
I

NASA-TM-85396

: /q 1300 d.. 'I {)?J1)

,A Reproduced Copy
OF

--------------~----------,

! I

Reproduced for NASA

by the

i

NASA Scientific and Technical Information Facility

. I FFNo 612 Aug 6S

LANGLEY RESEARr.H CENTER
LIBRARY, NASA

H.'\M?TON. VIRGINIA

'.
\

i~ ,
I.

:' " ' ,I ~ .1'1 "i

.)'.i,\'Jy.,~;~,.'.;'<
,~' '" \',~,

trJ tE C(f3 r~ ruB tErRe ITJ)[S (D) ~~[?)~ (Q) ~ ~r~ frO
$@~~ftfPdn[E [o)~~rE{L©fPu11ilfE~~rr

'~.j' ."'I~~~t ·\t-·,,··\f· ... 1 ! C' ~ 1·~~.:

.. :~\: t 1 "\'.:'~" ... ~'''1r ,~,..

Goddard Space Flight Center

,

1 . , ,

.l

I
f

, t .~:' <, ..): ~·1··1·
: .. ~); ~:'\ -; .

• ,," :"~ :> ~):~>'~ '''': .
, . , s ... ': "" '\. :~

FOREt~70rm

,
The Sriftware Engineering Laboratory (SEL) is an organization
sponsored by the National AeronauticD and Space Administra­
tion Goddard Space Flight Center (NASA/GSFC) and cre~ted for
the purpose of investigating the effcctivcners of software
engineering tec~no1ogies when ~pplied to the development of

applications software. The SEL was created in 1977 and has
thr~e primary organizational members:

NASA/GSFC (Sy~tems Development and Analysis Branch)
The University of Maryland (Conputer Sciences -Department)
computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de­
velopment process in the GSFC environment: (2) to measure
the effect of various methodologies, teols, and models on
this process: and (3) to identify and then to apply success­
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En­
gineering Laboratory Series, a continuing series'of reports
that includes this document. A version of this document was
8150 issued as Computer Sciences Corporation document
CSC/TH-83/60l9.

The contributors to this document include

Frank McGarrv
,Jerry page -
Suellen Eslinqer
Victor Church­
Phillip Merwarth

(Goddard Space Flight Center)
(Computer Sciences Corporation)
(Computer Sciences corporation)
(Computer Sciences Corporation)
(Goddard Space Flight Center)

Single copies of thi~ document con be obtained by writing to

9108

Frank E. McGarry
Code 582.1
NASA/GSFC
Greenbelt, Md. 20771

iii

PRECEDING PAGE DLANI\."
NOT FILMED"

I
I

/1

I
j
~
4 , ,
I
1
I

~ .
> .

1
1

I
r

.. ':,"\"
K. ,:-.' " 1',: ,:~ , ,

0"" .-
~ ."

ABSTP.l1.CT

This document presents a set of guidelines for an organized,

disciplined approach to software development, based on data
collected and studied by the Software Engineering Laboratory
(SEL) since 1977,for 46 flight dynamics software development
projects. It describes methoas and practices for each phase . "

of, a software development life cycle that starts with re-
quirements analysis and ends with acceptance testing: main­
tenance and operation is not addressed. For each defined

life cycle phase, "this document presents guidelines foi:' the
development process and its management, and the products
produced and their reviews. This document is a major revi­
sion of SEL-Bl-105.

v

9108

r •

· . I · .

, ,

! -

,~ ~ "

~ , .1

" f ',~~':Jf~~' ".', ,~:
(

: ''''\'
, ;. f

"'.', .,j,,"

", 'i ',-'.'
' ..

"

'l'ABLE OF CONTENTS

Section 1 - Introductio~. • • • • • •

1.1 Document OverviGw •••••••••
1.2 Software Engineering Laboratory ••
1.3 Flight Dynamics Environment. • •

·
• • • • • • • •

• • • • • • •

Section 2 - Software Development Life Cycle • . . • • •

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Requirements Analysis. • • • • • • • • • • • • • •
Preliminary Design • • • • • • •••.••••
Detailed Design. • • • • • • •
Implementation • • • • • • • • • • • • • • • • • •
System Te5ting • • • • • • • • • • • • • • • •
Acceptance Testing • • • • • • • • • • • • • • • •
Maintenance and Operation. • • • • • • • • • •••

Section 3 - Recommended Software Development
Guidelines. • • • • • • • • • • • • . . • •

3.1 Requirement5 Analysis •••• ·

3.2

3.1.1
3.1. 2
3.1.3
3.1. 4
3.1. 5
3.1. 6

Major Activities •••••••••••••
End Products. • • • • • • • •
Methodologies • • • • • • ••••••
Too 1 s • • • • • • • • • • • • • • • • • •
Measures. • • • • • • • • • •••••
Key Management Activities . .

Preliminary Design • • • • · .
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

Major Activities ••
End Products. •
Methodologies • • •

· . . . · . . . · . .
Tools • • • • • • • • •
Measures. • • • • • • • •

· . · . .
· . .

Key Management Activities ••
3.3 Detailed Design ••••••• ·

9108

3.3.1
. 3.3.2
3.3.3
3.3.4
3.3.5
3.3.6

Major Activities ••••••••
End Products. • • • • • • • • • •
Methodologies ••••••••••••••
Too 15 • . • • . • • • • • .•• .
Measures. • • • • • •
Key Management Activities

l'llliCE.Dl~lj l'AGE BLANK NOT FILMED~

vii

1-1

1-3
1-4
1-7

2-1

2-3
2-5
2-7
2-7
2-8
2-9
2-9

3-1

3-3

3-5
3-7
3-7
3-10
3-11
3-13

3-17

3-19
3-21
3-21
3-25
3-26
3-28

3-31

3-33
3-34
3-34
3-35
3-36
3-:38

~'f ". t' ' .. ' " .
/

.~ ? ,

I,,', , ;,

, .
"

TABLE OF CONTBN~ __ 1r-0nt' d)

Section 3 ~Cont'd)

3.4 Implementation • · • • • • • 3-41

3.4.1, Major Activitico. • • • • 3-43
3.4.2 End Products. • • 3-45
3.4.3 Methodologies • • • • • 3-45
3.4.4 Tools · • • • • • • • • • 3-50
3.4.5 Heasures. • • • • 3-50
3.4.6 Rey Management Activities · • 3-54

3.5 System Testing • • • • • 3-57

3.5.1 Major Activities. • • • • • • • • 3-59
3.5.2 End Products. • • • • • • 3-60
3.5.3 Hethodologics · • • • • • • 3-61
3.5.4 Tools · • • • • • • • 3-62
3.5.5 Measures. • • • • • •)-62
3.5.6 Key Hanilgemcnt Activities · • 3-64

3.6 Acceptance Testing • • • • • • • • • • • 3-67

3.6.1 Hajor Acthoities. • • • • • 3-69
3.6.2 ,End Products. • • 3-72
3.6.3 Methodologies · • • • 3-;2
3.6.4 Tools • • • • 3-73
3.6.5 HeaslJres. • • '. • 3-73
3.6.6 Key Management Activities I' • 3-73

Section 4 - Manaqcrtent and Control. • 4-1

4.1 Indicators of Development Status · 4-5
4.2 Danger Signals · • • 4-11
4.3 Corrective Heasures. • 4-15

') 4.3.1 Basic Problem Areas · 4-16
4.3.2 Steps for Corrective Action 4-17

Section 5 - ASEects of Successful Projects. • • 5-1

5.1 Ten "Dos" For Project Success. 5-3
5.2 Ten "Don'ts" For Project Success · 5-7
5.3 Assessing Project Quality. 5-11
5.4 Applying the Recorn:nended Approach. 5-15

viii

9108

/"'

I ,

r
r , ,
,
"

4

-r-, ,
d

., ,
'l:

, ,
•

,
1 • •

· . ,

A.l
A.2
A.3
A.4

, ,,:: .. \ '".,~
/, ,.r.,: . .' ... • -:i ,'. ,

TABLE OF' CONTr~NTS ~Cont 'dl

. . • • • • • • • • • •

System Requirements Ravie\-1 • • _. • • • • • • • • •
Preliminary DeEign Review. • • • • • • • • • • • •
Cr i tical Design Review • ~ • • • • • • • • • •
Operational Rcad.~.lless R'aviet-I • • • • • • • • • • •

A-l

A-3
A-ll
A-17
A-2S

!\PPCI1dij! R - Devclop..:'l1c.!lt Documcntc. • • • • • • • • B-1

B.l
B.2
B.3
8.4
B.5
B.6
B.7
B.8
B.9

Software Devcloprn~nt plan. • • • • • • • •
Project Notebook • • • • • •• • • • • • •
Requirements Analysis Summary Report • • ~ • • • •
Preliminary Design Report. • • • '. • • • • • • • •
Detailed Design Document • • • • • • • • • • • • •
Test Plans • • • • • • • • • • • • • • • •
User's Guide ••••••••.•••••••••••
System Description • • • • • • • • • • • • • • • •
Soft\-'/are Development History • • • • • • • • • • •

Appendix C - Brjef Example of Some Steps To
Orqanize a Project • • • • •• · . · .

C.l Estimating Size and Effort

C.2

C.3
C.4

C.l.l
C.1.2

Size of. the System. • • • • • • • • • • •
Effort Required to Develop the System • •

Establishing Realistic Schedules • • • • • • • · .
C.2.l
C.2.2

Required Effort For Life Cycle Phases • •
Realistic Schedules • • • • • • • • • • •

Allocating Proper Resources •• . . ·
Summary •••••• ·

Appendix 0 - Summary of Key Information •••• . . · .
Glossary ••• · .
References. • • • • . . . • • • • • • • • • • • • • • •

Bibliography of SEL Literature.

9108

B-3
B-7
B-11,
B-lS
B-19
B-23
B-25
B-29
B-33

C-1

C-3

C-3
C-4

C-9

C-9
C-l1

C-14
C-18

0-1

G-l

R-1

5-1

/
/

Figure

.:,:::" ~~' ; ,i ,_

" 'J'

LIS~ OF ILLUSTRATIONS

1-1 Software Devplopment: f.lodel • • • • • • • • •• 1-6
2-1 Activitiez by Percentage of 'l'otal Development

Staff Effort • • • • • • • • • • • •• • •• 2-4
2-2 Hierarchical Levels of a Software System

Baseline Diagram • • • • • • • • • • • • •• 2-6
C-l Effort Uncertainty Limits as a Function of

Table

C-l

C-2
C-3
C-4
C-S
C-6
C-7
C-8·

9108

Phase. • • • • • • • • • • • • • • • • • •• C-8

LIST OF TABLES

Effort Estimators and Uncertainty Limits
by phase • • • • • • • • • • • • • • • • • •

Complexity Guideline •••••••••••••
Development Team Experience Guideline •••••
Schedule Guideline ••••••••••••••
Team Size Guideline ••••••••••••
Staffing Pattern Guideline ••••••••••
Development Team Staffing Guideline ••••
Development Staff Composition Guideline ••

C-4
C-S
C-6
C-6
.C-12
C-l3
C-lS
C-16

r
1.

r
I '

1t .

T
1

"

,
~~ ., '; '<.fI,) ,

" " " , >

· "

".

1-1

" , .!"" • ,. , '., .' \, .. , .~,,"" ,I

': r<;:,(:;:~;! /it,l (><?;;:~',+;; \' : I'
I· 'I'

_, ",." "" ~""~''''''~'-'''''''.'! ~~c ~.

't ~.
" , ('.

The Software Engineering Laboratory (S~L) was established in

1977 by the National,Aeronautics and Space Administration
Godd~rd Space Flight Center (NASA/GSFC) to inveatigate the
~ffectiveness of softwsre engineering techniques applied in
developing ground support flight dynamics systems. The
investigation's goals are (1) to understand the software de­
velopment process in a particular environment~ (2) to measure
the effects of various development techniques, models, and
tools on this development process; and (3) to identify and

apply improved methodologies in the GSFC environment. The

reoults cf SEL research should enable GSFC to produce better,
less costly software.

This document presents a set of software development guide­

lines for a disciplined approach to software development,
with special emphasis on management considerations. These
recommendations are based on data collected and studied by
the SEL since 1977 for 46 flight dynamics software develop­
ment projects. Most of the softltlare development projects
studied by the SEL were performed by an independent con­

tractor. For some projects, however, the software develop­
ment team consisted of both GSFC and contractor personnel.

Developing a flight dynamics software system involves di­
verse skills and many staff-years of effort in specifying,
designing, implementing, integrating, and testing complex
computer programs. This document describes the software
development life cycle from the technical manager's·per­
spective and provides useful techniques for managing soft­

ware d~velopment.

This document is neither a manual on applying the technol­

ogies described her.e nor a tutorial on monitoring a Govern­

me~t contract. Instead, it describes the methodologies and
tools that the SEL recommends for use in each life cycle
phase to produce reliable, cost-effective software.

1-2

9108

",

.,

/

I , , .

i ..

, .. ~: • (~ I.'

'~\"~ , "','~·I't'·, .. "" '~~"""':''':~ "'''.''''(''.

}:' ~t~ :'~~,?~ ; 2 "~- /~' : .. '~:' ": ~':, "
~ ~~' ',',

Introduction

This document is primarily for technical managers of soft­
ware development efforts. HO\'lever, it is also intended for
higher level managero who are concerned with sch€dules and
budgets and for senior technical personnel (such as de­
signers, analysts, and programmers) who are responsible for
implementing the recommended procedures. The recommended

. software development gUidelines are appropriate for both
GSFC and contractor personnel. Although the recommended

.' guidelines have been formulated based on the development of
flight dynamics systems, there is no reason to believe that
the recommended guidelines are not applicable to any
software development project.

The SEL continually monitors and studies flight dynamics sup­
port software, including software developed by both GSFC
employees and contractor personnel. It anticipates that
data will continue to be-collected and analyzed in the fu­
ture. The recommendatior.s in this document will be refined
and enhanced as more knowledge is obtained abnut the produc­
tion of better, less costly software and as more progress is
made toward achieving the goals of the SEL •

. .
1.1 DOCm-tENT OVERVIEt-l

Section 1 describes the document's purpose and its intended
audience and establishes the general background for the re­
mainder of the document. Sections 1.2 and 1.3 briefly de­
scribe the SEL and the flight dynamics software development
environment.

Section 2 describes the typical software development life

cycle in the flight dynamics area, identifying tte major
phases ane their characteristics.

Section 3 describes in detail the recommended guidelines lor
software development. It discusses the major activities,
end products, methodologies, tools, and measures applicable.

1-3

Iritroduction

.. ~.' •• , "'.. r ~ .. '

,,', ,i,,,

to each life cycle phase. In addition, it reco~~ends man-

agement activities for ench lif~ cycle phase.

Section 4 discusses management and control of the develop­

ment process, and Section 5 summarizes key aspects of suc­

cessful and unsuccessful projects. ~ppendih A discu5ses
formal reviews, Appendix B presents the content a~d format
of documents, and Appendix C provides a brief example of
some steps in organizing a project. Appendix D s~mmarizes
the key information of the document.

A glossary, references, and a bibliograpnyof SEL literature
are also ~ncluded,

1.2 SOFn~ARE ~NGINEERING LABORATORY

The SEL monitors and studies. all software developed by the

Systems Development Section at NASA/GSFC, w~ich is respon­

sible for producing flight dynamics support software for
GSFC-supported missions. To date, 46 projects developed by
both GS~C and contractor employees have been studied. They
range in size from 1,500 lines of source code to more than

110,000 lines. Much of the data is collected on a series of

forms completed by project personnel th:oughout the develop­

ment effort. Data is also collected through computer ac­
counting monitoring, personal interviews, automated tools,

and summary management reviews. From investigating projects

totaling more than 1.5 million lines of source code, the SEL
has gained insight into the 30ftware development process and
has begun to identify trends in the effects of applying var­
ious techniques to the software development projects.

The SEL approach to software engineering research is based
on the high-level software development model shown in Fig­

ure 1-1. The four components of this model are a problem
statement, an en~ironment, a process or activity, and a

product (software). The development process is divided into
seven sequential phases of activity. These phases are de­

scribed in more detail in Section 2.

1-4

i :

i ..

,
I
1 ,

/

1.

.',. .. (~ ,',,~ ",\-' , .'
/, .,

/

ENVIRONMENT AND
RESOURCE POOL

PROCESS

/ ""
~o'~----------------~"

r '-, " " / ,
/ "

Introduction

" , / ,
/ "

/ "
/ " / ,

/ ,
/ " " , / ,

/ ,
PROCESS PHASES "

REOUIREMENTS PRELIMINARY DETAILED COUE AND
SY~TE~t

ACCEPTANCE MAINTENANCE INT[;GRATION ANALYSIS DES:Grj DESIGN UNIT TESTING AND TESTING TEllTING AND OPERATION

Figure 1-1. Software Development Model

1-5

; ~ -" '
'''' . "':\, "'.

",' .

. ,,'
;,"1

tntroductinn

SEL rese.1rch first a ttein'pts to unnE'r~tand the ~oft\"a re de­
velopment process currently in operation and its environment.
This understanding provides a baseline for me~suring the
effects of attempted improvements. Next, the SF.L tries t~

impcove that process and environment to produce high-quality
software with fewer errors at a lower cost. To achieve
theDe goals, the SEL identifies the nevelopment techniques
available, evaluates these techniques to determine the most

effective ones, adapts the "best" technique~ for optim~l

performJnce, and applies the customized techniques to the
software nevelopment process. The recommendations in this
document are based on the application of this four-step
procedure to a large set of software development techno 1-

oqies.

The ~echnelogies stunled by the SEL may be classified into
four maier areas of concern: methodologies, todls, models,

ann measures. Methonoloqies are systema~ic applications of
prescriben principles to the development process. Tools are

software ains used nuring the developmp.n~ process to make it
easie~ for development tenm members to do their work. Models

explain and/or predict some aspect of the development proc­

ess and are usually formulated as mathematical equations

relatinq two or more quantitative factors. Measures define,
explain, anj predict software development qualities: they

may be objPctive or sUbiective.

Section 3 identifie~ the technologies in these four areas

th~t the SEL recommends for application to the software de­
velopment process during th~ development life cycle phases.

Reference 1 contains additional information on the activ­
itip~ of the> SEt. and further df!l".:lil~' on the results of -;EL

1- (;

, :

• < •• ~

Introduction

1.3 FLIGHT DYNAMICS ENVIROt~~1ENT

The empirical basis for this document is the studi~s of
fligh~ dynamics software conducted by the SEL since 1977.

Flight dynamics software includcz applications ~o support
attitude determination, attitude control, maneuver planning,
orbit adjustment, and general mission analysis. The atti­
tude systems, in particular, form a large and homogeneous
,~roup of software that has been studied extensi~ely~

The attitude determination and control systems are designed

similarly for each mission using a standard e%ecutive sup­

port package, the Graphic EKecutivc Support System (GESS),

as the controlling system. All these systems are designed
to run in batch and/or interactive graphic mode. Depending
on mission characte~istics (for e~ample, the type of data

available and the accuracy required), these systems may
range from 30,000 to approximately 120,000 lines of ~ode.
The percentage of reused code ranges from 10 percent to
nearly 70 percent, with th~ average system reusing about

30 percent.

The applications developed in the flight dynamics area are

mostly scientific and mathematical in nature, with moderate
reliability requirements. Severe development time con­
'straints are imposed by 'the spacecraft launch date: the
software mur 4 be completed (through acceptance testing)
90 days bef(, the scheduled launch, and the requirement~
and functional specifications are normally made available

less than 2 years cefore the scheduled launch.

Most flight dynamics software projectR use a group ~f IBM

S/360 computers for development. All resources on these
machines are extremely limited, and the'hardware is very

unreliable. l Because the machines are shared among the

IThe mean ~ime between failures for the primary development
machine is approximately 6 to 8 hours of operation (see Fig­
ure 3-4 of Reference 1).

1-7

I
I
I

I
1
j

'1 ~
!
i
\ '.
"
"

'i. \

;

. '
CA_

Introduction

\~~! -, ,,;: ", I, ~ ~ •

,.',
.: : " '~,' "",. 'j ,...t.",,!

, ..

analysis, software development, and operations ar~as, soft­
ware development schedules are affected when simul~tions,
launches, and maneuvers occur. .In addition to tho IBM
5/3605, a DEC PDP-ll/70 and a DEC VAX-1l/780 are'occasion­
ally used to develop utilities and support systems for the
flight dynamics area.

Additional information about the flight Jynamics software
development environment may be found in Reference 1. Sec­
tion 3.1 of that document presents the results of profile
analysis of several large software development projects
studied by the SEL. These statistical profiles characterize
the software development process, environment, and products
for these flight dynamics projects.

1-8

I.
I.

,.~~, ,.,. "1 " _"I

i ". . ~©lFfi"'mr ffii.fRilE fL'i)~!E!L©[lll~nJ[E1im" ILGrF!E (:V~lL[E
1 .,

I.

, ..
/
1
l,

2.1 Qua D m _ aD. • • a R • • • • • 2-3

a _ _ _ • _ _ _ _ _ • a _ £ _ • • • • • • • •

• a _ ~ • a c • • • • Q D • • B • • S D • • • • • • • 2-7

• • a 8 e _ • B D • • • a 8 • • D • • • • • • • • a 8 D 2-3

• • • • • q • • • • • • • • g • a _ • • • • • 2-9

2-1

, !, ./ ~ " '. .
~"""----"---""_~"""">\-~--_"''''''''~''''''-''~'''I~;o' '.:" ,', " .. -._..r "~-." ,,, .. ~,\ ... ,:., .:...~~.".."'f""') •• ,.~'~' .. I) -:r-.... ' . .,...I'I"""'-""f''IIo ot;~ ... Pl<_ .. ~.....-~~'''')''.\~

The flight dynamics.~oftware development process is divided

into the following seven sequontlal phases, collectively

referred to as the software development life cycle:

1. Requirements analysis

2. Preliminary design
3. Detailed design

4. Im~lementation (co~e and unit testing)
5. System testing (system integration and testing)

6. Acceptance testing

7. Maintenance and operation

This division is shown in Figure 1-1 (page 1-5), which il­
lustrates the SEL'software'development model.

For the purpose of this document, the software development

life cvcle is divided into calendar phases rather than ac­

tivity phases~ that is, the seven life cycle phases sub­

divide the software development effort into seven sequential

periods of time that do not overlap. Bach calendar phase of

the software development life cycle is characterized by
specific activities and the products produced by those ac­
tivitie~.

Activities that are characteristic of one calendar phase,

however, may he performed in other phases. For instance,
analyzing the requirements, which makes up most of the

effort durinq the requirements analysis phase, continues at
a lower level throughout the software development life

cycle. Once a development activity is started, it continues
throughout the life cvcle: ho~ever, the level of effort for

early life cyclp activities continually decreases. SEL d~ta
ghows th~t the estimated size of larqe flight dynamic~

systems qrow5 between 15 and 40 percent after implementation
startg (that i~, after completion of the det~iled design)

2- 2

[

r . •

! . ,
)

1

', t ' ,
" , Life Cycle

1
because of ~ncertainty in the estimntion process , new
requirements, and reCjuirel'ilents changes. This gro\flth causes
requirements analysis and design activities to continue
during subsequent life cycle phases. Figure 2-1 illustrates
the activities performed during each (calendar) life cycle
phase DS a percentage of the total staff effort.

The following subsectio~s define the seven softw~re develop­
ment life cycle phasec, ~nd Section 3 describes them in more
deta il.

2.1 REQUIREMENTS ANALYSIS

Before the requirements analysis phase begins, a team other
than the development team defines the requirements and pro­
duces a functional specifications and requirements document.
The requirements analysis phase begins when the requirements
definition team completes the draft of, the fUnctional speci­
fications and requirements document. It is the first phase
of the software development life cycle, and in it, the func­
tional specifications are translated from mission terms into
a software-supportable form.

In this phase, the development team analyzes the functional
specifications and requirements document from a software

system viewpoint and recasts the requirements in terms suit­
able for software design. The development team assesses the
completeness and feasibility of the requirements, identifies
missing or to-be-determined (TBD) requirements, specifies
all external interfaces, and makes the initial determination
and allocation of resources. Close interaction with the
requirements definition team is necessary for the develop­
ment team to clarify and amplify the requirements. The de­
velopment team qives the results of the requirements analysis

lSee Table C-l on page C-4 of Appendix C and Figure C-l on
page C-8 for information on uncertainty limits.

2-3

9108

N
I

A

PDRs CDRs ORR

------ .< """ l , I l J J j J ;.« ! .. < < < ._L ______ _

I-
a:
0
IL
IL
UJ
IL
IL L1 DESIGN <{
tI)

..J

'"
0
t-
IL
0
w
l:I
<{
I-
Z
UJ
u
a:
UJ
n.

SYSTEM INTEGRATION AND TESTING

00
"'r1:::;J

"'0 5
02
o~
:O'r-

.0"::1
c>
:;r:.Gl
r f';'

