
SOFTWARE ENGINEERING LABORATORY SERIES SEL-82-005
II

NASA-TM-85395 19830024083

GLOSSARY OF
SOFTWARE ENGINEERING

LABORATORY TERMS

DECEMBER 1982

LANGLEY RFSEAR:?,- CENTER
LI _.P..ARY,NASA

HAM'3TONL VIRG[N[A

, ,
Nat,onat Aeronaut,cs and
SpaceA0m_ntstrat_on

Goddard Space Flight Center
Greenbelt. Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-82-005

GLOSSARY OF
SOFTWARE ENGINEERING

LABORATORY TERMS

_ DECEMBER1982

NA.S/_
NateonalAeronautics and

: Space Adm_n_stratzon

Goddard Space Flight Center
r- Greenbelt. k,laryland 20771
!

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space

Administration/Goddard Space Flight Center (NASA/GSFC) and

created for the purpose of investigating the effectiveness

of software engineering technologies when applied to the

development of applications software. The SEL was created

in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (i) to understand the software

development process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this prQcess; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of re-

ports that includes this document. A version of this docu-

ment was also issued as Computer Sciences Corporation

document CSC/TM-82/6214.

The contributors to this document include

_ Michael Rohleder (Computer Sciences Corporation)
Frank McGarry (Goddard Space Flight Center)
Jerry Page (Computer Sciences Corporation)
David Card (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 582.1

NASA/GSFC
_ Greenbelt, Md. 20771

ii

9024

ABSTRACT

This document is a glossary of terms used in the Software

Engineering Laboratory (SEL). The terms are defined within

the context of the software development environment for

flight dynamics at Goddard Space Flight Center. The intent

of this document is to provide a concise reference for

clarifying and understanding the language employed in SEL

documents and data collection forms.

,-- iii

9024

TABLE OF CONTENTS

Section 1 - Introduction................ i-i

Section 2 - Software EngineeringTerms......... 2-1

Section 3 - Acronyms.................. 3-1

Bibliography of SEL Literature

J

_- iv
i

9024

SECTION 1 - INTRODUCTION

The glossary of Software Engineering Laboratory (SEL) terms

presents a comprehensive collection of frequently used soft-

ware engineering terms and expressions. Its objectives are

to

• Provide a reference for clarifying the language of

SEL documents and data collection forms

• Establish standard definitions for use by SEL per-

sonnel

• Explain basic software engineering concepts

The defintions provided for the terms in this document are

the local (SEL) usages and have been compiled from many

sources: SEL personnel, software engineering literature,

and publications of computer software terminology.

J
i-i

9024i

SECTION 2 - SOFTWARE ENGINEERING TERMS

acceptance testing Independent testing to verify accept-
ance criteria for program certifica-
tion. The software pass/fail criteria
are predetermined. Failure to meet

-- all criteria causes rejection of the
i _ftware product.

adaptability A measure of the ease with which a
program can be altered to fit differ-
ing user and system constraints.

, adjusted lines of All new code plus 20 percent of the re-
code used code, minus 50 percent estimated

as the amount of comment lines, minus
10 percent estimated as the amount of
nonexecutable statements. This meas-
ure is an estimate of the number of
executable lines of code developed.

algorithm A prescribed set of well-defined rules
or processes for the solution of a
problem.

; analyzer Computer software used as a tool that
is applied to a program to provide

analytical information; it breaks the
program into identifiable segments and
reports statistical information. This
information can include execution

-- frequency statistics, program path
; analysis, and/or source code syntax

analysis.

archive Process involving the transfer of data
or information from one source or vol-
ume to another to provide a backup or
alternate copy of the information for
future use.

argument Variable or expression passed to an
-- operation or function as input or out-

put.

array An ordered group or collection of
-- variables, terms, or expressions. An

array is usually dimensioned (or in-
dexed).

-- assemble As done by an assembler.

_- 2-1

i

9024

assignment An expression or instruction used to
• statement assign values to specified variables

or symbols. Includes all statements
that change the value of a variable as
their main purpose (for example, read
statements). However, the assignment
of the iteration counter in a DO

statement is not included.
i

attribute list A compiler-generated list of the iden-
tifiers used by a program. It de-
scribes the characteristics of those
identifiers and shows the source

statements where they are defined (or
used) and the (relative) storage loca-
tions of variables.

baseline diagram A hierarchical graph of a software
design listing all components in the

• system. A connection from a higher
component to a lower one indicates
that the higher component calls the
lower one.

batch Mode of operation of a computer in
which the entire job is read into the

i machine before processing begins and
in which there is no provision for
interaction with the submitter during
execution of the job.

block diagram A diagram of a system or computer in
-- which the principal parts are repre-

sented by geometrical figures that
show both the basic functions and the

functional relationships among the
parts.

bug An error in the design or implementa-

-- tion of a program. One or more soft-
ware bugs exist in a system if a
software change is required to meet

-- specified or implied system perform-

i ance requirements.
build A functional subset of a more complex

software development product. The
"builds" approach to software develop-
ment consists of developing a series
of increasingly complete functional
systems.

i

2-2
r--
I
i 9024

business and Software or software system components
financial related to some accounting, finance,
applications or business data maintenance and re-

porting.
calibrationerror An error in the gauge or tolerance of

specifications.

certification test A formal demonstration to the customer
; showing that requirements have been

met.

