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Abstract

A power series expansion in the damping parameter € of the limit cycle
U(ts € ) of the free van der Pol equation U +-€(U2—1)6 +U=0 s
constructed and analyzed. Coefficients in the expansion are computed up to
0(624) in exact rational arithmetic using the symbolic manipulation system
MACSYMA and up to 0(6163) using a FORTRAN program. The series 1s analyzed
using Pade’ approximants. The convergence of the series for the maximum
amplitude of the limit cycle is 1limited by two palr of complex conjugate
singularities in the complex €-plane. A new expansion parameter is introduced
which maps these singularities to infinity and leads to a new expansion for
the amplitude which converges for all real values of €. Amplitudes computed
from this transformed serles agree very well with reported numerical and
asymptotic results. For the limit cycle {itself, convergence of the series
expansion is 1limited by three pair of complex conjugate branch point
singularities. Two pair remain fixed throughout the cycle, and correspond to
the singularities found in the maximum amplitude series, while the third pair
moves 1in the €-plane as a function of t from one of the fixed pairs to the
other. The limit cycle series is transformed using a new expansion parameter,

which leads to a new serles that converges for larger values of €.
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1) Introduction

We wish to study the limit cycle U(t;e) of the free van der Pol equation
(1.1) U+ e@-1U +U =0,
where the dots represent differentiation with respect to the independent
variable t. We shall do this by constructing and analyzing the power series
expansion of U in the damping parameter ¢, We first wish to determine some
of the analytical structure of U as a function of ¢ aﬁd, in particular, to
determine the locations of the singularities of U in the complex e—piane
which are closest to the origin and, hence, limit the radius of convergence
of the power series solution. Once the locations of these singularities
have been determined, a new expansion of U can be constructed which will
converge for larger values of e.

This work is a companion paper to some work reported previously by
Andersen and Geer [1] (henceforth referred to as I) on the power series
expansions of the frequency and period of the limit cycle of the van der
Pol equation. 1In I, the power series expansions of the frequency v of the
limit cycle U, as well as U itself, were computed up to a high number of
terms. However, in I, only the series expansion of v was analyzed in detail.

In particular, it was found that the convergence of the series for v was

limited by a pair of complex conjugate branch point singularities in the

~ +1i8
complex ez—plane. These branch points, whichwere located at 52 = Re"l%

with R ¥ 3.42 and B = 1.7925, appear to be the only singularities of v in



the finite part of the ez—plane. Hence, when a new expansion parameter was in-
troduced which mapped these singularities to infinity, the resulting expansion
converged for all real values of €. The values of the period computed from a
completed form of this new expansion compared véry well with reported numeri-
cal results, as well as with the asymptotic formula for the period valid for
large values of «¢.

In section 2 below, the problem of determining the limit cycle is formu-
lated and the method we used to compute the power series expansions of v and
U is described briefly. 1In section 3, the series for the maximum amplitude of
U, corresponding to U at t=0, is analyzed using Pade” approximants. It is found
that the convergence of the series is limited by the presence of two pair of
complex conjugate branch point singularities in the complex e¢-plane, which
correspond to the square roots of the singularities in the ez—plane found for
the frequency series. One pair of these singularities iies in the first and
fourth quadrant, while the other pair lies in the second and third quadrant.
A new expansion parameter is introduced in section 4 which leads to an ex-
pansion for the amplitude that converges for all real values of e¢. Values of
the amplitude computed from this series, and a modified version of it, are
computed and found to compare very well with reported numerical results and
also with values computed from the asymptotic formula for the amplitude wvalid
for large €.

The limit cycle itself is analyzed in section 5 using Padé approximants
for values of t between 0 and T, where T is the period of the limit cycle.
We now find that there are three pair of complex conjugate branch point singu-
larities which lie about equidistant from the origin. For all values of t,
two pair of these singularities remain fixed in the e¢-plane at the same
locations as the singularities for t=0 (i.e., for the amplitude series). At

t=0, the location of the third pair of singularities coincides with the loca-
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tion of the fixed singularities in the second and third quadrants. However, as
t increases from zero, these singularities begin to move away from the fixed
locations in the second and third quadrants toward the fixed locations in the
first and fourth quadrants. In particular, they cross the imaginary axis in
the complex e-plane when t=T/4 and arrive at the fixed locations in the first
and fourth quadrants at t=T/2. This motion of the singularities repeats itself
for T/2 < t < T. Knowledge of the location of these singularities suggests a
new expansion parameter and a transformation of the original series which will
converge for larger values of ¢. This is done in section 6, while our results

are discussed in section 7.

