General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

g T T ST

s
&

SOFTWARE ENGINEERING LABORATORY SEL-82-007 SEL-82-007

PROCEEDINGS OF THE
SEVENTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

(8A5A-14~-dOo40U} bRUCEEUINGS Gr THE Sovowsasd N83-42456
ANNUAL oUFIWAKE oNGINELowANG wCHASHOE teava) THRU
394 p uC Al7/Hr AVl Cotw JIb N83-3c364

Juclas
G3s61 <8470

DECEMBER 1982

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

PROCEEDINGS
OF
SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

December 1, 1982

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
enaineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branchj)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (2) to identify and th o apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version ¢of this document was
also issued as NASA/GSFC document in 1982.

Single copics ot this document can be obtainea by writing to
Frank E. McGarry
Code 582.1

NASA/GSFC
Greenbelt, Maryland 20771

PRECEDING PAGE BLANK NOT FILMED

iii

SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

ABOUT THE WORKSHOP

The Seventh Annual Software Engineering Workshop was held on December 1, 1982, a1 Goddard
Space Flight Center in Greenbelt, MD. Nearly 250 people. representing 9 universities, 22 agencies
of the federal government, and 43 private organizations, attended the meeting.

As in the past 6 years, the major emphasis for this meeting was the reporting and discussion of
experiences in the identification, utilization, and evaluatien of software methodologies, models,
and tools. Twelve speakers, making up four separate sessions, participated in the meeting with
cach session having a panel format with heavy participation from the audience.

The workshop is organized by the Software Engineering Laboratory (SEL), whose members repre-
sent the NASA/GSEC, University of Maryland, and Compuier Sciences Corporation (CSC). The
meeting has been an annual event for the past 7 years (1976 to 1982), and there are plans to con-
tinue those yearly meetings as long as they are productive.

The record of the meeting is generated by members of the SEL and is printed and distributed ty
the Goddard Space Flight Center. All persons who are registered on the mail list of the SEL
receive copies of the proceedings at no charge.

Additional inforimation about the workshop or about the SEL may be obtained by contacting:
Mr. Frank McGarry
Code 582.1
NASA/GLSEFC
Greenbelt, MD 20771

301-344-5048

CLHTEDING PAGE PLAMT MOT 8 vy

ool AN

AGENDA

SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER
BUILDING 3 AUDITORIUM
DECEMBER 1, 1982

8:00 a.m. Registration **Sign-In"
Coffee-Donuts

8:30 a.m. INTRODUCTORY REMARKS F. E. McGarry (NASA/GSFQC)
“What Have We Learned in 6 Years?”

9:00 a.m. SESSION NO. 1 TOPIC: The Software Engineering
Laboratory (SEL)

Discussant: J. Page (CSC)

“Software Errors and Complexity,
An Empirical Investigation™ V. Basili (University of MD)

“When and How to Use a Software
Reliability Model™ A. Goel (Syracuse University)

“*Measuring the Application of
Software Prototypes” M. Zelkowitz (University of MD)

10:30 a.m. BREAK
11:00 a.m. SESSION NO. 2 TOPIC: Software Tools

Discussant: P. Scheffer
(Martin Marietta)

“Experience and Perspectives
with SRI's Tools for Software J. Goguen (SRI)
Design and Validation” K. Levitt (SRI)

“Technology Transfer Software
Engineering Tools” 1. Miyamoto (University of MD)

“Design Aids for Real-Time Systems” P. Szulewski (Draper Labs)

12:30 p.m. LUNCH e
PRECEDING PACE BLANK 3

L L e .,
S N

4

vii

1:30 p.m.

3:00 p.m.

3:30 p.m.

5:00 p.m.

SESSION NO. 3

“Softwiare Frror Data Collection
and Categorization™

“An Eftective Bug Classification
Scheme Must Take the Programmer

Into Account™

“Software Anomoly Taxonomy
What Can be Gained?”

BREAK

SESSION NO. 4

“Maintenance Estimation
Methodology™

“Staffing Implications of Software
Productivity Models™

“Estimates of Software Size From
State Machine Designs"”’

ADJOURN

viil

TOPIC: Software Errors
Discussant: D). Simkins (IBM)

T. Ostrand (Sperry Univace)
I©. Weyuker (Courant Inst.)

I-. Solloway (Yale)

W. Johnson (Yale)
S. Draper (University of CA)

D. Buckland (Reifer Consultants)

TOPIC: Cost Estimation

Discussant: D. Card (CSC)

K. Rone (iBM)

R. Tausworthe (JPL)

R. Brithcher (IBM)
J. Gaffney (IBM)

SUMMARY OF THE SESSIONS: SEVENTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

Michael Rohleder

COMPUTER SCIENCES CORPORATION

and
THE GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

Prepared for the
NASA/GSFC

Seventl Annual Software Engineering Workshop

December 1982

INTRODUCTORY REMARKS

Frank McGarry - "What Have We Learned in Six Yecars?"

Frank McGarry of the Goddard Space Flight Center (GSFC)
opened the workshop with a summary of results obtained from
the analysis of data collected by the Software Engineering
Laboratory (SEL). The SEL has monitored 46 software de-
velopment projects at GSFC during the past 6 years. The
discussion covered the areas of profiles, models, and meth-
vdologies., Within these areas, a number of results were
presented.

The use of modern programming practices (MPP) favorably af-
fects productivity and reliability. A l5-percent increase
in productivity was demonstrated. However, the effect of
MPP on reliability was found to be highly variable. Pro-
grammer ability and experierce was shown to have the
greatest influence on the productivity of the software de-
velopment process. Studies of reliability and cost models
were inconclusive. More theoretical development ot and
practical experience with such models is needed before they
can be applied effectively in a production environment.

The costs of data collection were idertified and quan-
tified. These include task overhead, data processing, and
aata analysis. Data collection is expensive, but it is es-
sential to understanding and improving the software develop-

ment process.

In response to guestions and comments from the audience,
McGarry clarified several points:

] A number of methodologies have proved t¢ be cost
effective in the GSFC environment. However,
numerical values for the benefits and costs of

M. Rohleder
CSC
1 of 17

individual methodologies are difficult to deter-
mine. The maximum savings observed were about 15
to 20 percent for a combination of MPP.

Except for errors, data from the maintenance phase
was not included in these analyses,

M. Rohleder
CSC
20f 17

SESSION 1 - THE SOFTWARE ENGINEFRING LABORATORY

Victor Basili--"Software Frrors and Complexity, An Empirical
Investigat.:on"

The first eneaker of the first session was Victor Basili of
the University of Maryland. This presentation focused on
the distributions and relationships derived from error data
collected during the development of a medium-scale software
project. The error characteristics of this project were
shown to reflect significant differences between this proj-
ect and the class of projects usually studied by the SEL.

Mcdified and new modules were shown to differ in the types
of errors prevalent in each and the amount of effort re-
quired to correct an error. Modified modules appeared to be
more susceptible to errors due to the misunderstanding of
specifications. One surprising result presented by Basili
was that an increase in module size 4id not increase error
proneness. In fact, larger modules were shown to be less
error prone. This was true even though the larger modules
were more complex. A number of explanations for this phe-
nomenon were suggested.

In response to questions and comments from the audience,
Basili clarified the following points:

° Errors of commission were those errors caused by an
incorrect program statement. Errors of omission
were those errors that resulted from forgetting to
include a statement or parameter.

° A large portion of the errcrs was attributed to a
misunderstanding of specifications or requirements.

° The effect of programmer experience was considered
in the investigation.

M. Rohleder
CSC
3of 17

Additional work is required to determine the op-

timum size of modules with respect to reliability.

Errors caused by earlier error correction efforts

were found to be, at most, 6 percent of the total.

Data was not available on the time required to cor-
rect errors in large versus small modules.

M. Rohleder
CS¢
dof {7

Amrit Goel--'wh:n and How To Use a Software Reliability
Model"
The second speaker of the session was Amrit Goel from
Syracuse University (on leave to the University of
Maryland). This presentation dealt with the role of soft-
ware errors in determining the reliability of large-scale,
computer-based systems. The use of stochastic and combina-
torial models to assess system reliability in the presence
of failures causzed by software errors was examined. It was
suggested that users were employing models that were readily
available on their computer systems ratner than the most
appropriate model for their development environments. This
is due to incorrect or ambiguous interpretations of model
assumptions and output.

Goel presented views about the utility of the available
models during various stages of the development process and
in different testing situations. Alternatives to reliabil-
ity models were also suggested for occasions when the cur-
rently available models do not seem to be applicable.

The following points were made by the audience in response
to the presentation:

) Rick Gale pointed out that scftware testing should
be driven by reliakility model measures.

) John Musa agreed that appropriate testing is neces-
sary to obtain valid results from a model.

M. Rohleder
CSC
Sof 17

Marvin Zelkowitz--"Measuring the Application of Software
Prototypes"

The last speaker of the first session was Marvin Zelkowitz
of the University of Maryland. This presentation covered
the development and application of prototypes for software
systems, The differences between models and prototypes were
identified as well as essential elements common to both.

Environme .al considerations and their influences on proto-
type development were also discussed.

An ongoing experiment in prototyping, the Flight Dynamics
Attitude Simulator (FDAS), was described. A number of fac-
tors motivated the choice of the prototyping approach for
the development of this system. These include uncertainties
about size, requirements, and interfaces.

In response to questions and comments from the audience,
Zelkowitz clarified the following points:

° The major goal in the development of this prototype
is to examine project requirements and feasibility
more closely. Specifications for the full system
will be based on the results of the prototyping
experience.

o The need for prototype development stems from the
fact that FDAS is a very different type of system
from those usually developed in this environment.

° Prototypes are not built merely to "tack on" ad-
ditional features at a later date to build the full
system. Some elements may migrate to the full
system, however.

° Elaine Weyuker disagreed with the l0-percent esti-
mate for the cost of a prototype versus full imple-
mentation and suggested that 30 percent is more
realistic in a nonacademic environment.

M. Rohleder
CSC
6 of 17

SESSION 2 - SOFTWARE TOOLS

Karl Levitt and Joseph Goguen--"Experience and Perspectives
With SRY 8 Tools for Software
Desigr and Validation"

The initial speakers of the second session were Karl Levitt
and Joseph Goguen from SRI International. The joint presen-
tation described current approaches to software tools for
design specification and presented experiences with several
projects at SRI.

Four development tools were introduced: the STP theorem
prover and its associated Design Verificacion System; PHIL,
a meta-programmable, context-sensitive structured editor;
Pegasus, a system for supporting graphics programming; and
OBJ, an u)ltra-high-level programming language based on
rewrite rules and abstract data types.

The speakers described successful efforts to apply these
tools to design specification and verification for two
classes of systems in which reliability is vital: fault-
tolerant systems for aircraft control and secure operating
systems.

In response to questions and comments from the audience, the

following points were clarified:

° A major purpose of a specification language is to
support the deccmposition and testing of designs at
an early stage.

o The most compelling reason for the lack of formal
specifications languages with tool support is the
absence of examples that model good specifications
having the right amount of detail.

M. Rohleder
CSC
7of 17

Isao Miyamoto--"Technology Transfer Software Engineering
Tools"

The second speaker of the session was Isao Miyamoto from the
University of Maryland, Baltimore County, who discussed
technology transfer as it applies to software engineering
tools.

Experiences with tool usage and availability were pre-
sented. Miyamoto identified three reasons that tools are

s

not used:
1, Lack of a clearly defined methodology
2. Economic ineffectiveness

3. Lack of measures and criteria for evaluating the
effectiveness of tools

An example was presented of a software maintenance support
tool system called "Pandora's Box." This system provides
users with a hierarchical network of menus designed to
provide user-friendly capabilities from novice to expert.
It is hoped that the project will produce a tool that will
gain user acceptance.

In response to a question from the audience, Miyamoto clar-
ified the following point: designing easy-to-use, cost-
effective tools is the key point in transferring software
engineering technology from the research laboratory to users.

M. Rohleder
CSC
8 of 17

Paul Szulewski--"Design Aids for Real-Time Systems"

The last speaker of the session was Paul Szulew.xi of the
Draper Laboratory. The presentation described ongoing ef-
forts with Design Aids for Real-Time Systems (DARTS). This
tool assists in defining embedded computer systems through
tree-structured graphics, military standards documentation
support, and various analyses including calculation of
Halstead's Software Science measures.

DARTS uses a mix of hierarchical organization, control con-
ventions, communications primitives, and data structures to
represent real-time systems. Requirements are expressed as
a functional hierarchy, and the design is represented as a

tree-structured hierarchy of communicating processes.

Throuch a user-friendly, menu-oriented interface, a user can
define a system; perform data flow checking; generate sim-
ulations of response time, throughput, and utilization;
request a variety of data tables and graphical tree-

structured output in various sizes; and calculate Software
Science measures.

In response to questions and comments from the audience,
Szulewski clarified the following points:

° DARTS is operational on an Amdahl 470 V8. It con-
sists of approximately 20,000 lines of PL1l code.

o DARTS has not been used thus far for applications
such as PERT charting.

) Tool availability and desirability from a user's
standpoint are important aspects of tool design.

M. Rohleder
CSC
9 of 17

SESSION 1 = SOFTWARE ERRURS

Thomas Ostrand: -"Sottware Frior Data Collection and
Categortzation”
The tirat speaker ot the third sesston was Thomas Oustoand ot
Sperry Unitvae, who presented the tesults of g teseatch prog-
ect done jointly with Flatne Weyuhet, The project analyved
the telationship of etror chatactertsticos to vartous aspect:.
ot the sottware development process by studying sottwate
crrors committed durrng the development ot an intetactive,
strecial-put pose editor system, A new etror categottsation
system was developed and 174 ctrors were classitied with

this scheme.,

The new etror categorvzat ton scheme was developed trom pro-
agramme: desctiptions ot etrors, therr symptoms, and cotrec-
trons, Four gencrte attiaibutes, o diwensions, ot softwate
errors werte wdentitied; ecach erttor was classitied by assian-
tnag it a value tor cach dimension, . These dimensions and
theit possible values 1etlect the specitic ertrors identitied
Jduring the project, These dinensions incelade major cat-
eqaty, type, tresence, aad use,
In response to questions and conments tirom the audience,
Ostrand claritied the tollowing points:

[Good rappott with the programmers i1s vital to suc-

cens tn data collection ettorts,

¢ Destan was Jone intormally, Flowchatts, toomal

tequitement s, and specitications were aot used,

° The mportance of televant intormation in data col-

lection ettorts cannot be overemphastised,

M Rohleder
CNC
1ot 1

Elliot solloway--"An Ettective Bug Classitication Scheme Must
Take the Programmer Into Account”

The next speaket ot the thitd session wan BElliot Solloway ot
Yale Untversity, who presented a papet coauthored by

W, Jdohnson, also of Yale, and 8. Draper ot the University ot
Calitornta, This presentation detined a particular view ot
bug classittication, Rather than looking at productivity ot
teltability, the goal tn looking at program bugs was to prto-
vide a basis tor butlding computer -based tutoring systems
that can aid the novice in learning to proagtam. The con-
cluston s that buas arte not random occurtences but, rvather,
systematic and provide a window into misconceptions that

novices have about progtamminag,

Developing a classitication scheme tor bugs based solely on
the suttace teatures of the programs themselves s insut-
ficient to unigquely classity bugs, and tt ignores the undor-
lytna misconception. What is needed are heuristic rvules
based on a hypothesis ot what the programmer's intentions
were an he she created the program. Classitying buags muasa

take the programmet itnto account ,

In teasponse to gquestions and comments trom the audience,

Solloway clatttied the tollowing points:

° Cateless proaramming pract ices produce mote eriors
tn code. Classitication of these errors becowes
tncteasingly mote diftticult as the number of ertors

thvteane:s.,

° Brrors it proarams can be classitied using intorma-

tion about how they were tixed,

o Vice Rasile distinguished between ervors and
tault s, Finding a tault leads to a secatch tor the

(3.3 30 SO B SO

M Rohledes
O8N
ot

Care must be taken to ensure the quality of data
collected.

M. Rohleder
CSC
12017

Donna Buckland--"Software Anomaly Taxonomy--What Can Be
Gained?"

The last speaker of the third session was Donna Buckland of
Reifer Consultants. This presentation discussed the results
of a study to categorize software errors that had been re-
ported during the stages of testing and operational use of
the Deep Space Network DSN/Mark 3 system and to build a data
base for subsequent analysis.

A three-dimensional classification scheme was devised to
capture error data for statistical and trend analysis.
These dimensions are time of occurrence, etrror criticality,
and error category. The first dimension defines the par-
ticular software life cycle phase in which the error was
introduced. Criticality assesses the severity of the

error. Error category defines the cause of the error.

Buckland stated that the collection and classification of
software error data provides management with a powerful tool
for isolating problem areas. The data can be used to iden-
tify error-prone modules and serve as a basis for making
repair and/or replacement decisions.

In response to questions and comments from the audience,
Buckland clarified the following points:

) Quantification of error data is a very important
tool.
) The length of time required to fix a problem is

also very important and is sometimes overlooked.

° Vic Basili pointed out that it is often difficult
to get an individual who fills out a change/error
report to understand exactly what information is
needed.