_ change A modification to requirements, de-
sign, code, or documentationmade to
correct an error, improv9 system per-
formance, add capability, improve ap-
pearance, or Implement a requirements
change.

clerical error An error made in the process of copy-
ing an item from one format to another
or fromone mediumto another,which
involves no interpretation or semantic
translation.

code A symbolic representation of a func-
tion composed of computer program
statements.

code and unit test Life cycle phase in which code is
developed or modified to meet design
specifications. Each module (or unit)
is integratedinto the system and

_-- tested to ensure that the newly added
capabilities function correctly.

code reading Inspection of the source code by per-
sons other than the creator of the

code in an attempt to detect errors.

coding The generation of a symbolic represen-
tation of a function that can be exe-

cuted by a computer.

command/control A class of software including programs
used either to generate vehicle com-
mands or to transmit these commands
from the control center.

compile To translate a computer program ex-
pressed in a problem-oriented human
readable language into a computer-
oriented, machine executable language.
This includes the function of an as-
sembler. However, some compilers pro-
duce assembler rather than machine

T code.

2-3

9024

complexity A measureof the difficultyof imple-
mentingor understanding a component,
independent of the implementor's ex-
perience; for example, the degree of
interactions and number of dependen-
cies among elements of a computer pro-
gram.

component A named piece of a system; for
example, a separately compilable func-
tion, a functional subsystem, or a
shared section of data such as a
COMMON block.

computer The relationships between the parts of
architecture a computer system; the structural and

functional definition of a computer as
viewed in terms of its machine in-
struction set and input/output cap-
abilities.

confidence level The probability that a given statement
-- is correct; i00 percent means that the

statement is invariably true.

configuration A methodology for controlling the con-
control tents of a software system; a way of

monitoring the status of system com-
ponents, preserving the integrity of
released and developing versions of a
software system, and controlling the
effects of changes throughout the sys-
tem.

configuration All activities related to controlling
management the contents of a software system:

monitoring the status of system com-
ponents, preserving the integrity of
released and developing versions of a
system, and controlling the effects of
changes throughout the system.

control statement A statement that potentially alters
-- the sequence of executed instructions
I (for example, GOTO, IF, RETURN, DO).

control structure A recurrent pattern of control state-
ments (for example, sequence, itera-
tion, selection).

convention An agreed-upon method, notation, or
form of presentation.

J
correction A change made to correct an error.

v
2-4

9024

cosmetic change A change in the source program made to
i improve clarity that has little effect

on the performance of the program; for
example, comment correction, movement
of code that does not alter the imple-
mented algorithm, or changing the name
of a local variable.

cost estimation Prediction of the amount of labor
necessary to complete a task, the
amount and potential costs of computer
time required, etc., before and during
a project's life cycle.

cost effective A termused to describea process
deemed to perform a task correctly and
completely with a minimum waste of
resources.

costing technique A method for determining the cost of
developing a system or any particular
part of a system.

criticality A measure of the degree of dependence
of the whole on a part of a system.

data A series or collection of measurements.

data base A set of data files that are logically
related. An organized system of stor-
ing data.

i data collection The methods (that is, forms, proce-
dures, personnel) for collecting meas-
urements.

i data definition A special-purpose language used to de-
language fine data items in a data base and to

create a data dictionary.

I data dictionary A file that describes the format of
fields, values, and records in a data

_- base. .
i

data processing A class of software whose primary
function is the movement, formatting,
and storage of data.

data set A physical data storage location,
usually magnetic tape or disk.

data structure The logical relationship among the
units of data in a data base.

data type A set of attributes used to define a
data item.

2-5

-- 9024

data validation The process of verifying the complete-
ness and accuracy of data.

data base management A software system for managing a data
system (DBMS) base, usually consisting of a data

definition language and a data access
language.

debugging The process of locating and correcting
software errors.

design A description of what a system must
do, its components, the interfaces
among those components, and the sys-
tem's interfaces with the external
environment.

design language A symbolic representation of a design,
usually input to an analyzer program
to detect errors and ambiguities.

design phase The life cycle phase in which the
structure of a system is planned and
recorded.

design phase, The specification of major functional
preliminary subsystems, input/output interfaces,

processing modes, and implementation
strategy. The software system archi-
tecture is defined, based on the re-
quirements given in the functional
specification and requirements
document, and translated into software
requirements in the requirements anal-
ysis summary report.

design phase, The extension of the system architec-
detailed ture defined in the preliminary design

phase to the subroutine level. The
preliminary design is elaborated by
successive refinement techniques to

- produce a "code-to" specification for
the system.

design reading Inspection of the design by persons
other than the creator of the design.

design review A formal meeting between customer and
developer to determine that a proposed
software configuration will satisfy
performance specifications.

design specification A document containing the approved

! design requirements for a program.