2) Power Series Expansion in ¢

| We construct the power series expansion of the limit cycle of the free van
der Pol equation (1.1) by first making the change of variables
(2.1) x =vt,
where v = v(e) = 21/T(e) is the (unknown) frequency of the limit cycle and T(¢)
ié its (unknown) period. We then let
(2.2) u(xse) =U(tze),
whefe u is now periodic in x with period 2m. In terms of u, equation (1.1) becomes
2.3)  vZu +ev(ui-l)u+ u =0,
where the dots now denote differentiation with respect to x. 1In addition, we
impose the phase condition that u have a maximum at x=0, i.e.,
(2.4) u(0,e) = 0, u(0,e) = A(e) > O.

We now look for solutions for v(e)i\u(x;e), and A(e) in the form

(2.5) v(e) = 1 + b ‘vjej,

j=1
(2.6). ulxze) = 8 u, (x)ed,
| =0’
(2.7) AGe) = § a.el.
, 3=0 i
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Here, each vj and aj is an unknown constant, while the unknown functions Lﬁ(x)
must be periodic with period 2m.  Substituting (2.5) and (2.6) into (2.3) and
then (2.6) and (2.7) into (2.4), we are led to a sequence of linear problems
from which the uj can be determined recursively. 1In particular, demanding
that each of the u.j is periodic in x leads to the unique determination of the

constants vj and aj (see 1, section 2, for details). In this way we find

Voisl = 89441 = 0, 1 =0,1,2,...,

while the uj(x) have the form

2i
uzi = ; UZi,k cos ((2k+1)x),
k=0
2441
Upygp = kEO u21+l,k sin((2k+1)x), 1 < 0,1,2,...,
where the uj K are certain constants.
b

Through the use of the symbolic manipulation system MACSYMA we have de-
termined the coefficients in the expansions of both v(e¢) and u(x,¢) up to
0(624) in exact rational arithmetic. The exact rational expressions for the
coefficients‘x)j are reported in I, while the first few terms in the expansions
of A(e) and u are

o 1.2 1033 4 1019689 6
(2.8) A= 2 + —¢ * 55738368000°

96° ~ 552960°

9835512276689 8

+ 15731596984 3200000°

_...58533181813182818069 10
7326141789209886720000000°

+ 0 Yy

(2.9) u = 2cosx + (%sinx - %sian)ﬁ + (—%cosx +-§ cos3x — é-cos5x)e2

16 96
7 21 . 35 7 . 3
+ Q-Eggs1nx + 53331n3x - 37631n5x + 37331n7x)e
¢ 73 47 1085 2149 61 4
T 12288°05% ~ T53gC083% *+ 577 gC0SSX — J7aEgyCeosTX + Sargncosdx)e

+0(e?).
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We then constructed a FORTRAN program (using floating-point arithmetic) which

163). (See I,

evaluated the various coefficients up to terms which are 0(e
section 2, for some details which expedited the computations.) In particular

the coefficients a computed from this program are listed in floating

02397+ +s3gg
point form in Table I.

Using some of the same ideas as in I for the frequency series, we now wish
to investigate the convergence of the series (2.6) and (2.7). In particular,
we wish to determine the location of the singularities of u(x,e¢) in the com-

plex e-plane which are closest to the origin, and, hence, which limit the

convergence of these series.

