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CONVERGENCEAND STABILITYPROPERTIESOF MINIMAL POLYNOMIAL

AND REDUCEDRANK EXTRAPOLATIONALGORITHMS

Avram Sidi*
NationalAeronauticsand Space Administration

Lewis Research Center
Cleveland,Ohio 44135

ABSTRACT

The minimal polynomialand reducedrank extrapolationalgorithmsare two

accelerationof convergencemethodsfor sequencesof vectors. In a recent sur-

vey these methodswere tested and comparedwith the scalar,vector,and topo-

logicalepsilon algorithms',and were observed to be more efficientthan the

latter. It was also observedthat the two methods have similarconvergence

properties. The purposeof the presentwork is to analyzethe convergenceand

stabilitypropertiesof these methods, and to show that they are bona fide ac-

celerationmethods when appliedto a class of vector sequencesthat includes

those sequencesobtainedfrom systemsof linearequationsby using matrix iter-

ative methods.

1. INTRODUCTION

The minimalpolynomialextrapolation(MPE) and the reducedrank extrapola-

tion (RRE) algorithmsare two methods that have beendevised for accelerating

the convergenceof sequencesof vectors. In a recent survey carriedout by

D. A. Smith, W. F. Ford, and A. Sidi (unpublished)these two methodswere

tested and comparedwith the scalar,vector,and topologicalepsilon algo-

rithms. It was observednumericallythat the MPE and the RRE have similarcon-

vergence propertiesand are more efficientthan the three epsilon algorithms.

In the presentwork we analyzethe convergenceand stabilitypropertiesof the
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MPE and the RRE, and show that they are bona fide convergence acceleration

methods when applied to a family of sequences that includes those sequences

obtained from systems of linear equations by using matrix iterative methods.

In a recent work [3] a general framework for deriving convergence acceler-

ation methods for vector sequences has been proposed. Within this framework

one can derive several methods, some old (including the MPE, RRE, and the top-

ological epsilon algorithm), and some new (including a method that has been

designated the modified MPE). The approach of [3] is formulated in general

normed linear spaces of finite or infinite dimension. In the present work we

use the formulations of the MPEand the RRE as they are given in [3]. Wealso

make the assumption that the normed linear space in which the vector sequence

is defined is an inner product space, with the norm being induced by the inner

product.

The plan of the present paper is as follows: In Section 2 we specify the

vector sequences whose convergence we are seeking to accelerate, describe the

MPEand the RREas they were formulated in [3], deriving at the same time de-

terminant representations for them. Weshall use Section 2 to also introduce

much of the notation that we use in the remainder of thiswork. In Section 3

we analyze the convergence properties of both methods and obtain actual rates

of acceleration for them. In Section 4 we analyze their stability properties.

The results of Sections 3 and 4 are helpful in explaining some of the numerical

results obtained from the MPEand the RRE. The techniques used in the present

work are similar in nature to those developed and used in [3] in the analysis

of the modified MPEand the topological epsilon algorithm. The analysis in the

present work, however, is considerably heavier due to the extreme nonlinearity

of the MPEand the RRE. Surprisingly, all the conclusions that were drawn for

the modified MPEhold for MPEand RRE.



2. NOTATIONAND DESCRIPTIONOF ALGORITHMS

Let B be an inner product space defined over the field of complex num-

bers. In this work we shall adopt the following convention for the homogeneity

property of the inner product. For y,zcB and :,B complex numbers, the
i

I inner product (-,-} is defined such that (:y,Bz): _B(y,z). The norm of a vec-

tor xcB will be defined by Ilxll= _.

