e WA T 85396

|
|
'NASA-TM-85396

19880084084

)

A Reproduced Copy

OF

L

L NASA T 25596

Reproduced for NASA
by the
NASA Scientific and Technical Information Facility

LIBRARY GOPY
PR fapd

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

" FFNo 672 Aug 65

v Tt AT T hita L S B L e -
PR : ‘ N -
- [A K - PO R N T P
Rl RS T R PRV DR 34
et & s LA
SN i A
. . ‘
' . .-)
pAwicie A bbb
e S
oA

M
’ S el e
v R S e
B Ay, g N R R N
POV v by PR PR R
3 g E P R

g

¢y

D
A
B <

A

T P L%
s PR T e
g et
A TSR voh
B e A IS
AR T A AT
PO S S
M RS T e \",k;“
RN
i
o

2L

. A
G bty

5
aud g SaEr e ek
2L N

O TR N, P
PR R A
e 3 AT
PN ST
TP L L e ey BT L
2, b Yo e avt 4 R
L SR PR RS Uy ! s Y £ k
A TN I A Y T S inkata s o Daiym nt N Al 1 S
PR AL S S O B AR PO AT e
ST L LT) e
N ““’&&’z' " ',x’”“'l'(’km' s Vi
AR LS At e A
RO N S
RIS . LN K ‘
g e E IR h
BT ATy B R T W "
T At ToeT e ey @Y et 3
DR E NS ey § T e WL
e R A I BN 1
Lot v vt oyl 4 >
e R A S A, e
e LA PPN
ST e AV R o)
AR TR SR
A s S e e Bt VLR
LA SR el s A8V ey e,
i K T
:_Imj;" oy it "~
ST R R b » Ve,
Sileihad g A R SR
»c.,,x.n,v’ﬁf,-.' L st S e . P o
ARSI A e T RSN AW 3
"},‘e,;]{ﬁ-" S e R e Ty [N : Yy PARR i
P o ¥ Frn e YRR e S
R N L A DA Rl
s A AL T e SN s
3 YT PN 1 £ e
ARSI Vet T
@ FERIVIN
AR RE A
b Lty SR NS LN
» AR RSO g
Fogud §ED RS AL e B PR
. B Gt S LI AN
[R Y N g X *, v ‘» -
o 0 AT TS o) . - v SR
N SX P TR -t " T N
Y Fod gyl et hd R
e R TTU e s A
R L I SRS
GEARTHNLR Pt , i 2T - ENTR T
_,{qr,r.(s AN . oy B ey s, e
vy Yt Bea e N B
R W i M - PR *
ES PR SulbTs P v .
R A A
NEYIN . W S T e
A 1 ok B 2 e s e S TR
L E . \ 53 B e A T A g
ey : Epea L Y WAL e
AP R o R R L T L RERTRACTIRN
RO : vl AP D A
v o P2 S iy s T 1y R PR S
R i N PR L N gt AN F e AT D Wl e
Lo gty 3 s NSO 0t S Ll akEsmi kg o ms 5 T P
e .

(NASA-TH=-85396) LLCCEMLNDED APPROACH awv » h83‘32355‘;:_-“;;‘: P
SOFWAKE CLVELOPEENL (DASA) 275 p
HC at2/dF AvUd CoLa UYB

Unclas

G3s61 20473

S

DR
KA
SR,

. T

RESARL A

e

LR
W
o
R
3
W
-
e A N
" PO et e
R ¥ . B e e WL, .
N e R ot K L4 “ s
P MR e S T e . [OgRRX :
T N A A A T VLV IR IS B P S R R Ot X A 4 A S RN R
Iy AR NTRA O A RAN Y o, A e e LS TR g s o R e TASOAN y D L A et T e A e Tt S
et it s o G, & o s S g AR € ek 7. S £ b i o e mi
- : ok o fsei? b S £ o Aot i i R i

| SOFTWARE: ENGINEERING LABORATORY SERISS SEL-31-203

L@

RECOMMENDED APPROACH TO
SOFTWARE DEVELOPMENT

APRIL 1883

i e et

ey gt
QLR PHEGREE MV

YA g o

NASH ,

R ———
it on A

SO soy

Goddard Space Flight Center

MR .
RICECRATE T LR LS

TR e s D o, b it)

‘ FOREWORD

The Software Engineering Laboratoryl(SEL) is an organization
sponsored by the Naticmal Aeronautics and Space Administrae-
tion Goddard Space Flight Center (NRSA/GSFC) and created for
the purpose of investigating the effoctiveners of software
engineering technclogies when applied to the development of
aphlications software. The SEL was created in 1977 and has
three primary organizaticnal members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Scicnces -Department)
Computer Sciences Corporation (Flight Systems Operation)

The géals of the SEL are (1) to understand the software de~
velopnent process in the GSFC environment; (2) to measure
the effect of various methodologies, tcols, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version of this document was
also issued as Comprter Sciences Cdrporation document
CSC/TM~83/6019.

The contributors to this document include

Frank McGarry (Goddard Space Flight Center)

Jerry Page (Computer Sciences Corporation)
Suellen Eslinger (Computer Sciences Corporation)
Victor Church (Computer Sciences Corporation)

Phillip Merwarth (Goddard Space Flight Center)
Single copies of thic document can be obtained by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Md. 20771

PRECEDING PAGE BLANK NOT FILMED
"ALVEE,

iii ‘

S1ne8

o et s Rt i e A

N RN

#

ABSTRACT
This document presents a set of guidelines for an organized,
disciplined approach to softwarce development, based on data
collected and studied by the Software Engdineering Laboratory
(SEL) since 1877 for 46 flight dynamics software development
projects. It describes methods and practices for each phase
of a software development life cycle that starts with re-
quirements analysis and ends with acceptance testing; main-
tenance and operation is not addressed. For each defined
life cycie phase, this document presents guidelines foir the
development process and its management, and the products
produced and their reviews. This document is a major revi-
sion of SEL-81-105.

PRECEDING PACYE BLANK NOT FHAHH{

9108

[,
> .

oy

Ly
. s

|

TABLE OF CONTENTS

Section 1 = INtroductione o o o o o o)

NV DN NN

1.1 ‘chument OVerviGuw. « o « o o o o o o s o
1.2 Software Engincering Laboratory. « « «
1.3 Flight Dynamics Environment. . » « « « o

Section 2 - Software Dovelopment Life Cycle .

Reguirements AnulySLS. o
Preliminary Desian . . .
Detailed Design. . . » .
Implementation « « « o
System Testing . « + « &
hcceptance Testing . .
Maintenance and Operatlon

~NOUT W N
* o s o s o @
e ¢ o o o o @
o o o o o & o

Section 3 ~ Recommended Software Development
GuidelinesS: « o« o o s s o o s o o

3.1 Requirements AnalysiS. « o « ¢ « o o o &

3.1.1 Major Activities. « « « o o < .
3.1.2 End ProductS. « o o o o« o o o &
3.1.3 Methedologies o « ¢ o« o o o o o
3.1.4 TOOLS o o o o o o o o o s o o &«
3.1.5 Measures. « ¢ « ¢« ¢ o o o o o
3.1.6 Key Management Activities . . .

3.2 Preliminary Design « o« « o ¢ % o ¢ o o &

1 Major Activities. .
2 End Products. . . .
3 Methodologies . . .
4 TOOLS o o o o o o
5 Measures. « .« . .
6 i

(D e o o o o

3.3 Detailed DesigN. + « o ¢ o « o @

3.3.1 Major Activities
3.2 End Products. . .
3.3 Methodologies . .
2.4 TOoOlsS v & o ¢ « &
3.5 Measures. . . .« .
3.6 Key Management Act

L) . L) L] - []
e o o o ‘e o
e o o o s o

[] . L] L]
L] L] [] L]
ivities

PRECEDING PAGE BLANK NOT FILMED

vii

9108

* o - L L)] L L] . . . L4 [} L[] * L] * . L]

® o 4 o » o e o ¢ o o »

¢ o o o o o s & o e & o

e o o s & oo

s o o o » @

NN N e
1
VOIS W | ~N S W

]
w

W WLWWWLWWW W W
] 1

ol)

\D ~J 1 = O

[}

WWWww
)

INENEXY

L

3-26
3-28

3-31

3-33
3-34
3-34
3-35
3-36
3~38

e

LR Ve e e e

L

TABLE OF CONTENTE (Cont'd)

Section 3 (Cont'd) o T

3.4 Implementation « « « ¢ o ¢ o o o o o o

3.4.1. Major Activities.

3.4.2 End ProdugtSe o « o o o o o o
3.4.3 Methodologies « o« ¢« &« ¢ & & o
3‘604 Toolq L] L] © L d L] - L] . L] . . L]
3.4.5 MeasuresS. o« o o ov0 o s o o @
3.4.6 Key Management Act:v1t1es .«

3.5 System TesSting « o « o o o ¢ o o o o o

3.5.1 Major Activities. « o« ¢ o o
3.5.2 End ProduCtS. « o ¢ o o o o o
3.5.3 Methodelogics « o o o o o o o
3.5.4 TOOIS L] L] L] - L] L] L] ® L] . . o
3.5.5 MEASULCSe o« o ¢ o o o o o o o
3.5.6 Key Management Activities . .

3.6 Acceptance Testing « o« o+ « o o o o o

3.6.1 Major ActivitieS. . « « o o &
3.6.2 End Products. ¢ ¢« &« ¢ o « o &
3.6.3 Methodologies . « « o ¢« « o &
3.6.4 T°°ls L] L] L] L] * L] L] L] L] L] :O L]
3.6.5 Measures. « . . e o e o e o
3.6.6 Key Management ACthl ies . .

Section 4 - Management and Control. . « « &«

4.1 1Indicators of Development Stalus . . .
4.2 Danger Signals o « o o« o o o o o o o o
4.3 Corrective MEasSULCS.: « « o+ o o o o o o

4.3.1 Basic Problem Areas . . . + .
4.3.2 Steps for Corrective Action .

Section 5 - Aspects of Successful Projects.

5.1 Ten "Dos" For Project Success. . .

5.2 Ten "Don'ts" For Project Success . . .

5.3 Assessing Project Quality. . « « « « &

5.4 Applying the Fecommended Approach. . .
viii

39108

T B W s 3 N e e trotles

L] *® 8 o . L T o © *

» o & o & @

* & o o @ L] a o e ® L)

* o o e

o ® o ® o o ® o & ¢ @& o

L4 L) L] . o -

e o o o

L] * 9 L I] ® L] ® o * © ?

e 5 o o o @

Dt e+

[—

&—-.\-»t

-4

&,

&\:;’

oo whowoow

TARLE QF CONTENTS (Cont'd)

Appendix A = SOFLWALE ROVIOWS « « o o o « o o o o o

A.l System Reguirements ReView « o« o o o o o o o o
A.2° Preliminary Design RevVieW. o ¢ o o o o o o o &
A.3 Critical Design Review + ¢ o + o 2 o o s ¢ o »
A.4 Opecrational Read’ness Raview . « ¢ o o o« ¢ o &
Appendix B - Development DOCUNMENES. o o o o o o o o
.1 Software Devclopment PlaN. « o « o o o o ¢ o o
.2 Project Notebook . . . « . e o o o o o &
«3 Requirements Analysis Sunmary Report e o & o
.4 Preliminary Design REPOLt. o « o s o o o o o o
.5 Detailed Design Document « « o o o o o o ¢ & «
6 Test PlanS ¢ o o o o o s o o o s ¢ s o o o o o
.7 User's Guide L] L] L] L] L] L] * e. & L L] * L] L] L4 [] ®
.8 System Description . « ¢ « o ¢ ¢ ¢ o o o o o
.9 Software Development HiStOory « o« o« o ¢ o o o &

Appendix C - Brief Example of Some Steps To

c.1l

C.3
C.4

Organize a ProjeCt ¢« o« o o o o o o o @

Estimating Size and Effort « « o o o o o o s-o

C.l.i Size of the System. . «. « e o o
C.l.2 Effort Requlred to Develop the System

Establishing Realistic Schedules « « « « « « &

C.2.1 Required Effort For Life Cycle Phases
C.2.2 Realistic Schedules « « « o« « o o « &

Allocating Proper RESOUILCES. « o o s o o o o
Summary. L) L] . - - L] L] L] L] L] . * L] L] - L] L] L] L]

Appendix D - Summary of Key Information . « « « +

GlOoSSarYe o ¢ ¢ « ¢ o o o o o @ o s e s e s s e e

REEGIGHCGS. . . L) L) . l' . [. L] L3 . L] .

Bibliography of SEL LiteratUre. « « o« o o o o o« o &

9108,

ix

o0 ano G aa a o
Hi- O 0 W W

[

©w Q O
0 o
I S

w &

4]
]
—

Figure

3
fir
(o2
[y
(0]

OO SWN L

OO(')(;)OOO 0

9108

LIST OF ILLUSTRATIONS

Software Development Model

Activities by Percentage of 7Total Development

Staff Effort L] . L] . L] L] * L] * L] L] L
Hierarchical Levels of a Softwa:e System
Baseline Diagram . « « o « o o o o« o« &

Effort Uncertainty lelts as a Function of

Phaseo . . L] . L] o . . L] L] °

LIST OF TABLES

Effort Estimators and Uncertainty Limits
by Phase . * * . . - L] L] - * - * . L]
Complexity Guideline . . « ¢« ¢ o o o o«
Development Team Experience Guideline.
Schedule Guideline « ¢« v « o o ¢ o o &
Team Size Guideline. . « &+ ¢ ¢ ¢ o « &
Staffing Pattern Guideline . . « « . .
Development Team Staffing Guideline. .
Development Staff Composition Guideline

.
.
L]
.
.
.
.
.

X

*

L] L) L] L] . » . .

¢ o o o o e o

nnn?onoo
| ol amdl 2ol ok A %2 R VLI~ Y

AT W N

IRTRODUGCTIOR

1.1 DOCURIERT QVERVIEW «vvevvveeannnnanannas 13
1.2 SOFTWARE ENGINEERING LABORATORY 1—4

1.3 FLIGHT DYNARNCS ENVIRONMENT +vvvvevnans 1—7

1-1

v [

¢

'
h

TRODUCTION

The Software Engineering Laboratory (SZL) was established in
1977 by the National Aeronautics and Space Administration
Goddard Space Flight Center (NASA/GSFC) to investigate the
effectiveness of software engineering tcchnidues applied in
developing ground support £light dynamics systems. The
investigation's goals are (1) to understand the éoftware de-
velopment process in a particular environment:; (2} to measure
the effects of various development techniques, models, and
tools on this develcpment process; and (3) to identify and
apply improved methodologies in the GSFC environment. The
results ¢f SEL resecarch should enable GSFC to produce better,
less costly software.

This document presents a set of software development guide-
lines for a disciplined approach to software development,
with special emphasis on management considerations. These
recommendations are based on data collected and studied by
the SEL since 1977 for 46 flight dynamics software develop-
ment projects. Most of the software development projects
studied by the SEL were performed by an independent con-
tractor. For some projects, however, the software develop-
ment team consisted of both GSFC and contractor personnel.
Developing a flight dynamics software system involves di-
verse skills and many staff-years of effort in specifying,
designing, implementing, integrating, and testing complex
computer programs. This document describes the software
development life cycle from the technical manager's per-
spective and provides useful techniques for managing soft-

ware development.

This document is neither a manual on applying the technol-
ogies described here nor a tutorial on monitoring a Govern-
ment contract. Inétead, it describes the methodologies and
tools that the SEL recommends for use in each life cycle
phase to produce reliable, cost-effective software.

1-2

9108

P

. oy

i

Introduction

This document is primarily for technicél managers of soft-
ware development efforts. However, it is also intended for
higher level managers whe are concerned with schedules and
budgets and for senior technical personnel (such as de-
signers, analysts, and programmers) who are responsible for
implementing the recommended procedures. The recommended

fsoftware development guidelines are appropriate for both

GSFC and contractor personnel. Although the recommended

' guidelines have been formulated based on the development of

flight dynamics systems, there is no reason to believe that

" the recommended guidelines are not applicable to any

software development project.

The SEL continually monitors and studies flight dynamics sup-
port software, including software developed by both GSFC
employees and contractor personnel. It anticipates that

‘data will continue to be.collected and analyzed in the fu-

ture. The recommendations in this document will be refined
and enhanced as more knowledge is obtained about the produc-
tion of better, less costly software and as more progress is
made toward achieving the goals of the SEL.

1.1 DOCUMENT OVERVIEW

Seqtion 1l describes the document's purpose and its intended
audience and establishes the general backgrounéd for the re-
mainder of the document. Sections 1.2 and 1.3 briefly de-~

. scribe the SEL and the flight dynamics software development

environment.

Section 2 describes the typical software development life
cycle in the flight dynamics area, identifying the major
phases anéd their characteristics.

Section 3 describes in detail the recommended guidelines for
software development. It discusses the major activities,
end products, methodologies, tools, and measures applicable

i
it s AR eyt K 2 30 g B L rebodhen e e T Bt] R Rk 3l B TR o ST At

T e 3

Introduction

to-each life cycle phase. In addition, it recommends man-
agement activities for each life cycle phase.

Séctiqn 4 discusses management add control of the develop-
ment process, and Section 5 summarizes key aspects‘of suc-
cessful and unsuccessful projects. AaAppendix A diSqusses
formal reviews, Appendix B presents the content and format
of documents, and Appendix C provides a brief example of
some steps in organizing a project. Appendix D summarizes
the key information of the document.

A glossary, references, and a bibliography of SEL literature
are also included, ' ’

l.2 SOFTWARE CNGINEERING LABORATORY

The SEL monitors and studies all éoftware develcped by the
Systems Development Section at NASA/GSFC, which is respon-
sible for producing flight dynamics support software for
GSFC-supported missions. To date, 46 projects developed by
both GSFC and contractor emplonyees have been studied. They
range in size from 1,500 lines of source code to more than
110,000 lines. Much of the data is collected on a series of
forms completed by project personnel throughout the develop-
ment effort. Data is also collected through computer ac;
counting monitoring, personal interviews, autcmated tools,
and summary management reviews. From investigating projects
totaling more than 1.5 million lines of source code, the SEL
has gained insight into the software development process and
has begun to identify trends in the effects of applying var-
ious techniques to the software development projects.

The SEL approach to software engineering research is based
on the high-level software development model shown in Fig-
ure l-1. The four components of this model are a problem
statement, an environment, a process or activity, and a
product (software). The development process is divided into
seven sequential phases of activity. These phases are de-

scribed in more detail in Section 2.

1-4

L oAt AN

PRV,

. v

ey

Introduction

EMVIRONMENT AND
RESOURCE POOL
PROBLEM] PROCESS » PRODUCT
1)
7 \\
7/
P AN
//’ ‘\\
/s Mo
7 N
7 AN
s N
/7 ‘N
-, ‘\\
’ AN
7/ N
7 ~
7 N
7 N
d PROCESS PHASES N\
. . SYSTEM

REQUIREMENTS PRELIMINARY] DETAILED CODE AND INTCGRATION ACCEPTANCE MAINTENANCE
ANALYSIS - DESIGH DESIGN |UNIT TESTING| AnG TESTING] TESTING AND OPERATION

Figure 1-1.