3) Analysis of th? Amplitude Series

We begin our analysis of the limit cycle by considering the series for the
maximum amplitude A(e¢). Using the phase condition (2.4), it follows that
A(e) = u(03¢), or

s 23 -
(3.1) A(e)gzo a2j€ , where a2j = u2j(0)'

Values of A(e) determined by (3.1) for ¢ between 0 and about 2 are indicated by
the dotted line in Fig. 1. Clearly, the series diverges for ¢ close to 2. The
root test on the coefficients azj provides the estimate that the radius of con-
vergence R of the series (3.1) is approximately 1.86.

In order to investigate the convergence of the amplitude series more
closely, a sequence of [N/NJ] Padé approximants were constructed from the Taylor
series expansion (3.1) for N = 20,24,28,...,64. The location of the zeros and
poles of the approximants in the complex ¢-plane were determined for each value
of N. Since A(e) is a real function of ¢, any of the zeros or poles which did
not lie on the real axis had to appear in complex conjugate pairs. 1In Fig. 2,

we have shown the location of the zeros and poles for the [48/48] Padé



approximant which lie in the upper half «-plane. The pattern of nearly over-
Lapping zeros and poles In Fig., 2 is similar to the pattern observed in the
analysis of the serdes for v(¢) in I and indicates the presence bf two pair
of branch point singularities located at

(3.2) ¢ =R e B R w185,

QO o (o]

02

0.8770.

Thus, we see that the convergence of the series (3.1) is limited by the
presence of two pair of complex conjugate singularities located (approximately)
at the points indicated by (3.2). These singularities also provide an estimate
of the radius of convergence Ro, which is consistent with the estimate obtained
from the root test. We note that these singularities are very close to (most

probably equal to) the singularities found in the series expansion of Vv (e)

~ +1i8
in I. (In I, the singularities of v(e¢) were found in the form 62 = Re~lB, or
"’1/25 iiB/z . 1/2'2' 1/2'3 D o~ _
= *R%e , with R & (3.42)° = 1,849 and B/2 = 1.7925/2 = 0.89625. These

values are close to those given in (3.2).) 1In Fig. 1, we have indicated by
the solid line the amplitude predicted by the [48/48] Padé approximant for
values of ¢ between 0 and 9 . We note that the Padé approximant agrees well
with the series (3.1), where it converges, and also agrees well with some
values for the amplitude computed by purely numerical methods. (These

numerical methods will be discussed in more detail in the next section).

4) Transformation of the Amplitude Series

We can now use the information obtained in the previous section to in-
troduce a new expansion parameter which will lead to a new series representa-
tion for A(e), which will converge for larger values of ¢. To do this, we
introduce a new expansion parameter § = §(¢), defined by the transformation

(4.1) §(e) = < 7
{R4—2R2€2COSZB +e4}1
O (o] (o]

where R.O and Bo are given (approximately) by (3.2). The transformation (4.1)
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has the properties that the origin remains fixed (i.e., 6(0) = 0), the singu-
larities ineiiBO in the e¢-plane are mapped to infinity in the complex S-~plane
(i.e., IS(ineiiBO)l = ©), and the real axis in the e-plane is mapped onto the
portion of the real axis in the 8-plane between -1 and +1 (in particular, as
€ >+ o § >+ 1. In addition, it is a simple task to invert the transfor-
mation (4.1) to express e as a function of §.

Using the definition (4.1), we recast the series (3.1) for A(e) into a

series in powers of § of the form

0 [e o]
4.2) A = T ayed = I G087

j=0 “J §=0 J
where the new coefficients Ezj can be expressed in terms of the coefficients
a2j and the transformation (4.1) in a straightforward manner. Since the

singularities at tRbeiiBO appear to be the only singularities of A(e¢) in the
finite part of the e¢-plane, we expect that the series (4.2) will converge for
ail values of § with |§|<l. On the other hand, since A(e) has an essential
singularity at ¢ equal to infinity (see [2], for example), we would not ex-—
pect the series (4.2) to converge for values of § with |6|>1.