Let us consider a sequenceof vectors xi, i = O, 1, ..., in B. We

shall assume that

(2.1) Xm- s + _-_ vix? as m. =,
i=1

where s and vi, i : 1, 2, ..., are vectorsin B, and xi i : 1, 2,, . --',

are scalars,such that xi _ 1, i = 1, 2, ..., xi _ xj if i _ j, IXll _> Ix21

_>..., and that there can be only a finite number of xi whose moduli are

equal. Without loss of generality,we assume in (2.1) that vi _ O, }'i_ 0

for all i > O. The meaning of (2.1) is that for any integer N > O, there

exist a positive constant K and a positive integer m0 that depend only

on N, such that for every m _>m0 the vector

iN(m) = m - s - vi xm xN
i=1

satisfies

lim x does not exist, and s is said to be the anti-limitof the sequencem.= m

Xm, m = O, i, .... Our problem is to find a good approximationto s, whether

it be the limit or the anti-limi.tof the sequence,from a relativelysmall num-

ber of the vectors xi, i = O, 1, ....
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Example. Let A be a nondefective MxM (complex)matrix and b, an

M-dimensional(complex)vector, and considerthe solutionof the linear system

of equations

(2.2) x = Ax + b.

Let Xl, ..., xM and Vl, ..., vM be the eigenvaluesand correspondingeigen-

vectorsof A. Assume also that 1 is not an eigenvalueof A so that (2.2)

has a unique solution,which we shall denote by s. For a given x0, we gen-

erate the sequence xj, j = 1, 2, ..., by the matrix iterativemethod

(2.3) xj+1 = Axj + b, j = 0, 1, ....

M

Let x0 - s = __] aivi for some scalars ai. Then
i=1

M

(2.4) xm s + m :ivixm, m = 0, 1, .. .
i=1

As is known if aI _ 0, which will be the case for the given x0 in general,

then _-limXm = s provided IXll < 1, otherwise s is the anti-limit.

Let us denote ui = axi = xi+1 - xi, i = 0; 1, ..., and wi = AUi = A2Xi,

i = 0, 1, ....

The MPE. Let k be an integer less than or equal to the dimensionof the

space B. The approximation Sn,k to s is given by

k

(2.5) Sn,k = Z yjXn+j'
j=0

where the yj are obtainedfrom
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cj
(2.6) Yi- k ' j = O, I, ...,k,

i=0

with ck : I, and cO, ..., Ck_1 being determinedas the solutionto the min-

imizationproblem

k-1

(2.7) Co, min.... , Ck_1 CjUn+j + Un+k ,
i=O

k

provided _ ci _ O.
i=O

For the exampleabove, (2.7)is equivalentto the least squaressolution

of the overdeterminedsystem of M equations

(2.8) Un,kC = -Un+k,

where Un+k is the M x k matrix

(2.9) Un,k = (Un, Un+l, ..., Un+k_l),

M

and c is the column vector (co, Cl, , Ck_l)T, when (y,z) y*z = _ _iziQo. : ,

i=1

where y= (yl yM)T (zI, M)T
, ..., and z .... , z , and y* is the Hermitean

conjugateof y. This is the way the MPE was developedoriginallyin [1].

We shall now give a determinantexpressionfor Sn,k that will be of

use in the remainderof this work. Since IIII=vr , ) orany vector y

in B, the ci that solve the minimizationproblemin (2.7) satisfythe normal

equations



k-I

(2.10) >_.] (Un+i,Un+j)c j = -(Un+i,Un+k), O_ i _ k - i.
j=O

Consequently,the yj that are defined by (2.6) satisfythe equations

k

"_yj = 1
j=O

(2.11)
k

_"_ (Un+i,Un+j)yj = O, 0_< i <__k - 1,
j=O

provided these equations have a solution. Assuming that the determinant of the

matrix of equations (2.11) is nonzero, and using Cramer's rule, we can write

the solution of (2..11) as

N. N.

= J J
(2.12) Yj k = D(I, ..., I)' O< j <__k,

_N i
i=O

where Nj is the cofator of oj in the determinant

°0 oI • . . ok

Uo,o Uo,1 • . . Uo,k

Ul,0 Ul,1 • . . Ul, k
(2.13) D(oo, ..., Ok)= m .