Software Development Model

9108/83

[e gmptmaaeas 2og

Introduction R I f

SEL research first attempts to understand the software de-
velopment process currently in operation and its environment.
This understanding provides a baseline for measuring the

~effects of attempted improvements. Next, the SEL tries tco

imgrove that process and environment to produce high-quality
software with fewer errors at a lower cost. To achieve
these goals, the SEL identifies the development techniques
available, evaluates these techniques to determine the most
effective ones, adapts the "best" techniques for optimal
performance, and applies the customized techniques to the

software development process., The recommendations in this

document are based on the application of this four-step
procedure to a large set of software development technol-

oqies,

The technologies studied by the SEL may be classified into
four maior areas of concern: methodologies, tools, models,
and measures. Methodologies are systematic applications of
prescribed principles to the developmentfprocess. Tools are
software aids used during the development process to make it
easier for development team members to do their work. Models
expla;n and/or predict some aspect of the development proc-
ess and are usually formulated as mathematical equations
relating two or more quantitative factors., Measures define,
explain, and predict software development qualities; they
may be objective or subjective.

Section 3 identifiex the technologies in these four areas
that the SEL recommends for application to the software de-
velopment process during the development life cycle phases.

Reference 1 contains additional information on the activ-
ities of the SEL and further details on the results of 3EL

research,

LA

Introduction

1.3 FLIGHT DYNAMICS ENVIROHMENT

The empirical basis for thic document is the studies of
flighc dynamics software conducted by the SEL since 1277.
Flight dynamics software includes applications to support
attitude determination, attitude control, maneuver planning,
orbit adjustment, and general mission analysis. The atti-
tude systems, in particular, form a large and homogeneous

group of software that has been studied extensively.

The attitude determination and control systems are designed
similarly for each mission using a standard esxecutive sup?
port package, the Graphic Executive Support System (GESS),
as the controlling system. All thesc systems are designed
to run in batch and/or interactive graphic mode. Depending
on mission characterxistics (for example, the type of data
available and the accuracy required), these systers may
range from 30,000 to approximately 120,000 lines of code.
The percentage of reused code ranges from 10 percent to
nearly 70 percent, with the average system reusing about

30 percent.

The applications developed in the flight dynamics area are
mostly scientific and mathematical'in nature, with moderate
reliability requirements. Severe development time con-
‘'straints are imposed by the spacecraft launch date; the
software muc* be completed (through acceptance testing}

90 days befc - the scheduled launch, and the requirements
and functional specifications are normally made available

‘less than 2 years before the scheduled launch.

Most flight dynamics software projects use a group of IBM
S$/360 computers for development. All resources on these
machines are extremely limited, and the hardware is very
unreliable.l Because the machines are shared among the

1The mean time between failures for the primary development
machine i5 approximately 6 to 8 hours of operation (see Fig-

‘ure 3-4 of Reference 1l).
1-7

St ar s e swe v e

L o

Introduction

analysis, software development, and operations arcas, soft-
ware development schedules are affected when simulations,
launches, and maneuvers occur. In addition to the IBM '
s/360s, a DEC PDP-11/70 and a DEC VAX-11/780 are occasion=-
ally used to develop utilities and support systems for the

. flight dynamics area.

Additional information about the flight dynamics software
development environment may be found in Reference l. Sec-
tion 3.1 of that document presents the results of profile
analysis of several large software development projects
studied by the SEL. These statistical profiles characterize
the software developmént process, environment, and products
for these flight dynamics projects.

e
H

2.7

2.2

2.3

2.5

2.0

2.7

Tt & B Y g e TV § AR ¢, SR TP 2 T e, S
&) s -

7)) SOFTWARE DEVELOPRIERT LIFE CYCLE

REQUIRERERNTS ARIALYSIS ...vvves. wesenveas 2—3

FRELIVINARY DESIGN rerenseininns 26
DETAILED DESIGN «vveeran.. eevas . 27
IRAPLERAERITATION o vvuvernsiiensenunsrnnnnn, 27
SYSTERI 'ﬂ"frzm‘ém@ :;, 2--8
ACCEPTARCE TESTING +v'reeneerreeneeerennns 29
RAAINTENANCE ARD OPERATION +..evveensns. 2--9

R T e LT 2t S A SO USRS T

SOFTRIARE DEVELOENIINRT LIFE CVCLE

" The flight dynamics coftware development process is divided
into the following seven sequential phases, collectively
referred to as the software development life cycle:

1, Requirements anélysis

2. Preliminary design

3. Detailed design \

4. Implementation (code and unit testing)

5. Systenm testing (system integration and testing)
6. Acceptance testing

7. Maintenance and operation

This division is shown .in Figure 1-1 (page 1-5), which il-
lustrates the SEL software development model.

For the purpose of this document, the software development
life cvcle is divided into calendar phases rather than ac-
tivity phases; that is, the seven life cycle phases sub-
divide the software development effort into seven sequential
periods of time that do not overlap. Rach calendar phase of
the software development life cycle is characterized by
specific activities and the products produced by those ac-
tivities,

Activities that are characteristic of one calendar phase,
however, may be performed in other phases. For instance,
analvzing the requirements, which makes up most of the
effort during the requirements analysis phase, continues at
a lower level throughout the software development life
cycle. Once a development activity is started, it continues
throughout the life cvcle: however, the level of effort feor
early life cvcle activities continually decreases., SEIL data
shows that the estimated size of large flight dynamics
systems grows between 15 and 40 percent after implementation
starts (that is, after completion of the detailed design)

ey

-4

P e . g wonsg

Bume spnssy

e ——

[
A N L o o b Vet b YL AN e e RS T MR e e S Y
- J T I B E e R L Y

Life Cycle

: 1
' because of uncertainty in the estimation process , new

requirements, and requirements changes. This growth causes
requirements analysis and design activities to continue
during subsequent life cycle phases. Figure 2-1 illustrates
the activities performed during each (calendar) life cycle

_‘ phase as a percentage of the total staff effort.

The following subsections define the seven software develop-
ment life cycle phasec, and Section 3 describes them in more

detail.

2.1 REQUIREMENTS ANALYSIS

Before the requirements analysis phase begins, z team other
than the development team defines the requirements and pro-
duces a functional specifications and requirements document.
The requirements analysis phase begins when the requirements
definition team completes the draft of the functional speci-
fications and requirements document. It is the first phase
of the software development life cycle, and in it, the func-
tional specifications are translated from mission terms into
a software-supportable form,

In this phase, the development team analyzes the functional
specifications and requirements document from a software
system viewpoint and recasts the requirements in terms suit-
able for software design. The development team assesses the
completeness and feasibility of the requirements, identifies
missing or to-be-determined (TéD) requirements, specifies
all external interfaces, and makes the initial determination
and allocation of resources. Close interaction with the
requirements definition team is necessary for the develop-
ment team to clarify and amplify the requirements. The de-
velopment team gives the results of the requirements analysis

lsee Table C-1 on page C-4 of Appendix C and Figure C-1 on
page C-8 for information on uncertainty limits.

2-3

9108

v-2

SRR PDRs CORs ORR
_____ — R - e P e !
1 ' 1 ! ; \ 2
\ 1 : l \ i
! ' | | N i :
- J \ / 1 ACCEPTANCE] ;
E 1 "] ~ TESTING § i T
2 " SYSTEM INTEGRATION AND TESTING V -4
b ! i S
w ';
% 1 DESIGN v I 00
- | i g
<) 1 Q2
& ! 15 1 . Q>
~ - . S
5 \ ! || ! N B e
REQUIREMENTS o1 URIT TESTIN i , =
S N ANALYSIS ! !\ coo Ao uiT TESTING !) : = 0
Z . -
3 N i !]] 3z
o 1 [w | 1 i
w »
o ! p i
] i -
. ' 4 V !
\ | \l\ , = Illl .
________ _\\ '\ NSRS 3 oo e 9t SRS
REQUIREMENTS REQUIREMENTS DETAILED S . A
DEFINITION ANALYSIS I DESIGN IMPLEMENTATION (CODE AND SYSTEM TESTING ACCEPTANCE | MAINTENANCE
£ S STING § AND OPERATION :
AND FUNCTIONAL } PHASE ey munay PHASE UNIT TESTING) PHASE PHASE RVt oo !
SPECIFICATION i
PHASES FoESIGN | il
X
CALENDAR THAE emeeepy i
]
NOTE: FOR EXAMPLE, AT THE END OF THE IMPLEMENTATION PHASE (4TH DASHED LINE), APPROXIMATELY 73% OF THE STAFF ARE INVOLVED IN i
SYSTEM INTEGRATION AND TESTING; APPROXIMATELY 2% ARE ADDRESSING REOLIRMENTS CHANGES OR PROBLEMS; APPROZIMATELY i
2% m"E DESIGNING MODIFICATIONS; AND APPROXIMATELY 17% ARE CODING AND UNIT TESTING CHANGES. §
$1ca-511-33 3

Figure 2-1. Activities by Percentage of Total Development Staff Effort

¢
}H
+
i
3
oy
4
i
i
-3
i
§
x
i
g_
i
4

T PPy s AN BV W w3 RS S e QI Ry B
Bk s L e .-

x

Fr -

o1 oy o o

T i A e S o e o B Sy e D L3

P T

baa AL e, e

KRS TEM NI
.

Life Cycle

to the requirements defipition team for incorporation into
the final version of the functional specifications and re-
quirements document. They also prepare a summary report of
the results as a basis for preliminary design. When the
final vercion of the functional specifications and require-
ments document has been completed, a system requirements
review (SRR) is held to evaluate the completeness of the
requirements. ‘

2.2 PRELIMINARY DESIGN

During the preliminary design phase, the development team
defines the software system architecture based on the re- -
quirements given in the functional specifications and re-
quifements document. The team translates this architecture
into software requirements in the requirements analysis sum-
mary report. During this phase, the development tcam spec-
ifies major functional subsystems, input/output interfaces,
processing modes, and implementation strategy. The require-
ments evaluated during the requirements analysis phase are
translated into functional capabilities and are crganized
into major subsystems. All internal and external interfaces
are completely defined to the subsystem level, and the de-
sign is refined to two levels below the subsystem drivers.
Figure 2-2 illustrates the hierarchical levels of a software
system baseline diagram (treechart). The development team
documents the fundtional design of the system in the prelim-
inary design report. The preliminary design phase culmi-
nates in the preliminary design review (PDR), whefe the
development team formally presents the functicnal design for
review., The preliminary design is considered complete when
responses to the PDR comments and criticisms have been in-
corporated in the functional design.]

9108

PO AR rpy, o Yo oy
B PR

W T et e o W P b R mt ol awst v s e e e -

T 4 4 L 1 0 et e o e e e e S —
Life Cycle
ﬂ%
MAIN SYSTEM
EXECUTIVE LEVEL |

! SUBSYSTEM
‘ LEVEL
&
Q9
v
w
W e e e o e [e e e e
E
g L. L
s SUBSYSTEM
= LEVEL 1
w
[]
o
SUBSYSTEM
LEVEL 2
A4
7y
{ 1
SUBSYSTEM
LEVEL 3
> e e em e fn o e o e - e 2t e s ot o o s
Q
@ | i
o 1
o H
w
=
14
5
[a]]
[}
...____i___.__._..._... _______________ —_———
SUBSYSTEM
LEVEL N

Figure 2-2. Hierarchical Levels of a Software Svsten
Baseline Diagram (Treechart)

2-6

PRI R TTIR I T TIT AT Ve e i S S gy 4

[STy

[

-

Bemas
b

*aer

B T bl - e - oy g
"o

b e n e W e ema v v -
APy B A T b S R B T N U RN A I A

P
i

ZREIAES gﬂﬁﬁ;ﬁmf ‘ Life Cycle

2.3 DETAILED DESIGN

During the detailed design phase,‘ﬁhe developnent team éx-
tends the system architecture defined in preliminary design
to the subroutine level. By successive refinement tech-~
niques, they elaborate the preliminary design to produce
"code~to" specifications for the system.

All formalisms for the system design specifications are pro-
duced, including functional and procedural descriptions of
the system; data flow descriptions; complete descriptions of
all user input, system output (for example, screen, printer,
and plotter), and input/output files; operational procedures;
functional and procedural descriptions of each module; com-
plete descriptions of all internal interfaces between mod-
ules; and build/relecase capabilities. The team documents
these design specifications in the detailed design document,
which forms the basis for implementation. The detailed
design phase culminates in the critical design review (CDR),
where the development team formally presénts the "code-~to"
specifications for review. The detailed design is consid-
ered complete when the responses to the CDR comments and
criticisms have been incorporated in the detailed design
document.

2.4 IMPLEMENTATION (CODE AND UNIT TESTING)

In the implementation (code and unit testing) phase, the
developers code new modules from the design specifications
or revise old code to meet new requirements, integrate each
module into the growing system, and perform unit and inte-
gration testing to ensure that the newly added capabilities

function correctly.

In a typical project, the developers build several subsys-
tems simultaneously from individual components. The team
repeatedly tests each subsystem as new components are coded

2=7

-~ .-

-

o vy PO g g o, i T4 abatan st e n s ek

R L e 3t T vemarermy e e e e w3 i

g *
R g - ARV AR oA UM R st st iro A

Life Cycle

and integrated into the evolving software. At intervals,
they combine subsysteh-capabilities into a complete working
system for testing end-to-end processing capabilities. The
sequence in which functions are coded and integrated into
executable subsystems and the process of combining these
builds into systems are defined in the implementaticn plan
produced during detailed design by the development managers.

The team also produces a system test plan and drafts of the
user's guide and system description documents during this
phase in preparation for the system integration and testing
phase that follows. Implementation is considered complete
when all code for the system is produced, tested, and inte-
grated into the system.

An independent acceptance test team prepares the acceptance
test plan based on the information in the functional speci-
fications and requirements document. The acceptance test
team usually consists of analysts who will use the system,
and it frequently includes members of the organization that
specified the requirements.

2.5 SYSTEM TESTING (SYSTEM INTEGRATION AND TESTING)

During th. system testing (system integration and testing)
phaée, the development team validates the completely in-
tegrated system produced by the implementation phase. This
means that functional testing of end-to-end system capa-
bilities is performed according to tht system test plan
developed during the preceding phase., The system test plan
is based on requirements set forth in the functional speci-
fications and requirements document. Successfully complet-(
ing the tests specified in the test plan demonstrates that
the system satisfies the requirements.

In this phase, the developers correct any errors uncovered
by system tests. They also update the draft documentation

[9]
t
o

ey

s e BT R P

'

i

o

Life Cycle

to reflect the system ac it exists when system testing is
compiete. System testing is considered complete when all
tests specified in the system test plan have been run suc-
cesesfully.

2.6 ACCEPTANCE TESTING

During the acceptance testing phase, the system is tested by
an independent acceptance test team to ensure that the soft-
ware meets all requirements. Testing by an independent team
(one that does not have the developers' preconceptions about
the functioning of the gystem) provides assurance that the
system satisfies the intent of the official requirements.

he e

T,

During this phase, the development team assists the accept-
ance test team and usually executes the acceptance tests

under their direction. Any errors uncovered by the accept-
ance tests are corrected by the development team. Accept-

" ance testing is considered complete when all tests specified

in the acceptance test plan have been run successfully.
After the successful completion of acceptance testing, the
development team delivers final versions of the software and
the system documentac:cion to the customer and an operational
readiness review (ORR) is held to évaluate the readiness of
the system to support operations.

2.7 MAINTENANCE AND OPERATION

At the end of acceptance testing, the system becomes the
responsibility of a maintenance and operation group. This
marks the beginning of the maintenance and operation phase.
The nature of the activities during maintenance and opera-
tion is highly dependent on the type of software involved.
For most flight dynamics software, this phase tfpically
lasts the lifetime of the spacecraft and involves relatively
few changes to the software. For some support software,
however, this phase may be much longer and more active as

Anammey ey - T T i e e ek e sca e HEWELDIY s o S s b, A e g7 A Y
e . 0

>

Life Cycle SR

the software is modified to respond to changes in the re-
quirements and environment. : ‘

The maintenance and operation phase is outside the scop2 of
this document. However, enhancements and error corrections
also progress through a development life cycle but at a much
lower level of effort than original development. Therefore,
the recommendations made for original development are, for
the most part, applicable to development during the mainte-
nance and operation phase.

2-10

7) RECOMMENDED SOFTWARE
< DEVELOPMENT GUIDELINES

3.7 REQUIRERIERTS AMALYSIS «uvvrrreererncenns 23

3.2 PRELIFINARY DESIGN vveerrrrrornnnnns I 3—17
5.3 DETAILED DESIER «vvvereereresssesesessnens 331
2.4 IRAPLERAERITATION vueversrneeareeannnrennns 3—41
3.5 SYSTERE TESTING «vnneernrreneenrranerneenns 357
3.6 ACCEPTANCE TESTING vvvvernee.. rreeees 367

TR » or
t I o " ‘

Y s s
.

RECOMMENDED SOFTWWARE DEVELOPMENT QUIDCLINES

This section presents the SEL's recommended software devel-
opment guidelines, FEach major subseé;ion presents the soft-
ware development quidelines that are of primary importance
to the basic development team1 for a particular software
development life cvcle phase.2 Each major subsection
- begins with two summaries. The first summarizes the actions
and transactions of basic development team members, i.e.,
their major activities, the end products they produce, and
the methodologies and tools they use for the life cycle's
primary development activity. The second summarizes special
actions and transactions of the development team managers,
i.e., their special activities and the measures they use
during the life cvycle phase. The activities in the manage-
ment summary are listed in blocks. The first block of ac-
tivities are those that are specific to the phase and are
also of interest to higher level managers. Subsequent
blocks list those activities that are frequéntly assumed to

be qoing on or have occurred. :

Although the approach is described in terms of calendar
phases, it applies to specific development activities when-
ever they occur. For instance, the methodologies and tools
recommended tor use during the detailed desiqn phase apply
to detailed desiqn actitities when they are performed during
subsequent life cycle phaces., This overlap of activities is
discussed in Section 2 (see especially Figure 2-1 on

page 2-<4).

lThe basic development team consists of the customer inter-
face, who monitors resources and progress; the project man-
ager, who serves as technical consultant and manages project
resources; the project leader, who provides technical di-
rection and day-to~day supervision; and the developers, who
do the technical work. 8See Table C-8 on pages C-16 and ¢-17
ot Appendix C and Table 1-1 and Figqure 1-2 of Reterence 1,

"
“The maintenanes and operation phase is not addressed in
this document.

3-2

al08

/

8,7 REQUIRERMENTS ANALYSIS

DEVELOPMENT ACTIORS ARD TRARISACTIONS
ACTIVITIES Softwwaro Dovaloament Plan Prepored

Funsctions! Roquiromenty Amplifiod
Porformance Reaulraments Anclyzed
Cperationeal Regquiremants Datarminsd
Extamal nterfcces dontiflad o
Report and Bleploy Negulrements Determined
TED Rogquirements ldontifled

System Blzo Estimated

Reousablo Softwero ldontiftod

Computer Rocources Datenalned

lizrdwvero Solectsd

Reguiremants Anclysia Summeary Report Propared
GOR Held

END FRODUCTS

Coftwere Dovelopment Plan
Rogulremonta Analycls Summasry Report

PAETHODOLOCIES

Prejoct Rotebook

Rata Collaction

LiLrariens

Unit Bevelopment Feldoro

Requirements Quastion end Chongs Records
Structured Anziyeis (Complox Dats Precassing!