To investigate this point quantitatively, we performed a Padé analysis

on the series (4.2) using the coefficients & The zeros and poles of the

23
Padé approximants again formed patterns indicating branch point singularities
(in the complex e-plane), this time lying on the real and imaginary axes at
distances from the origin slightly greater than one. (For example, for the
[48/48] approximant, the closest zero-pole pair was on the imaginary axis

at a distance of 1.015 from the origin.) Thus, it appears that the radius

of convergence for the series A(8) is nearly one. The root test on the co-
efficients 52j gives a result consistent with the value of one. We have

used the series (4.2) to compute values of A for selected values of ¢ between

1 and 100, which correspond to values of ¢ for which good numerical results
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are available (see,‘e.g., Zonneveld [7]). The results are presented in the
third and fourth columns of Table II and show that the series (4.2) agrees
well with the numerical results, with a maximum error of about 0.797 at
€ = 100. In Figure 3, we have plotted A(S8) using (4.2) (dotted line) for
§ close to one. Note that the vertical scale in Fig. 3 is 100(A-2), and,
hence, the agreement between A(S) and the numerical results is better than
might be indicated at first glance.

We can now use some information about the asymptotic behavior of the
amplitude as € = « to improve the convergence of our series for A(S) near
§ =1 (i.e., for large values of €). As € > ®, we know (see [5], for ex-

ample) that

a —4/3 _ 16 loge . 8/3

- 16 dean. - -2

(4.3) A=2 3€ Y 9(38 1 + 2log2 8log3)e + 0( Y,
where o =-2.3381 is the highest zero of the Airy function and B = 0.1723.
Since § = 1 + Ce_2 + 0(6—4), as € + o, the form of (4.3) suggests that we
write A(S) as

© ,
(4.4) AG) = 2+ (1-62)2/3 § by, 879,

. |

j=0
where the constants b2j can be determined from the coefficients 52j' We note

that the representation (4.4) has the properties that A = 2 when § = 0 or

§ =1 (i.e., when ¢ = 0 or € = ©) and also that, as § - 1, or € - ®, the

asymptotic form of (4.4) agrees with the form of the first two terms in (4.3).
Amplitudes computed from (4.4) are listed in the fifth column of Table

I1 for values of ¢ between 1 and 100. We see that, for values of ¢ greater

than 8, the series (4.4) agrees more closely with the numerical results than

does the series (4.2). In Table III we have compared values of the amplitude

computed from the series (4.2) and (4.4) with the four term asymptotic formu-

la (4.3) for A(¢). The differences between the amplitudes computed from (4.2)

and the asymptotic formula (4.3) steadily increase as ¢ increases, approaching

a maximum error of about 0.85% at infinity. However, when (4.4) is used,
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these differences steadily decrease, the agreement being perfect (by design)
at § =1 (i.e., infinite ¢). 1In Figure 3, we have also plotted the values of
100(A-2) using (4.4). Again; the close agreement as § - 1 among the values
for the amplitude computed from (4.4), (4.3), and the numerical results can

be clearly seen.

5) Analysis of the Limit Cycle Series

We now investigate the convergence of the limit cycle series (2.6) for
values of x between 0 and 7. (Since each uk(x+ﬂ) = —uk(x) for all x, the be-
havior of the convergence of the series for x between 7 and 2T will be the
same as the behavior for x between 0 and m). In Figure 4, we show the phase
plane plots of the limit cycle, using the first 100 terms in (2.6) for ¢ = 0,
.0, 1.5, and 1.6. The plots for ¢ = 1.0 and 1.5 are smooth and agree very
‘'well with similar plots computed by purely numerical means. However, for
¢ = 1.6, we notice that, while most of the cycle is smooth and, in fact, agrees
very well with the true cycle, portions of the curve in the second and fourth
quadrant have developed oscillations which are not present in the actual limit
cycle. These oscillations become more pronounced as ¢ is slowly increased
above 1.6, although certain portions of the curve still remain smooth. For
e = 1.8, however, the limit cycle computed from (2.6) is completely meaningless.

The non-uniform behavior of the convergence of the series representation
of the limit cycle suggests that its radius of convergence may vary with x.
In particular, the portions of the phase plane plots where the (artificial)
oscillations appear correspond to values of x near 7w/2 and 3r/2. This suggests
that the radius of convergence of (2.6) may be somewhat smaller for values of
X near T/2 and 31m/2 than for other values of x.