:jw

~~~~SS'S S;:;: ;=t/~LfL4W~ ________ _ 
REOUIREMENTS REQUIREMENTS I 

DEFINITION I ANALYSIS I 
AND FUNCTIONAL PHASE PRELIMINARY 

SPECIFICATION I Dec'lGN I 
PHASES PHASE 

DETAILED 
DESlmJ 
PHASE 

IMPLEMENTATION ICODE AND 
UNIT TESTltJG) PHASE 

CALENDAR TI~!.E ~ 

SYSTEM TESTING 
PHASe 

ACCEPTAUCE 
TESTING 

PHASE 

MAINTeNANCE 
AND OPERATlor~ 

PHASE 

NOTE: FOil EXAMPLE. AT THE END OF THE IMPLEMENTATION PHASE (.lTH DASHED L1NEI. AP?i\OXIMATElY n% OFTHE SlAp,: ARE INVOLVED IN 
SYSTEM INTEGRATION AND TESTING; APPROXIMATELY 2% AilE ADDRESSING nmU:F:MENTS CUANGES OR FROBLEMS; APi'nOX~:AATELY 
2% ,,'tE DESIGNING MODIFICATIONS; AND APPROXIMATELY 17% ARE COOING AND UNIT TESTING CHANGES. 

91:3-(51 )-33 

Figure 2-1. Activities by Percentage of Total Development Staff Effort 

1 
i 
I 
I 
I 

.1 
I 

>~ 
1 

• L ;:,d-. 
~ :.;). ~ -~'"-

: ~~.-
-). 

/~~:.' 

.j.e 
~;-~.~ 

. , •• !, 

-,};', 
-~~::; -
'-";'j, • 

il~ -.~ 

}T 

\ .. 
~ ; 
; ~ 
t'J 
11 
;t 
:,t 
(1 
H 

II 
~I 
,1 
~il 

11 I, 

iJ 
! j 
':: 
~ 

. .1 



I 
! , 

", 
I 
I 

4e 

il -,'~ '_ '1','," .' • ,~ 

" ~ , " • ", 1', I' ~ 

Life Cycle 

to the requirementm def~~ition team for incorporation into 
the final version of 'the functionel specifications and re­
quirements document. They also prepare a summary report of 
the results as a basis for preliminary design. When the 
final version of the functional specifications and require­
ments document has been completed, a system requirements . -

review (SRR) is held to evaluate the completeness of the 
requirements. 

2.2 PRELIMINARY DESIGN 

During the prellminary design phase, the development team 
defines the software system architecture based on the re­
quirements given in the functional specifications and re­
quirements document. The team translates this architecture 
into software requirements in the requirements analysis sum­
mary report. During this phase, the development team spec­
ifies major functional subsystems, input/output interfaces, 
processing modes, and implementation strategy. The require­
ments evaluated during the requirements analysis phase are 
translated into functional capabilities and are organized 
into major subsystems. All internal and external interfaces 
are completely defined to the subsystem level, nnd the de­
sign is refined to two levels below the subsystem drivers. 
Figure 2-2 illustrates the hierarchical levels of a software 
system baseline diagram (treechart). The development team 
documents the functional design of the system in the prelim­
inary design report. The preliminary design phase culmi­
nates in the preliminary design review (POR), where the 
development team formally presents the functional design for 
review. The preliminary design is considered complete when 
responses to the POR comments and criticisms have been in­

corporated in the functional design. 

2-5 

9108 



Life Cycle 

z 
Cl 
iii 
w 
c 
>­ex: 
ct z 
~ 
::i 
w 
a: 
Q.. 

:' 

I 

I I 

MAIN 
EXECUTIVE 

I 

I 

SYSTEM 
LEVEL 

SUBSYSTEM 
LEVEL 

SUBSYSTEM 
LEva 1 

SIJOSYSTEM 
LEVEL 2 

-I---[" ~-""I --
SUBSYSTEM 

LEVEL 3 

z 
Cl 
iii w 
c 
c 
w .... 

~ 

I I 

C I , 

1 -l -i--I------------------~~~~:-
Figure 2··2. Hierarchical Levels of a Software Syste~ 

Baseline Diagram (Treechart) 

2-6 



r 
I .' 
r , .. 

, . 
1 

·"", ' : ,; : '. ~ ~. 
I, .. .., ;, .. , il.; ~ to.~ : 

Life Cycle 

2.3 DETAILED DESIGN 

During the detailed design phase, ~he development team ex­
tends the system architecture defined in prclimiriary design 
to the subroutine level. By successive refinement tech­

niques, they elaborate the preliminary design to produce 
"code-to" specifications for the system. 

All formalisms for the system design specifications are pro­
duced, including functional and p~ocedural descriptions of 

the system; data flow descriptions; complete descriptions of 
all user input, system output (for e~ample, screen, printer, 

and plotter), and il1put/output files; operational procedures; 
functional and procedural descriptions of each module; com­

plete descriptions of all internal interfaces between mod­
ules; and build/release capabilities. The team documents 

these design specifications in the detailed design document, 
which forms the basis for implementation. The detailed 

design phase culminates in the critical design review (CDR), 
where the development team form~lly presents the "code-to" 
specificntions for review. The detailed design is consid­
ered complete when the responses to the CDR comments and 

criticisms have been incorporated ln the detailed design 
document. 

2.4 IMPLEMENTATION (CODE AND UNIT TESTING) 

In the implementation (code and unit testing) phase, the 

developers code new modules from the design specifications 
or revise old code to meet new requirements, integrate each 

module into the growing system, and perform unit and inte­

gration testing to ensure that the newly added capabilities 

function correctly. 

In a typical project, the developers build several subsys­

tems simultaneously from individual components. The team 
repeatedly tests each subsystem as new components are coded 

2-7 



pac -

" , 
....... ,.~_ .... ". ' .. _.,.....-...._",~ __ ""."",""~~-"'._"'_,.,.~~" ... ,/,~.':-.:,.'.,: _': ~ .' '" l" 

'~'-""~$: ,.,. ~ -. -=:~"".1;: ~:;''''*:''--''''''-·-'''';-''''''''''''''?'''.."'':, .. :.'',::~7 . .:::~.:-;::","!==-~,:''',:-::===:,''''.'1':~~~7'''~'''"~i 

Life Cycle 

and integrated into the evolving software. At intei~als, 

they combine subsyste~ c~~abilities into a complete working 

system for testing end-to-end processing capabilities. The 

sequence in which functions are coded and integrat~d into 

execut~ble subsystems and the process of combining these 
builds into systems are defined in the implementation plan 

produced during detailed design by the develop~ent managers. 

The team also produces a system test plan and drafts of the 

user's guide and system description documents during this 

phase in preparation for the system integration and testing 
phase that follows. Implementation is considered complete 
when all code for the system is produced, tested, and inte­
grated into the system. 

An independent acceptance test team prepares the acceptance 

test plan based on the information in the functional speci­
fications and requirements document. The acceptance test 

team usually consists of analysts who will use the system, 
and it frequently includes members of the organization that 

specified the requirements. 

2.5 SYSTEM TESTING (SYSTEM INTEGRATION AND TESTING) 

During tl~ system testing (system integration and testing) 

phase, the development team validates the completely in­
tegrated system produced by the implementation phase. This 

means that functional testing of end-to-end system capa­

bilities is performed according to th~ system test plan 

developed during the preceding phase. The system test plan 

is based on requirements set forth in the functional speci­

fications and requirements document. Successfully complet­
ing the tests specified in the test plan demonstrates that 

the system satisfies the requirements. 

In this phase, the developers correct any errors uncovered 

by system tests. They also update the draft documentation 

2-8 



r " 

?I~'L'~ .\, ;:,-~), ,\1.: 
~ . , 

"-~ __ ~ ___ """'';'''''''~~,'''_''~'~_'''' """'.:. __ •• .,." ....... ~_.~ ........ _~ •• _ ~_"~" ,_ , "" ~ ~~ ...... ".'~.~'~ .. '~~:: ,.: .. ::;'~._ ... ____ "'.~~~_~~' .. ft)~_""" .... _ ............. _ ... '._~ .... ___ ~ .. ·r:.~_~ .. ~~,_'-.....,"-~ .... ~ 

I 
I. 

[: 

[ 

[ 
.'< 
! 

, ~ ,:' < • t • . :~ '. ", \ .. : . ~. 
" , 

\, 'r' , 

f"ife Cycle 

, to reflect the system a~ it exists when system testing is 

i comp~ete. System testing is considered complete when all 

tests specified in the system test plan have been run suc­
cessfully. 

2.6 ACCEPTANCE TESTING 

During the acceptance testing phase, the systsm is tested by 

an independent acceptance test team to ensure that the soft-
, ware meets all requirements. Testing by an independent team 

(one that does not have the developers' preconceptions about 

the functioning of the system) provides assurance that the 

system satisfies the intent of the official requirements. 

During this phase, the development team assists the accept­

ance test team and usually executes the acceptan~e tests 
under their direction. Any errurs uncovered by the accept­
ance tests are corrected by the development team. Accept­
ance testing is considered complete when all tests specified 
in the acceptance test plan have been run successfully. 

After the successful completion of acceptance testing, the 

development team delivers final versions of the software and 

the system documenta~ion to the customer and an operational 

readiness review (ORR) is held to evaluate the readiness of 
the system to support operations. 

2.7 MAINTENANCE AND OPERATION 

At the end of acceptance testing, the system becomes the 
responsibility of a maintenance and operation group. This 
marks the beginning of the maintenance and operation phase. 

The nature of the activities during maintenance and opera­
tion is highly dependent on the type of software involved. 
For most flight dynamics software, this phase typically 

lasts the lifetime of the spacecraft and involves relatively 

few changes to the software. For some support software, 

however, this phas~ may be much longer and more active as 

2 -9 

I 
! 

I , 
I 
1 

I 



,. 
~ .... ", .. -.-.,.,.-,,-• .., .. -,.:-~-., ............ .,.., ~'~ :-.. ~ ...... , ................... '.~ .... ~.;"'~ ' ... ~.~ ~ ... ----:- ..... ""' ........... ~~':: . ..::-.=-..... ~.~ .... '.' ....... --' .. -"-.,' ... ....,.. ...... "'f~-__ ........,...-~..:-.. "t-..~<~~~ 

~ ....... , ...... ,!' ". -,,,. ............ >& 11' "_"~ •• 

Life Cycle 

the ~oftware is modified to respond to changes in the r~­
quirements a~d environment. 

The maintenance and operation phase is outside the scop~ of 
this document. However, enhancements and error corrections 

also progress through a development life cycle but at a much 
lower level of .effort than original development. Therefore, 
the recommendations mad~ for original development are, for 
the most part, applicable to development during the mainte­

nance and operation phase. 

. \ 

2-10 



'.,' '" .,',,:,',. '" 

",,:, \ , ,:. "'~", ~ , ., 
, ' 

~ [E ~qJ) tRRi ~ IT: ~ [» ~ liD ~(QJ [F'UWtf A[ffi [E 
lQ)[E~[E[LCC~rF?WU[E~1r ~~~[p~n~~~lEs 

3.1 ~~(»J!.DUlR~lilJ;!t:ru1rS AtI'J.AJL VSGS .... " .. " II II 0 II II II II .. " II ... II ~-3 

3.4 fibl{Jl?p .. raMr:~j1r A 1iS CO tU II II II II II .... II .. II ....... II .. II II II ........ 3-41 

3.5 SVSIT!t:~l~ 7tES-U'DNG .... II II • II II 1/ ... " •• II II II II II " • II ..... II II II" 3-b7 

3,,6 ACC~lPu~AruC[E TfaS1rnruG •••••••• II •• I II •• " • II ...... 3 -67 

3-1 

,\ 
;. 
I 



> , 

"" . 
" , " ,"" ~ ~ .~ 

Thi~ "ectlan prpsents the SRL's r~commended software devel­

opmnnt guidelines. E~ch major subsection presents the soft­

ware d~v~lopment guidelines that are of primary importance 

to the basic development te~ml for a particular softwa~e 
') 

devp.lopment life cycle ph:lse.·' Each major sub~ection 

bf'qins with two summari(>~. The fir~t sumrr.::Irizes the actions 

anrl tr~nsactionA of h~sic development team members, i.e., 

their m.:l:ior activitiel:l, the enci products they produce, and 

the methodologi~s and tools they use for the life cycle's 

primary development ,1ctivity. The second summarizes special 

actions and transactions of the development team managers, 

i.e., their special activities and the measures they use 

durinq the life cycle phase. ~he activities in the manage­
m~nt summ1ry arp listed in blocks. The first block of ac­

tivities ~rp those th~t are specific to the phase and are 

also of inter(>st to higher level managers. Subsequent 

blocks list those activities that ar~ frequently assumed to 
be qninq (In or have occlirred. 

J\lthOllqh the oppro.:'lch is describt~d in terms,of calendar 

phases, it applies to specific development activities when­

ever they occur. For i'nt~nce, th~ mpthodologieR and tools 
recl1mm('nt~Ni for lH~t" dllrinq the dt~tailed d~~ign phasl~ apply 

to detailtJd desiqn .1l~tivititJs when ~11l'Y (,rtJ perftH-med during 

suh~eqlJt~nt lift) cyel(' ph,l~l'S. Thin overl.lp of activitieA is 

discusned in 5~ction 2 (Aoe especially Figure 2-1 on 
p.lllt' 2-.1). 

IThe b.1Sic devf~lopmt~nt tt'am consir-tr; of th(~ customt'r inter­
fJce, whn mnn i torn rc!O'oll rCt'S anti prt)':Jrt~ns: tile projt.'l-:t m,ln­
,'Hlnr, \"ho Rorv(>:~ .u; tl'chnic.l1 c()n:~\llt,'nt .lnd m.ln,'ltlt)~; prl);t"ct 
rl'SOllrCt'!~: tlH~ prt);t'et It".ldt'r, \"ho prl)\'i(1t':~ technic.l1 di­
rt~ctinn .,nti d,ly-to-d.1Y !~lIpt'rvinion: .1n.1 till' dt'v('ll)~k'rn, \, ... ho 
do tht' !:i'chnie.ll WlHk. ~~,'t' 'r.,blt' C-B on P"qt'!'; c-16 and C-17 
l)f J\ppt'ndix C .'lnti 'ralll," 1-1 .1nll Fiqurt' l-~ (If 1\t'f'~rt'Ol"':I' 1. 

., 
~'I'IH' m.lint.'n.1nCt' .1ncl op,'r.,t.ion ph.l:~" i!~ nnt ,lddres:::t'd in 

t hi n d()(~\lml'n t • 

iliOn 



", ....... , 

\ ~ '; . )~ /.. 

I 
,I 

OE\UtLOPMENV ACTiONS ArJD TRANSACTIOf'JS 

ACTI\'lnr.:n SOft\:-"~Kl Dovn!Q,~ment r'fen Pro~21:rmi 
funct!ollcl R01ulron-,(mtn Amp!lf!orl 
PQrl'i)rmo"co ncQ!llmms'lto Anolvz:cd 
Opl'.f:=ltioncl Roqulrom~ntD DotormlillDd 
EJ1tom",,1 IntcriccOll Idmtlflad 
Ropol1 tlnd DIl:p!::y n~utmmQnts Deformlnod 
TBD ~oqulremcnm Idootlilt?d 
Svetcm Sl:o Ecdmcted 
nsueoblo So('Cw~rQ Identmod 
Ccm~u~r Roe~urce1ll O.,ten.tlned 
fkn:h:vcro SD~m:t:3d 
nl!2~ulrem~nb AncSywl:ll Gummcl'\' R~port ~Clcrod 
mm Held 

E:rJD PRODUCTS U.ofn"Jl!f'O Oovel0;3m2nt l!tlnn 
r.oqulromentJ Analyclo Summ::ry Report 

METHODOLOGIES ProEe::t Notebcoet 
OQ'W Collactlon 
Ub:nrfoillJ 
Unit Dovclopmont Feldo", 
Raqull'0mcnttl Qucctfon lind Chcngs Rceordll 
Otructumd An~i~lo (CampIon D!'!to Proc~~lng' 

TOOLS Configuration Ant'llyel9 fool (CATI 



r\~ArtiAGr:M~r:;ii ACffOmt; ,,'\rJD TL1AmSACT20mS 
-

AC"Q'IVITIES f}C,ftWlJfO I:killdoi/rn::nt Pi.cn r.ovi~wc:2 
f:ichcdul3 and Ct:lfill;t~ Cl!::nnc:! 
Ret;~ll'om(mt!:) Ar.~lyr.!i?J 5Q.!ril:'l103Y Re~nrt Revlowed 
PrClUm!n:ry Dcn~l'i "Q"rentlltJon F-1n:mfld 

Toem TraIned 
Stend.arda ond ~':'rooet!Ul'eo Entorccd 
P';CO~t! f.1onUilrod 
VE~ltmtv Promtl1!~rl 
Svotcm Ubo E:ct!rr.o~f:£l 
Ra:curce\J lind C01'lt !':lrt!motcm 
Teem &ntorcctfon CO!lrdln"ted 

MI::ASUmm TBD Rc::ulromont'3 
fkqulrcmcntn Ot!a!:'~iona end An~woTlll 
Rt:quiromcnto Che1l2~6 
Sult!f;,etlvo £:\'oh,o«om, 



I 
I, 

'. " " 
, f· ,,,,"' \ ", ,v' ... 1.<'" ~~ ;.., 

Requirements Analysis 

The recommended software development guidelines for the re­
quirements analysis phase are described in detail below. 

3.1.1 MAJOR ACTIVITIES 

Requirements analysis begins when the requirements defini­
tion team completes the functional specifications and re­
quirements document. This document presents the functional 
requirements of the system, including system input and out­
put, algorithms, and timing and accuracy requirements. The 

development team analyzes the contents of this document for 
completeness, consistency, clarity, and feasibility, and 
then translates the r~quirem~nts.into a form suitable for 
beginning the design. During the requirements analysis 
phase, the team 

9108 

e Amplifies and clarifies the functional requirements 
and the algorithms specified to satisfy those re­
quirements 

Analyzes the algorithms, mathematical formulations, 
error and stability requirements, and timing and 
accu~acy requirements for completeness and feasi­
bility 

o Determines operational requirements (scenarios) 

o Ensures that all requirements from the mission 
needs statement, the mission problem statement, and 
the end users have been addressed 

o Identifiei all ~xt~rnal'interfaces (both input and 
output) 

o Determines report and display specifications 

o Identifies requirements that are missing or yet to 
be determined (collectively known as TED require­
ments) 

o Identifies any existing software that can be used 

3-5 



! 

" , ,~ . , 

Requi rements Analys iO,'::'-'7 '. .' " 

o Determines computer resource requirements and 
availabili ty 

o Participat~s in the hardwnre selection process 

o Communicates findings to the requirements defini­
tion team 

e Prepares a summary report as the basis for begin­
ning preliminary design 

Participates in the system requirements review (SRR) 

During the requirements analysis phase, the development team 
works closely with the requirements definition team, who 

must answer their questions about the requirements and re­
spond to their requests for requirements changes. Generally, 

the two teams hold requirements review meetings where they 
clarify requirements, discuss problems, and identify items 

needing action. The development team provides the require­
ments definition team with the results of their analysis for 
incorporation into the final version of the functional spec-
ifications and requirements document. 

This phase culminates in a final r~quirements review meeting 
of the requirements definition team and the ~evelopment team 

and their managers. Maintenance and operation personnel and 
their managers may also be present. The purpose of this 

meeting is to ensure the correctness and completeness of the 
reqlJirements from the viewpoints of all those concerned and 

to identify and assess the impact of any remaining TBD re­

quirements. Comments and criticisms resulting from this 

meeting are given to the requirements definition team so 
that those issues will be addressed in the final version of 

the functional specifications and requirements document. 

When the final versio~ of the functional specifications and 

requirements document hns been completed, an SRR is held to 
evnluate the completeness of the requirements. The SRR is 

3-6 

9108 

" 



I 

, " 

Requirements Analysis 

, attended by the requirements definition te~m and its man­
'agers, the develop~ent team and its managers, and others 

involved with the system. See Section A.l of AppendiK A for 
details about the SRR. 

Another import~nt function of the tQquircmcnts analysis 
phase is to produce an initial e~timate of the system's si:e 
and of the schedule and staffing reqllircd for development. 
This topic is addressed more fully in Section 3.1.6, 

page 3-13, under "Rey Management Activities." 

3.1.2 END PRODUCTS 

The reqllirem(~nts an.11ysis' summary report is the primary 

product. This report slImmari:es the results of requirements 
analysis and establishes a basis for heginninq preliminary 
desiqn. See Section B.3 of Appendix B for inform~tion on 

the form.:lt .1nd contents of the requ i remc-nts .:Hhl lysis summary 

report. 

3. 1 • 3 ~mTnnnOLOG I ES 

'l'he t'l~commendt~d methodo log i(~s .1rc 

e Project notehook 

c Data collection 

o 1;'()rm.ll rt~('lH',iinq mt~l~h.lni~11l\n !",)t' rt~q\l irt'I1ll'llt:, qlll~~'­

t i('IUi and ch.ln<Jt~~' 

'l'lh':'t~ mt'thodnloqil?!.' arc" dit3Cllt1:H'd in tilt' (,,11l,\winq ~311l':'I'('­

t i ,"'II) n. 

TIl\.' pr,'\it~ct: Ih)tt~lH1l'~; i~; l'st.lbli~;h0,i .\nll In.lil\t-.lilll'd hy tht~ 

dt'\','h'pll1t'l\t :n.'I).lqL'r~; b) pr"vidt~ t't,.ldily .\Cl~t~~'sit'lt' :Hlt1IlII.\ry 

J-7 



I, -,,' 

informati~n on th~ key "l~pects .lnd pha'se~3 l)f tht~ pr('1ject. 

The notpbook is part of the project's file9. The informa­

tion I~ept in the project notehl"lok is current; Le., it is 

updated weekly, biweekly, or m0nthly depending on the type 

of information. Sep Section B.2 of Appendix B for inform3-

tion on the format ~nd contents of the project notebook. 

3.1.3.2 O~t~ Cnll~~tion 

To understand the development pro~ens and to monitor the 

proqresn of a project, software enl)ineerinq d~ta must be 

cllllt~l~tl'!d throughout the development life cycle. 'rhe SEL 

l"ecl1mmends that mana9l"l"S make soft\Mft'! enginl'!erin9 data col­

lection a natural bYPL"oduct ..,f their man.,gil'h.1 technhlues. 

This topic is treated in more detail in the S..,ftware 

M"\I,.,qt~r's H,'n,ib~ (HeferencL~ 2). 

3.1.3.3 Librari~ns 

At GSfC, the lihrari~nn are a separate gr0up.of personnel 

wh.., are responsihle for certain cleric~l'''nd ddta entry 

functil,ns. The rt~latll1l'lship bt~twet~n thl~. lihr.,ri;;ns .:md tht~ 

deve10pment tpdm is described in Section 1.4 of Reference 1. 

Ollrinq a pr~)jl~ct., tht'! libr.Hi.lll!" tlt-lint.lln tht' pr('iect library 

(or project n..,teho..,k), which is d repository of all project . 
lnflHnHlti,"In. Tht:'y .llso maint.lin ,'1nlint' prl.'jL'l~t libr.uic:3, 

t'lltt~r l.'l'lil', .,nd l'pt~r.'tl~ v.lri,Hls Sl.)ftw.He to('l~ in SUPPl.'l"t l,f 

proj~ct ~ctlviti~~. 

In it, t ht'Y i nl-'ludt' :1l1l~h 

itl'm!~ .'If, th~ (lIllcti,'n,ll spt'cific.1tlons "nd rt''lllirt'lIlt'ntr: dl'l.~­

utllt'nt (dr.\ft ,'Ihi fitMl '\'en~i,"lS .15 ,'lV.,ii.ll'it", '111l\~~ti~)n5 (Hl 

l't'q\l i rt'llh'tlts .llld I't~:~p('1'nt':; tl' qllt'f;t i"Il:', rt'qllt't,t:; fl.'t' l'l'­

quirl'l1l1'llt:: l.'h.\Il,lt':' ."hi rl'l;pl'"l'l':; t.l' rt''1\\l'l.tf" .llld tIll> t'l'-

In 'It'lll'r.ll, t Ill' ~'r,'it\l~t 

libl'.HY l.'t'nt.lill~ .lny \Hittt'n m.ltt'ri.'\l Pt"',llh't'd by tIlt' dl~\'l~l­

"l'tnt'nt tt'.llll f"t' t'ht' \,\It'P"l'\' "I' rt'l'l't',iin., ,h','i:~i,'n:, "t' 

J-H 



, ' 

Requirements Analysis 

communicating information. Necessary managcment informa­
tion, such as schedules ~~d staffing plans, are also in­

cluded. Management information produced during the 
requirements analysis phase is discussed in Section 3.1.6, 

pag,e 3 -13. 

Librarian functions during this phase are generally limited 

to the operation of software tools, which are discussed in 
Section 3.1.4, page 3-10. 

3.1.3.4 Unit Development Folders 

The project library is organized according to functional 

units so that all information,pertaining to one topic can be 
found in one location in a unit l devclopment folder. 
During the requirements analysis phase, the most logical 

organization of the materials collected from the development 
team is into the general categories (units) of the system's 
functional requirements (for example, input, output, and 
algorithms). For the project library to be useful through­
out the development life cycle, it must be established at 

, . 
the beginning of the requirements analysis phase; it must 
contain all material pertinent to the project; and it must 
be logically organized. A descrip~ion of unit development 

folders is contained in Reference 3, for example. 

3.1.3.5 Formal Recording Mechanisms 

As a part of configuration management procedures, tile de­
velopment team uses formal recording mechanisms to commu­

nicaterequirements questions and requirements changes. One 

LA unit is defined by the development manager for con­
venience; e.g., units may be schedules, system size 
estimates, resource estimates, external interfaces, sub­
system details, development plans, implementation plans, 
user's guide, and system description. 

3-9 

9108 



'j.', " 'r', 

i ',< \. 

Requirements Analysis 

mechanism i~ the requirements question form. The development 
, team uses this form to question the requirements definition 
team about the requirements. Responses to requirements 
questions must be in written form. The requirements defini­
tion team managers use the form to assign personnel and due 
dates for their team's response to the developers. The 
forms are also used to track TBD requirements. 

Another procedure is used for requirements modifications.' A 
request for a requirements modification is made using a re­
quirements change request form (or engineering change request 
(ECR», on which the requested change and its justification 
are described. Requested changes to the requirements must 
be approved by the manager of the requirements definition 
team and the Configuration Control Board (CCB). After ap­
proving a change, the manager adds it to the functional 
specifications and requirements document. 

3.1.3.6 Structured Analysis 

No particular methodology is recommended for requirements 
analysis. However, structured analysis is useful for sys­
tems or subsystems with large quan~ities of input or output 
data or complex data processing requirements. Structured 
analysis is described in Reference 4, for example. 

3.1. 4 TOOLS 

An online configuration management tool is recommended for 
use in configuration management throughout the project. 
During the requirements analysis phase, managers can use 
such a tool to track requirements questions, TBO require-

ments, and requests for requirements changes. 
Configuration Analysis Tool (CAT) program was 
the SEL for use in flight dynamics projects. 
umented in Reference 5. 

3-10 

9108 

The online 
developed for 
CAT is doc-



I 

! 

... ," 

Requirements Analysis 

The SEt recoG~izes the need for an automated requirements 
1 - " 

languaqe, but has ·beeri unable to identify one that is 
adequate and cost effective for the fliqht dynamics environ­
ment. 

3.1.5 MEASURES 

Thp. following subsections describe various measures and 

. evaluation criteria for ~anagers to use to assess the re­
sults of the requirements analysis phase and to determine 

whether enough progress has been made to begin d~sign. 

3.1.5.1 Objective Measures 

Manaqers can monitor the progress of requirements analysis 
by examining the number of requirements questions, responses 
to questions, and requirements changes. Several signals 

should alert the manager to problems. For e~ample, a grow­
ing qap between the number of qupstions submitted and the 

number of responses received or a large number of require­
m~nt~ changes due to errors may indicate problems with the 

clarity, correctness, or completen~ss of the requirements as 
, 

presented in the functional specifications and requirements 

document. Managers can use data from similar past projects 
to asse~s the meaning of the relative sizes of these numbers. 

The number of TBD requirements is the most important measure 
to be examined during this phase, since unresolved TBD re­

quirements can necessitate severe design changes later in 
the project. The TBD requirements must be categorized ac­

corninQ to their severity. TAD requirements concerning ex­
ternal interfaces arc the most critical, especially if they 

involve system input. Internal algorithms are generally not 

lExamples of requirements lanouaqes include Problem 
Statement LnnQuaqe/Problem Statempnt Analvzer (PSL/P~A) 
(~eference ~) -an~ Multi-Level Exorension besign Langu~ge -
Requirement~ Level (MEDL-R) (Reference 7). 

3-11 



\ 

.- , ~ ~ , .~ . "',' ': ... ' , 

; ... I'",~.,~ -); •• 

Requirements Analy6iG 
,~t t I:,'.' .'" _, . 

as severe, unless they concern data processing requirements. 
Output requirements are, in general, not as severe unless 

they concern data being transmitted to other systems. 

A TOO requirement is considered severe if it could affect 

the functional design of one or more subsystems or of the 
high-lpvel data structures needed to support the data proc­

es~inQ alqorithms. Preliminary desiqn should not proceed 
until all se~ere TOO requirements have been resolved. A TBD 
requirement is considered nominal if it affects a portion of 

a subsvstem involving more than one module. Preliminary 
des ion can proceed unless large numbers of TOO requirements 
exist in one functional area (for example, more th~n 5). 

~ ",,/ 

Uo\o/ever, these TBO requ i rements must be resolved du ring 
preliminary design. 1\n incidental 'roD requirement is one 

that affects only the internals of one module. Incidental 
TRO requirem~nts must be resolved by the end of detailed 
desi-)n. 

For e~ch TOO requirement, managers must estimate the effect 

on system size, required effort, cost, and schedule. Often 
the information necessary to resolve a TBD requirement is 

not available until later, and deiign must hegin to meet 
fixed deadlines. These estimates will hel~ predict the 
uncertainty in the development schedule due to unresolved 
THO rt~qllirt~ments. 

~.l.5.~ Evaluation Criteri~ 

To determin~ whether or not th~ development team is ready to 
proceed with preliminary dpsign, managers mu~t consider the 

followinq Qu~stion~: 

(II 11.1\'1) .,11 'I'm) requirl'1l1('nts b(>t>n idt"ntified ~lnd tilf'ir 
i mp.l c t .1 S ~~I~ S ~~t~lr; 

3-l~ 



", 

" ' '\ ' 1,(. ~ :. I. " + 

Require~ents Analysis 

o Are all necessary algorithms identified? Are the 
identified algorithms 'complete and correct? Are 

they optimal? Are error and stability limits 
, defined? 

o Are the environmental constraints (for example, 
timing, memory, and accuracy) clear? 

o Are the requirements feasible, given the environ­
mental constraints? Are sufficient computer 

resources available? 

Are the requirements traceable? Does the func­
tional specifications and requirements document 

provide a basis for defining acceptance tests? 

3.1.6 KEY MANAGEMENT ACTIVITIES 

Planning is the manager's primary activity during the re-
: quirements analysis phase. During this phase, the develop­

ment team. managers produce the software development plan. 
Toward the end of the pha5e, the transition to the prelim­

inary desfgn phase must be planned. These planning activ­
ities are in addition to other activities such as monitoring 

progress, ensuring cooperation among all groups involved, 
and reviewing the results of requirements analysis. These 

key activities are discussed in further detail in the fol­
lowing subsections. 

3.1.6.1 Software Development plan 

The software development plan contains specific information 
about the technical and management approaches of the current 

project throughout its life cycle. The development team 
managers prepare this document during the requirements'anal­

ysis phase. Because of the primary importance of this plan, 
it is described in great detail in the Software Manaqer's 
Handbook (Reference 2). 

3-13 



, :,' I 

," " 

Requirements Analysis 

.. , 
"'.,.-" 

, ,'" 

The SEL often uses the flight dynamics software development 

prdjects as experiments in software engineering research. 
Thus, frequently, a specific software engineering approach 
is applied to a project to evaluate its effectiveness. 
Therefore, data collection procedures and details concerning 

the application of the specified approach must be estab­
lished at the beginning of the project life cycle. 

3.1.6.2 R~source ond Cost Estimates 

At the beginning of this, phase, the managers must estimate 

the amount of code to be developed and the effort required 
to develop it. Sufficient information is not usually avail­

able to use a sophisticated resource estimation model, but a 
rough model can be applied. Historical knowledge of similar 

systems can be used to estimate the size of the ~ystem, and 
historical productivity figures can be used to estimate the 

amount of effort required. From these estimates, the amount 
of time and ~ffort necessary for each life cycle phase is 

allocated, and the first cost figures a~d' schedules are 
produced. 

3.1.6.3 phase Transition Plans 

Toward the end of the requirements analysis phase, managers 

must plan an orderly transition to the preliminary design 
p~ase. They must convey to the development team members the 

parts of the software development plan that apply to pre­
liminary design (for example, design standards and con­

figuration management procedures) and instruct them in the 
specific software engineering approach to use during design. 

They must ensure that the development team is trained in 
design technologies at the beginning of the preliminary 

design phase. 

3-14 

9108 



I. 

; -
1 
) , 

j 
L 

~ • '. • : ,I \ : 

Requiremen~~ Analysis 

3.1.6.4 Other Manaqement Functions 

During the requirements analysi.1 phasE:!, the managers must· 
also 

Monitor adherence to planned schedules and re~ource 
expenditures. 

o Ensure adherence to data collection, quality ao- , 

surance, and confiyuration management procedures. 

Revi€w the results of the requirements analysis 

process. 

o Ensure cooperation among the variou3 groups in­

volved (that is, development team, requirements 

definition team, user organization, and libr~rians). 

Schedule and participate ill the requirements anal­

ysis review and ensure that all percinent groups 
participate. 

Ensure that all facets of the proJect are com­

pletely visible (that is, know exactly where the 

project is and where jt is going at all times). 

Project visibility is critically important. Man­

agers must know at all times the exact status of 

all task activities and the detailed plans for de­
velopment completion. This is necessary so that 

problems can be dealt with when they occu~ rather 
than later in the process, when their impact is 
likely to be greater. 

o Participate in the eRR. 

The Software Manager's Handbook (Reference 2) p~esents 

further infnrmation about the manager's activities through­

out the development life cycle. 

3-15 

n, ('\,'1 



~ . 
. , 

", 

ACTIVITIES 

ErtlD PRODUCTS 

MrITHODOLOGIES 

TOOLS 

: ~. ' .;, ". i ,'. 

Sv~m P:'lrtitk::-:sd 
Proc~"i~t! O~ti~"1J Cenned 
AltllmotiYO Ocni:!n~ [!z;:eminotl 
EY.tel'lk",llrit~rin~c:l Ccfin~d 
Sub~:stems P~rtSt!~n(.'t! 

Sub~yotom Inte:1sco2 OoOnoo 
Error ~roe~lr.G end RGcovcry OefiClo:d 
TOD noquiremel'l:t.l fi~ol\1od 
RClU1~b20 So'fu'\1f!1'O Id:)rttlfi~d 

Prc!lmin~l"\f OOC!~R r.c~rt F'ropared 
PDR He!d 

Preliminary Ocr.ig<"l R~p:)rt 
!3of1waro Dovelopment PI!'!" Updato 

Projoct I"..lotoboo;, 
D::f.1l Co!:octlon 
Ubraricna 
Unit Dsve!opmont Foldcr3 
nGquirom;)n~ Quootion "nd Chanco Rccord!S 
Design f-crmnlizm5 
D"~lgn Doois:on and Chanco Records 
Confir.ul'tltlon Mor:Clgament 
Ooalgn Wcl:,tluouJhs 
ItcrotivQ Enh:mcomont 
Informa~ion Hiding 
Data Ab!ltraction 
PDL 

POL ProccBsor 
Soureo Codo Ubrary M:maj]llmant SY5tom 
CAT 
Rosourec Estimation 

I'RECEDI:--:C PAGg BLANK NOT FILMED 

3-17 

91 01).(51 1-tl3 



.-:".'~ .; ...... ' ~1 '\ >-~l,;- ~~ ... -,..,)::', 
,'t _ .:~",' ...... /), \ I 'r" .~ ~-'1 ''OJ':' '"~,I 

'r,", 

MAfJAGE:pm:ruT ACT~Or.j~ AruO ll~AmSACT!OrJG 

-
ACTiVCl"!E!3 TOD ~equk-:m~nt.l Ofl)Clvcd 

neq:l:lmmnn"!': Ch!::ng~e nUVICV400 em! Acz~~"lJ 
Oecl~n R~yl~WC'.d Md Wal~ed ThrouOh 
Ootml:ed D~~t'I Trltne!t!o:l P'anncd 

Trn:m Trdnoo 
Stend::nfD en:! Proec:d~rm:l Enforced 
~v~ r.lJ.nnlterad 
Vf~I~~:ltv Prcmotl'd 
SrctOOl rum !!sth'l1:lred 
nOMt=II"Ce13 cr.-d Co~ E~t!mllltod 
Teem Int'.mlct{r:n Cccrd!:uleod 

f,,'UEASURES TOO n~u!l"Cm(tnt:l 
R~t!lremirnttl ClmnOO!5' 
r:~ulrcmeC'lte Quotlticne .md Anm."X::", 
Declon ChcnCM 
rnterlm:09 
lJo:Ilbt'l Comp~otlQn Chec!dlet 
Su:J~:ct;vCl Eveluatlona 

01co.11i1l-4l 

J-lS 



',' . 

~.""'." ~,~", " •• ""' .... ,,,,._~,. "'''\''' .......... .,..~ •• , .......... ',. .. 'T~ ....... '.~~A_~.,. ........ '~~~"'_ ... ~ 

'l'lh' l'1'l'"mllh'I,,\C·d :t~'(b ..... 'l't' "(~\'tlt"I'"It'l\l 'lItid('llllt':' f,'1' tlh.' l't~­

, .\1I11in.1I'Y dl':O\'1n l'h.'ii~~ ,Hi, dc'n~'r it",,, in dl,t.'\ \ b('i.'\". 

J • ~ • I 

l'l'l'llmill.HY d"~li'ln l'I·',lin:' "t t'lw (·nd \11 till' l't'qll\l'l'l\wntn 

,,,,.11,,::\:\ ph.I:w. i\l Utin l"'inl, tlw d~\'l'h'l'lIIl"nl. t.('''\l1\ 1\.1:. 

\',\I\I},ll't"d thl' l(.·qllirc~m(·"t:l ::UIlII\\.1I'Y l"l'~'lt: the' 1'('qllirt'llIt'llt:1 

dc" \lut i"Il h'.1\11 h.I:' \I\\·"I1"'I.,t,'d th,' rl'nllll:: "I' t hl' 1"''luil'l'-

\nl .. , th,' l.uI\\·th'Il.1\ tIP"l~\li\~.1t:\\'I\:' ,1lhl I'l'quir,·I\It'lll:' d,' .. ~­

UIlIe'IlI; .11\ !;I~H h.I:' bl'I'1l Iw\,l: ."hi tht' dl'\'l'\"'I'II\('nl \II~",.1'.1"I':l 

h.,\'(· dC'(c'\,I\\\n"d th.1l t.hl· tC'.11l1 Ulhh'I'::t.1Ihin lilt' r"quill'I\It'l\t:: 

, .. ,'I I 1'lh'U'lh t" bl"lin d":.\",,. 

I'urll'" }'l'e'limll\;\lY d"::i'ln, thc' dC'\'I'I"l'I\\I'nt tc· .. IIlI ,ic>liIH'H tilt' 

: ... ,rt\,·."\lC' :.,,::l,·11\ .'''·hll'~,·l\lr,' b.,:lc·d "Il the' Ic'quill'n\l'nt:; 'li\'c'n 

,n t IIc' t 1\I,,·t ,,'n.11 :'l'c'" it i,';1 t 11.,,,:1 .11"t l'1'qu I I l'IIIt'nt:: ,h"'ul\\t,,,t" 

;,nd ;Iml'lllll'd '\UI\I"1 tlh' 1<'qull'c'IIIt'lll:: ;'I\.llY:ll:: l'h.,::c'. !'1"'­

,·\lI .. ·.lll", thc' tC'.,m 

• 
o ::lllh·tul.tll" .1lhi rUlh·ti,'n.llly 1'.1Itlt\,'1'" tllc' :'y:;t.l'lll 

lilt" m.11"1 ::1I1,:;,,:;tc'IIl:~ 

I'I'tc'IIII\IIc':; "l'c'I:,l I ,'n.,I :"·c'Il.' I' I,':: 1,'1 Ill.' 1,'1 l'I""'I':;:~­

\1\'1 "l't\l.'I\:: \th.,t i:., "l'c'I;,tin'l 1'1,'''','.11111'::1 

• 1'1'1\1\1':1.1\\ c'xtc'ln.,1 \nt,'II .. ,,',·:: t" tllc' :~y::t"III--th.\t 

I::, ""'lIIi'lc'tc'ly :'1'C"'ltlc':~ .\11 :.y:~tc'lI\ 11\1'llt .11\.1 "lIt­

I'll t, \ 1\, 'I \1.1 I n.l 

1'.1 (., ::c't \.\y,'"t:; \ I C',' .. 'I ,I ,','n( c'l\( .Ithl (I Ic' 

::t I Ih·t III I'l 

: - I 'l 



--~-~-'--"--'" - .... ~.-,-'-

Preliminary Design 

o Defines all interfbces between subaystems--that is, 
completely specifies all input and output for each 
subsystem, including 

Data ~et layouts (record content and file 
structure) 

Data transferred in memory 

User input 

Screen, printer, and plotter output 

e Refines the subsystem design to two level~ below 

the subsystem drivers, including preparation of 
functional baseline diagrams (treecharts) through 

two levels below sUbsystem drivers and module 

prologs and Process Design Language (POL) through 

one level below subsystem drivers (see Figure 2-2 

on page 2-6) 

Determines error processing and iecovery strategy, 
especially with respect to handling system input/ 
output errors 

Resolves as many remaining ~UD requirements as pos­

sible; assesses the impact of those not resolved 

c Examines all requirements to ensure that they are 

met by the functional capabilities of the subsys­
tems defined in the preliminary design 

Identifies all existing software to be used in the 
system 

Prepares preliminary design documentation as a 

basis for the preliminary design review (PDR) 

Participates in the PDR and then incorporat~s 
changes recommended at the PDR into the preliminary 
deai<)11 

3-20 



I 
.J 

I' ." _., ,., ~.;" ~,) '. ,.1----,-, ,~~.,,<. ~.'''''''_'-''"~-~:r'''''·'''''''''',:vI'''''-~'>!''~''''~''l~_''~'··'·''~C''''~('''''''''~-~ ........ ~,_":' 
.. . , ," ' ~, .. ,~~"'~" .. ' ~.<"""" •• 

, •• / j~ '~' .' 

-'" '," 

" Preliminary Design 

The preliminary design phase culminates in the PDR, attended 

by the development 'team and its managers, the requirements 
definition team and its managers, and others involved with 

the system. At the PDR, the development team presents t~e 
functional design of the system and the rationale ,for choos­
ing that design over alternatives. The presentation is 
based on the preliminary design documentation and may re­
quire a series of meetings if the system is large. See Sec­
tion A.2 of Appendix A for details about the PDR. 

For the PDR presentation, the participants evaluate the 

functional design of the system for completeness and cor­
rectness and give comments and criticisms to the development 
team during and immediately after the presentation. The 
preliminary design is complete when the development team has 
adjusted the preliminary design documentation to respond to 
comments and criticism expressed at the PDR. 

3.2.2 END PRODUCTS 

The preliminary design report is the primary product. It 
presents the functional design of the system and forms th~ 

basis for the detailed design document produced during the 

next life cycle phase. See Section B.4 of Appendix B for 
the format and contents of the preliminary design report. 

3.2.3 METHODOLOGIES 

The SEL recommends the following methodologies for use 
during the preliminary design phase: 

C Project notebook 
c Data collection 

o Librarians 
~ Unit development folders 

o Formal recording of design decisions and changes 
o Configuration management procedures 
o Design walkthroughs 

3-21 

9108 



',,, 
":', I 

Preliminary Design 

o Iterative refinement 

o Information hiding and data abstraction 

o POI. 

Data collection and maintenance of the project notebook must 

continue throughout the development life cycle. The remain­
ing methodologies for the preliminary design phase are elab­
orated in the following subsections. 

3.2.3.1 Librarians and Unit Development Folders 

The librarians continue to maintain the project library. 
They add to the library such items as design decision notes, 
design change forms,- and -alL preliminary design documenta­
tion, as well as pertinent management materials. (The man­

agement information produced during the preliminary design 

phase is discussed in Section 3.2.6, page 3-28). Since re­
quirements analysis continues throughout the development 
life cycle, the ~evelopment_team may produce more require­
ments questions and requests for requirements changes during 

this phase. The librarians also add these inquiries and 
their responses to the project library. 

During this phase, the development team managers organize 
the project library materials in the unit development 

folders by major subsystems and by functional areas within 
each subsystem. This organization corresponds to the first 

level below the subsystem drivers on the functional baseline 
diagrams (see Figure 2-2 on page 2-6). 

. 1 
The librarians enter module prologs and POL as well as 
o~erate CAT, which is discussed in Section 3.2.4, page 3-25. 

lModule comments describing the module's purpose, opera­
tion, calling ~equence arguments, external references, etc. 

3-22 

Q1fHl 



• ~' ~~.,;~--, j I ~ "~ I t1,~ 

I' j, ~p ~. "', I 

3.2.3.2 Formal Recording Mech~nis~s and Confiquration Man­
a\j~ment Procedures> 

As part of thl~ configuration management ot' the project, the 

developers use formal recording mechanisms to document 

design decisions and changes. When a design decision is 

made, it is recorded as a design decision note. Uecause 

theGe notes documl!'nt the dl!'sign process- -p.Hticul..u ly the 

evaluation and selection of alternatives--they are a valu­

able reference for the developers throu\jhout the sottware 

life cycle. 

Once desi';Jn dec isions have been f in~lli zed by the deve lopment 

team mana';Jers, design change forms are used to record 

further changes. The use of formal design change procedures 

enables the team managers to control desl.Jn chanljes and to 

ensure that all team members are kept informed of the cur­

rent state of the design. 

The use of form~l recording mechanisms for particular life 

cycle activities must continue throuljhout the life cycle 

whenever those activities occur. FOl" inst.1nce, requirements 

questions forms and requirements change request forms con­

tinue to be used after the r~\"luir,~ments al1.11ysis phase for 

rl!'quests for clarHication or changes to the requirements. 

1'he procedures for conf hJura t ion m.lnageml!'nt must be st r ictl~' 

adherl!'d to thl"Oughou t the development l!fe cycle. 'rhese 

procedures spl!'cify thl!' forms t~) be used for recorliinq v.lri­

ous inqlliries, d~cish)ns, and r~quests for ch.lnqt!s .Hid 

.lddress the processing of such torms (for l!'xalllplc, rl!'spoll~,i­

bilitr tor response, authority tOL' ~'lPPL"ov.1l, .H\d distribu­

tion). Strict procl!'dllren are especi.111y impI..H"t.lIlt in the 

ar<.'a of chan\lt~ control. 

COllfi'Jlll".'ltion m~ln.\lJt..'ment pruccduL"c:1 .llsu speciey thl' cOlltr01 

ot on1inl!' prl1ject libl",Hies. 'rill!' proceduL'e~ mlh.;t t'pc':i.ly 

the pl..)int .1t \.hich mlhillte~; ~ll"l~ moved truTn tl\l~ indlvidu.ll 



Preliminary Design 

. , 
'I, ' 

, , _ ~_,_ ...... ~ ... ,,,.""., ..... ---. ....... _~ .. "l ''''~-,~ , 
.oJ ••• ,,~ "V"" .. , ..... ,.!.'~,.r .......... __ ' .. ~ .. "" .... ,~ ..... ," ,,<., ... 

developer's jurisdiction and placed in the project libraries. 
At that time, the modules ~re placed under configuration 

control. Any changes arc performed by a specially desig­

nated person or group of people (usually the librarians) and 

must be recorded formally by means of a change report form. 

These procedures for the control of online libraries apply 

to the preliminary design phase only if a decision is made 
to place module prologs and PDL under configuration manage­
ment. 

3.2.3.3 Design Walkthroughs 

Design walkthroughs are held throughout the preliminary 

design phase by development team personnel and their man­
agers to review design elements and to identify problem 

areas and 'f13D re~uirements. This peer revie\ ... is an impor­

tant quality assurance procedure. After design walk­

throughs, managers assign personnel t·o resolve problems and 

schedule their response as part of configuration manage­

ment. The development team leader records any decisions 

made at a design \ ... alkthrou". in (lesign decision notes. 

besign walkthroughs are also used to identify the point at 

which dezign clements are placed under configuration control 

by the development tCdm manager. A design element is usu­

ally put under configuration control when it has been incor­

porated in the preliminary design documentation or presented 

in a desi';Jn walkthrough or at the POR, depending on the sta­

tu~ of the design. After that, changes to the design must 

be m~~e a~cording to the change control procedures and must 

be recorded by means of design change forms. A description 

of design walkthroughs is contained in Reference a, for ex­
.ll1lple. 

'rite SL::L recommenlls Lterdtlve retinement (tor eX.lmple, Reter­

ence ~) as the pr im,try metlw~1 for pruducin~ the system 

3-24 



';', . 
\ ;:: -

....-___ • .., •• , ~. W •• __ ~ ....... , .. " 

.' . "" .. -::. ",',,~ 

, , ~ . ( 
,.". ) 

" ,:'j" 

Preliminary Design 

, 
'design. When ~ subst~ntial amount of existing design and/or 

code is to be reused (for example, 20 percent or more), it­

erative refinement is recommended to functionally partition 

the system into modules. This process is preferred to 

strict successive refinement (used in top-down design) when 
adapting the design to the structure of the existing design 
-and code. 

In the functional partitioning process, the SEL recommends 

the principles of information hiding (for example, Refer­

ence 10) and data abstraction (for example, Reference 11). 

An example of these techniques is the use of common inter­
face routines for performing input or output operations so 

that the format and structure of each external data set are 

known to only one routine and are transparent to the rest of 
the system. 

3.2.3.5 Process Design Languaqe (Program Design L~nguaqe) 

The SEL highly recommends the use of POL during design as a 
very beneficial and cost-effective methodology. Comparable 

to the bluepr int in hardv/are, POL communicates the concept 

of the software design in all necessary detail. It provides 

a complete, formal, algorithmic specification for a software 

component. Its use enables the designer to communicate the 

exact intent of the design and thus reduces errors due to 

misinterpretation of the design by reviewers and coders. A 

description of PDL is contained in Reference 12. 

3.2.4 TOOLS 

An online configuration management tool (for example, CAT) 
is used throughout the development life cycle. In this 
phase, it can be used to maintain detailed schedule informa­

tion at the subsystem and module levels. 

3-25 

Qlf)Q 

• .!. ' 



,. ., .,.~.~ ., \ '~""''''''' •• ' '-''''''' .'!~ ..... " ..... ~.I-~"' ... •• .. ~.~.~ ... -- ............. "~ 
"""',~ .... " "-"_-''''~ ". I" 

. , 
Preliminary Design 

One nPow tool is recommended: 
• < 

o An automated POL processor (for example, Refer-

ence 13) (if one is available). This tool enforces 
consistency of PDL usage among development team 
members and also performs syntax-checking opera­
tions. 

3.2.5 HEASURES 

The following sUbsections present various measures and eval­

uation criteria for managers to use in assessing the prelim­

inary design phase. 

3.2.5.1 Objective Measures 

During this phase, managers continue to use the same objec­

tive measures as during requirements analysis. In partic­
ular, they monitor 

o Number of requirements guestions, responses to 

questions, and requirements chanqes. The number of design 
changes must also be examined. Numerous design changes not 

attributable to requirement changes should alert the manager 

to problerr.si these changes may indicate that the development 

team does not really understand the requirements. 
I 

o Number of TBD requirements (see Section 3.1.5.1, 

page 3-11). Managers must assess how each TBD requirement 
will affect system size, required effort, cost, and sched­
ule. By the end of this phase, only incidental TBD re­
quirements can be left unresolved. 

o Number of interfaces. The number of interfaces per 

subsystem is an indication of that subsystem's complexity: 
a subsystem with a large number of interfaces relative to 

its size will require more time for implementation and 
thorough testing. Data from past projects of a similar 

nature can be used to interpret the relative sizes of these 
numbers. 

3 -26 

9108 

l .:> :~ 



- '. ~ I ' -.: 

"'f, 
'. ,:: 

~ '. " - . Preliminary Design 

To help monitor the,progress of the preliminary design, man-
agers can produce and""u'se (~, 

Q A detailed checklist of design formalisms to be 
produced. Because preliminary design documentation contains 
all design formalinms produced during preliminary design, 
all items on the checklist must be completed before the PDR. 

3.2.5.2 Evaluation Criteria 

To evaluate the correctness and completeness of the prelim­

inary desigh and determine whether the development team i~ 
ready to proceed with detailed design, managers must con­
sider the following questions: 

~ Have all requirements been mapped into functional 