Uk-l,0 Uk-l,1 - . . Uk_l, k

with ui,j _ (Un+i,Un+j),i,j _ O. In the first row of the determinant

D(oO, ..., Ok) we also allow oO, ..., ok to be vectorsin B, in which case

(2.13)is to be interpretedas



k

(2.14) D(aO, ..., ak) = _ aiN i.
i:O

Combining (2.5), (2.12), and (2.14), we can now express Sn,k as

D(xn, ---, Xn+k)
(2.15) Sn,k - D(1, ..., 1) "

The RRE. Let k be an integer less than or equal to the dimension of the

space B. The approximation Sn,k to s is given by

k-1

(2.16) Sn, k = x n + _ qi Un+i'
i;0

where the qi are determined as the solution of the minimization problem

(2.17) qo"m!n-'qk-1 Un qiWn+i "i=O

For the example above, (2.17) is equivalent to the least squares solution

of the overdetermined system of equations

(2.18) Wn,kq = -u n,

where Wn,k is the M x k matrix

(2.19) Wn,k = (wn, Wn+1, ..., Wn+k_l),

M

and q is the column vector q = O' ql' "'" q when (y,z) = YiZi ,
i=l

where y and z are again y = (yl M)T (1 M)T
, ..., y and z = z , ..., z .

This is the way the RREwas developed originally in [2].



For this case too Sn,k can be expressedas the quotientof two deter-

minants, and we turn to this now. Again by the fact that l]yll= _for

any vector y in B, the qi that solve the minimizationproblem in (2.17)

satisfythe normal equations

k-1

(2.20) ___ (Wn+i,Wn+j)qj: -(Wn+i,Un),O_ i _ k -
1.

j=O

Substituting Wn+j = Un+j+1 - Un+j on the left hand side of (2.20),and re-

arranging,we obtain

k-1

(2.21) (Wn+i,Un)(l- qo) + _ (Wn+i,Un+j)(qj_I - qj) + (Wn+i,Un+k)qk_l= O,
j=l

O<i<k-1.

Let us define

(2.22) YO = i - qo' Yk = qk-l' Yj = qj-1 - qj' 1 <_j <_k - 1.

It is easily verifiedthat

k

(2.2.3) _ yj = 1,
j=O

so that (2.22) and (2.23)establisha one-to-onecorrespondencebetweenthe

qi' 0 < i <_k - 1, and the yj, 0 <_j <_k. Consequently,the linear system

of equations (2.20)for the qj is equivalentto the linearsystem

k

j=l
j=O

(2.24)
k

(Wn+i,Un+j)yj = O, <_ _< - 1,
0 i k

j=O

8



for the yj, by (2.21),(2.22),and (2.23)• Similarly,substituting

Un+i = Xn+i+1 - Xn+i on the right hand side of (2.16),rearranging,and in-

voking (2.22),we see that Sn,k for RRE (as for MPE) Can be expressedin the

form (2.5); Assumingnow that the determinantof the matrix of equations

(2.24) is nonzero,and using Cramer'srule, we can expressthe yj that solve

(2.24)exactlyas in (2.12),where Nj is the cofactorof oj in the determi-

nant D(UO, ..., ok) given in (2.13)with ui,j _ (Wn+i,Un+j), i,j _0. Again

when o0, ..., ok are vectors in B, D(oO, ..., ok) is to be interpretedas

in (2.14). Consequently Sn,k, also for RRE, can be expressedas in (2.15).

Before closingthis sectionwe shall state a result that will be of use

in the remainderof this work.

Lemma 2.1. Let io, il, ..., ik be integersgreater than or equal to 1,

and assume that the scalars Vio,...,ik are odd under an interchangeof any

two indices io, ..., ik. Let oi, i _ 1, be scalars (or vectors)and let

ti,j, i _ 1, 1 < j _ k, be scalars.•Define

i0=1 ik=l 0 p=l ' 0"'" k

and

0i • . . Oik°io 1

tio,1 til,1 • . . tik,1

tio,2 ti1,2 • . . tik,2(2.26) Jk,N = viO, ,ikm m ooo •

1<i0<i1<...<ik<_N
m • •

tio,k til,k • . . tik,k



where the determinantin (2.26)is to be interpretedin the same way as

D(aO, ..., ak) in (2.13). Then

(2.27) IK,N = Jk,N"

For a proof of Lemma 2.1, see [3, Appendix].

