10.6rSXI3HGG =~F~O.~~~XJ~H@ET=~F~O.~~/) A 506 
58 FORMAT (F5.1,BE14.5) A 507 
59 FORMAT (//,lH ,BX,lZHEIGEN VALUES//) b 508 

END A 5090 
SUBROUTINE ITRN (X1,X2,Db,IN,IC,ITR,IFLAG~MNV~MNU) B 1 

C**S*S****SSS**S************************************************** B 2 
C ITERATION BY NEUOTON RAPHSON METHOD B 3 
C ACC IS THE ACCURACY B 4 
C ITR DEPENDING ON THE VbLUF OF ITR ITERATION IS PERFORHED ON B 5 
C KN? OR 6. X2 REMAINS CONSTbNT THROUGHOUT THE ITERATION. E 6 
C AL-DEL/Xl IS THE PARAMETER WHICH IS CHECKED FOR ACCURACY B 7 
~SSt****S*tSt***S************************************************** B 8 

COMHON /EEE/ ACCIFACT B 9 
IF (IN.GE.l) GO TO 1 B 10 
DAb-DA B 11 
DEL=0,005*Xl B 12 
Xl=Xl+DEL B 13 
IN-IN+1 B 14 
It!=1 a 15 
RETURN B 16 

1 SLOPE=(DA-DAb)/DEL B 17 
DEL--DA/SLOPE B l@ 
AL=DELlXl B 19 
URITE (6~6) IN,Db,Xl,X2,SLOPEpDEL,IFLAG,nNV,nNW e 20 
IF tABS(AL).LE.ACC) G!l TO 4 B 21 

2 IF (ABS(DEt1.LE.(FbCT*Xl11 GO TO 3 B 22 
DEL=DEL*O.7 R 23 
GO TO 2 B 24 

3 CONTINUE B 25 
GO TO 5 B 26 

4 In-0 6 27 
RETURN B 28 

5 CONTINUE B 29 
DAA-DA B 30 

E 



Xl=Xl+DEL 
IN-IN+1 
h-1 
RETURN 

C 
6 FORMAT fBX,I3,2X,E15. 6,4X,F8.5,4X,F8.5,4X~E15.6~4X~F10.5~4X~14~BX~ 

114,8X,14) 
END 
SUBROUTINE FMAT fX,S,SP,IGOFX,E,EP) 
PEAL KNT,MACH,MU,MUP 
DIMENSION S(l), SP(l), E(l), EP(11 
COHMON IAAA/ KNTpBET,VELF,GG,MACHICC,PX,PY 
COflflON /BBB/ XSAVE,KL,INDEX 

CtSSt**tSS********************************************************* 
C EIGHT FIRST ORDER EQUATIONS FOP REGULAR AND bOJOINT PROBLFM 
C AND THEIR COEFFICIFNTS 
C+**S*SS*SS********************************************************* 

CCl=CC+l.O 
CC2=CC+2.0 
GbMm1.4 
EC- (GAM-l.O)*MbCH**t 
IF (XSAVE.EO.X) GO TO 1 
IF (XSAVE.LT.X) KL=l 
XSIVE-X 
CALL PROF ~X,U,UP,UPP~T,TP,TPP,PR4NDL~MU~~UP16LFA,bLFbP~DUX~DTX~DM 

~UXIDALFX,V,VP,DVX,VPP,DUPX,DTPX,KL) 
PR-PRANOL 
TPTX=TP*VtDTX*U 
A44P=4.0*TP*TPTX/T**3-2.O*~TPP*VtDTPX*UtTP*VPtDTX*UP~/T**2~TP*~DUX 

1+VP)/T**2+(DUPXtVPP)/T+UP*BET/T-U*BET*TP/T**2 
C IN ABOVE LINE TERM -U*TP/T**2 WAS DELETED AT THE END 
C 

A21=KNT**2+(BET*UtDUX)/~T*MU~ 
A22=fV/T-MUP)/W 
A23.=UP/(MU*T) 
A24mn.O 

x 
0 
B 

ii 
B 
0 
C 
C 
C 
C 
C 
C 
C 
C 

z 
C 
C 
C 
C 
C 

E 
C 
C 
C 
C 
C 

s 
C 
C 
C 
C 

31 
32 
33 
34 
35 
36 
37 
3B- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

