General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
A Joint Program for
Agriculture and
Resources Inventory
Surveys Through
Aerospace
Remote Sensing
April 1983

EARLY WARNING AND CROP
CONDITION ASSESSMENT

THE EQUVALENCE OF THREE TECHNIQUES FOR ESTIMATING
GROUND REFLECTANCE FROM LANDSAT DIGITAL COUNT DATA

ARTHUR J. RICHARDSON
USDA-ARS
RSRU
WESLACO, TEXAS 78596

THE EQUVALENCE OF THREE
TECHNIQUES FOR ESTIMATING
GROUND REFLECTANCE
FROM LANDSAT DIGITAL COUNT DATA
(Agricultural Research Service) 11 p
Unclas
HC A02/MF 01
CSC 02G 63/43 00378
The equivalence of three separate investigations that related Landsat digital count (DC) to ground measured reflectance (R) was demonstrated. One investigator related DC data to the cos\(Z\), where \(Z\) is the solar zenith angle, for surfaces of constant \(R\). The second investigator corrected the DC data to the solar zenith angle of 39 degrees before relating to surface \(R\). Both of these investigators used Landsat 1 and 2 data from overpass dates 1972 through 1977. A third investigator calculated the relation between DC and \(R\) based on atmospheric radiative transfer theory. The equation coefficients obtained from these three investigators for all four Landsat MSS bands were shown to be equivalent although differences in ground reflectance measurement procedures have created coefficient variations among the three investigations. These relations should be useful for testing atmospheric radiative transfer theory.
THE EQUIVALENCE OF THREE TECHNIQUES
FOR ESTIMATING GROUND REFLECTANCE
FROM LANDSAT DIGITAL COUNT DATA

PRINCIPAL INVESTIGATORS

Arthur J. Richardson

APPROVED BY

Glenns O. Boatwright, Manager
Early Warning/Crop Condition Assessment Project
AgRISTARS Program

Houston, Texas
April 1983
THE EQUIVALENCE OF THREE TECHNIQUES FOR ESTIMATING GROUND REFLECTANCE FROM LANDSAT DIGITAL COUNT DATA

Arthur J. Richardson

Author is a Research Physicist with the USDA, ARS, RSRU, P. O. Box 267, Weslaco, Texas 78596

ABSTRACT

The equivalence of three separate investigations that related Landsat digital count (DC) data to ground measured reflectance (R) was demonstrated. One investigator related DC data to the cos2θ, where θ is the solar zenith angle, for surfaces of constant R. The second investigator corrected the DC data to the solar zenith angle of 39 degrees before relating to surface R. Both of these investigators used Landsat 1 and 2 data from overpass dates 1972 through 1977. A third investigator calculated the relation between DC and R based on atmospheric radiative transfer theory. The equation coefficients obtained from these three investigators for all four Landsat MSS bands were shown to be equivalent although differences in ground reflectance measurement procedures have created coefficient variations among the three investigations. These relations should be useful for testing atmospheric radiative transfer theory.
INTRODUCTION

Three recent studies have demonstrated the repetitive radiometric accuracy of the Landsat multispectral scanners (MSS) as applied to the fundamental problem of estimating ground reflectance (Kowalik et al., 1982; Richardson, 1982; and Jackson et al., 1982). The first two studies evolved simple linear equations that related ground reflectances (R), measured with hand-held radiometers, with Landsat digital count (DC) data. These data were obtained from arid locations, to minimize atmospheric and solar zenith angle (Z) effects, for all four Landsat MSS bands in the 0.5 to 1.1 μm range. Jackson's et al. (1982) approach was based on atmospheric radiative transfer theory. The objective for this paper was to demonstrate that these three different procedures produced equivalent relations between DC and R data.

EXPERIMENTAL PROCEDURE

Kowalik et al. (1982) related DC data to the cosZ for surfaces of constant reflectance over several Landsat sample dates. He obtained DC data from 10 computer compatible tapes (CCT) containing Landsat data for 12 small sites of constant ground reflectance in the Walker Lake area of Western Nevada. He used two Exotech Model 100 ERTS Radiometers to measure the corresponding ground reflectance for Landsat 1 and 2 overpass dates in 1972, 1973, and 1977.