In order to investigate this behavior more carefully, we performed a Padé

analysis on the coefficients tﬁ(x) for values of x between 0 and 7, in increments



-11-

of 7/50. For values of x between 0 and about 7/4, the analysis indicated the
presence of only the same two pair of complex conjugate branch points which
were present for the amplitude series, i.e., for x = 0 (see Figure 2). In
Figure 5, (a) and (b), we show the location of the zeros and poles of the
[24/24] Padé approximant which lie in the upper half complex plane for x = /50
and x = 137/50. As x was increased to values greater than m/4, however,
something quite different and very interesting happened. It appears that, as
X increases above 7/4, a "new" singularity leaves its position in the second
quadrant and moves toward the imaginary axis. In Figures 5 (c) and (d) we
show the zeros and poles of the [24/24] Padé approximant for x = 187w/50 and
x = 241/50, which clearly indicate the presence of this '"moving singularity",
while also indicating that there is still a singularity which remains fixed
in the second quadrant. At x = 7/2, the moving singularity crosses the
imaginary axis. As x increases above 1/2, the moving singularity enters the
first quadrant, and moves toward the position of the "fixed singularity" in
that quadrant. At about x = 3m/4, it appears to coalesce (at least approxi-
mately) with the fixed singularity and remains there for x between 37/4 and
m. As x varies between T and 27, the phenomena described above exactly re-
peats itself, with a singularity again moving from the second to the first
quadrant. Of course, a similar phenomenon is happening simultaneously in the
lower half plane.

Thus, it appears that the limit cycle series (2.6) has three pairs of com-
plex conjugate singularities in the complex e-plane, two pairs remaining fixed
as x varies, while the third pair moves as a function of x. We have illustrated
this schematically in Figure 6, indicating in the upper half complex e¥plane the
location of the fixed singularities and also the approximate location of the
moving singularity for various values of x.

From a knowledge of the locatiom of these singularities, we can estimate

N\
\
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the radius of convergence R of the series (2.6). In particular, éhe radius of
convergence will be just the distance from the origin to the closé%t singulari-
ty. For 0 < x < m/4 and %?'S X < m, when the moving singularity coincides (at
least approximately) with the fixed singularities, the Padé analysis gives
R & 1.85. However, for m/4 < x < 3mw/4, the moving singularity becomes the
dominant singularity, moving closer to the origin than the fixed singularities.
Thus, R decreases for m/4 < x < 7/2, reaching a minimum of about 1.65 at
x = /2, and then increases to about 1.85 at x = 3n/4. (We compared the values
for R we obtained from the Padé analysis with values of R computed using the
root test and found the results to be consistent.) We have plotted R as a
function of x in Figure 7 (a). As mentioned earlier, the smaller radius of
convergence of the series (2.6) for x near T/2 accounts for the presence of
the oscillations in certain portions of the phase plane plots in Figure 4.
In particular, for € = 1.6 (Figure 4 (d)), the oscillations occur for values
of x near m/2 (and 3m/2), indicating that this value of ¢ is close to the
radius of convergence in this region. However, for x not near /2 or 3m/2,
e = 1.6 is far enough from the radius of convergence to render the first 100
terms in (2.6) (used to calculate the plots in Figure 4) a good approximation
to the true solution.

In Figure 7 (b) we have plotted the angle B as a function of x. Here
R is the angle which the moving singularity makes with the positive real axis.
Although we have not been able to determine with any great certainty what the
moving singularity is '"doing" for 0 < x < m/4, there is some evidence that it
-may possibly be spiraling out from ifs location at x = 0. One piece of evidence
to support this conjecture is the little "bump" in Figure 7 (b) near x = 1/4,
as well as smaller oscillations for x < /4 which are too small to show up on
the figure. Similar, but less pronounced, oscillations OCCur>near x = mw/4 in

the plot of R(x). Of course, similar oscillations occur near x = 37/4,
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indicating that the singularity may spiral into its location at x = T in the
first quadrant. However, since we are dealing with very small oscillations
and since we have two pairs of singularities coalescing, our numerical results
are not accurate or stable enough to make any definite statement about this