J
2-6

9024

design verification The formal examination or inspection
-- of a software specification for the

purpose of finding design errors and
ambiguities.

development phase The development and recording of code
and inline comments based on the de-
sign. Includes the modification of

code caused by design changes or er-
rors found in testing. (See code and
unit test.)

-- developed lines of The total number of new lines of source
code code plus 20 percent of reused code.

discrepancy The difference between the intention

! of a specification and its actual
implementation.

documentation Written material, other than source
code statements, that describes a sys-
tem or any of its components.

driver A software component developed specif-
ically to call other components; used
in an informal testing technique dur-
ing the implementation phase.

dynamic allocation The allocation of memory required by
an operating program during its execu-

-- tion phase rather than prior to execu-
tion.

effectiveness The degree to which a system can suc-

-- cessfully meet an operational demand
within a given time when operated
under specified conditions.

efficiency The ratio of useful work performed to
the total energy expended. Code is
efficient to the extent that it ful-

-- fills its purpose without wasting re-
sources.

effort The amount of resources, including
manpower and computer time, necessary
to complete a particular project;
total energy expended.

element A basic segment of a named piece of a
i system (component).

end date The date that a phase is scheduled to
_ be completed.
I
r'--
I

2-7

9024

embedded system A dedicated computer system that is
physically incorporated into a larger
system whose primary function is not
data processing, for example, an elec-
tromechanical system.

environment The combination of all external or
extrinsic conditions that affect the
operation of an entity. The combina-
tion of hardware and software used to
maintain and execute the software,
including the computer on which the
software executes, the operating sys-
tem for that computer, support libra-
ries, text editors, compiler, etc.

error An internal condition that prevents a
software system from successfully per-
forming its intended function. (See
calibration error, clerical error.)

error analysis The examination of errors with the
purpose of tracing them to their
sources and determining their effects.

error recovery The ability of a system to resume
processing rather than abort after an
error.

estimation parameter Any estimator or contributing factor
to the process of estimation.

executable statement Statement that changes the value of

data or the state of a program.
execution Performance by a computer of the in-

structions in a program.

execution time The actual processor time used in
executing a program.

external reference A call to a function or subroutine in
the source code that is outside the
calling program body.

_ failure rate The number of failures divided by the
central processing unit (CPU) time for
the interval. (See error rate.)

failure, software An unacceptable result produced during
the operation of the computer pro-
gram. Occurs when a fault is evoked
by some input data. (See error.)

i
2-8

r- 9024

fault A specific manifestation of an error.
A fault is evidenced when entry of
some input data results in the program
failing to correctly perform a re-
quired function.

file A collection of data treated as a unit.

flight dynamics Applications to support attitude deter-
software mination and control, maneuver plan-

ning, orbit adjustment, and general
mission analysis.

flow chart A graphical representation of an al-
gorithm in which symbols are used to
represent operations, data, data flow,
equipment, etc.

form Questionnaire used to record informa-
tion about the software development
process and/or software product.

- change report Records software changes and error
data.

- component status Records time expended for activities.

- component Records the status of system compo-
summary nents.

- data base Used to identify and initiate action
problem report on data base problems.

- maintenance Records software changes and error
change report data.

-- - project summary Used to classify the project and meas-
ure development progress.

- resource summary Records expended resources.

- run analysis Used to monitor activities for which
the computer is used.

-- formal specification A specification technique based on a
strict set of rules for describing the
specification and usually involving
the use of an unambiguously defined
notation (for example, mathematical
functions or formal program design
language (PDL)).

formal testing Testing performed in accordance with
customer-approved test plans. Veri-
fies that the software system is oper-

V atingaccordingto the requirementsof
[the development specifications.

2-9

9024

format statement A source language statement providing
the necessary type and location infor-
mation for read/write variables.

function A mathematical subprogram used to
specify an input set, an output set,
and the relationship between the two.

functional A specification of a software component
specification as a set of functions defining the

output for any input. Emphasizes what
a program is to do rather than how to
do it.

Halstead measures Measures developed by M. Halstead in
his theory of "software science,"
based on basi_ elements of programming
languages: operator, operand, length,
volume, and language level.

hardest first The development approach of designing
(or implementing) the most difficult
aspects of a system first.

hardware The physical and electronic components
of a computer system including input/
output devices, CPU, memory, etc.

hardware reliability A measure of the probability of a
hardware system operating without

• failure, usually measured as MTTF
(mean time to failure).

hierarchy A ranked series of elements, such as
tasks, programs, people, functions,
etc.

high-level language A programming language that does not
reflect the structure of any one given
computer or that of any given class of
computers.

HIPO (hierarchical A software design technique that de-
input process fines each component in terms of a
output) transformation from an input data set

- to an output data set, usually repre-
sented in graphic form.

historical Of or pertaining to data archives on
past experience with particular proj-
ects.

identifier A symbol whose purpose is to identify,
indicate, name, or locate a data

i structure or procedure entry point.