3. CONVERGENCEANALYSIS

We have seen in the previoussection that Sn,k, for both the MPE an___dd

the RRE, is given by

D(xn, ..., Xn+k)
(3.1) Sn,k - D(1, ..., 1) '

where D(ao, ...,ak) is defined by (2.13)with ui,j = (Un+i,Un+j), i,j _0,

for MPE, and ui,j = (Wn+i,Un+j),i,j _0, for RRE. Subtracting s from both

sides of (3.1),and making use of (2.14),we obtain the error formula

D(xn - s, ..., Xn+k - s)
(3.2) s - s -

n,k D(1, ..., 1) "

Under the assumption(2.1),we have

(3.3) um ~ _ vi(_ i - 1)X? as m . _,
i=1

and consequently,

(3.4) wm _ vi(xi - 1)2xm~ i as m. =..
i:1

From (3.3) and (3.4) we see that

10



IUn+n. lZ
i=I j=1

as n. _,

for MPE, and

(3.6} Up,q = (Wn+p,Un+q)~ _ _ (vi,vj)(_-i - 1)2(_j- 1)_n+p_n+ql.l
i=1 j=l

as n. _

for RRE. (3.5) and (3.6) can be rewrittenin the condensedand unifiedform

(3.7) Up,q zi.A. ^. as n . -,j I j
i=1 j=1

where we have defined

m

(3.8) zij = (vi,vj}(_i - 1)(_j - i), i,j_>i,

for MPE, and

(3.9} zij = (vi,vj)(_-i - 1)2(},j- I), i,j _>1,

for RRE.

Note that when the sequence xj, j = O, 1, ..., is generatedby a matrix

iterativeprocess as describedin the exampleof Section 2, then in (3.7) the

upper limitson the summationson the right hand side are replaced by M, and

~ is replaced by =.

In Lemma 3.1 and Lemma 3.2 below we derive the asymptoticexpansionsof

D(xn - s, ...,Xn+k - s) and D(1, ..., 1), respectively,for n . -, assuming

(2.1}. In Theorem 3.1 we give the main result of this paper that shows that

11



both the MPEand RREare true acceleration methods when applied to sequences of

vectorssa,_f_ng(2._),_.t_ose.set,o__mIlso,k- sll/llXn.k+_- sll =o.
In what follows we shall denote asymptotic relations of the form "_n ~ Bn

as n . " by " - " for short• Also we shall let _] m_n Bn i i=1

, ... ,,or
i,j i=1 j=l 1_ii<i2<...<i k ii=1 i2=ii+1 ik=ik_1+l

simplicity•

Lemma3.1• Let the sequence of vectors xi, i = O, i, 2, ..., be as

described in the previous section• For ip, jp positive integers, define

vj 0 vj I • . . Vjk

z i ..... zi
lJo z1131 lJk

• z i • z-2j I • . . z.2j kR11,•..,ik 230 I I(3.10) : ,
SO'Jl''"'Jk

Z Z. . . Z

ikJ 0 IkJ I • ikJ k

where the interpretation of this determinant is like that of D(aO, 01, .... , ak)

in (2.13) and (2.14). Let V(_O' _1' "'" _k ) be the Vandermonde determinant

_0 " " " _1

k
1 _1 " " " _1

(3.11) V(_o' _1' ""' _k ) : " " " : l--T (_j -_i ).
• . . O<i<j<k

k
1 {k " " " {k

Then D(xn - s, ..., Xn+k - s) has the asymptotic expansion given by

12



l<_jo<Jl<...<jkp=O

x V Xjo, xj , ..., kjk I
1 1<i1<i2<...<ik p=l

IT ) Ril'''''ik' "'" Ti Jo'j " "Jk"x V il k 1' "