conjecture,

6) Transformation of the Limit Cycle Series

Using our knowledge of the location of singularities of the limit cycle
in the complex e-plane, it is possible to introduce a new expansion parameter
which will allow us to recast the original.series (2.6) into a form which will
converge for larger values of ¢. To do this, we let ¢ = ineiiBO be the loca-
tions of the fixed singularities and ¢ = ReiiB be the locations of the moving
singularities. Here RO = 1,85 and Bo = 00,8970, while R and B are functions of

x, as indicated in Figure 7. If we now define

(6.1) w = w(e) €
{(Rg - 2R§cos 28062 + 64)(R2 - 2Rcos B + 62)}

1/6

we see that w(0) = 0, le > 1 as Iel ~ o, and le ~+®©as € approaches any one

of the six singularities of u. Using (6.1) we can recast (2.6) into the form

[} w ]
u.(x)eJ = 7 ﬁ.(x)wJ,
J 520 3

(6.2) u(xze) = %
J:

0
where the functions ﬁj can be determined in a straightforward manner. We
performed a root test on the coefficients ﬁj for values of x between 0 and
7 and found in each case an estimated radius of convergence very close to
one. We also performed a Padé analysis of the coefficients ﬁj and found
again a constant radius of convergence very close to one. In particular,

for each value of x, the Padé analysis indicated singularities of u in the
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complex w~plane very near w = *1. These singularities are related, of course,
to the essential singularity of u at ¢ equal to infinity.

To obtain some phase plane plots using the transformed series (6.2), we
found it more convenient to use a transformation which is simpler (but less
accurate) than (6.1). (For practical computations, the use of (6.1) requires
the recomputation of the series coefficients ﬁj for each value of x used,
since R and B, and hence w(e), depend on x.) Instead of (6.1), we used the
transformation

€

4 2 2 4 2
{(R0 - 2Rbcos ZBoe + e )(R.m + ¢

~

(6.3) w=w(e) =

2)}1/6

where R.m = min R(x) = 1.65. Here w has the same mapping properties as w, except
that it maps the moving singularity to infinity only when it is closest to the
origin, i.e., when x = /2. Thus, the region in the e-plane containing the
singularities is mapped out away from the origin, but not all the way to infini-
ty. The advantage of (6.3), of course, is that it is independent of x and needs
to be inverted only once during the computations to express e€ as a function
of w.

Using (6.3), we recast the series (2.6) into a form similar to (6.2), with

3

w replaced by w. A Padé analysis of this transformed series revealed that it
/
has a minimum radius of convergence of about 0.953, which corresponds to a

radius of convergence in the e-plane of about 3.97. In Figure'8, we show the

phase plane plots of u using this transformed series for € = 1.65 and ¢ = 3.5.

7) Discussion
The method of analysis we have presented here is an interesting combination
of the methods of regular perturbation analysis and classical analysis, with

both symbolic and numerical computatioh used to carry out the details of the
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methods. As we mentioned in I, the importance of the role of symbdlic computa-
{

tions in this analysis should not be underestimated. Among other a%vantages, it
allowed us to find certain patterns and forms of the solutions whicﬁ greatly
facilitated the construction of an efficient numerical FORTRAN program to carry
the computations further. Also, the coefficients in the various expansions
obtained by symbolic computation, being in exact rational number form, allowed
us not only to check the results of our FORTRAN program but also to estimate

the magnitude and effects of roundoff errors in our numerical computations.

As far as the prac;ical application of our results is concerned, it is
interesting to note that we have been able to present formulas for the fre-
quency and limit cycle function, valid for large values of ¢, by knowing only
the approximate locations of the singularities of the functions involved. In
particular, we have obtained our results without having to investigate the
nature (or type) of the singularities that occur (e.g., we have not had to
determine whether we have an algebraic or logarithmic singularity or a singu-
larity of some other kind). 1In this sense, the methods we have used are
quite powerful, especially in that all we really needed to know to make them
work was a knowledge of the approximate location of the singularities, and
not their exact location. It is interesting to point out, however, that the
location of the singularities for this problem, being off the feal axis, is
in sharp contrast to the location of the singularities for "most" other
physical problems which have been analyzed by similar methods (see e.g., Van
Dyke [61]).