2-10

9024

impact The magnitude of effort or effect
associated with a particular task or
change in requirements,software, etc.

implementation Development phase involving code and
unit testing. (See code and unit
test.)

informal testing Testing involving no formal, written
test plan.

input/output (I/O) Usually refers to data or hardware
processes involving the transfer of
information to or from computer main
memory.

instruction (See executable statement.)

integration The combinationof subunits into an
overall unit or system by means of
interfacing.

integration test A test of several modules to check
that the interfaces are implemented
correctly.

interactive A mode of computer operation in which
each line of input is immediately
processed; allows communication with
the program during its execution.

interface The set of data and control informa-
tion passed between two or more pro-
grams or segments of programs and the
assumptions made by each program about
how the others operate.

interface testing Validation that a module or set of
modules operates within agreed inter-
face specifications to ensure proper
data and logical communications.

interpret To translate and execute one step
• (statement) at a time; to execute

high-level lahguage programs by trans-
_ lating each statement to a correspond-

ing sequence of machine operations
before proceeding to the next state-
ment.

interrupt Any stopping of a process in such a
way that it can be resumed.

-- iteration Repetition of a sequence of instruc-
tions until a specified set of condi-
tions is satisfied.

2-11

I 9024

iterative The design (or implementation) of suc-
enhancement cessive versions, each producing a

usable subset of the final product,
until the entire system is fully
developed.

IV&V A software methodology employing inde-
pendent verification and validation
techniques.

job A unit of computer work consisting of
_ one or more steps such as compilation,

assembly, or utility runs.

job control language A program language controlling the use
(JCL) of computersystemresources.
level of effort Effort expended as needed and avail-

able.

librarian Programming support personnel whose
responsibilities include processing
source statements but not writing them

-- (for example, maintaining libraries,
updating code, and producing tape
backups).

-- life cycle Sequence of phases during which the
software product is developed from
concept through testing and comple-
tion. (See individual phases: pre-
task planning, requirements analysis,
preliminary design, _etailed design,

_ code and unit testing, system integra-
tion and testing, acceptance testing,
maintenahce and operation.)

-- lines of code (LOC) Eighty character card images of source
code (programming language statements)

- adjusted An estimate of the number of execut-
able lines of code. Includes all new
code plus 20 percent of the reused
code, minus 50 percent estimated as

-- the amount of comment lines, minus
10 percent estimated as the amount of
nonexecutable statements.

-- - delivered Total number of lines of source code
generated as a deliverable item for a
project. Includes executable, non-
executable, and comment statements and
all statements newly coded as well as
statements taken from existing pro-
grams and library routines.

r
2-12

9024

- developed Total number of new lines of source
code plus 20 percent of reused code.

- executable Code that changes the value or state
of a program or data.

- modified Changed, existing code.

- new Total number of lines of source code
-- written by programmers for a given

task. Does not include any code that
was taken from previously existing
programs, but does include comments,
executable, and nonexecutable state-
ments.

- old Total number of lines of source code
taken from previously existing pro-
grams. Sometimes refers to reused
unchanged.

- reused Same as old lines of code.

load module An executable program produced by
translating and linking source code.

machine language A system of numeric operation codes,
values, and addresses, a sequence of
which can be directly executed by a
computer.

_ macro A single instruction in a source lan-
guage that represents a defined se-
quence of source instructions in the
same language. A macro is repla_ed by
the sequence it represents before pro-
gram translation.

_ main program A program unit containing at least one
executable statement and having a
starting address for program execu-
tion; normally, the set of instruc-
tions that determines the basic
sequence of control.

maintenance The process of modifying existing
operational software to correct errors
or enhance capabilities while leaving
its primary function intact.

management, software All the technical and management
activities, decisions, and controls
directly required to purchase, de-
velop, or maintain software throughout
the life cycle and maintenance phases.

2-13

9024

management, Planning, organization, motivation
technical (direction), and control of a tech-

nical project and technical personnel.

manpower The level or amount of total human
effort required or used for a project.

measure A count or numerical rating of the
-- occurrence of some property. Examples

include lines of code, number of com-
puter runs, person-hours expended, and
degree of use of top-down design
methodology.

methodology A prescribed set of principles for the
development process. These principles
may pertain to requirements, design,
code, testing, or management. Ex-

_ amples include structured analysis,
top-down design, information hiding,
structured programming, formal test
plans, and configuration management.

metric (See measure.)

microcomputer A class of computer having all major
central processor functions contained
on a single integrated circuit (MPU).
Typically implemented as the MPU plus
a small number of supporting inte-
grated circuits and characterized by a
word size not exceeding 16 bits.

microprocessor A single integrated circuit (MPU) that
performs the functions of a central
processing unit (CPU).

mission date The date that the system must be oper-
ational, usually 2 months before
launch.

-- model Equation relating two or more quanti-
tative factors. A resource utiliza-
tion model may provide an estimate of

-- the cost of a project; a reliability
model may indicate when sufficient
testing has been done.