TOOLS

Conflguration Anclycis Too! (CAT)

0163-(51)-83

e
!
oo

Bl E’%E@l&

v

%y‘

"“EE”EJE;‘ 'S ANALYSIS

RMANAGEMENT

ACTIORS AD TE’WA"J SACTIONS

ACTIVITIES

Software Dovclopmant Pion Roviswed

Echeduls and Stalfing Plonned

Requlremonts Anaivels Sumimary Renort Revicwsed
Proliminory Donlen Trensition Flanned

Team Tralned

Seendards and Procedures Enforced
Pronrezs Rloniterod

Vialtitity Promotod

Syotam Slzo Botlmated

Rezeurces and Cant Ectimaoted
Teom Intoraction Coordinoted

REASURES

TED Beguiremcenta

Roquirements Quaclions and Ancwars
Reauirements Chrngss

Sublective Evaluntiona

£102-(51)-83

‘Réquitements Analysis

!

The recommended software development guidelines for the re-
guirements analysis phase are described in detail below.

3.1.1 MAJOR ACTIVITIES

Requirements analysis begins when the requirements defini-
tion team completes the functional specifications and re-
quirements document. This document presents the functional
requirements of the system, including system input and out-
put, algorithms, and timing and accuracy requirements. The
development team analyzes the contents of this document for
completeness, consistency, clarity, and feasibility, and
then translates the requirements into a form suitable for
beginning the design. During the requirements analysis
phase, the team

o Amplifies and clarifies the functional requirements
and the algorithms specified to satisfy those re-
quirements ,

3] Analyzes the algorithms, mathematical formulations,

error and stability requirements, and timing and
accuracy requirements for completeness and feasi-

bility
o Determines operational requirements (scenarios)
o Ensures that all requirements from the mission

needs statement, the mission problem statement, and
the end users have been addressed

[Identifies all external interfaces (both input and

output)
] Determines report and display specifications
o Identifies requirements that are missing or yet to
be determined (collectively known as TBD require-
ments)
o Identifies any existing software that can be used
3-5

9108

i

Requirements Analysig/v«

e Determines ccmputer resource requirements and
availability '

-} Participates in the hardware selection process

© Communicates findings to the requirements defini-
tion team

) Prepares a summary report as the basis for begin-

ning pfeliminary design
e Participates in the system requirements review (SRR)

During the requirements analysis phase, the development team
works closely with the requirements definition team, who
must answer their questions about the reguirements and re-
spond to their requests for requirements changes. Generally,
the two teams hold requirements review meetings where they
clarify requirements, discuss problems, and identify items
needing action. The development team brovides the require-
ments definition team with the results of their analysis for
incorporation into the final version of the functional spec-

‘ifications and requirements document.

This phase culminates in a final requirements review meeting
of the reguirements definition team and the development team
and their managers. Maintenance and operation personnel and
their managers may also be present, The purpose of this
meeting is to ensure the correctness and completeness of the
requirements from the viewpoints of all those concerned and
to identify and assess the impact of any remaining TBD re-
quirements. Comments and criticisms resulting from this
meeting are given to the requirements definition team so
that those issues will be addressed in the final version of

the functional specifications and requirements document.

When the final version of the functional svecifications and
requirements document has been completed, an SRR is held to
evaluate the completeness of the requirements. ‘The SRR is

3-6

9108

Requirements Analysis

attended by the requirements definition team and its man-
-agers, the developﬁent team and its managers, and others
involved with the system., See Section A,l1 of Appendix A for
details about the SRR,

Another important function of the requirements analysis
phase is to produce an initial estimate of the system's size
and of the schedule and staffing required for development.
This topic is addressed more fully in Section 3.1.6,
page 3-13, under "Key Management Activities."

\
3.1.2 END PRODUCTS
The requirements analvsis summary report is the primary
product. This report summarizes the results of requirements
analysis and establishes a basis for beginning preliminary
design. See Section B.3 of Appendix B for information on
the format and contents of the requirements analysis summary

report.
3.1.3 METHODOLOGIES

The recommended methodologies are

) Project notebook

o Data collection

o Librarians

) nit development folders

) Formal recording mechanisms for requitrements quosn-

tions and changes
e Structuted analysis for complex data processing

These methodologies are discussed in the following subisec-

tions,

l.1.3.1 Projoct Notebook

The project notebook is established and maintained by the

development managers to provide readily accessible summary

}-7

'

! '

Requiremants Analysis. ” - P

information on the key aspects and phises éf the project.
The notebook is part of the project's tfiles. The intorma-
tion kept in the project notebook is current; i.e., it is
updated weekly, biwveekly, or monthly depending on the type
of information., Sece Section B.2 of Appendix B for informa=-
tion on the format and contents of the project notebook.

3.1.3.2 Dpata Collection

“To understand the development process and to monitor the
progress of a project, software engineering data must be
collected throughout the development life cycle. fThe SEL
recommends that managers make software engineering data col-
lection a natural byproduct of their managing techniques.
This topic is treated in more detail in the Software

Manager's Handbook (Reference 2).

3.1.3.3 Librarians

At GSFC, the librarians are a separate group. of personnel
who are responsible for certain clerical and data entry
functions. The relationship between the librarians and the
development team is described in Section 1.4 of Reference 1.
During a project, the librarians maintain the project library
(or project notebook), which is a repository of all project

.
information., They also maintain online project libraries,
enter code, and operate various software tools in support of

project activities,

Durina the requirements analysis phase, the libravians
establish the project librarvy. In it, they include such
items as the tunctional specitications and requirements doc-
ument (draft and final wersions as available), questions on
requitements and responses to questions, requests for tro-
quirements chanaes and responses to rogquests, and the re-
quirements analysis summary report. In genoral, the project
Library contains any written material produced by the devel-

apment team tor the purpose of recording decisions ov
-8

aLon

Requirements Analysis

communicating information. Necessary management informa-
tion, such as schedules and staffing plans, are also in-
cluded. Management information produced during the
requirements analysis phase is discussed in Section 3.1.6,
page 3-13.

Librarian functions duriné this phase are generally limited
to the operation of software tools, which are discussed in
Section 3.1.4, page 3-10.

3.1.3.4 Unit Development Folders

The project library ié organized according to functional
units so that all information pertaining to one topic can be
found in one location in a unitl development folder.

During the requirements analysis phase, the most logical
organization of the materials collected from the development
team is into the general categories (units) of the system's
functional requirements (for example, input, output, and
algorithms). For the project library to be useful through-
out the development life cycle, it must be estab;ished at
the beginning of the requirements analysis phase; it must
contain all material pertinent to the project; and it must
be logically organized. A description of unit development
folders is contained in Reference 3, for example.

3.1.3.5 Formal Recording Mechanisms

As a part of configuration management procedures, the de-
velopment team uses formal recording mechanisms to commu-

nicate requirements questions and requirements changes. One

A unit is defined by the development manager for con-
venience; e.g., units may be schedules, system size
estimates, resource estimates, external interfaces, sub-
system details, development plans, implementation plans,
user's guide, and system description.

3-9

Y108 ‘ .

B T T R]

Requirements Analyéis

mechanism is the requirements question form. The development
‘team uses this form to‘qﬁestion the requirements definition
team about the requirements. Responses to requirements
questions must be in written form. The requirements defini-
tion team managers use the form to assign personnel and due
dates for their team's response to the developers. The

forms are also used to track TBD requirements.

Another procedure is used for requirements modifications.” A
request for a requirements modification is made using a re-
quirements change request form (or engineering change request
(ECR)), on which the requested change and its justification
are described. Requested changes to the requirements must

be approved by the manager of the requirements definition
team and the Configuration Control Board (CCB). After ap-
proving a change, the manager adds it to the functional
specifications and requirements document.

3.1.3.6 Structured Analysis

No particular methodology is recommended for requirements
analysis. However, structured anaiysis is useful for sys-
tems or subsystems with large quantities of input or output
data or complex data processing requirements. Structured
analysis is described in Reference 4, for example.

3.1.4 TOOLS

An online configuration management tool is recommended for
use in configuration management throughout the project.
During the requirements analysis phase, managers can use
such a tool to track requirements questions, TBD require-
ments, and requests for requirements changes. The online
Configuration Analysis Tool (CAT) program was developed for
the SEL for use in flight dynamics projects. CAT is doc-
umented in Reference 5. :

3-10

9108

Requirements Analysis

The SEL recogaizes the need for an automated requirements

1 o : . :
language, but has been unable to identify one that is
adequate and cost effective for the flight dynamics environ-
ment, ' '

3.1.5 MEASURES

The following subsections describe various measures and
“evaluation criteria for managers to use to assess the re-
sults of the requircements analysis phase and to determine

whether enough progress has been made to begin design.

3.1.5.1 Objective Measures

' Managers can monitor the progress of requirements analysis
by examining the number of requirements questions, responses
to questions, and requirements changes. Several signals
shovld alert the manager to problems. For example, a grow-
ing gap between the number of questions submitted and the
number of responses received or a large humber of require-
ments changes due to errors may indicate problems with the
clarity, correctness, or completencss of the requirements as
presented in the functional specificatiéns and requirements
document. Managers can use data from similar past projects
to agseés the meaning of the relative sizes of these numbers.

The number of TBD requirements is the most important measure
to be examined during this phase, since unresolved TBD re-
quirements can necessitate severe design changes later in
the project. The TBD requirements must be categorized ac-
cording to their severity. TBD requirements concerning ex-
ternal interfaces arc the most critical, especially if they

involve svstem input. Internal algorithms are generally not

1Examples of requirements lanauages include Problem
Statement Lanquage/Problem Statement Analvzer (PSL/PSA)
(Reference 6) and Multi-Level Exoression Design Language -
Requirements Level (MEDL-R) (Reference 7).

3-11
alns

S RN L Ty et

. . P .
N B AW R AT
AR A . -

Requirements Analyaig

et

as severe, unless they concern data processing requirements.
Output requirements are, in general, not as severe unless
they concern data being transmitted to other systems.

A TBD requirement is considered severe if it could atffect
the functional design of one or more subsystems or of the
high-level data structures needed to support the data proc-
essing algorithms, Preliminary desian should not proceed
until all severe TBD requirements have been resolved. A TBD
requirement is considered nominal if it affects a portion of
a subsvstem involving more than one module. Preliminary
desian can proceed unless large numbers of TBD requirements
exist in one functional area (for example; more than 5).
However, these TBD requirements'&ust be resolved during
preliminary design. An incidental TBD requirement is one
that affects only the internals of one module. Incidental
TRD requirements must be resolved bv the end of detailed

design.

For each TBD requirement, managers must estimate the effect
on system size, required effort, cost, and schedule. Often
the information necessary to resolve a TBD requirement is
not available until later, and design must begin to meet
fixed deadlines. These estimates will help predict the
uncertainty in the development schedule due to unresolved
T™SD requirements.

3.1.5.2 Fvaluation Criteria

To determine whether or not the development team is ready to
proceed with preliminary design, managers must consider the

following guestions:
© Is all external input and output completely defined?

° Have all TRD requirements been identified and their

impact assessed?

a108

v .. Requirements Analysis

© Are all necessary algorithms identified? Are the
identified algorithms complete and correct? Are
they optimal? Are error and stability limits
" defined?

) Are the environmental constraints (for example,
timing, memory, and accuracy) clear?

© Are the requirements feasible, given the environ-
mental constraints? Are sufficient computer

resources available?

] Are the requirements traceable? Does the func-
tional specifications and requirements document
provide a basis for defining acceptance tests?

3.1.6 KEY MANAGEMENT ACTIVITIES

Planning is the manager's primary activity during the re-
'quirements analysis phase. During this phase, the develop-
ment team managers produce the software development plan.
Toward the end of the phase, the transition to the prelim-
inary design phase must be planned. These planning activ-
ities are in addition to other activities such as monitoring
progress, enéuring cooperation among all groups involved,
and reviewing the results of requirements analysis. These
key activities are discussed in further detail in the fol-
lowing subsections.

3.1.6.1 Software Development Plan

The software development plan contains specific information
about the technical and management approaches of the current
project throughout its life cvcle. The development team
managers prepare this document during the requirements anal-
ysis phase. Because of the primary importance of this plan,
it is described in great detail in the Software Manager's

Handbook (Reference 2),.

Requirements Analysis

The SEL often uses the flight dynamics software development
projects as experiments in software engineering research.
Thus, frequently, a specific softwafe engineering approach
is applied to a project to evaluate its effectiveness.
Therefore, data collection procedures and details concerning
the application of the specified approach must be estab-

- lished at the beginning of the project life cycle.

3.1.6.2 Resource and Cost Estimates

At the beginning of this phase, the managers must estimate
the amount of code to be developed and the effort required
to develop it. Sufficient information is not usually avail-
able to use a sophisticated resource estimation model, but a
rough medel can be applied. Historical knowledge of similar
systems can be used to estimate the size of the system, and
historical productivity figures can be used to estimate the
amount of effort required. From these estimates, the amount
of time and effort necessary for each lifé cycle phase is
allocated, and the first cost figures apd;schedules are

i

produced. ;

3.1.6.3 pPhase Transition Plans

Toward'the end of the requirements analysis phase, managers
must plan an orderly transition to the preliminary design
phase. They must convey to the development team members the
parts of the software development plan that apply to pre-
liminary design (for example, design standards and con-
figuration management procedures) and instruct them in the
specific software engineering approach toc use during design.
They must ensure that the development team is trained in
design technologies at the beginning of the preliminary

design phase.

3-14
9108

Requiremen%s Analysis

- 3.1.6.4 Other Management Functions

During the requirements analysis phase, the managers must-

i also

| © Monitor adherence to planned schedules and resource
; , ‘ expenditures.

© Ensure adherence to data collection, quality as-.
surance, and confiyuration management procedures,

<] Review the results of the requirements analysis
process., ‘
° Ensure cocperation among the various groups in-

volved (that is, development team, requirements
definition team, user organization, and librarians).

o Schedule and participate in the requirements anal-
ysis review and ensure that all pertinent groups
participate.

(] Ensure that all facets of the project are com=-
pletely visible (that is, know exactly where the
project is and where it is going at all times).
Project visibility is critically important. Man-
agers must know at all times the exact status of
all task activities and the detziled plans for de-
velopment completion. This is necessary so that
problems can be dealt with when they‘occu: rather
than later in the process, when their impact is
likely to be greater. \

o Participate in the £RR.

. The Software Manager's Handbook (Reference 2) presents
further information about the manager's activities through-

- out the development life cycle.

3-15

0nYNa

3.2 PRELIMINARY DESIGH

[arione¥ "w o 3

BEVELOPMENT

ACTIONSG AND TRANSACTIONS

ACTIVITIES

Syziem Portitiensd

Proeossing Options Delined
Altamnative Besirns Examined
External Interfacos Definad
Subsvatoms Pertitioned

Subsyotom Interizcos Neofined

Error Procossing end Recovery Refined
TOD Roguiremnents Hogolvad
Reuzeblo Softvwaro Montifisd
Protimineey Decion Report Propared
PDR Held

ERD PRODUCTS

Preliminary Desiga Report .
Softwers Dovclopment Pion Updato

METHODCLOGIES

Prejoct Notobook

Dzta Coliostion ‘

Libsraricns i

Unit Davelopmont Felders
Roguiremanis Quostion and Changs Records
Design Formalicms

Dzclgn Decision and Chango Records
Configuration Risr:agement

Daosign Walkthrouzhs

[terativo Enhancornont

Information Hiding

Data Abstrection

PDL

TOOLS

PDL Procossor

Source Codo Librery Managsment System
CAT

Resource Estimation

PRECEDING PAGE BLANK NOT FILMED:

8108-(51)-83

fgins

W WWLNLJW]EE\W\WM i)

ESIGN

RMANAGERERT

ACTICNG ARND TRANSACTIONS

ACTIVITIES

TED Requircmants Recalved

Reguiremenes Chongre Roviowed end Ansescad
Begliyn Ravlowed ond Walked Through

Deteoiled Deziagn Tronsition Blanned

Tozm Tealned
Gtenderds ond Procedures Enforeed
M;;rs.s Rlsnitcrad

Isiistilty Promotzd
Svswm Slzo Ectlimnated
Roraurcess ond Cost Eotimatod
Toom (nterection Coordinated

AMEASURES

TED Requiroments

Requiremenis Changes

Roqulremrente Quastions end Ancwsrs
Beclon Chengso

(nterfcces

Doclgn Complstion Checlillst
Sudlcctive Evaluations

9162-(51)23

P o o

B ———

e e v —— - o s Crep

~—

' Preliminavy Desian

The recommoended soltware development guidelines tor the pre-

SLminary design phasie arve deseribed in detail below.

Jode b MAJOR AtV ITies

Preliminary desian beginsg at the end of the vrequitrement s
analysis phase. AL this point, the development team has
canpleted the tequirement s summary tepott; the vregquitement s
detinition team has ancorpotated the results of the teguive-
ments analysis and comments (rom the tequitement s toviow
tnto the tunctional specitications and requitements doo-
wment ; an SRR has been held; and the Jove lopment wmanagors
have determined that the team undevstands the regquitements

well enoualy to begtn desian,

Durimg prelimunaty dosian, the development team dofines the
noftwate ayaten atchitecture based on the tequitoements aiven
tn the tuncttonal speciticat tons and requttement @ document

and amplitied duting the tequitencnts analysis phase. Spoe-

citicatly, the team

L
° dtructutally and tunctionatly pattitions tho asyutom
it major subaystems
o Detetmines operational seenarion (o0 ma jot process-

1t opt tons (that (s, opetat ing proceduten)

[Bamtnes alternative destan stiateares
° Detine:d all external antorfaces to the system--that

ta, completely specities all syastem vnput and out -

put, tneluading

- Data set lavouts (tecord content and tule

sttuctur o)
- et anpuat

Seteen, printer, and plotter outpat

Peu

Preliminary Design

B ey 4 e s .

Defines all interfaces between subsystems--that is,
completely specifies all input and output for each
subsystem, including

- Data set layouts (record content and file
structure)

- Data transferred in memory

- User input

- Screen, printer, and plotter output

Refines the subsystem design to two levels below
the subsystem drivers, including preparation of
functional baseline diagrams (treecharts) through
two levels below subsystem drivers and module
prologs and Process Design Language (PDL) through
one level below subsystem drivers‘(see Figure 2-2

on page 2-6) '

i

Determines error processing and fecovery strategy,
especially with respect to handling system input/
output errors ‘

Resolves as many remaining ©'BD requirements as pos-
sible; assesses the impact of those not resolved

Examines all requirements to ensure that they are
met by the functional capabilities of the subsys-
tems defined in the preliminary design

Identifies all existing software to be used in the
system
Prepares preliminary design documentation as a

basis for the preliminary design review (PDR)

Participates in the PDR and then incorporates
changes recommended at the PDR into the preliminary

design

¥ L e A1 g vy

L . L T I I R AN S I . e L R Rt e N R L R T R S I D S G b L Tl S

-1 I S

o ‘ : - © _Preliminary Design

) ! The preliminary design phase culminates in the PDR, attended
? © by the development team and its managers, the requirements
definition team and its managers, and others involved with
the system. At the PDR, the development team presents the
functional design of the system and the rationale for choos-
ing that design over alternatives. The presentation is
based on the preliminary design documentation and may re-
quire a series of meetings if the system is large. See Sec~
tion A.2 of Appendix A for details about the PDR.