M. Rohleder
CSC
13 0of 17

SESSION 4 - COST ESTIMATION

Kyle Rone--"Maintenance Estimation Methodology"

The first speaker of the fourth session was Kyle Rone of the
International Business Machines Corporation (IBM). This
presentation described a systematic approach to providing
estimates for both staffing and skill levels during the
maintenance phase of a project,

The approach presented uses a Rayleigh curve method of pro-
jection combined with a modified matrix method to forecast
maintenance needs and required staffing levels. The curves
generated by both methods are differenced to ascertain how
much new work can be performed given the staffing level.
Actual data is compared to projections to validate or modify
the process.

In response to questions and comments from the audience,
Rone clarified the following points:

] Estimation is not a one~-time process; it must be
apnlied over and over again.

) Maintenance activities include correction of both
latent and ongoing errors.

] The amount of maintenance required can be reduced
by applying more quality control during early de-
velopment phases. Quality is cheaper in the long
run.

° Frank McGarry stated that independent verification
and validation (IVsV) is appropriate for projects
with high reliability requirements. The effect of
IV&V on maintenance costs has not been assessed by
the SEL.

M. Rohleder
CSC
14 of 17

Dave Card asked whether unmaintainable sottware has
ever been encountered. The response from Rone was
that such software has been encountered and must be

disposed of.

The type of model used in estimation is not as
important as using a given model regularly with
guod technigues that are transportable.

M. Rohledar
CSC
1S o' 17

Robert Tausworthe--"Stafting Implications of Software
Productivity Models"

The second speaker of the fourth session was

Robert Tausworthe of the Jet Propulsion Laboratory (JPL).
His presentation investigated the implications of equating a
project statfing model with an intercommunication overhead
model in a small neighborhood of project effort. Highlights
trom the study include the following: there is a calculable
maximum etfective staff level for any project beyond which
additional staff does not increase the production rate; this
limits the extent to which effort and time may be traded ef-
tectively. It becomes ineffective in a practical sense to
expend more than an additional 25 to 50 percent of recources
in order to reduce delivery time., Additionally, it was
pointed out that the project intercommunication overhead can

be determined from the statfing level for a given project.

The following point was clarified by Tausworthe in response
to a question from the audience: Dave Card asked whether
intercommunication overhead could be reduced by dividing a
project i1nto a number of tasks that communicate only through
the manager. Tausworthe replied that the increased man-
agement activity would increase overhead costs even faster.

M. Rohleder
CSC
16 of 17

John Gaffney--"Estimates of Software Size From State Machine
Designs"

The final speaker of the fourth session was John Gaffney of
the National Weather Service, on loan from IBM, who presented
a paper cvauthcred by Robert Britcher of IBM. The presenta-
tion explained how the length or size of programs (in number
of source lines of code) represented as state machines can
be reliably estimated in terms of the number of internal
state machine variables. Variables here are defined as the
unique data required by a state machine's transition func-
tion, not the data retained in the state machine's memory.
These are equivalent to Halstead's operands. The method-
clogy presented can be employed at successive stages of the
development process to provide increasingly accurate esti-
mates.

The following points were made during the ensuing discussion:

. Kyle Rone asserted that cost estimation is not an
exact science; it is a way of accumulating experi-
ence to make accurate estimates in a given environ-
ment.

° Dave Card suggested that different analysts might
decompose a st¢te machine model differently and
thus get different results. Gaffney replied that
the effect of such results could be important but
that they could be minimized by careful and con-
sistent application of the decomposition technigque.

M. Rohleder
CSC
17 of 17

%

WEHAT HAVE WE LEARNED IN THE LAST 6 YRARS » Iq E; :} :3 22 23 {S

7

MEASURING SOFTWARE DEVELOPMENT TECHNOLOGY
BY

FRANK E. McGARRY
GODDARD SPACE FLIGHT CENTER

In late 1976, the Goddard Space Flight Center (GSFC) i{nitiated effort.. to create
a software laboratory where various softvare development technologier and
methodologies could be studied, measured and enhanced. This laboratcry became
known as the Software Engineering Laboratory (SEL), and since its inception has
been actively conducting studies and experiments utilizing flight dynamics
projects in a production environment. The SEL evolved to a full partnership in
the efforts between GSFC, the University of Maryland and Computer Sciences
Corporation (CSC).

The approach that the SEL has taken in carrying out the studies has been *o
apply varying methodologies, tools, management concepts, etc. to software
projects at Goddard; then to closely monitor the entire development cycle so
that the entire process and product can be compared to similar projects
utilizing somewhat different approaches. This monitcring function led to a need
to collect, store and interpret great amcunts of data pertaining to all phases
of the scftware process, product, environment and problem. This data collection
and data processing process has been applied to over 40 software project.
ranging in size from 2,000 lines of code to approximately 120,000 lines of code
with the typical project running about 55,000 lines of code.

The data that has been collected (and is still being collected) and interproted
for these projects comes from 5 sources:

l. Data Collection forms utilized by programmers, managers and support
personnel. Typical types of data collected include:

Error and Change Information

Weekly Hours and Resources

Component Effort (hours expended on each component by week)
Project Characteristics

Computer Run Analysis

Change and Growth History (week by week records of source code)

©C 00000

(Additional Information is contained in references 1 and 2)
2. Computer Accounting Information
3. Personnel Interviews-during and after the development process
4, Management and Technical Supervizor Assessments

S. Tools-used to extract data and measures from source code

F. McGarry
NASA/GSFC
1 of 34

For the more than 40 projects which have been monitored, approximately 21,000
forms have been processed and are continually used to perform studies of the
software development process., To support the storage, validation and usage of
this {nformation, a data base was designed and buflt on a PDP~11/70 at Goddard.
(Reference 3)

Approach (Chart 2)

The steps that have been taken to carry out the {nvestigation within the SEL
have been:

1. Develop a profile of the software development process as it is
'now', First we must understand what we do well and what we do not so well so
we can build a baseline of current characteristics whereby later we can honestly
measure change.

2, Experiment with sfmilar type projects. The second step has been to
apply select tcols, methodologies and approaches to software projects so they
can be studied for cffect,

3., Measure the process and product. As projects are developed which
are utilizing different software development techniques, the SEL uses the
extracted data to determine whether or not the applied technology has made any
measurable fmpact on the software characteristics (This may include reliability,
productivity, complexity, ete.).

Environment (Chart 3)

The projects which have been monftored and studied are primarily all flight
dynamics related software systems. This software includes applications to
g1, ort attitude determination, attitude control, maneuver planning, orbi:

adlust and general mission analysis.,

The attitude systems normally have ry similar characteristic and all are
designed to utilize graphics as well as to run in batch mode. Depending on the
problem characteristics, the typlcal attitude systems range in size from 30,000
to over 120,000 lines of ccde.* The percentage of reused code ranges from less
than 10 percent to nearly 70, percent with the average software package being
comprised of approximately 30 percent reused code.

The applications are primarily sclentific in nature with moderate reliability
requirements and norm,ily 4are not required to run in real time. The development
period typically runs for about 2 years (from Requirements Analysis through
Acceptance Testing). The development computers are typically a group of IBM
§/360's which have very limited resources and where reliability is quite low
(typirally less than 3 hours MTBF)

Detaliis describing the environment can be found in Reference 1.

*Here, a line of code is any 80 byte record processable by a compilar or
assemdler (i.e., comments are included)

F. McGarry

NASA/GSFC
Y oof 34

Experiments Completed (Chart 4)

As was mentioned earlier, the SEL has monitored over 40 software development
projects during the 6 years of operation., During this time period, numerous
methologies, mudels, tools and general software approaches have been applied and
measured. The summary results to be presented are based un these projects. The
summary will be divided into 3 topic areas:

1. Profiles of the Development Process
2. Models
3. Methodologies

F. McGarry
NASA/GSFC
3 of 34

Protiles of the Development Process (Charts 5 thra 12)
The tivst step (o attempting to measure the eftectiveness ot any sottware
technology I to generate a baseline or protile of how one typically pertorms
his job. Then as moditind approaches arve attempted on similar projects, the
cftects may be apparent by comparison,

Resoutces Allocatton (Chavt /)

e met ot banice intormatfon that ove may want to understand {8 just where do
programmers spend thetr time. When the SEL looked at namerous projects to
wnderstand where the time wan spent, {t found that the SEL environment deviated
somewhat trom the old 40-20-40 rule, Typically projects tndicated that when the
total hours expended were based on phase dates of » project (1.e,, a specitic
data dettned the absolute completion of one phase ot the cycle and the beginning
ot the next phase) the breakdown was less than 295 percent tor design, close to
SO percent tor code and about 30 percent tor fategration and test,

When the programmervs provided weekly data attributing their time to the activity
that they telt thev were actually dotng, nwo matter what phase of software
development they were ing the protile looks quite different, The 3 phases
(destpns, code, test) ecach consumed approximately the same percent effort and
over 25 percent ot the time was attributed to 'other' activities (such as
travel, tratnfnyg, unknown, etce.). The SEL has continually found that this
ettort (other) exists, and cannot easily be reduced, and most probably should be
accepted an o given, The SEL has tound {t to be a mistake to attempt to
fncrease productivity merely by eliminating major portions of this 'other'time.

Development Resources (Chart 8)

Another area of concern to the SEL in defining the basic profile of software
development, was that of staffing level and resource expenditure profiles. Many
authorities subscribe to the point that there i{s an optimal staffing level
profile which should be tollowed for all software projects. Such profiles as a
Rayleigh Curve are suggpested as optimal, Chart 8 depicts characteristics of
classes ot projects monftored {n the SEL and shows the ditference {n
productivity and reliability tor groups of projects having difterent statfing
level protiles, Although the Rayvleigh Curve may be acceptable for some
projects, the SEL has found that wide varfations on these characteristics still
lead to a successtul projects. The SEL has also found that extreme deviations
may be {ndfcative ot problem sottware. T

(hetatled tnformation can be tfound tn Reference 4 and 5)

1. MeGany
NASA/GSEC
4 of 34

Productivity for large vs. small systems (Chart 9)

The common belief by many software managers and developers is that as the size
of a software system increases, its complexity increases at a higher rate than
the lines of code increase. Because of this fact, it is commonly believed that
1. the effort equation

E = a1b
where E = effort of person time
where I = lines of code

that the value of b must be greater than 1., The projects that the SFL has
studied have beeu unable to verify this belief and instead have found the value
of b to approximate .92 in the SEL environment, The fact that this equation is
nearly linear leads to the counter intuitive po'nt that a project of 150,000
lines of code will cost approximately 3 times as much as a 50,000 lines of code
project-instead of 4 or 5 times as much as is often commonly believed.

(Furcher details can be found in Reference A.)

Productivity Variation (Chart 10)

Another characteristics that the SEL has been interested in studying has been
the variations in programmer productivity. Obviously one would want to increase
the productivity by whatever approach found to be cffective, but first we must
clearly understand what the baseline characteristics of productivity are
(minimum, maximum, average, difference betwenn small and large projects, etc.);
only then will we know if we have improved or not in the years to come,

As has been found by other researchers in varying environments, the productivity
of dif.erent programmers can easily differ by a factor of % or 10 to l. The SEL
did ‘ind that there was a greater variation (from very low productivity of .5
l.0.c/hour to 10.8 1.0.c./hour) in small projects. The probable reason for this
is that newer people are typically put on smaller projects and the SEL has found
extreme differences in the relatively inexperienced personnel.

Reusing Code (Chart 11)

As was stated in the introduction, projects being developed in the SEL
environment typically utilize approximately 30 percent old code. Although it is
obviously less costly to integrate existing code into s system rather than
having to generate new code, there is some cost that must be e.tributed fo
adopting the old code. The development team must test, integrate and possibly
document the old code, so there is some overhead. By looking at approximately
25 projects ranging in size from 25,000 lines of code to over 100,000 total
lines of code and ranging in percent of reused code from 0 percent to 70
percent, the SEL finds that by attributing a value of approximately 20 percent
overhead cost to reuse code, the expenditures of the 25 projects can best be
characterized. Now the SEL uses the 20 percent figure for estimating the cost
of adopting existing code to a new software project.

F. McGarry
NASA/GSFC
S of 34

Error Characteristics (Chart 12)

One of the other characteristi(s of a software environment that is of great
concern to developers and managers {s that of expected software reliability and
that of overall software error characteristics. Before attempting to improve
software reliability or before attampting to

minimize the {mpact that software errors may have, the SEL had to first
understand the error characteristics of the typical applications software in the
Stl. environment,

By collecting detailed error report data and through the monitoring of numerous
applications projects many error characteristics have been studied,

Several pleces of information which are depicted in Chart 12 and which are based
on 1381 error reports from approximately 15 projects include:

o Most errors are local to one component (subroutine or function)

o Less than 10 percent of errors were attributed to faulty
requirements

o A great percent of errors (48 percent) were estimated to be trivial
to correct (less than 1 hour)

o A very low percent of errors (7 percent) were estimwted to be a
major effort to fix (greater than 3 days)

(Further statistics and more detailed explarations can be found in References 7
and 8).

F. McGarry
NASA/GSFC
6 of 34

Models (Charts 1} through 16)

A second get of studies that the SEL has actively pursued I8 that ot evaluating,
reviewing, and developlog sottware models, This (ncludes resource models,
reliability models as well as complexity metvies,

Measures tor Sottware (Chart 14)

The SEL has attempted to ut lice various avatlable sottware metrics (o
characterize the sottwate products gencrated, Such metvics as the MeCabe
Cyclomatic Compiexfty, Halstead Leagth, and lHones ot code were only a tew ot the
measures that were reviewed,

1t ia commonly believed that the size ot a component or the compl xity ot a
component will be divectly corvelated to the velfability ot that component, One
set ot studles pertormed {0 the SEL attempted to verity this belict, By taking
over 9% modules which had very detafled records of evvor data, the SEL compated
the correlations ot 4 charactervistics ot the components, The chavactervistic
facluded total lines ot code, executable lines ot code, Cyclomatic Complexity
and Halstead Length, The resultant correlations ave dipfceted (n Chart 14, which
shows a very high divect corvelation tor the 4 measures.

A scecond study was pertormed whetre the ertor tate ot ecach ot the components was
plotted agatnst size as well as against Cyctlomat {c Complexitv. The SEL expected
te show that targer components have higher ervor rates than smallev components
amd that components ot higher complexity vating had higher crrvor vates, The
plots on Chart 11 shiow that the tesults were counter-intuitive, The SEL has
becn unable to verity that larger ov wore complex componeats {ndeed have higher
Cerror rates,

Cost Models (Chavt ™)

In addition to the studies made pertaining to vartous measuves tor

sottware, the SEL has also utilized the cost data collected tvom the many
projects to calibrate and evaluate varlous avaflable tesource est{mation models.
No attempt was [ntended to quality one wmodel as belug any better than another,
The oblective ot the studies was to better understand the seusftivities ot the
various models and to determine which models seemed to characterize the SEL
sottware developwent environment most cons{stently,

In studyiny these tvesource models, 9 projects which were somewhat stmilar (n
size were used as experimental projects, Each ot the models was ted complete
and accurate data trom the SEL data base and each was calibrated with nominal
sets of profects as completely as the experimenters could, Summary vesults,
which ave pgiven {n Chatrt 15, {fudicate that, occastonally, some models can
accurately predict ettort requirved tor a sottware project, The SEL has

b MeGarny
NASA GSHC

MRV ERE

reftterated what many otherv sottware developers and managers claim. Cost models
should never be used as a sole source ot estimation, The user wmust have access
to experienced personnel tor estimating and

must also have access to a corporate memory which can be used to calibrate and
reintorce someones estimate ot cost, Resource models can only be used as a
supplemental tool to retntorce ones estimate ovr to tlag possible
fnconsistencies,

More detatled {ntormat fon on the SEL studies can be tound {n Reterence 1, 9, 10,

Y

Relfability Models (Chave lo)

Another type ot model that the SEL has spent some efforts {n understanding and
calibrating {8 the relfability model., Although numerous approaches have been
suggested as to Just how one best predicts the level ot errvor proacness that
sottware may have, the SKL has only pertormed any extended studios on one
mode L -that which {8 attributed to John Musa. The model {s a waximum likelihood
mothod and the SEL attempted to apply detafled tault reports trom 2 separate
projects to the model (0o an attempt to determine {f the model could accurately
predict vematning taults (n the sottware,

Chart lo indicates that one of the experiments was quite successtul and one of
the expertments was not successtul, 1t should be noted that during and atter
these experiments, John Musa reviewed the results and the data very carefully
and he has poianted out some possible deticiencies tn the 8Kl data which could
possibly lead to erroncous results o this application of the reliability model.
One such plece ot data {s the granularity with which computer CPU time is
recorded between veported taults. The SEL data {s not as accurate as the model
calls tor,

The charts show that tor experiment 1, the model quite accurately predicted a
level ot reliabflity atter approxfmately 1/2 of the total uncovered faults were
reported, The chart also shows that tor experiment 2, the model was still
predicting a very high number ot errvors to be sti{ll {n the sotftware, when in
tact a minfmal set werte ever uncovered during the several years of operation for
that systoem.