capabilities of specific subsystems? 

Have alternative design approaches been examined 

and rationally discounted, and has the simplest 
design been chosen? 

Is the partition into subsystems sensible? Are 

functions and capabilities allocated logically? 
Does the design minimize the transfer of control 
information? Does the design have low coupling 
between subsystems and high cohesion within each 

subsystem? (Coupling ~nd cohesion are defined in 
Reference 14, for example.) 

Are all interface descriptions complete at both the 

system and subsystem level? 

c Are the data set layouts for all external data sets 
completely specified? 

o Are the required baseline dia~rams and module pro­

logs and PDL provided to a sufficient level of 
de tai 1? 

3-27 



, '; ~ ~ .,r' ' 

~>t ,', < ; 

r... ' :-~"",~:" 
,j "'.~ 

"'" .•• ,.~ ........... - ~ .•••.• ~,~, ... ~, '. ~;, .... ..,. ... ~ ..... ~-"""""'''''''-''''''''''~.''''''''''''' -"'~¥"., ...... , ..... "--,.... ... .,, 

Preliminary Design • ,r, \,' . ~ \ : " . 

e Is the error handling and recovery strategy 

comprehensive? ' 

o Is the estimate of resources adequate and the 

schedule reasonable? Has time been allocated for 
contingencies, trdlning,and the like? 

Has the impact of any remaining TBD requirements 
been assessed? 

'3.2.6 KEY MANAGEMENT ACTIVITIES 

During this phase, the managers' focus begins to change from 

planning to monitoring. Specifically, managers 

o Provide required training~or the development team 

o Ensure adherence to 

Design standards 

Configuration management procedures 
Reporting procedures 
Data collection procedures 
Quality'assurance procedures 

Review the design produced, participate in design 
walkthroughs, and resolve' TB~ requirements 

Monitor adherence to planned schedule and expendi-
I 

ture of (esources, and update cost and resource . 
estimates and schedules 

Ensure that all facets of the project are com­
pletely visible 

o Coordinate communication between the development 

team and the other groups with which they must ' 
interact (for example, the librarians and the re­

quirements definition team) 

Plan transition to the detailed design phase 

3-28 

I • 



, . 

, ~ . . ~ )". - " ... ,., 

Preliminary Design , 

Schedule aud parti~ipate in the PDR, and ensure 

tha tall pcrd:nent groups partic ipa te 

Further details on,the refinement of resource and cost e3ti­
mates and on phase transition planning are discusGed in the 
following subsections. 

3.2.6.1 Resource and Cost Estimates 

'During the preliminary design phaGe, managers must monitor 
the development team's adherence to cost and resource er-ti­

mates and the schedules in the software development plan 

(see Reference 2). The percentages of effort and time ac­

tually expended versus the percentages of the quantities 

planned to be expended in terms of the work accomplished are 
good measures to examine for monitoring progress. 

By the end of this phase, the managers can refine and update 

resource and cost estimates made during the requirements 

analYSis phase. System size is better known, as are re­

sources expended and progress made to'date. Enough in­

formation is usually available to Ilse a,formal resource 
, 

estimation model. It is important for the manager to use a 

model that is tuned to the specific environment and cor­
responds well with the resources expended for similar past 

projects. The Meta-Model has been develpped using SEL data 
(see Reference 15). However, managers must never completely 
rely on any formal resource estimation model. Rather, they 
must use the results of the model, together with historical 

knowledge of similar systems, to update resource and cost 

estimates. The new estimates are more accurate because they 

are based on additional inf0rmation and ~odel support. 

From these new estimates, managers prepare schedules and 

staffing plans. Schedules are refined to reflect the sub­
system divlsion established in the preliminary design. The 

managers add these new estimates and schedules to the soft­
ware development ~lan to form the basis for monitoring 



fo- --~ ...... --~ ,',' l'" • , • 

l·· ~ \,', "', 

Preliminary Deslgn 

progress during the next?life ~ycle phase. The process of 
monitoring actual progres~ versus planned progress and 
updat~ng the plan as more detailed information becomes 
available continues throughout the project life cycle. 

3.2.6.2 Phase Transition plans 

Toward the end of the preliminary design phase, managers 
must plan the transition to the detailed design phase: i.e., 
they must plan the detailed design phase so chat ma.;or sub­
systems are designed concurrently. In' addition, they must 
determine the staffing levels and assignments n~cessa:y to 
perform the deta iled design. Managers uSl:ally add personrlel 
to the development team at the beginning of detailed design. 
They must ensure that these personnel receiv~ any training 
required and that new members are informed of work azsisn­
ments, design standards, software engineering approaches, 
and quality assurance and configuration ~anagement proce­
dures. The online libraries must also be established to 
store module prologs, POL, and reused code during detailed 
design. 

3-30 



----~­
~ 

1< r ':' I ' 

ACTIVITIES Slng'e Functions Refined 
Ilm~:cllno Dle~mmu Prop.."lL"cd 
I/O Spocificd 
PDL end Pro!oco Sp!lclflcrl 
corVm:~Ord l3iOt:~Ul Specified 
Into:o:ll Intcrieca:s SI,'Joeiflod 
TBD ncqulre:n~mts rr:~olvcd 
Aeu!3~b'o Softworo Idontiii:!d 
Ootdloo Oczig:1 Document Prcpa:-ed 
rmlllcmen~on Stmtct:)Y f:lanncd 
CDR H~!d 

END PRODUCTS DO~"lilod 00::l9n D~um:J:lt 

MIITHODOLOGIES 

TOOLS 

Softl .. v::rfll Dovolopmont PrDn Updato 
ImplementatIon ?I~n 

Project rJot/Joook 
Data Collection 
Ubrnrions : 
Unit !)cvolopm~nt Foldors I 

lloquiroments Que~tJon Gnd Change Rccords 
Design Forrnalitlm::l 
Dosign OQciaion nnd ::hllnge Aocordlil 
Configuration Mn:tsg~ment 
De~i!ln \\'nlkthroushs 
Itorativo Enhancemont 
Informntion Hiding 
Data Abstraction 
POL 

POL Processor 
Sourco Coda Library Manogomont System 
CAT 
Rosourco Estimation 

3-31 

910S-(Sll-83 



___ ~---- ... "~.: .. ':i'" ___ ~ __ "~"'''4*.-=----
~"'V " ..... ' .... ~~.,~ ...... ~ ••• ....,,-. , ... -~-- ......... --- ... --, ....... -..--.,. ... , --......... ~~.""' ........ '"'.-> .. '., • ...,..... . , ., ..... ~ .... "" ~_ ..... ·~· ..... ' ........ __ A_ .............. ~ ..... ~~., ... . 

. ~ . .: '. ) .. , 

.. , " 

-
. il.1ArJAGErviEruT ACTmOmS AfJD TRAmSACTECf'JS 

ACT5VITIES ~mp'~~1Cnml:!on SUllteor Reviowed 
Imptem:lntt'.ltioCl Tr::nsition (JI~Tiiu~d 

Teo Itom: n:,J!)o!vcd 
Requirements ChanC:!3 Aovlowsd ond A!!~i!tJed 
D~:I&lC1 nov/owed and \"Jol1(od Through 

Teem TrDlned 
5mnt:crda end Procedum9 Enforc,;>d 
Pl'O{!rot:S Monlt'Omd 
Vltllbl!lty Promoted 
Sf~tem S!ro E!)tlmated 
Re~Qurcs= cnd C!lot Eztjmetod 
Tl':!lm Interaction Coordinoted 

MEASUneS TOO Ctem5 
nO!i~!C'Cmante Ch::ni'o:.l 
ncquiremonm Question:) end Anowom 
DCfilEn ChanSfl3 
Intericco3 
Daden Comp:otion Checldl:lt 
Doalgn Growth Rate 
Module Stmngth 
Module Coupling 
SubjOi:tlvo Evaluations 

91Ga-(1511.:t3 

3-3~ 



-------

-

---

.,' , C'<:" t'," I~' , 

v~'~"'> :r,'..~.! I,. , t . 

, ~ <- ',.' • ~, '/ ,> ',~I;.4. 
, ' Detailed no!;ign 

Thp recommendod softw~re dpvelopment quidelines for the de­

taill'd d('shm ph.lse .)re dt'~scribed in dL~tail bt=>low. 

3.3.1 ' MAJOR ACTIVITIES 

Oet~iled desiqn heqins aftor the POR unlpss c~mmpnts and 

criticism pxpresspd at the PDR indicate serious problems or 
lit~ficiencies with the prt.·liminary ltN';iqn. DurintJ detailed 

desiqn, the te~m rlahorates the systrm architecture defined 
by the preliminary dpsil)n to the subroutine level. 'fhe 

det~il('d desiqn process is ~n extension of the activitit='s 

beaun durinq preliminary desiqn until "code-to" specifica­

tions are complptr. Specifically, the team 

e SlIccrssivply refines t·.lch subsystem until each com­

ponent p~r(orms a sinnle function and can be codpd 

as a sinale module 

'Prl:'p.lt"PS dt.,·ta i led b.1t~e 1 i ne d i"lqr.:tmt~ (t t"t"l'clhl rts) to 

tht' slIbroll t i n(' leve 1 

o {"inishes spl'cifyinq dt~t."dlrd formats llf .:t11 system 

,lnti slIbsystt"m input ,1lhi output 

" ~,pecifies cnM~'nN blocks .:lnti int(lrnal intl'rfacet~ 

beb"L'en 11l0till It'S 

o Specifies thp staq('d implpmpn~atinn pl~n, includinq 

c.1p:lbilith's to bt"> incilldl'd in t'.lch bllild./rell'asl~ 

.1lhi tht' det;l i it'd mi ie:":t:l)llt' scht'dlllt' r,)!' 1~.1L·h l'lI i Id I 

o Pr(~p.1r('!": tlct..1ill'ti dl':-:iqn dt1(~lll11cnt.1tion .1~-:.1 ~),1:~i:~ 

fnr thr critic~l dcsiqn revirw (COR) 

r.lrt"i,'if'.1tc':-: in tilt' Cl"H .1nd i!h·IHP'H·.llt':~ ch.1n'1l':~ 

rf'(','mmt'lldt',j .1 t tilt' CPR int" till' dt't.1 i tl'd dt':-: jqn 

l- J J 



--

_. ~ ,,."'_~~ ••• -_,.~ M,It", ...... - •• 1...-.... --, ... ~~ , .... ' ~- ........... , ........ -,-...... -~ "" 

,' .... J 

Detailed Design 

The detailed design documentation contains all design for­

malisms and must be distributed to everyone attending the 
CDR before the COlt meetings. The design formalisms must be 

prepared in accordance with the guidelines and standards 
specified (that is, size, complexity, functionality of mod­

ules, prolog contents, and POL usage) • 

The detailed design phase culminutes in the CDR, attended by 

the development team and its managers, the reqUirements def­

inition team and its managers, and others involved with the 

system. At the CDR, the development team presents the de­

tailed design of each subsystem for critical review. Thi~ 

presentation is based on the detailed design documentatioh 

and may require a series of meetings if the system is 

l.uge. See Section A.J of Appendix A for details about the 
CDH. 

For the CDR present.Jtion, the participants evaluate the de­

tailed design of the system to determine whether the design 

is correct and complete enough to heginimplementation. 

'rileY ,'\lso review build/release c,lpabilities and schedule for 

fe,lsibility. Tht.> detailed desi']n is complete when the de­

velopment team has adjusted the detailed design to respond 

to comments and criticism expressed at the CDR. 

J. 3 .2 END PHuDUC'l'S 

'rhe det'liled desi'.}l1 document is the pr in;.uy product. This 

document is an extension of the prelimin.lrY desi']n report. 

~t>e Section u.s of t\ppendix U tor Lhe torlllolt and contents ot 

the detailed deSllJn document. 

J. 3 • J r-tE '1' lIu J.)O LOG I ES 

Bec.:lll:3e the activlties of det,lil\~J desi':)n ,Hoe ,111 extension 

or: those performed during prl~limin.Jry design, the sallle 

J-34 

.'\, .'\.\ 



,. , 

i 1" t ',' - ~ ; ., ~ 

. ': i. .. - ~ 

" ' -,,;', ". ~ "'" , 

. Detailed Design 

methodologies are used (see ~ec~ion 3.2.3, page 3-21). They 
,.' I ',:--

are repeated below: 

o Project notebook 

o Data collection 

o Formal recording of design decisions and changes 
o Configuration management procedures 
o Design walkthroughs 
o Iterative refinement 

o Information hiding and data abstraction 
o POL 

New activities for this phase are described below: 

o Librarians. The librarians begin to transfer ex-

isting code to be used in the implementation into the proj­

ect's online source code libraries. They continue their 

activities of preliminary design, including adding all ma­

terials produced during the detailed design phase to the 

project library. The organization into unit development 
folders according to subsystem (started during preliminary 
design) is continued and refined during detailed design. 

e Unit development folders •. A chart is added to the 

unit development folder for each subsystem, showing each 

module in the subsystem and the planned and actual starting 

and ending dates for each of the major phases (that is, de­

sign, code, and test) for the module. The librarians update 
these charts to reflect current development status for each 

module throu~hout the remainder of the project life cycle. 

3.3.4 TOOLS 

The same tools recommended for use in the preceding phases 
are used (see Section 3.2.4, page 3-25): 

o An online configuration management tool--for ex­
ample, CArr 

e An automated POL processor, if one is avai13bl~ 

3-35 



_, ....... M ••• __ , .. , " ~ " .• --}",-~ .. , 

, " .. 

Detailed Design 

, A new tool for detniled design is 

o 

which is 

tool, if 

An online ~'6~·rce code library management system, 

to be used to manage the project libraries. Such a 

available, is an important part of the configura-
tion management procedures because it can be used to enforce 
strict change control procedures on the project libraries 
containing POL and source code that have been placed under 

configuration control. 

3.3.5 MEASURES 

The measures and evaluation criteria tiaed during detailed 

design are similar to those used for preliminary design. 
Further explanation is given in the following subsections. 

3.3.5.1 Objective Measures 

As specified for preliminary design (see Section 3.2.5.1, 
page 3-26), managers monitor the following objective meas­
ures, repeated below: 

0 Number of requirements questions. 

e Number of responses to requirements questions. 

f!) Number of requirements changes. 

e Number of design changes. 

0 Number of interfaces. 

0 Number of TSD reguirements. The number of TBD re-

quirements is the most important quantity to be examined. 
Ideally, all TBD requirements must be resolved by the end of 

this phase. If this goal is impossible to achieve, the man­

agers m~st assess how the remaining THO requirements w~ll 

affect sy~tem size, required effort, cost, and schedule. 

o A detailed checklist of all design formalisms. 
This list can be used to' evaluate the design's completeness. 

Because the detailed design documentation contains all the 

3-36 

9108 

; , 



" . 
I!'-~- ~~-, \ ........... "" ~ .... ,- ... 

I 

!. 

" 

, " 
: , .:' 

, ,'~" , 
,j,', " " ,:t 

.", 

Detailed Design 

design formalisms produced for detailed design, all items on 
the checklist mus~6;completed'before the CDR. 

One new measure can be used by the managers to monitor 
progress: 

o An updated estimate of the number of lines of code 
in the system. By the end of detailed design, managers know 
the projected number of modules in the system. The budgeted 
effort rate can then be examined by computing the number of 

lines of code per (budgeted) effort unit and the number of 
modules per (budgeted) effort unit. Managers then can com­

pare these figures with the same figures for similar past 
projects to determine ,whet'her, !=J~ not enough effo:-t has been 

budgeted to complete development. 

3.3.5.2 Evaluation Criteria 

To evaluate the correctness and completeness of the design 

and to determine whether the development team is ready to 
proceed with implementation, managers must consider the fol­
lowing questions: 

.'\ " "1'\ 

c Have all items on the checklist of required design 

formalisms been completed? For example, are all 
external data sets completely defined and all base-

" 

line diagrams (treecharts) provided to the subrou-

tine level? 

Is the design correct? Will the transformations 

specified produce the correct output trom the input? 

o Is the design robust? Is user input examined for 

potential errors before processing continues? 

c Is the design testable? 

o Have all design guidelines and standards specified 
been followed? 

3-37' 

• ~. i' 

" 



'" '. ~.t' '; , ." '",. ," 
\' ",~, -::, "-: "( _ ,', ~:l 

/ 

11----;-".-'"- " ..... , --.- ... ~.~ .. ~ ~'-.'.'"<", '''', 

J, :; i""', ''1''' ... 11 ~ ; J ~ 

.' ~ .. {--, 

.-~. ~ ...... ~- -...' 

Detailed Design 
I' ~', 

Are the descriptions of each component clear enough 

and sufficiently unambiguous ao that implementers .. 
can proceed autonomously? 

Have all '1'BD requirem(mts been resolved? If not, 
how will the remaining TBD requirements affect sys­
tem size, required effort, cost, and schedule? 

G Is the build/release schedule structured to provide . . 
early testing of end-to-end system capabilities? 
Is the schedule reasonable and feasible for imple­

menting the design? 

Is the estimate of resources adequate for complet­
ing development? 

Managers can evaluate the quality of the de~ig~ by consider­

ing the following factors: 

o The level of information hiding (that is, how well 
have data usage and access been localized. Are 
modules secretive in the way in which they perform 

their functions?) 

The degree of coupling between modules (that is, 

intramodule dependencies are minimized) 

The cohesiveness of the lowest level components 
(that is, each module has a single purpose) 

3.3.6 KEY MANAGEMENT ACTIVITIES 

During this phase, the manager's concerns are identical to 

those for preliminary design (see Section 3.2.6, page 3-28) 
and are repeated below. The activities include both plan­

ning and monitoring. Specifically, the managers 

o Ensure adherence to 

Design standards 

Configuration management procedures, especially 
ch('mge con tro 1 

3-38 



~ ~ ... '--"' ..... ~r·I-'·I'·'1'·'~' -:~~ •. , •. ,-_ ... \" .~ ........ ~ "'''',," 
I 

Detailed Design 

Reporting, procedures 

Data collection procedures 

Quality assurance procedures 

o Review the design produced, participate in .esign 
walkthroughs, and resolve TBD requirements 

o Monitor adherence to planned schedules and expend­
iture of [esources~ and update cost'and resource 

estimates and schedules 

Ensure that all facets of the project are 
completely visible 

o Ensure cooperation between the development team and 
the other groups with which thev must interact 

o plan transition to the implementation phase 

o Schedule and participate in the CDR, and ensure 

that all pertinent groups participate 

For the transition to the implementation phase, it is usu­
ally necessary to increase the size of the development team 

substantially to handle the simultaneous implementation of 
the builds for each subsystem. Managers must inform the 

development team of th~ software engineering approaches to 
be used durinq implementation and must provide r~quired 

traininq. Also, the members of the development team must 
und~rstand the code and testinq standards, the quality as­

surance procedures, and the configuration mana~ement proce­
dures to be followed in addition to their individual areas 

of responsibility. 

~anaqers must also ensure that the online project librarie$ 

are established, that th~ strict change control pr0cedures 
concerninq these libt03ries 3re follo\ .. ed, 3nd that the job 

control l~lnqUage (JCLl for buildinc:: .1nd testinq the syste~ 
is pr0parpd flH the developers so that they C.:111 start imple­

mentJtion immediately after the COR. 

3-39 



AC1l'iVITmS 

END f'ilODUCTS 

'" " 't;. ,~ I ~ ) ", 

r • ~ ~, ./:: 'i" ~ .-~ 

':,:- ,',{ :./ '".'('::),:,.:<, 

: ...... , ,.' 
" ". 

Jo~ Contro= lcngq,aci1\!) Pro:rorcd 
Co:nmel~d Pl"occ~iurc::'l P:cperoo 
~!",·.v moduleS] Codod 
~ou:.ch!o Maau!e:l Rsv!oed 
Unit'J intQ2r&tt'ld ond Tcsted 
D!J!!dtnolcCllo Tost Pitme Prcparod 
lJ~ta Pl'opnl'oo 
Dulh:ltnc!co:co To:tt P~znQ E::ccuted 
D!~t:ropnncIM no~ol\lod 
SYfJtom In~t:>s:nrod 
SVDtcm Tcr;~ t'Zan f're51!2red 
t.cco~t:!ncc TC!lt r-I~n Prcp!lr~rl 
U ... ar'lJ Guid!l I'rcp.erad 
SV:3tcm 'Oa3crii3tion PropGred 

Svstom Coda 
Uupporting Dot!l ond 6vctcm Fila!l 
Bui!d/Robt:!oo To<rt FInn:! and Rellult's 
Sy:::tem TM't Fran ' 
Acc0:Jttln~o 1'03t P20n \ 
Or:lf1 Uoor'o Gulclo : 
Draft Syctcm Oeser lptlan 
Softwllro Dsvo!opment PIlln UpdDto 

~------.-------------+------------------------------------------~ MeTHODOLOGIES 

TOOLS 

Project PJo'!oooo!-t ' 
DstEi Co!!oction 
Ubrarl/:ma 
Unit Dovelopment foldofl5 
nequ!remonts Quontion end Chllngo Roconb 
Do:sign Dsclclon and ChGnGo Records 
Coding Smndards 
Structurod Code 
Code Reading 
Codo Chm10Q Rccords 
Configuration Mlln 19amant 
Buil:Jo/Rolol1s(ls 
Tap-Down Implemantst!on 
Fermal Tent Plans 
Functional (Thread) Testing 

PDL Proceoeor 
Sourco Code Librn:y Mllnngoment System 
Structured Coding LDngungn 
CAT 
Resource E:ltimatlon 

9103·(51)·83 



';-
.. -.~-"~-~- ... -., .. 

',,< , 

rJJAruAGF,m,'JENV 

ACTIVDTmS 

I 

.I 

f'."lEASURES 

; , , 

ACTEOmS tl.ND TAANSACiEOmS 

Bul!dlnclM~1i) 'O:lt ~ratn~ Rovi'31.mxl 
C .. ildmc!ec~$ TGllt P!:n Ro,ults Roviowad 
~:':!!::ropanc!c!l Aeoo!uerl 
SV5~om Teat p;O" Roul .. wcd 
Dr~ft: Ucor'o Guido Aoviowcd 
Dre1t Sv:)tem DOfi:rlption P.ovlowod 
S\'t'ltsm TCllting Tvrm!JIition PI:3nnod 

TEBD !t:zme P.o:oo\vC'ld 
nt'{luircmon~ eller-GQ!! l1eviowed end AM3230d 
D,o:lnn Chcn!;:sa nG'Vio""Jod end Wcllt&.:i Thmugh 
Codo Ch2ngo~ r~o\ti9wm2 

TO!:lm Trelncd 
Stendt'!rd!S tlnd Proceduro!) Enforcod 
Pronrcc:: MOI'1!tar:l."d 
Vi.,!billty Promoted 
Svatom Size EllUmntcd 
r.a~ourcoo cnrJ Co:st E~tlmotQd 
Team I"tarcetlon Cool'dln:l!tod 

YOD Ct~ms 
floquiremenm Cnconer! 
Rcquirements Qyo:tlonlll and Am:worn 
DGlZign Chcmgo, 
Cod;) ChenDcs 
Coda/To:lt Completion Ch~cldlnts 
Cod~ Growth nato 
Error/Changs Growth Ratc!I 
Diecror-!Jncion/Resclutions Growth note~ 
Computor Un~Do Growth Rato 
Tanmllndividual Productivity Rates 
Subjectivo Evaluationa 

9103-(511-113 

3-42"'" •. 



" 

., ..... -. , :,,,,,, !~~''''''''''''.''',.?' 

" '1 

, - ,~ ..... , ...... --'''"7:~''::.-~-:::-.... !::'':-'';''",.::'::.':':".-::::-:'.'''''''''' ... :- .......... 'Y" ... ~.: '1,.--"1 

I 

Implementation 

,The recommended software development guidelines for the 
impl~menta tion phase .,a're descr ibed in deta il below. 

3.4.1 MAJOR ACTIVITIES 

Implementation begins aft~r the CDR unless comments and 

criticism expressed at the CDR indicate s~rious problems or 
deficiencies with the detailed design. In implementation, 

the development team 

o Completes preparation of JCL and command procedures 

necessary to build and test the syste~ 

Codes new modules from the detailed design specifi­
cations and revises old,routines required to meet 
the requirements 

Integrates new modules into the growing system or 

subsystem 

o Prepares data for performing unit/integration and 
release testing 

Performs unit/integration testing to ensure that 
newly added capabilities function properly 

o Prepares test plans for e~ch build/release 

Q Executes tests specified by the test plan for each 
build/release and reviews test results 

o Prepares the system test.plan for use during the 
system integration and testing phase 

Prepares drafts of the user's guide and sy~tem 
description documents, based on the material in the 

detailed de~ign document 

The system is implemented according to the staged implemen­

tation plan prepared by the developers during the detailed 
des ion ohase. For each release, individual developers code 
and test the modules identified as belonging to a particular 

build of each subsystem. At the same time, members of the 

3-43 



: ",,' .. ,! ,.-1.. ,,:",,- "l'~' ': 
\. ,<, ' • 

• ~--. ..... - .< "-,'" ", .. I,·, \ ... , ...... ., ... ".,w ... • ... ' .. '·· - • _.,.. ..... 'f.~'~'" ... -T---..'·.· ....... "'''' ,".'t'~-... "':"'~,,, ......... , ..... " .~"': 

Implementation 
,"'" ::.1" 

development team pre~are the test plan for the release com­
prising the builds under development. This test plan is 
designed to test the functional capabilities of the release 
and is reviewed for correctness and completeness by develop­
ment team members end their managers. 

When the developers have completed all coding and unit test­
ing for the release, they rebuild the system from source 
code and execute the tests specified in the release test 

plan. The development team and its managers carefully re­
view test results to identify discrepancies. 

For each release, the test plan evaluates the functional 

capabilities of the release as it is defined in the staged 
implementation plan. A sampling of tests from previou~ 

releases, called regression tests, is included in each test 
plan to ensure that the newly added capabilities have not 

affected the functioning of the previously implemented 

capabilities. During implementation of the last release, 
the development team prepares the syste~ test plan in addi­
tion to the test plan for the last release. The system t~st 

plan is the basis for system testing performed during the 
next life cycle phase. It is designed to test the func­

tional capabilities of the system as specified in the 
requirements documentation. 

An independent acceptance test team prepares the acceptance 
test plan based on the information in the functional spec­
ifications and requirements document. The acceptance test 

team usually consists of analysts who will use the system. 
This team frequently includes members of the organization 
that prepared the functional ppecifications and requirements 
document. 

3-44 



.-~ ... -.~_-.. _ .... ,~ __ ~. - . .-,...~._,_ v, •. "" 
, ". -,.-, • '.:~' .. ! ~ .... i ... • ;-,,- ... .~,~ ...... , .. ,~., ,,~.~ .. , _""~_A"""" - ....... '1~ ........ -; ... __ .' ... ~ ... ~,.. .".,.,. ......... _ ...... ......., 

-... " : .r- , 
Implementation 

3.4.2 END PRODUCTS 

Our ing implementation, the de'relopment team produces the 

following products: 

c Completed code for the system 

o Supporting files necessary for buildLlg and execut­

ing the system (for e~arnple, JCL, command proce­

dures, a~d load modules) 

o Test plans and results for each build/rele~ac 

o System test plan 

o Draft user's guide 

o Draft cystem description 

The test plans are generally produced as infor~al docu­
ments. Each one contains a set of teets designed to test 

the functional capabilities of a particular release or of 

the entire system. See Section B.6 of Appendix B for the 

forma; and contents of test pl?ns. 

The user's guioe and the system description may be produced 

as two separate documents or combined into or-e. 

phase, this material is prepared i~ draft form. 

During this 

Most of the 

information needed i5 already available in the detailed de­

sign documenc. See Sections B.7and r:.8 of Appendix B for 
the format ar.d contents of the user's guide and system de­
scripti(m. 

An independent acceptance test team produ~es the acceptance 

test plan. 

3.4.3 METHOCJLOGIES 

The SEL recommends the following metho(!olo~ies for impleMen­

ta tion. 

c Pr.oject potebook 

o D~ta collection 

3-45 

9108 



.... 

, '.>',' 

, ' 

f.. :') ~ 7 .. ,:' 'f ': 

Implementa tion, 

o Librar ians .< .:."' -\' 

o Unit development folders 
o Formal recording of changes 
o Configuration management procedures 

Data collection and maintenance of the project notebook con­
tinue as is recommended in the preceding life cycle phases. 

New applications of the others are described in Sec-
tions 3.4.3.1 and 3.4.3.2 below. 

In addition, the following new methodologies are also used: 

o Coding standards 
o Structured code 

e Code reading 

o Top-down implementation 

Builds/releases 
& Functional (thread) testing 

o Formal test plans 

The remaining methodologies are described in more detail in 
Sections 3.4.3.3 through 3.4.3.6 below. 

3.4.3.1 Librarians and Unit Development ~olders 

During, implementation, the librarians support the develop­

ment team by entering newly developed code, entering modifi­
cations for reusable code, and operating the software tools 

discussed in Section 3.4.4 below. The librarians also up­
date the project's permanent source code libraries, incorpo­

rating changes made to the source code after it has been 
placed under configuration control. In this function, the 

librarians become an important part of the configuration 
management procedure. 

The librarians maintain the central project library and keep 
it organized into unit development folders by subsystem. 
They add all materials produced during implementation to the 

3-46 

9108 



/ 

Implementation 

project library: test pl~ns a~d results for each build/ 

release, and drafts of user's guide and system description 
information. They also add change reports for changes made 
to any parts of the system that are under configuration con­
trol (for example, the functional specificutions and re­
quirements document, the detailed design document, and the 
project's permanent source code libraries). The librarians 
also update the charts (started during detailed design) that 
show the exact status of each module in the system. 

3.4.3.2 Formal Recording Mechanisms and Crinfiguration 
Management Procedures 

Configuration management procedures must be strictly adhered 
to during this phase. Source code for a module is placed 
under configuration control when the individual developer 
has coded, compiled, and tested the module successfully. At 
that point, the module is moved from the developer's juris­
diction into a permanent project source code library. Any 
further changes to the module must be approved by the devel­
opment team leader before they are made by the librarians. 

These changes must be recorded on development change report 
forms. 

Infaddition, the formal recoralng mechanisms used in the 

preceding life cycle phases for requirements questions and 
changes, and design deci~ions and changes,. are used for re­
quirements analysis and design activities that occur during 
implementation. 

3.4.3.3 Structured Code and Coding Standards 

The SEL recommends use of structured code (that is, using 
only the basic structured constructs) in implementing the 
design of the modules. These constructs correspond to those 
in the module's PDL. The principles of structured program­
ming are described in Reference 16, for example. 

3-47 

9108 



\, 

\. 

" I', 

Implementation 

The code must conform to the cpcling standards specified. 
'Quall ty assurance proced\';res' ~~s't <,' be enforced by the man­

agers to ensure that the developers adhere to those stand­
ards. 

3.4.3.4 Code Reading 

'; After a developer codes and successfully compiles a module, 

another member of the development team reads the code to 
, verify that it performs the functions specified in the de­

sign and to check for 'common coding errors. The reader must 

review and return the code within half a day so that the 

developer is not delayed. Code reading identifies errors in 
the implementation of the design before testing begins. 
This review procedure is usually adequate. Occasionally, 

however, the development team may hold more formal walk­

throughs for high-level or very complex modules, but this is 

unnecessary for most modules. Details on code walkthroughs 

are contained in Referp.nce 17, for example. 

3.4.3.5 Implementation Technologies 

Implementation proceeds according to the builds and releases 
defined during detailed design in the staged implementation 
plan. A build is a portion of a ~ubsystem that performs 

certain designated functions: a release is a portion of the 
system, composed of one or more builds, that has certain 
end-to-end functional capabilities. The modules in each 

subsystem build and the builds in each release are specified 

in the staged implementation plan. 

Each subsystem build is implemented in a top-down fashion: 

i.e., if the baseline diagram is pictured as a map with· 
North at the top, modules in the build are coded and tested 

in the order in which they appear in a northwest-to­
southeast sweep of the baseline diagram (from the highest 
level to the lowest level and simultaneously from left to 
right). Developers test modules by integrating them into 

3-48 



'. 

( 

, " "' i ~ ' .. ,';,. '. ' .. ~ I' I 

"':. ""; . .',,,. 

Imp l-emen ta t ion 

the growing subsystem and using the existing, previously 
tested subsystem as a 'i-est bed •. Modules not yet implemented 

exist in the subsystem as'stubs (that is, fully executable 

modules containing no executable iristructions except to 

write a message ~hat the module was entered and has returned 
control to the cdlling module). 

Top-down implementation tests both the module's inteqr~tion 
into the 9rowing subsystem and its internal code. It also 
exercises the hiqher level and data input modules more fully 

,and eliminates building test drivers that themselves require 

testing. Some modules may require unit testing in an iso­

lated environment before they are integrated into the sub­
system, but this should be necessary only in special cases 

(for eX.lmple, to verify a particular algorithm). 

3.4.3.6 Functional Testing and Formal Test Plans 

After the builds of a particular release are completed and 
inteqrdted into the system, the release's end-to-end proc­
ess iny capabi li ties (called "threads") are tested by the 

developers. An important part of this functional testing 
process is the (ormal test pl.:m, which specifies the func­

tional capabilities to be tested and the criteria for deter­

mining \.,rhetht.H or Ill')t the test is successful. 'rhis is done 

for each test in the rele.lse test plan. The use of a formal 

test plan thus allclWs rele.lse testing to proceed in a 10gi­
c.llly orqanized manner and f.lcilitdtes aqreement among man­

agers .lnd developers .lS to when rele.lse testing is 
satis::~h:torily completed. The sy5tt~m test plan, prepar~d 

Jur 1 n'J tile implemet'lta t ion phase, se rves the same purpose 
durin'J thL' sy~;tem intc,:)r.:ltion and testing phase that [01-
l,)\ ... ~;. 'l'efitinl.,1 i~, described ill Rctt~rence Itl, f'~r example. 

3-49 



Implementation 

3.4.4. TOOLS 

The development team uses 

e An online configuration management tool (for ex­
ample, CAT). The tool is important in configuration manage­
ment of the project's permanent source code libraries to 
track development changes. It is also used to maintain the 

detailed schedule for the development of each module. in the 
system. In this phase it is very useful for maintaining 

information about discrepancies identified during testing. 

During testing of each release, discrepancies between how 

the system works and how it is supposed to work are identi­
fied. For large systems, the number of discrepancies that 
must be rectified can be sUbstantial. Managers must keep 
track of these discrepancies, assign personnel to resolve 
them, set dates for resolution, and verify that the discrep­

ancies have been resolved. A tool such as CAT ~akes this 
task easier. 

o An online source code library management system. 

o A structured FORTRAN preprocessor. This tool, 
which translates structured constructs into· valid FOHTRAN 

code, allows the programmer direct use of the standard 
structured constructs and thus facilitates structured pro­
gramming.' A structured preprocessor (SFORT) (Reference 19) 

is available in the SEL environment. Some versions of 

FORTRAN (for example, those conforming to the FORTRAN 77 

language standards) already contain the structured con­

structs as part of the language and therefore do not require 

the use of a structured preprocessor to provide those capa-' 
bilities. 

3.4.5 HEt\SUHES 

The following subsections present various measures and eval­
uation criteria that may be used to assess the implementa­
tion ph.Jse. 

3-50 

9108 



, ' 

Implementation 

i3.4.5.l Objective Measures 
~ ," 

I ' " . ~ , 

As'1n preceding life cycle phases, managers monitor the num-

ber of requirements questions, responses to requirements 

quentions, requirements changes, and design changes. Man-

. agers also ensure that all TBD requirements are resolved by 
the beginning of the implementation phase. If this is not 

possible, managers must reassess how remaining TBD require­
ments will affect system size, required effort, cost, and 
schedule. 

Managers must also monitor the following additional objec­
tive measures during the implementation phase: 

o Productivity rates (number of lines of code, number 

of modules, and number of pages of documentation per effort 
unit). As implementation progresses, managers can obtain 

more accurate estimates of the number of lines of code and 
number of modules. Then they can update estimates of the 

budgeted productivity or effort rates (that is, number of 
lines of code per budgeted effort unit and number of modules 
per budgeted effort unit) to determine whether enough effort 
has been allocated to complete the development. 

Managers can compute actual productivity rates to compare 

the pace of implementation with that experienced in past 

projects or with that budgeted. Productivity factors might 
include the number of lines of code in the projects' perma­

nent source code libraries, the number of coded modules in 
th~ project libraries, or the number of completed pages of 

documentation per effort unit since the beginning of the 
implementation phase. 

c Growth rate of the number of lines of code. The 

~rowth rate of the number of lines of code in the project 
libraries is another indication of the pace of the project. 

G Error rate (number of errors per 1000 lines of 
c'Jde) . 

3 -51 

Ql0H 



Implementation 

o Number of changes to code in the project's perma-
nent source code libraries. ~mnagers can use the error rate 
and the number of changes made to code after it has been 
placed under configuration centrol as indications of the 

code's reliability and stability. Excessively high figures 
for these measures (in comparison to past projects) might be 

caused by inadequate design specifications or insufficient 
testing by developers. 

o Number of identified discrepancies versus number of 

resolved discrepancies. The number of discrepancies identi~ 
fied in release testing is also a measure of the system's 
reliability. A widening gap between the number of discrep~ 

ancies identified and the number of discrepancies resolved 
as implementation progresses probably indicates problems 

requiring the manager's attention. 

o Computer usage rate (number of minutes per 

1000 lines of code). A computer usage rate much lower or 
much higher than previous projects may indicate problems in 

development, such as insufficient testing or excessive num­
bers of diagnostic test runs. 

The SEL recommends the use of all these concrete measures. 
The SEL does not advocate the use of the more abstract meas­
ures of the development product (for example, the McCane and 

Halstead measures) because a clear understanding of their 

meaning has not yet been obtained. 

Hanagers must monitor the progress of the development 

throughout the staged implementa~ion process. The detailed 

chart maintained by the librarians as part of the unit de­
velopment folaers, showing the exact status of each module 

in the system, contains the in:-ormation necessary to assess 
how complete each Duila/release is. At all times throughout 
the implementation process, managers must know where the 
project is (that is, its exact status) and where the project 

3-52 

9108 

. , 



I ' 

Implementation 

is going (that is, the detailed schedule for completing the 
project) • 

3.4.5.2 Evaluation Criteria 

To evaluate the qua!lty and completeness of the products of 

implementation, managers must consider the following ques­
tions: 

9108 

o For ~ource code 

Is the code cc~plete? 

Does the code adhere to the design? 

Does the code adhere to the coding standards? 

How reliable'is the tode? What is the con­
fidence level of the system performing without 
failure? 

Is the code maintainable? How easily can 
changes be introduced, tested, and verified? 

How stable has the code been? 

o For test plans and results 

Are the test plans complete? Is all necessary 

information provided for each test? (See Sec­

tion B.6 of Appendix B.) 

Are the tests specified in the test plans re­

peatable? If two different groups execute the 
test plans, will the same tests be performed? 

Do the test plans c~ver the key functional 

capabilities of the sys~em? 

Have the results of release tests been re­

viewed by developers and managers for discrep­
ancies? 

3-53 



• '> ': 

!, ~ 0/, " '. ~'C).,'\ 11 i 
.c,J~ .. \ '; • 

Implementation 

For documentation 

Doei~ihe'~ocu~~n~ation contain the key infor­
mation? 

Is the documentation as brief as possible? 

Is the documentation clear and easy to under­
stand? Can it be used by someone not familiar 
with the system? That is, is each document 
styled for "its intended audience? 

3.4.6 KEY MANAGEMENT ACT1.VITIES 

Several key management considerations during the implement~­

tion phase are identical to those in the preceding life 
cycle phases and are repeated beloN. The activities include 
both planning and monitoring. Specifically, managers 

o Ensure adherence to 

Reporting procedures. 

Data collection procedures. 

Quality ~ssurance procedures. 

Coding standards. 

Configuration management procedures. These 

procedures--especially change control on the 
project's permanent source code libraries-­

must be enforced during the implementation" 
phase when the staff is at its peak size and a 
large amount of code is being produced. 

• Monitor adherence to the planned schedule, monitor 

expenditure of resources, and update cost and resoutc~ es­
~imates ~nd schedules. As implementation progresses, it 

becomes easier for managers to estimate the size of the sys­
tem. Actual resources expended and progress during imple­
mentation can also be obtained to update cost and resource 

3-54 

9108 



\ 

\ 

- ~. ,:, '\~-' ~:.'~ ,'; ~ '. ,',,','-. 
,"" _ ... t',,',.1 '-f ' • 

Implementa tir~n 

estimates with a resource estimation m6del (like the SEL 
Meta-Model). updatin~,cost and resource estimates, with 
resulting updates to schedules and staffing plans, is neces­
sary several times in this phase as various builds and re­
leases are completed. 

o Ensure that all facets of the project are com-
pletely visible (that is, know exactly where the project is 
arid where it is gOing at all times). project visibility is 
critically important. Managers must know at all times the 
exact status of all task activities and the detailed plans 

for development completion. This is necessary so that prob­
lems can be dealt with when ,they occur rather than late in 

the process, when their impact is likely to be greater. 

New management activities specific to implementation include 
the following: 

o Review the release and system test plans and par-
ticipate in the test result reviews for each build/release. 

o nesolve discrepancies identified by the build/ 
release testing. 

o Plan the transition to the system testing phase. 
Managers must ensure that the data is available to perform 
the tests specified in the system test plan and that ar­
rangements have been made to provide all computer resources 
required for sysLem testing. They must inform development 
team personnel of the testing procedures to be followed and 
provide them with required training. Special emphasis is 
olaced on enforcing the strict change control procedures for 
the project's online source code libraries during final re­
lease testing and system testing activities. 

3-55 

9108 



,-
t 

. . , 
I 

l 
\ 

. , 

" , '" >. 

'!,'" . 

~---------------------i'-----~------------'~=~--~------*---------------,------------~ 
Acnvm[.;s 

Er~D PtlOOUCTS 

METHODOLOGmS 

TOOLS 

fi-r::tem Cro~tcd 
Sv!!:tom To~t rI::n I'!r.Eicu'l:lSd 
Obcrcpom:i~ ik!!olvod 
UOCif'S Guld3 Ravlawod end Ravl:!!e .... 
Svctem D05cri~tlan Roviowcd encl Acvict!d 
AccopUmcali Toctino Pllln=-:oo 

SV5t.'l:n Coot! Uj!:dZlto 
3L!!pportina f)::\w c:1d S".cto:n Rlet\ Uildst~ 
S\'ctom To~t PIon ncsulb 
Uoor'c Guide U;ulat3 
5votem Do::cription Updtlto 
Sgft\"Jor~ Davclorzment Plsn Updato 

Proj:sct fJctaboo!, 
Dom Co:lcc!ion 
Ubrerinn3 
Un3t Dovc!oilmcnt Fclrlom 
ncqulromcnb a.us~tlon end Channo nocoro9 
De:!'Ion Dacizlan Clod Changa Rccnrrl: 
Co~!o CMnga Rccordo 
Conflgurntion Manogomont 
r-ormal Test PI::tn 
Functioncl (Thread) Tcatlng 

POL Proce~or 
Sourco Codo Librerv Mr.:1ouemnnt Systom 
Structurod Codlno LnnDu~go 
CAT 
R1)Qourco E!ltimation 

PRECEDI~G PAGE nI.ANK NOT FILMED' 

3-57 

91DJ.(511.a3 



,,, .... _" · •. w.o.,"., ... _/. 

,'.' 
~.~' : 

.' .: 

~--------------------~-----. ----- ---------------------------; 
ACTiVITGCS 

Ml:ASURES 

Syfrtom TC::l~ Poa-.n n~.cult:3 nov!e·.-J~ 
Oi~:eS3~clZ!l RC:'A~ItI'Ct! 
ACf..,':lp~rAtCQ Ya.;;: P~.m ~ovlowccl 
Ac(u,~Unco T~lnSJ Trc .. "1oWOat P2~nnet:'l 

Ut!or'o auld~ rllYJfewcd 
OVl)tom Do~u;rl~tlcn no~!eVJ~ 

TOO itoma R~nh!o~ 
nc:;u~mmonw Ch~~!!~~ R!)viowed Clnd A~\!'.uod 
De;c1l!" Chance::) R0\1!~wed and Wlllked Through 
Co~n Ch~ns~ novl~w&d 

To~m Troinod 
Stendr.:rd9 c.:nd Proc:3durl!>s Enforcod 
!?i'ogroz:J f.'lcnltorod 
Vfnlhmty Promoted 
Svfltem Sb:o £Z::ltimt!ltod 
ROZlaUITCC:l cncl Co::t I:ztlmot.:d 
To.:;m Intall'flctlon Coordinet~ 

TOO It3ms 
ncqulromont:l Ch~nGI!;) 
Requiromonw Uucct!on~ t!\!;ld AmnfJOI'S 

Dl'Jefgn ChtmaOfl 
Coda Cluln{loa 
i"oSlt Completion Choeldi;;t 
Code Growth Roto 
Error/Chang(!l Gro\"tth Rtlto!l 
Dl9cropcncio~mcnclutEnne Growth Ratas 
Computer Uzaoo Growth nnto 
Toom/lndlvlduol Productivity Rct~ll 
SubJoctivo cva:uatlon~ 

3-58 

1l103-I!ill-f;3 

, , 



i 
1 
1 

, ," 

',}. 

System Testillg 

The rec6mmended software develop~ent guidelines for the sys­
tem integration and testlng.~ha~e are described in detail 
belo\-: • 

,- . 

3.5.1 f.1AJOR ACTIVITIES 

System integration and testin~ begins at the end of the im­
plementation phase. At this point, all code for the sYGtern 

is complete. and the release test plan for the last system 
release has been executed satisfactorily by the ~evelopers. 

In this phase, the developers validate the completely inte­

grated system by functional te3ting of the end-to-end system 
capabilities according to the system test plan prepared dur­
ing the preceding life cycle phase. Specifically, the de­
velopment team 

G Builds the system from the project's permanent 

source code libraries 

o Performs the tests specified by the system test plan 

o Reviews the test results 

e Corrects code to fix any errors identified by the 
system tests 

Q Revises the drafts of the user's guide and system 
description, if necessary, so that the documenta­

tion reflects the final state of the system 
, 

e Prepares for the acceptance testing phase 

System testing, which proceeds according to the system test 

plan, is performed like the testing of each release during 
the implementation phase. The development team and its man­

agers, including customer and contractor personnel, care­
fully review the test results to identify any discrepancies 
between the way the system works and the way it is supposed 
to work. The developers then correct the errors in the code 
that are causing these discrepancies. The system testing 

3-59 

9108 



/ 

" 

- '--'~ 

'. 

I 

· '\' 

System Testing 

phase is complete when all Lests in the syS" test plan 

have been executed su·cccssfully. Since the :zystem test plan 

must specify the expected output and the criteria for 

determining whether or not the test was successful (see Sec­
tion B.G of Appendix B), the conditions for system in~egra­

tion .and testing completion are not ambiguous. 

Toward the end of this phase, the development t~am must pre­

pare for the beginning of acceptance testing. They must 
become familiar with the acceptance test plan and the ac­

ceptance test pr.ocedures. They must obtain the computer 

resources necessary for acceptance testing and modify the 

JCL, command procedures, and so on! to perform the accept­

ance tests. The development team must also begin to in­

struct the acceptance test team--by demonstrations and 
documentation--in the system's operation. 

3.5.2 END PRODUCTS 

At the end of the system tp.sting phase, the completed system 

is available. The only new product of this phase is 

o Test results from the system test plan. 

The remaining products are updated" versions of products pro­

duced during implementation: 

9108 

o Completed code for the. system, including changes 

made to correct discrepancies identified by system 
testing 

Q Supporting files necessary for building and execut­
ing the system (for example, JCL, command proce­
dures, and load modules) 

Updated dcafts of the user's guide and system de­

scription, reflecting the state of the system at 
the compl~tion of system testing 

3-60 



. \ 

\ 
!, . 

, -' 
• I 

, . 

~-"l--

.,---.... ,..-.._-

',:: .,." , 

,',,' 

, \~' ," 

System Testing 

3.5.3 METHODOLOGIES 
,~. '.. .. 

The"methodologies used during system testing are a subset of 
those used during the implementation phase: 

o Project notebook. 

~ Data collection. 

(t Librarians. 

6 Unit development folders. 

o Formal recording of changes. 

o Functional (thread) testing. 

c Configuration management procedures, Strict ad-

herence is. essential. Because all code is under configura­
tion control at this time, any changes to the code in the 
permanent source code libraries must be made according to 

the established procedures and must be reccrded by means of 

development change forms. The configuration control proce­
dures Ilsed must ensure that the load modules being tested 

cor~espond to the code in the project's l~braries. Although 
requirements and design changes are not frequent this late 

i~ the life cycle, when they do oc~ur, the same formal re­
cording mechanisms for requirements questions and changes 

and design questions and changes must be used as is recom­
mended in the preceding life cycle phases. 

o Formal test plans. The system tes~ plan is the 
basis for system testing. The tests specified are designed 

to verify the system's end-to-end functional processing ca­

pabilities or threads. The system test plan is written and 

carried out by the developers. The system test plan fre­