For the PDR presentation, the participants evaluate the
functional design of the system for completeness and cor-
rectness and give comments and criticisms to the development
team during and immediately after the presentation. The
preliminary design is complete when the development team has
adjusted the preliminary design documentation to respond to
comments and criticism expressed at the PDR.

-

3.2.2 END PRODUCTS

The preliminary design report is the primary product. It
presents the functional design of the system and forms the
basis for the detailed design document produced during the
next life cycle phase. See Section B.4 of Appendix B for
the format and contents of the preliminary design report.

3.2.3 METHODOLOGIES

The SEL recommends the following methodologies for use
during the preliminary design phase:

: ¢ Project notebook
. ® Data collection

o Librarians

o Unit development folders

] Formal recording of design decisions and changes
X ° Configuration management procedures

o Design walkthroughs

3-21

J 9108

W pp—

e e e e e N T e TR

Preliminary Design

] Iterative refinement
o Information hiding and data abstraction
(] PDL,

Data collection and maintenance of the project notebook must
continue throughout the development life cycle. The remain-
ing methodologies for the preliminary design phase are elab-
orated in the following subsections.

3.2.3.1 Librarians and Unit Development Folders

The librarians continue to maintain the project library.
They add to the library such items as design decision notes,
design change forms, and -all preliminary design documenta-
tion, as well as pertinent management materials. (The man-
agement information produced during the preliminary design
phase is discussed in Section 3.2.6, page 3-28). Since re-
quirements analysis continues throughout the development
life cycle, the development. team may produce more require~
ments questions and requests for requirements changes during
this phase. The librarians also add these inquiries and
their responses to the project library.

buring this phase, the development team managers organize
the project library materials in the unit development
folders by major subsystems and by functional areas within
each subsystem. This organization corresponds to the first
level below the subsystém drivers on the functional baseline

diagrams (see Figure 2-2 on page 2-6).

The librarians enter module prologsl and PDL as well as
overate CAT, which is discussed in Section 3.2.4, page 3-25.

liodule comments describing the module's purpose, opera-
tion, calling sequence arguments, external references, etc.

3-22

aINRK

v ——m——

AT RIS L]
. ‘:M_.xx‘;;.,l,,

LA NP

© oy emie g o R A i L e

ST A ‘ Preliminary Design

3,2.3.2 Formal Recording Mechanisms and Confiquration Man-
agement Procedures -

As part of the configuration manégement of the project, the
developers use formal recording mechanisms to document
design decisions and changes. When a design decision is
made, it is recorded as a design decision note. Because
these notes document the design process--particularly the
evaluation and selection of alternatives--they are a valu-
able reference for the developers throughout the sotftware

lite cycle.

Once design decisions have been finalized by the development
team managers, design change forms are used to record
further changes. The use of formal design change procedures
enables the team managers to control desiyn changes and to
ensure that all team members are kept %nformed of the cur-
rent state of the design,

j
The use of tormal recording mechanisms. for particular life
cycle activities must continue throughéut the life cycle
whenever those activities occur. For instance, requirements
questions forms and requicemehts change reguest forms con=-
tinue to be used after the requirements analysis phase for

requests for clarification or changes to the requirements.

The procedures for configuration management must be strictly
adhered to througliout the development life cycle. These
procedures specify the forms to be used for recording vari-
ous inquiries, decisions, and reguests tor changes and
address the processing of such forms (tor example, responsi-
bility for response, authority for approval, and distribu-
tion). Strict procedures are especially iwmportant in the

area of change control,

Contiguration management procedures also specity the control
ot online project libraries. The procedures must specity

the point at which modules are moved from the individual

3-23

AR}

9 T e b

- -y

T i

Preliminary Design

developer's Jurlsdxctlon and placed in the prOJect libraries,
At that time, the modules are placed under configuration
control. Any changes are performed by a specially desig-
nated person or yroup of people (usually the librarians) and
must be recorded formally by means of a change report form.
These procedures for the control of online libraries apply
to the pL;llmxnary design phase only if a decision is made

to place module prologs and PDL under configuration manage-
ment.

3.2.3.3 Design Walkthroughs

Design walkthroughs are held throughout the preliminary
design phase by development team personnel and their man-
agers to review design elements and to identify problem
areas and TBD reguirements. This peer review is an impor-
tant guality assurance procedure. After design walk-
throughs, managers assiyn personnel to resolve problems and
schedule their response as part of configuration manage-
ment. The development team leader records any decisions

made at a design walkthrou,. in design decision notes.

Design walktliroughs are also used to identify the point at
which design elements are placed under configuration control
by the development teaim manager. A design element is usu-
ally put under configuration control when it has been incor-
porated in the preliminary design documentation or presented
in a design walkthrough or at the PDR, depending on the sta-
tus of the design. After that, changes to the agesign must
be maae according to the change control procedures and must
be recorded by means of design change forms. A description
of design walkthroughs is contained in Reference 8, for ex-
ample.