More detatled discusstons can be tound {n Reference 1 and 11,

o MeGanny
NASA/GSIC
8ol 34

Methodologies (Charts 17 through 20)

As was mentioned earlier, one ot the major objectives of the SKEL has been to
measure the effectiveness ot various software development methodologies. The
SEL has utilized selected development approaches in different applications
software tasks and then has analyzed the process and product to study the
relative ifmpact of the approach, A summary of some of the results of the
experimentation process {s presented here,

Use of An Independent Vervification and Validation Team (Chart 18)

Many software managers, developers and organizations have advorated the usage of
an independent IVAV team during the software development process. The major
advantage ot following such an approach, {t is claimed, will be the {mprovement
in software reliabil{ty, quality, visibility, but not necessarily an {mprovement
in overall software productivity,

In an attempt to evaluate the {mpact that the usage of an IVAV team may have on
the SEL environment, 31 candidate projects were seclected to utilize the
methodology ot an IV&V. Two of the projects were very typical flight dynamics
systems, cach containing over 50,000 lines of code while the third was a smaller
flight dynamics project comprised of about 10,000 lines of code. In addition to
the 1V&V approach being applied to the projects, the development teams veiflized
the commonly tollowed standards and approaches normally used by development
efforts within the SFL environment,

The projects lasted approximately 18 months, and the IV&V effort was active for
the entite duration of the project. The size of the 1VAV effort was about 18
percent of the effort of each of the large development efforts. A series of
measures was defined near the beginning of the experiment by the SEL. These
measures would be used to determine whether or not the applicatfon of the 1VEV
approach was cost effective {n the SEL environment,

A summary of some of the measures i{s depicted {n Chart 18. The results here
fndicate:

o total cost of the project increased-as expected

o productivity of the develepment teams (not counting the cost of
1IVAV) was among the lowest of any previous SEL monitored project.

o rates of uncovering errors found earlier in the development cycle
was better

o cost rate to fix all discovered errors was no less than in any
other SEL projects

o reliability of the software (error rate during acceptance testing
and during maintenance and operations) was no different than other SEL projects

F. MeGainy
NASA GSEC
9 of 34

The conclusion of the SEL, based on these 3 experiments, was that the IV&V
methodology was not an effective approach in this SEL environment.

(A more detailed description can be found in Refereunce 12).

Effects of MPP on Software Development (Chart 19)

In an attempt to determine {f the utilization of Modern Programming Practices
(MPP) has any impact (either favorable or unfavorable) on the development of
software, a set of 10 fairly large (between 50,000 l.o.c. and 120,000 l.o.c.),
and fairly similar projects (same development environment, same type of
requirements, same time constraints) was closely examined. These projects all
had been developed in the SEL environment where detailed information was
extracted from the projects weekly and where each project had & different level
of MPP enforced during the development process.

The MPP's ranged from variocus design approaches (such as PDL, Design Walk
Throughs, etc.) to code and test methodologies (such as structured code, code
reading, etc.), to various integration and system teating approaches. All of
the possible MPP's were rated and scaled as to the level to which the practice
was followed for each project (the rating was done by the SEL researchers, not
by the software developersg). The only purpese of this exercise was to depict
trends and not to prove that any one single practice was more effective by
itself than any other.

The level to which MPP's were utilized were plotted against productivity and
against error rate, Chart]9 indicates that the application of the MPP has
favorably affected productivity by about 15 percent for these experiments. The
results of software reliability vs MPP is very questionable. The SEL Is still
continuing analysis of additional data. The chart shown is obviously /ery
inconclusive.

(More details of this effort can be found in Reference 13).

Subjective Summary of Effective Practices (Chart 20)

The previous chart indicated that productivity can be improved by an appreciable
amount if certain, select practices are applied to the software development
process. One obviously next would ask, which practices are the most effective?
The SEL has been attempting to analyze the available data from the 40
experiments it has conducted to answer this very question. As was fcated
earlier, the SEL feels that these types of experiments can only depict trends
and cannot accurately isolate one practice as measurable on its own. Whether or
not this can be done, or whether one should ever attempt it is questionable.,
Most software development methodologies represent an integrated set of practices
that only are effective when they are applied in a combined, uniform fashion.
Most practices do not make sense, or at least cannot be effective as a stand
alone approach.

F. McGarry
NASA/GSFC
10 of 34

A summary ot the trends that the SEL has discovered for specific experiments
conducted is represented i{n Chart 20. This chart {8 a combination of
experimental results and subjective information from the experimenters and uservs
and should only be viewed as depicting trends {n various apprcaches. No
numerical value of {fmpact can realistically be assigned to the individual
practices tested. It scems that practices such as PDL, code reading and
librarian have proved most beneficial while such techniques as automated flow
charters, requirements languages and the axriomatic design approach have been
unsuccessful in the SEL.

Cost of Data Collection (Chart 21)

The SEL has been in existence for about 7 years and has been collecting detailed
software development data tor over 6 ycars, Numerous cxperiments have been
conducted in an attempt to understand and measure varfous methodologies for
developing software. In support of these efforts, one of the most critical and
difficult elements of the entire experimentation process is that of data
collection,

The data collection process is time consuming, frustrating, sometimes
unrewarding, and most assurably is expensive. Chart 21 shows the overhead cost
that the SEL has experienced over the past & years. To accurately collect data
from the development tasks, the SEL finds that there is a 3 to 7 percent
overhead price on the development effort. To process the data that has been
collected (vertfication, encoding, data entry, storage, etc.), the SEL has spent
approximately an additional 10 to 12 percent of the development effort. Finally,
the SEL experiences indicate that one can spend up to an additional 25 percent
of the development effort to perform the detailed analysis of the data that has
been collected. This includes support before, during and after the experiments
in defining the data to be collected, monitoring the development data and
effort, formulating hypothesi{s and performing analysis of the completed
experiments. The product of the analysis consists of papers, reports, and
documents.

(Detailed information on cost can be found in Reference 2).

Summary (Chart 22)

In summary, the SEL has had much experience with the data collection process and
with the experimentation process., Many of {ts attempts have been rewarding and
many have been fruftless, but the SEI, feels attempts to assess approaches to
software have to be conducted {f we are ever to evolve to a more productive
approach to developing software,

F. MeGarry
NASA,GSFC
11 of 34

REFERENCES

l. Software Engineering Laboratory, SEL 81-104, The Software Engineering
Laboratory, D.N. Card, F. E. McGarry, G. Page, et, al., February 1982

2. SEL, 81-101, Guide to Data Collection, V. E. Church, D. N. Card,
F. E. McGarry, et. al., August 1982

J. SEL, 81-102, Software Engincering Laboratory (SEL) Data Base Organization
and User's Guide, D. C. Wyckoff, G. Page, F. E. McGarry, et, al,, March 1983

4, Zelkowitz, M. V., "Resource Estimation for Medium Scale Software Projects”,
Proceedings of the Twelfth Conference on the Interface of Statistics and
Computer Science, New York, Computer Societies Press, 1979

5. Batley, J. W., and V. R, Basili, "A Meta-Model for Software Development
Resource Expenditures”, 'Proceedings of the Fifth International Conference on
Software Engineering', New York; Computer Societies Press, 1981

6. Basili, V. R., and K. Freburger, 'Programming Measurement and Estimation in
the Software Engineering Laboratory', Journal of Systems and Software,
February 1981, Volume 2, No. |

7. SCL 81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

8. Basili, V. R., and B, T, Perricone, Software Errors and Complexity: An
Empirical Investigation, University of Maryland, Technical Report TR-1195,
August 1982

9, SEL 80-007, An Appraisel of Selected Cost/Resource Estimation Models for
Software Systems, J. F. Cook, F. E. McGarry, December 1980

10, Basili, V. R., 'Software Engineering Laboratory Relationships for
Programming Measurment and Estimation’', University of Maryland, Technical
Memorandum, October 1979

1l1. SEL 80-005, A Study of the Musa Reliability Model, A. M. Miller,
November 1980

12. SEL 81-110, Performance and Evaluation of an Independent Software
Verification and Integration Process, G. Page. and F, McGarry, September 1982

13. SEL 82-001, Evaluation of Management Measures of Software Development,
p. Card, G. Page, F. McGarry, September 1982

F. McGarry
NASA/GSFC
12 of 34

MEASURING
SOFTWARE DEVELOPMENT
TECHNOLOGY

OR

SHOULD PROGRAMMERS DO IT
TOP DOWN ?

PE JO bI
J4SD/VSYN
ALenOW “ 4

SEL APPROACH TO SOFTWARE
TECHNOLOGY ASSESSMENT

SOFTWARE EXPERIMENTS IN PRODUCTION ENVIRONMENT:
NASA APPLICATIONS

e DEVELOP PROFILE OF ENVIRONMENT
(SCREENING)

o EXPERIMENT WITH PROPOSED
TECHNOLOGIES {CONTROLLED)

o MEASURE IMPACT AND/OR ASSESS
TECHNOLOGIES

CHART 2

EXTRACT DETAILED DEVELOPMENT
DATA

DETERMINE CHARACTERISTICS OF
DEVELOPMENT PROCESS

APPLY VARIOUS TECHNOLOGIES
(METHODS, MODELS, AND TOOLS) TO
APPLICATIONS PROGRAMS

EXTRACT DETAILED DEVELOPMENT
DATA

DEFINE MEASURES FOR EVALUATION

COMPARE EFFECTS OF USING OR NOT
USING APPROACHES IN QUESTION
(SIMILAR PROJECTS)

DETERMINE EFFECTIVENESS OF
TECHNOLOGIES IN QUESTION (WHICH
ONES HELP AND BY HOW MUCH)

IN-PAG-(2c)

bt Jo ¢
JdSH/VSYN
Ao “4

SOFTWARE ENVIRONMENT

DEVELOPMENT LANGUAGE FORTRAN (15% MACROS)

SOFTWARE TYPE SCIENTIFIC, GROUND-
BASED INTERACTIVE,

NEAR-REAL-TIME

SIZEciiiiiiiiiiteiiiceanannas TYPICALLY~60,600 SLOC
(2,000 TO 110,000)

DEVELOPMENT TIME 16 TO 24 MONTHS (START
DESIGN TO START
OPERATIONS)

STAFFINGciiiviiinnaen. 6 TO 14 PERSONS

DEVELOPMENT SYSTEM,........ IBM S/360 (PRIMARILY)
VAX-11/780

PDP-11/70

IN-PAG(2)

CHART 3

pe 10 91
J4SDH/VSYN
Auenow "4

EXPERIMENTS WITHIN THE SEL
1977 THROUGH 1982
BASIS FOR SUMMARY INFORMATION
AND CONCLUSIONS

LABORATORY EXPERIMENTS 46 PROJECTS
INFORMATION MONITORED 1.8 MILLION SLOC
PROGRAMMERS/MANAGERS

REPRESENTEDcccteeee. 150 PEOPLE

DATA EXTRACTED 20,000 FORMS
METHODOLOGIES APPLIED 200 QUALIFYING PARAM-

ETERS AND VARIOUS
MODELS, TOOLS, AND
METHODOLOGIES

IN-PAG-12*)

CHART 4

AREAS OF DISCUSSION

e PROFILES
e MODELS
e VIETHODOLOGIES

IM-PAG-(2*)

CCCCCC

by JO N,
DASH/VSVN

RYHURRITY

PROFILES

CHART 6

IM4-PAG-(2°)

WHERE DO
PROGRAMMERS SPEND THEIR TIME?

DATE DEPENDENT PROGRAMMER REPORTING

DESIGN
22%

DESIGN 21%
OTHER 27% ’

CODE 28%
TEST 23%

vE JO 61
JdSD/VSVN

IM-PAG2*)

Auenop "4

CHART 7

PE JO 0T
J4S9O/VSYN
Auendn ‘g

EFFORT

PROFILES OF DEVELOPMENT RESOURCES
HOW MANY ROADS TO COMPLETION?

[]
-
[]

[]

/
o o - - —-————'——'—————————

/

L __

/

e o — — a ————

e e e o o ————

CHART 8

DESIGN CODE AND SYSTEM ACCEPTANCE
UNIT TESTING TESTING TESTING
TIME —»
PRODUCTIVITY RELIABILITY
PROFILE (SLOC/HOUR) {ERRORS/K SLOC) e RELATIONSHIP BETWEEN
) PROFILE AND
RAYLEIGH CURVE - . PRODUCTIVITY
- 44-46 uP 7102 NO RELATIONSHIP
o

----- 2.7-47 UP 7102 BETWEEN PROFILE AND
seescne 2.7-29 UP TO 2 RELIABILITY

4-PAG-a™)

Pt Jo 1T
JDASD/VSYN
AR ‘4

STAFF-MONTHS OF EFFORT

ARE LARGE PROGRAMS
HARDER TO BUILD THAN SMALL ONES?

A 1 1 1 1] A i 1 1 1 A 1 1 1 I L A 3
0 0 20 330 40 5 e 70 & 9% W 119 B 2

DEVELOPED LINES OF CODE (THOUSANDS)
CHART 9

‘i

Py oo

2ASH/VSVYN
AUBOOW

PRODUCTIVITY VARIATION (SLOC/HOUR)?

LS o U o MAX
¢ s
5 MAX 5
BY PROJECT B ™
(ALL CHARGES) ‘“r AVG ‘" AVG} 45
3 MiN 7 -
2 3_. 2 MiN 34
1 2.7 1 1.9
0 []
LARGE PROJECY SMALL PROJECT
12 - 2pe
1M = 1M1= MAX
10 b= 108
9 - . o
s MAX sl
BY PERSON 7} ¢
(PROGRAMMER ONLY) 6l AVG sl aval 13
5= 5 L
7.9
- s
31k 5.4 § 52
2 - 2k MIN
1 : 1F 0.5
0 I 0.9 ° i

LARGE PROJECT

1I\ LARGE PROJECT IS GREATER THAN 20K SLOC.

CHART 10

SMALL PROJECT
PEOPLE ARE THE MOST IMPORTANT METHODOLOGY

I-PAG-(20°)

LSRN

QA8 VSVYN

TS N |

PRODUCTIVITY (SLOC/HOUR)

12.5

10.0

7.5

5.0

2.5

0.0

ASSESSING REUSED CODE

O¢ e
i quRED Sto 3
C

CHART 11

DEVELOPED SLOC °
4 °
i d X : xr ¥ o
¥] |
DEV SLOC NEW - 0.2 OLD DEL SLOC
A 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 100
NEW CODE (77)
BUPAG (20°)

ERROR CHARACTERISTICS
(MEASURED DURING IMPLEMENTATION)

TYPES OF ERRORS EFFORT TO CORRECT

OESIGN OR
IMPLEMENTA-
TION OF SEVERAL

COMPONENTS
16%

DESIGN OR
IMPLEMENTATION
OF A SINGLE
COMPONENT
82%

LESS THAN
1 HOUR
a@a%

LESS THAN
1 DAY
7%

REQUIRE-
MENTS
%

SAMPLE OF 1381 REPORTS

o MOST ERRORS ARE EASY TO CORRECT
e SEVERAL-COMPONENT ERRORS ARE LESS THAN EXPECTED
e REQUIREMENTS ERRORS ARE LESS THAN EXPECTED

IN PAQ (2"}

CHART 12

F. McGarry
NASA/GSFC
24 of 34

MODELS

N-PAG-{D)

CHART 13

F. McGarry
NASA/GSFC
25 of 34

Pe JO 9T
JDASH/VSYN
iegop 4

SOFTWARE MEASURES IN THE SEL

oy,

RELIABILITY
(ERRORS PER LINE OF CODE)

HALSTEAD LENGTH

McCABE COMPLEXITY
EXECUTABLE LINES
TOTAL LINES

SAMPLE OF 688 MODULES

RELIABILITY
(ERRORS PER LINE OF CODE)

”s

"un

nts

LIN:S OF CODE

CHART 14

CORRELATIONS
TOTAL EXECUTABLE McCAPE HALSTEAD
LINES LINES COMPLEXITY LENGTH
0.85 0.91 091 1.00
0.81 0.87 1.00
0.84 1.00
1.00

IM-PAG Oc*)

ALIVNO ¥OOd 40
S| 39Yd VYNIDIHO

oo 7
DASH VSVN
AHEOOW

COMPARISON OF COST MODELS

ACTUAL PERCENTAGE OF ERROR IN PREDICTION

EFFORT
PROJECT (MM) DOTY PRICE S3 TECOLOTE SEL cocomo

1 79 +65 +8 -4 -6 -
2 96 +30 +6 -25 -22 +1
3 40 +65 +6 -8 +93 —
5 98 +74 0 +3 -2 +2
6 116 +123 + 36 +35 -3 -
7 91 +52 +14 -12 ~-14 -
8 99 +127 +7 +36 +14 +53
9 106 - — — -24 +16

SOMETIMES, SOME MODELS WORK WELL

IM-PAG-(>°)

ChART i°

2z
® 5

c»nx
-3 O
wx O
AOS
m-l
mn<
(]

NUMBIER OF FAILURES PREDICTED

PREDICTING RELIABILITY
(MUSA MAXIMUM LIKELIHOOD METHOD)

PROJECT A

NUMSER OF FARURES OSSERVED

NUMBSER OF FAILURNES PREDICTED

PROJECT B

0
ALvNd yood 4
Si Aovd WNIOWO

WE DON'T KNOW ENOUGH ABOUT RELIABILITY MODELS

CHART 16

METHODOLOGIES

N-PAG-D*

CHART 17

F. McGarry
NASA/GSFC
29 of 34

MAN-MONTHS/K SLOC

ERRORS/K ExLOC

P€ JO 0F
J4SD/VSVN
Aendp 4

A LOOK AT Iv&aV METHODOLOGY

| 30%d TYNIDIHO

[

(BASED ON RESULTS FROM 3 EXPERIMENTS) Q
_ 5]
? wav = ° MAX o
——————————————— oL 718 VeV =
T MAX ~—~= ol o
AVG SE 7 [
o >
MIN 22 o ™ AVG| 783 c
1k 20 s 68 745 '_2
1.8 Duw
12 ob % e | 4
C: [2.7
0 & e |
e COST INCREASED e MORE ERRORS FOUND EARLY
4r 1.2 MAX ~
MAX .o_z S AVG L wvav '
3t 58 .
_________ | __Wav 35 s [roen
'
2} ave| 33 52 (X | V™ L2
%E o4
- 23 55 s
14 0 02
MIN 59
e RELUIABILITY NOT IMPROVED o ERROR CORRECTION COST NOT DIFFERENT

o IF YOU MULTIPLY ERRORS FOUND EARLY BY A LATENCY
FACTOR, IV&V LOOKS GOOD

o IF YOU EXAMINE ALL MEASURES, IV&V LOOKS BAD

INPAS-OM

CHART 18

L]

pe JO [¢

J4SD/VSVYN
Auenop 4

DEVELOPED LINES
OF CODE PER HOUP.