quently contains a number of tests specified in the build! 

release test plans (see Section 3.4.3.6, page 3-49) • 

3-61 

9108 



, :' 

---
----

, ,'. : ,t ' .. 
" ' 

• ~ ';..c ' : 
'j • , 

" System Testing 

3.5.4 TOOLS 

Managers continue to "~i~'~he following'tools: 

o An online configuration management tool (for ex­
ample, CAT) 

o An online source code library management system, if 
available 

3.5.5 HEASURES 

The following subsections present various measures and eval­

uation criteria for assessing system testing. 

3.5.5.1 Objective Measures 

The objective measures that managers must monitor during 

system testing are the same as those of the implementation 

phase (see Section 3.4.5.1, page 3-51): 

o Actual productivity rates for the completed system 

versus planned productivity rates (number of lines of code, 
number of.modules, and number of pages of documentation per 
effort unit). 

o Error rate (number of errors per '1000 lines of code). 

s Number of changes to code in the project's perma" 
nent source code libraries. 

o Number of identified discrepancies versus number of 

resolved discrepancies. 

CI Computer usage rate (number of minutes per' 
1000 lines of code) • 

C Actual size of completed system versus planned size 

(number of lines of code, number of modules, and number of 

pages of documentation). Comparing actual versus planned 

system size and productivity rates enables managers to eval­
uate the accuracy of the process they used to estimate sys­
t"',, ,. ~,-e, resources, cost, and schedules. This information 

3-62 

9108 

I " 



I 

/ 

, " .' 

-.'1", 

-, ~" " , "; 

System Testing 

adds to existing historical knowledge about the estimation 
, process and can hel~~~~~iake this process more accurate for 

future projects. The actual computer usage rate for the 
completed system can also be useful in estimating required 
computer resources for future projects. 

3.5.S.2 Evaluation Griteria 

Because the products of this phase are basically updated 
versions of those produced during implementation, the sub­

jective criteria for evaluating their quality and complete­
ness are similar to those used in the preceding life.cycle 

phase (see Section 3.4.5.2, page 3-53). Managers can con­

sider the following questions: '.:,', 

9108 

«) 'How reliable is the code? What is the confidence 
level of the system performing without failure? 

Is the cu~~ maintainable? How. easily can changes 
be introduced, tested, and verified? 

o How stable has the code been? 

Q Have the configuration management procedures for 
the system been strictly followed? Are the source 
code and load modules consistent? 

~ Have the results of the system tests been thoroughly 
reviewed by developers and managers for discrep­
ancies? 

Do the test results meet the system requirements 
for each test in the system test plan? Does the 
system satisfy all requirements? 

o Is the documentation complete and correct? Does it 
reflect the state of the completed system? 

3-63 



, 
\ 

\ 

'. 
t" • 

, " 
System Testing 

1.5.6 KEY MANAGEMENT ACTIVITIES 

The manager's primary corid~rns during this phase are iden­
tical to those in the preceding,.lifecycle phase ·and include 
both plnnning and monitoring. Specifically, mnnngers 

o Ensure adherence to 

Reporting procedures 

Data collection procedures 

Quality assurance procedures 

Guidelines/standards 

Configuration management procedures, espe­
cially change control 

o Monitor adherence to the planned schedule and ex-
penditure of resources, and update cost and resource esti­
mates and schedules 

0 Ensure that all facets of the project are com-
pletely visible 

G Review test results for each test in the system 
test plan 

o Review system documentation 

o Resolve discrepancies identified by system testing 

o Plan the transition to the acceptance testing phase. 

Managers must ensure that the data is available to perform 

the tests specified in t~e acceptance test plan and that 
arrangements have been made to provide all computer resources 

required ·for acceptance testing. Transition planning is 

especially important for the acceptance testing phase be­

cause the development team must work with two different 

groups 'the acceptance test team and maintenance and opera­
tion personnel}. Managers must ensure that the procedures 

to be followed during acceptance testing are well defined 

3-64 

9108 
. . "'" ..... ,.'" ..... ~. , .""..,.. ~, 



, : 

~,5'·"\;~·.:~.-"'~'~_' ':~',':._ \ 
... :!~,) )'. ' I, 

.. / I,. System Testing 

and understood by thedevelopm~nt team. Managers must also 
supervise the instruc~i~~ bf t~~ acceptance test team and 

operators in the system's operation. Providing this in­
struction is the developer~' responsibility. Special 

emphasis is placed on enforcing the strict change control 
procedures for the project's online source code library 
during system testing and acceptance testirig activities. 

·3-65 

9108 



, .-~ 

DEvelOPMEmT ACTIONS AND TRANSACTDOmS -
; . ACTIVETII:!S Svt:t<tm Cree'ltod 

Veers and Op:Qratnl'1l Tra:l1od 
I\ccl}ptlAnco 1'El2'1: §ll;:n Ellecutcd 
DI~cl!'Op3nclQs r-le:sohlod 
Uoor'c au5~G ROlliowod end Rsvi::ed 
SV!ltcm D~ecriptlon RovloWQd l'li\d ncvlcoc:B 
System Delhfo11/ Plenncd 
ORR H~!d . Softl.".f~ro DtI'Jclcpmcnt Hlctol'\' PiOopcrcd 

END PRODUCTS .. ~~'st:)m Coda 
SupportJng Dots end Systom rilG:) 
Accl!tpmnco Tcnt Pion Gonults 
Utmr'u Guioo 
Sy::1om D::ocription 
A.rchlved Gvotcm (l"tlPQs) tlnd Dncl!mflntation 
Sofnvsro Dovolcpmont Hiritory 

METHODOlOGEES Project rJotoboolt . 
Dota Collsction 
Ub,.arinns 
Unit CDvolopmont FolJcrn 
RaqulNmsnm a.uolltl~" end Chonga Record.,: 
Dc::i9n Doclden arid Chenga Record:s 
Coda Chonga Records 
Configuration I"l!onegemont 
Formal l'ont Plnn 
Functional (Throad) Testing 

TOC;,.S POL Procos.'Jor 
Sourco Coda UbrAry Managoment System 
Structurod Coding L.enguage 
CAT 
nesourco Estimation 

910S·(51/..a3 

3-67 



~ -' '\ ~ ~' , " ,",I" ~ , , 
~' • , ..... \ '''I 

.. ,', 

~---------------------i.-----__ n--_.--_-----------,------------~----------------~ 
ACTEV8YIES ACC(,l;l1~:rU:O TG~t r.lG:r: Rc-:ulm E1o~feW:ld 

mccl'~p::r:c!;;,~ flo~o!'\fIZ~d 

SViJ'!:sm Dcllv3f\1 Rev1,owoo 

uo~,'~ Gl!ido RO\llswot! 
St!at~:n Dallcrip~on R~lIt{)w&d 

7130 ltom5 R~e~lvw 
Rc:rr,ui;'omonc Ch:::n!]oa Ravlowl3d (lnd A~oozcd 
D~!:ft:l Ch!lll;;::!') nm.·ll1:lw~d c:nd Wal!!ed Thr~!Juh 
Cooo Ch~nno~ n~vi~well 

TC:Jm Trolned 
St!4nd;r;:'gorls tlnd Proceduras En~arcsd 
Prosre~ r~'1ordtorod 
V:dbmiy Promotod 
SV3tc;m Shre E:::~M!ltoo 
na::ourccts llnd Co=t Estlm~tstl 
Teem Intorcct!ol'll Coordlnnt:r:d ' 

Roquil'(';m~nte Chang&."1 
na-qu!romonta Ql~~:ltiang cnd Anzworr. 
Docian Chnntloa 
Codo Ch~n9Cf) 
TC1lt Completion Chocldif:t 
Coda Growth Rate 
Error IChcngQ GroW1h n:ltcc 
Olccropcncioll/Roco!utlona GroV'.rt~ Ratef3 
Computor UfU:go Growth Roto 
Teemllndlvi(!uol Productivity Retcs 
SubjoctivD Ellcluntions 

3-68 

911l3·(511~ 

, . 



,'," .. ,:'",' . '"/ , . ",' 
• < I, ~ '';" • ;' ,." " 

Acceptance Testing 

The recommended software development guidelines for th~ ac­

ceptance testing phas,e'a/~e ~,escribed in detail below. 

3.6.1 MAJOR ACTIVITIES 

Acceptance testing begins at the end of the sy~tem testing 
phase, when all tests in the system test plan have been exe­
cuted satisfactorily by the developers. Before acceptance 
testing begins, an acceptance test plan is prep~red by th~. 

acceptance test team, b~sed on the information in the func­
tional specifications and requirements document. The system 
is then tested ~ccording to this plan. 

During acceptance testing, an independent acceptance test 
team testi the sys~em to valtda~e that the software meets 

:' .. 

all requirements. The development team assists the accept-
ance test team. Specifically, the development team 

9108 

o Builds the system from the project's permanent 
source code libraries 

o Provides training for users and operators 

9 Sets up and executes tests as specified in the ac­
ceptance test plan at the direction of the accept­
ance test team 

o Participates with the acceptance test team in.the 
review of the test results 'to identify discrepancies 

o Corrects the code to. fix any errors identified by 
the acceptance tests 

C Provides user assistance to the acceptance test team 

o Completes the final versions of the user's guide 
and system description 

Delivers the final system to the customer 

3-69 

'.rr, 



; .. ' ..... . ..~,." 

,~ ',,' . 

Acceptance Testing >" 
,~,J • , " 

Four important activities are described in more detail below. 

" Agree on test: 'p'rocedures. Before acceptance test-
ing begin~, the procedures for acceptance testing must be 
agreed ,on by the managers of both the development and the 
acceptance test teams and given to the team members. The 

procedures must specify whether all tests will be run before 
code is changed to resolve discrepancies. It modifications 

to the code are allowed as testing progresses, the effect of 
these modifications on the testing process must be ad-

dressed. (For example, will acceptance testing start over 
after each modification or will all tests be completed be­

fore they are rerun?) The procedures must also spe~ify the 
respective responsibilities of the development and the ac­

ceptance testing team members and the lines of communication 
between these two teams, their managers, and the operations 

personnel with whom the teams must work to perform the ac­
ceptance testing. 

o Understand the test plan. The acceptance test plan 

prepared by the acceptance test team is similar to the re­
lease and system test plans prepared by the development team 
(see Section B.6 of Appendix B). For each test to be per­
formed, the acceptance test plan must specify the purpose of 

the test (that is, the specific functional capabilities or 
requirements being tested)~ detailed descriptions of the 

input and required environment, and the operational proce­
dure to be used (also see Reference 20). The acceptance 

test team supplies test data for the acceptance testing and 

provides the de~elopment team with all,requir~d external 
data sets. The development team sets up and performs the 
tests according to the specifications in the acceptanc~ test 
plan. 

The acceptance test plan must also specify the expected out­

put for each test to be performed and the criterLl for 

3-70 

9108 



,/ 

.... , .. '-; •. ;!',: ........ 
; "~ ~ r :" , • " 

~cceptance Testing 

determining whether or not the teGt results are acceptable. 
The development and acceptance' test teams must be able to 

agree on which discrepancies identified by the testing must 

be corrected before the system is accepted. The acceptance 

testing phase is considered complete when all tests speci- ' 

fied by the acceptance test plan have executed succe~sfully. 
Because the acceptance test plan contains pass/f.ail criteria 

for each t~st, the conditions for acceptance testing comple­
tion are not ambiguous. 

a Deliver the system. After the successful comple-

tion of acceptance testing, the developers formally deliver 
the accepted system to the customer. They clean up all 

files and they prepar~ ~nd deliver'a system delivery tape. 

They also deliver the final versicins of the user's guid9 and 
system description (see Section' 3.4.2, page 3-45). After 
the system has been formally delivered, it becomes the re­
sponsibility of a maintenance and operation group. The 
maintenance and operation phase of the software development 
life cycJe is not addressed in this document. 

Q Participate in the operational readiness review 

(ORR). After the successful compl~tion of acceptance test­
ing, an ORR is held to evaluate the readiness of the system 

to support operations. The ORR is attended by the develop­

ment team managers, the acceptance test team managers, the 
maintenance and operation team managers, and others involved 
with the system. See Section A.4 of Appendix A far details 
about the ORR. 

3-71 

9108 



'I> ,J,-. 

,~ '., \, ; 

-' , ' , ' 

Acceptance Testing " 
t." j 

3.6.2 END PRODUCTS 

At the cnd of the acc'ept~-i{cie testing phase, the accepted 
/ 

system is delivered to the customer. Some products of this 
phase are updated versions of products previously begun: 

e Completed code for the accepted system, including 
changes made to correct discrepancies identified by 

acceptance testing 

& Supporting files necessary for building and execut­

ing the system (for example, JeL, command proce­

dures, and load modules) 

o Final version of the user's guide 

c Final version of the system description 

Three products are new: 

o Test results from the acceptance test plan. 

e System delivery tape. 

e Software development history. Within 3 months af­

ter system delivery, the program manager, with input from 
the project manager, writes a software development history 

for the project. This report summarizes development and 
evaluates the technical and managerial aspects of the proj­
ect from a software engineering point of view. The purpose 
of the report is to allow development managers to become 

familiar with successf~l and unsuccessful practices and to 
provide them with a basis for improving the development 

process and product. See Section 8.9 of Appendix B for the 
format and contents of the software development history. 

3.6.3 METHODOLOGIES 

For acceptance testing, the SEL recommends the same method­
Ologies as for the system testing phase (Section 3.5.3, 

page 3-61) • 

3-72 

9108 



, ~ , ," •• ,: ", ! .', 

;, .-" • +' 

.' 
\'\'. ,,' It, ,'" 

" " 

Acceptance Testing 

3.6.4 TOOLS 

The tools recommended'for.use in'the acceptance testing 

phase are the same as those recommended throughout the soft­
ware life cycle: CAT and an online source code library man­

agement system. 

, 3.6.5 MEASURES 

The objective measures and evaluation criteria recow~ended 
by the SEL for use during the acceptance testing phase are 
the sU.me as those recommended for use during the system 

testing phase (Sections 3.5.5.1 and 3.5.5.2, pages 3-62 and 
3-63) • 

3.6.6 KEY ~~NAGEMENT ACTIVITIES 

Monitoring is the key activity for managers during this 
phase. Several management activities are identical to those 

in the preceding life cycle phase. Spe~ifically, the man-
'agers 

e Ensure adherence to 

Reporting procedures. 

Data collection procedures. 

Quality assurance procedures. 

Guidelines/standards. 

Configuration management procedures, espe­

cially change control. The managers must en­
sure that all changes are coordinuted with 

acceptance testing activities and are made 
according to established acceptance testing 
procedures •. 

G Monitor adherence to the planned schedule and ex-
penditure of resources, and update cost and resource esti­
mates and schedules. At the end of this phase, development 

is complete, and the actual cost and resource expenditures 

3-73 

(\ , ,'\ 1"\ 



Acceptance Testing 

throughou~ the project are known. Managers can compare 

these figures to the estima~es produced during each life 
cycle phase to understand the estimation process better so 
that they can make more accurate pr&dictions for future 
projects. 

G Ensure that all facets of the project are com-
pletely visible. 

These activities are specific to the acceptance testing 

phase: 

o Particieate in the review of ~.(:ceptance test results 

o Resolve discrepancies identified by acc~tance 
testins 

o Ensure cooperation among' the various srou~ in-

volved during this phase (for example, development team per­
sonnel, accept'ance test team personnel, maintenance and 

operation support personnel, and librarians) and their 
adherence to established acceptance testing procedures 

Schedule and participate in the ORR, and ensure 

that all pertinent groups participate 

3-74 

9108 

.,' 



, , ~'. " 

" ' 

-l-l 



, , 
\ 

~..1 '" ~ .<" ( 

-: : ... ,'~ Ji:;.~~}.~. "-~ .. : ":, • 

Directing and controlling the execution of the development 
plan is the most;important aspect of the development man­
ager's job once a feasible plcin 1s produced. By definition, 
requirements change. For some complex requirementc, design­
ing an .implementati6n may take several tries. In some 
cases, the design may not be implementable because of a 
change in computer haidware configur~tion or limitations. 
Certainly the development project staff changes, end the 
personality of individuals may change. 'In short, the devel­
opment process is very dynamic. Therefore, the successful 
execution of even the most complete plans involves 

e Carefully measuring or assessing development prog­
ress and team performance (see Section 4.1) 

o Recognizing the dan~er signals or warning signs of 
problems that will prevenr. proper execution of the 
plan (see Section 4.2) 

Taking appropriate steps to solve problems once 
they have been accurately identified so that the 

real problems are addressed--not their symptoms 
(see Section 4.3) 

Data Collection 

If the development manager expects to manage a development 
project successfully, he or she must measure it in some con­
crete way to assess general and specific progress. Measur­
ing the per:ormance of team members is also essential, since 
it will indicate team strengths and weaknesses, aceas for 
training, and potential pr6blem areas. To measure the 
process in a concrete manner, the managers muse collect ap­
propriate data, monltor its collection, and then use t~e 
data (1) for comparison with past projects, (2) in predic­
tivemodels, and/or (3) with conveneional t~chniques ct 
progress assessment. 

4-2 C - <3--
9108 

..... -

i' " 



[ 
! .. 

·' ,~ 
',( , 

, Management and Control 

The SEL stresses the importance of collecting and archiving 
data throughout the software development process, not only 
for monitoring the de'\;elopment project, but also for under­
standing the enviro~ment and evaluating the effects of new 
technologies on productivity and reliability. Key data 
types to be collected throughout the project include 

o Rasic project statistics (estimated and act~al num­
bers of modules and source lines of code and the 
start and end dates for each life cycle phase) 

,0 Resource data (weekly expenditures of resources for 

technical staff, managers, secretaries, librarians, 
publications personnel, and computer usage) 

o Change and growth data (the number of source lines 
of code and number of modules entered into the sys­
tem by week and the number of changes made to the 
system by week) 

Activity data (week~y summary of hours spent in 
various project activities by each member of the 
technical staff) 

o Change data (change repor't forms for all changes to 
the design and code after it has been placed under 
configuration control) 

o Subjective evaluation data from managers aft~r com­
pletion of project phases 

The SELls Guide to Data Collection (Reference 21) provides 
further recommendations on this topic. 

4-3 

, 1 



f . ' 

" 

0 

" 
Q 

G 

0 

0 

G 

'/ ./,: \ " ". ~ ~ 

~ I,~ .;,. - ',: 

CCirt~EotOfil:;:ll~ f1!i3 Oil'g~nE;u~~~O~a1~ Strucwra Clrn\iT.~W'Gd 
'if~ith OriginoQ £l'3laRS 

r-hu~1!u~ths!'ll tTr.! ~'Ojsct StMt~ lGYGG ~nd Svs~Gm SaGe 
r:otirn~te!3 

[~iS~~17lJ 01 n~umb~r o;td Yvpa of TaD 2tems ftOIf' 
~s'1usromeln,~ and [ll~£iSR 

Eosa of AC1:e~ to enf@rmn~iDn en !?"o~ect Statu!), 
Schsduh)n, 1.Jna ~manD 

t::-GQU9D1';V {mQl AmQU5'1lt 0';: tl.hu.&=';UI~nV long; Hcu:ro 
R~~t§iQ'cd or Pbninud To Attain Cm""tElin" Ohjact5UG3 

lOUGH o1( Do~oE~ (6eth Tcchr.icol r.md rtl1t1lrtcgor2oU . 
Understood and ControiEed bV tito I?rojoct rllqfjneliger 
aitd ~C1o ~!l"ojGct loadm' 

o Diocrcpnnc:m3 in Fannncd U'Jostdv St£lff Loval ~nd 
Computer USllg9 or Comp~red UUith Past Projects 

91c:J.(51I-1'l3 

PRECEDING PAGE nLANK NOT FIT:MEU 

4-5 

/ 
I 



,,"'. 

St4tU8 InJic~t~rs 

'rh(~ precedinq p.lqe cont.:llns a briet: list of me.:asures thdt 

, 'th~ SEL has round b~n~f k 131 in mon i tor in~ the sta tus of 

dev~lopm~nt projects. Continually lower frequencies of 
........ ~ .... ,') , 

clh'lnqc, smaller fluc'tllations in estim .. \tes, ilnd sm311tH 

discrepancies in pl.:lnned-versus-actu~l reports (i.e., con­

vergelicu toward ~oals) 3S development iroqresscs are strong 

indic.:l tlHS tlh\ t the deve lopmt~nt ttHlm has tht~ project under 

control. Opposite t~ndcncies usually indicate the develop­

ment of probl~ms. 

'l'h~ development st.'ltm; indicators .'ll"e descr ibed below. 

FruqulmC)' l,f schedu le/mi lestone ch.lnges. Dur in~ th~ d~\'el­

opment life cycle, the development managers .:are able to make 

b~tter estim3tes of system si=e and the effort required for 

d~velopm~nt: there(or~, they are able to make better esti­

Illates of completion d.ltes. AltlllJugh the estimates drc ex­

pel.'!ted t~) Cl1.1nge pt~rh)dic311~', the frequency ,1nd magnitude 

ot tI\l~ ch.,nges should continu31ly decrease throughout the 

d~ve10pm~nt lif~ cycle. Uy monitorin~ this simple data 

point clost~ly, especially once impll~mentation starts, a m.:ln­

ager may be able to identify probl~ms early. 

ConBicit,~ncy in or-l.,niz.ltion.,l structure comparl~d with 

ori~inat pl~ns. Th~ development mana~ers usually 0r~~ni=~ 

their p~rs0nnl~1 b~fore .1 proje~t st.lrts .lnd mak~ minor ad­

justments \"hil~ pl·eparin~ the dev~lopment plan durinq re­

qllirelll~nts 311.\lY5i9 ,1nd prelimilhlry desiljn. Sl\bst.H\ti~l 

Ch.ln'_l('~; tlJ tlws(' pl.1n:.> l\su.,lly indil.'!;)te pr .. ,blems. l)ne 

~\'mmIJn ex.,mple i:; thl~ lInpl.1nn~d .1ppear.\I\ce of .\ senior group 

of per~;onl1t~l--:n,'rt..' :;enh)r tlwn the deVt~l"plllellt te.lm--whost..' 

~,dVlHtist~d task in qu.,Uty .lSSllr.lllce, .l di(t:kult desi~n 

i'r~'t)ll~m, or .11\ indl~p~l\dL'nt .lSSL'St;ml~nt. ,\ second ex.1IT\pll.~ is 

the prL':":ence l..lf .1 sl~ni\1l· p~r:.; .. )n \1/1\\) .1pPL'.\n, tl.l bt' l"lInnin'.1 

tIlt' l.)per.ltil.)1\ but '''ho h.lt, Ill) l)ttil.'!i.ll role. ,\ third ex­

.\mplt' u; diffll!;i.)I\ "f tilL' pr ... )ject m.ln"'.l~r'H ""[" It.:'.ldl'r's 



! . 
I 

.. 

Status Indicators 

responsibilities, Le., delegation of ncarly total responsi­
bility for pieces of the system to other development team 
members. 

,A' ':"'F I 

Fluctuation in EE,2ject staff level and Gystern size esti-

mates. As work progresses throughout the development life 
cycle, the development managers are able to make better 

estimates of system size, required effort, cost, and 
schedule. The uncertainty in these estimates will decrease 

and the confidence in them will increase after each phase of 
development (see Figure Coolon page C-B of Appendix C) • 

Estimates that reach or exceed the normal limits of uncer .. 
tainty indicate problems with plans, understanding of the 
project, or staff composition. 

History of number and type of-THO items for requirements and 

design. A large number of TBO items or a small number of 

severeTBO items for requirements usually indicates a system 
definition problem. During design, large numbers of TBD 
items or severe TBD items indicate a lack of understanding 
by, or inexperience of, the development team. 

I 

Ease of access to informa tion on W'oject status, schedules '. 
and plans. All development managers prepare a development 
plan and maintain a project notebook, which are kept up to 

date in a central repository. Yet it is not uncommon to 

solicit information from a project manager or leader and 
receive the response "Illl have to check." The longer it 
takes the team leaders to respond, the more suspicious 

higher level managers should be about the quality and use­
fulness of project plans and-records. 

Frequency and amount of unusually long hours required or 
planned to attain certain objectives. The list of reasons 

for overtime hours is long and includes getting the most 
up-to-date material together for formal reviews, meeting 

maJor milestones, recovering from late sortware/interrace 

4-7 

9108 



/ 

'~. 

L ...... 

Status Indicators', 
'\ ' 

deliveries or hardwaro failures, and covering for staffing 
problems. Sometimes the overtime hours are necessary and 

expected: however, overuse of this practice is frequently 
indica tive of probie~s- wi th" the staff's qualif ica tions, the 

stafr level, or the team's leadership. (Inexperienced proj­
ect manugers/leadcrs, who are the most qualified to perform 
most development tasKs, frequently do certain functions 
themselves because they think it is faster that way, rather 
than enlisting the team's help.) 

Level of detail (both technical and managerial) understood 

and controlled by the project manager ~nd project leader. 
All development managers prepare a development plan anri 
maintain an up-to-date project notebook. The project man­

ager's responsibilities are technical consultation and man­
~gcment of the development plan (technical, management, and 
configuration control approaches). The project leader's 
responsibilities are technical direction and day-tc-da~' 
supervision of project activities. Yet it is ndt u~common 
for the team leaders to be unable to respond to queries at 
status meetings. The more frequently the team leaders are 
unable to respond, the more suspicious higher level managers 

should be about the level of control that the team leaders 
have over the project. 

Discrepancies in staff level and workload. All development 
organizations use some algorithm for determining staff 
levels, based on the type and amount of each type of work to 

- -
be done. The workload and staff levels, whIch are recorded 
in the development plan, change throughout the development 
life cycle. Discrepancies between these and the plan 

indicate problemn. 

Discrepancies iu planned weekly staff l~vel and computer 

~'::"9.e or in comparison with past projects. A decrease in 
the weekly staff level may indicate a temporary or permanent 

4-8 

9108 

" ' 



! 

I 
I 

\' ,',-

Status Indicators 
',' ", 

loss of perso~nel fro~ the project to another project7 an 
increase may indica~e an attempt to remedy a deficiency. A 
decrease or slow start in using the computer may indicate 
,that the development team is engaged in some other activity 

(for example, design) rather than ~esting. 

4-9 

",' 



/ 

'" 
, .' 

G mumorcms ChO~1rr;as M~d0 to C!i15~Eag S~¥~1fi!8V0 
DOV0e~r.nncn" L:'l~an 

() GuideDinas or ~iv.nnGd E=lracoduras ltlaomph~nazGd or 
DG~otod 

o SMd1d~n C&u~ng~~ ~n Smfia~9 mnlJ9n5tagf;~G) SU~f3~~ted 
or r&ode 

o Ez:cOS:iiUG Do(mm~ntotio;n nrm'l P(]pef'U'Jct[~ That Mauo 
U~O DSrc&t Bearing on RQ)~l£iro:!l Dcs;~mo~mtEon 
Propl:!l'ed '; , 

o Con~~rma5 ~i1c;,e~oo En ruurnr'loro oi TlZ! ~ Etem~ 8:-;d 
ECRo n.~G£:l~mrcd 

C) !l)c~I."C~~~ in fEstim~te~ 5f10~ 10r Sv~tJ;0m Te:t~ing 
Suggo~tod or r'·ldada 

o Ren~ncG on O<;t~1er Sou;'ces ~rar Soon-to-BG-Av~n~bma 
Softt,'~nra 

t1t:a-(511..fl3 

.... 

PRECEDING PAGE DLANK NO;: FIL.\ffiD 

4-11 

~ i • 
t...1"'~_"'b e" , .* ......... ~_~ ...-.. ........ ' """,,,'._ ... .: 'tr i • '*b J~..o:iIo"''''''''_''''''''''''''''''> __ .... _. _-"'+ ...... ~~~ __ ~~_~_._, _ ........ --....,_"''-'"'' .. *'''"~.a.. ........... l.o\iio~~~ 



"---- " -

'Ir"" _'; > 

t~-" , 
~ '.,' " ' ,~ "~ f " •• 

Danger S 19na is 

The SEL has monitored many s6ftware development projects, 
some of which were considered very successful and some of 

which were considered.)~$~ than.~~ccessful. From this ex­
perience, the SEL has ~6cipiled ~ brief list of indicators 
(preceding page) that often characterize serious ~roblems 

within the project. 

These indicators ~re described below. 
, 

Scheduled capabilities delayed to a later build/release. 
Assuming that a build/release approach to implementation is 
being followed, the single most important Signal of serious 

problems during implementation is rescheduling capabilities 
from one build/release to a later one. Although it is some­

times necessa~y to reschedule capabilities, the consistent 
rescheduling of capabilities from one build/release to 

another as a completion date nears often indicates serious 
problems. 

Coding started too early. It is not uncommon for develop­
ment projects to be fully staffed too early or overstaffed, 
although it seems as though most projects are understaffed 
or staffed too late. Starting coding too early, i.e., be­
fore a design from which coding can start has been approved, 
is a signal that the development team will end up building 

on the structure of a system that is not best suited to 

satisfy the total requirements. 

Numerous chanaes made to the initial software develop~ent 

plan. \vhen the development managers make numerous changes 
to the initial development plan, it is a signal that they 

are inexperienced and are reacting to internal problems 
I 

rather than solving them. 

Guildelines or planned procedures deemphasized or deleted. 
~'ihen the development m-lnagers suggest th-lt the deletlon or 

deemphasis of a I cthod or procedure will S-lve time -lnd help 

4-12 

9108 

------------_. __ . __ ......... _-,--------------_ ......... ~ 



I 
i. 

'" ;'., 

", . 
Danger S ign,als 

to make a deadline, ·it is a nearly certain signal that the 
deadline will be made in a questionable manner, if at all, 
and that makeup work will be needed later to complete the 
activity correctly.,' , 

Sudden changes in staffing (magnitude) suqgested or made. A 

sure ~ignal of serious problems is the sudden suggestion or 

applicatio~ of unplanned staff increases. 

Excessive documentation and paperwork with little direct 
bearin9 on required documentation prepared. When develop­

ment managers suggest the complete, detailed, formal docu­

mentation of each activity, it is a signal that they are 

inexperienced and that cost and schedule problems are immi­
nent. Complete, detailed, formal documentation does not 

ensure success when the t~a~le~ders' effort Is diverted 
from managing the technical aspects of the project. 

Continual increase in numbers of Tao items and ECRs meas­

~. A continual increase in the number of TBD items is a 

clear signal that technical problems are not being re­

solved. A continual increase in the number of TBD require­
ments and engineering change requests (ECRs) is a signal 
that the requirements are not adeq~atelY defined or stated. 

Decrease in estimated effort for s~stem testing suggested or 
made. When the development managers suggest or make a de­
crease in the estimated effort for system testing, it is a 
signal that they are inexperienced or they are excessively 

scheduling to success. with acceptance testing, system 
testing is the most sequential phase in the development 

process. Little can be done to compress the full testing 

phases. Assuming that testing can be compressed to make up 

for slippages in earlier phases leads to a loss of credi­
bility in the development organization when the system is 
not ready on time or is flawed in operation. 

4-13 

9108 

i 
~ '-"".'-"--~ -" .... "" ........ , .... , ... _ .. "._, 



/ 

, f • '" 

Danger Signals 
'~ : 

Reliance on other ~ources for soon-to-be-availa.ble ~ 
~. Every experienced developer and manager recognizes 
the cost benefits oi';~sincj cKisting noftwure or soon-to-be­
existing software. Hot-lever, all management levels of the 
development team must be especially concerned when the 
successful execution of their development plans depends on 
other sources for their system's software capability. 
Managers' concern should increase inversely proportionately 
to the level of control they have over the ~ource who is . 
developing the capability. For e>tample, a loosely re ... ated 

project in the same organization is greater cause for con­
cern than a closely related project in the same development 
organization: another contractor or a vendor is an even 
greater concern. The obvious problems with externally de­
veloped software are (1) it is always late and (2) it is 
never fully checked out. 

4-14 

9108 

! ' 

i' 
I 
\ 

I 
j 

. " , , 
i 

I l : 

, , 
\ , . 
.-
I 



.' " ',,' ' 

", .... " , ~ 

" 

Q Sttcp Ceu!rirent Ac~auetEzn sfild t~G'!eeU'J /Ccmpgeta 
PS'Gdscoooor or [Profa;~5m Ac~ivGW 

0, Dsc=-easa S~f~ ~o nfJe:nsg~~~ra B..oveS 

o RG~~aca 'Jl!.U'~~::ilr 'trJi~h S<:!3lior f?crncmno§ 

o fincr~!lz~ and Tighf,en itrdanGgcn~ent L'rocoouFoS 

o Decrea~Q SCOP0 of ~'YCIl"~~ ~nd Dsiirnc Q rv~aill~g0ebea, 
Dneb!Q Thtr0;:d! o'r tho Svsiom 

(') Audit Project t'"dEth mndepcndent Pal"30nng~ ~li1ti Act 
on Their NC1d~ngs 

4-15 



, " 

. I 

". : 

Corrective Measures 

Once the development manager has r~cognized that there i~ d 

problem, he or she mu.st .corre,ct the problem. The preceding 
"', ~ .', .' ! 

t>age contains a br ie'f' list of correcti'le measures that tne 

SEL has found effective. Dependi~g on the problem, one or 
more of these corrective measures may be ueces~~ry. 

Frequently, when developme~t manager.s find their projects in 
difficulty, they have a ~endency to 

G Shortcut procedures, i.e., to cut out th~ presum~d 
"busy" or no~essential work and to concentrate on 

the "real" work 

o And staff (usually junior level) co he~p bailout 

o Plu~ge ahead to meet milestones with some kind of 
product 

The SELls experience, however, shows ~hat, more often than . : 
not, thesp,; steps compound problems. The corrective neasures 
(pr.eceding page) suggested by the SEL ~re usually counter to 

the normal tenuency: that is, they increase and tighten pro­
cedures, reduce staff levels (or rcp~ace junior with senior 
staff) I and slow down the proc~ss to get a better handle ~n 
it or to better define the obj~ctive. The following su~sec­

tions list the basIc developmp.nt p~oblem ~reas and the sug­

gested steps to correct them. 

4.3.1 BASIC PROBLEM AREAS 

The following is a list of the basic problem areas: 

1. Develnpment plan problems 

2. Requirements or design problems 

3. Confusion with 

a. Development plan 
b. Requirements or design 
c. Development plan execution 

4-16 

9108 



I ! 
t 

Corrective Measures 

4. System growth problems because of 

a. Poor diiecti6n 

b. Staff ability 

c. Major requirements changes 

d. Many minor requirements changes 

e. Incomplete facets of project 

5. Changes or decrease in scope of plans 

6. Configuration problems 

7. Schedule probl~ms 

4.3.2 STEPS FOR CORREC'l'IVE ACTION 

Following the outline abov~ (Section 4.3.1) t this sUbsection 

presents the steps to follow to correct problems in each of 

the basic problem arens. 

1. When there are serious problems with the developmen~ 

plan, 

a. Stop development activity. 

b. Complete and/or review plans. 

c. Follow through with plans. 

2. When there are serious problems with requirements or 

desiqn, 

a. Stop staff growth. 

b. Decide which are appropriate: 

(1) Decrease the scope of the system. 

(2) Solve problems before proceeding. 

(3) Replace junior ~ersonnel with senior personnel •. 

3. When there is confusiori. 

a. Obtain an accurate assessment of the cause. 

4-17 

9108 

.. : ':" 



"" " 

.. :," . 

Corrective Measurei 

3. When there is confusio~ (continued), 

b. When the development plan is the cause of confusion, 

(1) Stop development ~ctivity. 
(2) Complete and/or review plans. 

(3) Follow through with plans. 

c. When requirements or design is the cause of con­
fusion, 

(1) Stop staff growth. 

(2) Decide which are appropriate: 

(a) Decrease the scope of the system. 

(b) solv~ problem? before proceeding_ 

(c) Replace junior personnel with senior per­
sonnel. 

d. \~hen plan e,:ecl\tion ie.; the cause of confusion, 

(1) Decide which are appropriate: 

(a) Decrease staff size to a manageable level. 

(b) Replace junior team leaders with senior 

leaders. 

(c) Replace junior team members with senior 

people. 

(2) Create intermediate products and milestones 
for rev ie\-... 

(3) Increase status reviews to improve direction. 

(4) Follow through with plans. 

4. When there is inadequate system arowth (proaress),' 

9108 

a. Obta~n an accurate independent as~essment ~au~it) 

o E the prob1~m. 

4-18 



f 
l. 

Cor.rective Measures 

'" , '~' " 

4. When there is inadequate system growth (continued), 

b. Whcn poor direction inhibits system growth, 

9108 

,.' 

(1) Decide which is appropriate: 

(a) Decrease staf.f uize to a manageable level. 

(b) Replace junior team leaders with senior 
leaders. 

(2) Create intermediate products and milestones 
for review. 

(3) Increase status reviews to improve direction 
and to tighten management procedures. 

(4) Follow through with plans. 

c. When staff ability inhibits system arowth, 

(1) During design, replace junior team members 
with senior personnel to complete design • 

. (2) During implementation, add intermediate- to 
senior-level personnel to, complete implementa­

tion. 

(3) During testing, add senior personnel to solve 
problems and to improve direction. 

d. When major requirements changes inhibit system 
growth, 

(1) Stop staff growth. 

(2) Decide which are appropriate: 

(a) Decrease the scope of the system. 

(b) Solve problems before proceeding. 

(c) Replace junior personnel with senior per­

sonnel. 

4-19 



Corrective Measures( 

4. When there is inadequate system growth (continued), 

e. When many minc~ requirements chang~s inhibit system 
growth, 

(1) During design and early implementation, 

(a) Stop staff growth. 

(b) Decide which are appropriate: 

i. Decrease the scope of the system. 

ii. Solve problems before proceeding. 

iii. Replace junior personnel with 

senior personnel. 

(2) During implementation, hold changes and com­
plete implementation of a build of the system 
first. 

(3) During testing, hold changes and complete 
testing of a version of the system first. 

f. When an incomplete facet inhibits system growth, 

(1) Decide which is appropriate: 

(a) Redirect senior personnel from less 
important or low-priority work to com­
plete design or implementation. 

(b) Add senior personnel to complete design 
or implementation. 

(2) During testing, add senior personnel to solve 
problems. 

5. When there is a significant change or decrease in the 
scope of the development plan, 

a. Obtain an accurate assessment of motivation. 

4-20 

9108 

, , , , 

" ' 



, ' 
~ \ ,1 ;' -I" 4, '.,,' 

. ' ... ,. 

:' : 
Corrective Measures 

5. When there is a significant ch~nge or decrease in the 
scope of the development plan (continued), 

9108 

, 
b. When confusion causes change of plan, 

(1) When the develoemcnt plan is the-caune of con­

fusion, 

(a) Stop development activity. 
(b) Complete and/or review plans. 

(c) Follow through with plans. 

(2) When requirements or design is the cause of 

confusion, 

(a) Stop staff growth. 

(b) Decide which are appropriate: 

i. Decrease the scope of the system. 

il. Solve problems before proceeding. 

iii. Replace junior personnel with 

senior personnel. 

(3) When development pla~execution is the cause 
of confusion 

(a) Decide which are appropriate: 

i. Decrease staff size to a manageable 

level. 

ii. Replace junior team leaders with 

senior leaders. 

c. When inadequate system growth (proqress) causes 

change of plan, 

(1) Obtain an accurate independent assessment 
(audit) of the problem. 

(2) When poor direction inhibits system growth, 

follow steps (1) through (4) in item 4b. 

4-21 



· -.: 

Corrective Measuren 

c. When inadequate system growth (progress) causes 
change of plan;'(continued), 

,(3) When stoff ability inhibits system qrowth, 
follow steps indicated in item 4c. 

(4) When major requirements changes inhibit system 
growth, follow steps (1) and (2) in item 4d. 

(5) When many minor requirements changes inhibit 
system qrowth, follow steps indicated in 
item 4e. 

(6) When an incomplete facet inhibits system 
growth, follow steps indicated in item 4f. 

6. When there are problems 'with configuration control, 

a. Obtain an accurate assessment of weak areas. 

b. Firm' up and tighten configuration management proce­
dures. 

c. Follow through with plans. \ 

7. When there are problems in maintaining schedules, 

9108 

s. Obtain an accurate indepe~dent assessment (audit) 
of cause. 

b. When confusion causes schedule slippage, 

(1) When the development plan is the cause of con­
fusion, 

(a) Stop development activity. 
(b) Complete and/er review plans. 
(c) Follow through with plans. 

4-22 

, , 
, ' 

II 

, , 



9108 

' .... ,. ., 

Corrective Measures 

b. "When confusion causes schedule slippage (continued), 

(2) When re~uirements or design is the cause of 
confusion, 

(a) Stop staff growth. 

(b) Decide which are appropriate: 

i. Decrease the scope of the system. 

ii. Solve problems before proceeding. 

iii. Replace junior personnel with 
senior personnel. 

(3) When development plan execution is the cause 
,-

of confusion, decide \';hich are appropr iate: 

(a) Decrease staff size to a manageable level. 

(b) Replace junior team leaders with senior 
leaders. 

c. When inadequate system growth (progress) causes 

schedule sliEEa~, 

(1) Obtain an accurate independent assessment 
(audit) of the problem. 

(2) When poor direction inhibits system growth, 
follow steps (1) through (4) in item 4b. 

(3) When staff ability inhibits system qrowth, 

follow steps indicated in item 4c. 

(4) When major requirements changes inhibit system 

growth, follow steps (1) and (2) in item 4d. 

(5) When many minor requirements changes inhibit 
system growth, follow steps indicated in 
item 4e. 

(6) When an incomplete facet inhibits system 
growth, follow steps indicated in item 4f. 

4-23 



I 

-: ',": ',' ": I --: ~. ' 

• ~ :~\ 'I '. III ,.. '" • 1.' ,. " 

.. ,"'. i ~". 
, ",,,-

, " 
, '.' ,. ~"",~'.. ' 

B~§)[?)~C1r~ ({j)~ 
$~~~~~~~~~~~@J~~u$ 

.' 

5.4 AfP~!L vnruG YIHHE rFarECQ!~Jd!ilm~ru[J)rsD 
A~~~1R10ACf}ra II a ••• II ., •• ., ••••• II ••• ., •• 0 • • • • • •• 5-115 

5-1 

.~ '->:' , 



,~ ,)')' ":" -, ". ,"",' 
.: \ ...... ~ ", " ~. , , . . -( •• ' J' :,. .' ... 

" 

'. /' " 
'".''''' .~,-~-,~ ... , .. , 

The preceding sections of this document present the software 
development and munagement pr~ctices, techniques, and. aids 
that the SEL hus found beneficial., This section identifies 
key aspects of successful software development projects and 
discusses the application of the recommended approach. 

The following subsections contain three lists identifying 
key aspects of software development: 

Ten key "Do's~ for project success 

@ Ten key "Don'ts" for project success 

c Ten key points for assessing the quality of a 
project 

These lists are derived from SEL experience using the recom­
mended approach. 

section 5.1 lists and describes the 10 most important guide­
lines for managing a successful development p~oject: Sec­
tion 5.2, the 10 most important things to avoid in managing 
a development project. Section 5.3 highlights the 10 key 
points nost useful in evaluating or ass~ssing (auditing) a 
softwar~ development project. No particular order of prior­
ity is implied in any of these lists. 

Section 5.4 discusses the application of the recommended 
approach to software development. 

5-2 

9108 



, ' 
" f ,". 

, " 
., .. ,,) " 

4' j, • ,> 

<liP Usa a SmZlB§ SSll1Ih)rl' Smff 1105' 't;~2 G~riv D..i'ie t.'"vc~a 
Ph~SQO 

(& Douefcp aGld Adhore to 8 $of~"t"~r6 Deueio[lment P20n 

o l'JIafDna Sp:ocif~e ~/ial1Clrmcde~tl) and e~d P"Qd~cro 

o USIl forma! Tes~ing 

e; Usa a CcnuSlS RoposstO:"l 

G 'ECaep 0 Dota:!od lUs~ of TSD ~'iom$ 

e Upda'Co $vnfl:em Si::er RGqusfed Efion, Cost, ~nd 
ScD'toolugs tEn~im~~6s 

() AUo!:Qt:o 3iJ Forcont of Effon flllr &ntG9r~tion ond 
Testing 

o Ej';psriment 

5-3 

S1 ca-(!i11-t3 



., 
~ 

" ,., 

10 DOs 

The SELls 10 most important "DOs" for project success are 
descr ibed belo"l. ',.;.: " 

Use a small senior staff for the early life cycle phaies. A 
small'group of experienced senior personnel is better 
equipped to determine the 'approach, to prepare the software 
development plan, to set priorities and organize the work, 
and to establish reanonable schedules. With a lnrge team, 
there is a tendency to begin design or coding to keep people 
busy before the actual problem is known. 

Develop and adhere to a software development plan. This 

plan defines project organization and responsibilities: life 
cycle phases, approaches, intermediate and end products: 
approach guidelines and standards: product completion and 
acceptance criteria; configuration.management procedures: 
mechanisms for accounting status; product and progress re­
views; cost and schedule reviews: and.contingency plans. 
All development team members must know the plan and adhere 
to it. 

Define specific intermediate and end products. Specific 
intermediate and end products for each life cycle phase give' 
the deve~,pment team well-focused ~hort-term goals, provide 
the team with a sense of accomplishment, and provid~ a means 
to measure and evaluate progress. 

Examine alternative approaches. Alternative approaches, and 
the rationale for them, must be considered and evaluated in 
terms of project objectives and constraints, such as 
schedule, cost, team skill mix, availability of resources, 

and existing software. This is especially important during 
design. Do not assume that there is only one way of per­
forming the task; seriously examine at least one other ap­
proach to the design. 

5-4 

9108 



10 DOs 

Usc formal testing. Because all testing (unit, system inte­
gr~tion, acceptance) makes up 40 to 60 percent of a completed 
project's effort, cost, and schedule, it must be a well­
organized and efficient process. Avoid a haphazard approach 
to testing: develop a test plan and follow it. 

Use a 'central repository. Keep all development records and 
materials available in a central location so that the devel­
opment process and progress are visible to management. Keep 
the repository organized and up to date throughout the proj­

ect. 

KeeE a detailed list of TBD items. Classify TBD items by 
severity of impact in terms of system size, required effort, 

" 

cost, and schedule and set p~ior~ties for their resolution. 
Assign appropriate personnei'to~~solve TBD items and follow 
their progress closely'to ensure timely resolution. 

, " 

Update system size, required effort, cost, and schedule 
estimates. Do not insist on maintaining original estimates 
of the system size, required effort, cost, and schedule. 
Requirements de change, the composition of the development 
team changes, and problems are en~9untered throughout the 
project. Most important, more information is learned about 
the size and complexity of the problem as the project pro­

gresses. Each phase of the life cycle provides new and re­
fined information to improve the estimates and to plan the 
project more effectively. 

Allocate 30 percent of effort for integration and testing. 
The activities in the system integration and testing and the 
acceptance testing phases are the most sequential in the 
development process. These phases account for 20 to 
40 percent of a completed project's total effort, cost, and 
schedule~ and little can be done to compress or reduce the 
work required in these phases. The code must be complete 

5-5 

9108 



:.'/. ' 

''-.,' , 

10 DOs 

and unit tested before entering the system integration and 
testing phase. Avoid'"the common error of assuming that the 
integration ana testing effort can be compressed to make up 
for slippages in the schedule during design and implementa­
tion. 

EKperiment. In an age of increasingly scarce resources, 
review effectiveness, identify areas for improv~ment, and 
take steps to make the improvements. Acquire new skills, 
examine alternative approaches, and test and evaluate 
changes. Try new teChniques. Using the same methods this 
year that were used 2 or 3 years ago indicates a lack of 
growth. 

5-6 

9108 



j,' C) 

0 

G 

0 

" 
0 

Q 

0 

() 

." ·, • ...-'.· .. ·, .. ·111"·· ' .... 

YrefK§ elJ[»@IT\~'1f~17C 

[F(Qj~ ~~@JtECCu $Qj(f;(cLE~$ 

Don't ADkn,l1 Yetlm n.1emb~w To Pro coed an an 
Uredis~ipS§nsdl r.,,1JalrftL'ier 

iIlon't OoS5gmtel Technical DstoUs to Tosm R.1embaro 

Can't Aso~!!mo Thot a Rigid S"Gt of St:!indm"ds Ensures 
S15:t:cc~ 

Don't Asnurne That 21 Large Am09Jlnt of Docu:itcn'ta­
ticn ErIlst!lrGs Success 

Don't IilGuiote from the Approt!ed De~Egn , 

Don't Assume That tha Palce \fJm In",.ansa late:' in 
tho Pro]ac1: 

Don't Assume TIlat Intermediate SC~leiule snppagfj 
Can Ba Absorbed in a later Phase 

Don't Am:zurna That Everything Will Fit Together 
Smoothlv at tha F:nd 

5-7 

:)103-1511-81 



.,,, 1\ 
I> '. 

.', : ,,. "",i ;", .)" , 

to \)C)n'tn 

'rhe st~r.'::; La mont impol'tnnt "Don'ts" fot' project succes:; ure 

'\..' , ~"" 

nit~ntl. l\ flm"l t group of nenior personnel is better: equipped 

th"n l\ 1.1rql· stuff to or'Jl\nize :md de'termine the ,;irection 

or llpr,)j(·Gt. \~lw".1 1"rge st .... iCf is .,:1:iiqned .,t the bc.'gin­

"in'1 of' the~ project, tilt' nt.:l(( mCl\1h('rn llGlI,,11y hCl]in dl~~iqn­

I.IHJ til)lllt' ~wpect 01 the :iY:Jt.eln lH!t'orC! th(~ .:lctual problem i:i 

known. J\ft(?r.:l ~~ignific.,nt .,mount o( the lHldlJet in ~;pent, 

1ll.:l11.:lgern I'requ('ntly .:ll'e rt.~lllct;lnt to .,limit th''lt .1 mi.st.lke 

\",1n m.,de .:ln~t thllt the work lWrfl1rmcd is unlw .. ,bte. O'!C.:lunc 

of tId!'; llnwi 1 tinqnl'::;::; to disc.1t'd the ,,,ot'k .1nd ::;t.:lrt over, 

t:hl~ l'lJIll,1inde't' of the project w:'l1 be bu~cd on.:ln inv"lid 

dIH,i'Jn t.h.lt C.llH'l'n fllrtlll'r probll!IllG th::Ollghollt the projl!ct. 

!!lml~..i!.!Jll\-I b"lm ml'mbl'l':-; to pn"ce!I~d in ,,1\ llndit;ciplinl~d 

