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SOLITONS IN SEMICONDUCTORS WITH A SUPERLATTICE

A. P. Tetervov

/1182%*
Several studies [1-4] have recently appeared which investi=-

gated the properties of semiconductors with superlattices (SL)

in a variable electromagnetic field. The presence of a SL leads

to very specific nonlinear effects, which are particularly apparent
in the millimeter and submillimeter ranges. However, these

studies devoted basic attention to calculating the nonlinear

high frequency current.

The propagation of strong electromagnetic waves in semi-
conductors with SL is of definite interest. This process may be
described by a system of Maxwell equations with a known con-
ductivity current. The nonlinear nature of this current leads
to the formation of nonlinear effects during the propagation.
This article studies the possibility of nonlinear electromagnetic
waves, namely solitons, existing in SL.

We use the following wave equation as the initial egquation

1@ ~1.  4n g
[A e azze(‘”)}E‘TZE’ (1)

where E is the wave electric field (the field vector directed
along the SL period parallel to the 0x axis); Jj = j(E) — the
functional of the field, which describes the conductivity
current; s@b—- linear operator determining the frequency dis-
persion of the lattice, existing in the millimeter and sub-

millimeter ranges [5] 5==m__[%%.

* Numbers in margin indicate pagination in foreign text.



We shall assume that the conductivity current is small as
compared with the displacement current, i.e., the right side
of Equation (1) contains a small parameter (the corresponding
estimates will be given below). Then we shall look for the
solution of the wave equation in the form

E={¢(¢,t)e:<p[i(cot-—kx)]+w('r’,t)}+x. c. (2)

Here \p(;. l)——-u(?,t)exp[i(P(F, nl; u and ¢ are the amplitude and

phase of the basic harmonics which slowly change in time and space; .
w and k— frequency and wave vector of the waves; w(th) — value

of the first order of smallness with respect to the conductivity

current which describes the higher harmonics.

Let us expand the current in Fourier series
f=3 iiexp(iS), (3)
where S[=[[o)f——/?.\'+(p(-;, ], and we place the expansion (3)

in the wave equation. Considering the slow change in the amplitude

and phase of the wave we obtain the following equation /1183

1 o2 > 4nio . .
|[A—C—2(Fe(m)]w(r, )= — 2 ljrexp (tSz)}=
1=l

=_{Al¢—2ik(‘l’x+vir ¢t>+k%:1pxx—

dtio . ]
— —— jiexp (ch)} exp [i (of — kx)]. (4)
0% 0* 0] .
Here A.L=a—yg+ﬁy Ur=—07 — group velocity of the wave;
u"_=g'T(g,and the lower index of the variable y designates

differentiation with respect to the corresponding argument.
Considering the slow change in the amplitude and phase of the
wave, we may set Yt = Uibxz . The component which is proportional
to V¥xx describes the dispersion of the wave responsible for the
formation of the soliton.



The condition that w(r,!) does not contain the first harmonics

leads to the nonlinear parabolic equation [6], which describes the

behavior of the complex amplitude of the basic harmonics

: 1 . r . iv
(e + vepy) — 5 (vr\p” - —%— AJ_\p> + i 2_?2211' io () € = 0. (5)

As was shown in [3], for the quasiclassical case (A /o,

fit;l, eEd, where d— the SL peribd; A, — width of the sth permitted

minizone, and Taff does not depend on the field and energy of the

carriers of the pulse relaxation time) in the single minizone

approximation, the expression for j,(E) has the form
i

. o C 1
h=iti=—ily Y In@Inei(0)

— iMTes (6)
M=—=——c0
. __ gy . 2
where e — static current- o o So%elt o ==[Qﬂ@n@Al‘,
1] 4“ ’ (1) ﬁ?‘- — A
A I~ AN\TV2 '

x h(ﬁ* 0 kﬁr — generalized plasma frequency in a narrow

zone semiconductor; n— concentration of the carriers; I0 17—
’

modified Bessel functions with the corresponding index; Jm(a)——
Bessel function of the real argument a==%%n At the high fre-

quency limit, when gy >1 , it follows from (6) that

A@:?h=§ L — g2 ), (7)

WTest

Imj !
="l <,/ @)
]st

(8)
The quantity A(a) is the dissipative component of the variable
current and describes the absorption of the electromagnetic wave
by the free carriers and, as follows from the definition, Jdu)<KlI

for any type a. B(a) makes a small addition to the displacement

current.
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Substituting (7), (8) into the parabolic equation, we obtain
the following system of nonlinear equations with respect to the di-

mensionless amplitude a and the phase ¢

@ e @+ [ @+ T @Fu9)| + et @ =0,

, 1 ’ v 2 1 . Ur B (9)
¢+ Uy - 'Q—[U,(P,f + " (V.L(P)‘]"— STy [vraxx + - ALa] — _Q(aﬁ)— =0,

where  _ Urf
ctk -’

We assume that the solution of the nonlinear parabolic equation

with small damping has the form of a stationary plane wave with the

(0)

amplitude a = a , and the phase 9=0¢® . Let us study the
stability of the solution obtained with respect to the small oscilla-
tions. The solution of the linearized system (9) can be written in

the form of waves [i(-';;)_at)], then
1 .9 ] veof e o Ur 2_11/2
6='/-:;Uri'?<0r‘/.‘h +?7._L)[1+4vrsa<vrz~”—,- E—‘ZL) ] y (10)

where #; and %. are the longitudinal and transverse components

y 172
of the perturbation wave vector and so=[_-§l;—,;_a(3_—£a))]
r

a=al0)

From an analysis of the expression obtained, we find that at

v.<0 and $2<<0 a plane wave is unstable with respect to the
longitudinal perturbations with x;=0, and small values of
u"’“<4|58| . As is known, this instability leads to self-

modulation of the wave (its decomposition into solitons) [6].