EFFECTS OF MIPP
ON SEL SOFTWARE DEVELOPMENT

PRODUCTIVITY ERROR RATE
\ '
- ! -
5.0 ! lg o® O 2.6 °
I ! Zon
4.0} I ° 1 - w
o0 | |& 52
O -d
30k ° ! P In
)) ®lu - w 1.0
Wi, 19 €S
2.0r g% :3 ag
3 iz OF [AVERAGE ERROR RATE ~~_ |
]—
0.0 | ! 4 lx 1 w 0.0 lo 1 -840l
500 1000 1500 500 1000 1500
INDEX OF MODERN INDEX OF MODERN
PROGRAMMING PRACTICES PROGRAMMING PRACTICES

e PRODUCTIVITY IS ABOUT 15 PERCENT HIGHER
e RELIABILITY IS HIGHLY VARIABLE

34-PAG-(2d°)
CHART 19

bt Jo Te
J4SD/VSVN
AeOOIW ‘g

OVERHEAD COST

WHAT HAS BEEN SUCCESSFUL IN OUR ENVIRONMENT?

’
’
U4
A - O\ Y
PROBLEW STRUCTURED
AXIOMATIC ANALYSIS 47
DESIGN 7
’
’
’
’
’
AUTOMATED e
FLOW ’

CHARTERS J

SIMULATED
CONSTRUCTS
coDE

A Avartons

"
,”
b
BENEFIT MPAGIR"
CHART 20

AU 00 B0 a0

COST OF DATA COLLECTION
(AS A PERCENTAGE OF TASKS BEING MEASURED)

SEL
EXPERIENCES
OVERHEAD TO TASKS (EXPERIMENTS) 3—-7%
e FORMS
e MEETINGS
® TRAINING

e INTERVIEWS
e COST OF USING TOOLS

DATA PROCESSING 10—-12%
@ COLLECTING/VALIDATING FORMS
® ARCHIVING/ENTERING DATA
e DATA MANAGEMENT AND REPORTING

ANALYSIS OF INFORMATION UP TO 25%
o DESIGNING EXPERIMENTS
® EVALUATING EXPERIMENTS
e DEFINING ANALYSIS TOOLS

CHART 21 THPAG-Be*)

ooy
D:ASH VSVN

Anenaw

pE J0 vt

JASH/VSVN
AURDOW Y

SUVMIMARY

DATA COLLECTION IS EXPENSIVE — BUT
VERY, VERY IMPORTANT

WE MUST UNDERSTAND WHERE WE ARE
BEFORE HEADING SOMEWHERE ELSE

EXPERIMENTATION WILL PAY FOR ITSELF (TRY
SOMETHING NEW)

MPP CAN FAVORABLY IMPACT PRODUCTIVITY
AND RELIABILITY

SOME METHODOLOGIES BUY YOU NOTHING
(OR EVEN WORSE)

MODELS MUST BE UTILIZED WiTH GREAT
CARE

CHART 22

IMN-PAG-(2>*)

PANEL #1
THE SOFTWARE ENGINEERING LABORATORY (SEL)
V. Basili, University of Maryland

A. Goel, Syracuse University
M. Zelkowitz, University of Maryland

%

. N83 32358

SOFTWARE ERRORS AND COMPLEXITY$

AN EMPIRICAL INVESTIGATION

Victor R. Basili and Barry T. Perricone
Department of Computer Science
University of Maryland
College Park, Md.

1982

ABSTRACT

The distributions and relationships derived from the change
data collected during the development of a medium scale
satellite software prcject shows that meaningful results can
be obtained which allow an insight into software traits and
the environment in which it is developed. Modified and new
modules were shown to behave similarly. An abstract classif-
ication scheme for errors which allows a better understand-
ing of the overall traits of a software project is also
shown. Finally, various size and complexity metrics are
examined with respect to errors detected within the software
yielding some interesting results.

V. Basili
Uof M
1 of 49

1.0 _INTRODUCTION

The discovery and validation of fundamental relation-
ships between the development of computer software, the
environment in which the software is developed, and the fre-
quency and distribution of errors associated with the
software are topics of primary ccucern to investigators in
the field of software engineering. Knowledge of such rela-
tionships can be used to provide an insight into the charac-
teristics of computer software and the effects that a pro-
gramming environment can have on the software ;. oduct. In
addition, it can provide a means to improve the understand-
ing of the terms reliability and quality with respect to
computer software. In an effort to acquire a knowledge of
these basic relationships, change data for a medium scale
software project was analyzed (e.g., change data is any
documentation which reports an alteration made to the
software for a particular reason).

In general, the overall objectives of this paper are
threefold ¢ first, to report the results of the analyses;
second, to : :view the results 1in the context of tucse
reported by other researchers; and third, to draw some corn-
clusions based on the aforementioned. The analyses
presented in this paper encompass various types of distribu-
tions based on the collected change data. The most impor-
tant of which are the error distributions observed within
the software project.

In order for the reader to view the resuits reported in
this paper properly, it is important that the terms used
throughout this paper and the environment in which the data
was collected are clearly defined. This is pertinent since
many of the terms used within this paper have appeared in
the general literature often to denote different concepts.
Understanding the environment will allow the partitioning of
the results into two classes: those which are dependent on

and those which are independent of a particular programming
environment.

1.1 DESCRIPTION OF THE ENVIRONMENT

The software analyzed within this paper is one of a
large set of projects being analyvzed in the Software
Engineering lLaboratory (SEL). The particular project
analyzed in this paper 1is a general purpose program for
satellite planning studies. These studies 1include among
others: mission maneuver planning; mission lifetime; mission
launch; and mission control. The overall size of the
software project was approximately 90,000 source lines of
code. The majority of the software project was coded in FOR-
TRAN. The system was developed and executes on an IBM 360.

V. Basili
Uof M
20f 49

LN TAN
.y 4‘}‘1' - K3 BRI o

EH q;’J AYY

FL

The developers of the analyzed software had extensive
expericnce with ground support software for satellites. The
analyzed system represents a new application for the
Jevelopment group, although it shares many similar algo-
rithms with the system studied here.

It i{s also true that the requirements for the system
analyzed kept growing and changing, much more so than for
the typical ground support software normally built. Due to
the commonality of algorithms from existing systems, the
developers re-used the design and code for many algorithms
needed {in the new system. Hence a large number of re-used
(modified)

modules became part of the new system analyzed here.

An approximation of the analyzed software’s life cycle
i{s displayed in Figure 1 . This figure only illustrates the
approximate duration in time of the various phases of the
software’s 1life cycle. The information relating the amount
of manpower involved with each of the phases shown was not
specific enough to yleld meaningful results, so it was not
fncluded.

V. Basili
UofM
3 of 49

ORICIMAL }%«j.k‘
OF POOR QUAL/Y

!
i
1
|
1
i
1]
LIFE CYCLE OF ANALYZED SOFTWARE ,
‘
bo o CNANGEFORNS
bo - o MAINTENANCE e
ACCEPTANCE
| TESTING .
L CODING 4
-)
TESTON N
o RJ
D GO W A . 4 o —
A BRI 178 187 478 1919 1960 981
Lo7e
... e rmmmececm—————
Figure 1
.. emcemcecec——————
1.2 TERMS

This section presents the definitions and associated
contexts for the terms used within this paper. A discussion
of the concepts involved with these terms is also given when
appropriate.

Module: A module is defined as a named subfunction, subrou-
tine, or the main program of the software system. This
definition is used since only segments written in FORTRAN
which contained executable code were used for the analyses.
Change data from the segments which constituted the data
blocks, assembly segments, common segments, or utility rou-
tines were not included. However, a general overview of the
data available on these types of segments is presented in
Section 4.0 for completeness.

There are two types of modules referred to within this
paper. The first type is denoted as modified. These are

V. Basili
Uof M
4 of 49

modules which were developed for previous software projects
and then modified to meet the requirements of the new pro-
Ject. The second type is referred to as new. These are
modules which were developed specifically for the software
project under analyses.

The entire software project contained a total of 517
code segments. This quantity {s comprised of 36 assembly
segments, 370 FORTRAN segments, and 111 segments that were
either common modules, block data, or utility routines. The
number of code segments which met the adopted module defini-
tion was 370 out of 517 which is 72% of the total moduies
and constitutes the majority of the software project. or
the modules found to contain errors 49% were categorized as
modified and 51% as new modules.,

Number of Source and Executable Lines: The number of source
lines within a module refers to the number of lines of exe-
cutable code and comment lines contained within {t. The
number of executable lines within a module refers to the
number of executable statements, comment 1lines are not
included.

Some of the relationships presented in this paper are
based on a grouping of modules by mrdule size in increments
of 50 lines. This means that a module containing 50 1lines
of code or less was placed in the module size of 50; modules
between 51 and 100 lines of code into the module size of
100, etc. The number of modules which were contained in
each module size is given in Table 1 for all modules and for
modules which contained errors (i.e., a subset of all
modules; with respect to source and executable 1lines of
code.

V. Basili
Uof M
S of 49

W e s e D WD e - D e . e T e TR AR AN AR e T S W) SD G W T WA D T e D W S e G W S WP TR MR A R e W W

Number modules

All Modules Modules with Errors
Number
of Lines Source Exececutable Source Executable
0-%0 53 258 3 ug
51-100 107 70 16 25
101-150 80 26 20 13
1561=-200 56 13 19 7
201-.60 34 1 12
251-300 14 1 9 0
301-350 7 1] 1
151400 9 0 7 0
S400 10 0 6 0
Total 370 370 96 96
Table 1

- o - D W W . D e WD S s D D mp W N P N M v, P S W SN D M GG - P s W W W S M AD P G en

Error: Something detected within the executable code which
caused the module in which it occurred to perform
incorrectly (i.e., contrary to its expected function).

Frrors were quantified from two view points in this
paper, depending upon the goals of the analysis of the error
data. The first quantification was based on a textual rather
than a conceptual viewpoint. This type of error quantifica-
tion is best illustrated by an example. If a "#v yas
incorrectly used 1in place of a "+" then all occurrences of
the "#" will be considered an error. This is the aituation
even if the "#"'s appear on the same line of code or within
multiple modules. The total number of errors detected in
the 370 software modules analyzed was 215 contained within a
total of 96 modules, implying 26% of the modules analyzed
contained errcors.

The second type of quantification was used to measure
the effect of an error across modules, textual errors asso-
ciated with the same conceptual problem were combined to
yield one conceptual error. Thus in the example above, all
tncorrectly used *°s replaced by +°s in the same formula
were combined and the total number of modules effected by
that error are listed. This is done only for the errors
reported in Figure 2. There are a total of 155 conceptual
errors. All other studies in this paper are based upoon the

V. Basils
Uot M
6ot 349

first type of quantification described.

Statistical Terms and Methods: All linear regressions of the
data presented within this paper employed as a criterion of
goodness the least squares principle (i.e., "choose a3 the
‘best fitting” 1line that one which minimizes the sum of
squares of the deviations of the observed values of y from
those predicted" (1]).

Pearson’s product moment coefficient of correlation was
used as an index of the strength of the linear relationship
indepeandent of the respective scales of measurement for Yy
and a. This 1{ndex is denoted by the symbol r within this
paper, The measure for the amount of variability in y
accounted for by linear regression on x is denoted as r?2
within this paper.

All of the equations and explanations for these statis-
tics can be found in [1]. It should be noted that other
vypes of curve fits were conducted on the data. The results
of these fits will be mentioned later in the paper.

Now that the software’s environment and the key terms
used within the paper have been defined and outlined, a dis-
cussion of the basic quantification of the data collected,
the relationships and distributions derived from this quan-
tification, and the resulting conclusions are presented.

2.0 BASIC DATA

The change data analyzed was collected over a period of
33 months, August 1977 through May 1980. These dates
correspond in time to the software phases of coding, test-
ing, acceptance, and maintenance (Figure 1) . The data col-
lected for the analyses is not complete since changes are
still being made to the software aralyzed. However, it is
felt that enough data was viewed in order to make the con-
clusions drawn from the data significant.

The change data was entered on detailed report sheets
which were completed by the programmer responsible for
implementing the change. A sample of the change report form
{s given in the Appendix. 1In general, the form required
that several short questions be answered by the programmer
implementing the =zhange. These queries allowed a means to
document the cause of a change in addition to other c¢harac-
teristics and effects attributed to the change. The major-
ity of this information was found useful 1in the analyses.
The key information used in the study from the form was: the
data of the change or error discovery, the description of

V. Basili
Uof M
7 of 49

the change or error, the number of components changed, the
type of change or error, and the effort needed to correct
the rrror.

It should be mentioned that the particular change
report form shown in the Appendix was the most current form
but was not uniformly used over the entire period of this
study. In actuality there were three different versions of
the change report form, not all of which required the same
set of questions to be answered. Therefore , for the data
that was not present on one type of form but could be
inferred, the inferred value was used. An example of such
an inference would be that of determining the error type.
Since the error description was given on all of the forms
the error type could be inferred with a reasonable degree of
reliability. Data not incorporated into a particular data
set used for an analysis was that data for which this infer-
ence was deemed unreliable., Therefore, the rcader should be
alert to the cardinality of the data set used as a basis for
some of the relationships presented in this paper. There
was a total of 231 change report forms examined for the pur-
pose of this paper.

The consistency and partial validity of the forms was
checked in the following manner. First, the supervisor of
the project looked over the change report forms and verified
them (denoted by his or her signature and the date).
Second, when the data was being reduced for analysis it was
closely examined for contradictions. It should be noted
that interviews with the individuals who filled out the
change forms were not conducted. This was the major differ-
ence between this work and other error studies performed by
the Software Engineering lobvoratory, where interviews were
held with the programmers to help clarify questionable data
(8).

The review of the change data as describe) above
yielded an interesting result. The errors due to previous
miscorrections showed to be three times as common after the
form review process was performed, i.e. before the review
process they accounted for 2% of the errors and after the
review process they accounted for 6% of the errors. These
recording errors are probably attributable to the fact that
the corrector of #a error did not know the cause was due to
a previous fix because the fix occurred several months ear-
lier or was made by a different programmer, etc.

3.0 RELATIONSHIPS DERIVED FROM DATA

This section presents and discusses relationships derived
from the change data. V. Basili

Uof M
8 of 49

3.1 CHhiwub DISTRIBUTION BY TYPE

Types ~ changes to the software can be categorized as
error corrections or modifications (specification changes,
plaaned enhancements, clarity and optimization {mprove-
ments). For this project, error corrections accounted for
62% of the changes and modifications 38%. In studies of
other SFL projects, errors corrections ranged from 40% to
64% of the changes.

3.2 ERROR DISTRIBUTION BY MODULES

Figure 2 shows the effects of an error in terms of the
number of modules that had to be changed. (Note that these
errors here are counted as conceptual errors.) It was found
that 89% of the erro,. could be corrected by changing only
one module. fhis iy a good argument for the modularity of
the software,. Tt Aalso shows that there i{s not a large
amount of interdependence among the modules with respect to
an error.

NUMBER OF MODULES AFFECTED BY AN ERROR (data set: 211 textual errors)
174 conceptual errrors)

f#'ERRORS #MODULES AFFECTED
155 (89%) 1
9 2
3 3
6 by
1 5
"""""""""""" Figure 2

Y . P T - o P T > A aE = A W = M D L > N S A D WD WP W o w

Figure 3 shows the number of eriors found per module.
The type of module is shown in addition to the overall total
number of modules found to contain errors.