~~~~. Pt'v,~l()pilHl vcry [('li,1111e hi')h-qul\Uty :;I)(tW.:lre, .It 

cip1 i"I'd ,lppti':.:ltinn l)f ,\ n(~t of r~rilH',t principten,

:lH'tIH,dn, pr<lct. iCl~:;, "nd tc'chn iqlw:;. l\pply tlwlII.

Pl'n't d,'_!..~'t(' tt~dlllicl\t d,'t.,ih; h) h'.1111 IIIl'1111wr:1. I"irnt­

line m.1n"''.1('n~ l11\1ut klllHoJ the t('chnic"l d,'t,1iln l)[tht.' prnj­

t·ct. Dl) Ih)t. lit' 1 1".1.H I' th i:; .:l:1PI'Ct \' (t:ht' projl'l~t to the

"1<'mlwrn of th(' dcvel,'pmt'nt: tt~<lm, l~np(~ci.'t1y tl.' t:ht.'tH~ \)n .1

j lin \,H' 1 I'Vt~ 1.

:~II'~l::'I':;:; i:. nnt: 111<lr.1Iltc'cd by .1n), lh'\',~ll'pm,'"t I11t'lhod,,11)I.lY,

pr.1ctiL'I', \H tt'c1l1liqlll'. 'rile:", :,Jt.1IHi."'u.-d:.; prol\l"\·(~ di!3cipliIH~

,l\\d l~,'n:1i:;h'lll'Y in lIlt' prllCt'nn :lntl f.1ci1iLltl' d'~Hi91\ \o/.11k­

thrnllqlw, cI,d,' 1"1'"lIin'l, ,11,,1 tt':.t I'v.11I1ilt\,)n. litHo/ever, t:lw

,'xpl~r il'IH~I'd .1l1d'.1I1l"IlI::' ,lnd .!t'l~i:;i')I\:; 01 th,' l'l""jt'\~l. 11\,1n"'.1,'r,

tl\l' dl'vl~ll'PIII"llt t.I',ltll 11',ld,'r, ,1nd l)thl'l" :;,'n\,),· tt~,'hlli..:.,l pl.'I·­

:11'111'" t .'1·" lle,~":;:;,lry tl' ('n:l\lrl~ :Hlt'G(':;:; () 1 the' 1'[" il~ct.

r, _ tI

,f ':,

10 Don'ts

Don't assume that a large amount of documentation ensures
success. Each phase of the life cycle does not necessarily

. require a formally produced document to provide a clear
I . .

starting point for the next phas~. The level of formality
'and amount cf detail to bu provided in the documentation
must be determined by the project size, the life cycle dura­
tion, and t~e lifetime of the system. For exa~ple,
intermediate-sized projects (4 to 12 staff-years of effort)
of 18 months' duration or less do not require a formally

I produced preliminary design document. By the time the

material is prepared (edited, typed, reviewed, and so on),
the design document is obsolete.

Don't deviate from the approved design. As development pro­
gresses, developers may tend·to implement a slightly dif­
ferent design that still satisfies the requirements. The
managers must control this tendency by holding design walk­
throughs. Modifications by individual developers may be
correct in the local sense but not for ~he system as a whole.

Don't assume that relaxinq standards reduces cost. When a
failure to meet a deadline seems imminent, managers and de­
velopers sometimes attempt shortcuts by relaxing configura­
tioll control procedures, data collection procedures, design
formalism, or coding standards. In the long run, panic ac­
tions cause greater problems and added expense and do not
usually succeed in making the deadline anyway.

Don't assume that the pace will increase later in the proj­
ect. When design, implementation, or testing is progress­

i~g slowly, assign additional senIor personnel to help

and/or make schedule adjustments. The workrate for a given
activity is characteristic of the particular development
team--it generally does not change within a short period of
time. .Do not assume that the team will work faster later on.

5-9

9108

10 Don'ts

" , . ~' ,
,",

. '
\ ". ~ I'.

Don't assume that intermediate Gchedule slippage can be
absorbed in a later J?hase. ~lhen some part of ,the design
must be completed durin~j1mplementation, or when some part
of the implementation must be completed during system test­
ing, the later phase will not be completed on time unless
extra staff is added well before its scheduled completion.
It is a common mistake of managers and overly optimistic
developers to assume that the team will be more productive
later on. The work rate of the team cannot be changed ap­
preciably because the project is approaching completion of a
phase, especially in the later phases of development, when
the process is mo~t sequential. Because little can be done
to compress the schedule during the later life cycle phases,
the manage~s must change the schedule or apply additional
staff as soon as the problem 'is' known.

Don't assume that every~hing will fit together smoothly at
the end. Managers erroneously assume that late pieces of
design, code, or testing will contain few or no errors and
will fit into the system with rninimalintegr~tion effort.
The work of the developers will not be of higher quality
later in the project than it was earlier.

5-10

9108

~ "oj

; .

i

t- ,
>-••

o ~~ a trJriti:en Saft."",nro D~vc!o~ment ~i~rn t3a£ng
~s!c,,~oo?

0

G

(9

0

0

(')

C

Do TGrlm It~emharo Uno"" t~h~:ro the Frole~ Es muD
lrU;un(3 51 is Gngng7

Is a CoS1flguf~~on Centro! P22n Bein!] fonowed7

Es 1i1t~ro 0 S~I!'t~BQ Ccmp!eto list of TBD Etemz With
A..~~msnw?

~s Thoro a Ccmmonly-Adherod-To i\liethodo!o9\'?

Mauo A~tGmative Dasigns and Approaches Besn
Ccnsidsrod?

[.~ro Them Contir.gencv PI.nnz fer R~tion~ny Solving
P1'ob~ems7

5-11

I

", y-' " ",

., ", ... , ... -

Project Quality
" ~-

The SELls experience in assessing the quality of an active
project results from-close review of monitored SEL projects
and from conducting audits or independent evaluations of
othe~ projects. Ten key items for assessing the quality of
a project are explained below.

Software develop~ent plan. Is there a written soft~are de­
velopment plan? Do all team members know it, and are they
adhering to it?

Life cycle phases and products. Have the project managers
and team leaders defined a life cycle with specific inter­
mediate and end products? Are there centrally located lists
detailing what these phases and products are?

Managers and leaders. Is there someone in charge? . Does the
development team leader know 90 percent of the technical
details; the status of all major pieces of the software; the
status of critical, major, and nominal problem areas; and
future needs and potential problems? Does the project ~an­
ager know the status of all major pieces of the software;
two alternatives being considered to solve critical and
major problems; one alternative be~ng considered to solve
nominal problems; the impact of critical and major TBD
items; and the likelihood of cost and schedule perturbations
in terms of workrate and workload?

Staff size. Are the correct number of people working on the
project based on the projected workload and the development
team's workrate? Are staffing changes planned to match pro­
jected increases or decreases in workload? Do the project
workload and staff workrate projections match the schedule
projections?

Project objectives and status. Do development team members
fnow how their individual work fits in the project? Do they

5-12

9108

~ 'r' •• ~ ':',;,

,:~ J :.'~.:.:~).i:\,,'
,": . ,',,-

"i" . , ; ..

Project Quality

kno;., their own deadlines and the objectives of those dead­
lines? Do they know when to expect data or interfaces to be

'(~ ~ \', '

established? Do the" s'e'tiior members of the team know the

overall objectives of the project and how it fits in with
the work being done by other groups? Do they know the prob­

ability of timely interfaces and the impact and contingency
plans if they are not establir.hed?

Configuration control. Is there a written configuration
control plan? Do all development team members know and
fo1lo'\Ol it?

List of TBD items. Is there a single complete list of TBD
items? Are they classified by severity of impact in terms
of system size, required effort, cost, and schedule? Who
sets the priorities for the resolution of TBD items, and how

is their resolution scheduled and tracked?

Adherence to methodology. Do the development team members
follow a specific methodology? Do all team members have the
same understanding of what the methodol~gy is?

Alternative approaches. Has the dGvelopment team seriouslY
considered at least one other design? Have they written
down and justified the rationale for selecting the current
design over alternatives?

Contingency plans. Are there written contingency plans on

how to continue project work if, for example, a severe or
major TPD item breaks a development sequence, an interfa~e
is several weeks or months late, the computer is down or
malfunctioning for an extended period of time, the configu­
ration of the software system is lost, or a key team member
leaves the team prematurely? Are the manager and team
leader aware of a potential problem and do they have a plan
to minimize its effect?

5-13

9108

.", '

",..1

,
, "\

ffi1~(tDne1 WDu~G Y~~nt1E
~ ~«:(Q) u~il M [Efl\~ ~lE [J) A~~[7~ © ~Cll{)

~ ... ' ,

Q RClVEC~J tho I:!l(:)commond~d Ap~,"oach

e A!l~~V the ~ecoMmcnded Appr~ach GlD SCtt fFm1:S,
Un5a:3S Th90'0 £$ an ObU50U9 Gnd I."!aundod Rc~son faa'
ftflodiiving Rt

o MaE~Q Add~~Ecns to tho ApproE!ch To EnclilJdo
e~tab5e;sh:::Jtl! g~G'inci!l!cs, ru1€:fJ:hodo, ~ii'act~ces;, m~d
T(:]~hn:~~e~ Y&lCj~ a-e~U0 f?iI'ovcd Ben~iticaal in t~0
Us~r's ErIlu'l7onm~nt

o Ra~in9 Th5s SroS'tdm·d Approach e~~gd on Resu5ts of
Ccm~~QteJd t'~ojects end C{nGm,Sed!ge of rusU'J and
Refcned i"eciuu)~ct1i5cal Ell~®rimZl!l'ats

o Ju~icioUlSBV Adju:st S~2aef.Gd F~ca-ro of This Standard
Approach lily fu';iG~ns of the S@fu"J~ro Devo!opmont
Plem, Deponrling on tho I?Elrticu&ar ChS~'DGter;~tics
or the Endivcdlml Project, Such as Tvpe and SitZe

'" ! ..
~

"' o ...
~------.------------.---------------------------------------~~

1{ NOT FILMED"
rRECgDl~G rAGE nI.AN

5-15

, ',',

Recommended Approach .
:) .. ~ ,.

The SEL does not expect users to transfer the SELls recom­
'mended approach to software development and apply it to

I their own environment wi~~~u~ ~odification. The recommended
approach is standard in the SEL environment for one class of
softwar~--flight dynamics systems. Even in the BEL environ­
ment, however, the recommended approach is tuned to the
characteristics of individual projects and modified to re­
flect successful new technologies.

5-16

9108

~, ' I ~ ," .",.. • - <

. """'"
i

"

A-l

I

I

\

.of,'::.'-', •• ,;~ ""';' ~
~ . ' ". ,

This appendiy. summarizes suggested formats and contents of
reviews scheduled during the software.life cycle. All the
reviews are part of the recommended approach to software
development. For each review--SRR, PDR, CDR, and ORR--the
following areas are addressed:

e Review presentation material

o Review format
e Review hardcopy material

where the review presentation material is a subset of the
review hardcopy material. Following each hardcopy material

summary is a brief description of the contents.

\

,
.. ,·r _

VlfTEM 1m~(Q)lfUJ n [{dl~(j0fl ~((~'f~
~iE~D[t~M «@tf3rRl»

~-------------------~-.-------------,------------------------~
e Entroduc1ion and A~onda
Q Rcqui:rGmonm Sum:no'1(
o AnnlVlSic OvOrviiO't~J
(') funct;onal Specifications

- Em!ironmenml Ccneiderotio~a
Opsraticna5 "cquJromfmtD
(1) OElcra'ting Sctullarios
(2) D::ta Row Am~Svsia
(3) Pcriorn'lenco Rcqui~cm~mto
(4) !ntsriaco Rc~uiremenb

RGtSukemenb Rcbtin:nnhipQ
o DerivGd Sys1am liequirements .
C) Ret;juiromontG Ma:m1oomsnt Pkm
o Personnel Org:mi:l'!ction and EnteritJccs
o SOfu"JOfe9 PGrformonce ond Tasting Roq,,"iromontn
o E~CU£l~, TBD Item!!, and Prob!oms .
o MUofltones Dnd Sug:gcctod DeveloSlment Scnedulo

PRESerJTERS Roquiromants Dofinition Toam

PARTICIPANTS Dovelopment Toam RaprcscntDtives
Quality A~~ur:mco RCpl'O!Umtativ65

Usar Ropresentatives
CU3tomor Rcpro30n1.ateves

TIME After functional SpccificDtions Complotod snd
Before Functional Denion Sttlrted

HARDCOPY Minimum of 5 Days Boforo SRR
DISTRIBUTIOI'J

.;'-3 91OS-151dl-SJ

1 ,.

~-----------------------~-----~---- .------------------~ 1. httuocduction
2. &l~qtd!'omcntQ Summary
3. AG1:dVds Ovm'Vi'lw
4. Functlor.cl S"ocificndcnc

ClI. £:n\1i:rcU':mantn! Con~k~arstloU1~
b. Opot'ctin1l1sl tt:a-qu!rnmcntG

(1) O~o~stln9 SCO~l~:tOO
(2) Data Rom ACll'Jlveio

(0) Svotcm f~::ut
(b) PMa:O~!~G flc::t~.dromenw
(c) SVtitGm Output .

(3) Poriorm!lJ'tcG ~cq'Uiremont:J
(4) In~orieco f?oq~~i'Omontn

c. ~cqt!Zrnmonto RQ'Qtion3hip~
G. Dorived Svntcm Rc-qukomcnt:J
9. Utmtv, Su,'pcrt, end Test Pronll"tams
7. neuUlblo Sofu~om Summer I
S. Dou. Sot Do¥i~'tiGn5
9. Rcq:.lliromGnt~ r,n.enci'i~mcnt PloDn

s. Portlonnol Aonignmant!)
b. Da$cri~th:m of l1oqulrod Documonts

. c. Configuration ControS Approcch
d. Enhenccmont/r/lointennnco Proccrluro9
o. Roporting Gnd Tooting Evoluction Procedures

10. Pornonncl Organi,mtion ,md Interfaces
11. Sofu'lltlro Por1ol'nnmco and Testing Rcquiromonto

Q. Anclytlcsl
b. Systom
c. Intorface
d. AccoptcncD

12. In1lU3~, TSD horn" nnd Probloms
13. Milestonos Dnd Suggosted Dovelopment Schedulo

A-4

9103·151111-83

r

)

, , .. , ,
",,', "

SRR

The SRR hardcopy material contains

1. Introduction--Purpose ot system, background of project,
and outline of review material

2. Requirements summar~'~-Review of top-level (basic) re­
quirements that are developed to form the functional
specifications

9108

a. Background of requirements--Overview of project
charac~eristics, major events, support

b. Derivation of requirements--Diagram showing

(1) Project Office input used to form1llate the
requirements for the support organization-­
support instrumentation requirements document
(SIRD), memorandums of information (MOrs),
memorandums of understanding (MOUs), etc.

(2) Support organization input used to formulate
requirements for the system engineering orga­
nization, e.g., SIRD, MOIs, MOUs, and support
organization's constraints, assumptions, and
guidelines

(3) System engineering organization input used to
formulate the requirements (functional speci­

fications and requirements document (FSRD»
for the software engineering organization-­
Analytical studies, software system analysis,
etc.

c. Type of requirements

(1) Evolution of support requirements

(a) Typical support
(b) Critical support
(c, Special support
(d) Contir.gency support

A-5

SRR

(2)

(3)

, ", ..

Operatio~~l cupport scenarios

Relati~'~'~~iP Of'~'~~uirements matr i~--Reiation­
ship of top-level tequirements .to operational

support scenarios

d. Constraints, assumptions, and guidelines

(1) Organizational interfaces--Organizations that

provide system and support input and rec~ive
s}'stem output

(2) Data availability for the operational support

scenarjos--Frequency, volume, format

(3) Facilities--Target.computing hardware, envi­
ronment characteristjcs, communications proto­

cols, etc.

(4) General software consideration~--High-l~vel
description of computer sto~age, gr~phics, and

failure/recovery requirements; o~erator inter­
action requirements; system error recovery and
diagnostic output requirem~nts; etc.

(5) Support and test software considerations--High­

level description of requirementG for data

simulators, test programs, support utilities

e. Overvie~ of functional specifications and require­
m~nts document (FSRD)

(1) Histor.y of evolut:on--Draft dates and reviews

(2, Outline of contJnts

3. Analysis overview--Mathematical and logical f,amewo~k
necessary for d~sign, implemer.tation, and testing of the
system

QlnR

a. Introduction--Project overview, support firsts,
bases for analysis

A-6

'~ .

" ': i", .~ •• '" 'l' ,; ~ - '

.... .. .' ",' ~ .~.

, _ f
'., '~.' \., '('~' ,

b. Analysis approach--Major arcas of ~nalysis neces­
sary to produc~ FSRO

SRR

c. Special studies and results--Overview of rurpose of
... '\

studies and conclusions

4. Functional specifications

a. Environmental considerations--Target computing
hardware, special computing capabilities (e.g.,
graphics), operating system limitations, computer
facility operating procedures and po~icies, support
software limitations, data base constraints, re­

source limitations, etc.

b. Operational requirements

(1) Operational scenarios--High-level diagrams of

operational support goals and concepts, in­
cluding all interfaces

(2) Data flow analysis--Diagrams showing input,
processes, ~nd output, including all interfaces

(a) System input--Data availability, fre­
quency, volume,-coordlnates, units, for-

mats

(b) processing requirements--What functions

must be performed to transform some input
into some output

(c) System output--Data frequency, volume,

coordinates, units, formats

(3) Performance requirements--System processing

speed, system respon~e time, system ~ailure

i recovery time, output data availability

(4) Interface requirements--Summary qf human,
~ special-purpose hardware, and au~omated system

l\-i

...... " '.

SRR

c.

, , ~ , ~ f \

" .,' , , .'
" .' , ,

intp.rfacec, including 'references to intQrfacc
ugrecmcnt documents (lADs) and interface con­
trol documents (ICDs)

Relationship of requirements matrix, e.g., rela­
tionship of requirements to operational scenarios

5. Derived system requirements--Structured, enumerated list
of the requirements derived in formulating the func-
ticnal specifications

I 6. Utility, support, and test programs--Rationale for par­

titioning system into smaller programs to support opera­
tional scenarios: to support data processing volume,

frequency, or speci3l conditions; and to make use of
reliable existing software; al'so, rationale for data
simulators and test programs

7. Reusable softwa re summa ry--Identification of mdsting
software components that satisfy specific system, func­
tional specifications e~actly or that will satisfy them
after specified modifications

S. Data set definitions for

a. Interfaces external to the system, including

(1) Format and description of items in header,

data, and other records

(2) File structure (blockin~ and access methods)

(3) Storage requirements in all proc~ssing modes

b. Interfaces between specified utilities and support

programs--Format of data, description of da~a flow,
etc.

9. Requirements management plan

9108

a. Personnel assig~~ents--Requirements definition and
analysis team organization; key personnel and their

responsibilities and start dates: etc.

A-S

· ,

, '"

SRR

b. :Description of required dobuments--Name, form, and
contents o~ documents~ production standards; date
scheduled fo~ deiivery~ name of organization (per­
son) responsiblc7 internal, external, and quality
assurance review procedures~ authorization proce­
dure for release~ etc.

(1) System functional specifications and require­
ments

(2) Software system

(3) Operational support

c. Specifications/requirements change control proce­
dures--Initiation, forms, reviews, approval, au­

thorization, distribution

d. System enhanccm'ent/mainf.'enance procedures--Initia­
tion, forms, reviews, approval, authorization

e. Reporting and testing evaluation procedures-­
Forms, reviews, approval, authorization, distribu-

I
I

tion

10. Personnel organization and interfaces--Diagram Ehowing
organizational interfaces, their points of contact, and
their responsibilities

11. System performance and testing requirements--Organiza­
tion responsible~ testing philosophy and procedures;
forms; internal, external, and quality assurance re­
views; approval

a. Analytical tests
b. System tests
c. Inter face tests
d. Acceptance tests

A-9

', 1 '

, ;1e

SRR
I ~,' ,

12. Issues, TBD items r and"problems--A characterization of
all those thi~gs that a~fect plans for preliminary de­
sign and the st~f~"of the requirements, an assessment
of their effect on progress, and a course of action to"
resolve them, including required effort, schedule, and

cost

l3~ Milestones and suggested development schedule--Reviews;

delivery of interfaces, documents, and externally de­
veloped software~ data flows for readine~s prepa~ation

and training

A-10

......... ______ ""'-...... __ .~9' finO_-.....-__ ~ ____ --..o.--__ • _. __ __ _______________ ._._.b~._A_~~~==

, .
" .' r ~I', " " ..

'c.

; . ,

fP> (ffi fE lLO ~frI B ~~A~ W fO) IT:~ n (Gj r~
~rE~~[EW ~~ttDtRi~

, 0 R~trQd~ction and Agenda
o Dct';gn Ovorviow

'. '

co High-Loval DiC;2'DmS of Oporating Scenerries
o HJf,ih-lovel Di~grnm.a t)~ System Strm::tcr0
o ril1ajor Sofu"!Zlfo Components

High-l.ovo3 Di~~rrQnUil of Sub~yotsm3
- liigh-lovoll/O S~~>ciflc::t~ions nnd BntGri~co3
- Functional f3enoUno Dingr&mo (Tr~ocC1:n1;D)

o Design Tcsm A:ma~mt)nt
o Svmom Siz~, Rcq:.drod ~fiort, Co~t, £!nd Schodl!!e Estimato!}
o Resourco AUoClltion ~nd Ememlll SUllpmt
o D~woCcpmont Manogcmont P:on
o Peroonnd Oruonization and InterfaceD
o Tasting Strategy
o ES:;;~S3, TaD ItamD, ~nd Problems
o r __ .,n\9stcnos and ScheduleD

PRESENTERS &lfu'\fOro Development Team

PARTiCIPANTS Rcqurromenro Dofinition Toam
OuaU'ty A~3urance Representatives From Both
Groups
Customer Intorfacon for Both Groups

TIME After Functional Dosign Comploted and Bofero
DGtai~Qd Dosign Started

HARDCOPY Minimum of 5 Days Bcforo PDR
DISTRIBUTIOm

91 C·lH51fl-e3
A-ll

~[R1rErLn~~~jt~~W [Q)~~~g~~
" ,',' ~[E~g[E~~ ([?Ud)rm»

1. Ell'luoductlcn
2. DesiGn OYONiow
3. Wa!jh-!LQvd D§c:gFlom~ of Op~li'c.tcng S~cnorion
q. High-lavonl D!o~lI'c:m; o~ 5ymom Strm::ttJro
5. Crit~quo of AI~oma!htO DO:lignZl
0. Meier Softwsre Compnnnnm

c. l~asc,-Lcv~1 D~aiJramc of S"bDV~1omz
b. High-lovol CIO Sil9c3f'icatcons and irJtoriCO'09

c. i=unctkmol Oatla~ir.o O~o~r~mn (1irooeh{jlrto)
d. $croon, t:'fin~eg', Gnd Piottea' fFcrm:;.,t:\

7. Hsrdwcre Int[lnnccs
O. InterneS CaUl Sot nofirdtion:J
9. Rou~blQ Cotio Summm"l

10. flos:~n Yearn As::os::smont
11. Syoi:cm Sizo, Rcquirod Effort, CO:;'l, iind Schadl!!e EztimctGu
12. ROI:ourco AUoC3tion and Gmcrnol SIlJPpO~
13. Dovo2opmont flt'Jonagcmont Pbm

fl. Ufo Cycle end Productc
b. Mothodologies
c. Models end Tools
d. Configuration Control Approm:h

14. Pareonnel Orgnni1!ation and interfaces
15. Tonting Stratagy

o. Genorol Appro3ch
b. e,.-tcnt
c. Control Mochanisms

16. Issues, TBD Item3, and Problems
17. MiloDtcnsD and Schodules

A-12

9103.(510)-83

",. ':;' " '
." ., POR

The POR hardcopy material contains

1. Introduction--Purpose of the system and outline of re­
view material ;,'.-'

a. Requirements 8ummary--Origin and format of re­

quirements: list of major system components, in­
cluding the top-level (basic) requirements which

they satisfy Dnd which are covered in the review

b. Additional derived software requirements--Require­
ments derived by the development team during the
requirements analysis phase

(1) Operating scenario requirements--Oata han­
dling, e~ecution frequency, turnaround time,

checkpoint/restart capabilities, graphics

needs, etc.

(2) Environment considerations--Target computing
machine, operating,system, computer system
support software, graphics packages and hard­
ware, etc.

(3) Software legacy (pa~t experiences and history)

(a) Cost factors--Experience history, design

models, reusable code, etc.

(b) Schedule factors--Oeadlines: hardware,

software, and support dependencies: etc.

2. Design overview

910H

a. Requirements summary--List cross-referen~ing top­
level (basic) requirements to major system compo­
nents presented at SRR

b. Performance requirements--Cross-reference list of
performance requirements that led to partitioning
of system into major components

.1\-13

PDR
' .. ','

c. Design drivers--Primary factors that influenced
the development team's design, e.g., operating
scenarios,:environmental con~iderations, and soft-
ware legacy

, 3. High-level diagrams of operating scenarios--Input stim­
ulus, processing, output stimulus, and interfaces to
show how requirements are met

4. High-level diagrams of system structure--Intcrnal and
external data and hardware interfaces, etc.

5. Critique of alternative designs or approaches

6. Major software components--For each subsystem or major
functional breakdown (in each processing mode) ,

a. High-level diagrams of subsystems--Internal and
external data and hardware interfaces, etc.

b.' High-level input and output specifications, in­
cluding frequency and volume

c. Functional baseline diagrams (treecharts) expanded
to two levels below the subsystem driver, showing
interfaces, dati .low, a.nd how requirements are met

d. Facsimiles of I/O graphics displays (screens) and
printer and plotter output

e. Error processing and recovery strategy

7. Hardware interfaces

8. Internal data sets

a. Format and description of items in header, data,
and other records

b. Fi le structure (blocking and access rnethods) .

c. Storage requirements in all processing modes

9. Summary of existing code that may be reused

A-l4

9108

'" \~ , ,

., . , POR

10. Design team assessment

a. List of constraints and their effects on design

b. List of assumptio'ns nnd:possible effects on design
if they are \,11:on9

c •• List of concerns and problem arcQs--Oeterrcnts of
progress

'd. List of TDO requirements and an assessment of
their impact on system size, required effort,
cost, and schedule

e. List of priority areas

11. Estimatcs of system size, requircd effort, cost, and
schedule

a. Sizing and resources for major systcm components
or subsystems--Numbcr of modules, source lines of
code, computer hours, effort units, etc.

b. Life cycle expenditures--Time and effort breakdown
for life cycle phases

c. Staffing plan--Allocation of personnel by type for
life cycle phases

12. Resource allocation and external'support

9108

a. Summary ,of how system functions \...111 be performed,
i.e., by hardware, firmware, software, or human

b. Rationale for selecting computers, e.g., speed,
memory, storage, and reliability of mainframes,
minicomputers, or microcomputers

c. Summary of what the development team will do and
what they need to do it, e.g., analysis support,

librarian Gupport, computer access and informa­
tion, support documentation, interface access,
integration support

A-15

PDR
" ;-.;-" - J~' ~, •

13. Development management plan

a. Life cycle phrises and' products produced

b. Methodologies used by phase

c. Models and tools used by phase
•

d. Configuration control approach followed by phase--
Controlled items, forms, procedures, approval, au­
thorization, distribution

14. Personnel organization and interfaces--Diagram showing
organizational interfaces, their points of contact, and
their responsibilities

15. Testing strategy

a. General approach to testing (methods)

b. Extent--Responsibility and procedures for unit
tests, build/release tests integration tests, sys­
tem tests, acceptance tests

c. Control mechanisms--Internal, external, and qual­
ity assurance review procedures: approval: author­
ization: configuration integrity procedures

16. Issues, TBD items, and problems--A characterization of
all those things that affect plans for detailed design,
an assessment of their effect on progress, and a course
of action to resolve them, including required effort,
schedule, and cost

17. Milestones and schedules--Including delivery of inter­
faces and externally developed software for integration
and testing

A-16

9108

.. _,."

ttl Entrcrluction t:lll'Tid A'Gtmd:J
" De2!g~ Ovorview

"1'; ~ f';-~: ~:,
,. "'/ \ 'J'

o t-2iCh-tl..O\ICI D~t!i3r!1ms at Opc~cting Scenorloa
() HSgh-r..ovc! D!~nr~lmt; oi SVDtem Structure
o Maj~il" SO~Jar£l Compcn~nw

Hi~h-level Dio!lr~m~ of Subsv:;t~m!S
High-laual B/O S~a:ificst!cl!1s end Intcri~t:CI!ll
Funct!ona! 84'!:'::cUnG Dic9rQm~ (Troocharnl)
Ervor Pro~in9 and Rocovery Strlltosv
ns.rnictl::ms of Pt'Oco~ing Modon
Internel Stcfoga Ro-~uirmnonts

o Danicn Tenm Aseo~me::'it
o Imil~cmenmticn ~trote9V and TVClcoabmty
o S\~ctom Siz:c, ~~uirod Effort, Coot, cnd Schedulo l1~timDto9
e n~Dureo AUocotio~l end E.:rtcrnal Su~pnn
o Douo!npment rv1cnc;omcnt Pkn
o Portlonno! Orconia:Gticn and Intariacc9
Q TODting Streta:gv
o 'SSle33, TBD Itern!), end Prob!ems
o Mifetrton:oo end &:hcduloc

PRESefJTERS Softt-'lInro Developmont Team

PARTICIPAr..JTS Roquiroment!l Definition Tonm
Quality AS5uranc9 Representatives From Both
Groups
Customer Interlaces for 30th Groups

TIME Aftor Dotailed Dosign Completed nnd Boforo
Implomentation St.Dr:cd

HARDCOPY Minimum of 5 Days Bofore CDR
DISTRIBUTION

,;-17 91 0lJ..(51 h Hll

1. Erntroductic:l
2. Oozfgn OvoMlfow

" ,
.,'

, ...
. "', \,

3. H~gh-!.oueS D30g ... om~ of OpGru~~nt.l ZCCJm~r~o9
4. .UCh-!.O'lfCI Din~ram~ of SVGt0:11 Strmc~,:ur~
5. r,,'a~jcr Sofiw:u'o CmniWnonw

13. Hi£:h-lc'lJol Dh::Uri'cmz 01 Suooi1otcm~
b. HI9h-lcVGl! 910 SpccWcatfo51:J ood B71taricco~
c. Functim",;1 SG3Qnm:~ mogrrnms ITmechom)
d. Error Proco~long Gnd RecoVGUV $ttetetlV
G. nC!ltrictlon~ of Procexing P,,;~~:!J:dot'l

f. Intomcl S~c:;,ogo n~uiremmll~
9. CotoUcd SlO Spociiicfltio:':s

(1' Pro~oo:.i!llf3 Control Porrcmo~!1'9
(2). $croon, Printer, ~nd P20tter &:ormats

O. Hnrciwt!lJ'O Int"Jrrcco9
7. Intcmd Dam Sot Ocfhlitionfl
s. ilemmblo Cedo Sumrn:!ri
9. De~lcn Toom An!l~~mont .

10. Imp'!ementntion Stf8tcg\' nnd 1'rrGcodbUity
11. SV!l'i:sm Sizo, Required Effort, Cont, nnd S"Chadu!a Esttmetas
12. ROllourcG AUocsteon and EntClrnal SU;lport
13. Devolopmont MonngQrnont Pion

8. Ufo Cyclo end Products
b. Mothcdo'ogiof)
c. Modals and Tocln
d. Configuration COl1trol Approach

14. Po;"Scnncl Oryanizntion ond Intetfnc3s
15. Tonting Strntogy

D. GCJnafsl Approach
b. Extant
c. Control Mechanism:l

15. Issuo:J, TBD Items, nnd Problems
17. Milestones and Schodubs

910S-(51J1.a3

I i
. I

'.J _

CDR
'., '

The CDR hardcopy material contains

1. Introduction--P,urpose of the system and outline of re-
" ~ " \"

vie~ ... material

a. Requirements summary--Origin and format of re­

quirements: list of major system components, in­
cluding the top-level (basic) requirements which

they satisfy and which are covered in the review

b. Additional derived soft\-lare requirements--Require­
ments derived by the development team during ~he

requirements analysi~ phase

(1) Operating scenario requirements--Data han­
dling, execution frequency, turnaround time,

checkpoint/restart capabilities, graphics
needs, 'etc.

(2) Environment considerations--Target computing
machine, operating system, computer system
support software, graphics packages and hard-

I

ware, etc.

(3) Software legacy (p~st experiences and history)

Ca) Cost factors--Experience history, design

models, reusable code, etc.

(b) Schedule factors--Deadlines; hardware,
software, and support dependencies; etc.

2. Design overview

9108

a. Requirements summary--List cross-referencing top­

level (basic) requirements to major system compo-.
nents presented at SRR

b. Performance requirements--Cross-reference list of
performance requirements that led to partitioning
of system into major components

A-l9

CDR

(.:'
I '

c. Design drivcrs--Primary factors that influenced the

development~t~am'~ design, e.g., operating

scenarios, ~~~lr~nme~t~l considerations, and soft­

ware legacy

3. High-level diagrams of operating scenarios--Input stim·­

ulus, processing, output stimulus, and interfaces to

show how requirements are met

4. High-level diagrams of system structure--Internal and
external data and hardware interfaces, etc.

5. Major ~oftware components--For each subsystem or major

functional breakdown (in each processing mode),

9108

a. High-level diagrams of subsystems··-Internal and

external data and hardware interfaces, etc.

b. High-level input and output specifications, in­
cluding frequency and volume

c. Baseline diagrams (treecharts) exp3nued to the sub­

routine level, showing interfaces, data flow, in­

teractive control, interactive input and output,

and how requirements ar~ met

d. Error processing and recovery strategy

e. Restrictions in each processing m00e

f. Internal storage requireme~ts--Descriptio~ of ar­
rays, th~ir size, thei~ data capacity in ell proc­

essing modes, and implied limitations of processing

g. Detailed input and output specifications

(1) Processing control parameters--NANELISTS, etc.

(2) Facsimiles of I/O graphics displays (scr~ens)

and printer and plotter output

A-20

I'

------.