s far as the nature of the Singularities is concerned, however, we have
applied the method of analysis given by Hunter and Guerrieri [3] to the fre-
quency series we developed in I and to the maximum amplitude series u(0:e),
discussed in sections 3 and 4, which were both essentially series in powers

of ez. The result of this analysis indicated that the singularities in
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these cases are algebraic singularities with an exponent of +3, i.e., square
root singularities. However, the method of [3] does not work well when more
than one pair of complex conjugate singularities are about at equal distance
from the origin, as in the case of the series (2.6) for x > 0, and hence we

have no definite knowledge of the nature of the singularities for u when x > O.
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Figure Captions

Caption

Maximum amplitudes A(c) of the limit cycle calculated
from (3.1) (dotted line) and the [48/48] Padé approximant
(solid 1ine) for 0 < € <9 . The heavy dots are the
values of amplitude computed using purely numerical
methods by Zonnerfeld [71].

The zeros (dots) and poles (x's) in the upper half
complex e-plane of the [48/48] Padé approximént to

the amplitude series A(e) in (3.1). The distance of
the singularities from the origin is denoted by R.o

and the angle of the singularity, measured from the
positive real axis; is denoted by BO. Here R0 = 1.85
and Bo = 0.8970.

Amplitudes A(e) computed using the transformed series
(4.2) (dotted line), the series (4.4) (dashed line),

and the asymptotic formula (4.3) (light dashed line), all
expressed as functions of § given by (4.1). The
numerical results of Zonnerfeld [7] are indicated by the
heavy dashed line.

Phase plane plots for the limit cycle u(x,t) computed
using the first 100 ﬁerms of the series (2.6) with

e =0 (a), e =1 (), ¢e =15 (c), and € = 1.6 (d).

The location of the zeros (dofs) and poles (x's) in

the upper half complex e-plane of the [24/24] Padé

m/50 (a),

approximant to the series (2.6) for x

x = 131/50 (b), x = 181/50 (c), and x = 247/50 (d).
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Caption
Schematic diagram of the upper half complex e-plane
indicating the location of the fixed singularities
(*) and the path faken by the moving singularity as
x varies between 0 and 7. The heavy dotted line in-
dicates a portibn df‘a circle about the origin, of
radius Rb’ which correspon&s to the radius of con-
vergence of the series (2.6) at x = 0,
Plots of the distance R = R(x) of the distance of the
moving singularity from the origin (a) and the angle
B = B(x) the singuiarify makes with the positive real
axis (b) as functions of x for 0 < x < 7.
Phase plane plots of the limit cycle of the Van der
Pol oscillator using the transformed series (6.2),