J3.2.3.4 Desian Technologies

The SEL recommenas tterative retinement (for example, Reter-

ence 9) as the primary methoa for producing the system

3-24

O LN Ve S tmamres - e e v ST e st ST et e ki S

~~~~~



o vt s e Sy . . PO I I D e L

Preliminary Design

fdesign. When a substantial amount of existing design and/or

" code is to be reused (féx éxample, 20 percent or more), it-

~erative refinement is recommended tc functionally partition
the system into modules. This process is preferred to
strict successive refinement (used in top-down design) when

adapting the design to the structure of the existing design
‘and code. )

In the functional partitioning process, the SEL recommends
the principles of information hiding (for example, Refer-
ence 10) and data abstraction (for example, Reference 11l).
An example of these techniqués is the use of common inter-
face routines for performing input or output operations so
that the format and struciure of each external data set are
known to only one routine and are transpareht to the rest of
the systenm. ' : .

3.2.3.5 Process Design Language (Program Design Language)

The SEL highly recommends the use of PDL during design as a
very beneficial and cost-effective methodology. Comparable
to the blueprint in hardware, PDL communicates the concept
of the software design in all necessary detail. It provides
a complete, formal, algorithmic specification for a software
component. Its use enables the designer to communicate the
exact intent of the design and thus reduces errors due to
misinterpretation of the design by reviewers and coders. A
description of PDL is contained in Reference 12.

3.2.4 TOOLS

An online configuration management tool (for example, CAT)
is used throughout the development life cycle. In this
phase, it can be used to maintain detailed schedule informa-

tion at the subsystem and module levels.

Q1nK

(
i



PR L i}

Preliminary Design

i

One new tool is recommended:

o An automated Pﬁt processor (fof example, Refer~
ence 13) (if one is available). This tool enforces
consistency of PDL usage among development team
members and also performs syntax-checking opera-
tions.

3.2.5 MEASURES

The following subsections present various measures and eval-
uation criteria for managers to use in assessing the prelim-
inary design phase.

3.2.5.1 Objective Measures

During this phase, managers continue to use the same objec-
tive measures as during requirements analysis. 1In partic-
ular, they monitor

o Number of requirements questions, responses to

questions, and requirements changes. The number of design
changes must also be examined. Numerous design changes not
attributable to requirement changes should alert the manager
to problems; these changes may ind}cate that the development

team does not really understand the requirements,
t

© Number of TBD requirements (see Section 3.1l.5.1,
page 3-11). Managers must assess how each TBb requirement
will affect system size, required effort, cost, and sched-
ule. By the end of this phase, only incidental TBD re-
quirements can be left unresolved.

o Number of interfaces. The number of interfaces per

subsystem is an indication of that subsystem's complexity:
a subsystem with a large number of interfaces relative to

its size will require more time for implementation and
thorough testing. Data from past projects of a similar
nature can be used to interpret the relative sizes of these

numbers.

3-26

9108

b o em e ey



o~ r——— ey o g
v

.Preliminary Design

To help monitor the progress of the p:elimiﬁary design, man-
agers can produce and use v

© A detailed checklist of design formalisms to be .~
produced. Because preliminary design documentation contains
all design formalisms produced during preliminary design,
all items on the checklist must be qompleted before the PDR.

3.2.5.2 Evaluation Criteria

To evaluate the correctness and completeness of the prelim-
inary design and determine whether the development team is
ready to proceed with detailed design, managers must con-
sider the following gquestions:

e Have all requirements been mapped into functional
capabilities of specific subsystems?

o Have alternative design approaches been examined
and rationally discounted, and has the simplest

design been chosen?

o Is the partition into subsystems sensible? Are
functions and capabilities allocated logically?
Does the design minimize the transfer of control
information? Does the deéign have low coupling
between subsystems and high cohesion within each
subsystem? (Coupling and cohesion are defined in
Reference 14, for example.)

] Are all interface descriptions complete at both the

system and subsystem level?

© Are the data set layouts for all external data sets

completely specified?

o Are the required baseline diagrams and module pro-
logs and PDL provided to a sufficient level of
detail?

L



¢ s ——— oo e vy v e e e e

Preliminary Design

C . Umwe taam o e e e, ROU Rt e e st MRt e w et B e S b 4 hAnaa w s s s e e T R numtsa s, PO RAR M YK R A A
| .\

A [ f P ’
- LN - N T T

Is the error handling and recovery strategy

comprehensive?

Is the estimate of resources adequate and the
schedule reasonable? Has time been allocated for
contingencies, training, and the like?

Has the impact of any remaining TBD requirements

been assessed?

3.2.6 KEY MANAGEMENT ACTIVITIES

During this phase, the madagers' focus begins to change from

planning to monitoring. Specifically, managers

©

Provide required training for the development team

Ensure adherence to

- Design standards '

- Configuration management procedures
- Reporting procedures

- Data collection procedures

- Quality assurance procedures

Review the design produced, participate in design
walkthroughs, and resolve TBD requirements

Monitor adherence to planned schedule and expendi-
ture of resources, and update cost and resource
estimates and schedules

Ensure that all facets of the project are com-
pletely visible

Coordinate communication between the development
team and the other groups with which they must
interact (for example, the librarians and the re-

quirements definition team)

Plan transition to the detailed design phase

s 2 v



e en———

moy e e T L T PR

fPreli@inary Design

e Schedule and participate in the PDR, and ensure
that all pertinent groups participate

Further details on . the refinement of resource and cost esti-

mates and on phase transition planning are discussed in the
following subsections. ' ‘

3.2,.6.1 Resource and Cost Estimates

'During the prelimipary design phase, managers must monitor

the development team's adherence to cost and resource esti-
mates and the schedules in the software development plan
(see Reference 2). The percentages of cffort and time ac-
tually expended versus the percentages of the quantities
planned to be expended in terms of the work accomplished are
good measures to examine for monitoring progress.

By the end of this phase, the managers can refine and update
resource and cost estimates made during the regquirements
analysis phase. System size is better known, as are re-
sources expended and progress made toxdate. Enough in-
formation is usually available to use a formal resource
estimation model. It is important for the manager to use a
model that is tuned to the specific environment and cor-
responds well with the resources expended for similar past
projects. The Meta-Model has been developed using SEL data
(see Reference 15); However, managers must never completely
rely on any formal resource estimation model. Rather, they
must use the results of the model, together with historical
knowledge of similar systems, to update resource and cost
estimates. The new estimates are more accurate because they

are based on additional information and model support.

From these new estimates, managers prepare schedules and
staffing plans. Schedules are refined to reflect the sub-
system division established in the preliminary design. The
managers add these new estimates and schedules to the soft-
ware development olan to form the basis for monitoring

3-29

R I U U T

w—— Ty oy



f e WA et ;. WChemary s PN Ceee e s vat n o
o re—— — - " e e - . ' . J"f*n,‘(" FEN I R . L‘\ e > 1 f “ -
: Lo

MRS

Preliminary Design

progress during the next/life uycle phase. ‘The process of
monitoring actual progress versus planned progress and
updating the plan as more detailed information becomes
available continues throughout the project Jife cycle.

3.2.6.2 Phase Transition Plans

Toward the end of the preliminary deéign phase, managers
must plan the transition to the detailed design phase} i.e.,
they must plan the detailed design phase so that ma.,or sub-
systems are designed concurrently. 1In addition, they must
determine the staffing levels and assignments necessary to
perform the detailed design. Managers usually add personuel
to the development team at the beginning of detailed design.
They must ensure that these personnel receive any trainjng
required and that new members are informed of work assign-
ments, design standards, software engineering approaches,
and quality assurance and configuration management proce-
dures. The online libraries must also be established to
store medule prologé, PDL, and reused code duriné detailed
design.

(8]
'

30



— AL

3.3 DETAILED DESIGR
DEVELOPRIENT ACTIONG AND TRAMSACTIONG

ACTIWITIES

Singlo Functione Rofined
Baeclino Dlegrams Prepared

1/0 Spacificd

PDL ond Prologe Spacified
COMNION Blocks Specified
Intornal Intorfeces Spociflad

TBD Reguiremsnts Rozolved
Reusahla Softwero Idontificd
Detrlizd Dezign Bocument Propared
Implomentation Strategy Planned
CER Hzld

END PRODUCTS

Dotailed Daczign Bosumant
Seitware Dovalopmont Plon Update
Implamontation Plan

METHODOLOGIES

Projoct Notsbook (.
Data Collaction !
Librarians ‘
Unit Developmont Folders
Roquirements Quastion and Changa Rocords
Dezign Formaslisms

Design Dacizion and Change Records
Configuration Bansgement

Design Walkthrouchs

Itorativa Enhancemont

Information Hiding

Data Abstraction

PDL

TOOLS

PDL Processor

Source Code Library Managesment System
CAT

Resource Estimation

9108-(51)-83



-
- -y e 1w e FORON Jas WS R £ SIS mberh an e A AU Ay LT L TR AR TRRTCSLYY L U R T Ay
DT 0T B s ey PR WA o 0 T ¢ e T TR BT edipnsisivai/ it A e

N
- . ¥ A

2.3 DETAILED DESIGN

MANAGERIERT ACTIONS AND TRARSACTIONS

ACTIVITIES implomsniation Strategy Reviowed
Implemeontation Tronsition Planned

Tep ltoms Rosofvod
Requiromsnta Changes Roviowed and Asscrgad
Rozign Reviowed and Welked Through

Team Troined

Stendards and Procedures Enforcnd
Progrozs Rlonitered

Vigihliity Promoted

System Sire Eatimated

Reasources and Cost Estimatod
Tcom intesaction Cocrdinated

MEASURES © TRD ltems

Requirements Chaageos

Requiroments Quostiona and Answors
Design Changos

Interfoccoa

Dacign Complation Checldist

Dezign Growth Rate

Meduls Strangth

Moduls Coupling

Subjective Evoluations

£103-(31)-33

[¥9]
I
w
to



N e 2Ty

L b
R
tAR o

i

BT SR s o . e T Mg® U m e r e man gh T TmSMA G0 ieATE AN e o et | R Y TR A T L WA S 84 e e o ¢

R ‘ Detailed Desian

The recommended software development quidelines for the de-
tailed desian phase are described in detail below,

3.3.1. MAJOR ACTIVITIES

Netailed design begins after the PDR unless comments and
criticism expressed at the PDR indicate serious problems or
deficiencies with the preliminary desiqn, During detailed
desian, the team elaborates the system architecture defined
by the preliminary design to the subvoutine level. The
detailed design process is an extension of the activities
beaun during preliminary desian until "code-to" specifica-
tions are complete. Specifically, the team

o Successively retfines each subsystem until each com-

ponent pertorms a sinale function and can be coded

as a sinale module

o Prepares detailed baseline diagrams (treecharts) to

the subroutine level

° Finishes specifyina detailed formats of all system

and subsystem input and output

o Compleotes proloas and POL for all modules

e Specifies COMMON blocks and internal intertaces
between modules

° Specifies the staved implementation plan, includina
capabilities to be included in each build/release
and the detailed milestone schoedule or cach build”/
release

o | Prepares detailed desian documentation as a basis
for the critical design review (CDR)

o . Participates in the CPDR and incorrorates chanages

recommended at the CDR into the detailed desian

1-33
9108



e et TR

Detailed Design

The detailed design documentation contains all design for-
malisms and must be distributed to everyone‘attending the
CDR before the CDR meetings. The design formalisms must be
prepared in accordance with the guidelines and standards
specified (that is, size, complexity, functionality of mod-
ules, prolog contents, and PDL usage) . .

The detailed design phase culminates in the CDR, attended by
the development team and its managers, the requirements def-
inition team and its managers, and others involved with the
system. At the CDR, the development team presents the de-
tailed design of each subsystem for critical review. This
presentation is based on the detailed design documentation
and may require a series of meetings if the system is

large, See Section A.3 of Appendix A for details about the
CDR.,

For the CDR presentation, the participaﬁts évaluate the de-
tailed design of the system to determine whether the design
is correct and complete enough to hegin implementation.

They also review build/release capabiliéies and schedule for
feasibility. The detailed design is complete when the de-
velopment team has adjusted the detailed design to respond
to comments and criticism expressed at the CDR.

3.3.2 END PRODUCTS

The detailed desiyn document is the primary product. This
document is an extension of the preliminary design report.
See Section B.5 of Appendix B for the format and contents of

the detailed design document.
J.3.3 METHODOLOGILES

Because the activities of detailed design are an extension

ol those performed during preliminary design, the same

Y R YL



. Detailed Design

methodologies are used (see Secpion 3.2.3, page 3-21). They
are repeated below: ~

Project notecbook

Data collection

Formal recording of design decisiong and changes
Configuration management procedures

Design walkthroughs '

Iterative refinement

Information hiding and data abstraction

PDL

© e 06 06 6 0 ©

New activities for this phase are described below:

o Librarians. The librarians begin to transfer ex-
isting code to be used in the implementation into the proj-
ect's online source code libraries. They continue their
activities of preliminary design, including adding all ma-
terials produced during the detailed design phase to the
project library. The organization into unit development
folders according to subsystem (started during preliminary
design) is continued and refined during detailed design.

® Unit development folders.. A chart is added to the
unit development folder for each subsystem, showing each
module in the subsystem and the planned and actual starting
and ending dates for each of the major phases (that is, de-
sign, code, and test) for the module. The.librarians update
these charts to reflect current development status for each
module throughout the remainder of the project life cycle.

3.3.4 TOOLS

The same tools recommended for use in the preceding phases

are used (see Section 3.2.4, page 3-25):

0 An online configuration management tool--for ex-

ample, CAT
e An automated PDL processor, if one is available

3-35

Ny

R 5 STl W4 T L e ek 5 N s S T YEE iy ¥ e o

e e Ty

g



H

B T L L T L N R R o L S T T ”.r,,.»..-.“.,‘m.} g g T ST o sy v o P

Detailed Design

' A new tool for detailed design is

o 4n online é%ﬁfce code library management system,
which is to be used to manage the project libraries. Such a
tool, if available, is an impecrtant part of the configura-
tion management procedures because it can be used to enforce

, strict change control procedures on the project libraries
- containing PDL and source code that have been placed under

configuration control.
3.3.5 MEASURES

The measures and evaluation criteria used during detailed
design are similar to those used for preliminary design.
Further explanation is given in the following subsections.

3.3.5.1 Objective Measures

As specified for preliminary design (see Section 3.2.5.1,
page 3-26), managers monitor the following objective meas-
ures, repeated below:

] Number of requirements questions,

©  Number of responses to requirements questions,

o Number of requirements changes, |
e Number of design changes.,

] Number of interfaces.

° Number of TBD requirements. The number of TBD re-

guirements is the most important quantity to be examined.
Ideally, all TBD requirements must be resolved by the end of
this phase. If this goal is impossible to achieve, the man-
agers must assess how the remaining TBD requirements will
affect system size, required effort, cost, and schedule.

o : A detailed checklist of all design formalisms.
This list can be used to evaluate the design's completeness.

Because the detailed design documentation contains all the
3-36

9108



B ma——ep cros N 4 WA SRy A mews Ryl atem 4 S04 e

Detailed Design

design formalisms produced for detailed design, all items on

the checklist must: be completed 'before the CDR.

One new measure can be used by the managers to monitor
progress:

o An updated estimate of the number of lines of code

in the system. By the end of detailed design, managers Know
the projected number of modules in the system. The budgeted
effort rate can then be examined by computing the number of
lines of code per (budgeted) effort unit and the number of
modules per (budgeted) effort unit. Managers then can com-
pare these figures with the same figures for similar past
projects to detcrmine‘wheﬁher'p; not enough effort has been

budgeted to cdmplete development.

3.3.5.2 Evaluation Criteria

To evaluate the correctness and completeness of the design
and to determine whether the development team is ready to
proceed with implementation, managers must consider the fol-
lowing questions: 1

] Have all items on the’checklist of required design
formalisms been completed? For example, are all
external data sets completely defined and all base-
line diagrams (treecharts) provided to the subrou-
tine level?

o Is the design correct? Will the transformations
specified produce the correct output trom the input?

o Is the design robust? Is user input examined for
potential errors before processing continues?

o Is the design testable?

o Have all design guidelines and standards specified

been followed?

BT AN



o e et e e
'

Detailed Design *

o

SAn e mmmo b Sk e 4 e ETaRE S R ¥ AT B ST At ek e g Sy A £ Ty ] Lt

Are the descriptions of each component clear enough
and sufficient}y unambiguous so that implementers
can proceed autonomcusly?

llave all TBD requirements been resolved? If not,
how will the remaining TBD requirements affect sys=-
tem size, required effort, cost, and schedule?

Is the build/release schedule structured to provide
carly testing of end-to-end system capabilities?
Is the schedule reasonable and feasible for imple-

menting the design?

Is the estimate of resources adequate for complet-
ing development? ‘

Managers can evaluate the quality of the design by consider-

ing the following factors:

]

3.3.6

The level of information hiding (that is, how well
have data usage and access been localized. Are
modules secretive in the way in which they perform
their functions?)

The degree of coupling between modules (that is,
intramodule dependencies are minimized)

The cohesiveness of the lowest level components
(that is, each module has a single purpose)

KEY MANAGEMENT ACTIVITIES

During this phase, the manager's concerns are identical to

those for preliminary design (see Section 3.2.6, page 3-28)

and are repeated below. The activities include both plan-

ning and monitoring. Specifically, the managers

°

Ensure adherence to
- Design standards

- Configuration management procedures, especially
change control

w
t

38



o ——————

T T ST e L

Detailed Design

[

- Reportinq(procedures
- Data collection procedures
e Quality assurance procedures
[+] Review the desiqn produced, participate in .esign

walkthroughs, and resolve TBD requirements

e Monitor adherence to planned schedules and expend-
iture of resources,; and update cost and resource

estimates and schedules

] Ensure that all facets of the project are
completely visible

e Ensure cooperation between the development team and
the other groups with which thev must interact

] Plan transition to the implementation phase

© Schedule and participate in the CDR, and ensure
that all pertinent groups participate

For the transition to the implementation bhase, it is usu-
ally necessary to increase the size of the development team
substantially to handle the simultaneous implementation of
the builds for each subsystem. Managers must inform the
development team of the software engineering approaches to
be used during implementation and must provide required
training. Also, the members of the development team must
understand the code and testina standards, the quality as-
surance procedures, and the configuration management proce-
dures to be followed in addition to their individual areas

of responsibility.

Managers must also ensure that the online project libraries
are established, that the strict chanage control procedures
concerning these libraries are followed, and that the job
control language (JCL) for building and testing the system
is prepared for the'developers so that they can start imple-

mentation immediately after the CDR.

3-39



.
e o . ey - i mema e < vemes e < 3 S P15 e aemrores e e o e

3.4 IMIPLERIERNTATION i

'

ol

EVELOFRMENT ACTIONS ARND TRARSACTIONS

ACTIVITIES Job Contre! Lonoucps Propored
Commaond Precosiures Propersd
Mow Medules Codosd

Rousehlo Modules Revised

Unrite inteorated and Tested
Rulld/Rolcoee Tost Piane Prepored
Baota Preparcd :
fulld/Releaco Test Plons Execcuted .
Dlccrepancles Rosolved {
Syotem Intograted !
Syatom Test Plan Prepored , '
Accentonce Teot Plan Propared :
Uszr's Quids Propered

Systom Dazeription Prepered

ERND PRODUCTS Systom Cedo

Supgorting Dats and System Files
Build/Reolanas Teot Plans and Results
System Teat Flan g )
Acecoptonce Teat Plen
Draft Ucor's Guido

Draft System Pescelption
Softwere Bovelepmant Plan Updaste

MIETHODOLOGIES Project Notskook .

Datz Colloction

Lilrarians

Unit Dovelopment Faldors
Regqulremcnts Question and Chango Rocords
Deszign Dsclcion and Change Records
Ceoding Standards

Structured Cods

Coda Reading

Cede Changa Records

Configuration Meanigement
Builda/Roloascs

Top-Down Implementation

Fermal Test Plans

Functional (Thread) Testing

TOOLS PRL Procoscor
. Source Code Library RManagoment System
Structured Coding Languago
CAT
Resource Estimation

$103-{51)-83

PRECELING PAGE BI.AN&'_E{?T FoMED



- - e vy 6 v e

3.4 IRMPLEMENTATION

MANAGERIENTY

ACTISNS ARD TRANSACTIONS

ACTIVITIES

Butld/Relonse Voot Rizns Reviawed
Build/Nalenss Yoot Pion Rosuits Reviowed
Diecropancios Haoolved

Systom Teat Pion Roviowed

Draft Uger's Guido Roviowed

Draft System Desceription Roviewed
Systam Testing Teansition Piznned

TBD tams Raocolved

Requiremonts Changas Reviewed end Asasssed
Dasign Changao Roviowsad end Wallied Through
Ceodo Changos Reviowad

Toam Treined

Gtenderds and Preccdurcs Enforcod
Prorress Mlonltored

Visibility Promoted

Syestom Slze Eatlmated

Rozources ond Cost Estimated
Teom Interaction Coordinated

REASURES

TBD itams

Roquirements Changes

Requirements Quostions and Answors
Deeign Changes

Codo Changes

Coda/Tost Completion Chacklists
Cada Growth Rate

Errar/Changs Growvwth Rates
Discragpunciss/Rezclutions Growth Rates
Computor Uszgo Growth Rato
Team/Individual Productivity Rates
Subjective Evaluations

9102-(51)-£3



- cp————— e v b v e 4

oo T

Implementation

‘The recommended software development guidelines for the
:implementation phase.aké described in detail below.

3.4.1 MAJOR ACTIVITIES

Implementation begins after the CDR unless comments and
criticism expressed at the CDR indicate serious problems or
deficiencies with the detailed design. 1In implementation,

. 'the development team

® Completes preparation of JCL and command procedures
necessary to build and test the system

@ Codes new modules from the detailed design specifi-
cations and revises old,routines required to meet
the requirements

°o Integrates new modules into the growing system or
subsystem
e Prepares data for performing unit/integration and

release testing

-] Performs unit/integration testing to ensure that
newly added capabilities function properly

° Prepares test plans for each build/release

] Executes tests specified by the test plan for each
build/release and reviews test results

© Prepares the system test plan for use during the
system integration and testing phase

© Prepares drafts of the user's guide and system
description documents, based on the material in the
detailed design document

The system is implemented according to the staged implemen-
tation plan prepared by the developers during the detailed
desian ohase. For each release, individval developers code
and test the modules identified as belonging to a particular
build of each subsvstem. At the same time, members of the

3-43



Implementation

!
development team prepare the test plan for the release com-
prising the builds uﬁder development. This test plan is
designed to test the functional capabilities of the release
and is reviewed for correctness and completeness by develop-
ment team members &nd their managers.

When the developers have completed all coding and unit test-
ing for the release, they rebuild the system from source
code and execute the tests specified in the release test
plan. The development team and its managers carefully re-
view test results to identify discrepancies.

For each release, the test plan evaluates the functional
capabilities of the release as it is defined in the staged
implementation plan. A sampling of tests from previous
releases, called regression tests, is included in each test
plan to ensure that the newly added capabilities have not
affected the functioning of the previously implemented
capabilities. During implementaticn of the last release,
the development team prepares the system test plan in addi-
tion to the test plan for the last release. The system test
plan is the basis for system testing performed during the
next life cycle phase. It is desiéned to test the func-