CDR

6. Hardware interfaces

7. Internal data sets
_';\'io. t\ r ;'.' .''"',

a. Format and description of items in header, data,
and other records

b. File structure (blocking and access methods)

c. Storage requirements in all processing modes

B. Summary· of existing code that may be reused

9. Design team assessment

a. List of constraints and their effects on design

b. List of assumptions and possible effects on design
if they are wrong

c. List of concerns and problem areas--Deterrents of
progress

d. • List of TBD requirements and an assessment of
their impact on system size, required effort,

~ost, and schedule

e. List of priority areas

10; Implementation strategy and traceability

9108

a. Build/release overview and schedule, indicating
establishment of internal and external data inter­

faces for both connection tests and data flow
tests and showing delivery of interfaces and ex­

ternally developed software

b. Build/release capabilities--List of capabilities

implemented in each build/release by subsystem

c. Requirements traceability--Cross-reference list of
build/release capabilities to basic and derived
software requirements

A-2l

-

CDR
.' : :~: ';~:,' '~.~"~ /

I ... ~

11. Estimates of system size, required effort, cost, and
schedule

~. Sizing and re'sources for major system components or
subsystems--Number of modules, source lines cf

, code~ computer hours, effort units, etc;

b. Life cycle expenditures--rime and effort breakdown
for life cycle phases

c. Staffing plan--Allocation of personnel by type for
life cycle phases

12. Resource allocatio'n and external support

a. Summary of how system functions will be performed,
i.e., by hardware, firmware, software, or human

b. Rationale for selecting computers, e.g., speed,
memory, storage, and reliability of mainframes,
minicomputers, or microcomputers:

c. Summary of what the development team will do and
what they need to do jt, e.g., analysis support,
librarian support, computer access and information,
support documentation, interface access, integra­
tion support

13. Development management plan

a. Life cycle phases and products produced

b. Methodologies used by phase

c. Models and tools used by phase

d. Configuration control approach followed by phase-­

Controlled items, forms, procedures, approval, au­
thorization, distribution

14. Personnel organization and interfaces--Diagram showing
organizational interfaces, their points of contact, and
their responsibilities

A-22

> '.

CDR
: / ", .:t'

" ,

15. Testing strategy

a. 'General approach to testing (methods)

b. Extent--Resport'sibility and procedures for uni t
tests, build/release tests, integration tests,
system tests, acceptance tests

c. Control mechanisms--Internal, external, and qual­
ity assurance review procedures; approval; author­

ization: configuration integrity procedures

16. Issues, TBO items, and problems--A characterization of
all those things that affect plans for detailed design,
an assessment of their effect on progress, and a course
of action to resolve them, including required effort,
schedule, and cost

,':,' ,,;'

17. Milestones and schedules~-Including delivery of inter­
faces and externally developed software for integration
and testing

;\-23

9108

_________________ 0_. __ -

, ,

--
, !

I'

'/'.' ,1 \, ,\

" ..

• • ~ < , ' ' ,

, .' . '.'

(fj) [? f1~ IT{~tJ~ uH ~}; U~9#~fl rf{UE~fQ) ~ ~ lE~~
fffi fE\\'iu b~£~itf «(Q) ~ L~)

G) Entr~d!uct!o~ end A~~r.~a
Q SY:l1om RO(jldi"m1itonts Summoll'V
e A.nalytlc3 Overuiow

'(1} Support Svotcm Ovar..i~ow
Mujor $oi{1.voro C~mpcn~rito
Svs~om T(!~f:!n9 PhilosophV
SYDtORl TC::lnting a~d Performance Evaluation Rcmuits
Requiremort~::; \feriiicotioDl Philo;llOphy
SYlltsm ScfCt"~ro and Doc!.!!ngntta~icn S~tUD

o Ops!I'£lt§ons 2:nd Support Pion
PereonneR AOD5snmsnts Ilnd Respom:;ibiUtkaa
O~'9ard::atE(!,31Ie! fn~CnLlCQ!3

DOUI Avaihoi~mtv '
Facilitios
Operating Scanalrt03

e 5votcm ro;1.:mogomc~~ Plan
c J'arrsonnoJ Otgcn3zZltfom ~nd Entorf3c~s
o l:!sLu3n, TBD Sterna, ~nd Prcblf'.:ms
G Contingoncy Plans
o M~!c:ltonc~ and Timclino of Euonm

PRESENTERS Oporotion9 and Support Team

PARTICIPANTS Uf19r Accaptance Te~t Team
Requiroments Do1inition, Sofh .. ,mro
Oovolopmcnt, end Sofu'llars Mcintonance
Representatives
Quality AS!lU1anCa RepresentativGs From All
Groups

TIME

HARDCOPY
DISTfUBUTION

Customor Intarfm:GD for All Groups

After Acceptance iesting Comp~etcd and SO
Days Bofore Operations Start

Minimum of 5 Days Befere ORR

910S-151bl-S3

PRECEI)J~(; PAGE nLA~K NOT FTL~mI1 A-25

.... ¥ _L: .•. ..!

"{,':;'I/",,};:~:~ <:,,' ,t:.«,i:-- ' ',,"
~ "..:-" .

~!~A~OrtJi[E~$
((OJ U\1 [}li »

1. intrcduction

, ,. ,
, "

2. Syotom RctluirClmonto Summary
2. AncSvoio OV(lrviow
4. SUP;lcrt Sy:rtom Ovc:-vtOW '

D. Major SoftWO!l'll Ccmpcnonto
b. SV!ltcm TGstktg FhUo~ophV
c. System ic~,n9 and Poriormanco Eva!u::Ithm E1e:;u!tD
d. ~cquJromontQ VGrmCQt~nn PhllosophV
Q. Svctom Softtvoro and Documontation StDtutJ

6. Opar~ticn1l and Su~port Phm
ti. Po~onnol Asz!gnmantll amt Ron~naihmtlos
b. Org~ni2to~io:ml intorfl.!cos .
c. D3W AveilabiUt'l1
d. ~ocmt£o9

(1) Norma! Op!'ll'otian~
(2) Crit;cnl Oglcrotionn
(3) Emergencv Olle"'~tiont!
(13) Con~ing~!I1cv Operationn

o. Oporoting Scenorim;
(1) Supp~rt Rcquiromontn
(2) Timeiina Qf Events
(3) Operating Procoduros
(4) Rosourcss Required

G. Svstom Managemont Pion
D. Personnal Annignmont~
b. Doscription of R~quirGd Products
c. Configuration Control Appronch
d. EnhcncomontliVinlntonllnco Proceduren
G. Reporting m.d Tasting Evaluation Proceduros
f. System PONormnnce EVllluGtion Procedures

7. Pors::mnol Organization and Intorlaceg
8. Issuos, TBD Itonls, nnd ProbJoms
9. Contingoncy Plnns

10. Milostones nnd Timolino of Evonts

,\- 2 (i

910!H51cl~

•

ORR

The ORR hardcopy material contains

1.

2.

9108

Introduction--Pu~pose of the system and outline of re-
view material ,- r,;~

System requirements summary--Review of top-level (basic)
requirements

a. Background of requirements--Overview of project
characteristics, major events, and support

b. Derivation of requircments--Diagram showing

c.

0.) Project office input
(2) Support organization input
(3) System engineering input
(4) Software engineering input

Type of requirements

(1) Evaluation of support requirements

(a) Typical support
(b) Critical support
(c) Special support
(d) Contingency support

(2) Operational support scenarios

(3) Relationship of requirements matr.ix, e.g.,
relationship of top-level requirements to op­
erational support scenarios

d. Constraints, assumptions, and guidelines

(1) Organizational interfacp.s--Organizations that
provide system and support input and receive
system output

(2) Data availability for the operating sce­
narios--Frequency, volume, format

(3) Facilities--Computing hardware, environment
characteristics, communications protocols, etc.

A-27

.!, ORR
! .

(4) General system considerations--High-level de­
scription of computer otorage~ graphics, and
failui~jr~~over~ iequirements: operator inter­
action requirements: system error recovery and
diagnostic output requirements; etc.

(5) Support and test software considerations-­
High-level description of requirements for
data simulatots, test 'programs, and support
utilities

3. Analysis overview--Summary of all analysis leading to an
operational system

a. Introduction--Project overview, support firsts,
bases for analysis

b. Major areas of analysis and findings

c. Special studies and results

4. Support system overview

9108

a. Major software components--Purpose, general charac­
teristics, and operating scenarios supported by

programs and subsystems

b. System' testing philosophy for each type of test­
ing--Unit, build/release, integration, checkout,
and acceptance

c. System testing and performance evaluation results-­
Summary of test results and evaluation of system
performance measured against performance require­
ments

d. Requirements verification philosophy--Demonstration
of methods used to ensure that the software satis­
fies all system requirements

A-28

t ," . "

. ,;",,"
, l'

c. System siJft\;I(lre and documentation status--Summary

of completed work packages and list of incomplete

work packages with scheduled completion dates and

e~planution of delays

ORR

5. Operations and support plan

9108

a. Personnel assignments and responsibilities--Opera­

tions and support team organization, key personnel

and their responsibilities, etc.

b. Org(lnizational interfaces--Diagrams and tables in­
dicating organizational interfaces, their points of
contact and their responsibilities; data flow and

medium (forms, tapes, voice, log)

c. Data availability--Nominal schedule of input and'

output data by type, format, frequency, volume,

response time, turnaround time

d. Facilities--Nominal schedule of accessibility to

computers, support hardware, special-purpose hard­

ware, operating systems, and suppor~ software for

(1) Normal operations

(2) Critical operations
(3) Emergency operations

(4) Contingency operations

e. Operating scenarios--Step-by-step operating proce­

dures, including personnel assignments, points of

contact for decisions, authorization, and external

interfaces, time1ines, contingencies, and emergen­

cies

(1) Support requirements--What has to be done?

(2) Timeline of events--When do things get done?

(3) Operating procedures--90w do things get done?

A-29

ORR

"'; ,'

. ',"'"

i
(4) Resources required for operations--What is

necessa,ry"to get. things done?

(a) Hardware--CPUs, disks, tapes, printero,
I

graphic devices, etc.

(b) Memory considerations--Program s' ,rage,
array storage, data set buffers, ~tc.

(c) Timing considerationo--CPU and wallclock
time in terms of samples and cycles proc­

essed and I/O time in terms of data sets

used and type of pr.ocessing

(d) Peripheral space considerations--Data

storage and printout

(e) Staffing considerations--Number and type
of people in terms of processing steps
and shifts

(f) Physical space considerations--Desks,
chairs, shelves, storage, etc.

6. System management plan'

9108

a. Personnel assignments--Operations and support team

organization: key person~el and their responsibili­

ties and start dates: etc.

b. Description of required products--Name, form, and

contents of products: production standards: date
scheduled for delivery: name of organization (per­
son) responsible: internal, external, and quality

assurance review procedures: authorization proce­

dures for release: etc.

c. Configuration control procedures--Explanation of

step-by-step procedures for ~aintaining system in­

tegrity, recovering from loss, fixing faults, and
enhancing system

A-30

.. ' .
\ '" , '

') '.

~. ~ , ' '",
,\\

, ORR

d. Enhancement/maintenance procedures--Initiation,
forms, reviews, approval, authorization

.,:.')-, ') . '\'

e. Reporting and testing evaluation procedures-­
Forms, reviews, approval, authorization, distribu­
tion

I f. System performance evaluation procedures--Approach
for ongoing evaluation of 'system performance

7. Personnel organization and interfaces--Diagrarn showing
organizational interfaces, their points of contact, and

their. responsibilities

8. Issues, TBD items, and problems--A characterization of
all those things that affect intended normal operations
as perceived by the developers and users, an assessment

"
of their effect on operations, and a course of action
to reqolve them, including required effort, schedule,

"

and cost

9. Contingency plans--Prioritized list of things that
could prevent normal operations, including the steps
necessary to work around the problems, the defined
levels of operations during the workarounds, and the
procedures to attempt to regain normal operation~

10. Milestones and timeline of,events--Diagrams, tables,
and scripts of events; operacing scenarios; mainte­
nance; enhancement; reviews; training; etc.

A-31

9108

I ' .

. '
,

RlEf?©~::iT ••• " " ••• ., •• " " •••• " 8-11

,

B.5 TEST PLANS " " II. 8-23

113.7 USER'S GUDlDHE ••• II " • ., II ••••.••••• II B -25

B.8 SYSTEM DlESCR6PTDOrJ s II B-29

B.9 SOFrlHJARE OraVElLOPMIENT H!STORV •••••••• B~33

B-1

';" ".~ .. f~ : :' ';~' ','

~', .

, I

This appendi,: presents suggested contents and formats for
various documents proaud~d dtiring the software development
lif~ cycle. Following each document format summary is a

brief description of the contents.

8-2

. ,

. .

\', }

, ' , - ." "~" I ~ ." •

SOfFYW~ .. W&tE D[EV~!L[Dlfr\l'tl~!ij'J1r b~U~~U
FO~MAY

---. - . ~---------------I

a. Tcehnacal
b. M~na~:,;nnent .
c. Ct!m~Egl'Jg'~tdon Contra§

5. Schedulos EJ!T1ld femastones

G. Starns Reql!l~fed £'!rrom th~ Customer

1. btems To Be DeUvered to the Customs,-
S1C3-(51).ro

. B··3

,',>' •

• '.,1. '.,
; .'

Software Developm~nt Plan

The software develcpment plan (see Reference 2) is completed
dur ing the requirements,-ana.lysis and preliminary design
phases. It contains

1. Introduction, including purrose, background, o:igin of

requirements, personnel' organization, and summar::-' of plan

2. Problem statemerit, i.e., what has to be done and what
steps are necessary, including what is different about
this project compared with a typical developme~t project

3. Approach

9108

a. Technical approach (by life cycle phase)

(1) Asgumptions and constraints

(2) Anticipated~and unresolved problems

(3) Major activities, including me~hod~ and tools
used

(4) Products produced, including contents and
standard~ for produclion

b. Management app~oach (by lire cycle phase)

(1) Concerns

(2) Resource estimates, includins system size in
terms of code or:9in and language as well as
suppcrt !uch as projecl personnel, computer
time, external groups, and training

(3) Personnel assignme~ts and schedules

(4) Progress accounling procedures, i. e •. data
collection, progress measur~ment, and progress
reporting methods

(5) Quality assurance prcce~ur~8

(6) Internal and ext~cllal review methods

3-4

" I

.~ ,~.

>.', Goftware Dev~lopment Plan

c. Configuration management procedures for maintaini~g
requirements, design, code, and documentation in-

tegrity " " .' I~r' •
~ .' .

4. Sum~ary of resources required and cost

5. Milestone charts showing the development life cycle,
delivery of required e~ternal interfaces, sCheduled in­
tegration of externally developed software, delivery of
required information, delivery of' development products,
and scheduled reviews

6. List of items (dated) required from the customer

7. List of items (dated) to be delivered to the customer

0-5

9108

-----_._-------

,:' , ~ .. ~. ~
~.' ,', ",' (

G. Hictorv €)f Sv~m1ft SfZe, L1equh'ed Efiort, and Cost
Estimates

9. Ha~torJ of Outstanding TSD Itoms, Changes, Errorn,
and I?rob&ams

10. History of VcC'ification of System ReqMiromG~ts

e11l3-1511-sl

-
PRECEDING PAGE BLANK NOT FILMED-

B-7

~ - . ~ ~ - , ... ~... -
'c ',... ~ ... '" •• "-< .. " , , • ,<,

I'

ii

Project Notebook

The project notebook iz started at the beginning of the
project and maintained throughout the development life

~ ~.

cycle. It contains

1. Description and list of major components

a. Description of project
b. List of major components of the system

2. Key personnel and their responsibilities

a. Name, title, organization, telephone number, start

date, and responsibility of key personnel

b. Name, title, organization, telephone number, start
date, and responsibility of points of contact for .. '~ '. .;" ..
interfacing groups

3. Description of functional capabilities in each build/
release listed in relation to the requirements

4. Deliverable products
I

a. Name of product, form of product" date scheduled
for delivery, and actual date delivered for each

,
product I

b. Name of person responsible for each product

5. History of events, schedules, anc milestones

a. Milestone chart identifying tasks and originally
scheduled completion dates

b. Biweekly updates to milestone charts

6. History of system size,' required effort, and cost esti­

mates

9108

a. Graph of number of modules in operational version
of system versus time in weeks, including estimates
of final number in end product

8-8

r'
I ,

! ", 't :..... ~, ";"
.

, l. ','

, "''';,' ~ " . '. - . .
t,

"" " ,

Project Notebook

b. Grapha of number of source lines of code (with and
without comments) and executable lines of code in

.' ," ~ " '.
operational v'ersion o'f s~'stem versus time in \-Jeeks,

including estimates of final numbers in end product

c. Graph of staff-months of effort expended versus

time in weeks, including estimates of planned ex­

penditures (weekly totals and accumulated)
I

7. History'of source code changes--Graph of number of

source code changes and change reports versus time in

weeks for each development life cycle phase and overall

8. History of accomplishments--Monthly list of aChieved

~ milestones, completed tasks, and delivered products

\.'.).

-- -~'--,

9. History of outstanding TUD items, changes, errors and

problems, i.e., list of those things that are unresolved

10. History of verification of system rpquirements, i.e.,
, '

9108

list of functional capabilities that have entered the

system and were tested by build/release, system test­

ing, and acceptance testing with date of test and test

result

B-9

, "

.... "

, • I"~'

rRil5@U~tg~n~rE~~~u~ ~fi\~~P>e ~r§n$
~tlDJjt~~~A\IT~~r WJ~fFD~j)rffiEU

~1Ed].{lJn[]rErWdG~~TS AR'JArL VD Sn.DMfu]A~Y
L~r:rP'@E~if f~~MAT

6. AnaBvok3 of 8esic mind Doriuad Requic'Gments bV
Su!:2zvs'i:cm

o. Summm-y of Reuoabla SofttrJ~re

9. Svs-tom sa,s, R0tSuired Effort, Cost, end SchedaE&c
ESl:ima1es

.'
PRECEDING PAGE nLA~K NOT FIT.MEr>

B-11

------_ "

0100-1511-63

·'
Requirements Anal,,'''l"<":f;q:1,marv, R0P~H·t

~~~~;~~, ... t., -.";'.{" 

',' ,-' 

. I 

The requirements analysis summary report is completed at the 

end of the requirements analysis phase. It contains 

1. Introduction, in6i~ding purpose and background of project 

a. Overall system concepts 

b. Discussion and high-level pictures (diagrams) of 
system showing hardware interfaces, external data 

interface~, and data flow 

c. Discussion and high-level pictures (diagrams) of 
operating scenarios with interfaces and data flow 

2. System constraints 

a. Hardware availability 

(1) Execution 

(2) Storage 
(3) Per ipherals 

b. Operating system limitations 

c. Support software limitations: 

3. Development assumptions 

4. Arens of concern and TBD requitements 

a. 'List of concerns and problem areas, i.e., deter­

rents of progress 

b. List of TBD requirements and an assessment of their 

impact on system size, required effort, cost, and 
schedule 

c. List or priority areas 

5. Analysis of basic and derived requirements for system, 

including level of importance of key issues and com­
pleteness 

B-12 

9108 

I: 
1 : 

.' . 



Requirements Analysis Summary Report 

a. Stimulus for input 

(1) Frequency ,~ -' 

, ' 

( 2) Volume 
(3 ) Coordinates and units 

(4) Timing 

b. , Processing 

(1 ) Functionality 
(2) Accuracy 
(3) Timing 

(4 ) Error handling 

c. Stimulus for output 

(1) Frequency 
( 2) Volume 
(3) Coordinates and units 
(4 ) Timing 

6. Analysis of basic and derived requirements for subsys­
tems or major functional breakdowns, including level of 
importance of key issues and completeness. Same as for 
item 5 above except for subsystems or major functional 

breakdown 

7. Data interfaces--For each interface, 

9108 

a. 'Description, including name, function, frequency, 
coordinates, units, and computer type, length, and 
representation 

b. Forma t 

(1) Organization, e.g., ,physical sequential 

(2) Transfer medium, e.g., 9-track tape, printout 

8-13 



, ",'-~; J';, ',", '; ... :,1' 
, ...... :'.)).;, 

" ~.~ ".t' '~.\. '. 

';. '1' 

" :- ," 

Requirements Analysis Report 

" 

. ~ : . \' , 

(3) Layout of frames, san:ples, records, blocks, 
and/or transmissions 

;::. 

(4) Storage requirements 

8. Summary of existing code that may be reused 

'9. Estimates of system size, required effort, cost, and 
schedule 

8-14 

a1nQ 

,,' . """. 

'----,- ,''''', 



i:, . 

: ~1' 

~----------------~-------.~--------------------~ 

o. Ei5gh·ll..ovo~ t~~ctur~:; ov Svoterrl 

c. O~~G9'C1ti~9 ScsaTIar~os 
d. Dezagn S'(o~m~ 

e. C~'itit1luo of fo.J~C~iit:l'a:iU0 fj)G!3r~ns 
. , , 

2. Sanhsystemll 

G. Hish-lml01 f?icturcs 

b. fi)occlifJtion cn1 h~~~gt ~ndl Output 

c. i:lo!Jcriptaan of i?roceEzEns; 

d. r-unctionat e:asl3ilno Diograrns 
G. Pil'o!ogo ar::d POe... for t=Sr~~ Leue~ 

3. !nes~urce Requircmsrrw 

a. Nnrdl. ... JB5"C! 

roo Data Definit30no 

c. Poripheral Sp&CO Considerotions 

d. r~cmory COl'miclerations 

4. Data Interlaces 
s. Doscription 

b. i!crmat 

5. Summary of Rousable Software 

B-15 

9103-(511-83 

. ' .~"~, ... ,.. ~ ... , ,~-



\ 

I: 
, : 

Preliminary Design Report 

The preliminary design report io completed at the end of the 
preliminary design phase. It contains 

1. Introduction, incruding purpose and background of project 

a. Oveiall system concepts 

b. Discussion and high-level pictures (diagrams) of 
system showing hardware interfaces, externDl data 

interfaces, and data flow 

c. Discussion and high-level pictures (diagrams) of 
operating scenarios with interfaces and data flow 

d. Design status 

(1) 

( 2) 

(3 ) 

(4 ) 

List of constraints and their effects on design 

List of assumptions and possible effects on 
design if they are wrong 

List of concerns and problem areas, i.e., de­
terrents of progress 

List of TBD requirements and an assessment of 
their impact on system size, required effort, 
cost, and schedule 

(5) List of priority areas 

e.Critique of alternative designs 

2. For each subsystem or major functional breakdown, 

9108 

a. Discussion and high-level pictures (di~grams) of 

subsystem, including interfaces, data flow, and 

communications for each processing moue 

b. High-level description of input and output 

c. High-level description of processing keyed to 

operator-specified input and actions in terms of 
points of control, fUnctiono performed, and results 

B-16 



.. 

, ,;' 

" " .. ~ " 

Pr.eliminary Design Report 
'."~'(':'''''~;~ :._~:~'<~'f .",~' 

obtained (both normal Dnd abnormal, i.e., error 

processing and recovery) 
, , ':.-. ' 

d. Functional baseline diagrams (treecharts) .expanded 

to two levels below the subsystem driver 

e. 
1 . 

Prologs and POL for each module through first 
level below subsystem driver 

3. Resource requirements--Discussion, high-level pictures, 
and tables for system and subsystem 

a. Hard\'Jare 

b. Data definitions, i.e., data groupings and names 

c. Peripheral space considerations 

d • 

(1) Data storage 
(2) Printout 

Memory considerations 

(1) Program storage 
(2) Array storage 

(3) Data set buffers 

4. Data interfaces--For each inte~nal and external inter­
face, 

a. Descr iption, including name, function, frequency" 
coordinates, units, and computer type, length, and 
representation 

b. Format 

(1) Organization, e.g., physical 'sequential 

(2) 'l'ransfer medium, e.g., tape 

INOdule comments to describe the mod'Jle's purpose, op~ra­
tion, calling sequence arguments, external referen~es, etc. 

B-17 

9108 



, '~If. ,~ ~'1 ,fl' ,~,J.~, ',' r 

l,: .... i' 

Preliminary Design Report 
",/;,.1, ' , I '\ 

, ....... 
b"'" , " I Layout of frames, samples, records, ~.~.{.J;, 

and/or t~ansmissions 

(4) Storage requirements 

s. Summary of existing code that may be reuzed 

8-18 

9108 

" ~, 



· , , 

",:·~Ar·"·~'/·:';~") , Y',' '<I'~," (", 
-:- , ...... I" "-.,~ , ... ~ , 

----- - _ .. ,.", - -

B· fl03Crap\:&cro ItOb! C~;t"i!p~Or~ A.ro~:e 
r~. tFitrD!OQS G:red P~~.:' -

",' , 

5. SIUi11mory of Re.~8ab§i& Sof~are 
:.:~ 

'---------------=--_. 

B-19 

\. 

-1-----------------------_ ....... ...-.. 
" 

1. Project Description and Background 

2. Dovelopment Bi~,tory 

3. Projoct Assessment 

4. Functiona! Specifications and Requimmonts 

5. Summnry 

G. r-teferences 

I:! l 

" 



\ 

---~ -----

,: 

Detailed Design Document 

obtained (both normal and abnormal, i.e., error 
processing and reco7ery) 

e. Baseline diagrams (treecharts) expanded to the -. ' .. , ", 

sUbroutine level showing interfaces, data flow, 
interactive control, interactive input and output, 
and hardcopy output 

f. Restrictions in each processing mode 

g. Internal storage requirements, i.e., description of 
arrays, their size, their data capacity in all 
processing modes, and implied limitations of proc­

essing 

h. Detailed input and output specif.ications 

(1) Processing control parameters, e.g., NN1ELISTs 

( 2) Facsimiles of graphic displays for interactive 
graphic systems 

(3) Facsimiles of hardcopy output 

i. List of numbered error messages with description of 
system's and user's actions 

j. Descr iption of COMl-!ON areas 

k. prologs l and PDL for each subroutine 

3. Resource requirements--Discussion, high-level pictuies, 
and tables for system and subsystems 

a. Hardware 

b. Data definitions, i.e., data groupings and names 

c. Peripheral space considerations 

( 1) Data storage 
(2) Printout 

IModule com~ent to describe the module's purpose, opera­
tion, calling sequence arguments, external references, etc. 

B-21 

9108 



,: 

d. Memory considerations 

(1) Program storage 
(2) Array storage, 
(3) Data set buffers 

'4. Data interfaces--For each internal and external inter­
face, 

a. 

b. 

Description, inclu~ing name, function, frequency, 
coordinates, units, and computer type, length, and 
representation 

Format 

(1) Organization, e.g., 'direct access 

(2) Transfer medium; e.g., disk 

(3) Layout of frames, samples, records, blocks, 
and/or transmissions 

(4) Storage requirements 

5. Summary of existing code that may be reused, including 
list of code with level of modification 

B-22 

9108 

'-

(t ') 

t; 



~-----------------------------------------~$---------=-----------~ 

{t. te~llt:'s:c;~a 

~. iiV[lt'l and ~cvee ~f 1iestcng 

c. &tte::h.da 

s. Purpose 

b. Daro!3~d S~2cii'iro~ion 011 §npMt 

c. Requirod Enviromn~mt 
d. O~srat:kma! Pr~ced!llr~ 

<9. [;o~\n:aod SPCt:51h:~:rt§~n of 01§t[lUt 

f. Pass/IrQn Cr2t~2'iQ 

g. Dh::cu~saon of R0;:;ulm 

B-2) 

E1CIH511..t'3 

iL.t- .,'. '~, "1' t~·~~~~:.:".::j::==::::;"::';~:~~~~l'~4"· .~' iJl4:'<;~~:'::.~~;:·~~:=:~¥",,:~~~~~w~J . . 



\ 

I' 

." " 

Test Plans 

A test plan is completed before the period in which it will 
be used, with sufficient. time for testers to review it. A_ 
test plan contains " .~"',". 

1. Introduction, including purpose, type and level of test­
ing, and schedule 

2. For each test; 

a. Purpose of test, i.e., specific capabilities or 
requirements tested 

b. Detailed specification of input 

c. Required environment, e.g., data sets required, 
computer hardware necessary 

d. Operational procedure, ,i. e., how to do the test 

e. Detailed specification of .. output, i.e., the ex­
pected results 

f. Criteria for determining whether or not test re­
sults are acceptable 

g. Section for discussion of re~ults, i.e., for ex­
plaining deviations from expected results and ide~­
tifing cause of deviatio~ or for justifying 
deviation 

B-24 

9108 



.. "', ~,.4 :'" ~ 't'''', 

I',' • " ,I..~.~:. ~r 

'. " 

" , < 

',:: ,'/< :'-' '.: " 

~ . '" , ' . 
• v. .. ~,' • • ~ ... 

~-----------------------------------------------------~ 

62. Queraia SVS~('Jfft.1 CO~'ilCtipts 

b. ~{ig:-a-lml0! Pa::;turo~ 

c. Operating Sce:;u!J~~os 

2. 5Mbsvstoms 

s. OVGI1'&U Cop~bmt'11 

b. Azoumptiorm snd RGstric~;hJi1!ll 

c. Migh-Level Picture3 
d. Ocscript!on OV 2nput ~nd Output 

o. Doccripticn t]'f P!'.nceooing 

3. Requirements for SmJCutnon 

s. Rosourcos 

b. Run Informatkm 

c. Control Parametor Information 

4. Detailod Description of Input and Output 

s. Fac::;imilcs of Graphic Displays 

b. FacsimUes of Hardcopy Output 

c. List of Messoges 

a-'J :: -~ 



User's Guide 

~ormaliz~tion of the .user's guide is started during the 
implementation phase using the design docu~cnt as a starting 
point. Reorqanization is' completed for the beginning of 
system testing, and a typed dra~t is completed for the be­
ginning of accep~&nce testing~ The user's guide is com­
pleted by the end of acceptance testing. It contains 

1. ,Introduction, including purpose and background 

a. Overall system concepts 

b. Discussion and high-level pictures (diagrams) of 
system showing hardware interfaces, external'data 
interfaces, and cata flow 

c. Discussion and high-level pictures, (diagrams) of 
operating scenarios with interfaces and data flow 

2. For each subsystem.or mQj~r functional breakdow~, 

a. Overall subsystem capability 

b. Assumptions and restrictions to processing 
, 

c. Discussion and high-l~vel pictures (diagrams) of, 
subsystems, including interface~, data flow, and 
communications for each processing mode 

d. High-level description of input and output 

e. Detailed description of processing keyed to 
operator-specified input and ~ctions in terms of 
points of control, functions performed, and results 
obtained (both normal and abnormal, i.e., error 
processing and recovery) 

8-26 

9108 . 

I..'~"""",--",,,,,,--,,,,,,,-_,,,,,,,,,_,,",,,, ___ ~,,, ___ ....... , ... t....""' ..... _ ..... __ .. .;, ..................... ~ __ .... ~_~_ .. ""---_________ , ____ , 

· ; , 

J: 
• • 
~, , 
'. ' • • 

· . 
., 

'I , 
( 



"'j' ',' 

,- ',' 
, " 

User's Guide 

> ") I.' 

, ;. .... 

3. Requirements for enecution 

9108 

a. Resources--Discussion, high-level pictures (dia­
grams), and .tabi(?s f~,r·:·system and subsystems 

(1) Hardware 

(2) Data definitions, i.e., data grou~ings and 
names 

(3) PeriphGral space considerations 

(a) Data storage 
(b) Pr intou t 

(4) Memory considerations 

( a) 

( b) 

(c) 

Program sto,rage 
: A~.· 

ArraY,storage ." 
Data set buffers 

(5) Timing considerat~ons 

(a) CPU time in terms of samples and cycles 
processed 

(b) I/O time in terms of data sets used and 
type of procassing 

(c) Wallclock time in terms of samples and 
cycle~ proces~ed 

b. Run information--Control statements for various 
'processing modes 

c. Control parameter information--By subsystem, de­
tailed description of all control parameters (e.g., 
NAMELISTs), incl!lding nalPe, computer type, length, 
and representati0u, and description of parameter 
with valid val~es, default value, units, and re­
lationship ~o oth~r parameters 

13-27 



, 's ~'\< JU~,:,'" ~~ ___ • ~ 
., .. , 

User's Guide 

4. Detailed description of input and output by system and 
subsy~tem 

9108 

a. Facsimiles of;9raphic displays for interactive 
graphic systems in the o·rder in which they appear 
~or each processing mode 

b. Facsimiles of.hardcopy output in the order 1n which 
it is produced, annotated to show what parameters 
control it 

c. List of numbered messages \\'1 th explanation of sys,:" 
tern's and user's actions annotated to show subrou­

tines that issue the message 

8-28 

, , 
i 

...... ,,_t ....... ~ .... ~ 



: .C.f~·f~l· 

'::: ';"" ~ ,>"/.".,....' 
',J":.:.o.',< 

" ' 

'I;::~) j;' 

~----------------,--------------.-------------------~-----~ 

Bl. OvevaU Ccpcr&:rm.~'if 

b. A!3sumption~ ercd [Fios~!i'iction$ 
c. ~>1[gh-le\!ol ?ic~tEraz 

d. DescfDp1l:iCll1 of( enp~t and Output 

G. t3l~GoDino Diagr~mz 

3. Rsquirement!J fer Croation ' 

s. Re$ourco~ 

b. CretJtion CnficL"m~ticn 

c. Program Structuro Bnf'ormatcon 

4. Detailed Description of Gnput and Output 

5. Internal StOfOg;S Rcquiroments 

6. Data Interfaces 

7. Description of COPJJMOru Areas 

s. Prologs and PDl 

9. list of SortwZ5lre from Support Libraries 

B-29 

9108-(504)·83 



/ 
/ 

'.:,it: :'>~- t~ ~" .~lt OJ' t',,"', " • 

.... ' '. , .' " ~ , ' 

Formalization of the system description is started at the 
beginning of system~est~ng using the design document as a 
starting point. It i~' ~o~pleted by the end of acceptance 
testing. The system description contains 

1. Introduction, including purpose and background of project 

a. Overall system capabilities 

b. Discussion and high-level pictures (diagrams) of 
system showing hardware interfaces, external data 
interfaces, nnd data flow 

c. Discussion and high-level pictures (diagrams) of 
operating scenarios with interfaces and data flow 

2. For each subsystem or major functional breakdown, 

a. Overall subsystem capability 

b. Assumptions and restrictions to processing 

c. Discussion and high-level pictures of subsystem, 
including interfaces, data flow, and communications 
for each processing mode 

d. High-level description of input and output 

e. Detailed baseline diagram at subroutine level show­
ing interfaces, dati flow, interactive control, 
interactive input and output, including messages, 
and hardcopy output 

3. Requirements for creation 

9108 

a. Resources--Discussion, high-level pictures (dia­
grams), and tables for system and subsystems 

(1) Hardware 

(2) Supoort data sets 

8-30 



System Description 

(3) Peripheral space considerations 

(a) so~~c,e ... .c0d~ storage 
(b) Sci~~ch sp~ce 

(c) Printout 

(4) Memory considerations 

(a) Program generation storage 

(b) Data set buffers 

(5) Timing considerations 

(a) CPU time in terms of compile, build, and 

execute benchmark test 

(b) I/O time in terms of the steps to create 

the.system 

b. Creation information--Ccntrol statements foi 
various steps 

c. Program structure information--Control statements, 
e.g., for overlay or for addressing and loading 

4. Detailed description of input and output by step 

a. Source code libraries for. system and subsystems . , 

b. Object code libraries 

c. Execution code libraries 
d. Auxiliary libraries, e.g., support tables 

5. Internal storage requirements, i.e., description of 

arrays, their size, their data capacity in all process­
ing modes, and implied limitations of processing 

6. Data interfaces--For each internal and external inter­
face, 

9108 

a. Description, including name, function, frequency, 
coordinates, units, and computer type, length, and 
representation 

0-31 

. , 



., " ' 

System Description \. ,I 

b. Format 

(1) Organization, e.g., indexed 

(2) Transfer medium, e.g., drum 

(3) Layout of frames, samples,' records t blocks, 
and/or transmissions 

(4) Storage requirements 

7. Descr iption of COl'UoION areas 

8. Prologs and POL for each subroutine (usually produced in 
a separate volume) 

9. Alphabetical list of subroutines from support data sets, 
including--for each subroutine--a reference to the sup­
port data set from which it comes and a description of 
the subroutine's function 

3-32 

9108 



""'); , ... 

. "-

, , " r I I, :'. ~, ' 

$OFm'A~lE fl)faVr:lLC~Rt~HE~Ju C"~DST(J)~V 
[;:0 !HUlfJ.~."u" 

B-33 

.. ",/;,1'..'. 



;, 

", 

Software Development_,~lstory 
'*to' ,.::\:'.:- 'I.: ,,) 

'The. software development history is completed within 3 months 

, of software acceptance •. ,. It. contains . '. 
'. " 

1; Project description and background 

9108 

a.· Problem statement and list of key requirements 

b. Origin of requirements 

c. Customer of system 

d. Purpose of system. 

e. Key dates (actuals) 

(1) Availability of functional specifications and 

requirements 

(2) Development phase dates (start and finish), 

i.e., requirements analysis, preliminary de­

sign, detailed design, implementation, system 

testing, acceptance testing 

( 3) Event dates, e.g:, SRR, PDR, CDR, ORR 

f. Key products produced 

(1) All software, i.e., the system, simulators, 

and test programs 

(2) All documents, i.e., development plan, project 

notebook r requirements analysis summary re­

port, preliminary design report, detailed de­

sign document, test plans ana results, user's 

guide, and system description 

g. Development organization 

h. System characteristics 

(1) Total, new, and reused number of source 1inoe5 

of code (with and without ccmments) of end 

product 

B-34 

• 



\ 
\ 

'. 

I 

i, 
2. 

" r 

I 

(2) Total, new, and reused number of modules of 
end product 

(3) Total/,'managcr lal, programmer, and support 
service hours r.equired for development 

Development history 
, , 

a. Original and updated estimates of system size, re-
quired effort, schedule, and cost 

b. Organizational structure and key personnel 

c. Specified approaches, e.g., methods, practices, 

standards, and tools 

d. Unique approaches, e.g., independent verification 
and validation team, prototyping 

~, 

e. Target development 'machine and programming languages 

f. Special problems encountered to 

g. Build/release history 

h. Test history 

i. Configuration control start dates for requirements, 
design, and code 

3. Project assessment 

9108 

a. Substantiated major strengths of the development 
process and product 

b. Substantiated major weaknesses of the development 
process and product 

c. Major problem areas 

d. Developm~nt plan timeliness and usefulness 

~. Adherence to development plan 

f. Adherence to standards and practices 

c-3 B-35 



I, 

Software Development: 'History, 
,,"I, 

, " 

.. ' .. ' 

g. Design ti~elincss,'completeness, and quality 

h. Code timeliness, completeness, and quality 

i. Test tim~liness~ compieten~ss, and quality 

j. Personnel adequacy (number and quality) 

4. Functional specifications and requirements 

a. Origin and timeliness 

b. Completeness and adequacy for design 

c. Change history and stability 

d. Clarity (i.e., were there misinterpretations?) 

5. Summary 

a. List of shortcomings of the development process and 
product 

b. List of successful aspects of the development 
process and product 

c List of things chat should be done differently for 
futUre prvjeC'ts 

d. List of things that should be done similarly for 

future projects 

e. List of the major causes of errors 

6. References 

a. List of relevant background documents, e.g., func­
tional specifications and requirements, software 
development plan, test strategy and plans 

, b. List of reports, e.g., requirements analysis sum­
mary report, preliminary design report, detailed 
design document, test plans with results, change 
histories 

~. List of any other necessary reference material 

B-36 

9108 

:J 
: \ 

. " 

, , , , 
, ' 



C
···~ 

,,::.\ ~\ 

"t': 

~, 

''1' ',',." 

.;),,~ . . 
, . . ~ 

j ."' .... 

"'" ,",)./ 

~ffdB[ElF ~~2:~t4~~r~tE tCDrr: ~(Q)~§iHE ~~nr[E~$ 
1fCQ) ©)~a~~\u~~2~ ~ tErRt©JHE<CY 

• • • • • 8 • • • • • • • • • • • • • _ • _ • n _ • • • • • • • • C-18 

C-l 

. . 
.. "" ,_",_,,< .. , ... ,1> __ '_"~ ~" r."~""'~'" '''.''< ..... ~_ ...... /..:< • • _.,.,J,~ .• ' ._ .......... "'._, ......... ~ ....... , .... -.." .. " .... ,' ... ,\k.,_t ...... ;..L.,i.~~..t"' ...... ~ ... ~ .......... _~,,~' ......... ,l,,".~.·.V, ....... "'·~"'~.:. ~"'.~.~ .. ,.".;", ............. J 

/ 



This ~~p~ndix contains n bri~f example of some steps the dc­
v~lopm~nt mnnage~ mus~ t~Re to org~nize a project. . , 

Senior-level development manngers usually h~ve, in their 
m indg, the benl~t' i b'l of exper icnC'e: unfor tUllately, this e:-:­

peri~nce is not usunlly written down. When the benefits of 
t;en ior pertlOnne 1 f t' uxper ionce are documented, they ~re usu­

.'ttl" HlIl11m.1ri:'-:l'd in., \;t.,\, tlHlt h. difficult fl)r the jllnior­
l~vel d~velopm~nt m~n~ger to int~rpret nnJ ~pply. Without 
9imil~r ~xp~ricnce, ~ junior-level m~nnqer will often find a 
more experi~nc~d m~nAgerts experience summary to be confus­

till) ~'r unintelli~lible. 

The exnmple here is an illustr~tion for the more junior-
',' '. 

level manaqer. It is not necess~rily lInivprs~11y applica­
ble; IH'\oJeVt'l', tlw example illustratl's st~ps .11'\d f~ctors that 

~ development man~ger must congider when orgftni=ing ll.proj­

t~Ct. '1'hl~ tal h'lwinq sllh~~ectionG are interrel.ltt:'d because tilt! . " '. 

~'r'.1.1ni=:.'\t i,'lIl of th~' .1ppro.lch ~icpends ~n the constr.'\ints of 
t:lw pr\)bll~m; I.e., the l)rdl't" in \~hichsteps ",re t.,ken oe­

(""hi!; \~Il the prl',blt'm • 

. ~lOU 

, 
\ , 
\ ; 

, : 
( . 
~ \ 



I 
I, 

I' 

.:..--.-- , .. 

~,'.~"';_' ::'J /~, , ~ "':' .,.. " .-, 
... , iI ,) , 

, ,-; , :':" - ~ .... , 
':; . 

, ,'~ Size and Effort 
> 

" t· .! 

C.l ESTIMATING SIZE AND EFFORT 

One of the most criticai aspects of organizing a development 
project is estima'tl~g' ~he ~~'ount of software to be developed 
and the effort required to develop it. Poor estimates, 
either high or low, cause a loss of confidence in the eyes 

of the customer as well as within the development organiza­
tion. 

, 
In this example, the development organization develops soft-
ware systems for a broad application of related scientific, 
data base, and data support systems. New applications 
(project types) and computing facilities (environment types) 

are introduced every few years. The development organiza­
tion develops systems for both the old and new computing 

facilities and for the same and different, but usually re­
lated, applications. That is, the organization not only 
huilds on past enperience for continuing support of its 
charter but also branches out into new aspects of its char­
ter becausp of changing technology. Therefore, in general, 
a moderate amount of code is reused from project to project. 

C.t.l SIZE OF THE SYSTEM 

At each phase of the development life cycle, the development 
organization uses essential, supplemental, and archived in­
formation to produce an estimate of the system's size with 

acceptable and understood uncertainty limits (see Refpr­
ence 2::!). Table C-l lists some high-level information. For 
example, in thb eX.1mple, the development organiz.1tion us~s 
3040 x (number of general subsystems) to complIte the nllmber 
of executable lines of code (LOC). 

, C-J 



Size and Effort 
; (;", .·:.~}-~')r' 

, 

, ;:, ',:~~ ~, 

- , 
.' ~"'I-\ ....... • 

"', " 

'",;, 

Table C-l. Effort Estimators and uncertainty Limits 
by Phase 

, ,I< 7" ;_,', " .. :" .~. 

End of Phase 

Preproject 

Requirements 
Analysis 
Preliminary design 

Detailed design 

Implementation 

System testing 

Effort Estimators 

Similar projects, 
general subsystems 

General subsystems 

Specific subsystems 

Actual subsystems, 
modules, code, 
documentation 
f-1odules, code, 
-tests, documenta­
tion 
Code~ tedts~ doc­
umentation 

Limits of Uncer­
tainty as Percent 

£~ Estimated Efforta 

tlOO 

±70 

±50 

±30 

±l2 

is 

aUpper li~it ~ (Effort estimate)x(l. + ~ncertainty in decimal) 
Lower limit = (Effort estimate)/(l. + uncertainty in decimal) 

C.l.2 EFFORT REQUIRED TO DEVELOP ~HE SYSTEM 

In this example, using the size estimate from any life cycle 
phase, Equation (C-l) predicts the total effort l required 
for complete development 2 

(C-l) 

lTotal development effort includes administrative and tech­
nical ~anagers, developers, and support personnel, i.e., 
secretnries, librarians, and technical publications. See 
Table C-8 on page C-l6. 

2compiete development encompasses the software development 
life cycle phases from requirements analysis through ac­
ceptance,testing. 

C-4 
9108 

I ' 
I , 

i I 

, -, , 

, , 

i ~ 
,1 

• I 
I, 
i -

: ' 

, ; 
, , 



Ii 
I' I: 

I 
I , . 

tr_ "' ... __ .-.... -'" .• 

Size and Effort 

where ~Tot i~ effort in staff-months: the fils are factors 

that increase or decrease required effo~t because of problem 

complexi ty, ~p.am ·,.elt.pe.rience, schedule, methodology used, and 
.. '~l' ", -

so on: and 

L = (0.8N + 0.2) x (estimate of total system size (C-2) 
. in thousarlds of e>:ecutable LOC) 

where N is the fraction of newly developed and elttensively 

modified code in the system size estimate. 

Basically, to start, the manager need only consider the com­

plexity of the problem, the development team's experience, 
and the schedule. As the development organization estab­
lishes itself, other factors (such as methodology usage) can 
be added to fine-tunc the estimation process and to apply it 

to a wider ral.ge of software development problems. 

For this example, Table C-2 provides the development organi­
zation with a simple guideline for adjusting effort with a 

Table C-2. Complexity Guidelinea 

Project Environment Effort 
T~Eeb T~pe 

c Factor (f ) 
I 

Old Old 0.45 

Old New 0.65 

'New Old 0.65 

New New LOO 

aBased on SEL data and other data available to the SEL. 

bApplication, e.g., orbit determination, data base. The 
project type is old when the development team has more than 
2 years of experience with it. 

cCcmputing environment, e.g., IBM 5/370, VAX-ll/780, Intel. 
The environment type is old when the development·team has 
more than 2 years of experience with it. 

C-5 

9108 



Size and Effort 
- .(" " ,.' 

, _ r ... ", ~'I:'~';; • , 
• .' ,~' <,' 

complexity factor. Table C-J provides a simple guideline 

for adjuRting effort with n team experience factor. 
Table C-4 provides~asimple9uideline for adjusting effort 

with a schedule factor. 

Table C-3. Development Team Experience Guideline 

T!am Years of a 
'AEplicablc Experience 

to 
B 

6 

4 

2 

1 

Effort 
Factut' 0: 2) 

0.5 

0.6 
0.8 

1.0 

1.4 

2.5 

3 Sum of products ot fracti6ri'of team member participation 
~ith his/her yl~ars of applicable experience (requirements/ 
specification definition, development, maintenance, and 
operation). ' 

Table C-4. ~chedu1e Guideline 

Schedule 
Characterization 

Fast 
Optimum 

Slow 

Effort 
Factor(f3 ) 

1.15 

l.00 

0.85 

TO illustrate, assume that the oevelopment or';}ani~ation must 
develop a system estimated at 25,000 executable LOC. It is 
similar t:> ones they h.:we developed befoL'e (old project 

type), but it is being developed for a n~w computing fa­
cility (new environment ty~e) ~ therefore, fl = 0.65. 

C-6 

9108 

J ' 
\ , 
i I 

\ ! . , 
i I 
l j 
I r 

, ' 

I 
\ ' 



, i 

... I, '.' ::;. '.' • ~ 
,', .. 

Size and Effort 

. ,,'," :' ~ ", ,;. ,: , .' 

Fifty percent of the code can be reused without modific~tion 
(N u 0.5). The development organization has a team in mind 

,whose weighted a~~lic~ble ~xberience is 6 years (f 2 • 0.8) 

and the luxury of a slow schedule (f 3 D 0.85). Then, as­
suming that all other factors are normal (f i ~ 1, i n 4 to 
k) , 

E To t :J 8. 0 ( 0 • 6 5) (0. G) (0. S S ) {[ (0. 8) (0. S ) + O. 2] 2 5 • 0 } 1. 0 5 

= 60.7 staff-months (C-3) 

Since it is the beginning of the project, there is an uncer­
tainty limit of ±IOO percent in the system size estimate. 
't'herefore, 

ETot (upper Ilmit) :: 3.536 {IS.Oll.OS x (1.0 + 1.0) 

u 121.5 staff~months' (C-4) 

ETot (lower liruAt) = 3.536 {lS.O}l.OS / (1.0 + 1.0) 

: 30.4 staff-months (C-S) 

Table C-l (page C-4) lists the eftort uncertainty limits 
that can be expected at the end of each life cycle phase. 

Figure C-l illustrates the effort uncertainty limits as a 
function of phase. It is not suffi~ient for managers to 

merely state uncertainty limits. They must be able to 
explain why these limits can be reached, i.e., what factots 

are uncertain, how they can increase or decrease the 
estimate, and by how much. 

C-7 

91tHi 

............ ----------'~ , , 



.. 
fS ... ... .. ... 
0 .. 
~ 
u 

" ~ 
~ ,. .. 
z • .. 
« .. 
u 
5 

.100 

.so 

.110 

010 

.110 

.r.o 

.40 

.30 

.20 

.10 

C) 

-II 

-87 

Size and Effort 

t " ~~ ~ 'f ' 
" ~. 1 r " 

ORIGINAL PAGE' fS 
OF POOR QUALITY 

PROBABILITY <: 0.01 

PROBABILITY <: 0.01 

-IOO~------~-----T----------~--------------------T-----------~r---------r 

Figure C-l. 

DET.l'LED 
D,S'GN 
P .. .lSE 

'MrLEMENT.lno'l .COOE .. NO 
U'I'T TESTING' P .. .lSf 

C"L£NO"R T,UE _ 

SYSTEM TfST''Ia 
PH"SE 

ACC[PTANCf 
TESTI'IG 
P""Sf 

Effort Uncertainty Limits as a Function of 
Phase 

c-s 

1 • 
I 
• I I 

:0 

III 

1.' 

1.1 

18 

U 

1.4 

0-

13 \3 .. 
~ .. 

t.: ... 
:> 
;:: 

" 1.1 oJ ... 
" 

10 

Of 

08 

O.~ 

00 

05 

\I 

I 



I 

I 
I, 

! ' 

I 

': , , • 

,~ ,.' ,-' "", '.' 

.. -, i..; ~ :,,:. ," : ~. t: ~:,' 
"; , 'I" 

.: 1, ~":':'. :"'" 

, ' ,<! ,: "', " " >~,~, -, 

" , , " 

,'; 

;-,1, (, <:~.', "J, .. ,'. 

ORIG1N/i PAGE IS 
OF ?OOR QUALITY 

C.2 ESTABLISHING REALISTIC SCHEDULES 

Schedules 

The literature c6~~ains ~~ny models for resource estimation 

that are simple to implement but take Dome time to under­
stand and calibrate for a particular environment. Few, how­
ever, explain in any detail how to establish schedules from 

the information produced. Therefore, this subsection is 
probably more important for the more junior-level manager. 

To establish realistic schedules, the development managers 
must basically consider the effort required for each ac­

tivity, the team size, and the experience of the team leader. 

C.2.l REQUIRED EFFORT FOR LIFE CYCLE PHASES 

In this example, the development organization computes the 

fraction of effort required for the design, coding, and 
testing activities from Equations (C-6) through (C-S), re­
spectively • 

fDAct = O.36N + 0.04 (C-6) 

f CAct = O.OSN + 0.02 
(C-7) 

fTAct = 0.36N + 0.14 (C-8) 

where N is the fraction of newly developed and extensively 
modified code in the system size estimate and DAct, CAct, 

I 

and TAct are abbreviations for the design, coding, and test-
ing activities. 

The development organization computes the effert required 

for the design, coding, and testing activities from Equa­

tions (C-9) through (C-l2), respectively. 

C-9 



I I, 

l , 

Schedules ORIGINAL PAGE IS 
Of POOR QUALITY 

(C-9) 

(C-10~ 

(C-ll) 

(C-12) 

The development organization compute~ the effort required 
for each life cycle phase from Equations (C-13) through 

(C-1S),'respcctively. 

(C-13) 

E
PDPh = 0.20 EDAct 

(C-1S) 

EIPh = 0.19 EDAct 
+ 0.94 ECAct + 0.57 ETAct (C-16) 

ESTPh = 0.05 EDAct 
+ 0.05 ECAct + 0.33 ETAct (C-17) 

E
ATPh = 0.01 EDAC :: + 0.01 ECAct + 0.10 ETAct (C-1S) 

where RAPh, PDPh, DDPh, IPh, STPh, and ATPh are abbrevia-

tions for the requirements analysis, preliminary design, 

detailed design, implementation, system testing, and accept­
ance testing phases, respectively. 

C-10 

9108 



· . 
Scheduli!s 

Equations (C-L3) through (C-l8) indicate that 75 percenc of 
the design activity effort is expende~ to get to CDn;, nearly 

20 percent of the ~e~~~; activ{~i effort is expended durfng 
implementation to respond to function~l sp~cification, ~e­

sign, and implementation errors: and smaller arounts of the 

design activity effort are expend~d during system anJ ac ' 

ceptance t~sting for the same reasons. The equations also 
show, that nearly 60 percent of the testing activ1ty effort 

is e~pended during implementation, 33 percent during system 
testing, and 10 percent during acceptance testing. 

C.2.2 REALISTIC SCHEDUL~S 

Once the effort for each phase is known, the development 

manager must determine how fast th development team can be 
staffed, how large it can qet, and how fast team members can 

be released without lvsing control of dis~ipline nnd order. 
This determination has to be made based on the project 
leader's experience level. In this exa~ple, Table C-S pro­
vides the development organization with a simple guideline 

I 

for determining tea~ size in terms of the experience of the 
team leade~s. Table C-6 provide~ a simple guideline fcr 
producing a staffing pattern. 

Using these guidelines, the manager will find th~t team size 

peaks at the beginning of implementation. 'When the team is 

too la:ge for a less senior project leader, the development 
manager can replace the project leader with a more senior 
project leader or extend the schedule. When the team size 

is too large for a senior proj~ct leade", the manager must 

e~tend the schedule or partition the development effort int1 
several smaller projects. Forming smaller projects, of 
course, will present the manager with softw~re integration 

problems and addition31 management and support charges be­
cause each ~mal1er project will have a project leader and 

its own reporting and support requirements. 

C-ll 

91011 



Schedules 

Table C-S. Team Size Guideline 

" 
,.',- , 

Minimum Years of Expericncea Maximum 
Project Leader Team Size 

Excluding Project Manager 

~ ~ Leaner ~ ~ Leader Team Lea~ 

a 

~ 

7 

6 

6 

5 

4 

App. = 

5 

3 

2 

6 

5 

4 

4 , 
3 

2 

3 7 :::2 

1 4.5 :1.5 

0 2 :!:1 

Applicable experience, i.e., requirements/ 
specification definition; development, maintenance, 
and operation. 

Org. = Experience with organization. 
Leader = Experience as project leader or manager. 

C-12 

9108 



1--;:;;~,~\ll£R 
LEAll 

n'rE TIME 
IWfEI\$)" 

StNlllfl ~ 

6 

l' 

INHnMLOI.\IE 5 

tI 

7 

,tllNlll/l II 

7 

II 

: ,'~ ,";,., 

I 

ORIGIN/\L f"JiClF:' rs 
or POOH c." I,' I • ry 

-
OEVElOPMENT TEAM ~.EI\1(lERS 

Sl':tlEOUlE 
1"iM~E IN r.I.\SI: OllT MINIMUM UNG TH nrr INl':Il£M[NT INl:nEMWT OF "AR TlClrATION 
IWHI\S,I' \WEEI\5'': \WEE ... S) 

fO\ST 1 ~ tI 

llrrtMUM ~ J Ii 

SLOW 3 " G 

FA~T ~ :t 7 

orTiMUM J I .. 7 

SLOW .. I 
5 7 

: 
: 

FAST J ; " 8 

OPTIMUM " 5 S 

SLOW r; tI 8 

;\'IMI" IIIAT IlIl "tll','reT MAN'\I;m .\NO Ll.\OHl NHO Il) Ilfl,j.\NI.':E .\NO !'lAN rnO,lretS IlEFone ontf.H 
T£ AM 1\11 MlllHS "1)IN HU t'IIl).In: T 

l'f.\STI Sf 11·\ H .\T WI4Il'lI T[.\M MfMlnns AnE .\nOlO TO fll£ P/h'Jll'T 51) fliAT nl[ f'IIO"H:T LEADEn 
CAN M.\lNT .\IN 11llL'Ul 

"r.\SHSt 11 ... 11 .\1 \\o/(fI'/lll.\M M~I\1Il1HS l£.\\£ till' PHl',lIfT SO fII·" Tllf on.\llS l.'r TII£l/I 
"SStliNMI NT S I'.' 'I Ill" .\IIS11lWfP m 'Ill r[.\M ·\NO MINIMI:I ,'·\ll IIAO •. 

'" ,~ .. 1 

• 



, " 

Resources 

C.3 ALLOCATING PROPER RESOURCES 

Junior first-line de\lelopment managers do not usually have 
much influence in for~ing,thc development team. A higher 
level manager in the development organization generally se­
lects personnel based on his/her judgment and experience 
with the problem and discussions with the first-line man­
ager. The first-line manager, however, must become familiar 
with the judgments made and the experienue base available, 
so that he/she call organize the project effectively. 

In this example, Table C-7 provides the development organi­
zation with a simple guideline for determining the type and 
e'xp't'?'ri.ence level of per.sonnel needed in termri of the com­
plexit;of the problem. Table C-8 provides a simple 
guideline for allocating resources in terms of manager, de­
veloper, and other support chargez. 

C-14 

9108 

; , 



I 

· '''', . _ ... '-'j .. - .... -
" 

Resources 

Table C-7. Development Team Staffing Guideline 

Project Environment Percentage of percentage c 
T:iEea T:lEea Senior pcrsonnelb of Anallsts 

Old Old 25-33 25-33 
Old NevI 33-50 25-33 

New Old 33-5Q 33-50 
New New 50-67 33-50 

aThe project and environment types are old when the develop­
ment t~am has more than 2 years of experience with them. 

bSenior personnel are those with more than 5 years of ex­
per.ience in development-related activities. 

CA~alysts are those personnel who have training and an educa­
tional rlckground in problem definition and solution with 
the a~pllcation (project type) or the computers (environment 
type' dtpending on the problem. 

C-lS 

9108 



Resources 
'-, J, '/' 

Table C-S. Development Staff Composition Guideline l 
(1..o~·.·2) 

Personnel 
Category 

MANAGERS 
Project 
Manager 

Project 
Leader 

Administrative 

Customer 
Interface 

Percentage 
of Staff 

-21.5 

5.0 

7.5 

4.5 

4.5 

Function 

First-line development 
manager responsible, with 
project leader, for organi­
zation and planning of proj­
ect. Provides technical 
consultation and manages 
project resources. 
Lead developer responsible, 

'with project manager, for 
organization and planning of 
project. Provides technical 

, direction and day-to-day 
supervision of project ac­
tivities. 
Second-, third-, fourth­
line development organiza­
tion (higher level) managers 
and project control office 
personnel responsible for 
administrative aspects of 
pr9jects, such as financial 
reporting and quality assur­
~nce of documentation and 
progress report formats and . 
procedures~ 

First- or second-line manager 
from customer's organization 
responsible for monitoring 
resources and progress. Is 
primary point of contact 
\-d th external customer, sup­
port, and contractor groups. 

IThis breakdown is for development charges. Other charges to 
the overall cost of a project come from staffs with analo­
gous breakdowns, e.q., the requirements te~m, the independ­
ent verification and validation team, the maintenance and 
ooeration team. 

C-16 

9108 

I . 
: 
1 ~ 

r: 
i" · , 
1 
! i 

I ~ · . 
· . -. . 
~ : 

, . 
J 



j' 

; 
, i 

I' 
1 

! 
[ 
I 

1 , , , 

\ 

'.' " 

,..' , 

Table C-O. Development Stafe Composition Guideline l 
(2 of 2) 

rers()nnt~ 1 
e.ltegory 

DF.V1-~LOP1~RS 

SllPPOH'r 

Libr.u'L,n 

Percent~\':.w 
of Staff 

63.5 

15.0 

5.5 

4.0 

5.5 

progrnmmer/analysts respon­
sible for requirements ~nal­
yois, design, implementation, 
testing, and documentation 
of soft\~are. 

re~sonnel responsible for 
development-relatpd clerical 
\~orl\ .'lnd SOUl'ce code rn~inte­
n':\Ilce. 

Personnel responsible for 
development-related and de­
velopment organi=nti0n 
office clerical work. 
Reproduction, c0mposition, 
'Jl'.,phict" .!llld pditorial per­
sonnel responsible for 
formal production of docu­
ments and reports. 

~hi~1 brl'.lk~h".·n I:; t'~'l' dt.'\·el,'pl1\t\nt clhlr'lt'~;. Other clh1n.le~1 to 
the l"'t'r.l11 Cl'~1t l,f ., project Cl'Jnt" frt)1ll ~,t.lff~ \~ith .1n.lh)­
'JlHIB brc.'.1kdown~;, t'.g., ttH' rl~quirt~mt'nts te.lOl, tht~ indl'pend­
t.'nt vt'ri(h:,1ti~'n ,1nd \·,'\lid.1t.i('I1l te~lm, tht' maintt'n,'nl~t~ and 
('I~h~l','\t it')n tt';Ull. 

C-17 



.i- ~\ , 
., .... , 

Organization Summary' 

C.4 SUMf.1J\RY . -
Although the example' in this appendix is not a recommended 
or even a suggested procedure for organizing aspects of a 
project, it provides the junior-level development manager 
with basic information about organization that is not avail­
able with simple estimation models. The type of information 
emphasizes the need for managers to record development in­
form~tion and judgments through the development plan, data 
collection, and postmortem evaluations. 

Managers must realize that guidelines are just that and must 
not let their education obstruct their common sense. 
Blindly applying guidelines to solve a particular problem 
frequently leads to undesirable situations. Guidelines 
should only provide a starting point from which a manager 
makes common sense adjustments to suit project-specific con­
ditions. 

C-IB 

9108 

. , 
I . 
! . 
I. 

. ' 



" "', 

I 
.. i fCD $lJJ~~Mt\i?llW@1F r.«lE'l! Drulr©!f1i~A 1l"aCOJru 

'. ! , 
I 

, 
! ' 

;)-1 



/ 

..J-_P_Il_0_c_t::._S __ ~ 1-:-1-8 
,/ " 

ENvmONMENT AND 
IlESOUrlCE rOOL 

" ,/"~----------------~' 
/ " ,/ , 

/ ' 
/ " ,/ , 

/ , 
/ , 

/ , 
/ , 

/ " / , 
/ , 

,/ , 
" pnOCESS PHA"ES ' . .. ..... 

REQUIREMENTS PRELIMINARY DETAILED CODe AND 
SYSTEM 

ACCEPTANCE MAINTENANC!: INTEGRATION ANAl.VSIS DESIGN DESIGN UNiTTESTItJG MJD TE,~TING TESTING ,t\ND OPERATION 

0-2 



I . 

J . 

1 . , 
1 

:t 
" .. .. ... .. 
~ .. ., 
oJ 

" .. 
~ 
0 ... .. ' .. .. 
z .. 
\J 
oJ: .. ... 

mm:m~:,t PAGE' fS 
'iF POOR QUALITY 

$(!j) ~~trJ j;~~?J fE fu9lE~ ~rL@ WDn~ fEfM1r 
~c@A{;u~~fU1rD~~ ~~[Q) 

tLij U:~ lCW ~~JE [prr~fl~~ (E~ 

PO/It COHo ORR 
~~~~~ __ ~ ______ ~~~~~~ _________________________ ~~~~~_L ______ _ 