Richardson (1982) corrected all DC data to a reference solar zenith angle of 39 degrees and to the LANDSAT 22 January 1975 to 15 July 1975 calibration period and then related the corrected DC data to surface R. Richardson obtained DC and ground reflectance data from seven published sources from Landsat 1 and 2 overpass dates in 1972, 1973, 1975, 1976, and 1977; providing 82 observations altogether.
Jackson et al. (1982) obtained relations between radiance at the top of the atmosphere and ground reflectance using atmospheric radiative theory developed by Herman and Browning (1975).

The equation coefficients obtained from these published sources comprised the basic data for this study. Equivalency was demonstrated by algebraically rearranging Kowalik's and Jackson's original equations obtained for each of the four Landsat bands to compare with Richardson's original equations by using the ratios of the slopes of each of the four equations from all approaches.

RESULTS AND DISCUSSION

The algebraic results obtained from rearranging Kowalik's original equations is shown for Landsat MSS band 7 (0.8 to 1.1 μm range). Kowalik's original relation is:

\[R7 = 2.41 + 0.315 \times 2 \times DC7 \cos Z \] \hspace{1cm} (1)

notice that Kowalik doubled the DC values in band 7. Richardson obtained corrected DCc values as follows:

\[DCc = DC \times \cos 39 \cos Z \] \hspace{1cm} (2)

so that

\[DC = DCc \times \cos Z \cos 39. \] \hspace{1cm} (3)

Thus, multiplying the slope in (1) by 2 and substituting (3) into (1) yields

\[R7 = 2.41 + 0.630 \times DCc7 \cos 39. \] \hspace{1cm} (4)

Equation (4) is further simplified since \(\cos 39 \) equals to 0.777 so that

Kowalik's et al. (1982) original equation (1) reduces to

\[R7 = 2.41 + 0.811 \times DCc7 \] \hspace{1cm} (5)
that compares to Richardson's (1982) original equation,

\[R_7 = -0.49 + 1.22D_{c7} \quad (6) \]

This same procedure was used to transform Kowalik's original equations for Landsat MSS bands 4, 5, and 6, as shown in Table 1, for comparison to Richardson's equations. The ratio of Richardson's to Kowalik's slope values \(R/K \) are shown in Table 1. These ratios show that Richardson's and Kowalik's slope coefficients differ by 21%, 11%, and 13% in Landsat MSS bands 4, 5, and 6, respectively. There is a 50% difference in band 7. Thus, Richardson's slope coefficients are greater in all four bands than Kowalik's.

The reasons for these differences in equation slopes are not clear. Both studies have used reflectance data from light and dark pumice sand located at Mono Lake, California. Richardson's reflectance data for this area was obtained by Bellew (1975) concurrently with the Landsat overpass time and are higher in all four bands than those reported by Kowalik (Table 2). This could mean that Kowalik's method of obtaining ground reflectance consistently yielded lower values than those reported by Bellew (1975). Kowalik used two radiometers; one viewed vertically upward to record the hemispherical irradiance and the other viewed downward to measure the surface radiance with a 15 degree FOV. The surface radiance was divided by the hemispherical irradiance to yield apertured reflectance. Bellew obtained bidirectional reflectance by referencing surface measured radiance to the measured radiance of Eastman white paint on aluminum. It may be that apertured reflectance will always be lower than bidirectional reflectance explaining Kowalik's lower slope values.
An example of the algebraic results obtained by rearranging Jackson's original equations is shown here for Landsat MSS band 7 (0.8 to 1.1 μm range). Jackson's et al. (1982) original equation is:

\[F_7 = 0.0015 + 0.2202R_7 + 0.00467R_7^2, \quad (7) \]

where \(F_7 \) is the ratio of radiance to irradiance at the top of a clear atmosphere detected by LANDSAT in MSS band 7 for a solar zenith angle of 45 degrees. (Units of 1/sr)

In general, the radiance (\(L_i \)), at the top of the atmosphere, is related to DCi (Richardson et al., 1980) by using calibration coefficients (\(A_i \) and \(B_i \)) and solar constant values (\(E_i \)) for each Landsat MSS band as follows:

\[D_{Ci} = (L_i - B_i)/A_i, \quad (8) \]

where \(L_i = F_iE_i \) and \(i = 4, 5, 6, \) and 7, for each Landsat MSS band. Thus, substituting equation (8) into equation (7), for \(i = 7 \), and neglecting the squared term in equation (7), yields:

\[D_{C7} = -1.61 + 0.868R_7. \quad (9) \]