V. Basili
UofM
9 of 49

NUMBER OF ERRORS PER MODULE (data set: 215 errors)

MODULES NEW MODIFIED #ERRORS/MODULE

36 17 19 1

26 13 13 2

16 10 6 3

13 7 6 y

4 108 3 5

1 1 7
""""""""""" Figure 3

- > S - - . Gy WD YD S D P D D P . P D L N e Y R AR S S AP A N A W S W 4D R WP R W D W

The largest number ~f errors found were 7 (located in a
single new module) and 5 (located in 3 different modified
modules and 1 new module). The remainder of the errors were
distributed almost equally among the two types of modules.

The effort associated with correcting an error is
specified on the form as being (1) 1 hour or less, (2) 1
hour to 1 day, (3). 1 day to 3 days, (U4) more than 3 days.
These categories were chosen because it was too difficult to
collect effort data to a finer granularity. To estimate the
effort for any particular error correction, an average time
was used for each category, i.e. assuming an 8 hour day, an
error correction in category (1) was assumed to take .5
hours an error correction in categery (2) was assumed to
take 4.5 hours, category (3) 16 hours, and category (4) 32
hours.

The types of errors found in the three most error prone
modified modules (% 1in Figure 3) and the effort needed to
correct them is shown in Table 2. If any type contained
error corrections from more than one error correction
category, the associated effort for them was averaged. The
fact that the majority of the errors detected in a module
was between one and three shows that the total number of
errors that occurred per module was on the average very
small.

V. Basili
Uof M
10 of 49

The twelve errors contained in the t most error prone
rnew modules (#% jn Figure 3) are shown i ': le 3 along with
the effort needed to correct them.

NUMBER OF ERRORS AVERAGE EFFORT(
(15 total) TO CORRECT
misunderstood
or incorrect
specifications 8 24 hours

incorrect design

or implementation

of a module

component 5 16 hours

clerical error 2 4.5 hours

EFFORT TO CORRECT ERRORS IN THREE MOST ERROR PRONE
MODIFIED MODULES

Table 2
NUMBER OF ERRORS AVERAGE EFFORT
(12 total) TO CORRECT

misunderstood
or incorrect
requirements 8

32 hours
incorrect design
or implementation
of a module 3 0.5 hours
clerical error 1 0.5 hours

- D D R D D - W YD - e - TS = D D D D D D D S A En D D D B N MDD O WD wb D D

EFFORT TO CORRECT ERRORS IN THE TWO MOST ERROR PRONE
NEW MODULES
Table 3

V. Basili
UofM
11 of 49

3.3 ERROR DISTRIBUTION BY TYPE

In Figure U4 the distribution of errors are shown by type. It
can be seen that U48% of the errors were attributed to
{ncorrect or misinterpreted functional specifications or
requirements.

The classification for error ured throughout the
Software Engineering Laboratory is given below. The person
identifying the error indicates the class for each error.

A: Requirements incorrect or misinterpreted
B: Functional specification incorrect or misinterpreted
C: Design error invloving several components
1. mistaken assumption about value or structure of
data
2. mistake in control logic or computation of an
expression
D: Error in design or implcmentation of single component
1. mistaken assumption about value or structure of
data
2. mistake in control logic or computation of an
expression
: Misunderstanding of external environment
F: Error in the use of programming language/compiler
G: Clerical error
H: Error due to previous miscorrection of an error

The distribution of these errors by source 1is plotted
in Figure 4 with the appropriate subdistribution of new and
modified errors displayed. This distribution shows the
majority of errors were the result of the functional specif-
ication being incorrect or wmisinterpreted . Within this
category, the majority of the errors (24%) involved modified
modules This is most likely due to the fact that the modules
reused were taken from another system with a different
application. Thus, even though the basic algorithms were the
same, the specification was not well enough defined or
appropriately defined for the modules to be wused under
slightly different circumstances.

V. Basili
UofM
12 of 49

X EPRNRS " 3SFRVED

ORIGINAL PAGE (S
OF POOR QUALITY

36% O NEW MODULES
\\
247,
\\
20 4
16%
N N
BN SN
AN 61 i\ @ n
62
8% 122 — -
AN 2 8% 22
22 2% ot ’ 6% o 111
» [$% 0~ ..521_1-31-:1
A B c.1 c.2 .1 D2 E F G W AC.1 A v
SOURCES OF ERRORS
Figure 4
V. Basili
Uof M

13 of 49

ORIGINAL PAGE 1S
OF POOR QUALITY

4 80
| 3
r 12
3 0 J
£
hY
1 60 -
o 50
¥ 4
N 40
o 4
13
¢ 30
§
t
K 204
H
¢ 10
A H] 8
t 5 S
s T 3 ‘J 1 1
0 L ———— B T U JE SO (S T
keqg Fnl Design hesign Lang tnv Other
Spet Multi~ Single
Comp Comp

Tyye of Frror

- P " =D P . D D P D L > " - - - " S T —n A P W D e . e = AR AR A e W o A - -

SOURCES OF ERROR ON OTHER PROJECTS
Figure 5

- . T - " o~ T R " T - Y = S e D AD = T e e T P WP S D T A D A R e A W D em = Am W

The distribution in Figure 4 should be compared with
distribution of another system developed by the same

organization shown in Figure 5. Figure 5 represents a typi-
cal ground support software system and was rather typical of
the error distributions for these systems. It is different
from the distribution for the system we are discussing in
this paper however, in that the majority of the errors were
involved in the design of a single component. The reason
for the difference is that in ground support systems, the
design is well understood, the developers have had a reason-
able amount of experience with the application. Any re-used
design or c¢ode comes from similar systems, and the require-
ments tend to be more stable. An analysis of the two distri-
butions makes the differences in the development environ-
ments clear in a quantitative way.

V. Basili
UofM
14 of 49

The percent of requirements and specification errors is
consistent with the work of Endres’[1]. Endres found that
46% of the errors he viewed involved the misunderstanding of
the functional specifications of a module. Our results are
similar even though Endres’ analysis was based on data
derived from a different software project and programming
environment. The software project used in Endres’ analysis
~untained considerably more 1lines of code per module, was
written i{n assembly code, and was within the problem area of
operating systems. However, both of the software systems
Endres analyzed did contain new and modified modules.

Of the errors due to the misunderstanding of a module’s
specifications or requirements (48%), 20% involved new
modules while 28% involved modified modules.

Although the existence of modified modules can shrink
the cost of coding, the amount of effort needed to correct
errors {n modified modules might outweigh the savings. The
effort graph (Figure 6) supports this viewpoint: 50% of the
total effort required for error correction occurred in modi-
fied modules; errors requiring one day to more than three
days to correct accounted for 45% of the total effort with
27% of this effort attributable to modified modules within
these greater effort classes. Thus, errors occurring in new
modules required less effort to correct than those occurring
in modified modules.

V. Basili
UofM
15 of 49

URCWie o, 13

OF POOR QUALITY

7
2

N -
\ Q\ :‘\'\]

N
\ .
: \ \
18 \ N \
* RS IS LT S
- . A\
s 4 : \\
FCIEE BN NN R At
A \\ 1 I hto or less
‘\\\ \ 2 -1 hr. oo] day
\ \
\\ 3 - 1 dav to 3 days
N
__t\.__‘ 4 - more than 1 days

EFFORT GRAPH
Figure 6

- - - T - > T . G WD R D W Dy P N W M M AN G . e T A D e W we D - D W - W -

The similarity between Endres’ results and those
reported here tend to support the statement that independent
of the environment and possibly the module size, the major-
ity of errors detected within software is due to an inade-
quate form or interpretation of the specifications. This
seems especially true when the software contains modified
modules.

In gerieral, these observations tend to 1indicate that
there are disadvantages in modifying a 1large number of
already existing modules to meet new specifications. The
alternative of developing a new module might be better in
some cases if there does not exist good specifications for
the existing modules.

3.4 OVERALL NUMBER OF ERRORS OBSERVED

Figure 7 displays the number of errors observed in both
new and modified modules. The curve representing total

ELrON MODIFIED MODULES
N\
X >
\\\\ (\ NEW MODULES
307, \ e

V. Basili
Uof M
16 of 49

modules (new and modified) is basically bell-shaped. One
interpretation 4{s that up to some point errors are detected
at a relatively steady rate. At this point at least half of
the total "detected-undetected" errors have been observed
and the rate of discovery thereafter decreases. It may also
imply the maintainers are not adding too many new errors as
the system evolves.

It can be seen, howuver, that errors occurring in
modified modules are detected earlier and at a slightly
higher rate than those of new modules., One hypothesis for
this is that the majority of the errors observed in modified
modules are due to the misinterpretation of the functional
specifications as was mentioned earlier in the paper,
Errors of this type would certainly be more obvious since
they are more blatant than those of other types and there-
fore, would be detected both earlier and more readily.(See
next section.)

V. Basili
Uof M
17 of 49

CrLiNAL PASE 18
OF POOR QUALITY

s

NEW MODUL ES
;

70 | !

+. MUDIFIED MODULES

\

~ .
£ 50 -~ N
g 1 ’
= AN
w / \
(< .
X / A
F o \
P 1 / \
LN
]
\
10) ‘ . \
. A N .
1977 195/8 1979 1980
NEW 10 54 40 9
MOD 10 67 11 14

COMR 20 121 51 23

NUMBER OF ERRORS OCCURRING IN MODULES
Figure 7

3.5 ABSTRACT ERROR TYPES

An abstract classification of errors was adopted by the
authors which classified errors into one of five categories
with respect to a module: (1) 1initialization; (2) control
structure; (3) interface; (4) data; and (5) compu-ation.
This was done in order tc see if there existed recurring
classes of errors present in all modules independent of
size. These error classes are only roughly defined so exam-
ples of these abstract error types are presented below. It
should be noted that even though the authors were consistant
with the categorization for this project, another error

7
\ T ONIM ARD MODIRIED MODULES

V. Basili
Uof M
18 of 49

analyst may have interpreted the categories differently.

Faflure to initialize or re«initialize a data structure
properly wupon a module’s entry/exit would be considered an
initialization error. Errors which caused an "incorrect-
path" in a module to be taken were considered control
errors. Such a control error might be a conditional state-
ment causing control to be passed to an incorrect path.
Interfane errors were those which were associated with
structures existing outside the module’s lncal environment
but which the module used. For example, the incorrect
declaration of a COMMON segment or an incorrect subroutine
call would be an interface error. An error in the declara-
tion of the COMMON segment was considered an interface error
and not an initialization error since the COMMON segment was
used by the module but was not part of its’ local environ-
ment. Data error would be those errors which are a result
of the incorrect use of a data structure. Examples of data
errors would be the use of incorrect subscripts for an
array, the use of the wrong variable in an equation, or the
inclusion of an incorrect declaration of a variable local to
the module. Computation errors were those which caused a
computation to erroneously evaluate a variable’s value,
These errors could be equations which were incorrect not by
virtue of the incorrect use of a data structure within the
statement but rather by miscalculations. An example of thisgs
error might be the statement A = B + 1 when the statement
really needed was A = B/C + 1.

These five abstract categories basically represent all
activities present in any module. The five categories were
further partitioned into errors of commission and omission.
Errors of commission were those errors present as a result
of an incorrect executable statement. For example, a com-
missioned computational error would be A = B # C where the
‘#’ should have been “+°., In other words, the operator was
present but was incorrect. Errors of omissicn were those
errors which were a result of forgetting to 1include some
entity within a module. For example, a ccmputational omis-
sion error might be A = B when the statement should have
read A = B + C. A parameter required for a subroutine call
but not included in the actual call would be an example of
an interface omission error. In both of the above examples
some aspect needed for the correct execution of a module was
forgotten,

The results of this abstract classification scheme as
discussed above 1is given in Figure 8. Since there were
approximately an 2qual amount of new (49) and modified (U47)
modules viewed in the analysis, the results do not need to
be normalized. Some errors and thereby modules were counted
more than once since it was not possible to associate some
errors vith a single abstract error type based on the error

V. Basili
Uof M
19 of 49

description given on the change report form.

commission omission
new modified new modified

initfalization 2 9 5 9
control 12 2 16 6
interface 23 31 217 6
data 10 17 1 3
computation 16 21 3 3

28% 36% 23% 12%

TN Y Y YYITIIY ARARNNBNNRNRORRRES

6u% 35%
total

new modified

initialization 7 18 --- 25 (11%)

control 28 8 --- 36 (16%)

1interface 50 37 --- 87 (39%)

data 1M 20 --= 31 (14%)

computation 19 24 -~ 43 (19%)
1185 107

= R P T R P U e e S M M N D em S D T G D K ae e T D D D W W D Nn D e WP AR D = W MR N

ABSTRACT CLASSIFICATION OF ERRORS
Figure 8

- . - e wn AR e T e Y W SR MR G M T WS NS W MD MR R M S D N e B G M AR M M . S N S W S W e A% N e

According to Figure 8, interfaces appear to be the
major problem regardless of the module type. Control is more
of a problem in new modules than in modified modules. This
is probably because the algorithms in the old modules had
more test and debug time. On the other hand, initialization
and data are more of a problem in modified modules. These
facts, coupled with the small number of errors of omission
in the modified modules might imply that the basic algo-
rithms for the modified modules were correct but needed some
adjustment with respect to data values and initialization
for the application of that algorithm to the new environ-
ment.

3.6 MODULE SIZE AND ERROR OCCURRENCE

V. Basili
UofM
20 01 49

Seatter plots for executable lines per module versus
the number of errors found in the module were plotted. It
was difficult to see any trend within these plots so the
number of errors/1000 executable lines within a module size
was calculated (Table 4).

- W RN D D W D A D PN W N D D ED P D G AP D SR NP T G D P ST AR WD W W R R A W D WD D MR D A W

Module Size Errors/1000 lines
50 16.0
100 6
150 12.4
200 7.6
>200 6.4

- D S B G D AP LS D AR P A P W D A D S D TS R G R D S R W SR e YR D D D 4D WD D AR R D WP ED D WD T WP A D

ERRORS/1000 EXECUTABLE LINES (INCLUDES ALL MODULES)
Table U4

The number of errors was norsalized over 1000 executable
lines of c¢ode in order to determine {f the number of
detected errors within a module was dependent on module
size, A1l modules within the software were included, even
those with no errors detected. If the number of errors/1000
exececutable lines was found to be constant over module size
this would show independence. An unexpected trend was
observed: Table 4 implies that there is a higher error rate
within smaller sized modules. Since only the executable
lines of code were considered the larger modulesy were not
COMMON data files. Also the larger modules will be shown to
be more complex than smaller modules in the next section.
Then how could this type of result occur?

The most plausable explanation seems to be that since
there are a large number of interface errors, these are
spread equally across all modules and so there are a larger
number of errors/1000 executable statements for smaller
modules. 3Some tentative explanations for this behavior are:
the majority of the modules examined were small (Table 1)
causing a biased result; larger modules were coded with more
care than smaller modules because of their size; errors in
smaller modules are more apparent and there may indeed still
be numerous undetected errors present within the larger
modules since all the "paths" within the larger modules may
not yet have been fully exercised.

3.7 MODULE COMPLEXITY

Cyclomatic complexity [5] (number of decisions + 1) was
correlated with module size. This was done in order to

V. Basili
Uof M
21 of 49

determine whether or not larger modules were less dense or
complex than smaller modules containing errors. Scatter
plots for executable statments per module versus the
cyclomatic complexity were plotted and again, since it was
difficult to see any trend in the plots, modules were
grouped according to size. The complexity points were
obtained by calculating an average complexity measure for
each module size class. For example, all the modules which
had 50 executable lines of code or less had an average com=-
plexity of 6.0. Tazole 5 gives the average cyclomatic com-
plexity for all modules within each of the size categories.
The complexity relationships for exscutable lines of code
within a module is shown in Figure 9. As can be seen from
the table the larger modules were more complex than smaller
modules.

—— e - "

Module size Average Cyclomatic Complexity
50 6.0
100 17.9
150 28.1
200 52.7
>200 60.0

Table 5

V. Basili
UofM
22 of 49

ORIZ:AY. PAGE IS
OF POOR QUALITY

COMPLINTTY VS, MOLULE ST /
4

Hitg U

txecutable lines

10
L

Ho
9

9

30

20l

McCABE'S MFASURE OF COMPLEXTTY (avrl)

e

r

A i i Iy) ¥ i A

MODULY S17F

- 0 B U W D - - D D D P D D D - D TS D D D P D A S D M W D D WS P MDD D N A D D P D S s W

Figure 9

i
100 150 200 2541 Jors e 201 400

- S - - - D D D e P = R P =P - D - @ B - - -

For only those modules containing errors, Table 6 gives
the number of errors/1000 executable statements and the
average cyclomatic compiexity. When this data 1is compared
with Table 5 , one can see that the average complexity of
the error prone modules was no greater than the average com-
plexity of the full set of modules.

V. Basili
Uof M
23 of 49

Module Size Average Cyclomatic Errors/1000

Complexity executable lines
50 6.2 65.0
100 19.6 33.3
150 27.5 2U.6
200 56.7 13.4
>200 77.5 9.7

"~ "COMPLEXITY AND ERROR RATE FOR ERRORED MODULES
Table 6

4.0 DATA NOT EXPLICITLY INCLUDED IN ANALYSES

The 147 modules not included in this study (i.e.,
assembly segments, common segments, utility routines) con-
tained a total of six errors. These six errors were
getected within three dirferent segments. One error
occurred in a modified assembly module and was due to the
misunderstanding or incorrect statement of the functional
specifications for the module. The effort needed to correct
this e¢rror was minimal (1 hour or less).