Proof. Let us denote D(xn - s, ...,Xn+k - s) by Pn for short. By

(2.13),(2.1), and (3.7),we have

• n v kn+l n+k

VjokJo _ Jo Jo " " " _ VjokJo

Jo Jo Jo

ZilJ1_nlkn°i --n n+l -n n.+k1131 11 J1 • 11J1 31
i1'Jl i1'Jl i1'Jl

-n+1 n --n+1 n+1 --n+1 n+k.

•-, 1232 12 32 12J2 12 J2
n i2,J2 i2,J2 i2,J2

. . m

z.. _n+k-lkn -n+k-1 n+kTi. . .IkJk Ik Jk . _ z.. k >,.• . ikj k i k 3k
ik,Jk ik,Jk ik,Jk

By the multilinearitypropertyof determinantswe can reexpress(3.13)in

the form

13



(3.1o_Po-T_S ...Z Vjo_o_Zi._-'p-1_n_Jo il'Jl ik'Jk p=l. pJp Ip jp/.

' _i' _ )"x v _Jo J "'" Jk

By changing the order of summationin (3.14),we have

Tn+p-I_ k
• , . /._ - . . zi

(3.15) Pn->-_ ik ^ip _ vj 0 pji I " p=l " " "

xi  ; Iv---,p=O _Jl'

SinceiT_ _nplV (_jo, -.., _jkl is odd under an interchange Of any twOp:O j _Jl'.

of the indices,jp, Lemma 2.1 can be applied,and.we obtain

iT_ 1_ il'" 'ik
(3.16} PR ~_ " " " _ _'+P- _ Rjo,jlI...,j k

i I i k p=l lp / l<-Jo<Jl<'"<Jk

p=O

Interchanging the order of the summations in (3.16), we have

14



,317,Pn I  n)v< jo1<_jo<Jl<...<jk p=O Jp _Jl'

• " ip _ jo,Jl,...,jk"
i i i k p=l p=l

°

Let now NI.1'''''ik be the cofactorof v. in the determinantexpressionfor
Jq Jq

i1,...• .
Rjo,Jl,il.k.,jkThen

k

i1"" " = v Ni.l'''''ik2
q=O

i1,...ik

Observingfrom (3.10)that the Njq are odd under an interchangeof any

two of the indices i1, ..., ik, we can apply Lemma 2.1.again to the multiple

sum with respectto the indices i1, ..., ik, with R_l''''ik replacedby
JO,Jl,..-,Jk

(3.18). The terms that are odd in the indices il, ..., ik now are

(_Tp=l_p) NI_'''''ik. By Lemma 2.1 then

(3"19) Pn - _ i_T_nplV I_ '_j ' "'" _jk)l<__jo<Jl<...<j k p:O J Jo 1

x Vjq .... il ., _ik
q=O iI ik

which, by invoking (3.18),can be reexpressedas (3.12),thus completingthe

proof, o

15



Lemma 3.2. Let the sequenceof vectors xi, i = O, 1, 2, ..., be as

describedin the previoussection• For ip,jp positive integers,define

Z- Z • • . Z.

11J1 ilJ2 11Jk

zi2J1 zi2J2 • . . zi2Jk
i1,...,ik . .

