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The nonlinear parabolic equation describing the propagation 0 

of the electromagnetic wave in a semiconductor with the 
superlattice is analyzed. The possibility of the existence 
of the solitary waves is proved both for a small amplitude 
of the electrical field and the latter moderate values. . 
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SOLITONS IN SEMICONDUCTORS WITH A SUPERLATTICE 

A. P. Tetervov 

Several studies [1-4] have recently appeared which investi­

gated the properties of semiconductors with superlattices (SL) 

in a variable electromagnetic field. The presence of a SL leads 

/1182* 

to very specific nonlinear effects, which are particularly apparent 

in the millimeter and submillimeter ranges. However, these 

studies devoted basic attention to calculating the nonlinear 

high frequency current. 

The propagation of strong electromagnetic waves in semi­

conductors with SL is of definite interest. This process may be 

described by a system of Maxwell equations with a known con­

ductivity current. The nonlinear nature of this current leads 

to the formation of nonlinear effects during the propagation. 

This article studies the possibility of nonlinear electromagnetic 

waves, namely solitons, existing in SL. 

We use the following wave equation as the initial equation 

[ 
1 iJ2 ~ ] 4rr aj 

Ll- c'.!. iJt!. e{ro) E= c2 at' (1 ) 

where E is the wave electric field (the field vector directed 

along the SL period parallel to the Ox axis); j = j(E) --. the 

functional.of the field, which describes the conductivity 

current; e(ro}- linear operator determining the frequency dis­

persion of the lattice, existing in the millimeter and sub­

millimeter ranges [5] ro=ro-i %t . 

* Numbers in margin indicate pagination in foreign text. 
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We shall assume that the conductivity current is small as 

compared with the displacement current, i.e., the right side 

of Equation (1) contains a small parameter (the corresponding 

estimates will be given below). Then we shall look for the 

solution of the wave equation in the form 

~ ~ 

E = {'P (r, t) exp[i (rot- kx)] + w(r, t)} + K. c. (2) 

~ ~ ... 
Here lJl (r. t) = u (r. t) exp [icp (r, t)] ; u and ¢ are the amplitude and 

phase of the basic harmonics which slowly change in time and space; 
~ 

Ul and k- frequency and wave vector of the waves; w (r. t) - value 

of the first order of smallness with respect to the cqnductivity 

current which describes the higher harmonics. 

Let us expand the current in Fourier series 
00 

j= ~ i/exp(iSz). (3) 
1=-00 

where SI=[[v)l-kx"+(f(r,tj, and vie place the expansion (3) 

in the wave equation. Considering the slow change in the amplitude 

and phase of the wave we obtain the following equation /1183 

{[ 
1 8

2 
] ~ 4niro ~ } u- C2 8t2 e (00) w (r, t) - -cz L. Iii exp (iSz) = 

1.;.1 

= - {Ul.1jJ - 2ik (lJlx + _1 1j:t) + k v~ 'ljJxx-
Vr Vr 

4rriro . .} - Cz- 11 exp (lrp) exp [i (rot - kx)]. ( 4 ) 

Here group velocity of the wave; 

, 8200 
t.' =- and the lower index of the variable 1jJ designates 

r 8k2' 
differentiation with respect to the corresponding argument. 

Considering the slow change in the amplitude and phase of the 

wave, we may set 'ftt =V~'~I;U The component which is propor:tional 

to '\fxx, describes the dispersion of the wave responsible for the 

formation of the soliton. 
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-The condition that :..:.'(r, t) does not contain the first harmonics 

leads to the nonlinear parabolic equation [6], which describes the 

behavior of the complex amplitude of the basic harmonics 

As was shown in [3], for the quasiclassical case (~s»hw, 

Ii-rcli, eEd, where d- the SL period; ~s width of the sth permitted 

minizone, and Leff- does not depend on the field and energy of the 

carriers of the pulse relaxation time) in the single mini zone 

approximation, the expression for ji(E) has the form 

00 

( 6 ) 
m=-eo 

where . nao 
]. =--
.t edTefi - static current- _ W~Teff _ r 2:rre2nd1~1 

ao - 4n ,CDo - n:~ :< 

generalized plasma frequency in a narrow 

zone semiconductor; n- concentration of the carriers; 1 0 ,1-

modified Bessel functions with the corresponding index; Jm(a)­
edll Bessel function of the real argument a= -~-. At the high fre-
(/CD 

quency limit, when WTefl»> »1 ,it follows from (6) that 

. Rej 2 1 
A (a) =-.-1 =- -_ [1_J2 (a)J 

] 51 a CDTe!t 0, 

I . . 
Bla)= ~]I ~-Jo(a)JI(a). 