tional capabilities of the svstem as specified in the
requirements documentation.

An independent acceptance test team prepares the acceptance
test plan based on the information in the functional spec-
ifications and requirements document. The acceptance test
team usuvally consists of analysts who will use the sYstem.
This team frequently includes members of the organization
that prepared the functional specifications and requirements
document.

T e e R )



!

Implementation

3.4.2 END PRODUCTS

During implementation, the develépment team produces the
following products: ‘

© Completed code for the system

© Supporting files necessary for buildiang and execut-
ing the system (for example, JCL, command proce-
dures, and lcad modules)

© Test plans and results f£or each build/release

o System test plan
© Draft user's guide
e Draft cystem description

The test plans are generally produced as informal docu-
ments. Each one contains a set of tects designed to test
the functional capabilities of a particular release or of
the entire system. See Section B.6 of Appendix B for the
formai: and contents of test plens.

The user's guide and the system description may be produced
as two separate documents or combined into one. During this
phase, this material is prepared in draft form. Most of the
information needed is already available in the detailed de-
sign document. See Sections B.7-and [..8 of Appendix B for
the format and contents of the user's guide and system de-
scription. '

An independent acceptance test team produces the acceptance

test plan.
3.4.3 METHOLOLOGIES

The SEL recommends the foilowing methoclolozies for implemen-

tation.
© Project notebook
0 Data collection

9108

T Rt A e 6 NS b M UV M TR S Y WO s e s et e Y T i

ooy



i . i

Implementation. ‘ |

Librarians :

Unit development folders

Formal reccrding of changes
Cohfiguration managenent procedures

e 0 o Q

Data collection and maintenance of the project notebook con-
tinue as is recommended in the preceding life cycle phases.
New applications of the others are described in Sec-

tions 3.4.3.1 and 3.4.3.2 below.

In addition, the following new methodologies are also used:

Coding standards
Structured code

Code reading

Top-down implementation
Builds/releases

Functional (thread)'testing

8 9 & & © ©0 ¢

i
“

Formal test plans ‘ 3

The remaining methodologies are described in more detail in
Sections 3.4.3.3 through 3.4.3.6 below.

!

3.4.3.1 Librarians and Unit Development Folders

During. implementation, the librarians support the develop-
ment team by entering newly developed code, entering modifi-
cations for reusable code, and operating the software tools
discussed in Section 3.4.4 below. The librarians also up-
date the project's permanent source code libraries, incorpo-
rating changes made to the source code after it has been
placed under configuration control. In this function, the
librarians become an important part of the configuration
management procedure.

The librarians maintain the central project library and Keep

it organized into unit development folders by subsystem.

They add all materials produced during implementation to the
3-4o

9108



Implementation

projéct library: test plqns and results for each build/
release, and drafts of user's guide and system descriﬁtion
information. They also add change reports for changes made
to any parts of the system that are under configuration con-
trol (for example, the functional specificatibns and re-
quirements document, the detailed design document, and the
project's permanent source code libréries). The librarians
also update the charts (started during detailed design) that
show the exact status of each module in the system.

3.4.3.2 Formal Recording Mechanisms and Confiquration
Management Procedures

Configuration management procedures must be strictly adhered
to during this phase. Source code for a module is placed
under configuration control when the individual developer
has coded, compiled, and tested the module successfully. At
that point, the module is moved from the developer's juris-
diction into a permanent project source code library. Any
further changes to the module must be approvéd by the devel-
opmenﬁ team leader before they are made by the librarians.
These changes must be recorded on development change report
forms.

In’addition, the formal recording mechanisms used in the
preceding life cycle phases for requirements questions and
changes, and design decisions and changes, are used for re-
quirements analysis and design activities that occur during
implementation. |

3.4.3.3 Structured Code and Coding Standards

The SEL recommends use of structured code (that is, using
only the basic structured constructs) in implementing the
design of the moduless. These constructs correspond to those
in the module's PDL. The principles of structured program-
ming are described in Reference 16, for example.

3-47
9108



Implementation

The code must conform to the coding standards specified.
'Quality assurance procedures‘mdst be enforced by the man-
agers to ensure that the developers adhere to those stand-
ards.

3.4.3.4 Code Reading

'3After a developer codes and successfully compiles a module,

another member of the development team reads the code to
verify that it performs the functions specified in the de-
sign and to check for common boding errors. The reader must
review and return the code within half a day‘so that the
developer is not delayed. Code reading identifies errors in
the implementation of the design before testing begins.

This review procedure is usually adequate. Occasionally,
however, the dévelopment team may hold more formal walk-
throughs for high-level or very complex mbdules, but this is

‘unnecessary for most modules. Details on code walkthroughs

are contained in Reference 17, for example.

3.4.3.5 Implementation Technologies

Implementation proceeds according to the builds and releases
defined during detailed design in the staged implementation
plan. A build is a portion of a .ubsystem that performs
certain designated functions; a release is a portion of the
system, composed of one or more builds, that has certain
end-to-end functional capabilities. The modules in each
subsystem build and the builds in each release are speéified

in the staged implementation plan.

Each subsystem build is implemented in a top-down fashion:
i.e., if the baseline diagram is pictured as a map with
North at the top, modules in the build are coded and tested
in the order in which they appear in a northwest-~-to-
southeast sweep of the baseline diagram (from the highest
level to the lowest level and simultaneously from left to
right). Developers test modules by integrating them into

3-48



a Peédwtbepeh g Implementation

the growing subsystem and using the existing, previously
tested subsystem as a test bed. ‘Modules not yet implemented
exist in the subsystem as stubs (that is, fully executable
modules containing no executable instructions except to
write a message that the module was entered and has returned
control to the calling module).

Top-down implementation tests both the module's inteygration
into the growing subsystem and its internal code. It also
exercises the higher level and data input modules more fully

;and eliminates building test drivers that themselves require

testihg. Some modules may require unit testing in an iso-
lated environment before they are integrated into the sub-
system, but this should be necessary only in special cases
(for example, to verify a particular algorithm).

3.4.3.6 Functional Testing and Formal Test Plans

After the builds of a particular release are completed and
integrated into the system, the release's end-to-end proc-
essing capabilities (called “"threads") are tested by the
developers. An important part of this functional testing
process is the formal test plan, which specifies the func-
tional capabilities to be tested and the criteria for deter-
mining whether or not the test is successful., This is done
for each test in the release test plan. The use of a formal
test plan thus allows release testing to proceed in a logi-
cally organized manner and facilitates agreement among man-
agers and developers as to when release testing is
satisfactorily completed. The system test plan, prepared
during the implementation phase, serves the same purpose
during the system integration and testing phase that tol-
lows. Testing is described in Reference 18, f+r example.

3-49

a8



Implementation

3.4.4 TOOLS

The development team uses -

] An online configuration management tool (for ex-
ample, CAT). The tool is important in configuration manage-
ment of the project's permanent source code libraries to
track development changes. It is also used to maintain the
detailed schedule for the development of each module in the
system. In this phase it is very useful for maintaining

information about discrepancies identified during testing.
During testing of each release, discrepancies between how
the system works and how it is supposed to work are identi-
fied. For large systems, the number of discrepancies that
must be rectified can be substantial. Managers must keep
track of these discrepancies, assign personnel to resolve
‘them, set dates for resolution, and verify that the discrep-
ancies have been resolved. A tool such as CAT makes this
task easier.

o An online source code library management system.

o A structured FORTRAN preprocessor. This tool,
which translates structured constructs into valid FORTRAN
code, allows the programmer direct use of the standard
structured constructs and thus facilitates structured prb-
gramming.” A structured preprocessor (SFORT) (Reference 19)
is available in the SEL environment. Some versions of
FORTRAN (for example, those conforming to the FORTRAN 77
language standards) already contain the structured con-
structs as part of the language and therefore do not require
the use of a structured preprocessor ta pfovide those capa--
bilities.

3.4.5 MEASURES

The following subsections present various measures and eval-
uation criteria that may be used to assess the implementa-
tion phase.

W
[}

50

9108



Implementation

i3.4.5.1 Objective Measures

"As-in preceding life.cyélé\phéses, managers monitor the num;
ber of requirements questions, responses to‘requirements
questions, requirements changes, and design changes. Man-

~agers also ensure that all TBD requirements are resolved by
the beginning of the implementation phase. 1If this is not
possible, managers must reassess how remaining TBD require-
ments will affect system size, required effort, cost, and
schedule. ‘

Managers must also monitor the following additional objec-
tive measures during the implementation phase:

o Productivity rates (number of lines of code, number
of modules, and number of pages of documentation per effort
unit). As implementation progresses, managers can obtain

more accurate estimates of the number of lines of code and

" number of modules. Then they can update estimates of the
budgeted productivity or effort rates (that is, number of
lines of code per budgeted effort unit and number of modules
per budgeted effort unit) to determine whether enough effort
has been allocated to complete the development.

Managers can compute actual productivity rates to compare
the pace of implementation with that experienced in past
projects or with that budgeted. Productivity factors might
include the number of lines of code in the projects' perma-
nent source code libraries, the number of coded modules in
the project libraries, or the number of completed pages of
documentation per effort unit since the béginning of the

implementation phase.

© Growth rate of the number of lines of code. The
growth rate of the number of lines of code in the project
libraries is another indication of the pace of the project.

0 Error rate (number of errors per 1000 lines of

code) .

3-51

G108



Implementation

i

<) Number of changes to code in the project's perma-

nent source code libraries. Managers can use the error rate
and the number of changes made to code after it has been
placed under configuration ccntrol as indications of the
code's reliability and stability. Excessively high figures

for these measures (in comparison to past projects) might be

caused by inadequate design specifications or insufficient
testing by developers.

i

o Number of identified discrepancies versus number of

resolved discrepancies. The number of discrepancies identi-
fied in release testing is also a measure of the system's
reliability. A widening gap between the number of discrep-
ancies identified and the number of discrepancies resolved
as implementation progresses probably indicates problems

requiring the manager's attention.

o Computer usage rate (number of minutes per

1000 lines of code). A computer usage réte much lower or
much higher than previous projects may indicate problems in
development, such as insufficient testing or excessive num-
bers of diagnostic test runs. | ‘

The SEL recommends the use of all these concrete measures.
The SEL does not advocate the use of the more abstract meas-
ures of the development product (for example, the McCabe and
Halstead measures) because a clear understanding of theif

meaning has not yet been obtained.

Managers must monitor the progress of the development
throughout the staged implementation process. The detailed
chart maintained by the librarians as part of the unit de-
velopment folders, showing the exact status of each module
in the system, contains the information necessary to assess
how complete each puild/release is. At all times throughout
the implementation process, managers must know where the
project is (that is, its exact status) and where the project

3-52

9108



Implementation

is going (that is, the detailed schedule for completing the

project) .

3.4.5,2 Evaluation Criteria

To evaluate the quality and completeness of the products of

implementation, managers must cocnsider the following ques-

tions:
e For source code
- Is the code ccmplete?
- Does the code adhere to the désign?
- Does the code adhere to the coding standards?
- How reliable is the code? What is the con-
fidence level of the system performing without
failure?
- Is the code maintainable? How easily can
changes be introduced, tested, and verified?
- How stable has the code been?
© For test plans and results

9108

Are the test plans cbmplete? Is all necessary
information provided for each test? (See Sec-
tion B.6 of Appendix B.)

Are the tests specified in the test plans re-
peatable? If two different groups execute the
test pIans, will the same tests be performed?

Do the test plans cqver'the key functional
capabilities of the system?

Have the results of release tests been re-
viewed by developers and managers for discrep-
ancies?

3-53



" Implementation

o For documentation

- Does the documentation contain the key infor-
mation?

- Is the documentation as brief as possible?

- Is the documentation clear and easy to under-
stand? Can it be used by someone not familiar
with‘the system? That is, is each document
styled for its intended audience?

3.4.6 KEY MANAGEMENT ACTIVITIES

Several key management considerations during the implementa-
tion phase are identical to those in the preceding life
cycle phases and are repeated below. The activities include
both planning and monitoring. Specifically, managers

5] Ensure adherence to
- Reporting procedures.
- Data collection procedures.
- Quality assurance procedures.
- Coding standards.

- Configuration management procedures. These
procedures~~-especially change control on the
project's permanent source code libraries--
must be enforced during the implementation .
phase when the staff is at its peak size and a
large amount of code is being produced.

e Monitor adherence to the planned schedule, monitor
expenditure of resources, and update cost and resource es-
timates and schedules. As implementation progresses, it
becomes easier for managers to estimate the size of the sys-
tem. Actual resources expended and progress during imple-
mentation can also be obtained to update cost and resource

3-54

9103



R S R ' Implementaticn

estimates with a resource estimation model (like the SEL
Meta-Model) . Updating.cost and resource estimates, with
resulting updates to schedules and staffing plans, is neces-
sary several times in this phase as various builds and re-
leases are completed.

© Ensure that all facets of the project are com=-
pletely visible (that is, know exactly where the project is
and where it is going at all times). Project visibility is
critically important. Managers must know at all times the
exact status of all task activities and the detailed plans
for development completion. This is necessary so that prob-
lems can be dealt with when. they occur rather than late in
the process, when their impact is likely to be greater.

New management activities specific to implementation include
the following: : ‘

& Review the release and system test plans and par-
ticipate in the test result reviews for each build/release.

t

o Resolve discrepancies identifiediby the build/

release testing.

] Plan the transition to the system testing phase;
Managers must ensure that the data is available to perform
the tests specified in the system test plan and that ar-
rangements have been made to provide all computer resources
required for system testing. They must inform development

team personnel of the testing procedures to be followed and
provide them with required training. Special emphasis is
placed on enforcing the strict change control procedures for
the project's online source code libraries during final re-
lease testing and system testing activities. ‘

9108

N



Py | =y

———aemy

[

S

""f- g .

SVETERM TESTING

BEVELOPMENT

ACTIORS ARD TRANGACTIONS

ACTIVITICS

Cyztom Cronted

Syctom Teet [lon Enscutsd

Elscrepanciss Rezsived

Uzezr's Guida Rovicwed and Rovised
Systom Descrintion Roviowed end Rovisod
Accoptance Tocting Planned

END PRODUCTS

Systain Cotds Ugdats

Supporting Data and Systom Files Updata
Systom Test Plon Results

Ugor's Guide Updats

Syatem Doccription Updato

Software Dovelopment Plen Updato

METHODOLGGIES

Projzst Metebool

Data Collection

tibrariana

Unit Dovelopmeont Foldors

Regquirements Quection and Changs Rocords
Dezign Decision and Changa Recorde

Caodle Chango Records

Configurntion Manogemont

Formal Test Plan

Functionzl (Thread) Testing

TAOLS

DL Proceszor

Sourco Cedo Library PAnnagemont System
Structured Coding Language

CAT

Ragource Estimation

9103-{51)-83

PRECEDING PAGE BLANK NOT FILMED



5 SYSTEM TESTING

MANAGERIERT ACTIONS ARD TRAMNSACTIONG

ACTIVITIES ' Syetom Tost Plazn Nicoults Roviswod
Bizcrepansics Rezslved

Acrsplones Tost Flan Reviowed
Acczptangce Testing Transition Plannesd

Uscr's Gulde Roviewed
Gystom Doscrintion Roviewed

TED itoms Resolved

Ncquiremeonts Chornoes Roviowed and Ammmd
Dacign Changes Raviswead and Wellied Threugh
Codlo Changes Roviswed

Toam Troinsd \
Gtandards ond Peccsduras Enforeod
Brogroza Rlonitored

Vislbiiity Promotod

System Slzo Bstintated

Resources end Cost Estimatad
Toam Interaction Coordinatod

MEASURES TEBD lisms

Hequizomonts Chongen

Requiremonts Questicns and Answars
Daosign Changes

Cods Changos

Test Complstion Checklist

Code Growth a0

Ecror/Change Grovrth Rates
Discropencics/Rescslutions Growth Eates
Computer Uzape Growth Rate
Team/Individual Productivity Rates
Subjoctive Evaluations

£103-(51)-83



, g

-

RO

RIS

A REARAE . System Testing

1

The recommended software development\guidelines‘for the sys-

tem integration and testing.phase are described in detail
below. SR {

3.5.1 MAJOR ACTIVITIES

System integration and testin¢ begins at the end of the im-
plementation phase. At this point, all code for the system
is'complete, and the relcase test plan for the last system
release has been executed satisfactorily by the developers.

" In this phase, the developers validate the completely inte-

grated system by functional testing of the end-to-end system
capabilities according to the system test plan prepared dur-
ing the preceding life cycle phase. Specifically, the de-
velopment team v :

o Builds the system from the project's permanent
source code libraries :

o Performs the tests specified by the system test plan
) Reviews the test results \
e Corrects code to fix any errors identified by the

system tests

° Revises the drafts of the user's guide and system
description, if necessary, so that the documenta-
tion reflects the final state of the system

o Prepares for the acceptance tes%ing phase

System testing, which proceeds according to the system test
plan, is performed like the testing of each release during
the implementation phase. The development team and its man-
agers, including customer and contractor personnel, care-
fully review the test results to identify any discrepancies
between the way the system works and the way it is supposed
to work., The developers then correct the errors in the code
that are causing these discrepancies. The system testing

3-39

9108



System Testing BT

phése is complete when all Lests in the syé' test plan
have been executed suCcessfdlly. Since the system test plan
must specify the expected output and the criteria for
determining whether or not the test was successful (see Sec-
tion B.6 of Appendix B), the conditions for system integra-
tion and testing completion are not ambiguous.

Toward the end of this phase, the development team must pre-
pare for the béginning of acceptance testing. They must
become familiar with the acceptance test plan and the ac-
ceptance test procedures. They must obtain the computer
resources necessary for acceptance testing and modify the
JCL, command procedures, and so on, to perform the accept-
ance tests. The development team must also begin to in-
struct the acceptance test team--by demonstrations and
documentation--in the system's operation.

3.5.2 END PRODUCTS

At the end of the system testing phase, the completed system
is available. The only new product of this phase is

o Test results from the system test plan.

The remaining products are updated versions of products pro-
duced during implementation:

[ Completed code for the . system, including changes
made to correct discrepancies identified by system
testing

o Supporting files necessary for building and execut-

ing the system (for example, JCL, command proce-
dures, and load modules)

[} Updated drafts of the user's guide and system de-
scription, reflecting the state of the system at
the completion of system testing

3-60

9108



System Testing

* 3.5.3 METHODOLOGIES

The methodologies uéediaufing systen teéting are'a subset of
those used during the implementation phase:

© Project notebbdk.

- Data collection.

o Librarians.

o Uni; development folders.

© Formal recording of changes.

o Functional (thread) testing.

© Configuratibn management procedures. Strict ad-

herence is.essential. Because all code is under configura-
tion control at this time, any'changes to the code in the
permanent source code libraries must be made according to
the established procedures and must be reccrded by means of
development change forms. The configuration control proce-
dures used must ensure that the load modules being tested
correspond to thé code in the project's libraries. Although
requirements and design changes are not ffequent this late
in the life cycle, when they do occur, the same formal re-
cording mechanisms for requirements questions and changes
and design questions and changes must be used as is recom-
mended in the preceding life cycle phases.

e Formal test plans. The system test plan is the
basis for system testing. The tests specified are aesigned
to verify the system's end-to-end functional processing ca-
pabilities or threads. The system test plan is written and
carried out by the developers. The system test plan fre-
quently contains a number of tests specified in the build/

release test plans (see Section 3.4.3.6, page 3-49).

9108



System Testing AQM§y¢~ L el e

3.5.4 TOOLS
Managers continue to'dﬁénﬁhe‘following'tools:
o An online configuration management tool (for ex-
ample, CAT)
o An online source code library management system, if
available ‘

3.5.5 MEASURES

The following subsections present various measures and eval-
vation criteria for assessing system testing.

3.5.5.1 Objective Measures

The objective measures that managers must monitor during
system testing are the same as those of the implementation
phase (see Section 3.4.5.1, page 3-51):

) Actual productivity rates for the completed system
versus planned productivity rates (number of lines of code,
number of modules, and number of pages of documentation per
effort unit).

o Error rate (number of errors per 1000 lines of code).

& Number of changes to code in the project's perma-
nent source code libraries. '

o Number of identified discrepancies versus number of

resolved discrepancies.

. Computer usage rate (number of minutes per
1000 lines of code).

e Actual size of completed system versus planned size
(number of lines of code, number of modules, and number of
pages of documentation). Comparing actual versus planned
system size and prcductivity rates enables managers to eval-
uate the accuracy of the process they used to estimate sys-
tes ~i~e, resources, cost, and schedules. This information

3-62

9108



System Testing

! adds to existing historical knowledge about the estimation
, process and can helﬁ*ﬁég%akefthis process more accurate for
future projects. The actual computer usage rate for the
' completed system can also be useful in estimating required

computer resources for future projects.

3.5.5.2 Evaluation Criteria

Because the’products of this phase are basically updated
versions of those produced during implementation, the sub-
jective criteria for evaluating their quality and complete-
ness are similar to those used in the preceding life .cycle
phase (see Section 3.4.5.2, page 3-53). Managers can con-
sider the following questions: = '

o How reliable is the code? What is the confidence
level of the system performing without failure?

. Is the cude maintainable? How easily can changes
be introduced, tested, and verified?

© How stable has the code been?

o Have the configuration management procedures for
the system been strictly followed? Are the source
code and load modules consistent?

o Have the results of the system tests been thoroughly
reviewed by developers and managers for discrep-