- modification The process of altering a program and
its specification to perform either a
new task or a different but similar
task.

2-14

9024

_ modified code (See lines of code.)

module A named subprogram unit that is inde-
pendently compilable.

module test The test of a single module.

new lines of code (See lines of code.)

-- object module A computer program expressed in
machine language, usually the result
of translating a source program by an

-- assembler or compiler.

online processing Interactive processing, between humans
and the computer.

operand (See Halstead measures.)

operator (See Halstead measures.)

operating system A system of routines and services that
monitors, controls, allocates, deal-
locates, and manages system resources
and the execution of application
programs and other system routines.

operation A function that transforms data ob-
jects from input domain(s) into data
objects in the operation's output do-
main(s).

optimization A change in the source code to improve
program performance, for example, to
make it run faster or use less space.
Optimization changes are not error
corrections; however, if a change is
made to use less space in order to

_ conform to a specified space con-
straint, the term "error" applies.

overlay A hierarchical structure of program
-- components that allows the program to

be executed while only part of it is
in memory at any given time.

parameter A variable 6r measure that can take on
more than one value, but only one at a
time.

parse To decompose a sequence of symbols
unit (block, line, phrase, word) into
a set of elementary subunits (lines,
words, commands, characters).

phase (See life cycle.)

[- 2-15
I 9024

precompiler A computer program used to add
special-purpose capabilities to a lan-

i guage system. A precompiler trans-
lates special features implemented as

" macros into regular instruction se-
• quences in a programming language.

_ preliminary design (See design phase.)

pretask planning Planning efforts leading up to re-
quirements analysis; development of
software development plans and esti-
mates.

preventive Maintenance specifically intended to
maintenance prevent faults from occurring.

procedure A sequence of steps that accomplishes
" some task.

procedural LA specification of a software component
specification in an algorithmic manner, stating how

the program is to work.

process design (See program design language.)
language

, productivity Generally accepted as the quantity of
code produced (lines of code per man-
month) or the rate of production of
computer software measured in the
quantity of code and documentation
produced.

program A sequence of instructions that di-
rects the computer to perform a task.

program complexity A function of the number of execution
paths in the program and the diffi-
culty of determining the path for an
arbitrary set of input data. (See
complexity.)

program design A language, often called pseudocode,
language (PDL) used in the design and coding phases

of a project, that contains a fixed
set of control statements and a formal
or informal way of defining add oper-
ating on data structures.

program listing The sequence of instructions making up
a computer program, usually in the
form of a printout.

2-16
v-

9024

program validation All techniques used to ensure correct
programs, including system, and sub-
system, and system integration testing.

programming language A formal language composed of state-
ments and instructions that has a
formal syntax and lexical rules and
that can be used in composing computer
programs that require translation to
be machine executable.

project A software development effort with set
goals and defined objectives that uses
the technical and managerial capabili-
ties of personnel, has a life cycle
with fixed endpoints, and produces a
specified product.

proof technique A method for formally demonstrating
that a piece of software performs ac-
cording to its specifications. Proof
techniques usually use some form of
mathematical notation to describe the

i result of executing a program.

prototype A system developed with the intention
of serving as a pattern for a future
development effort.

quality The degree to which software conformsto certain desirable characteristics.
These may include, but are not limited

• to, correctness, reliability, usabil_
ity, validity, efficiency, flexibil-

i ity, and maintainability.

quality assurance A planned and systematic procedure for
ensuring that the product conforms to
established technical requirements and
quality standards.

read The reading by peers of code and de-
sign materials to look for errors,
invent tests, andso on.

real-time A program that receives input from a
process or activity and reacts in time
to affect that process or activity.

reliability The probability that software will
function without failure.

requirement A system specification written by the
user to define a system to a devel-
oper. The developer uses this speci-
fication in designing, implementing,

! and testing the system.

2-17

9024

requirements An analysis of the contents of the
analysis functional specification and require-

ments document from a software system
viewpoint, to recast the requirements
in terms suitable for software design.
The completeness and feasibility of
the requirements are assessed; missing
or to-be-determined requirements are
identified; all external interfaces
are specified; and the initial deter-
mination and allocation of resources
are made.

requirements The execution of a software product
-- testing under controlled conditions to demon-

strate that all stated or implied re-
quirements and performance criteria
have been met.

resource Any person, equipment, or facility
that may be allocated to the accom-

_ plishment of a task.

resource estimation A model that attempts to relate meas-
model ures of manpower and/or computer time

to measures of the software problem,
product, process, and environment.
May range from simple, single variable
equations to complex interactive soft-

! ware packages.

reused code (See lines of code.)

review A formal meeting of several individ-
uals for the purpose of examining de-
sign, requirements, code (management
review).

routine A subprogram or module.

scheduling The allocation of time, and resources
necessary to complete a given task or
project.

segment A contiguous piece of code that is
unnamed and, hence, cannot be referred
to as a single entity in a program
statement. Could be one or several
lines of a routine, subroutine, part
of a data area, or an arbitrary con-
tiguous section of memory.