1st 

( 7) 

( 8 ) 

The quantity A(a) is the dissipative component of the variable 

current and describes the absorption of the electromagnetic wave 

by the free carriers and, as follows from the definition, Ala)<! 

for any type a. B(a) makes a small addition to the displacement 

current. /1184 
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substituting (7), (8) into the parabolic equation, we obtain 

the following system of nonlinear equations with respect to the di­

mensionless amplitude a and the phase ~ 

(a2
) t + Vr (a2).~ + [~I; (a2

ffx)x + t; V.L (a~v i.CP)] + flaA (a) = 0, 

( 9) 

where 

We assume that the solution of the nonlinear parabolic equation 

with small damping has the form of a stationary plane wave with the 

amplitude a = a (0), and the phase cp=cp(O) Let us study the 

stability of the solution obtained with respect to the small oscilla­

tions. The solution of the linearized system (9) can be written in 
~~ 

the form of waves [i(Yor-ot)] , then 

(10) 

where Yo:: and Xl are the longitudinal and transverse components 

of the perturbation wave vector and SO=[_J!:,~(B(a))]1/21 . 
2vr da a <1=0(0) 

From an analysis of the expression obtained, we find that at 

v;<o and 55 <0 a plane wave is unstable with respect to the 

longitudinal perturbations with Xl =0 , and small values of 

x~1 < 41:;~1 • As is known, this instability leads to self-

modulation of the wave (its decomposition into solitons) [6] • 

If a(O) > 1, ,then from (8) 

!l sin 2a(O) 
S2 - -- ---:-:::-:---0- • (0)' , 

ltVr a (11) 

and then a plane wave with the amplitude 

;rm < a(O) < ~ (2m + I), m = 0, 1,2, ... (12) 
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decomposes into solitons. We should note that the condition a(O) > 1 

corresponds to a very strong field E> :~ . 

In the case (or, which is the same thing, the wave 

. k' E liro) h . f 2 b field 1.S very wea , 1.. e. , «ed ' t e slgn 0 So. as can e 

readily shown, is determined by the sign of VI. 
r 

At v~>O the 

solution in the form of a plane wave is stable and at v;<o the 

instability leads to self-modulation of the wave. 

The sign of v; can be determined from the dispersion equation 

of linear theory, considering the lattice as a set of linear 

oscillators with an eigenfrequency of wl and with the force J: 

k'!.c2 Q 
- =e(ro)=l:o-", ? • ro2 ro--ro; 

(13 ) 

where fO is the dielectric constant of the lattice. At w: »roj 

• Q e (00) 0 v:::::::-_> 
r ook2 e~ • 

(14) 

( l4a) 

To determine the form of the soliton, we transformed the 

system (9) by changing ~=X~vrt •• =v/ to the form 

(15 ) 

Disregarding the damping, the solution (15) can be sought 

as a function of 11=;-1Fr, Le., in the form of stationary ~ .. laves. 

/1185 

Here W is the "velocity" of a stationary wave, determined from the 

boundary conditions. It follows from the upper equatj}on of the system 

(15 ) 
a~-ai rpT]=W __ _ 

u:!. 
(16) 
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where a l is the integration constant. Substituting the expression 

obtained in the lower equation of System (15), we obtain the 

equation of the nonlinear oscillator: 

"~ ( a~ - at ) ~t 
a ll11 - w- a3 • - v~ B (a) = O. (17) 

Nultiplying it by 2a'1 and i~tegrating, considering (8) we obtain 

(18 ) 

where a 2 is a constant. The solution of Equation (18) can be 

represented in the form 

a(n) 

11=+ \~ 
.... 
a o 

da 

(ao is the initial value of the wave amplitude). 

(19 ) 

If a increases with an increase in n, we must select the 

upper sign in (19). If it decreases, we select the lower sign. 

The study of the forms of stationary waves is similar to that 

of [7]. 

Let us consider the case of a weak field a« I. Expanding the 

Bessel function in terms of the small argument, we reduce (19) to the 

form 

a~(n) da 
'1= ±. a4 1/2 

[(a + J:. ) + (\\7Z - 1;) aZ + ~ 1; a~ + WZ _I ] 
Q o 2 v' 2v 32 v a2 

r" r r 

(20) 
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At (20) is readily integrated, as a 

result of which at r/<O r we obtain the soliton equation 

4 ( I v' I )1/2 [ 112 ] 
a (11) = }/3 1 + 2W

2
; sech W2 + 21 ~~ I) '1, (21 ) 

The more general solutions of the equation '(20) describe the stationary 

periodic waves and can be expressed in terms of elliptical functions. 

There is a solution in the form of a single wave for large 

values of the wave amplitude. 

condi tions I a - ao I ~ 1 and 

To prove this, we note that when the 

ao> 1 are satisfied (18) assumes the 
ao 

form of the Equation of sin-Gordon [8] 

? -L 2!l '2 C ( ) 0ii I -, - Sill a = ao , 
avrao . (22) 

Here C(a O) is a constant. The solution of Equation (22) has the 

form 

(23) 

In particular, assuming ao = ~ (-tm + I), m = 1,2, ... at C (ao) = 0, 

we obtain the single equation 

[ ( I n I v' I ao ) 1 a (11) = 2arctg exp ± 1 2~ 11 (24) 

(the derivative a has the usual form of the soliton: 
II 

_ (a I v; I ao)I/2 [(n I v~ I ao)1/2 J) aT)- ± sech '11 
2!l 2!l 'I' 

(24a) 

It can be readily shown that the soliton solutions (21) and 

(24) are stable with respect to small perturbations. 



In conclusion, we shall make certain numerical estimates. The 

condition for the smallness of the conductivity current as compared 

with the displacement current means the following 

(25) 

Thus, the conducti vi ty current in the semiconductor wi th EO ~ 10, fl ~ 10 16 CM-3, 

d=10-5 CM and ~I~ 10-2 is small as compared with the displacement 

current at frequencies of (s)~5·1012 secl . In the region of 

these frequencies, the condition a = 1 corresponds to the field 

strength of the wave E = 3000 V/cm. 

The author would like to thank F.G. Bass for his stimulating 

discussions. 
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