The other five errc¢:s occurred in two separate new data
segments with the major cause of the errors also being
related to their specifications. The effort needed to
correct these errors was oun che average from 1 hour to 1 day
(1 day representing 8 hours).

5.0 CONCLUSIONS

The data contained in this paper helps explain and
characterize the environment ‘n which the software was
developed, It is clear from the data that this was a new

application domain in an application with changing require-
ments.

Modified and new modules were shown to behave similarly
except in the types of errors prevalent in each and the
amount of effort required to correct an error. Both had a
high percentage of interface errors, however, new modules
had an equal number of errors of omission and commission and
a higher percentage of control errors. Modified modules had
a high puzrcentage of errors of commission and a small per-
centage of errors of omission with a higher percentage of

V. Basili
UofM
24 of 49

data and initialization errors. Another difference was that
modified modules appeared to be more susceptible to errors
due to the misunderstanding of the specifications.
Misunderstanding of a module’s specifications or require-
ments constituted the majority of errors detected. This
duplicates an earlier result of Endres which implies that
more work needs to be done on the form and content of the
specifications and requirements in order to enable them to
be used across applications more effectively.

Therc were shown to be some disadvantages to modifying
an existing module for use instead of creating a new module.
Modifying an existing module to meet a similar but different
set of specifications reduces the developmental costs of
that module. However, the disadvantage to this is that
there exists hidden costs. Errors contained in modified
modules were found to require more etfort to correct than
those in new modules, although the two classes contained
approximately the same number of errors. The majority of
these errors was due to incorrect or misinterpreted specifi-
cations for a module, Therefore, there 1is a tradeoff
between minimizing development time and time spent to align
a module to new specifications. However, if better specifi-
cations could be developed it might reduce the more expen-
sive errors contained within modified modules. In this
cave, the reuse of "old" modules could be more beneficial in
terms of cost and effort since tlie hidden costs would have
been reduced.

One surprising result was that module size did not
account for error proneness. In fact, it was quite the con-
trary, the larger the module the less error prone it was.
This was true even though the larger modules were more com-
plex. Additionally, the error prcne modules were no more
complex across size grouping than the error free modules.

In general, invastigations of the type presented in
this paper relating error and other change data to the
software in which they have occurred is important and
relevant. It 1is the only method by which our knowledge of
these types of relationships will ever increase and evolve.

V. Basili
Uof M
25 of 49

Acknowledgmnents

The authors would like to thank F. McGarry, NASA Goddard,
for his cooperation in supplying the information needed for
this study and his helpful suggestions on earlier drafts of
this paper.

References

(1) Mendenhall,W. and Ramey,M., Statistics for Psychology,
Duxbury Press, North Scituate, Mass., 1973, pp. 280-315.

(2) Endres,A.,"An Analysis of Errors and their Causes in
System Programs", Proceedings of the International Confer-
ence on Software Engineering, April, 1975, pp. 327-336.

(3) Belady,L.A. and Lehman,M.M., "A Model of Large Program
Development", IBM Systems Journal, Vol.15, 1976, pp.225-251.

(4) Weiss,D.M., "Evaluating Software Development by Error
Analysis : The Data from the Architecture Research Facil-
ity", The Journal of Systems and Software, Vol.1, 1979, pp.
57-70.

(5) Schneidewind,N.F., "An Experiment in Software Error
Data Collection and Analysis", IEEE Transactions on Software
Engineering , Vol. SE-5, No.3, May 1979, pp.276-286.

(6) McCabe, T.J., "A Complexity Measure", IEEE Transactions
on Software Engineering, Vol. SE-2, No. 4, Dec. 1976,
pp.308-320.

(7) Basili,V. and Freburger,K., "Programming Measurement
and Estimation in the Software Engineering Laboratory", The
Journal of Systems and Software, Vol.2, 1981, pp.U47-57.

(8) Weiss, D.M.," Evaluating Software Development by
Analysis of Change Data", University of Maryland Technical
Report TR-1120, Novembeir 1981,

V. Basili
Uof M
26 of 49

ORIGINAL PAGE |s
OF POOR QUALITY

- D D D 6 N . P D D D A D EP D D D D D S WP S D WP D WP D P D b GV D WD U P NP ED WP D DGR D G WD T YD T S D D D ue

NUMBER
CHANGE REPORT FORM
PROJECT NAME CURRENT DATE
SECTION A - IOENTIFICATION
REASON: Why was the change made?
ODESCRIPTION: What chanv s was made?
EFFECT: What (]) ore oed? (i
EPFORY. wWhat (or u) were ined in e ing whas changsd wes MUY e e
Memth Osy Yew)
Nesd for change desermingd on
Conppmormdon
What was the etfort in person time 0 od the

e

anae | ROUF O l00S,] NOUF tO Y day, —t oy ® 3 dova, 0D than J dav3

SECTION 8 - TYPE OF CHANGE (Maw is this change deet charscmrizsd?)

O Ervor comection O Inssrcion/deletion of debug code
O Penned enhancement 0 os clan of time/epece/

o of recu chengs 3 Adspwion to environment change
a of clartty, mai billty, or d O Other (Explain In €)

) tmprovement of user srvices
Was more then one component sffectsr by the chenge? Yo No

FOR ERNCA CORRECTIONS ONLY
SECTION C - TYPE OF ERROR (How is this ervor best cherscas/ized?)

O Req incorrect or O Misur ding of envir oot ng
O Functional secificztions irmorrest or misinterpreved 0O Enor in uee of prog ing Ianguege/
Dessgn #rvoy, i g wversi O Ciericsl error

Error 1 the design or implsmentation of » singls component O Other (Explain in &)

FOK OESIGN OR IMPLEMENTATION ERRORS ONLY
‘-—0" the ervor was in design or implementmion:
The ervor was ¢ MiTtakan smsuMEtion about the vaiue or 2! deta
The orror wae » ke in) logic or stion of an ©uor

N WD D T S R - Y P G D D D D D R /D PGS P G 4D as WD D A G ED R e N D D T D . - - -

Change Report Form

S A D G D I D - - - R - - S A WD D G Y D W D - -

V. Basili
Uof M
27 of 49

ORIGINAL PAGE IS
OF POOR QUALITY

FOR ENROR CORRECTIONS ONLY
SECTION O - VALIDATION AND REPAIR

Whgt activiues wers used 90 validi 8 the progem, dewst the eror, and Aind iv cous?

Activities Activitios Activities Activiries
Uwd for Suocesshul Tried to Succeniul
Program in Dewcting Fing in Pinding
Vslidetion Error Symptoms Covm Caum
rl-nunowm -t runs
Acceptance wting
Pos um
Hnsoeetion of output
1Code reeding by progremmer
.Code mading by other cerson
Tatks with other programmaen
Soecial detug code
Svsam error messagey
“Propct pecific error mesages
. Resding dorumentation ! {
o T M
' Cump N
|Croms-referenca/ertribure list
"Moot techrique
[Omer (Explain in E)
What was the time used 1 olse the csuss?
——0N8 hOW Of 1083, .o ONE hOUr 10 ONG day, ___MOTe then ONe d8Y, —_neve found
11 never tound, wes s workaround umd? Yo No (Explein in E)
Wes this #rror mlswed 10 8 previous coange?
Yes (Crange Regort #/Date .} ___No ____Con't teld
Yihen did the errcr anwr the system?
w—roquramems .. functional specs ____desgn ____cooding and teit ____other ___can't tell

SECTION € - ADDITIONAL INFORMATION

ramifications.

Nome Authorized:

Please give any information that may be helpful in categonizing the error or change, and understanding its cause and its

Change Report Form

.. Basili
Uof M
28 of 49

THE VIEWGRAPH MATERIALS

for the

V. BASILI PRESENTATION FOLLCW

V. Basili
Uof M
29 of 49

SOFTWARE ERRORS AND lLOMPLEXITY: AN
EMPIRICAL INVESTIGATION

VICTOR R. BASILI
BARRY T, PERRICONE

UNIVERSITY OF MARYLAND

V. Basili
Uof M
30 of 49

STUDY OVERVIEW

STUDY THE ERRORS COMMITTED IN DEVELOPING SOFTWARE
REVIEW THE RESULTS IN LIGHT OF THOSE FROM OTHER STUDIES

ANALYZE THE RELATICONSH{F RBETWEEN ERRORS AND COMPLEXITY

V. Basili
Uof M
31 of 49

PROJECT BACKGROUND

GENERAL PURPOSE PROGRAM FOR SATELL!TE PLANNING STUDIES

s1ze: 90K SOURCE LINE/S51/ CODE SEGMENTS

370 FORTRAN SUBROUTINES/36 ASSEMBLY SEGMENTS/111
COMMON MODULES, BLOCK DATA, UTILITY ROUTINES

MODIFIED MODULES - ADOPTED FROM A PREVIOUS SYSTEM (/27)
NEW MODULES - DEVELOPED SPECIFICALLY FOR THIS SYSTEM

REQUIREMENTS FOR THE SYGTEM KEPT GROWING AND CHANGING OVER THE
LIFE CYCLE

ERRORS: TWO DEFINITIONS - TEXTuAL (215) AND coNcepTuaL (155)
49% ERRORS IN MODIFIED MODULES
51% ERRORS IN NEW MODULES

ERROR CORRECTIONS VS, MODIFICATIONS
38% OF CHANGES WERE MODIFICATIONS
€2% OF CHANGES WERE ERROR CORRECTIONS

V. Basili
Uof M
32 0f 49

61 3O t¢
Wion
iseq A

LIFE CYCLE OF ANALYZED SOFTWARE

' CHANGE FORMS
-
) MATNTENANIE
—
_ ACCIPIANCE
¥ '
 TESTING .
1]

o

SESISN
Il 1 1
Jaxn. 1376 1877 1972
1975

,'CINAL PAGE IS
OF POOR QUALITY

NUMBER OF
LINES

0-50

51-101
111-150
151-710
2N1-250
251-30N
501-350
351-417
>40)7)

TOTAL

NUMBER MODULES

ALL MCDULES

SOURCE

53
107
30
56
34
14

)
19

570

EXECUTABLE

0
C

370

SOURCE

3
16
20
19
17

9

I

/

6

90

MODULES WITH ERRORS
EXECUTABLE

49
25
15

/
1
N
1
0

0

96

V. Basili
Uof M
34 of 49

NUMBFR OF MODULES AFFECTED BY AN _RROR (DATA SET: 211 TEXTUAL ERRORS

ERRORS

155

— M N WD

RESULTS:

(397)

MORE THAN ONE

174 CONCEPTUAL ERRORS)

MODULES AFFECTED
1
?
3
{

SIMILAR TO OTHER STUDIES, FEW ERRORS INVOLVE
MOD'JLE

V. Basili
UofM
35 of 49

NUMBER OF ERRORC AVERAGE EFFORT

(12 voTAL) TO CORRECT
M1 SUNDERSTOOD
OR INCORRECT
REQUIREMENTS 3 32 HOURS
INCORRECT DESIGN
OR IMPLEMENTATION
OF A MODULE 3 0.5 HOURS
CLERICAL ERROR 1 9.5 HOURS

EFFORT TO CORKECT ERRORS IN THE WO MOST ERROR PRONE
NEW MODULES

V. Basili
Uof M
36 of 49

NUMBER OF ERRORS PER MODULE (DATA SET:

i MODULES
56
26
16

NEW MODIFIED
17 19
13 13
19
7 6
1 3*
1**
- A

#ERRORS/MODULE

1
2

3
I

Wl

215 ERRORS)

P e .

V. Basili
Uof M
37 of 49

NUMBER OF ERRORS AVERAGE EFFORT

(15 ToTAL) TO CORRECT
MISUNDERSTOOD
OR INCORRECT
SPECIFICATIONS 8 24 HOURS
INCORRECT DESIGN
OR IMPLEMENTATION
OF A MODULE
COMPONENT 5 16 HOuRS

CLERICAL ERROR 2 1,5 HOURS

EFFORT TO CORRECT ERRORS IN THREE MOST ERROR PRONE
MODIF1ED MODULES

V. Basiti
Uof M
38 of 49

ERROR DISTRIBUTION BY 1YPE

CATEGORIES?®
At REQUIREMENTS INCORRECT OR MISINTERPRETED
Bi FUNCTIONAL SPECIFICATION INCORRECT OR MISINTERPRETED
C: DESIGN ERROR INVOLVING SEVLRAL COMPONENTS
D: DESIGN ERROR IN A SINGLE COMPONENT
E: MISUNDERSTANDING OF EXTERNAL ENVIRONMENI
Fi: ERRORS IN PROGRAMMING LANGUAGF OR COMPILER
6G: CLERICAL ERROR
H: ERROR DUE T0 PREVIOUS MISCORRECTION OF AN ERROR

V. Basili
UofM
39 of 49

Ih
Q o
P-4
e —to

O ERRORS OBSERVIED

RESULTS:

SOURCES OF ERRORS

MODIFIED HMODULES

O NEN MODULES

§1 30vd IVNIDRIO

ALIVND ¥oOd 40

167
\S/_ S 122
NN
67 N\ 57 \ 7
& NN\
) ‘\\2;‘\ g X 27
27 27 6 7z
2 (X4 5; i M
A B c.1 c.2 D.1 D.2 E v G H A,C.1 A,B D

SIMILAR TO ENDRE3’ sTuny (L€ vs. L& HERE

[TVOLVED MISUNDERSTANDING CF THE PROBLEM

6v Jo 1¥

Wion

nweg "A

LM Oy om Y

>

Q

ey

o«

.

e T G R B el S B R

(710

1C

]

! - .
| : '
! .
. { :
T | |
: i
: ! ' 9;%
] ‘ 23
; o3
i o‘
4 ‘ RS
E o3
' | o>
. " >0
T | £
| ia
H
— ;
30 !
-+ ¢ a
5
3 1
——
Peg Fnl Design Tezign Iang [he Cther
Spec Multi- Single
Comp Comy

Type of Error

SEL2 SOURCES OF LONCLERICAL ERRGRS

6v Jo v
Wion
Tiseg A

15%
> 12%

> 36%

From previous slide
adjusted for differences
in counting schemes

TYNIORIO

ALITVND ¥00d 40

§1 20vd

U]
g
13
14 -
b oRiCHAL PAGE 18
€ Y ’
¢ 0 OF POJR QUALITY
)]
.
[} 98]
18} mu
ol o
fre o
-
(@] '€
mu. ad
- N
WY
[0 B
o> ")
. %] [{\] i) ty
/ . 2B & B 8
i \ L] ™
] S o4 ™M
K ©
- T i
IS IO R V IR o4
)
. PR
| ¥ [[y} hY)
O A ¢] [Y]
[
4 et pad [
| | [[
o (RS A] -1
[38
[+ Y
[
w..
s, - o
41 e
v o
o e "
! . o~ vt
(2] rd
[25N . e
o ¥a) Vs , o
v 1 V4 .
o ’ ™~
O e . -t
el (e] 4
s L ER
el [T 4
™ rd M./M
- 4 [, Fi 3
1 \J v
_F. v J. e
\ C o
(34 [t} -t

RRRUSAKE]

V. Basili
UofM
43 of 49

(o]

-

ABSTRACT ERROR TYPES

CATEGORIES:
INITIALIZATION - FAILURE TO INITIALIZE DATA ON ENTRY/EXIT

COMTROL STRUCTURE - INCORRECT PATH TAKEN

INTERFACE - ASSOCIATED WITH STRUCTURES OUTSIDE MODULES
ENVIRONMENT

DATA = INCORRECT USE OF A DATA STRUCTURE

COMPUTATION - ERRONEOUS EVALUATION OF A VARIABLE'S VALUE

COMMISSION - INCORRECT EXECUTABLE STATEMENT

OMISSION - NEGLECTING TO INCLUDE SOME ENTITY IN A MODULE

RESULT: LARGEST PERCENT OF ERRORS INVOLVE INTERFACE (39%)
CONTROL MORE OF A PROBLEM IN NEW MODULES
DATA AND INITIALIZATION MORE OF A PROBLEM IN MODIFIED
MODULES
SMALL NUMBER OF OMISSION ERRORS IN MODIFIED MODULES

MIGHT IMPLY - BASIC ALGORITHMS FOR THE MODIFIED MODULES
WERE CORRECT BUT NEEDED SOME ADJUSTMENT WITH RESPECT
TO DATA VALUES AND INITIALIZATION FOR THE APPLICATION
OF THE OLD ALGORITHM TO THE NEW APPLICATION

V. Basili
Uof M
44 of 49

INITIALIZATION
CONTROL
INTERFACE

DATA
COMPUTATION

INITIALIZATION
CONTROL
INTERFACE

DATA
COMPUTATION

COMMISSION OMISSION

NEW MODIFIED NEW MODIFIED
2 g 5 g
12 2 15 6
23 3] 27 6
19 17 1 3
16 20 3 3
2% 36% 231 124
64T TR
TOTAL
NEW MODIFIED
7 18 -~ 25 (117)
28 R --- 36 (16%)
50 37 === 87 (39%)
11 20 --- 31 (14%)
19 W s 43 (LID)
s 197