OETA'LEO
OES'GN
NMSE

I
: I

I
I

5V5TE"'INTEI)R"TION "NO TESToN:)

'MPLEMENT .. TlON 'CODE AND
UN'T TESTING' PH"Se

CALENDAR T'ME -----..

SYSTEM nSTlNG
.H .. SE I ACCEPTANCE "''''NHNANC[

TEST'NG AND OPE'I .. TlON
Ptf,\SE ,.H4.$';

NOTt FOR n4MPlf AT THE EIIIO (IF THe ' ... PHMEIllTATlON P SE '4T'1 04SH!D'lINEI ... PPAO\' TELY 7'9" OF THE SU'F .. nf ,NVOl\'[(' 1111
S~ST£ ... '''nI1RATlllN AND lEST'NG A"R(I"MATH~:" ARE 40[.'RES$'''0 nEOlIIR"'ENTS CH"Nl)fS OR PR08LE"'S. ArpRO~I\'''HL'
: .. ARE OES,I)NING MOOII'CATlCNS AND APPH"l\'MAltL~ " .. AHE COO'''G AND L'lli'! TEST'NG (HMII.as

0-3

DIEVElO£'MENY Acnorus AND TRAt~SACTtOruS
~"'''''A . ~ ==Jtoa:

ACTiVITIES tktm'U~ro OQ'IQ!c;ml~n~ flt:11 Pre¥~~orl
FuncUcft&1 n~lllrcmont~ Amp~rl(l)d
Perfom'lCl3"l~O nc:;ulr;m~l\~ AC'<:tly~
Opomtfomsl l1e1:!ulremenc ~tam1lncd
I!Jttcmcl Interlaco: Id:lntlflexf
R~-t and D~p!:IV nc~ulroment:l Oerermlnoo
TOO nCQu~l":m:m~ Id"3"Itifisd
SytltQm mao I!ntl~t;:d
neuen~i'l SDftwlZro ecl~m~flf>d
CCln~!.JM R~U".;:Q8 Doto&nnlnOO
N:u'tiwl!lre nob~tlK.l
f:equII'CI'RmUl Am~l\reliJ Summary RctJert PNlP:lred
SRR H31d

t:1''JD PROCUCW So{''''"cm Do\'elopm~"t pten
Rm;ulromo!1t%3 An...-:lyclo Summerl Report

r.'UITHODOLOGIES Projoct reotobook ,
O:ltll Collcl:':lon ,
Ubrcri:!ne

I

Unit Otlvc!opmont FoldGnI
Rc-qulNlmontn QUGstlon end Ctumga nocords
Structured Ar.clV:Ua (Com~~l: OIlCIl P:'Occeamgl

TOOLe: Configuration ,\ne:lynm Tool (CAT)
,.- ,

l"- ·1

,"'
I

I.
I" ,

I.
t

I.

I ' , .'

I'

I
1 .

. ,
L

]

I·

~, . " .

,: . ~ "'., " ," "

,;,'

MANAGt:MemT ACTgOr~S AND TEi:AmSACTfONS
.

ACTIVITIES Sofe-.r,oro Dcvelopmnnt PIon Rovi:l3w::d
Schstfulo cnd St.-.Wns PI~nrcod
Rcquircmont!1 An~lyeie Summ:l'r'f ?ocr.art Revlowsd
Prelimlncl'Y CODi:;n Trnn£iticn Plannoo

To::m Troincd
Standardll and Proceduras f:nfol'coo
Pl7ogrosl:! MonitorcC§
Vi:;!billty Promoted
Syctsm Size ~t!m3ted
Rcecur.:c:I end Co:;t Estimated
Te~m InterDction Cocrdinntcd

MEASUReS TSD Ile:sulromsnt:.
Roquiromcnm Qua::tions and AnsYJorl3
ncqulromenw Chenoo~
Subjocthrc E\.':::ruotlor.s

9108-(51J~

D-S

"~if \,
, . ~ , .,-'

,'. I

I--------------------~~·---~
f.~CTiViTIES S~·~tom Partit~ono1.!

er'llD PRODUCTS

METHODOlOG~::':S

TOOLS

Procoo:::ing Op'~Dne Defined
Altem~1.h,o n~.ei1:r.c llimminoo
£::rtQmtlJ Entoris.:oe E){,flned
Sub1lystoms PLU'tlt£onoo
SUbll\';;tC:n fntorinccZl DGfincd
Er:or ProcQ~fling en:;! Recovery Definod
TaO Requirements ~o~olvcd
Rcu~h~<2 ~ftl.'\1£:!."Q hJ::ntlfioo
P;()liml~2'1rv D~dgn Roper. PlI'eptlrcd
PDn .R~!d

Preliminoi7'1 Dceign "epon
So~nro J)avc!opm::lnt £lIar. Updoto

Prc:joct Notoht)olt
Dote CCU2Cti0l1

Ubrmillr.z
Unit DC\I(/lloprnont Foldors
iloqulrcmento Clu~:stlon lind Chrmoo Records
Dacig" Formali:zm!l
001310;11 Dacl3icn end Ch:mco Rocords
Con~uuration i'JZcna~omont

Df:eign W~Utthroutlhl)
Itol"oti\lo EnhencomGnt
Information Hiding
Dota Al::::tractlon
POL

POL Proce:;sor
~urco Code Ubrcry Managoment Sy:tem
CAT
Rosourco E~t!mntion

D-6

91()3.(511-83

'_ • .,1,

I \

':,"

',,:,-' ,

MAf\JAGcMENT ACTIOr,g$ Ar.JD T~ArtJSACTfONS

-
ACTIViTiES TDD Requlrcmol"l~ ncznlv(ld

Ro~uirome~~ Ch(mg~s R6viQwl~d and A~oO$od
Oooign Roviswcd end Wdkcd Throug~
Detailed DOiSiGI1 Tr:;n:ition Flcnned

Teem TrefC1~
~tandcral:l and Ii'roC()rluros IEnfcrcoct
Program! Monitcl'od
V/~ibmtv Promoted
Svr.tSlm SJ;ce fztim~~cd
Rt\!'ilourc~ end Coat Estimnted
Taem IOt~rccticn t:oordin~tsd

MEASURI:S TeD Rcquircmonm
Ra!;uiremont."1 Chs,'1got'l
R~u!rem8n~ Qut):;thmfJ end An!:lW0r9
CQnign Chtmg~h'
rntcrfElces ,

Deoign Complotion Cl"'oc!dint
Subjoctivo Ev~!u:ltion:'l I

D-7

ACTIVITIES:

END PRODUCTS

METHODOLOGIES

L

TOOLS

1,'-,

ACT!OI~S ArJO TRAI\tSACYIOruS

S!nglo Fum:tion., R",fincd
[lfJf:ellno Dlegrome Prepltrod
rtO Specified
PCE. llInd ("'1'0109# Specifiod
COMMON mock,. Sp01:lfit.'ld
Internal Int~nic:e!J Speclfted
TBD nOtlu!romonts Recolved
Fte\l~bl(t Sofn'l:!I'C idantlfied
Dotoiled Oculan Document Prcp!'lrod
Impl{lmcntstlon Stmt~v ~Icnnod
CO~ Hord

Damllod Doefgn Oocum~mt
Software Dovolopm~nt Plan UpdSt3
Imp'ementatlon flon

Project Notobool<
DntD Col:octlon, .
Llbr~rltJm'
UnIt O"volopmont r-oldons
Roquiremcnu Ouoetlon end Chango Aocords
Da:sign Fonnclh:mSl
Do:lgn Decision cnd Change Rccords
Configur~tion Mcnl.!gomont
Dosign Walkthrouohu
Itorative F.ntumcoment
Information H'ding
Ootn Abstraction
POL

POL Procossor
Sourco Corio Librarv Managemont Svstom
CAT
RGuourco Estimation

D-8

9108·1511-83

· . ·) · .
· . ..

. ,

MAr.JAGEMENT

ACTlVITIES

MEASURES

, ~ ", ~ t t ",1" !\'I ,~
, !
'.,',.,.. .,

I ... ,~:':", ,~,,,~:,';)' "

." ~ l It' ,1/: .;. '

j,

ACTIOruS Ai~D TRANSACTIOruS

lm;llol:mc::ntctlcC1 Strot~cv Reviewed
Irn~!omlllnt:Jtllm :rrlnsHion Plonnod

TOO leams Rctloll1Qd
ROGulromcnts Chtmooe Rovlowed end As,ossad
Oo:!/gn Rev'flw"d end We/ked Through

To::m Trained
:»t::lnd~rd!l end Prcccduran Enforcod
Progrc!lll Monltorod
Vh:lblllty Promoted
Sytt6m Six" E:stlmntod
nOSlcurccD llnd Cont Et'ltlmntod
Toom In'or~ctlon Coordlnatod

Teo Iteme
nequlromonttl Ch:mgGiil •
RcqulromontlJ Quc=tlon, cnd Anewors
Delelsn Chon goo
InteriacoD
Doclgn Complotlon Chockllct
DOlllon GroVJth t1cto
Modulo Strength
Modulo Coupling
Sub!octlvo Evnluotlcns

11- ,)

91CJ.1·(61HIJ

DEVELOPMENT

I"CTI'JITIES

,

END PRODUCTS

I:

METHODOLOGIES

TOOLS

. :-;, ..

\', "

," ,\" -',

g Hl~D'~[LJEr~ [Eir~1i A TH (!J ~

'1~'" ".f' ;',
, ,;",'

ACTfOmS Atl.!D TRANSACTIONS

Jub Contrel Ulnou~l!~ Pro~~rcd
Commend Proc~uroQ Propsrod
!\low Modulog C01fed
Rouo.2!ble Mooufol) !':lovlzod
Unlt!l Intogrcted tlnd To!::ted
Build/fh:lce::a Toat FIllinG Prcpnffld
Dntla Prc~N!d
OulidlRo!eoGc Tod P:t'lnlS En"cuted
Dlmcmpancloo RCflolved .
Systom Intoort.ltcd
Svr;tem Teot I?hm Prnp!lrod
Accopc&nco Tcot PI.!:!n Propllrod
Ucer'c Guido PrcP8rt'ifJ
Syotom D"l!crlption Prepiued

Syctsm Code
Supporting Dtlts Bnd SYl'ltcrm Fllo::
Ound/Rcle:ul~ Teot Finns .!:rId Roault~
Systom TOflt Plnn
AcccptoncG Teet PI:m
Droft Uscr'o Guido
Droft Sv::tcm Doocrlptlon
Softworo Dovolopment Plen Updatl!l

Project Notobook
Datn Colloctlon
Llbrnrlnn=
Unit Developmont Folders
Rcqulroment:3 Quomtlon lind ChAnge Rocordo
D&slgn Doclsion 8nd Chenge Rocords
Coding Stnndards
Structurod Code
Codo ROlldlng
Codo Chcngo Rocords
Configuration Mnnngoment
Bullds/ReloaDoD
Top.Down Implomantntlon
Formal Test PInna
Functlonnl (Thread) TtI:sting

POL Proceflflor
SoureD Codo Library Mnnogomol1t System
Structurod Coding Languago
CAT
ResourcD Estlmntion

91G!H!J1Hll

I' - t l)

, .

I

I

, " ,., '

MANAGt:rJiENT Ac·rGOrJs AND TnAI\!SACTCONS

~&-------------------~~,--.-----.----,~-------------------------------~
ACTIVITIES

MI:ASURES

OulldIRdl!Mltlo Teet Plnns neulewsd
t:iulld/Ro!o:!i~le Teat i31:m Rcsulm Rovlowed
D;zc7cp::nclcs Rv&ohrod
Syetcm i'~st Pion Rrwillwed
D:roft Uoer'o Guido RovfawlM!
Draft Svntom Dao.eriptlon RoviCltl'Jod
System Totltlna Transition rlarmed

TOO Itsms Aeco!v.,d
Aequlrolmil'lntu Chongcll Revlewod and AtI:lo~od
Oc::lgn Ch:.mg{lt) Roviowed and W~l!.tod Through
Ceda Ch!mg~:J Rovlowed

TOllm TrQin~d
Standords oncD Procedur6~ Enforcod
Pl"cgro" r,;'tonltorcd
Vidbillty Promoted
Systam Sizo E:Jtimotod
ROlSOUrcQlJ end Co:::t Estimated
Toem !ntcrnctlon Coordlneted

TOO Itoml:l
Requirement:: Ch"nO~9
Rt'qulromcntll QUf.)~tlcnlil lind Answorl3
Doltlgn Chenco:J
Coda Chnng91l!
Codo/Tol!t Completion Chockli!lts
Code Growth notc
Error/Chongo erowth Rato!!
Dillcropnr.cle:s/Rosalutions Growth RotOll
Computer UMgO G.owth Rcto
Toamllnclividual Productivity Rntes
Subjoctivo Evaluations

D-11

9103-1511-&3

DIEVElOf~MENT

ACTIVITIES

.1
END PRODUCTS

METHODOLOGIES

TOOLS

. ~ -~ " ~'-:'

. ,
:-;' ,

ACTCOruS AND TRAruSACTU)NS

Syctem Crootud
Svstom Toat Pllilo E~ocut&d
Ol:u:rcpcncioll Reeoh.-od
Uecr'n Guido llovlowod cnd !1ovlsod
SVBtem D~5crlptlon nC\ll~wod Dnd Rovhsed
Acceptcnco Toeting Plnnnsd

Syctom Code Update
Supporting Oat:! lind SVr.tom Files Upd~tf)
5V:lIterr; Tc~t Plen FScsulw
Ucor's Guido Updato
Svtltom D:Jtlcrlptlon Upd.eto
Softwaro Develop mont Plsn Update

Projoct Notooook :
DoUl Collection ,
Librarians
Unit Development Foldors
Requirements Ouomtioll and Chtlngo Rccords
Dficlgn Decision nnt! Ch~ntlc Aecorda
Codo Channo Rocnrda
Cenfigurction Mpnegement
formal Test PIon
Functional (ThrendJ Tooting

POL Proco!t:or
SoureD Coda lIbrllry Managoment SV::tcm
Structured Coding Lnngucgo
CAT
Rosourco EstimDtlon

9103·(S11.a3

0-12

i.
I;

j ;
) , , . . .
,
, I

1 i

, ,

I,

Mt'\flJAGEMENT

-
ACTIVCTIES

MEASURES

" .~"
','

. \ '.' .,",~.,. , ' .'
\. '\"~ .. ~ ,

.~,; .'
-'-.,' , '

ACTIONS JU.JO TRAI"JSACT50f.JS

Svet~m To::t Phm Ro:ult:!l Fhn:13wCitl
DIgcrcpcncio!3 Rtl:iolvod
I\cccptcncc TOClt Pi~n Aovlowod
Acccptllnca Tostlna TrGncltlon Plannod

UDer'. Guide Rovlowed
Svmtcm D0acriptlon Rovlowod

TBD Itame RO:lclvod
Rcqulremontrl ClumgcSI novlowoo and AlUloG!!()d
Dsc10n Ch~r.aol5 RoulQwod end Walkocl Th:ough
Codet ChnnDos Rovlowed

Teem Trnlned
Standard, tJnd Procoduroll Enforcod
Prot!re::G Monitored
Viulbllltv Promoted
!1Ylltnm Sizo E::~lml.'l!:Jd
nonource:, end COl'lt E:tlmlltod
Toem Interectlon Coordlncted

TBO Items
RIl~ulrcmcnt= Ch~n'lJGa

Rcqulromont: QuoGtlon!! llnd Answers
OO:llgn Chang os
Codo ChnngoD
TOGt Complotlon Chccldlst
Coda Growth n~to
Error/Chnngo Growth Rntc!'!
Dlscroplmcioll/RolfolutionL? Growth natos
Cornputor Usego Growth Rato
Toemllndlvldulll Productivity Ratoll
Subjactivo EVllluations

91011-1511-33

D-1J

,..". ,"'l

"1 i~, i .

. . ~. "

DEVELOPMENT

r-----------------------+.--------------.. ~---,------------------------------~
ACTIVITIES

END PRODUCTS

METHODOLOGIES

TOOLS

S\'l!t6m Cre!:l~G<:D
Us::cro and OIJtm.t(lr~ Trel:1od
Accl!')ptenc"J Tctlt Pion Exocutod
DI!:lcrcpon~lell nocolvecl
U::Ic,.'c G,d~o Revlew®d lind Revh:od
SY:l~cm DOllcrlptbn Revicw6d Dnd Rovlcod
Sy:otom DolivorY Plannod
ORR Hold
Sof1wcro Dovclopmont Hlatory Prcp:<r€ld

, Syat()m CoGlo
Supportln~ D~t8I cnd Syct6m filo~
AccoptDnco iU!lt P~Qn Ro:mltr;
Usor's) GuIde,
Sv:tem DO'l}crlptlon
Archived Sy%:t@m (Tepac) cnd Documentation
Soft\~aro D~va:cprncnt History

Proj9ct r~otcbook
Dnta CoUacthm
lIbrllrlsnlS
Unit Dcvolopmont foldors
J'lcqulrementc QUEl5lion end Chcngo Records
Doelgn Doclalon Or'lJ Chango Rocord:;
Cod" Ch:;;ngc Rocordn
Configuration MIl:"1egamt'lnt
Formal Tost Plan
~unctlonal (Threod) Tosting

POL ProcolS!lor
Source Codo Llbrcry Mnncgomont SY3tDm
Structurod Coding Languago
CAT
RO!lourco Estlrrultion

n-14

91oa·I!j11~.J

, ;

MArJAGt!MEnrr

AC1"!VITIES

MEASURES

'",
I'

ACTIONS AND TRANSACTIONS

AccoptDnl::O Toot PI::!n Ro=ult:s Rovlowed
DIl'<cropc:lclcl) £.Iocolvcd
Svatom Callvory nevi~wod

U~er'8 Guide RovitJwc.d
fjY:'ltcm Do::scrlpt!on ncvlowod

TBD Itema Rosohrcd
Roqulromontll Ciu:lOnes Revlawod nnd Aet'lolJsod
01.1:10" Changoc P.ovlowod end Walked Through
Code Chenootl Roviawed

Tcam Trtminod
Stendcrd~ nnd Procedures Enforced
Procroca Monitored
Vhlibllity Promote.d
Sv=tom SI;:o Entlmotcd
RC!lources nnd Cost Estimated
TOl:lm Intoractlon Coordinated

TBD It9ms :
Rcqulroments Chtmgoo I

Raquirem:Jnts Qusgtlons and An~wors
Doslgn ChcngoD
Codo Chlm09s
Tost Completion t:hQckli:\l~
Code Growth Rato
Error/Chenoo Growth Rotoo
Dlscroptmcion/Rosolutlonn Growth Antos
Computor U!!sge Growth Aate
Toamllndlvldual Productivity Rateo
SubjoctlvD Evaluations

D-15

9100-1511-83

,
".

, ~+1-, "" .. ,

n~rQ)nlL:A 1T(j)~§ (f][F
[j)[E~f[E[~caH?~ fE~1f Sleu ffi~ uiUJ$

o Consistencv in Organizationae Stnlctul"e Compared
With Original Plans

e Ru::hnation in Project Stafi LGvel and SV3tomll Size
Estimrntos

(;)" Ni!.':tor~;, 0'1 Number and T\,pa 01 TBD Items for
Requi8"eme~~ and Design

01 Ease of Access to Dnformation on Project Status,
Schedules, C2nd Plans

(3 frequency and Amount or Ur-uSlmUv Leng £iours
Required or L')~anl1C~d To Attain Certain Objectives

@ level of DG~ail (Both Tcchn!cal and PJaanageriai)
Underettocd and ControHed by the Projec't Manager
and the Projact leader

(!!; Discrepnncies in Stnff Level and Wor!doad

Q Discrepancies in Planned Weoldv St~ff level and
Computer Usnge or CompaI'od With Past Projects

9t03-IStl-tl3

D-16

! I ..

-, .
:i
;,

••

-"
i ..

...

.1

/ : ,
, I

i

, !
" ~ ~ • ,. J • I,'''', ~ •

• ,"'-), -0,,

0

0

Scheduled Capabilitios DGloyed ~o tater DuUd/Re!oase

Codang Started Tao Early (St3f1 Teo Lorge Too t:arly)

0

Q

0

0

Numerous ChangS's Mm1ra to fnctial SOrWJllrla'
Dovolopmant ~Ian

Guidolines cs' Planned Procadl..!!ros Deemph~s5zed or
Dele~ad

Sudden Changes in StSJffing UVlagnitudo) Suggested
or n.~ad9

Excessive Documcmtation and PapenrJor[t Th~t MavG
Utth; Direc~ tleoring on Required Documontation
Prepared ,,' '

6 Continual Incrense in lUumbers of TBD Items and
ECRs Moasured

o Decrease in Entimatsd Effort, ror Svstcnl Testing
Suggested or R,1ade

(l) Reliance on Other Sources for Soon-To-Be-AvClilable
SoftvJare

9103·1511-SJ

D-17

'~ .