(3.2o k:

zi zi • .
kJl kJ2 " Zlk3k

Then D(1, ..., i) has the asymptoticexpansiongiven by

1<_j1<J2<...<jk p=l

x y. v ii,...,s 1,111, k
I<_il<i2<...<ik P=1

\

Proof• Let us denote D(1, ..., 1) by Qn for short• From (2•13)and

(3.7),we have

1 1 . . . 1

-.n _.n+l
31 11 '11 11"1111 31 Jl 11 Jl

il'Jl il'Jl il'Jl

-n+l n ' Z _+l}n+l _-'n+l_.n+k
1232 12 32 . , . '_ z..

iZ 'J2 i2'J2 i2'J2

(3.22) qn~
i • •

• • i

-n+k-I n _ -n+k-I n+l _ -n+k-l.n+kz..},ik L. z.._. },.... z..},. A.Ik3k 3k Ik3k Ik 3k Ik3k Ik 3k

ik'Jk ik'Jk ik'Jk

16



Again by the multilinearitypropertyof determinants

(3.23) Qn ~ _'_ " " " ZipjpAip ^j_IVp/1, ...,.il,J1 ik,Jk\P=1

By changingthe order of summationin (3.23)and observingthat

n V ... is odd under an interchangeof any two of the
j • • ,

p=l

indices jp, we can apply Lemma 2.1 to the summationover Jl' "'" Jk" The

result is

(3.24) Qn ~_ """ _IT_T _'+p-I_iI ik p=l Ip /

x _ Sjl,...,jk JP _Jl "
1<J1<J2<"""<Jk p=l

IT_ I i1'" 'ik
Changing the order of summationagain, and observingthat __'_ipSjl,.II,jk__

p=l

is odd under an interchangeof any two of the indices ip, we can now apply

Lemma 2.1 to the summationover i1, ..., ik. As a result,we obtain (3.21).

This completesthe proof, o

Theorem 3.1. Let the sequenceof vectors xi, i = O, 1, 2, ..., be as

describedin the previoussection. If, in addition•the vi are linearly

independent,and

17



then, for all sufficientlylarge n, Sn,k exists, and

(3.26) Sn,k - s = F(n)_+1[1 + o(1)] as n . -,

where the vector F(R)satisfies llF(n)I{<_K,for some constant K > 0 inde-

pendentof n, and for all sufficientlylarge n. If, in addition,

then

(3.28) F(n) = $1' .,k
1, .,k i=1

Proof• From (3.20)and (3.8) (or (3.9)),

• ,k(3•29) S ' _,k = H G(v1, ..., Vk),

IT_ 12 Io T_ for RREI

where H = (_i - 1) for MPE r H = (_i - 1)2(_i - i) ,
i=1 i=1

and G(v1, ...., Vk) is the Gram determinantof the vectors Vl, ..., Vk, given

by

(Vl,V1) (Vl,V2) • . . (Vl,Vk)

(v2,v1) (v2,v2) • . . (v2,vk)

(3 30) G( vk) " " ".• v1, •••, =. •

(Vk,V1) (Vk,V2) • . . (Vk,Vk)

Since the vi are linearlyindependent,G(Vl, ..., vk) is nonzero. Also,

• $1,. ,k is nonzero.
since _i @ 1 for all i, H is nonzero Consequently, 1,.]],k

Next, since _i @ _j for i @ j, and _i @ i for all i, V(T1, ...,-_k) and
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V(1, _1' "'" _k) are nonzeroon accountof (3.11). Finally,we observethat,

due to (3.25),the dominantterm in the multiple sum on the right hand side of

(3.21) in Lemma 3.2 would be that for which i = p, j = p, p = 1, ..., k,
P P

provided V(1 _1' _k) and S1, . ,k• "'" 1,_._,k are nonzero•which we have already

proved to be so. Consequently•

(3.31) D(1, ..., 1): _n V(1, _1' "'" _k)V( "'" )p ' ,
p=l

sl,.. ,k
x 1,..Z,k [1 + o(1)] as n . _.

This also impliesthat, for all sufficientlylarge n, D(1, ..., 1) @ O, hence

Sn,k exists. This completesthe proof of the first part of the theorem.