2-18

9024

Software Engineering An organization sponsored by the
Laboratory (SEL) National Aeronautics and Space

Administration/Goddard Space Flight
Center (NASA/GSFC) and created for the
purpose of investigating the effec-
tiveness of software engineering
technologies when applied to the
development of applications software.
The SEL was created in 1977 and has
three primary organizational members:
NASA/GSFC (Systems Development and
Analysis Branch), The University of
Maryland (Computer Sciences Depart-
ment), and Computer Sciences Corpora-

=" tion (Flight Systems Operation). The
goals of the SEL are to understand the
software development process in the
GSFC environment; to measure the ef-
fect of various methodologies, tools,
and models on this process; and to
identify and then to applysuccessful
development practices.

shared items Data and programs accessible by sev-
eral components, such as COMMON
blocks, external files, and library
subroutines.

simulated constructs Statements used to simulate structured
control structures when the language
to be used does not contain these
structures.

software Computer program code and its associ-
ated data, documentation, and opera-
tional procedures.

software class The type of software according to con-
tent and purpose: scientific, data
processing, or control.

software develop- (See life cycle.)
ment life cycle

software engi- The scientific approach to software de-
neering velopment employing proven cost-

effective methodologies, tools, and
_ techniques.

software reliability (See reliability.)

software testing The process of exercising software in
an attempt to detect errors that exist

: in the code. (See formal testing.)

.- 2-19

i 9024

source statements All statements input to a compiler.
Includes executable statements (as-
signment, IF, and GO TO); nonexecut-
able statements (DIMENSION, REAL, and
END); and comments.

specification A description of the input, output,
and essential function(s) to be per-
formed by a component of the system.
Produced by the organization that is
to develop the system; that is, it can
be thought of as the contractor's in-
terpretation of the requirements.

- imprecise The input, output, and function of the
_ component are loosely defined. Much

of what is required is assumed rather
than specified. The specification
relies heavily on programmer experi-
ence and verbal communication to get
an unambiguous interpretation and a
full understanding of what is needed.

- precise The input, output, and function of the
component are welldefined. There are
underlying assumptions not specified,
but it is assumed that any programmer
working on the project, with experi-
ence on a similar project, will under-
stand these assumptions, It is "
possible to arrive at an ambiguous
interpretation or misunderstanding of
the specifications if the reader does
not have enough experience with the
problem or does not obtain further
verbal communication.

- very precise A completely defined description of
the input, output, and function of a
component. The implementer of a very
precise specificatiod need make few,
if any, assumptions. It is almost
impossible to arrive at an ambiguous
interpretation or misunderstanding of
the specifications.

specification- Uses the specifications of the program
driven to determine test data; for example,

generating test data by examining the
input/output requirements and specifi-

i cations).
z

2-20

_- 9024

staff-units A concept used to estimate or measure
human energy expended on a particular
project. Based on the length of a
working day, 6 or 8 hours productive

-- time or calendar time (for example,
staff-months, staff-hours).

standard Anyspecification that refers to the
method of development of the source
program itself, and not to the problem
to be implemented (for example, using
structured code, at most 100-1ine sub-
routines, or all names prefixed with
subsystem name).

string processing Includes components that perform oper-
ations on lists of characters. Nor-
mally assumed to include functions of
compilers, hash code string hookup,
and array comparisons.

structure-driven Uses the structure of the program to
determine test data; (for example,
generating data to ensure that each
branch of a program is executed at
least once).

structured code Code that uses only the structured
constructs: DO WHILE (iteration),
IF-THEN-ELSE (selection), and BEGIN-
END (sequence).

structured design The use of a modular, hierarchical
design consistent with structured cod-

: ing practices. A set of techniques
for reducing the complexity of large
new programs by dividing them into

! independent modules.

structured Programming with a limited set of con-
r programming structs; programming with structured

code.

stub A "dummy" software element used in
place of an expected functional ele-
ment until the expected element be-
comes available.

subprogram A module, separately compilable but
not independently executable; a col-
lection of program elements that

! provides a function or relatively
independent functions with respect to
the whole program.

__ 2-21
i

9024

subroutine A subprogram that does not return a
value associated with its name when
invoked.

subsystem A collection of subprograms that pro-
vides a major function and is indepen-
dent of any other subsystem.

-- support software All programs used in the development
and maintenance of the delivered oper-
ational programs.

systems software Any package designed to affect,
modify, extend, or change the normal
available processing procedure of the

• operating system. Could include such
components as error tracing or ex-
tended input/output such as DAIO.

system A set or arrangement of software or
hardware related or connected to form
a unity capable of achieving the goals
specified in its design.

system description A document illustrating system base-
lines, data flows, and processing de-
scriptions.