ancies?

(] Do the test results meet the system requirements

for each test in the system test plan? Does the
system satisfy all requirements?

] Is the documentation complete and correct? Does it
reflect the state of the completed system?



"""""""""

System Testing (ﬁ?‘,f

3.5.6 KEY MANAGEMENT ACTIVITIES

The manager's primary concerns during this phase are iden-
tical to those in the preceding life cycle phase -and include
both planning and moritoring. Specifically, managers

© Ensure adherence to
- Reéorting procedures
- Data collection procedureé i
- Quality assurance procedures
- Guidelines/standards
- Configuration management procedures, espe-

cially change control

o Monitor adherence to the planned schedule and ex-
penditure of resources, and update cost and resource esti-
mates and schedules

© Ensure that all facets of the prdject'are com-
pletely visible o

t

¢ Review test results for each tesé in the system
test plan

o Review system documentation

o Resolve discrepancies identified by system testing

o Plan the transition to the acceptance testing phase.

Managers must ensure that the data is available to perform
the tests specified in the acceptance test plan and that
arrangements have been made to provide all computer resources
required for acceptance testing. Transition planning is
especially important for the acceptance testing phase be-
cause the develovment team must work with two different
groups 'the acceptance test team and maintenance and opera-
tion personnel). Managers must ensure that the procedures

to be followed during acceptance testing are well defined

3-64

9108



R System Testing

and understood by the development team. Manégers must also
supervise the instruction of thé acceptance test team and
operatcrs in the system's operation, Providing this in-
struction is the developers' responsibilitv. Special
emphasis is placed on enforcing the strict change control
procedures for the project's online source code library
during systemltesting and acceptance testing activities.

3-65

9108



3.6 ACCEPTANGE TESTING

BEVELOPMERT

AGTIONS AND TRARISACTIONS

. ACTIVITICS

Systam Croatod

Usors znd Cpsorators Trained

Accoptones Teat Plan Executed
Discropancios Rezolved

Uzor's Guids Roviowed and Revised -
System Deecription Roviowed and Rovizod
System Delivory Plenned

ORR Keld

Softwaro Dovclopment Hictory Propored

END PRODUCTS

" Oystom Codo

Supporting Data and Systom Filos
Accentanco Test Plan Results

Uger's Guide

System Deozoerintion

Archivad Syctom (Tepos) and Dscumaontation
Software Dovslopmaont History

METHODOLOGIES

Project fotobhoolk -

Data Collsction

Lihrarians

Urit Dovclopment Folders

Requirvements Question end Changs Records
Dazign Doclcien and Chengo Records

Codo Changa Records

Configuration Nizanzgement

Fermal Test Plan

Functiaona! (Thread) Testing

TOCGLS

PDL Processor .
Sourco Codo Library [fenagement Gystem
Structured Coding lenguags

CAT

Rescurce Estimation

PRECEDING PAGE BLANK NOT FILMED

3-67

9103-(51)-63



3.5 ACCEPTARCE TESTING -

t

RIORIAGERIENT ACTIONS ARD TRAMSACTIONS

ACTIVITIES Aeeagienes Test Plan Rezults Roviewsd
Dizorenoncios Rosolved '
Syotsin Delivery Raviowed

Uszr's Guido Roviswaed
Syatas Daseription Roviowed

TBU iterns Reondved

Reasivoments Chongas Raviawaed and Ascossed
Daszizn Changos Naoviewsd and Wallted Through
Cods Chanpes Rovicwed

Tozm Trelned

Stzndords ond Proccdures Enferced
Progrecs Rienitorod

Wicthility Promoted

Syuicm Lize Ectimatod

Rocources end Cost Estimatsd
Teom Intercction Coordinated .

FAEAGUREN : TED ttoms

Pequiremsnts Chengea )
Raguiromoents Quastions ond Answers
Bezign Changos

Cede Changes

Toat Complotion Checllist

Coda Growth Rats

Ecror/Chango Growth Nates .
Biccropancisa/Resolutiona Growth Rates
Cormnputor Usago Growth Rota
Team/Individual Progductivity Rates
Sunjective Evaluations

8103-(51)-23

3-68



Acceptance Testing

The recommended software development guidelines for the ac-
ceptance testing phase-are described in detail below.

3.6.1 MAJOR ACTIVITIES

Acceptahce testing begins at the end of the syStéﬁ testing
phase, when all tests in the system test plan have been exe-
cuted satisfactorily by the developers. Before acceptance
testing begins, an acceptance test plan is prepared by the
acceptance test team, based on the informaticn in the func-
tional specifications and requirements document. The system
is then tested according to this plan.

During acceptance ;gsting, an independent acceptance test
_team tests the system to validate that the software meets
all regquirements. Theydeveloﬁméﬁt team assists the accept-
ance test team. Specifically, the development team

o Builds the system from the project's permanent
source code libraries

) Provides training for users and operators

o Sets up and executes tests as specified in the ac~
ceptance test plan at the direction of the accept-
ance test team

© | Participates with the acceptance test team in.the
review of the test results to identify discrepancies

° Corrects the code tc.fix any errors identified by
the acceptance tests ‘

] Provides user assistance to the acceptance test team

o Complétes the final versions of the user's guide
and system description

© Delivers the final system to the customer

3-69

9108

8T



Acceptance Testing ., ..

, Four important activities are described in more detail below.

© Agree on test ‘pfocedures. Before acceptance test-

iné begins, the procedures for acceptance testing must be
~agreed .on by the managers of both the development and the
acceptance test teams and given to the team members. The
procedures must specify whether all tests will be run before
code is changed to resolve discrepaﬁcies. If modifications
to the code are allowed as testing progresses, the effect of
these modifications on the testing process must be ad-
dressed. (For example, will acceptance testing start over
after each modification or will all tests be completed be-
fore they are rerun?) The procedures must also specify the
respective responsibilities of the development and the ac-
ceptance testing team members and the lines of communication

between these two teams, their managers, and the operations
personnel with whom the teams must work to perform the ac-

ceptance testing.

14 Understand the test plan. The acceptance test plan
prepared by the acceptance test team is similar to the re-
lease and system test plans prepared by the development team
(see Section B.6 of Appendix B). For each test to be per-
formed, the acceptance test plan must specify the purpose of
the test (that is, the specific functional capabilities or
requirements being tested), detailed descriptions of the

input and required environment, and the operational proce-
dure to be used (also see Reference 20). The acceptance
test team supplies test data for the acceptance testing and
provides the development team with all_requiréd external
data sets. The development team sets up and performs the
tests according to the specifications in the acceptance test

plan.

The acceptance test plan must also specify the expected out-
put for each test to be performed and the criteria for

3-70

9108



Acceptance Testing

|
J

determining whether or nct the test reéults'are acceptable.
The development and acceptance  test teams must be able to
agree on which discrepancies identified by the testing must
be corrected before the system is accepted. The acceptance
testing phase is considered complete when all tests spéci-
fied by the acceptance test plan have executed successfully.
Because the acceptance test plan contains pass/fail criteria
for each test, the conditions for acceptance testing comple-
tion are not ambiguous.

o Deliver the system. After the successful comple-
tion of acceptance testing, the developers formally deliver
the accepted system to the customer. They clean up all
files and they prepare and deliver a system delivery tape.
They also deliver the final veréidns of the user's guide and
system description (sece Section 3.4.2, page 3-45). After
the system has been formally delivered, it becomes the re-
sponsibility of a maintenance and operation group. The
maintenance and operation phase of the software development
life cycle is not addressed in this document.

1

e Participate in the operational readiness review

(ORR). After the successful completion of acceptance test-
ing, an ORR is held to evaluate the readiness of the system
to support operations. The ORR is attended by the develop-
ment team managers, the acceptance test team managers, the
maintenénce and operation team managers, and others involved
with the system. Sece Section A.4 of Appendix A for details
about the ORR. ’

3103



- Acceptance Testing .. ..o ... ALioae

3.6.2 END PRODUCTS | ,

At the end of the acceptarce testing phase, the accepted
system is delivered to the customer. Some products of this
phase are updated versions of products previously begun:

] Completed code for the accepted system, including
changes made to correct discrepancies identified by
acceptance testing ' :

) Supporting files necessary for building and execut-
ing the system (for example, JCL, command proce-
dures, and load modules)

o Final version of the user's guide
[ Final version of the system description

Three products are new:

e Test results from the acceptance test plan.
. System delivery tape.
6 Software development history. 'Within 3 months af-

ter system delivery, the program manager, with input from
the project manager, writes a software development history
for the project. This report summarizes development and
evaluates the technical and managerial aspects of the proj-
ect from a software engineering point of view. The purpose
of the report is to allow development managers to become
familiar with successful and unsuccessful practices and to
provide them with a basis for improving the development
process and product. See Section B.9 of Appendix B for the
format and contents of the software development history.

3.6.3 METHODOLOGIES

For acceptance testing, the SEL recommends the same method-
ologies as for the system testing phase (Section 3.5.3,
page 3-61).

w
[}

72
9108



Acceptance Testing

3.6.4 TOOLS

'

The tools recommended for use in’' the acceptance testing
phase are the same as those recommended throughout the soft-
ware life cycle: CAT and an online source code library man-

agement system.
*3.6.5 MEASURES

The objective measures and evaluation criteria recommended
by the SEL for use during the acceptance testing phase are
the same as those recommended for use during the system
testing phase (Sections 3.5.5.1 and 3.5.5.2, pages 3-62 and
3-63).

3.6.6 KEY MANAGEMENT ACTIVITIES
Monitoring is the key activity for managers during this
phase. Several management activities are identical to those

in the preceding life cycle phase. Specifically, the man-
‘agers

o Ensure adherence to
- Reporting procedures.
- Data collection procedures.
- Quality assurance procedures.
- Guidelines/standards.

- Configuration management procedufes, espe-
cially change control. The managers must en-
sure that all changes are coordinated with
acceptance testing activities and are made
according to established acceptance testing
procedures. . '

-] Monitor adherence to the planned schedule and ex-
penditure of resources, and update cost and resource esti-
mates and schedules. At the end of this phase, development
is complete, and the actual cost and resource expenditures

3-73
NI AN

At
& Town



Acceptance Testing

throughouE the project are known. Manageré can compafe
these figures to the estimates produced during each life
cycle phase to understand the estimation process better so
that they can make more accurate predictions for future
projects. ‘

o Ensure that all facets of the project are com-
pletely visible.

These activities are specific to the acceptance testing

phase:
3 Participate in the review of ncceptance test results |
o Resolve discrepancies identificd by acceptance

testing o V,. '
© Ensure cocperation ameng the various groups in-

volved during this phase (for example, development team per-
sonnel, acceptance test team personnel, maintenance and
operation support personnel, and librarians) and their
adherence to established acceptance testing procedures

© Schedule and participate in the ORR, and ensure

that all pertinent groups participate

Ve

3-74

9103

N

e



o —

1 MARAGEMENT AND CONTROL

iy

L
4.1 INDICATORS OF mwmwaﬁm STATUS ..... 45
4.2 DANGER SIGNALS R ST S &
4.3 CORRECTIVE RIEASURES ...ccvvuveenen. ceves 4—15



Directing and controlling the execution of the development
- plan is the most ‘important aspect of the development man-
ager's job cnce a feasible plan is produced. By definition, .
requirements change. For some complex requirements, design- ‘
. ing an implementation may Lake several tries. 1In some
cases, the design may not be implementable because of a
' change in computer hardware configuration or limitations.
:; Certainly the development project staff changes, and the -
' personality of individuals may change. 'In short, the devel- '
opment process is very dynamic. Therefore, the successful
execution of even the most compléte plans involves

¢  Carefully measuring or assessing development prog-
ress and team performance (see Section 4.1)

o Recognizing the danger signals or warning signs of
problems that will preven® proper execution cf the
plan (see Section 4.2) '

] Taking appropriate steps to solve problems once
they have been accurately identified so that the
real problems are addressed--not their symptoms
(see Section 4.3)

Data Collection

If the development manager expects to manage a development
project successfully, he or she must measure it in some con-
crete way to assess general and specific progress. Measur=-
ing the performance of team members is also essential, since
it will indicate team strengths and weaknesses, areas for
training, and potential problem areas. To measure the
process in a concrete manner, the managers must collect ap-
propriate data, monitor its collection, and then use the
data (1) for comparison with past projects, (2) in predic-
tive models, and/or (3) with conventional t~achniques ct
progress assessment.

4-2 (f"2¥~-

9108

&MMMMWMM‘ R N R S e R e g T e e P B o D A S




s e i e - I Pr
el b G s a v A i T e e £ 0 B R LT E YA IR 2 ) BT s v
= st Rk SR P TR A

The SEL stresses the importancé of collectiné and archiving
data throughout the software development process, not only
for monitoring the dé%élopment proiject, but also for under-
standing the environment and evaluating the effects of new
technologies on productivity and reliability. Key data
"types to be collected throughout the project include

©

Basic project statistics (estimated and actual num-
bers of modules and source lines of code and the
start and end dates for each life cycle phase)

Resource data (weekly expenditures of resources for
technical staff, managers, secretaries, librarians,
publications personnel, and computer usage)

Change and growth data (the number of source lines
of code and number of modules entered into the sys-
tem by week and the number of changes made to the
system by week) ‘

Activity data {(week.y summary of hours spent in
various project activities by each member of the

technical staff)

[

Change data (change report forms for all changes to
the design and code after it has been placed under
configuration control)

Subjective evaluation data from managers after com-
pletion of project phases

The SEL's Guide to Data Collection (Reference 21) provides

further recommendations on this topic.

9108

4-3

‘Management and Control

e R e - . . P < e I @ g
i’ e R R T T ST A PO 8 i e

it 2 v AR w

St e n e e —— .



o aq . INDICATORS OF
o *! DEVELOPRMERNT STATUS

; © [Fregusnoy of Cchicdulo/Ritlestone Changes

© GConcistoney in Groonizations] Structurs Comparcd
With Grigingl Plens

0 Fustustion in Project Staif Lovel and System Size
Estimates

=. © History of Rlumbor and Type of TBD [tems for
' Roguircments and Decign

© Eose of Access to Information on Prolcct Status,
: Schedulcs, and Plans
G [Freqguoncy and Amount of Unusuaily Long Hours
: Hequired or BPlanned To Attain Certain Objactives
6 Levol of Botall (Both Tochnical and Rianagorial)
Undarstoad and Gontroiied by the Project NManager
and tho Project Leader
¢ : .
© Discrepancics in Staff Leve! and Waorlidozd
© PBiscrepancics in Flanned Woakly Staff Lovel and
Computer Usage or Compared With Past Projects
\ 91C3-(51)-23
PRECEDING PAGE BLANK NOT FILMED
4-5
l b bl A AR el s ""*%W&WMMMM&W» AT A TR AN AN B S o 5 e 8 0 et A A e ¢ Adn i{i«g\ma\&ﬁmﬂ

st /
EYAN .

/

bd



status Indicators ., . , ,

. P
R

The preceding page contains a brief list of measures that
the SEL has found beneficial in monitoring the status of
development projecgﬁaﬂvContinually lower frequencies of
change, smaller fluctuations in estimates, and smaller
discrepancies in planned-versus-actual reports (i.e., con-
vergence toward goals) as development ;rogyresses are strong
indicators that the development team has the project under
control., Opposite tendencies usually indicate the develop-

~ment of problems.

The development status indicators are described below.

Frequency of schedule/milestone changes. During the devel-

opment life cycle, the development managers are able to make
better estimates of system size and the ettfort required for
development; therefore, they are able to make better esti-
mates of completion dates. Although the estimates are ex-
pected to change periodically, the frequency and magnitude
ot the changes should continually decrease throughout the
development life cycle. By monitoring this simple data
point closely, esgpecially once implementation starts, a man-
ager may be able to identify problems early.

Consistency in organizational structure compared with

original plans. The development managers usually organize

their personnel before a project starts and make minor ad-
justments while preparing the development plan during re-
quirements analystis and preliminary design. SsSubstantial
changes to those plans usually indicate problems. One
common example is the unplanned appearance ot a senior group
ot personnel--more senior than the development team--whose
advertised task is quality assurance, a ditticult destign
problem, or an independent assessment., A second example is
t

o be running

0]

the presence of a senior person who appears
the operation but who has no ofticial role. A thivd ex-

ample 1s ditfusion of the project manager's or leader's

d-0

al0u .

[T R Ay s 4 S N

¢ onleodh iy D AT TR T I e TRY O T et PR R e e LT GO T SN Al I N T TR T Al ‘ﬂ



Status Indicators

responsibilities, i.e., delegation of nearly total responsi-

bility for pieces of the system to other development team

members. e w

Fluctuation in projebt staff le;cl and systém size esti-
mates. As work progresses throughout the development life
cycle, the development managers are able to make better
estimates of system size, required effort, cost, and
schedule. The uncertainty in these estimates will decrease
and the confidence in them will increase after each phase of

‘ development (cee Figure C-1 on page C-8 of Appendix C).

Estimates that reach or exceed the normal limits of uncer=~
tainty indicate problems with plans, understanding of the
project, or staff composition.

History of number and type of TBD items for requirements and
desian. A large number of TBD items or a small number of
severe TBD items for reguirements usually indicates a system
definition problem. During design, large numbers of TBD
items or severe TBD items indicate a lack of understanding

by, or inexperience of, the development team.

Ease of access to information on preject status, schedules,
and plans. All development managefs prepare a development
plan and maintain a project notebook, which are kept up to
date in a central repository. Yet it is not uncommon to
solicit information from a project manager or leader and
receive the response "I'll have to check." The longer it
takes the team leaders to respond, the more suspicious
higher level managers should be about the quality and use-
fulness of project plans and records.

Frequency and amount of unusually long hours required or
planned to attain certain objectives. The list of reasons

for overtime hours is long and includes getting the most
up-to-date material together for formal reviews, meeting
major milestones, recovering from late software/interface

4-7

o 2t iy gt ey

T TW. To . s T T N T TN TR o I P
R L N R T T W e W IN ATV gt tae f ad Fe ok b o bl Cemad o & X

o

o

ol o

. -
g KB b s

)

x
dv




Status Indicators.

4.

deliveries or hardware failures, and covering for staffing
problems. Sometimes the overtime hours are necessary and
expected‘ howevex, _overuse of ths practice is frequently
indicative of problems with the staff's gualifications, the
staf{ level, or the team's leadership. (Inexperienced proj-
ect managers/leaders, who are the most aqualified to perform
most development tasks, frequently do certain functions
themselves because they think it is faster that way, rather
than enlisting the team's help.)

Level of detail (both technical and managerial) understood

and controlled by the project manager and project leader.
All devclopment managers prepare a development plan and
maintain an up-to-date project notebook. The project man-
ager's responsibilities are technical consultation and man-
agement of the development plan (technical, management, and
configuration control approaches). The project leader's
responsibilities are technical direction and day-tc-day
supervision of project activities. VYet it is not uacommon
for the team leaders to be unable to respond to queries at
status meetings. The more frequently the team leaders are
unable to respond, the more suspicious higher level managers
should be about the level of control that the team leaders
have over the project.

Discrepancies in staff level and workload. All development

organizations use some algorithm for determining staff
levels based on the type and amount of each type of work to
be done. The workload and staff levels, which are recorded
in the development plan, change throughout the development
life cycle. Discrepancies between these and the plan
indicate problems.

Discrepancies in planned weekly staff lavel and computer

usage or in comparison with past projects. A decrease in
the weekly staff level may indicate a temporary or permanent

4-8

9108

i i b a5 T PN WIS SN SR _ e e




Status Indicators

loss of personnel from the project to another project; an
increase may indicate an attempt to remedy a deficiency. A
decrease or slow start in using the computer may indicate
.that the development team is engaged in some other activity
(for example, design) rather than testing.

4-9

~.9108



4, 2 E@ *‘BE‘\E@’"& @H@SM/"*EL

Coding Started Teo Eorly (Staff Teo Largs Teo Early)

Suidelines or Flonned Procsdurcs Beomphasized or

Schodulod Capakifitics Delayed to Later Build/Relioass

Meummorous Ghongss Nade to Initial Software
Boveolopment [Flan

Detoted

Suddon Changes in Staffing (Magnrituds) Suggested
or Kade L

Encoscive Bocumsentation and Papenwverit That Flavo
Littlo Dircct Boaring on Regulred Documontation
Propared '

Cantinual ncreaco in E‘dumbsz’s of TRD kems and
ECRs oasurcd !

Decroaso in Estimated Eﬁ?mﬁ: for System Testing
Suggesticd or Rads

Refiznce on Othor Sources vor Scon-t o-Be-Avaiichis
Softvwarse

£103-(51)-£3

PRECEDING PAGE BLANK NOT FILMED

4-11




Danger Signals

The SEL has’monitored many software development projects,

some of which were considered very successful and some of

which were considered less than successful. From this ex-
perience, the SEL has ééﬁpiled é'Briéf list of indicators

(preceding page) that often characterize sericus problems

within the project.

These indicators are described below,

Scheduled capabilities delaved to a later build/release.

Assuming that a build/release approach to implementation is
being followed, the single most important signal of seriou$
problems during implementation is rescheduling capabilities

from one build/release to a later one. Although it is some-
times necessary to reschedule capabilities, the consistent
rescheduling of capabilities from one build/release to
another as a completion date nears often indicates serious
problems.

Coding. started too early. It ié not uncommon for develop-
ment projects to be fully staffed too early or overstatffed,
although it seems as though most projects are understaffed
or staffed too late. Starting coding too early, i.e., be-
fore a design from which coding can start has been approved,
is a signal that the development team will end up building
on the structure of a system that is not best suited to

satisfy the total requirements.

Numerous changes made to the initial software development

plan. When the development managers make numerous changes
to the initial development plan, it is a signal that they
are inexperienced and‘are reacting to internal problems

rather than solving them.

Guildelines or planned procedures deemphasized or deleted.

when the development managers suggest that the deletion or

deemphasis of a 1 ethod or procedure will save time and help

4-12
9103




I
Yot P ' . ‘ ! '
ot 5 - ! !

Danger Signals

to make a deadline, -it is a nearly certain signal that the
deadline will be made in a questionable manner, if at all,
and that makeup work will be needed later to complete the

activity correctly.. "

Sudden changes in staffing (magnitude) suggested or made. A
sure signal of serious problems is the sudden suggestion or

application of unplanned staff increases.

Excessive documentation and paperwork with little direct
bearing on required documentation prepared. When develop-

ment managers suggest the complete, detailed, formal docu-
‘mentation of each activity, it is a signal that they are
inexperiehced and that cost and schedule problems are immi-
nent. Complete, detailed, formal documentation does not
ensure success when the team leaders' effort is diverted
from managing the technical aspects of the project.

Continual increase in numbers of TBD items and ECRs meas-
ured. A continual increase in the number of TED items is a

clear signal that technical problems are not being re-
solved. A continual increase in the number of TBD require-~
ments and engineering change requests (ECRs) is a signal
that the requirements are not adequately defined or stated.

Decrease in estimated effort for system testing suggested or