with w replaced by w given in (6.3), for ¢ = 1.65

(a) and ¢ = 3.5 (b).
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€ Y Aﬂngitgzé anmplitudes from (4,2) amplitudes from (4.4)
1 0.51334687 2.00862 2.00861986 ( 0.0000) 2.008619%6 { 0.0000)
2 0.82838459 2.01989 2.019890138 ( 0.0n001) 2.01939138 ( 0.0001)
3 0.93362980 2.02330 2.02330520 ( 0.0003) 2.02329950 ( 0.0000)
4 0.96740216 2.02296 2.02302754 ( 0.0033) 2.02277836 { 0.0090)
5 N0.98093575 2.02151 2.02189578 { 0.0101) 2.02072554 { 0.0388)
6 0.98751267 2.01983 2.02083574 ( 0.0498) 2.01R27716 ( 0.07R/0)
7 0.99117650 2.01822 2.02001617 ( 0.0890) 2.01597957 ( 0.1110)
8 0.99342421 2.01675 2.01940835 ( 0.1318) 2.01399777 { 0.1365)
9 0.99490355 2.01544 2.n1895729 ( 0.1745) 2.01233709 ( 0.1540)
10 0.29593011 2.01429 2.01861788 ( 0.2149) 2.01095469 ( 0.1656)
11 0.99667240 2.01326 2.01835800 ( 0.2532) 2.00980079 ( 0.1718)
12 0.99722702 2.01236 2.01815547 ( 0.2880) . 2.00”83125 ( 0.1754)
13 N.99765264 2.01156 2.01792502 { 0.3199) 2.0n801004 ( 0.1765)
14 0.99798658 2.01084 2.01786599 ( 0.3494) 2.0n73n865 ( 0.1756)
15 0.992825355 2.01020 2.01776079 { 0.37A1) 2.00670472 ( 0.1739)
16 0.99847042 2.00962 2.01767398 ( 0.4008) 2.00618069 ( 0.1711)
17 0.99864904 2.00090n¢9 2.01760155 ( 0.4237) 2.00572273 ( 0.1676)
18 0.99879794 2.00862 2.01754053 ( 0.4441) 2.00531985 { 0.1643)
19 0.99892340 2.N00819 2.01748865 { 0.4630) 2.00496326 ( 0.1607)
20 0.99203011 2.00779 2.01744419 ( 0.4808) 2.00464585 ( 0.1566)
30 0.99957293 2.00516 2.01721316 ( 0.6011) 2.00273757 ( 0.1208)
40 0.999760506 2.0037¢ 2.01713138 ( 0,6A58) 2.00187300 ( 0.0957)
50 0.99984699 2.00296 2.01700337 ( 0,7056) 2.00132359 ( 0.0782)
60 0.9°98293833 -2.00240 2.01707268% ( 0.7328) 2.00109396 ( 0.0652)
70 0.99002204 2.00201 2.0170601¢ ( 0.7518) 2.00089125 ( 0.0559)
a0 0.99994033 2.00172 2.01705207 { 0.7659) 2.00074619 ( 0.0486)
an 0.99995286 2.00150 2.01704651 ( 0.7767) 2.00063792 ( 0.0431)
100 0.99996183 2.00132 2.01704253 ( 0.7856) 2.00055442 ( 0.0383)

— 0€...

Table II

Comparison of the amplitudes computed from equations (4.2) and
with the numerical amplitudes reported by Zonnerfeld 7 .

(4ad)
The percentage
differences are enclosed in parentheses,



€ Y ﬁgﬁ%gﬁég amplitudes from (4,2) amplitudes from (4, l4)
10 0.90593011 2.N01421561 2.01861788 ( N.2186) 2.01095469 ( 0.1619)
20 0.99903011 2.007839034 2.01744419 ( 0.4784) 2.00464585 ( 0.1591)
30 0.99957293 2.00519750 2.01721316 ( 0.5992) 2.00273757 ( 0.1227)
40 0.99976056 2.00381131 2.01713138 ( 0.6647) 2.00187300 { 0.0967)
50 0.99984699 2.00207119 2.01709337 ( 0.7051) 2.00139359 ( 0.0788)
60 0.999802383 2.00241306 2.01707268 ( 0.7321) 2.00109396 { 0.0659)
70 0.92992204 2.00201806 2.01706019 ( 0.7513) 2.00089125 ( 0.0563)
RO 0.99994033 2.00172529 2.01705207 ( 0.7657) 2.00074619 ( 1.0489)
an 0.99995286 2.00150050 2.01704651 ( 0.7767) 2.n0063792 ( 0.0431)
100 0.99996183 2.00132306 2.01704253 { 0.7R55) 2.00055442 ( 0.0384)
500 0.99999847 2.00017833 2.01702623 ( 0.8423) 2.00006490 ( 0.0057)
1000 0.999909962 2.00007301 2.01702572 ( 0.8476) 2.00002575 ( 0.0024)
10000 1.00000000 2.00000355 2.01702555 ( 0.8511) 2.00000120 ( 0.0001)
INF. 1.00000000 2.00000000 2.01702555 ( 0.8513) 2.00000000 ( 0.0 )
Table III

with the asymptotic formula

enclosed in parentheses,

Comparison of the amplitudgi computed from equations
(4a3) .

(L.2)

and

oy

The percentage differences are

_.Ig_
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