: system integration The process of combining system com-
ponents to produce the total system.

system size The total number of machine words
needed for all instructions generated
on the project plus space for data,
library routines, and other codes; the
total size of the system without using
any overlay structure.

system test The process of trying to find discrep-
ancies between the system and its
original objectives.

table handler Components that are specifically de-
signed to generate or interpret infor-
mation stored in a table format, such

i as the Generalized Telemetry Processor.
task A set of defined objectives. Multiple

tasks are initiated to complete a
project. (See project.)

TBD To be determined.

technical management (See management.)
i

2-22

J 9024

telemetry Data transmitted at regular intervals
from sensors.

test A procedure designed to verify some
aspect of the performance of a soft-
ware system.

test plan A description of test conditions that
includes inputs, expected outputs,
parameter values, etc.

test plan document A management document that describes
how and when specified test objectives
will be met for the formal test plan.

_ testing Part of the software development proc-
ess in which a software system is sub-
jected to specific conditions to show
that it meets the intended design.

i - functional The execution of independent tests
! designed to demonstrate a specific

functional capability of a program or
software system.

- unit Test of a set of program statements
treated logically as a whole.

timesharing A mode of operation that provides for
the interleaving of two or more inde-
pendent processes on one functional
unit.

tool A software aid used during the auto-
mated development process to facili-
tate the work of development team
members. Examples are requirements
language processors, precompilers,
code auditors, and test generators.

J

top-down development The design (or implementation) of the
system, starting with a single compo-
nent, one level at a time, by expand-
ing each component reference as an
algorithm possibly calling other new
components.

top-down testing Testing of modules that were produced
r in top-down order.

tree chart An acyclic connected graph, often rep-
resenting a hierarchy in which the
edges are directed to denote a subor-
dinating relationship between the

i joined nodes.

7

2-23

9024

uncertainty The probability of error, or the
probable magnitude of error.

unit A set of computer program statements
treated logically as a whole; usually
a module or subroutine. (See compo-
nent.)

unit test Independent test of a unit. (See im-
plementation and module test.)

user The individual at the man/machine in-
terface who is applying the software
to the solution of a problem.

_ user-defined An entity determined by the user as
input during program execution.

user's guide A document designed to assist the user
in operating the software product.

utility _ny component that is generated to
satisfy some general support function

- required by other applications soft-
ware.

validation The process of determining whether
executing the system in a user en-
vironment causes any operational dif-
ficulties. The process includes
ensuring that specific program func-
tions meet their requirements and
specifications.

verification The process of determining whether the
! results of executing the software

product in a test environment agree
with its specifications.

i walk-through A formal meeting for the review of
source code and/or design by project
members for the purpose of error
detection, not correction; a technical
rather than management review.

work-around The method used to counteract the ef-
fects of an error in a program when
the cause of the error and, conse-
quently, the location of the state-
ments containing the error is not
known or is inaccessible (for example,
a compiler error).

E

7--

2-24
I---

9024

work unit A quantity defined to enable an esti-
mator to break down project require-
ments, and subsequently cost, into

quantifiable deliverable items. Some
common work units include the number

of requirements, programs, subsystems,
modules, pages of documentation, lines
of code, and experience of developers.

2-25

! 9024

SECTION 3 - ACRONYMS

J
l ALC Assembly Language Code

ATR Assistant Technical Representative

BMDP Biomedical Programs, P Series

CAREM Cost and Resource Estimating Models
i

CAT Configuration Analysis Tool
COCOMO Constructive Cost Model

CSC Computer Sciences Corporation

DARES Data Base Retrieval System

DBA Data Base Administrator

DBAM Data Base Maintenance Software

GESS Graphic Executive Support System

GSFC Goddard Space Flight Center

HIPO Hierarchical Input Processing Output

: IV&V Independent Verification and Validationi

MPP Modern Programming Practices

_- MTTF Mean Time to Failurei

PANVALET Computer Program Analysis and Security System
PDL Program/Process Design Language

PRICES "Programmed Review of Information for Costing
and Evaluation Software Model

SAP FORTRAN Static Source Code Analyzer Program

SEL Software Engineering Laboratory

SFORT Structured FORTRAN Preprocessor

SLIM Software Life-Cycle Management Estimating Model

STL Systems Technology Laboratory
TBD To Be Determined

7 TSO IBM Timesharing Option

UM University of Maryland

3-1

9024

b

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-Originated Documents

i SEL-76-001, Proceedings From the First Summer Software
Engineering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
: V.R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May

1977

SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, February 1978

%SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision i), W. J. Decker and
W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Desi@n,
K. Tasaki and F. E. McGarry, June 1978

TThis document superseded by revised document.

B-I
r--

i 9024

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-II/70 User's Guide, D. S. Wilson and B. Chu, September
1978

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
_ M.V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

! SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,

-- A.L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
-- Software System (MMS/GSSS) State-of-the-Art Computer

SYStems/Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

i SEL-80-004, System Description and User's Guide for Code 580
Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

7

B-2

l 9024

SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation
Models for Software Systems, J. F. Cook and F. E. McGarry,

i December 1980

#SEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-002, Software Engineering Laboratory (SEL) Data Base
_ Organization and User's Guide, D. C. Wyckoff, G. Page, and
i F.E. McGarry, September 1981

SEL-81-003, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, and G. Page, September
1981

%SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

%SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

SEL-81-105, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-81-006, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,

_ W. Taylor and W. J. Decker, December 1981

TSEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
I of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,I

February 1982

!