If d%>1, , then from (8)

) wsin 2a©@
P A U (11)

and then a plane wave with the amplitude )

ﬂm<a(°)<%(‘2m+l), m=0,1,2,... (12)



decomposes into solitons. We should note that the condition a® =1

corresponds to a very strong field E>ﬁ_2,
e

In the case A%« 1 (or, which is the same thing, the wave
field is very weak, i.e., E<<% ), the sign of s}, as can be
readily shown, is determined by the sign of V]':- At 0;50 the

solution in the form of a plane wave is stable and at v.<<0 the
instability leads to self-modulation of the wave.

The sign of ¢ can be determined from the dispersion equation
of linear theory, considering the lattice as a set of linear
oscillators with an eigenfrequency of wq and with the force 2:

k22 Q
3 ::.8((;)):80-—(02_@?

(13)

where & is the dielectric constant of the lattice. At o°»ae? /1185

0
[)z.'_‘o‘?(&) 0
Tkt g ’ (14)
and at 0 & ©? o o
U —2 e
o T ea] ~ (14a)

To determine the form of the soliton, we transformed the
system (9) by changing &=x-—ud, T=0vt to the form
w
(@) + (a°¢y); + — ad (a) =0,
Sg Ur (15)
1 i Ba) ass
@ T 5 P— ———— + 5= =0.
T 2 ' v, 2a 2a
Disregarding the damping, the solution (15) can be sought
as a function of n=:i—W1, i ,e., in the form of stationary waves.
Here W is the "velocity" of a stationary wave, determined from the

boundary conditions. It follows from the upper equation of the system
(15)

(Zz—al2

ar

(16)



i

j\l

where a; is the integration constant. Substituting the expression
obtained in the lower equation of System (15), we obtain the
equation of the nonlinear oscillator:

__ g4
a al

an)]"—W:< 2 )——:;,B(a):O. (17)

Multiplying it by 24, and integrating, considering (8) we obtain

2 wof ., @ L

where a, is a constant. The solution of Equation (18) can be

represented in the form

a(n)
/"l

da

ﬂ= i : a~l L 172 (19
i et (et )t )] )

(a0 is the initial value of the wave amplitude).

If a increases with an increase in 1n, we must select the
upper sign in (19). If it decreases, we select the lower sign.

The study of the forms of stationary waves is similar to that
of [7].

Let us consider the case of a weak field Xl Expanding the

Bessel function in terms of the small argument, we reduce (19) to the
form
a(n)

du
nN= ==

- . y . (20)
p :_i) SISl
o [(a2+-v—')+(\“7 2v; @+ 33 v, a’+ W az}

r/
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At az=—(t—‘,, a,=0 (20) is readily integrated, as a

r

result of which at ¥,<<0 we obtain the soliton equation
4 NG b\
a )=——_— 149w L h 2 5
=73 ( T ) e [W +2|v;l> n}- (21)

The more general solutions of the equation (20) describe the stationary

periodic waves and can be expressed in terms of elliptical functions.

There is a solution in the form of a single wave for large

values of the wave amplitude. To prove this, we note that when the
conditions 'a%a"-’«l and a,>1 are satisfied (18) assumes the
9

form of the Equation of sin-Gordon [8]

az - —QE— sin? a = C (ay).

2
o a,

(22)

Here C(ao) is a constant. The. solution of Equation (22) has the

form
a(n)

==+ anp o
4 [C (a°)_:ﬁ;a; sm-a] (23)
In particular, assuming ao=%(4m+l), m=1,2,... at C(a) =0,

we obtain the single equation

a(q)=‘73rctg[exp (i 1‘/:";‘: %o n)]

(24)

(the derivative an has the usual form of the soliton:

AL N LA TR
an=:t( M 0) sech[( AQP' 0) q]) (24a)

It can be readily shown that the soliton solutions (21) and

(24) are stable with respect to small perturbations.




In conclusion, we shall make certain numerical estimates. The
condition for the smallness of the conductivity current as compared
with the displacement current means the following

2
o
a

0%, Y — (4° 4 B)"7. (25)

Thus, the conductivity current in the semiconductor with eo=10, n10'¢ cu-3,
d=10-5 ¢y @and A;=107? is small as compared with the displacement

current at frequencies of 0=5-10 secl. 1In the region of

these frequencies, the condition a = 1 corresponds to the field
strength of the wave E = 3000 V/cm.,

The author would like to thank F.G. Bass for his stimulating
discussions.
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