ABSTRACT CLASSIFICATION OF ERRORS

V. Basili
UofM
45 of 49

S 4 ————— @ S Y —— ———————— St W

MODULE SIZE eERRORS/1000 LINES

50 16.0
150 12.6
150 12.4
200 7.6

> 200 6.4

ERRORS/1000 EXECUTABLE LINES (INCLUDES ALL MODULES)

EXPLANATIONS:
INTERFACE ERRORS SPREAD ACROSS ALL MNMODULES
MAJORITY OF MODULES EXAMINED WERE SMALL BIASING THE RESULT
LARGER MODULES WERE CODED WITH MORE CARE
ERRORS IN SMALLER MODULES WERFE MORE APPARENT

V. Basili
Uof M
46 of 49

MODULE SIZE AVERAGE CYCLOMATIC COMPLEXITY

50 6.0
190 17.9
150 28.1
200 52.7

>2090 60.0

- e e .« - - - — e o v

AVERAGE CYCLOMATIC COMPLEXITY FOR ALL MODULES

V. Basili
UofM
47 of 49

MODULE 2% AVERAGE CYCLOMATIC ERRORS/1000

COMPLEXITY EXECUTABLE L.INES
50 6.2 65.0
100 19.6 33.3
150 27,5 24.6
200 56.7 13,4
>200 7.5 9.7

COMPLEXITY AND ERROR RATE FOR ERRORED MODULES

RESULT: AVERAGE CYCLOMATIC COMPLEXITY GREW FASTER THAN SIZE

V. Basili
Uof M
48 of 49

CONCLUSIONS

ERROR ANALYSIS PROVIDES USEFUL INFORMATION
- CAN SEE NEW APPLICATION WITH CHANGING REQUIREMENTS

= INSIGHTS INTO DIFFERENT ERRORS FOR NEW AND MODIFIED
MODULES

- MAJOR ERROR PROBLEMS WITH DIFFERENT APPLICATION EXPERIENCE

- CAN COMPARE ENVIRONMENTS

MODULE SIZE AN OPEN QUESTION WRI ERRORS
- THE LARGER THE MODULE (WITHIN LIMITS) THE LESS ERROR PRONE
- WE ARE NOT READY TO PUT ARTIFICIAL LIMITS

RECOMMENDAT IONS:
- THE ENVIRONMENT MUST BE BETTER UNDERSTOOD

- MORE DATA MUST BE COLLECTED

- MORE STUDIES MADE

V. Basili
Uof M
49 of 49

2
_N83 32359

WHEN AND HOW TO USE A SOPTWARE RELIABILITY YODEL
Anrit L. Goell, Victor R. Basili?,
and Peter M, Vald¢|3

Many analytical models were proposed during the last decade for
software reliability assessment. These models served a useful purpose
in identifying the need for an objective approach to determining the
quality of a software system as it goes through various stages of dev-
elopment. However, by and large, these models have not been as widely
and convincingly used as was expected.

In this paper we attempt to identify the causes of this state of
affairs and suggest some remedial actions. For example, we feel that
very often the models are used without a clear understanding of their
underlying assumptions and limitations. Also, there seems to be some
misunderstanding about the interpretations of model inputs and outputs.
To overcome some of these difficulties, we provide a classification of
the available mndels and suggest which types of models are applica-
ble in a given phase of the software development cycle.

The work reported in this paper represents the first step towards
developing a general methodology for assessing software quality and re-
liability throughout the development cycle. Further work on this topic
will be published in the near future.

1Professor of Industrial Engineering and Operations Research; and Com-
puter and Information Science, Syracuse University. Visiting Professor,
University of Maryland, College Park, MD.

ZChairman and Professor, Dept. of Computer Science, University of Mary-
land, College Park, MD,

3Graduate Assistant, University of Maryland.

A. Goel
Syracuse U.
1 of 36

THE VIEWGRAPH MATERIALS
for the

A. GOEL PRESENTATION FOLLOW

A. Goel
Syracuse U.
2 of 36

WHEN AND HOW TO USE A SOFTWARE
RELIABILITY MODEL

AMRIT L. GoeL, Victor R, Basiiri,
AND PETER M. VALDES

SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GSFC

DECEMBER 1, 1932

A. Goel
Syracuse U.
3 of 36

OUTLINE

SOFTWARE RELIABILITY

SOFTWARE RELIABILITY MODELS

- CLASSIFICATION

SOFTWARE DEVELOPMENT PHASES
APPLICABILITY OF MODELS IN EACH PHASE

DISCUSSION OF MAJOR MODEL ASSUMPTIONS

A. Goel
Syracuse U.
4 of 36

ORIGINAL PAGE IS
OF POOR QUALITY

SOFTWARE

SOFTWARE (ALSO CALLED PROGRAM)
IS ESSENTIALLY AN INSTRUMENT FOR
TRANSFORMING A DISCRETE SET OF INPUTS
(FROM INPUT DOMAIN) INTO A DISCRETE SET
OF OUTPUTS (INTO ITS OUTPUT SPACE)

INPUT DOMAIN, 1

[PrROGRAM, P |

C/ OUTPUT SPACE, O

A. Goel
Syracuse U.
5 of 36

SOFTWARE ERROR

SOFTWARE ERROR IS A DISCREPANCY
BETWEEN WHAT THE SOFTWARE DOES AND
WHAT THE USER OR THE COMPUTING
ENVIRONMENT (PHYSICAL MACHINE, O/S,
COMPILER, ETC.) WANTS IT TO DO.

A. Goel
Syracuse U.
6 of 36

SOFTWARE RELIABILITY

o THE PROBABILITY THAT SOFTWARE WILL NOT CAUSE THE
FATLURE OF A SYSTEM TO PERFORM A REQUIRED TASK
OR MISSION FOR A SPECIFIED TIME IN A SPECIFIED
ENVIRONMENT .,

o AN ATTRIBUTE OF SOFTWARE QUALITY PERTAINING TO THE
EXTENT TO WHICH A COMPUTER PROGRAM CAN BE EXPECTED
T0 PERFORM ITS INTENDED FUNCTION WITH REQUIRED
PRECISION,

A. Goel
Syracuse U.
7 of 36

SOFTWARE RELIABILITY

LET E BE A CLASS OF ERRORS CF INTEREST AND T BE
A MEASURE OF RELEVANT TIME (UNITS DETERMINED BY
THE APPLICATION AT HAND),

THEN THE RELIABILITY OF A SOFTWARE PACKAGE WITH
RESPECT TO THE CLASS OF ERRORS E AND WITH RESPECT
TO THE METRIC T IS THE PROBABILITY THAT NO ERROR
OF THE CLASS OCCURS DURING THE EXECUTION OF THE
PROGRAM FOR A PRESPECIFIED PERIOD OF RELEVANT
TIME,

A. Goel
Syracuse U.
8 of 36

NEED FOR SOFTWARE RELIABILITY, ASSESSMENT

ESTIMATE POTENTIAL RELIABILITY DURING CONCEPTUAL
PHASE

ESTABLISH REALISTIC NUMERICAL RELIABILITY GOALS
DURING DEFINITION PHASE

ESTABLISH EXISTING LEVELS OF ACHIEVED RELIABILITY

MONITOR PROGRESS TOWARD ACHIEVING SPECIFIED
RELTABILITY GOALS OR REQUIREMENTS

ESTABLISH RELIABILITY CRITERIA FOR FORMAL
QUALIFICATION

A. Goel
Syracuse U.
9 of 36

ORIGINAL PAGE IS

~ POOR QUALITY
GENER:L APPROACH
FAILURE
OR
ERROR DATA
MODEL

:

SOFTWARE RELIABILITY
ASSESSMENT

A. Goel
Syracuse U.
10 of 36

SOFTWARE
FAILURE DATA
POSTULATE A
FAILURE MODEL

L.

RIZIMAL PAGE 1S
OF POOR QUALITY

ESTIMATE PARAMETERS ;

OBTAIN FITTED MOUEL

POSTULATE|REJEC

ANOTHER GOOCNESS OF FIT _
MODEL ~ TE3T b
aAccert
OBTAIN PERFORIANCE
MEASURES
UNDETECTED TINE TO 'Y SOFTWARE
ERRONS FAILURE RELIABILITY

DECISION MAKING

O SYSTEM READY FOR

RELEASE ?
© HOW MUCH MORE

TESTING TO DO P

€EvC.

FLOWCHART FCR SUFTWARE FAILURE DATA

ANALYSIS AND DECIS!ON MAKING

A. Goel
Syracuse U,
11 of 36

ORIGINAL PAGE IS
OF POOR QUALITY

INPUT
DOMAIN

PROGRAM

ERROR
HISTORY

ettt

PATH TESTING

RANDOM TESTING

TESTING PROCESS AND ERROR HISTORY

A. Goel
Syracuse U,
12 of 36

9¢€ Jo ¢

‘Nl 98NIMIAg

10D ¥

SOFTHARE RELIABILITY MODELS
TIME-DEPENDENT MODELS
ASSUMPTIONS OF MODELS EMPHASIZING DETECTION PROCESS

FAILURES ARE INDEPENDENT

NUMBER OF FAILURES IS CONSTANT

EACH FAILURE IS REPAIRED BEFORE TESTING CONTINUES

INPUTS WHICH EXERCISE THE PROGRAM ARE RANDOMLY SELECTED

ALL FAILURES ARE OBSERVABLE

TESTING IS OF UNIFORM INTENSITY AND REPRESENTATIVE OF OPERATIONAL ENVIRONMENT
FAILURE RATE AT ANYTIME IS PROPORTIONAL TO CURRENT NUMBER OF FAILURES

9t Jo pi
‘1 ISNOBIAS
[90D 'V

OVERVIEW OF SOFTWARE RELIAPILITY MODELS

A%
o]
'§ 2
S
Pt
$8
STOCHASTIC MODELS 3ia
TIMES BETWEEN FALLURE COUNTING
SOF TWARE FAILURES PROCESS
—JELINSKI & MORANDA (1972) }— SHOOMAN (1972)
— SCHCK BWOLVERTION (1573) — MUSA (1975)
— LITTLEWOOD & VERRALL (1975) — SCHNEIDEWIND(975)
— MORANDA(I975) |~ MORANDA (1975)
— LITTLEWOOD (1976) — GOEL 80KUMOTO(IS79)
- FORMAN & SINGPURWALLA(1978) L— GOEL & OKUMOTO#98!1)

— GO’ & OKUMOTO (i978)

SOFTWARE RELIABILITY MODELS

TIME INDEPENDENT MODELS

- USE OBSERVED RESULTS OF EXPERIMENTS CONDUCTED ON ELEMENTS OF THE
PROGRAM’S INPUT SPACE

- USE A-PRIORT KNOWLEDGE OF INPUT SPACE

- THO CLASSES
ERROR SEEDING

INPUT SPACE SAMPLING

A. Goel
Syracuse U.
15 of 36

9¢ Jo 91
'] 9SNOBIAS

190D 'V

COMBINATORIAL MODELS
BASED ON SEEDING BASED ON EXECUTION
ERRORS FAILURES
L_MILLS (1972) LNELSON(IS?S)
| srownaLIPOWIS7

— LIPOW(1972)

—RUDNER (1977)

A% Mot

Ly .
can
I .‘dmﬂ-*

«,:,Ju" A
el

1.

v,

ASSUMPTIONS

TIMES BLTWEEN FAILURE MODELS
INDEPENDENT INTERFAILURE TIMES
EQUAL PRCBABILITY OF EXPOSING EMBEDDED ERRORS

ERRORS EMBEDDED ARE INDEPENDENT

TIME-DEPENDENCE
IMMEDIATE ERROR REMOVAL, PERFECT ERROR REMOVAL,

NONINTRODUCTION OF NEW ERRORS

RELIABILITY BASED ON REMAINING NUMBER OF ERRORS

FAILURE COUNTING MODELS

- ERRORS IN NONOVERLAFPPING TIME INTERVALS ARE INDEPENDENT

- FATLURE RATE PROPORTIONAL TO EXPECTED ERROR CONTENT

- DECREASING FAILURE RATF WITH TIME (DISCRETE OR
CONTINUOUS)

ERROR=SEEDING. MODELS
- INDIGENOUS AND SEEDED ERRORS HAVE EQUAL PROBABILITY

OF BEING DETECTED

INPUT DOMAIN BASED MODELS
= INPUT PROFILE DISTRIBUTION IS KNOWN

- RANDOM TESTING IS USED
= INPUT DOMAIN CAN BE PARTITIONED INTO EQUIVALENCE CLASSES

A. Goel
Syracuse U.
17 of 36

SOME_LIMITATIONS OF MOST MODELS

INDEPENDENCE OF TIMES BETWEEN FAILURES

EQUAL IMPORTANCE TO DIFFERENT TYPES OF
ERRORS

SAME FAILURE RATE FOR EACH ERROR

NO PROVISION FOR INTRODUCTION OF NEW
ERRORS

DECREASING FAILURE RATE DURING DEBUGGING
OR OPERATION

A. Guei
Syracuse U,
18 of 36

INDEPENDENT INTERFAILURE TIMES

NOT A REALISTIC ASSUMPTION IN GENERAL, ESPECIALLY
WHEN THE TESTING PROCESS IS NOT RANDOM. TIME TO
NEXT FAILURE MAY VERY WELL DEPEND ON THE NATURE OF
THE PREVIOUS FAILURE., IF THE PREVIOUS ERROR WAS
CRITICAL, WE MIGHT INTENSIFY TESTING AND LOOK FOR
ADDITIONAL CRITICAL ERRORS, WHICH IMPLIES NON-
INDEPENDENT INTERFAILURE TIMES,

NHPP TYPE MODELS ARE ROBUST TO SUCH LACK OF
INDEPENDENCE.,

A. Goel
Syracuse U.
19 of 36

SOFTWARE FAILURE RATE IS PROPORTIONAL TO NUMBER
OF REMAINING ERRORS

DOES NOT HOLD IN MANY CASES.,

REMAINING ERRORS THAT RESIDE IN THE FREQUENTLY
USED PORTION OF THE CODE ARE MORE LIKELY TO BE
DETECTED THAN OTHERS.

IF, HOWEVER, TESTING IS REPRESENTATIVE OF USE,
FAILURE RATE COULD BE CONSIDERED PROPORTIONAL TO
ERROR CONTENT,

A. Goel
Syracuse U.
20 of 36

ERRORS DETECTED ARE IMMEDIATELY CORRECTED

NOT A REALISTIC ASSUMPTION IN MOST PRACTICAL
SITUATIONS.,

A. Goel
Syracuse U.
21 of 36

CORRECTION PROCESS DOES NOT INTRODUCE NEW ERRORS

VERY RARELY SATISFIED IN PRACTICE. A PARTIAL
SOLUTION WAS ATTEMPTED IN THE IMPERFECT DEBUGGING
MODEL, BUT A GENERAL SOLUTION IS NOT AVAILABLE.

A. Goel
Syracuse U.
22 of 36

TESTING PROCESS IS REPRESENTATIVE OF
OPERATIONAL ENVIRONMENT

THIS IS RARELY TRUE, WE PREFER A RELIABILITY
MEASURE BASED ON USER REQUIREMENTS RATHER THAN A
SIMPLE UNCONDITIONED SOFTWARE RELIABILITY MEASURE.

A. Goel
Syracuse U.
23 of 36

USE OF EXECUTION TIME BETWEEN FAILURES

HAVE TO USE IT WITH CAUTION., ONE DEBUGGER COULD

RUN AND RERUN THE PROGRAM TO UNCOVER REMAINING

ERRORS CAUSING HIGH EXECUTION TIME BETWEEN FAILURES
WHILE ANOTHER ONE MIGHT ANALYZE THE PROGRAM IN DETAIL
AND THEN RUN THE (SAME) PROGRAM JUDICIOUSLY, FORMER
CASE WOULD GIVE A WRONG IMPRESSION OF HIGHER RELIA-
BILITY,

A. Goel
Syracuse U,
24 of 36

INCREASING FAILURE RATE BETWEEN FAILURES

CONTRARY TO THE ASSUMPTION THAT SOFTWARE DOES NOT
WEAR OUT, BUT, THIS WOULD BE S50 IF TESTING IN-
TENSITY INCREASES DURING SUCH INTERVALS., OVERALL,
NOT A REALISTIC ASSUMPTION,

A. Goel
Syracuse U.
25 of 36

SOFTWARE DEVELOPMENT PHASES

DESIGN

UNIT TESTING
INTEGRATION TESTING
ACCEPTANCE TESTING
OPERATION

A. Goel
Syracuse U.
26 of 36

APPLICABILITY OF EXISTING SOFTWARE
RELIABILITY MODELS

I, DESIGN
. EXISTING MODELS NOT APPLICABLE

11, UNIT TESTING
. SEEDING MODELS APPLICABLE IF WE CAN ASSUME THAT
INDIGENOUS AND SEEDED ERRORS HAVE EQUAL
PROBABILITIES OF DETECTION,
» INPUT DOMAIN BASED MODELS MAY BE APPLICABLE.
. TBF AND FC MODELS NOT APPLICABLE,

111, INTEGRATION TESTING
, ALL MODELS APPLICABLE IF RANDOM TESTING IS USED.,
, FC MODELS MAY BE APPLICABLE FOR DETERMINISTIC TESTING.,

IV. ACCEPTANCE TESTING
» INPUT DOMAIN BASED MODELS APPLICABLE.
., ERROR SEEDING MODELS NOT APPLICABLE
. TBF AND FC MODELS DO NOT SEEM TO BE APPLICABLE AS
ERRORS ARE NOT IMMEDIATELY CORRECTED; SOME TBF AND
FC MODELS MAY BE ROBUST TO THIS REQUIREMENT

V. OPERATION
, INPUT DOMAIN MODELS MAY BE APPLICABLE PROVIDED USER
INPUTS ARE RANDOM FROM THE INPUT PROFILE DISTRIBUTION,

A. Goel
Syracuse U.
27 of 36

DESIGN PHASE

USER REQUIREMENTS AR: TRANSFORMED TO COMFUTER
COMPATIBLE SFECIFICATIONS,

DESIGN ERRORS MAY BE CORRECTED BY VISUAL IN-
SPECTION OR BY OTHER INFORMAL PROCEDURES.,

EXISTING SOFTWARE RELIABILITY MODELS ARE NOT
APPLICABLE AT THIS STAGE BECAUSE
= TEST CASES TO EXPOSE ERRORS REQUIRED
BY SEEDING AND INPUT DOMAIN BASED
MODELS DO NOT EXIST
= ERROR HISTORY REQUIRED BY TIMES BETWEEN
FAILURES AND FAILURE COUNT MODELS DOES
NOT EXIST

A. Goel
Syracuse U.
28 of 36

UNIT TESTING

EACH MODULE HAS ITS OWN SPECIFIED INPUT DOMAIN AND
OUTPUT SPECIFICATION,

MODULE SPECIFICATION 1S TRANSFORMED INTO A PROGRAM
(CODING).