:3 
27 
2B 



A25=- ((U*DUXtV*UP)/T**2tALFA*UPPtbLFbP*UP)/nU 
A26=-ALFA*UP/MU 
A27=0.0 
428-0.0 

A31 l -(BET-DTX/T) 
A32=0.0 
A33=TP/T 
A34=0.‘0 
A35=U*BET/Tt~DUXtVP)/T-2.O*TPTX/T**2 
b36=V/T 
b37=-KNT 
b3BmO.O 

C 
A41 =-DVX/T-2.O*U*GG**2/T-~DTX/T)*~V/T-CC2*~UP~tBET*~V/T-2.O*~UP~tH 

lU*CC2+~TP*~DTX/T-BET~/TtPR*V*~DTX/T-EC*PX~/~~U*T~tDTPX/T~TP*DTX/T* 
2*21 

A45=~V/T-CC2*MUP~*~2.O*TPTX/T**2-~DUXtVP~/T-U*BET/T~tHU*CC2*~~PR*V 
l/~MU*T~~*~U*BET/T+~U*KNT**2/PR-TPTX/T**2-EC*bLFb*UP**2-TP*bLFAP/PR 
2-ALFA*fPP/PR~-~TP/T~*~2.O*TPTX/T**2-~DUXtVP~/T~U*BET/T~tb44P~tALFA 
3*~CCl*DUPX+CC2*VPP+BET*UP~t~U*DV%tV*VPt~U*GG~**2~/~1**2~tDALFX*UPt 
4ALFAP*(CC*DL’XtCC2*VP) 

C IF! THE ABOVE LINE U*GG**Z WAS HCDIFIED AS (U*GG)**2 
C 
C 

b48=-KNT*PU 
446=-V*~V/T-CC2*MUP~/TtMU*CC2*~TP*V/T**2-2~O*TPTX/T**2t~DUXtVP~/T+ 

1U*BET/TtPR*V*(V/T-~UP/PR-dLFA*fP/PP)/o*HU~tVP/T~V*TP/T**2~tALFA*~ 
2CC*DUX+CC2*VP 1 

A47=KNT*V/T-2.C*KNT*MUP-Mll*CC?*KKT*TP/T 
442=CCl*MU*BETtDMUXt~U*CC2*~DTX/T~@ET~2.O*PR*V*EC*UP/T~ 
A43=-U*BET/T-~U*KNT**2-VP/T-(TP/T-~TP/T~*~V/T~CC2*~UP~t~U*CC2*~PR*V*~TP/ 

c 

l;;~C;P;1/(MU*T)tTPPIT) 
= . 

bbl=PR*(DTX/T-EC*PX)/HU 
A62= -t.O*PR*EC*UP 

C 29 
c 30 
c 31 
C 32 
c 33 
c 34 
c 35 
C 36 
c 37 
c 3P 
f 39 
c 40 
c 41 

C 42 
c 43 
c 44 
c 45 
C 46 
c 47 
C 48 
c 49 
c 50 
c 51 
C 52 
c 53 
c 54 
c 55 
c 56 
c 57 
C 58 
c 59 
C 60 
C 61 
C 62 
C 63 
C 64 
c 65 



c 66 
C 67 
c 68 
C 69 
c 70 
c 71 
C 72 
c 73 
c 74 
c 75 
c 76 
c 77 
C 78 
c 79 
C BO 
c 81 
C 82 
C 83 
C 84 
c 85 
c 86 
C 87 
C 88 
C 89 
c 90 

c 91 
C 92 
c 93 
c 94 
c 95 
C 96 
c 97 
c 90 
c 99 
c 100 



2 CONTINUE c 101 
SP~l~=-A21*S~2~-A31*S~3~-A4l*S~4~-b6l*S~6~-ABl*S~B~ c 102 
SP(2)=-S~1)-422*S(?)-A32*S(3)-b42*S(4)-A62*S~6~-bB2*S~B~ c 103 
SP(3)=-b23*S(2)-b33*5(3)-b43*S(4)-A63*S(6)-483*S~B) c 104 
SP(4)=-A24*S(2)-434*f(3)-b44*S(4)-A64*S(6)-AB4*S(@) c 105 
SP(5)=-425*S(2)-435*5(3)-b45*S~4)-A65*S~6~~AB5*S~B~ C 106 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c 107 
SP(7)=-A27*S(2)-b37*5(3)-A47*S~4)-A6ttS(6~~AB7*S~B~ C 108 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c 109 
RETURN c 110 

C c-111 
END c 112- 
SUBROUTINE GiEC Or,G) 0 1 
DIMENSION G(B) D 2 
RETURN D 3 
END cl 4- 
SUBROUTINE PROF (YARC,SU,SUP,SUPP,STISTP~STPP,SPPAND,S~U~SHUP~SALF E 1 

~A,SALFP,SUX,STX,S~UX,SALFX,SVISVP,SVI,SVPP~SUPX~STPX~KL) E 2 
REAL INTER,f"U,PUP E 3 
CORMON /DOD/ Y~101~,u~101~,UP~101~,UPP~lOl~~T~lOl~~TP~lOl~~TPP~lOl E 4 