Equation (9) was multiplied by \(\cos39/\cos45=1.0991 \) to convert from a solar zenith angle of 45 degrees to 39 degrees and the resulting equation solved for \(R_7 \):

\[R_7 = 1.86 + 1.05 D_{C7}, \quad (10) \]

that compares to Richardson's equation (6).
This same process was used to transform Jackson's original equations for Landsat MSS bands 4, 5, and 6, as shown in Table 1, for comparison to Richardson's equation. The ratio of Richardson's to Jackson's slope values (R/J) are also shown in Table 1. These ratios show that Richardson's and Jackson's slope values differ by 14%, 12%, 20%, and 16% for Landsat MSS bands 4, 5, 6, and 7, respectively. Thus, it appears that Richardson's slope values are higher than both Jackson's and Kowalik's. Jackson's and Kowalik's slope values (J/K) are in good agreement for bands 4, 5, and 6. There is a wide range of slope values for band 7 among all three investigators; possibly due to variation in atmospheric moisture that affects MSS band 7 more than the other MSS bands.

CONCLUSIONS

In conclusion, even though there were differences in equation slope values obtained for Kowalik's and Jackson's equations, as compared to Richardson's equation, it appears that the three approaches are probably equivalent. If ground reflectance measurements were comparable, in an absolute sense, then algebraically we should expect identical results from each approach. The radiometric accuracy of the Landsat MSS sensors are probably more repetitive than the various sources of ground reflectance measurements obtained from the three studies. Thus, it appears that the basic relations obtained by these studies are good approximations of the actual atmospheric transformations needed to convert Landsat DC to ground R for clear atmospheres. These relations, in their various algebraic forms, should be useful for testing atmospheric radiative transfer theory.
REFERENCES

Table 1 Comparison of Landsat equation \(a_0\) and \(a_1\) coefficients between Kowalik et al. (1982) and Richardson (1982). Slope ratios are computed by dividing Richardson \(a_1\) values by Kowalik \(a_1\) values \((R/K)\), Richardson by Jackson \((R/J)\), and Jackson by Kowalik \((J/K)\).

<table>
<thead>
<tr>
<th>Landsat Band</th>
<th>Kowalik's Coefficients</th>
<th>Jackson's Coefficients</th>
<th>Richardson's Coefficients</th>
<th>Slope Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(R = a_0 + a_1*DCc)</td>
<td>(R = a_0 + a_1*DCc)</td>
<td>(R = a_0 + a_1*DCc)</td>
<td>R/K</td>
</tr>
<tr>
<td></td>
<td>(a_0) (a_1)</td>
<td>(a_0) (a_1)</td>
<td>(a_0) (a_1)</td>
<td>R/J</td>
</tr>
<tr>
<td></td>
<td>0.5-0.6 -2.94 0.394</td>
<td>-1.91 0.416</td>
<td>-5.90 0.476</td>
<td>1.21 1.14 1.05</td>
</tr>
<tr>
<td></td>
<td>0.6-0.7 -2.93 0.337</td>
<td>-0.11 0.334</td>
<td>-1.94 0.373</td>
<td>1.11 1.12 0.99</td>
</tr>
<tr>
<td></td>
<td>0.7-0.8 -0.76 0.363</td>
<td>1.41 0.334</td>
<td>-1.40 0.412</td>
<td>1.13 1.20 0.95</td>
</tr>
<tr>
<td></td>
<td>0.8-1.1 2.41 0.811</td>
<td>1.86 1.05</td>
<td>-0.49 1.220</td>
<td>1.50 1.16 1.29</td>
</tr>
</tbody>
</table>

Table 2 Comparison of mean ground reflectance values obtained of dark and light pumice sand areas located at Mono Lake, California, as measured by Ballow on clear summer days of July 26, and August 6, of 1974 and by Kowalik in 1977. Kowalik measured apertured reflectance while Ballow measured bidirectional reflectance.

<table>
<thead>
<tr>
<th>Source</th>
<th>Mono Lake, California Pumice Sand Reflectance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSS4</td>
</tr>
<tr>
<td>Kowalik (Dark)</td>
<td>5.3</td>
</tr>
<tr>
<td>(Light)</td>
<td>18.1</td>
</tr>
<tr>
<td>Ballow (Dark)</td>
<td>7.6</td>
</tr>
<tr>
<td>(Light)</td>
<td>21.9</td>
</tr>
</tbody>
</table>