made. When the development managers suggest or make a de-
crease in the estimated effort for system testing, it is a

signal that they are inexperienced or they are excessively
scheduling to success. With acceptance testing, system
testing is the most sequential phase in the development
process. Little can be done to compress the full testing
phases. Assuming that testing can be compressed to make up
for slippages in earlier phases leads to a loss of credi-
bility in the development organization when the system is

not ready on time or is flawed in operation.

4-13
9108

o kb o e ot e AW s S A Ak e 8 F ke At ety M 480 ik A meded (Y 4 A LN VSR fans e W




Danger Signals

b

v

i

Reliance on other sources for soon~-te-be-available soft-

ware. Every experienced developer and manager recognizes
the cost benefits of using existing software or soon-to-be-
existing software. However, all management ievels of the
development team must be espaecially concerned when the
successful execution of their development plans depends on
other sources for their system's software capability. \
Managers' concern should increase inversely proportionately
to the level of contrel they havg over the source who is
developing the capability. For example, a loosely re.ated
project in the same organization is greater cause for con-
cern than a closely related project in the same dcvelopment
organization; another contractor or a vendor is an even
greater concern. The obvious problems with externally de-
veloped software are (l) it is always late and (2) it is
never fully checked out.

Lagal FTE VAP SO0 2L LR W SRR A rogroqste



POSRPRERRES SN

4.3 CORRECTIVE MEASURES

© © 0 0 ©

Stop Curent Activitize and Reviow/Gomplsts
Predscoosor or Prebiom RAetivity

Beacreass St2f to Managoable Lovel

Reglace Junior With Sonior E’%m@nne!
Increase and Tighton NManagement Procedures
[nercase Rumber of Intormediato Beliverchios

Becreazo Ecepe of Werk and Bsfine a Rlanzgesbis,
Rozbie Thread of the System

Audit Profoct with indopendent Personnsd and Act
on Their Findings

g1ee-{51)-83

4-15

e o oo e e A i e e Nt
- PO PR



Corrective Measures

»

Once the development manager has recognized that there is a
"problem, he or she must correct the problem., The preceding
' page contains a briefziiéf 6E’corrective measures that tne
SEL has found effective. Depending on the problem, one or
more of these corrective measures may be iecessary.

Frequently, when development managers find their projects in

+ . difficulty, they have a “endency to

e Shortcut procedures, i.e., to cut out the presumed
"busy" or nonessential work and to concentrate on

the "real" work
o Add staff (usually junior level) to help beil out

-3 Pluage ahead to meet milestones with some kind of
product

The SEL's experience, however, shows that, more often than
not, these steps compound probleﬁé. The corrective neasures
(preceding page) suggested by the SEL are usually counter co
the normal tendency; that is, they increase and tighten pro-
cedures, reduce staff levels (or rep:.ace junior with senior
staff), and slow down the process to get a better handle ¢n
it or to better defire the obj=sctive. The following suwsec-
tions list the basic development problem Areas and the sug-
gested steps to correct them. ’

4.3.1 BASIC PROBLEM AREAS

The following is a list of the basic problem areas:
1. Develnpment plan problems
2. Requirements or design problems
3. Confusion with

a. Development plan
b. Requirements or design
c. Development plan execution

4-16

9108

¥ e
RN O



4.3.

Foll

Corrective Measures

4, System growth problems because of |

a. Poor direction
" b. Staff ability
c. Major requirements changes
d. Many minor requirements changes
e. Incomplete facets of project

5. Cﬁanges or decrease in scope of plans
6. Configuration problems

7. Schedule problams

2 STEPS FOR CORRECTIVE ACTION

owing the outline above (Section 4.3.1), this subsection

presents the steps to follow to correct problems in each of

the

1.

9108

basic problem areas.

When there are serious problems with the developmenu
plan,

a. Stop development activity}

b. Complete and/or review plans.
C. Follow through with plans.

When there are serious problems with requirements or

design,

a. Stop staff growth.
b. Decide which are appropriate:

(1) Decrease the scope of the system.
(2) Solve problems before proceéding.

{3) Replace junior personnel with senior personnel.

Wher there is confusion,

a. Obtain an accurate assessment of the cause.

H
[

17



[ XTI

Corrective Measures

3. When there is confusion (continued),

b. When the deveiqpment plan is the cause of confusion,

(1) Stop development activity.
(2) Complete and/or review plans.
(3) Follow through with plans.

c. When requirements or desicn is the cause of con-

fusion,

(1) Stop staff growth.

(2) Decide which are appropriate:
(a) Decrease the scope of the systen.
(b) Solve problems before proceeding.

(c) Replace junior personnel with senior per-
sonnel.

d. wWhen plan erecution is the cause of confusion,

(1) Decide which are appropriate:

(a) Decrease staff size to a manageable level.

(b) Replace junior team leaders with senior

leaders.

(c) Replace junior team members with senior

people.

(2) Create intermediate products and milestones

for review,
(3) 1lncrease status reviews to improve direction.
(4) Follow through with plans.

4., When there is inadequate system growth (progress),

a. Obtain an accurate independent ascessment faudit)

of the problem.

4-18

9108



PN

e . ‘ ‘Corrective Measures

!

4. When there is inadeguate éystem growth (continued),

b. Whon poor direction inhibits system growth,

(1) Decide which is appropriate:
(a) Decrease staff size to a manageable level.

(b) Replace junior team leaders with senior
leaders.

({2) Create intermediate products and milestones

for review.

(3) Increase status reviews to improve direction
and to tighten management procedures.

(4) Follow through with plans.

C. When staff ability inhibits system growth,

(1) During design, replace junior team members
with senior personnel to complete design.

" (2) During implementation, add intermediate-~ to
senior-level personnel to complete implementa-
tion. ;

(3) During testing, add senior personnel to solve
problems and to improve direction.

d. When major requirements changes inhibit system

growth,
(1) Stop staff growth.

(2) Decide which are appropriate:
{(a) Decrease the scope of the system.

(b} Solve problems before proceeding.

(c) Replace junior personnel with senior per-

sonnel.

4-19

9108



Corrective Measures:.

4. When there is inadequate systoem growth (continued),

e. When many minc. requirements changes inhibit system
growth, '

(1) During design and early impleﬁentation,
(a) Stop staff growth.
: (b} Decide which are appropriate:
i. Décrease the scope of the system.
ii. Solve problems before proceeding.

iii. Replace junior personnel with
senior personnel.

(2) During implementation, hold changes and com-
plete implementation of a build of the system
first.

(3) buring testing, hold changes and complete
testing of a version of the system first.

£. When an incomplete facet inhibits system growth,

{1) Decide which is appropriate:

(a) Redirect senior'personnel from less
important or low-priority work to com-
plete design or implementation.

(b) Add senior personnel to complete design
or implementation.

(2) During testing, add senior personnel to solve
problems.

5. When there is a significant change or decrease in the

scope of the development plan,

a. Obtain an accurate assessment of motivation.

9108



Corrective Measures

. 5. When there is a‘éignificant change or decrease in the
scope of the development plan (continued),

'

b. When confusion causes change of plan,

(1) When the development plan is the .cause of con-

fusion,

(a) Stbp development activity.
(b) Complete and/or review plans.
{(c) Follow through with plans.

(2) When requirements or design is the cause of

confusion,

(a) Stop staff growth.

(b) Decide théﬁ are appropriate:

i, Decrease the scope of the system.
ii. Solve problems before proceeding.

iii. Replace junior personnel with
senior personnel. '

(3) When development plan execution is the cause
of confusion

(a) Decide which are appropriate:

i. Decrease staff size to a manageable
level.

ii. Replace junior team leaders with
senior leaders.

c. When inadequate systeﬁ érowth (progress) causes

change of plan,

(1) Obtain an accurate independent assessment
(audit) of the problem.

(2) When poor direction inhibits system growth,
follow steps (l) through (4) in item 4b,

4-21
9108



Corrective Measures

s

c. When inadequate system growth {progress) causes

change of plan (continued),

(3) When staff ability inhibits syétem arowth,
follow steps indicated in item 4c.

(4) When major requirements changes inhibit system
growth, follow steps (1) and (2) in item 4d.

(5) When many minor requirements changes inhibit

system growth, follow steps indicated in
item 4e. '

{6) When an incomplete facet inhibits system
growth, follow steps indicated in item 4f.

6. When there are problems with configuration control,
a. Obtain an accurate assessment of weak areas.
b. Firm up and tighten configuration management procé-
dures. '
c. Follow through with plans. '
7. When there are problems in maintaiﬁing scheddles,
a. Obtain an accurate independent assessment (audit)
of cause, .
b. When confusion cauées schedule slippage,

9108

(1) When the development plan is the cause of con-

fusion,

(a) Stop development activity.
(b) Complete and/cr review plans.
(¢) Follow through with plans.



9108

b.

Corrective Measures

)

When confusion causes schedule slippage (continued),

(2) When requirements or design is the cause of
confusion,

(a) Stop staff growth.‘

(b) Decide which are appropriate:
i. Decrease the scope of the system.
ii. Solve problems before proceeding.

iii. Replace junior personnel with
senior personnel.

(3) When development plan execution is the cause

of confusion, decide'which are appropriate:

(a) Decrease staff size to a manageable level,

(b) Replace junior team leaders with senior
leaders.

When inadequate system growth (progress) causes

schedule slippage,

{l) Obtain an accurate independent assessment
(audit) of the problem.

{2) When poor direction inhibits system growth,
follow steps (1) through (4) in item 4b.

(3) When staff ability inhibits system agrowth,
follow steps indicated in item 4c.

(4) When major requirements changes inhibit system
growth, follow steps (1) and (2) in item 4d.

(5) When many minor requirements changes inhibit

system growth, follow steps indicated in

item 4de.

(6) When an incomplete facet inhibits svstem

growth, follow steps indicated in item 4f.
4-23



ASPECTS OF
SUCCESSFUL PROJECTS

5.1 TER “D0Os” FOR PROJECT SUCCESS ....... 5—3
5.2 TEN “DONTs” FOR PROJECT SUCCESS ... 5—7
5.3 ASSESSING PROJECT QUALITY ..vevaesnne. 5—11

B4 APPLYIRG THE RECOQRANIERDED



IR

ASPTGTS OF SUCCHSEFUL PROJEETS

The preéeding sections of this documént present the software
development and management practices, techniques, and. aids
that the SEL has found beneficial.. This section identifies
key aspects of successful software development projects and
discusses the application of the.recommended approach.

The following subsections contain three lists identifying
key aspects of software development:

o Ten key "Do's® for project success

<] Ten key "Don'ts" for project success

© . Ten key points for assessing the quality of a
project

These lists are derived from SEL experience using the recom-
mended approach.

Section 5.1 lists and describes the 10 most important gquide-
lines for managing a successful development project; Sec-
tion 5.2, the 10 most important things to avoid in managing
a development project. Section 5.3 highlights the 10 key
points most useful in evaluating or assessing (auditing) a
software development project. No particular order of prior-
ity is implied in any of these lists.

Section 5.4 discusses the application of the recommended
approach to software development.

9108



5 7 TER "@mw .
9ol EORPROJECT SUCCESS

® © @ 6 9 9O o0

oo o Small Sonior Staff for the Eaorly Lite Gyclo

Phaoses

@@V@E@p and Adhore to a Sofoware Dovelopmant Plan
Dafino Epnceific intormediats and End Predusts
Examine Aflternntive Approsches

Usa Fermal Testing |

Uso a Central Repository

Heap a Dotailed List of TED ltoms

Updato @V.‘Bfi@u m Size, Reguired Effort, Cost, and
$choa?w§@ Ectimatas

Allczato 30 Percont of Efort for Entegration and
Teating

Eporiment

$103-(51)-L3



‘10 DOs

The SEL's 10 most important "DOs" for project success are
described below. N

Use a small senior staff for the early life cycle phases. A

small group of experienced senior personnel is better
equipped to determine the approach, to prepare the software
development plan, to set priorities and organize the work,
and to establish reasonable schedules. With a large team,
there is a tendency to begin design or coding to keep people
busy before the actual problem is known.

Develop and adhere to a software development plan. This

plan defines project organization and responsibilities; life
cycle phases, approaches, intermediate and end products:;
approach guidelines and standards; product completion and
acceptance criteria; configuration management procedures;
mechanisms for accounting status; product and progress re-
views; cost and schedule reviews; and.contingency plans.

All development team members must know the plan and adhere
to it.

Define specific intermediate and end products. Specific

intermediate and end products for cach life cycle phase give’
the deve®-pment team well-focused short-term goals, provide
the team with a sense of accomplishment, and provide a means
to measure and evaluate progress.

Examine alternative approaches. Alternative approaches, and

the rationale for them, must be considered and evaluated in
terms of project objectives and constraints, such as
schedule, cost, team skill mix, availability of resources,
and existing software. This is especially important during
design. Do not assume that there is 6nly one way of per~
forming the task; seriously examine at least one other ap-
proach to the design.

9108



L SR : ' 10 DOs

!
! !

Use formal testing. Because all testing (unit, system inte-
gration, acceptance) makes up 40 to 60 percent of a completed
project's effort, cost, and séhedule, it must be a well-
organized and efficient process. Avoid a haphazard approach
to testing; develop a test plan and follow it.

Use a central repository. Keep all development records and
materials available in a central location so that the devel-

opment process and progress are visible to management. Keep
the repository organized and up to date throughout the proj-

ect.

| Keep a detailed list of TBD items. Classify TBD items by

severity of impact in terms of system size, required effort,
cost, and scﬁedule\and set priorities for their resolution.
Assign appropriate personnélq£o4£ésolve TBD items and follow
their progress closgly‘té\ensure timely resolution.

Update system size, required effort, cos£, and schedule
estimates. Do not insist on maintaining original estimates
of the system size, required effort, cogt, and schedule.
Requirements do change, the composition'of the development
team changes, and problems are encountered throughout the

project. Most impcertant, more infcrmation is learned about
the size and complexity of the problem as the project pro-

gresses. Each phase of the life cycle provides new and re-
fined information to improve the estimates and to plan the

project more effectively.

Allocate 30 percent of effort for integration and testing.
The activities in the system integration and testing and the
acceptance testing phases are the most sequential in the

development process. These phases account for 20 to

40 percent of a completed project's total effort, cost, and
schedule; and little can be done to ccmpress cr reduce the
work required in these phases. The code must be complete

5-5

9108

aha



10 DOs

and unit tested before entering the system integration and
testing phase. Avoid:the common error of assuming that the
integration and testing effort can be compressed to make up
for slippages in the schedule during design and implementa-
tion.

Experiment. 1In an age of increasingly scarce resources,
review effectiveness, identify areas for improvement, and
take steps to make the improvements. Acquire new skills,
examine alternative approaches, and test and evaluate
changes. Try new techniques. Using the same methods this
year that were used 2 or 3 years ago indicates a lack of
growth.

5-6
9108



- 9 TER "DON"Ts™
FOR PROJECT SUCCESS

Bon't Guerstait

Deon't Allow Team NMembers To Proceed in an
Undisniglined Ranner

Don't Delesats Tochnical Rotails to Team Mombors

Don't Accume Tisat a E%zgw'i 3at of Standards Ensures
Suscess .

Don’t Ascume That a Large Amount of Bocunenta-
ticn Ensures Success

Bon't Beviate fs’@m the Approved Design

Bon't Assums That Relaning Q&mdam" Reduces
Costs

PDon't Assume 'i‘ha?. the Pace Wil En«.reaf‘e Later in
tho Project

Don't Assume That Intermnediate Schelule Slippage
Can Be Absarbed in a Later Phase

Bon't Assume That Everything Will Fit Together
Smoothly at the EFnd

3103-(51)-83



10 Don'ts

The SENL's L0 most important "Don'ts" for project success ate

described below. CoEe

Don't overstaft (especially dangerous carly in develop-

nent) . A small group of senior personnel is better equipped
than a lavge atatf to ovganize and determine the direction
of a project., When a large statf is assigned at the begin-
ning of the project, the stat! members usually begin design-
tng some aspect ot the syatem betore the actual problem is
known, Atter a signiticant amount of the budget is spent,
managers frogquently are vreluctant to adwit that a mistake
was made and that the work performed is unusable. Becausc
of this unwillingness to discard the work and start over,
the remainder of the project will be based on an invalid
design that causes further problems throughout the project.

Don't allow team members to proceoed in an undisciplined

mannev.  Doveloping very reliable high-quality software at
low cont is not a creative art, Rather, it is a very dis-
ciplined application of a set of refined principles,

awethods, practices, and techniques.  Apply them. .

Non't delegate technical details to team members., PFirst-

line managors must know the technical details of the proj-
ect. Do not delegate this aspect of the project to the
members of the development team, especially to those on a

junior tevel.,

Don't assume that a rigid set of standavds ensures succoess.

:

Succeds s not Juaranteed by any development methodology,
practice, or technique. These standards promote discipline
and consistency in the process and faciltitate design walk-
throughs, code reading, and test evaluation. However, the

experienced judgments and decisions of the project manager,

the development team leader, and other senior tochnical per

sonnel are necessary Lo onsure succoess of the project.

Y~

REEVE



10 pon'ts

Don't assume that a large amount of documentation ensures
-success. Each phase of the life cycle does not necessarily
/;equire a formally produced document to provide a clear
starting point for the next phase. The level of formality
rand amount cf detail to be provided in the documentation
must be determined by the project size, the life cycle dura-
tion, and the lifetime of the system. For exanple, |
intermediate-sized projects (4 to 12 staff-years of effort)
of 18 months' duration or less do not require a forﬁally
produced preliminary design document. By the time the
material is prepared (edited, typed, reviewed, and so on),
the design document is obsolete.

Don't deviate from the approved design. As development pro-

gresses, developers may tend to implement a slightly dif-
ferent design that still satisfies the requirements. The
managers must control this tendency by holding design walk-

- throughs. Modifications by individual developers may be

" correct in the local sense but not for the system as a whole.

Don't assume that relaxing standards reduces cost. When a

failure to meet a deadline seems imminent, managers and de-
velopers sometimes attempt shortcuts by relaxing configura-
tion control procedures, data collection procedures, design
formalism, or coding standards. In the long run, panic ac-

tions cause greater problems and added expense and do not
usually succeed in making the deadline anyway.

Don't assume that the pace will increase later in the proij-

ect.  When design, implementation, or testing is progress-
irng slowly, assign additional senior personnel to help
and/or make schedule adjustments, The workrate for a given
activity is characteristic of the particular development
team--it generally does not change within a short period of ‘
time. Do not assume that the team will work faster later on.

5-9

9108

e o ks & Mt b e e A AL AR A S S - e s At s 1 s

v owed



10 Don'ts

“a

Don't assﬁme that intermediate schedule slippage can be
absorbed in a later phase. When some part of -the design
must be completed durindfimplementation, or when some part
of the implementation must be completed during system test-
ing, the later phase will not be completed on time unless
extra staff is added well before its scheduled completion.
It is a common mistake of managers and overly optimistic
developers to assume that the team will be more productive
later on. The workrate of the team cannot be changed ap-
preciably because the project is approaching completion of a
phase, especially in the later phases of development, when
the process is most sequential. Because little can be done
to compress the schedule during the later life cycle phases,
the managers must change the schedule or apply additional
staff as soon as the problem is known.

Don't assume that everthiﬁq will fit together smoothly at

the end. Managers erroneously assume that late pieces of
design,‘code, or testing will contain few or no errors and
will fit into the system with minimal integration effort.
The work of the developers will not be of higher quality
later in the project than it was earlier;

5

10
9108




Kx-..':!

ASSESSIR

©O & o QO -

Q

is a Written Software Bovclopment Flan Baing
Followad?

Aro Lifo Cyclz Phases and Products Bafined?
Is Somoone in Chargo?
Beas the Suaff Gizo RMatch the Weorkioad?

Do Team Rembers Hnow Where the Preject is and
YWitera it Is Going?

Is a Configuration Contro! Flan Being Followed?

s Thers o Single Complsto List of TBD [tames With
Asscoomgnts?

s Thero a Commeniy-Adhcred-To Nethodology?

Have Alternative Cesigns and An@wac‘ms Becn
Considercd?

firo There Contingency Plans for Rationally Ssolving
Pmbﬁems?

9102-(502)-83

wn
!

l—l

P

@ [F’E%@QB[Z@T QUALITY




‘Project Quality .

The SEL's experience in assessing the quality of an active
project results from close review of monitored SEL projects
and from conducting audits or independent evaluations of
other projects., Ten key'items for assessing the quality of
" a project are explained below. ‘

Software development plan. Is there a written software de-

velopment plan? Do all team members know it, and are they
adhering to it? '

Life cycle phases and products. Have the project managers
and team leaders defined a life cycle with specific inter-
mediate and end products? Are there centrally located lists
detailing what these phases and products are?

Managers '‘and leaders. 1Is there someone in chargé?\ Does the
development team leader know 90 percent of the technical

details; the status of all major pieces of the software; the
status of critical, major, and nominal problem areas; and
future needs and potential problems? Does the project man=-
ager know the status of all major pieces of the software;
two alternatives being considered to solve critical and
major problems; one alternative be@ng considered to solve
nominal problems; the impact of critical and major TBD
items; and the likelihood of cost and schedule perturbations
in terms of workrate and workload?

Staff size. Are the correct number of people working on the
project based on the projected workload and the development
team's workrate? Are staffing changes planned to match pro-
jected increases or decreases in workload? Do the project
workload and staff workrate projections match the schedule
projections?

Project objectives and status. Do development team members
know how their individual work fits in the project? Do they

9108



’ ! Tt K | Project Quality

know their own deadlines and the objectives of those dead-
lines? Do they know when to expect data or interfaces to be
established? Do thg“ééﬁior members of the team know the
overall objectives of the project and how it fits in with
the work being done by other groups? Do they know the prob-
ability of timely interfaces and the impact and contingency
plans if they are not established?

Configuration control. Is there a written configuration
control plan? Do all development team members know and
follow it?

List of TBD items. 1Is there a single complete list of TBD
items? Are they classified by severity of impact in terms
of system size, required effort, cost, and schedule? Who
sets the priorities for the rgsolution of TBD items, and how

is their resolution scheduled and tracked?

Adherence to methodology. Do the development team members
follow a specific methodology? Do all team members have the
same understanding of what the methodology is?

Alternative approaches. Has the development team seriously
considered at least one other design? Have they written
down and justified the rationale for selecting the current
design over alternatives?

Contingency pians. Are there written contingency plans on
how to continue project work if, for example, a severe or
major TPD item breaks a development sequence, an interface
is several weeks or months late, the computer is down or
malfunctioning for an extended period of time, the confiéu-
ration of the software system is lost, or a key team member
leaves the team prematurely? Are the manager and team
leader aware of a potential problem and do they have a plan

to minimize its effect?

9108



&1

e

APPLYING THE

¢ RECOMMERDED APPROACH

Rovicw tho Recommended Apnroach

- Annly tho Recommended Apgroach as 8ot Forth
Uniscs Thero Is an @bvicus and Feundod Rezson for
Rlodifying it

Niako Additicns to tho Approach To Includo

Established Princinlos, NMetheds, Practices, and

Technizuoes That Have Proved RBe