To prove (3.26)•we should analyze the behaviorof D(xn - s, ...,

Xn+k - s) for n . _. By our assumptionsmade following (2.1),there is only a

finite number of _i whose moduli are i_k+l[. Let F k+11..... I k+rl>
I I_k+r+l " From this and (3.25),it follows that the dominant term on the right

hand side of (3.12)- provided it is nonzero- is the sum of those terms with

indices ip = p, p = 1, ..., k, Jp-1 = p' p = 1, ..., k, Jk = k + 6, _ = 1,

..., r, namely

-_ 2 V(_'I _-k
(3.32) D(xn - s, ..., Xn+k - s) = }._ , ..., )

p=l

r

. R1,. ,k [1 + o(1)] as n .x _k+_nV(_I, "" _k' _k+_) 1,._,k,k+_. "
_=1

From (3.10)and (3.20)•
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k

(3.33) R ' _ ,k,k+_ = B_ivi + Si .,k Vk+_'," ,..

i=1

so that the summationon the right hand side of (3.32)becomes

(3.34) _ vi xn V(Xl' "" _k Xk+_)B_
i=l =i k+_ " ' '

r

+ (-1)k S[:::: 'k _ Xn V Xk',k k+_ (Xl' "''' Xk+£)Vk+_"
£=1

.*,kSince S _..,k _ O, V(Xl, ..., xk, Xk+_) _ O, and the vectors vi are lin-

early independent,the second summationin (3.34)is never zero. This proves

(3.32). Combining(3.31)and (3.32),(3.26)follows. If (3.27)holds, then

r = 1. In this case (3.28)followsfrom (3.31),(3.32),and (3.11). This com-

pletes the proof of the theorem.

[]

The asymptoticerror analysisof the MPE and RRE as given in Theorem 3.1,

leads us to the followingimportantconclusions:

(1) Under the conditionsstated in the theorem,the MPE and RRE are bona

fide accelerationmethods in the sense that

.llSn,k- sll n]
(3.33) Ilxn+k+l- =11:oL\"I/J as n-,. =.

,-,-,-,_,,oa,,s_,,a_",,':xn-,.s asn-,.=,,.e.,..1":'.1<1,_,enSn,,,-,,s as
and more quickly. Also if lim x does not exist, i.e., ,_JxlI > 1, thenn .

rl_:: m

+ s as n . -, provided that I Xk+ll < 1. The reason that we writeSn,k

Xn+k+1 in (3.35) is that Sn, k in both the MPEand RRE is computed from

xn, Xn+1, ..., Xn+k+I-
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(2) When the MPE and RRE are being appliedto a vector sequencegenerated

by using a matrix iterativemethod,they will be especiallyeffectivewhen the

iterationmatrix has a small number of large eigenvalues(k-manywhen Sn,k is

being used) that are well separatedfrom the small eigenvalues.

(3) As can be seen from (3.28),a loss of accuracywill take place in

Sn,k when _1' ""' _k are close to 1. For sequencesof vectorsobtained

from the iterativesolutionof linearsystemsof equations,this means that the

matrix of the system is nearly singular.

These conclusionsare the same as those for the modified MPE, which has

been defined and analyzedin [3].

Finallynote that the resultsof this section (and of Section4) will not

change if the MPE and RRE are replacedby any other method giving rise to

(3.1),With D(oo, ..., Ok) definedas in (2.13),as long as the ui,j in

(2.13) satisfy (3.7) with zij = (vi,vj)Piuj,where _i and _j are fixed

nonzeroconstants.

4. STABILITYANALYSIS

Let us denote yj in (2.5) by y_n,k) for both MPE and RRE. We say that

Sn,k is asymptoticallystable if

k

(4.1) sup y < _.
n .

Roughly speaking,this means that if errors are introducedin the vectors xm,
k

" then the error in Sn,k stays boundedas n . _. Since _ y_n,k) = 1, the
j=O

(n,k)
>0, 0 < j < k, for all suffi-most ideal situationis one in which yj _ _ _

k k

ciently large n, so that _ y_n,k) _ (n,k) i• = Yj = .
j=0 j=0
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The followingtheorem gives the stabilitypropertiesof both the MPE and

RRE when they are appliedto vector sequencessatisfyingthe condltionsof

Theorem3.1. s denoteseither that obtained from MPE or RRE.
n,k

Theorem4.1. For vector sequencessatisfyingthe conditionsstated in

Theorem 3.1, Sn,k is asymptoticallystable. Actually,the followingare true:

The y(n,k} satisfy(i)

= V(I, }'1' , _k) [1 + o(1)] as n .-,

where

_ _+_1 {I ......