\

'. : .. " ~'-,

"" ':

.. ", ~ '-

.' 1 •
. ,';,

",

e Stop Currerra~ Acthj~~ua!J end Rcuis\I\1/Complote
PredeCaSti01 or Problom J\ctivitv

o lOocro41sa Staff to Manogeabie L0vel

(;) Replace Junior lNith Senior Pernonnal

o Incre:Jse and Tighten RilGnugernGn~ Procedures

o Encraaso Numbsf 01 IntcrmadEatc DeU"ernbles
"

(}) Doc1l"G8~9 Scope or Worl, and Dofine a Man~geablo,
Doable Thread of tho Svsts~

a Audit Project with !ndependant Per:lonnal and Act
on Their Finltliin9s

D1Da-1511..&

D-1S

, '

i . ,

\ ,

"

••

!

\
'-

" "

0

0

()

®

(9

0

Q

0

0

" (~-

, ,

" " " , ~,-., : : ~~
>, ' , ' '

Use til SmaU Senior S~a{.y ~or the Early lifG Cycle
PhG2sCS

Develop and Adhore to a Sofu'Vare Development Plan

Dtafino Specific Intermediate and End Products

Enamine ADtGrnative Approaches

Use Formal Testing

Use a Centr~B RepositorY

I(eep a Detililed list of TBD Items

Update System Size, Required Effort, COS~, ~nd
Schedulo estimates

Allocate 3D Percent of Effort for Integra~aon and
Testing

('.) Experiment

9108-1511-83

D-19

,.
I

i;
/'

~ . ~ .r-', ; .• ~ , .. ~ .;-,. :'

..... ,. , '''~ ~ . . , ~. '

I ,

. . , ~ ..
',' . "', ~ .'~ ~

1rrE~ OBu)OJ~jOU$"g

IF(Q)Wi IFD~~JHE({!1T ~lUJ(cCCrESS

" Don't Over~;taff

o Don't Allow Team Members To Proceed in an
Undisckp'ined Mannor

o Don't Delegate Technical ~etails to Tetlm fl.'1emboll's

o Don't Assume That a Rigid Set of Stands:,ds Ensures
Success

e Don't Assume That ill Lurge Amount o,f Documenta­
tion Ensures Success

o Don't Deviate from the Approved Design

o Don't Assume That Relal.:ing Standards Reduces
Costs

o Don't Assume That the Pace \,lViII Increase Later in
the Project

o Don't Assume That Intermediate Schodule Slippage
Can Be Absorbed in a Later Phase

o Don't Assume That Everything Will Fit Together
Smoothly at the End

0··20

3103-1511-83

;'
f
"

· · , ..

· "

\
I.

'; ~ ~: ." ''', •• ' I "" ',' ';~"~" ~
l :, '<,' >:: r , ~

, ,~" , .: ~ ',: J ,I ! ,~: .. : "" "

~ I.; a If'Jrsttan S-oftware Deveiopment Flam Being
Folgovtfed?

o Are Rife Cl'cle Phases and L='rcducts Defined?

o Docs the etnn Size nn~tch the \t'llorkloacl?

. "(

e Do Team nnembers l{n:::vJ Where tho Project Is and
Where it Is GoSng?

(1) Us a Configuration Contrvl Pkm Being rroUowtld?

G !s Thore a SingJe Compfe1:e list of IBD Stems With
Assessments?

1'1;) Is There a Commonly-Adhel'ed.To I\l3ethodo!ogy?

{'} Eiave Altsrn~tive Designs and Approaches Been
Ccnsiderad? .

e Are There Contingency PI~ns for RationaUy Solving
Problems?

3108-(5Oal-83

D-21

..... !

".

'.
~.

~,:' ':'. 1 .~ ."

.".". t
".,-

.. <~:: , ,::/ \ ',: ' .

. SVS1f IE u1J"B ~ rE 11llV 0 [Ri IE IRlu LE ~~1fS
.···.~iE~JDEWd (§~~)

o Introduction and P.gcnda
o Roquirements Summary
o Analysis Ovorviow
o Functional Sp!!cifications

Environmontal Considamtions
OporationDI Roquirements

(1) Operating Scenarios .. , ,.
(2) Oats Flow Analysis
(3) Performance Requirements'
(4) Intorface Requirements
Roq~irom9nts Relationships

() Derived System Requirements
o Requfromants Management Plan
o Personnel Organization and Interfaces
G Software Performance and Testing Requirements
o Issues, TBD Items, and Problems
o Milestones and Suggosted Development Schedule

PRESENTERS

PARTICIPANTS

SRR FORr~AT

Requirements Definition Team

Development Team Representative~
Qunlity Assurance Representntives
User Representatives
Customer Reprosentatives

TIME· After Functional Specifications Completed and
Before Functional Design Started

HARDCOPY
DISTRIBUTION

Minimum of SOny:; Before SRR

0-22
91OS·(Sld\.3J

"

,;
.'

:.' • 'i." ,'"
, • <, ..

. " '.',.~,

s" ~rU"rE M U~ IE o. ~,~ D [RUE RflHE rr~1r$
fR\ rEV B [$yy «S r:~ A»

1. Introductiorl
2. Roquiromont:l Su;,mulrV
3. Annlysis Ovorvicw
4. Functionnl Spociflcut/ons

. n. Enuironmontni Consldol"atlons
b. Opernt!orml noquil"cmont~

(1) Opamting Sconerios
(2) Dotn Flow Annl·.,sis

(n) Sv~tGm Input
Ib) Procosaing Roqlliromonts
(c) Svstom 9utput

(3) Porformnnca Roqu~romonts
(4) Intorfoco Roquirements'

c. Requiremonts RolntioiHihip~f'
5. Dorivod SY!l:om RCQuiromont!)
6. Utility, Support, nnd Tost Progrnms
7. Rmmoblo Soft1Nllro Sununnry
S. Ont!, Sot Dofinitions
9. RoquirOltlonts Mnnnuomont Plnn

n. Personnol Assignmonts
b. Doscription of Boquirod Documonts
c. Configurntion Control Appron.:h
d. Enhnncomont/Mnin(ononco Procoduros
0. Roporting nnd Tosting Evnluntion Procoduros

10. Pnrsonnol Orunnizution lllld Intorfncos
11. Softwnro Porformnnco nnl! Tosting Roquiromonts

n. Annlyticnl
b. Systom
c. Intorfncn
d. AccoptOfH~O

12. ISSlItlS, TBD homs, 11l1d Prabloms
13. Mi/nstlll1uS lllld SU~HJust(Jd Dovu/opmont Sdwdulll

'----_ .•. _-----_.. -------. -----
911'tl l:it., IIJ

1'-: t

-'
i'

t) Introduction and Agonda
o 005i9n Overviow
6 Hlgh-Lovel OiGgroms of Oper .. clno Sconarios
o High-lave' Diogmms of Syntom Structuro
o Major SOftVJIUQ Componentn

High-level Oiogrnms'of Subsvstoms
- High-leval 110 Spocificatlons and 'ntorinco9
- Functional Basollno Dlogrmns (Treochorts)

o Dcuign Team Assm:smont
o Syr;tom SIZD, Roqukod Effort, Cout, nnd Schedulo Estimato!.!
(} Rn:rourcG AllocGdon nnd Extornal Support
Q Oovolopmont Mllnngnmont Phm
o Porsonnel Organizution and fntariocas
o To~tlnu Stratogy
o l!t~l!os, TaO 8toma, and Probloms
G Milostonos nnd Schodulos

PDR FORMAT

PRESENTERS Softwnro Devolopmont Toam

PARTICIPANTS Roquiromonts Dofinition Teum
Quality Assuranco Roprosentotivos From BO'olh
Groups
Customer Intorlaces for Both Groups

TIME After Functional Design Comp/otud nnd Boforo
Dotnilod Dosign Sturtod

HARDCOPY Minimum of 5 DlIYs Boforo PDR
DISTRIBUTION

910!).I511) lU

'f

'-. ~'. -., .. ,' -,.' , ,.: .. '" .

~"', ,,', .,; ,< ' \

fP' [?lIE lLD lMs il R~ A IRi W [D) IE 53 fl tG ~~
_, __ :,,:_t:"'~"<,_ IRIEVDEW UP)l)]n~)

1. Introduction
2. DQ~ign Overview
3. H~gh-Levef Diagrams of Oporating Sconarios
4. High-level Diagrams of Syrstem Structure
5. Critique of Alternativo Designs
G. Major Sofiwnrc Components

8. High-Lovel Diagrams of SubsYGtems
b. High-lovell/O Specificntions a~d Interfaces
c. Functional Baseline Diagrams (TroechDrts)
d. Scra~m, Printer, and Plotter Formats

7. Hardwaro Interfaces
3. Internal Data Set Definitions
9. Reusablo Coda Summary

10. Design Team Assossment
11. System Size, Required Effort, Co~t, nnd Schedule Estimntes
12. Rosource Allocation and Extcrna' Support
13. Development Management Plan

D. Ufe Cycle and Products
b. Methodologios
c. Models nnd Tools
d. Configuration Control Approach

14. Personnel Organization and Interfaces
15. Testing Strategy

D. General Approach
b. El:ttent
c. Control Mechanisms

16. Issues, TBD items, and Problems
17. Milestones and Schedules

D-25

9108.(5191-83

~ introduction ~nd Afijonda
. '" Design Ovorrt!G~W

o High-lGilo3 Dr~11rc:mo of Op2tl'Cilting Sccnorco~ _
o High-l,sucl Di.:3fjTcmn of Syatcm Structur0
o MEljor SofwJ'::J~p') Cc-nnC"lOmmt3

High-Lovel Oiagrom~ of SUbflvo'tGm~
Niah.LouDS 8/0 Sp~cificn1ion3 end rnttDr¥.nco:l
FunctEon~! [3,osa!ino Diagrl:mtl (TreochDrWJ
Error Proco!".sin{~ ;End ne,::m/GJry Strntogv
Restll'ictioml 01 ~rcco~3ing f':Sodo!3
IntornDG Storagl3 Rcquh'cmants

C Dcsiun Team A!'.notlsment
G lmplcmcntation Stil'Cltcev ond Traa::oZlhmty ,

•

o Svctom Sfz"" Rcquired farfan, Com, Gind Schedule EstcmatEis
o Resourco AUocotJon (md Elrtomal :';upport
o Devolopment rolmnngomont Plan
o POfczonnol Orgal'li:.:ntion and Sntorlncl.)s
o To!Oting Strategy
o !OCiUSS, TSO Itcmi2, end ProbJEJms
o Milestonos and Schedules

CDR fORMAT

PRESENTERS - Software Development Team

PARTICEPAI'-JTS Requirements Dofini~ion Teom
Quality Assurance Ropresentativos From Both
Groups
Customer Interlaces for Both Groups

TIME After Dotailed Design Completed and Before
Implemontation Started

HARDCOPV Minimum of 5 Days Before COR
DISTRIBUTION

D-26

, ' ,
,
: '

r~
I ,

I'

\
\

"':',',:< ... , '
" . "

. ".:. ;' :::.(~\):,,:~< ...

(c~Dl-~CArL fi)[E~nGN
;~LEVU[E~H! «C[O)~)

1. rntroduction
2. Design Ovorviow '
3. High-leval Diagrams of Operating Scenarios
4. High-lovel Diagrams of System Structure
5. Mnjov So~!Vare Compononts

a. High-lovel Ding rams of Subsystems
b. High-Level I/O spGcmc~tions am!'" Interfaces
c. Fu.nctional Beselina Diagrams (Trocchnrts)
d. Error Processing and RacovGE'Y Strategy
G. Restrictions of Processing Modes'
~. IntornZlB Storoge Requirements

, g. Detailed I/O Spacifications
(1) Processing Control Parameters
(2) Screen, Printer, and Plotter Formats

6. Hardware Intorlaces
7. (nternal Dato Set Definitions
8. Reusable Coda Summary
9. Desi~)n Team Assessment .

10. Implementation Strateg\' and Traceability
11. System Size, Required Effort, Cost, and Schedule Estimates
12. Resource Allocation and External Support
13. Development Management Plan

a. Life Cycle and Products
b. Mothodologies
c. Models and Tools
d. Configurrntion Control Approach

14. Personnel Organi:Ztltion and Interfaces
15. Testing Strategy

n. General Approach
b. Extent
c. Control Mechanisms

16. Issuos, TnD Items, nnd Problems
17. Milestones and Schedules

0-27 910S·(SljH1J

!" .,

,'.

• • ~ , > t ,'. •

~ ~(j, ,':' ,~:", ':. , '

. ,,~:,~t~ ,~,~~':";~,~. ~ . ~ ~J.' ~;.
C ~ tf.: tf6 J~ TO «Jllf\~ j~ fir. ~[EA[]uu~fE$$

~ rEV fl fEW''' «(Q) U~ /R ~

o Introduction nnd Agonda
o SY3tom Requlromento Summonrv
o Anoly:!:in Ovor\ll~w
Q Support System Overviow

Mejor Soft\vnro Compononts
Systom TO::itlng Philosophy
Systorn Tost;ng and Psrformnnco Evtl'u.otion Ro:;u'ts
Roquirorn~nts Voriflcatlon PhUo:lophy
Systom Softtr ... oro and Oocumontntlon Statuti

o Oporntions nod Support Plnn
Porsonnal Asoignmonts nnd Rospollsibili~itls
Orgnnb:ntional Intorlacos
DntD Availability
Fncill tif.i9
Opemtlng Sconarios

o System I\l1nllngomant Plall ,
f) Porsonnol Org&niznclon nnd Interlacos
o IS!luos, TBD Itom~, nnd Problema
o Contingoncv Plans
G Milostonos nnd Timclino of Evonts

~.--~

ORR FORMAT

PRESENTERS Oporutions and Support Toam

PARTICIPANTS Usor Accoptl1nco Tost Toam
Roquiromonts Dofinitlon, Softwaro
Dovolopmont, nnd Softwnro Mnintonnnco
Roprosontntiv6S
Quality Assurnnco Roprosllfltntivlls From All
Groups
CustOrllOr Intoril1ctlS for All Groups

TIME Aftor ACl~t!ptmtco TtHlting Comploted lind 90

~
Days Bufom Opmnti0l15 Stmt i

HAHOCOPY Minimum ot 5 Dnvs Botoro ORR I
DISTRIBUTION I

___ . _____ . ____ ____ ... __ ., __ .• _._ ____ . ____ .. ____ •. ___ ., ___ J

, , ~ ," , -.. ,\

, .

, I

';

(

,:..1/ '

OH? E ~;~t~[~r~ CO) L~~ t~~. !!,~ ~ !El~\ [Q} a ~ lESS
&~fEifD LEW «OllF6fR'{)

1. !ntroduction
'2. Svstom Requiremonts S~lmmtll'V
3. Annlynis Overviow
4. Support Systom Overview .

R. Major Softtftfm'o Compononts
b. System Te~ti!1g Philo1lophy
c. System Testing and Pcriormanca Evaruation Results
d. Requirement:.!. Vor'ilicatiol"il Philosophy
o. System Software and Documentation Status

5. Optlration~ snd Support PI~m
a. Personnel Assignmonts and Responsibilities
b. Organi%tJtionDI !ntoriaces
c. Dat~ AvoU;;;bility
d. Facilities

(1) Normal Opor~tions
(2) Criticnl Operations
(3) Emef'goncy Ope" "Qns
(4) Contingency Operations

G. Operating Sconarios
(1) Support Raquiraments
(2) Timoline of Events
(3) Operating Procodures
(4) Resource~ Aequired

G. System Managemont Plan
a. Personnel Assignments
b. Description of Required Prod,,!ds
c. Configuration Control Approach
d. Enhancement/Maintenance Procedures
e. Reporting and Testing Evaluation Procedures
f. System Performance Evaluation Procedures

7. Personnel Organization and Interfaces
B. Issues, TBD Items, and Problems
9. Contingency Plans

10. Milestones, and Timeline of Events'

9tOl!-l51cl,83

,. "'" • ~ , ... ~ •• " ~ 'r'" «".

" '

,;c' <~ -'J
, '
',,;,",

, "

" , .. ,~ >'" ; ",:, '/,'. i~'

SO!Fl1PJA~E DfEVrEa..OfPMEN1r L~l.AN
~O~MAT

1. Bntroduc~ion

2. ProbJem Statement

3. Approach

8. Technical
b. Management

c. Configuration Control

4. Resourca estimates and Stariing Profilo

5. Schcdu!e!3 and rilJilestones

G. It0ms Required From the Custt?mer

1. Items To Be Delivered to the Customer

D-30

, ~~'" .

91011-(51)-83

· ,
I
l:

· .

· .
· . , .

; -. /

" -

r---·"-~' '~'~n' ' • -.--. ~ ... - .. -

, ; I ,
!

' .. ./
,:', "'"

~ . ,:;

1. Descrip~ion ~nd Ust of Major COll11ponen~s

2. '(ey Personnel and Their Responsibilities

3. Description of Capabilities in Each Build/Role~5e

4., DeliverabSo Products

5. History of Events, Schedules, end Milestones

G. E-!istory of Systenl Size, Required Effort, and Cost
Estimiltcs ,\ .,

7. Bistory of Source Code Cfmnges

8. History of AccompHshments

9. Nistory of Outstanding TBD It:=ms, Changes, Errors,
Dnd Problems

10. Bistory of Verification of System Requirements

9103-(511-83

'--.... t ----

" .

I • •

~rE@a~nlFllEtRfnlEr~ll$ ffi'ufi~~Afl VSHS
~tiJMMAr?&W fRHEtF'OfRf1T'

R~Q.UB~E~JiHEr\;~iTS ANAL VSBS SUPJBfillARV
RfEl?OrF«T !FORMAT

1. Introduction

2. System CQrzs~vain~s

3. Deve!opmant ASStJlMptkmn

4. Aress of Con~ern and T13D Roquh'emGn~

5. Analysis of Basic and Deriued System Requiremonts

6. Analysis of Basic Cllnd Derived Requirements by
Subsystem Ii,

7. Orlta Interlaces

8. Summary of Reusablo Software

I ,

9. System Siz~, Required Efiort, Cost, and Schedule
Estimates

D-·32

9108-1511-83

·~ ,~,,&~,. -.-.. ----. ... ~,---~-... ~ .. --: ... ~,
, . ~ :). "'''' '. -", ,

,,' .,-;

• :- "",'j

','",.'-- ,.-
,. -

,I I.,

(

'd. Entroducticn
i a. Ovarn!! S\,stom Concepts (,

b. High-L€l,.,sQ \?Qcturos of System

c. OparatBng Scenarios

d. Design St~tus

s. Critique of Alternative Designs

2. Subsystems

s. H,gh-Le\!e~ Pic~urGs
b. De5crip~ion o~ Snput and Output

c. Description of Processing

d. Functional Baseline Diagrnms
e. ProJogs and POL for First lovel

3. Resource Requiremonts
a. HnrdwDre

b. Data Definitions

c. Peripheral Space Considerations

d. Memory Considerations

4. Data Interfac~~s

B. Description

b. Format

5. Summary of Reusable Software

9108-1511-83

I
D-)3

" .,..~~ .. ,', . ., ", " , ", " , ~ ;, " ' ,

, ,
~ :~{ '. ~ ,I' ~,"

1. introduction

2. Subsystems

8. OYerall Capabilitv

b. High-Loyel Pictures

c. De~cripti(m of Bnput a~~ Output

d. Description of Proces~ing

o. Basoline Diagrams

f. Res~riction3

g. Internal Storage Requirements

h. Detailed Input and Output Specific<!ltions

i. List of Messnges

j. Description of COMMON Aroas

1(. Prologs and PDL

3. Resource Requirements

4. Data Interiilces

5. Summary of Re!Jsable Software

6. Results of System Modeling

D-3-1

9108-1511-aJ

:' ... '
,,I) ,"

,', :' ...
~', .'

r, I, 't, • /

1. Introduction

a. Purpose

b. Type and lev~1 of Testh1!j

c. Schedule

2. for Each Test

a. Purpose

b. Detailed Specification of Input

c. Required Enuironmen~

d. Operational Procedure

e. Detailed Specification of Output

f. Pass/Fail CrstCi!ria

g. Discussion of Results

910a-IS1'-83

D-35

/':~:;/('J! :;,;';~/ "" :
,

:
. ~.---

, .

1. Dritroduction

ll. OveraU Systom Concopts

b. High-level Pictures

c. Oparatang Scenarios

2. Subsvstoms

~. Overall Clllpnbmty

b. Assumptions and Rastrictions

c. High-loval PicturGs

d. Description of Unput and O~tput

e. Oancription of Processing

3. Requirements for E;,mcution

s. Resources

b. Run Infornu~tion
c. Control Paramoter fnformation

4. Detailed Description of Input and Output

B. Facsimiles of Graphic DispJays

b. Facsimiles of Hardcopy Output

c. list of (\~essagos

910ll-150al-33

, \ ,

--.

-, .

1. Introduction

2. Subsystems

l!. Overall Capability

b. Ansumptiotls and Restrictions

c. Nigh-Lovel Picturos

d. Descreption of Input and Output

e. Basoline Diagrams

3. Requirements for Creatior!

n~ Resources

b. Creation information
I
I
I

c. Program Structuro Iniormntion

4. Dotailod Description of Input llnd Output

5 .. Internal Storage Requiremonts

6. Dnta Interlaces

7. Description of COMMON Arens

8. Prologs and POL

9. list of Softwaro from Support librnrics

1'- 3 .

91"'-t~l83

·--

>,

'"

SOrFib1!~~tre[E Dt:tn:iLO)[?R~tE~jY HGSTORV
FO [FUillA 1i

1. Pi'oject Description Elnd Bachground

3. Project Assossrnont

4. ~unctionn! Spoc~fica~ions and Fteql!lir~mcnts

5. Sumrnnry

6. RoroG"ances

1I1C$·(SlI..'U

. (

. \
i

._-

, Act

App,

AT
ATPh

C
CAct
CA'r
CCB

CUR
CPU

0

DAct

DO
DO Ph

DEC
E

ECR

f

FSHO

GESS
GSFC

I

lAD

Iml

leO

Intel
IPh

I/O

.JeL

K

, I ... ~

, ".'

activ i ty ..'

applicable

GLOSSARY

acceptance testing

acceptance testing phase
coding
coding activity
Configuration Analysis Tool
Configuration Control Board

critical design review

Central Processor Unit
design
design activity

detailed design
detailed design phase

Digital Equipment,Corporation
effort

•. '''1

O~'G'iNAl. PAOlI m
Or. POOR QUALITY

Engineering change request, requirements
modification request, functional specifications
modification request, specifications modification
reques t
factor

functional specifications and requirements document

Graphic Executive Support System

Goddard Space Flight Center

implementation, code and unit testing
interface agreement document

International Uusines~,Mdchines
interface control document
Intel computer
implementation phase, code and unit testing phase
input and Ollt~ut

Job Control Language
one thousand

(.i-1

L

Loe
M&DOl)

MEDL-R

MOl
MOU

NASA
NSP
Org

ORR·

PO

- • : -"-, { : '/' ~. -~ ""j ,

" .
'.

,j..", ._ .I.

adjusted lines of code

lines of code

ORIGINAL PAGE is
OF POOR QUALITY

Mission arid'D~ta Operations Directorate

Multi-Level Expression Design Language -
Requirements Level

memorandum of information

memorandum of understunding

National Aeronautics and Space Administration
NASA Support Plan
organization

operational readiness review

preliminary design
POL Process Design Language, Program Design Language,

pseudocode, metacode

PDP DEC computer

PDPh

PDR

Ph
POC

./ PSA

PSL

RA
RAPh
RID,

S

SAP

SEL
SFORT

SIRD
SLOC

SRR

STPh

'I'

preliminary design phase

preliminary design review ..
phase

point of contact

Problem Statement Analyzer

Problem Statement Language

requirements analysis
requirements analysis phase

review item disposition, review item discrepancy

system

FORTRAN Static Source Code Analyzer Program

Software Engineering Laboratory

Structured FORTRAN Preprocessor

support instrumentation requirements document

source lines of code

system requirements review
system testing, system integration and testing

system testing phase, system integration and testing
phase

testing

<.;-2

~
l' . ,

~
! ' , , , .

, ..

I
I '
f

I;

J i
,
I

TAct

·"
" .' .' I:,~:,.,,;·'~~,~:.:'r :

testing activity

ORIGINAL PAGE IS
OF POOR QUALITY

'i'B I) II to be deterroined ll uocd as an adjective ('rSD i terns)
or as a -nour(,(TBDS) ~i

Tot total

UDF unit development folder
VAX DEC computer

G-3

•

, .

'\",

REFERENCES

j ,"(' ~

ORIGINAL PAGE IS
Of POOR QUALITY

1. Software Engiri~ering La~6ratory, SEL-81-l04, The Soft­
ware Engineering Laborator~t D. N. Card, F. E. McGarry,
G~ Page, et al., .February 1982

2. --, Software Managers Handbook (to be published)

3. TRW, TRW-SS-76-1l, The Unit D~velopment Folder (UDF):

4.

5.

6.

7.

8.

9.

, 10.

11.

12.

An Effective Management Tool for Software Development,
F. S. Ingrassia, October 1976

E. Yourdon and L. Constantine, Structured Design.
New York: Yourdon Press, 1979

Software Engineering Laboratory, SEL-80-l04, Configura­
tion Analysis Tool (CAT) S stem Descri tion and User's
~uide (Revis10n , W. J. Dec'er an W. A. Taylor,
December 1982

D. Teichroew and E. A. Hershey III, "PSL/PSA: A
Computer-Aided Technique for Structured Documentation
and Analysis of Information Processing Systems," IEEE
Transactions on Software Enqineerinq, SE-3:l, January
1977 -

Martin Marietta Aerospace, Multi-Level Expression De­
sign System (MEDSvs) - Requirements Level Language
(MEDL-R) Description Manual, P. Scheffer and A. Musser,
Revised February 1979

M. Page-Jones, The Practical Guide to Structured De­
s~gn. New York: Yourdan Press, 1980; App. B: Wa1k­
troughs

R. Tausworthe, Standardized Development of Computer
Software, Vol. I. Englewood Cliffs, New Jersey:
prentice-Hall, Inc., 1977

D. L. Parnas, "On the Criteria To Be Used in Decompos­
ing Systems Into Modules;" Communications of the ACM,
vol. 5, no. 2, pp. 1053-1058

E. W. Dijkstra "The Structure of the "THE" - Multipro­
gramming System", Communications of the ACM, May 1968,
vol. 11, no. 5, pp. 341-346

Computer Sciences Corporation, CSC/TM-76/6l89, Teleme­
try Co~outation Branch Quality Assurance Procedures:.
Program Design Language, R. Bieri, November 1976

R-1

" "

cmGtNl\L pr~~E ,~
or: poon QUALITY

13. S.' H. Caine and E. K. Gordon, "POL ~ A Tool for Soft­
ware Design," Proceedings of' the 1975 National Computer
Conference, v 0,1. ,44, pp. 271-176

14. G. J. ~yers, Composite/Structured Desiqn. New York:
Van Nostrand Reinhold Co., 1976

1 S.

16.

17.

University of Maryland, TR-936, A Metal-Model for Soft­
ware Development Resource Expenditures, J. W. Balley ,
and V. R. Basil!, August 1980

R. C. Lingen, H. D. Mills, and B. I. Witt, Structured
pro~ramminq: Theory and Practice. Reading, Mass.:
Addison-Wesley Pub. Co., 1979

G. M. Weinberg, The psychology of com¥uter Proqram­
~. New York: Van Nostrana Reinho d Co., 1§71

18. G. J. Myers, The Art of software Testing. New York:
John Wiley & Sons, Inc., 1979

19. Software Engineering Laboratory, SEL-78-004, Structured
FORTRAN Preprocessor (SFORT) PDP-ll/70 User's Guide,
D. S. Wilson and B. Chu, september 1978

20. Computer Sciences Corporation, CSC/Tt>t-78/6296, Accept­
ance Test Methods, J. Niblack, October 1978 ,

21. Software Engineering Laboratory, ~EL-81-l01, Guide to
Data Collection, V. E. Church, D. N. Card,
F. E. McGarry, et al., August 1982

22. --, Guide to Software Cost F.stimation (to be published)

R-2

9108

f ,

i,
L

. , ,

I

BIB~rOGRAPHY OF SEL LITERATURE

O~IG'NAl PAGE IS
0,- POOR QUALITY

The technical papers, memorandums, and documents iisted in
this bibliography o'Jre otgani:::ed into two groups.. The first

group is composed of documents issued by the software Engi­
neering Laboratory (SEL) during its research an~ ~evelopment

activitie~. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-Originated Documents

SEL-76-00l, Proceedings From the First Summer Software
Engineering Workshoe, August 1976

SEL-77-00l, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

.,

SEL-77-002, Proceedings From. the Second Summer Software
Engineering Workshop, September 1977

SEL-77-003, Structured FORTP.AN Preprocessor (SFORT), B. Chu
and D. S. Wilson, september 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-DOl, FORTRAN Static Source Code Analyzer (SAP)
Desig~ and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, February 1978

tSEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. o'Neill, S. R. Waligora, and
c. E. Goorevich, February 1978

SEL-78-l02, FORTRAN Static Source Code Analyzer program
(SAP) user's GUlde (ReV1Sion It, w. J. Decker and

W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK software DeSign,
K. Tasaki and F. E. McGarry, June 1978

t This document superseded by revised document.

S-l

d552

') " ; "<",, ,,- ... , ~ •• : , 1 ': ' ~' •

':..I;,'''~ _ "''''\, '.~ ~ '"' 7 , ; .. '., - r ~.,

, ~_. ,', t,

~ .', ,'_ I

, .;
II, ' t ',.

, ' '. f ~~ , ' l:

SEL-78-004, str.uctured FORTRAN prce;ocessor (SFORT)
PDP-ll/70 uoeris Guide 1 D. S. \Hlson and B. Chu, September
IDa

SEL-7S-00S, proceedings From the Third Summer software Engi­
neering \'Jorksnop, september 19~

Requirements
E. Va ez, Novem er 1978

SEL-78-007, APplicability of the Rayleigh Curve to the SEL
!nvironment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratorx: Rela­
tionship Equation~, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Soetware Module Repositor* (CSMR) system
Description and User's Guide, C. E. Goorevic. , A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Desiqn Lan~Uaqe (PDL) in the· Goddard SEace Flight
Center (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-00S, proceedin9s From the Fourth Summer Software
En9ineering WorkshoE, November 1979

SEL-SO-001, Functional Requirements/Specifications for
Code SSO Configuration Analysis Tool' (CAT1, F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1980

SEL-SO-002, Multi-Level Expression Design Lanquage­
Requirement Level (MEDL-R) System Evaluation, w. J. Decker
and C. E. Goorevich, May 1980

SEL-SO-003, Multimission Modular Spacecraft Ground Support
poftware System (~~S/GSSS) State-of-the-Art computer
Systems/Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-BO-004, System Descr iption and user I s Guide for CCl;n 580
Configuration Analysis Tool (CAn, F. K. Banks, --­
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-00S, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

5-2

8552

.
\ ,
! ~

· ~.

,'l,.

;', ~ \ :. "., ~ '" . '" I

.~ :,.4f, ~: "'t',: ~~ ", . i'i,," ~.

ORlGI~UU: PAG!:: IS
OF &loon QUALITY

SEL-80-006, proceedings From t,he Fif.th Annual. Software
Engineering \'lOrkShOE.tN9:~ember 1980

" ,~."" I. of' .' "p,~,r •• ~ '""

SEL-SO-007, An Appraisal of Selected Cost/Resource Estimation
Models for Software Systems, J. F. Cook and F. E. McGarry,
December 1980

tSEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-l01, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

tSEL-81-002, Software Engineering Laboratory (SEL) Data Base
Organization and useris Gu~de, D. C. Wyckoff, G. Page, and
F. E. McGarry, september 1981

Base

>l-
'SEL-al-003, Data Base Maintenance System (DBAH) User's Guide
and System Descrip,tion, D. N. Card, D. C. Wyckoff, and
G. Page, September 1981

SEL-81-003, Software Engineering Labora~ory (SEL) Data Base
Maintenance Systp.m (DBM) Us(~r is G'lide and system De­
scriptlou, P. Lo and D. Card, April 1983

SEL-8l-l03, Software Engineering Laboratorv (SEL) Data Base
Maintenance System (DBAM) User's G~ide and System Descrip­
tion, P. Lo and D. N. Card, April 1983

~SEL-81-004, The software Engineering Labor~tory,
D.' N. Card, F. E. McGarry, G. page, et al., September 1981

SEL-8l-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-00S, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., september 19B1

SEL-8l-l0S, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, and G. Page, May 1982

This document superseded by revised document.

8552

,; ,e ,':".", '".:}

:.~4f'i;·~,~ fY~"~

, ~, .
• " '; • l \I<~

~ • ''!o

, ' '.
1 \' ,'

SEL-81-20S, Recommended ~!I:-h to Soft\'!are Development,
F. E. 1-1cGarry, G. ,~.agc, -.s. Esll~lg~r etaI., April :L9~

, ' " '. .~ -: .~ .:- ~",.:' " ",'"

SEi:..-81-006, Soft\,u:u:e En9inee;..~ Laboratory (SELl,.Docurnent
Librarv (COeLLO) Sy~tem Desc~~tion and user's GUlde,
W. Taylor and W. J. Decker, December 1981

.~

SEL-81-007, Software En ineerin9 Laboratorv
Eendium of Too S, W. J. Dec.er, E. J. Smlt ,
et aI., February 1931 I

Com­
Green,

SEL-81-l07, Software Enqineerin9 Laboratory (~EL) compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982 .

SEL-8l-00S, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-S1-00Q, Software Enqineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker and
F. E. McGarry, March 19Sr---

SEL-81-010, Performance and Evaluation of an Indeecndent
Software Veriflcatio~ and Integration process, G. page and

i : F. E. McGarry, May 1981

SEL-81-01l, Evaluating Software Develo1ment by Analysis of
Change_Data, D. M. weiss, November 198

SEL-8l-0l2, The Rayleigh Curve As a Model for Effort
Distribution Over the Life of Medium Scale Soft"are systems,
G. O. picasso, December 1981

SEL-8l-013, proceedings From the Siy.th Annual Software EnQi­
neering Workshop, December 1981

SEL-8l-0l4, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-00l, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2 .

SEL-82-002, FORTRAN Static Source Code Analyzer Proqram
(SAP) System Description, W. A. Taylor and W. J. Decker,
AU'just 1982

This document superseded by revised document.

S--l

-I
~

I SEL-82-003, Software En~ineerJng Laboratory (SEL) Data Base
Reporting Soitware.,ll~er s Gul e and system oeser lption,
P. LO, September 19t12 "

i SEL-B2-004, Collected Software Engineering Papers:
Volume 1, Jury 19ti2 "

SEL-B2-005, Glossary of software Enqineering Laboratory
~~, M. G. Rohleder, December 1982

SEL-82-006, Annotuted Bibliography of Software Engineering
Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-007, proceedlnqs From the Seventh Annual Software
Eng ineer in"g \'lorkshoe, December 1982

SEL-82-008; Evaluatinq S"ftware Development bX Analysis of
Changes: The Data From tne Software Engineerlng Labora~ory,
V. R. Basili and D. M. WeiSS, December 19S2

S~L-~elated Literature

t"Bailey, J. W., and V. R. BClSili, "A Meta-Mocel for Soft­
ware Development Resource E~pendrtures," Proceedings of
the Fifth International Conference on Soft\Y'ara Engineer in9,..
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration AnalYSis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
19th)

t~Basili, V. R., "Models and Metrics for Software Man~gement
and Engineering," AS ME A~vances in Computer Technology,
January 1980, vol. 1

Basiii, V. R., "SEL Relationships for programming Measure­
ment and Estimation." University of Maryland, Technical
Memorandum, October 1979 .

Basili, V. R., Tutorial on Models and Metrics ior software
Management and Englneerlng. New York: Computer societies
Press, 1980 (also designated SEL-SO-OOS)

ttuasili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation problems?",
Journal ot Systems and Software, February 1981, vol. 2,
no. 1

f+ Tnis article ai.;o appears in SEL-t32-004, Collected Software
Engineering PaE~rs: Volume 1, July 1982.

S-5

".\,:~(~:,; ~ ;:>.' .' it:)::i':~'\"::'~:~
,"

>"" OR'IGtf~fjl~ PAGE IS
O~ POOH QUAUnf

ttBasl1i, v. R., and K. Freburger, "programming Measurement
and Estimation in the Software Engineering Labotbtoty,n
Journal of Systems and Soft\-lare, February 1981, vol. 2,
no. '1

Basili, V. R., and B. T. perricone, Softwarp. Errors a~d
Complexit~~~~~rical Investigation, University of
Maryland, Technl~al Report TR-ll95, August 1982

ttB'asili, V. R., and T. Phillips, "Bvaluating and C':>ffij;)aring
Soft\'1arc t.1etr ics in the Software Eng Ineer Ing Labor,H.ory,"
Proceedings of the ACM SIGMETRICS SymEosium/worksho~
Quality Hetrics, March 19B1

Basill, V. Ro, R. W. selby, and T. Phillips, Metric Analysis
and Data Validation Across FORTRAN Projects, Univer~ity oi-­
Maryland, Tec~nical Report, November lS82

Basill, V. R., and R. Reiter, "Evaluating Automatable Meas­
ures for software Development," ~eedinCJs of the '''i'orksho~
on Quantitative software Models for Reli~bili~ ,
~ Cost, Octo er 1 ,9

Basill, V.~~, and D. M. Weiss, A Methodol02Y for Collect~nR
Valid Soft\'1are Engine:eL ing Data, Lniver 5i ty of Maryland I
.Technical Report TR-1235, December 1982

I
I

Basil~, V. r.., and M. V. zelkowitz, "Deslgning a Software
Measurement Exper Iment," procpecUngs of: the SoftHat e Li fe
Cxcle Mnnagem~nt Workshop, September 1977

tBasili, V. R., and M. V. zelkowit~, "Oper3tl~n of the S0ft·
ware Engineering Lab~ratory," FrocJ~dings of the Second
Software Life Cycle Management Workshop, August 1978

ttBasili, ~. R., and M. V. Zel~owitz, "Measuring Software
Development Characteristics in the Local Environment,"
Corr.puters and Structur~, August 1978, vol. 10

Basili, V. Ro, and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," P~oceedings of th~ Third Interna­
tional Conferen::e on Sottware EI,gineeri~:a.. Ne\>/ York:
Computer Societi~s Press, 1978

tt h-:-- '. 1 . 2 1 T 1S a:t1c e also appears 1n SEL-8 -004, Co lecteJ soft~are
Engineerinq PapeEs: VoluMe 1, July 198~.--

S-G
8S5~

"

I = -t=-

,

I

t"

!
l

'" i ,

'., P'~ ~ ,,~. "_, '.: '. ~'
: ... ~ '> ,'. ~ J, ", : J. ~ "

ttBasili, V. R., and l4. V. Zelkowitz, tl The Software
Engineering Laboratory,::" Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Card, "D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical
Memorandum, June 1982

Card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

Card, D. N., and V. E. Church, "Analysis Software Require­
ments for "the Data Retrieval System," Computer Sciences Cor­
poration, Technical Memorandum, March 1983

Card, D. N., and V. E. Church, "A plan of Analysis for Soft­
ware Engineering Laboratory (SEL) Data," Computer Sciences
Corporation, Technical Memorandum, March 1983

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memo­
randum, September 1982 ..
ttchen , E., and M. V. Zelkowitz, "Use of Cluster Analysis TO
Evaluate Software Engineering Methodologies," proceeding!
of the Fifth International Conference on Software Engineer­
~. Nev' York: Computer Societies" press, 1981

Freburger", K., "A Model of the Soft"w'are Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, september 1977 (also
designated SEL-77-00S) "

Hislop, G., "Some Tests of Halstead Measures" (paper pre­
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Miller, A. M., "A survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

h h' . 1 1 . 8" 004 11 d . T 1S art1c e a so appears 1n SEL- _- , co ccte sottware
Engineering Papers: Volume 1, July 1982.

S-7
8552

: J

. " ~i,~".~J,jj.~<;(, '
I .~ t ... ~~~·". -... ~

' .. ~ ::', 'HrHGINAl ~j\m~ IS
. ,:.' OF POO?' QUI,lin'

National Aeronautics and Space Administration (NASA), NASA
Software Research Techno~ogy t';orkshoE (proceedings), March
1980 ~ .> •

.. ~-<'::," '. -l~tJ,t,
-" I:~.

Page, G., 'ISoft\'larc Engineer lng Course Evaluation, II Computer
Science::; Corporation, Ts:!chnical f.lenlorandum, December 1977

Parr, F., and D. Weiss, "Concepts used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran­
dum, May 1978

Reiter, R. W., "The Nature, organization, Measurement, and
Management of Sofb/are Comple~ity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E~ Velez, "GSFC NAVPAI< Dooign Higher
Order: Lang1lages Study: Addendum," Hartin 14arietta Corpora­
tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A 'ccmpa'r'ison of R.l\DC and NASA/SEL
Soft\1lare Development Data, Data and, Analysis Center for
Soft:vlare, Special publication, May ,1981

Turner, C., G. Caron, and G. Brernent, NASA/SEL Data Compen­
dium, Data and Analysis Center for ,Software, Special publi­
cat~cn, April 1981

,
Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Kemorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Re~earch Laboratory, Technical Memorandum, July 1979

ttzel~owitz, M. v., "Resource Estim~tion for Medi~m Scale
Soft\"are Projects," Proceedings of the TWelfth Conference on
the Interface of Statistics and Computer Science. New York:
Computer Societies Press, 1979

Zelkowitz, M. V., "Data Collection and Evaluation for Ex­
peri~ental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings), November
1982

Zelkowitz, M. V., and V. R. B~sili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft­
ware Life Cycle Management Workshop, September 1977

++Tnis article also appears in SEL-82-004, Collected Software
Enqineering Papers: Volume ~, July 1982.

S-8

8552


~~~"f ~-::,tt:F 

. '. 

~ ..,~~~: "~:' ~ "-' ;\:; 
l·· ,'" ~ . \ " , . 