±This document superseded by revised document.

B-3

9024

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software EngineeringLaboratory Programmer
Workbench Phase 1 Evaluation,W. J. Decker and
F. E. McGarry, March 1981

SEL-81-010,Performance and Evaluation of an Independent
Software Verffication and IntegrationProcess, G. Page and
F. E. McGarry, May 1981

SEL-81-011,Evaluating Software Developmentby Analysis of
Change Data, D. M. Weiss, November 1981

_ SEL-81-012,The Rayleigh Curve As a Model for Effort
Distribution Over the Life of Medium Scale Software Systems,
G. O. Picasso, December 1981

SEL-81-013, ProceedingsFrom the Sixth Annual Software Engi-
i neering Workshop, December 1981

SEL-81-014,Automated Collection of Software Engineering
Data in the Software EngineeringLaboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001,Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols.-i and 2

SEL-82-002,FORTRAN Static Source Code Analyzer Program
(SAP) System Description,W. A. Taylor and W. J. Decker,
August 1982

SEL-82-003,Software EngineeringLaboratory (SEL) Data Base
Reporting Software User's Guide and System Description,

: P. Lo, September 1982

SEL-82-004,Collected Software EngineeringPapers:
Volume i, July 1982

SEL-82-005,Glossary of Software EngineeringLaboratory
Terms, M. G. Rohleder, December 1982

SEL-82-006, Annotated Bibliography of Software Engineering
Laboratory (SEL) Literature,D. N. Card, November 1982

F

B-4

i 9024

SEL-Related Literature

ttBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"7-

Computer Sciences Corporation, Technical Memorandum, March
! 1980

ttBasili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technology,
January1980,vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

ttBasili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation Problems?",
Journal of Systems and Software, February 1981, vol. 2,
no. 1

ttBasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,
no. 1

Basili, V. R., and B. T. Perricone, Software Errors and
Complexity: An Empirical Investigation, University of
Maryland, Technical Report TR-II95, August 1982

s

ttBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 1981

ttThis article also appears in SEL-82-004,Collected Software
Engineering Papers: Volume 1, July 1982.

Y
J

B-5
r--

9024

Basili, V. R., R. W. Selby, and T. Phillips, Metric Analysis
-- and Data Validation Across FORTRAN Projects, University of

Maryland, Technical Report, November 1982

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life

-- Cycle Management Workshop, September 1977

%%Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

%%Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York:
Computer Societies Press, 1978

%%Basili, V. R , and M. V. Zelkowitz, "The Software! •

• " Proceedings of theEngineering Laboratory. Objectives,
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

• "Early Estimation of Resource Expenditures andCard, D N.,
Program Size," Computer Sciences Corporation, Technical

-- Memorandum, June 1982

Card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memo-
randum, September 1982

TTChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings
of the Fifth International Conference on Software Engineer-
ing. New York: Computer Societies Press, 1981

TTThis article also appears in SEL-82-004, Collected SoftwareI
Engineering Papers: Volume i, July 1982•

B-6
!
! 9024

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
-- (paper prepared for the University of Maryland, December

1978)

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technolo@y Workshop (proceedings), March
1980

" Computer"Software Engineering Course Evaluation,Page, G.,
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

i
Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Bcheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
• " Martin Marietta Corpora-Order Languages Study. Addendum,

tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
i diu____m,Data and Analysis Center for Software, Special Publi-

cation, April 1981

" Naval ResearchWeiss, D. M., "Error and Change Analysis,
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Re "! source Model Testing and Information,
i Naval Research Laboratory, Technical Memorandum, July 1979

B-7

9024

±%Zelkowitz,M. V., "Resource Estimation for Medium Scale
Software Projects,"Proceedings of the Twelfth Conferenceon
the Interface of Statistics and Computer Science. New York:
Computer Societies Press, 1979

Zelkowitz,M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research,"Empirical Foundations
for Computer and InformationScience (proceedings),November
1982

_ Zelkowitz,M. V., and V. R. Basili, "OperationalAspects of
a Software MeasurementFacility," Proceedingsof the Soft-
ware Life Cycle Management Workshop, September 1977

!

J

%TThis article also appears in SEL-82-004 Collected Software< ,
! Engineering Papers: Volume i, July 1982.

B-8
r---

9024

II

1l

o
I]

IJ
Il'-
Il-
o
lJ
IJ
IJ
IJ
IJ
IJ
o
o
l]

o

l 3 1176 00511 1787 I

.;-- - ~- /-

, i '...

111I1~1~~~r~IIIiM~l~~l~lil~lli ·
3 1176 00511 1787

e

'-..:

l1-
IJ
11
IJ
IJ
o
II
IJ
o
o
IJ
IJ
IJ
IJ
o
o
o
o
I~

T