1~,PRANOL~lOl~,MU~10l~lMUP~lOl~~ALFA~lOl~~bLFbP~lOl~ E 5 
COMflON /FFF/ IE,tlOD E 6 
COMMON /CCC/ V1101),VP~101~~VPPllOl~,DUX~lOl~~DUPX~lOl~~DVX~lOl~~D F 7 

1TX(101),DTPX(101),DMUX(lOl~~@ALFXO E 8 
~t*SS**SS*S*S**SS**t********************************************** E 9 
C SUBROUTINE TO CbLCULATE VALUES CF U~WUIT ETC AND THEIR E 10 
C DERIVATIVES AT A PARTICULAR Y LOCATION BY INTERPOLATION E 11 
~**S******S***S**St************************************************ E 12 

DO 1 J=KL,IE E 13 
I=J E 14 
IF (YARG.GT.Y(J)) GO TO 2 E 15 
IF (YARG.EO.Y(JI) GO TO 3 E 16 

1 CONTINUE E 17 
2 EIN=I-3 E 18 

IF (I.LE.3) MIND1 E 19 
IF (I.GE.(IE-2)) MIN=TF-6 E 20 
SlJ=~NTER~Y,U,YARG,6,i"IN1 E 21 
SUP=INTER(Y~UP~YARG~6~~IN~ E 22 
SUPP=INTER1Y,UPP,YARG,6,YIN) E 23 



ST=INTER~Y,T,YARG,b,~IN~ 
STP=INTER(Y,TP,YARG,6,MIN) 
STPP=TNTfR(Y,TPP,YARC,6,MIN) 
SPRAND-INTER(YIPRANDL,YAPG,~,~TN) 
SMU=INTER(Y,MU~YA~G,6~f"IN~ 
SWP-INTER(YJMUP,YARG~~~~IN) 
SALFA=INTFR(Y,ALFA,YIRC,b,MIN) 
SALFP=INTER(Y,ALFAP,YARG~6~flIN~ 
IF (MOD.EO.1) GO TO 4 
SUX=INTER(Y,DUX,YAPG~6~~IN) 
SV=INTER(Y,V,YARGp6,f”IN) 
SVX-INTER (Y,DVX,YARG,b,MIN) 
SVP-INTER(YJVP,YARG,~~MIN) 
SVPP=INTER(Y,VPP,YARG~6~MIKl 
SUPX=INTER(Y,DUPX,YARG,6,MIN) 
STX=INTER(Y,DTX,YARG,61MZN) 
SMUX=INTER(Y,DMUX,YARG~6~P'IN) 
SALFX=INTER(Y~@ALFX,YARGp6~!!Ihl 
STPX=INTER(YtDTPX,YARG~6~MINl 
KL=I 
RETURN 

3 SU=U(I) 
SUP=UP(I) 
SUPP-UPP(I) 
ST=T(I) 
STP-TP(I) 
STPP-TPP(I) 
SPRAYD=PRANDL(I) 
SHU=WII) 
SMUP-MUP(I) 
SALFA-ALFAt 
SALFP-ALFAP(1) 
IF (HOD.EO.1) GO TO 4 
suPx-DuPx(I1 
STX=DTX(I) 
STPX-DTPX(I) 
SHUX=DMUX(I) 

E 24 
E 25 
E 26 
E 27 
E 2e 
E 29 
E 30 
E 31 
E 32 
F 33 
E 34 
E 35 
E 36 
F 37 
F 38 
E 39 
F 40 
F 41 
E 42 
E 43 
E 44 
E 45 
E 46 
E 47 
E 48 
E 49 
E 50 
E 51 
E 52 
F 53 
E 54 
E 55 
E 56 
E 57 
E 5@ 
E 59 
E 60 



SALFX-DALFX(1) 
SV=V(I) 
sux-DUX(I) 
SVXmDVXtI) 
SVP=VP(T) 
SVPP-VPP(II 
KL=I 
RETURN 

4 CONTINUE 
sv-0.0 
SVP-0.0 
SVPP=O.O 
svx-0.0 
sux-0.0 
SUPX=O.O 
STX-0.0 
STPX-0.0 
srlux=o.o 
SALFX=O.O 
KL-I 
PETURN 
END 
PEAL FUNCTIONINTER(X,Y,XARG~IDEG~tIIN1 
DIMENSION X(151)~ Y(151) 

1 FACfOR=l.O 
flAX*llIN+IDEG 
DO 2 J=MIN,MAX 
IF fXARG.NE.X(J)) G@ TO 7 
INTER=Y(J) 
RETURN 

2 FACTDR=FACTOR*(XARG-X(J)) 
YEST-0.0 
DO 4 I=flIN,f"AX 
TERH=Y(I)*FACTOR/(XAPC-Xo) 
DO 3 J-MIN,HAX 

3 IF (1.NE.J) TERM=TERK/(X(Ij-X(J)) 
4 YEST=TERW+YEST 

INTER=YEST 
PETURN 
END 
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