{_-i {_+i k1 {2 ...... {2

(4 ( ( )q " •
•3) Cq {1' "'" {k) : -1 " " " ,

• • • • •

_ _... _-_ ..._
thus

k

_,I_(_,, _,_I
(4.4) y = [1 + o(1)] as n .

q=O iV(l, _i' "" _k) _'

i.e., (4.1) holds•

(2) If _1' "'" _k are real and negative,then

(4.5) y_n,k) > O, O_ q _ k, for n sufficientlylarge,

thus
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(4.6) yq
q=O

(3) If x1, ....' Xk are real and positive,then

Y_ "q+l < O, 0 <_q < k - 1, for n sufficientlylarge,(4.7) n,k)..(n,k)

thus

(n,k) - [1 * o(1)] as n. =.(4.8) yq =
q=O i=1 \ I

(4) For any x1, ..., xk,

n'k)xq k Xi --(4.9) lim ,,, y = .
n,.= q=O

_(n,k) is given by (2.12) and we alreadyknow the asymp-
Proof. Since Tq

totic behaviorof D(1, ..., 1) from Lemma 3.2, it is sufficientto analyze

Nq: asymptotically. By deletingthe first row and the (q + 1)st column of the

determinantin (3.22),after some manipulation,wehave

- . .... , ...,Xjk -
ii,Jl ik,Jk p=l zlp3p 3p

Observe that iT_T xn)Cq(_ XJk)
J Jl' "'" is odd under an interchangeof any two

p=l

of the indices jp. Consequently,
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1-Jl<J2<'"<Jk p:l JP ' "

x V il, "'"Jk
1_i1<i2<...<ik p=l

follows from (4.10)in exactlythe same way (3.21)followsfrom (3.23). Invok-

ing (3.25),

(4.12) Nq : _ V(T1, ...,Tk) Cq(_l, ..., _k) S ,--'_,k
p=l

as n . _,

followsfrom (4.11) in the same way (3.31)followsfrom (3.21). Combining

(4.12)and (3.31) in (2.12),(4.2) follows. (4.4) followsdirectlyfrom (4.2).

This proves (1).

Note that V(_, _1' ""' _k) is a polynomialof degree k in _. From

(3.11)and (4.3) we have

k

(4.13) V(_, x1, ..., _k) = _ Cq(X1, ..., Xk)xq.
q=O

Since V(_, _1, ""' _k) has _1' "'" _k as its only zeros, we also have

k

(4.14) V(_, _1' "'" _k) = Ck(_l' "'" _k)M (_ - _i)"
i=1

If _1' "'" _k are real and negative,then (4.13)and (4.14)imply that

Cq(_l, ..., _k), O_ q _ k, are all of the same sign. This, along with (4.2),
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implies(4.5). (4.6) is a direct consequenceof (4.5)and (2.11). This

proves (2).

If _1' "'" _k are real and positive,then (4.13)and (4.14) imply that

Cq(_l, ..., _k)Cq+l(_l,..., _k) < O, O_ q _ k - 1. This, along with (4.2),

implies (4.7) and

I#k (-1)q Cq(_l' "'" }'k)

(4.15) Y I"IV(I'_1' "'" _k)l'l [1 * o(1)] as n. =
q=O

V(-1, _1' "'" _k)V(1, _1' "'" _k) [1 + o(1)] as n. _,

which, by (3.11),reduces to (4.8). This proves (3).

Multiplyingboth sides of (4.2) by _q, summingover q from 0 to k,

and finallymaking use of (4.13)and (3.11),(4.9) follows,thus proving (4).

D
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