TEST CASES BASED ON THE INPUT DOMAIN AND OUTPUT
SPECIFICATION ARE DESIGNED TO EXPOSE ERRORS., THE
TEST CASES DO NOT USUALLY FORM A REPRESENTATIVE
SAMPLE OF THE OPERATIONAL PROFILE DISTRIBUTION,

TIMES BETWEEN EXPOSURE OF ERRORS ARE NOT RANDOM SINCE
TEST CASES ARE EXECUTED AND DESIGNED IN A DETERMINISTIC
FASHION,

EXPOSED ERRORS ARE CORRECTED (DEBUGGED),

A. Goel
Syracuse U,
29 of 36

UNIT TESTING: RELIABILITY MODELS

SEEDING MODELS ARE APPLICABLE IF WE CAN ASSUME THAT
INDIGENOUS AND SEEDED ERRORS HAVE EQUAL PROBABILITIES
OF DETECTION

INPUT DOMAIN BASED MODELS MAY BE APPLICABLE

IF TESTS CAN BE MATCHED WITH THE OPERATIONAL PROFILE
DISTRIBUTION

TBF AND FC MODELS NOT APPLICABLE

A. Goel
Syracuse 1J.
30 of 36

INTEGRATION TESTING

MODULES ARE INTEGRATED INTO SUBSYSTEMS OR INTO THE
WHOLE SYSTEM,

TEST CASES ARE GENERATED TO VERIFY THE CORRECTNESS
OF THE WHOLE SYSTEM,

DUE TO THE COMPLEXITY OF THE INTEGRATED SYSTEM, TEST
CASES MAY BE GENERATED

- RANDOMLY (BASED ON AN INPUT PROFILE DISTRIBUTION);

- DETERMINISTICALLY (BASED ON A SET OF TEST CRITERIN),

EXPOSED ERRORS ARE CORRECTED. HOWEVER, ADDITIONAL
ERRORS MAY BE INTRODUCED.

A. Goel
Syracuse U.
31 of 36

INTEGRATION TESTING: RELIABILITY MODELS

ALL MODELS APPLICABLE IF RANDOM TESTING
IS USED.

FAILURE COUNT MODELS MAY BE ROBUST TO LACK
OF INDEPENDENCE AND COULD BE USED FOR
DETERMINISTIC TESTING,

A. Goel
Syracuse U.
32 of 36

ACCEPTANCE TESTING

SOFTWARE 1S GIVEN TO “FRIENDLY USERS.,”

THESE USERS GENERATE TEST CASES (USUALLY RANDOM)

TO VERIFY SOFTWARE CORRECTNESS., THE GENERATED TEST
CASES MAY BE ASSUMED REPRESENTATIVE OF THE QPERATIONAL
PROFILE DISTRIBUTION.

USUALLY EXPOSED ERRORS ARE NQT IMMEDIATELY CORRECTED.

A. Goel
Syracuse U.
33 of 36

OPERATIONAL PHASE

SOFTWARE 1S PUT INTO USE.

INPUTS MAY NOT BE RANDOM ANYMORE SINCE A USER
MAY BE USING THE SAME SOFTWARE FUNCTION ON A
ROUTINE BASIS., [INPUT MAY BE CORRELATED.

ERRORS ARE NOT IMMEDIATELY CORRECTED. APPLICABLE
MODELS (MAY NOT SATISFY ALL ASSUMPTIONS),

INPUT DOMAIN BASED MODELS,

A. Goel
Syracuse U.
34 of 36

PROBLEMS WITH RELIABILITY ASSESSMENT

SOMETIMES MODELS ARE USED (SUCCESSFULLY OR OTHERWISE) WITH
INCOMPLETE UNDERSTANDING OF UNDERLYING ASSUMPTIONS AND
LIMITATIONS.,

ROBUSTNESS TO DEVIATIONS FROM ASSUMPTIONS IS NOT FULLY KNOWN,

APPLICABILITY OF MODELS IN DIFFERENT ENVIRCNMENTS NEEDS
FURTHER VORK,

MEASUREMENT (FOR RELIABILITY ASSESSMENT) IS DONE TOO LATE
IN THE LIFE CYCLE,

NEED FOR MODEL SIMPLICITY (USABILITY) VS. CAPTURING DETAILS
OF REALITY NOT FULLY APPRECIATED,

A. Goel
Syracuse U.
35 of 36

CURRENT ACTIVITIES

=~ EXAMINING RELIABILITY MEASURES ACROSS A.L LIFE CYCLE
PHASES

- STUDYING EFFECTS OF TESTING ON RELIABILITY

- EXPLORING USE OF TEST CRITERIA AS MEASURES OF QUALITY
AND RELIABILITY

- DEVELOPING RELATIONSHIPS BETWEEN DESIGN, COMPLEXITY,
TESTING AND RELIABILITY

BASICALLY STUDYING THE ENTIRE LIFE CYCLE RATHER THAN JUST
THE FINAL TESTING PHASE FOR QUALITY AND RELIABILITY
ASSESSMENT,

A. Goel
Syracuse U.
36 of 36

%

MARVIN V. ZELXOWITZ N 8 3 32 3 6 0
DEPARTMENT OF COMPUTER SCIENCE W

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20742

SOFTWARE PROTOTYPING IN THE SOFTWARE ENGINEERING LABORATORY

INTRODUCTION

Over the last few years, several techniques have become popular withing
the software engineering world. Concepts like “structured programming,” "dis-
tributed processing,” "expert systems,” and others have all been proposed as »
means to enhance software productivity., Recently the term "prototyping” has
been applied to productivity improving (SENS8O, SEN82). The NASA Goddard
Software Engineering Laboratory is starting 8 project to evaluate prototyping
within the NASA environment.

First of all, there are several definitions of 'a prototype, The diction-
ary defines it as an original or model on which something is based or formed.
However, in looking at several computer glossaries through the year 1981, not
one of them mentions a prototype software development. Thus the term is quite
new and has yet to be standardized.

Prototyping is not modeling - another well used concept. In a model we
are looking at only a few characteristics of an object. For example, in a wind
tunnel, we are interested in the airstream past an airplane, not in its inter-
nal design. However, in a software prototype, we usually mean a complete work-
ing system, although it may be missing some functionality. Thus we are doing
more than modeling, or its companion operation - simulation. We wish to build
a8 system that demonstrates most of the behavior of the final product.

PROTOTYPING

In developing a prototype for NASA we need to understand what a prototype
is. More importantly, for NASA, the issue of prototyping must answer the fol-
lowing questions:

What are the goals of a prototype? Is it to develop the requirements for
a product? Evaluate its performance? Predict its final costs?

What are the issues involved? How does one design for a prototype? Does
the software Lifecycle change? Do we want multiple prototypes for different
phases of the life cycle? How do we use a prototype when built?

What tools can be used to design a prototype? to build a prototype? to
evaluate & prototype?

How does one measure a prototype? How do you know if your prototype was
successful? Should you invest the cost and build the full system or abandon
the project? What SHOULD a prototype cost? 10% of the final product or SO%X or

M. Zelkowitz
U. of M.
1 of 22

even 100%?

The final question {s does prototyping even fit intn the NASA envirop-
ment? Every software development environment is unique, and techniques which
work in one environment might not work in another, so is talking about proto-
typing at NASA even relevant?

These are all questions which must be addressed, and the current project
is one data point in evaluating its effectiveness.

RESEARCH ISSUES

WHAT IS A PROTOTYPE? There are several different models, In one it is o
quick, dirty throw away implementation for evaluation purposes. The goals are
to get something working quickly. This is often useful when the full require-
ments are not know well at the start and the prototype can be used to refine
these requirements.

WHAT PROGRAMMING LANGUAGE SHOULD BE USED? There are several views as to
the language that is to be used in a prototype. A low level language (e.g.,
Fortran, PL/1) can be used as the same implementation language for the full
system. This leads to greater efficiency in the final prototype, but forces
the programmer to design more cetails into the initial implementation.

There are several high level languages that have been proposed for proto-
typing. Snobol4é and SETL are two such examples, Both allow the prog-ammer to
avoid many details at a cos? in execution speed. Unfortunately, these high
level languages are not universally available and can not be used on &ll pro-
jects.

There is also research on very high Llevel Llanguages - often called
specification or non-procedural languages. These specify what is to happen and
not how, thus are good for & prototype where performance is not critical. How-
ever, these are still very experimental and not yet available in a production
environment.

WHAT ARE PROGRAMMER CAPARILITIES? One unfortunate issue in the current study-
ing of prototyping, is that 1{t 1is a research topic being investigated by
expert "supercoders'. Once prototyped, a system is then built by "mere mor-
tals”., wWhat will happen {f prototyping becomes “an accepted” technique and
mere mortals must build the initial design?

SOFTWARE ENGINELERING LABORATORY

So far the issue of prototyping has been described in very general terms.
However, how does it apply to the NASA Software Engineering Laboratory?
Within the Laboratory, three characteristics of software are under study: Pro-
files, Models and Methodologies. The effects of prototyping on each of these
will be described.

M. Zelkowitz
U. of M.
20f 22

AmEsEERRRREER SRR T osvmes 2 e o

PPOFILES, one important aspect of the SEL is simply to measure software,
Very little 4{s generally know of a quantitative nature about software. This
is certainly true of prototyping. One important goal {s to simply add
prototyping projects to the SEL data base in order to apply previous SEL ans-
lyses to this project as had been done to previous projects. Do cost models
work? reliability models? error models? We need to simply characterize this
software (SEL82).

MODELS. Once data is collected on prototyping projects, we need to evalu-
ate nmodels to see if they apply. Previously the SEL evaluated .,arious cost
models (Rayleigh, etc.). Do these apply to a prototype? Should they even
apply? Is another model more appropriate?

METHODOLOGIES. Finally we need to revise the standard Llife cycle to
account for prototypes. How are they designed, built and evaluated?

FLIGHT DYNAMICS ANALYSIS SYSTEM (FDAS)

At NASA a new product is being designed which seems Like a good candidate
for prototyping. This system, the Flight Dynamics Analysis System (FDAS), is
being built to help experimenters try alternative flight dynamics models.

For example, todyy if an experiment is to be run (e.g., try 8 new orbit
calculation model), the experimenter must access the Fortran source library,
know which module to modify and make the changes, test the changes, recreate a
new load module, and then run the experiment. The experimenter must have
detailed knowledge of the software and the changes are a time consuming opera-
tion.

With FDAS, the experimenter enters the system, and an interactive dialo-
gue, controlled by a data base, directs the experimenter to the correct module
and aids in the change. Thus changes to software are easier, require Less time
and less expertise about the internals of the system,

Now why is this a good candidate for prototyping? In the past, software
lins generally been built for ground support software. Similar projects have
been built for the last 15 to 20 years, thus NASA is an expert at such
software, Issues like:

Requirements

Size

Execution characteristics

User interface

Algorithm design

Cost
are all well known (or as well known as is possible), Thus prototyping would
not aid significantly. One can view all previous developments as "prototypes”
for the next one,

However, FDAS is a very different system. Most of the factors mentioned
above are unknown, so a prototype should aid greatly in this evaluation. In
this case, the prototype has two functions: Refine the requirements so that a
full FDAS implementation can be easily built, and test some of the design

M. Zelkowitz
U. of M.
30f 22

ORIGINAL PAGE I$
ideas for feasibility. OF POOR QUALITY

4 In order to build the prototype, the following general strategy will be
used:

(1) A subset of the requirements for FDAS will be written,
(2) A prototype will he huilt to these requirements.

(3) The prototype will be instrumented to collect usage and performance
data.

(4) S.E.L. project data will be collected,

(5) The prototype will be evaluated,

(6) Features that are not effective will be redesigned.
(7) The full FDAS system will be built.

(8) The effectiveness of the prototype on the final product will be
evaluated, Vas FDAS cheaper to build? Will it be more relisble? Will it be
more efficient? Will it have a better man/machine interface?

This evaluation will be by automated probes into the system, A logging
file is being created for each user commard. Execution characteristics will be
added to this file as the prototype executes. A feature in the prototype to
allow the user full range of changes to the software will be measured to see
how often the experimenter must go "outside” of the commands provided by FDAS,
This should greatly help in the user interface.

It is still too early in the development cycle of FDAS to give any
conclusions, However, the project is moving along and a prototype should he
ready for evatuation sometime midway into 1983, This should prove useful in
addng to our knowledge about this important concept.

ACKMOVILEDGEMENTY
This paper was supported by NASA grant NSG-5123 to the University of
Maryland.
REFERENCES

(SEL82) Software Engineering Laboratory, Collected Papers - Volume 1, 1982,

(SEN8D) ACM SIGSOFT Software Engineering Notes, Rancho Sante Fe Workshop,
October, 1980

(SEN82) ACM SIGSOFT Software Engineering Notes, 2nd Software Engineering Sym-
posium: Rapid Prototyping, December, 19821

M. Zelkowitz
U. of M.
4 of 22

THE VIEWGRAPH MATERIALS
for the

M. ZELKOWITZ PRESENTATION FOLLOW

M. Zelkowitz
U. of M.
5 of 22

JARGON

STRUCTURED PROGRAMMING
SOFTWARE ENGINEERING
DISTRIBUTED PROCESSING

DATA BASE

\\\\\\\\\\\\\

llllllllllll

M. Zoelkowits
U of M.

6 of 22

PROTOTYPE

= THE ORIGINAL OR MODEL ON WHICH SOMETHING

IS BASED OR FORMED

- SOMEONE OR SOMETHING THAT SERVES AS AN

EXAMPLE OF ITS KIND

IN LOOKING AT SEVERAL COMPUTER GLOSSARIES UP THROUGH 1981,

NO MENTION IS MADE OF PROTOTYPE.

USED IN:
1979 RANCHO SANTE FE WORKSHOP
1982 ACM SIGSOFY RAPID PROTOTYPING WORKSHOP
RECENT DOD REPORTS

SEVERAL THESES STARTING TO APPEAR ON TOPIC

M. Zelkowitz,
U. of M.

7 of 22

A PROTOTYPE IS NOT A MODEL

= A MODEL USUALLY INVOLVES LOOKING AT
ONLY A FEW CHARACTERISTICS

= A SIMULATION IS USUALLY A MODE(. AND NOT A
PROTOTYPE

= THE PROTOTYPE NEEDS TO DEMONSTRATE MOST OF
THE BEHAVIOR OF THE FINAL PRODUCT

M. Zelkowitz
U. of M.
8 of 22

WHAT IS A PROTOTYPE?

WHAT ARE THE GOALS FOR A PROTOTYPE?
WHAT ISSUES ARE INVOLVED?
HOW DOES 1T FIT INTO THE SOFTWARE LIFE CYCLE?
HOW 00 YOU USE PROTOTYPES?
WHAT TOOLS CAN BE USED TO:
DESIGN PROTOTYPES?
BUILD PROTOTYPES?
EVALUATE PROTOTYPES?
DOES IT FIT INTO THE NASA ENVIRONMENT?

M. Zelkowitz
U. of M.
9 of 22

(ARSI TR

WHAT IS A PROTOTYPE?

— “QUICK AND DIRTY"” “THROW
AWAY"” FOR EVALUATION

— SUBSET IMPLEMENTATION

— HOW DIFFERS FROM “INCRE-
MENTAL DEVELOPMENT?”

LANGUAGE LEVEL?

— “LOW"” (FORTRAN, PL/I1, PASCAL)

— “"HIGH"” (SETL, SNOBOL4)

— “VERY HIGH"” (SPECIFICATION
LANGUAGES —GIST)

NOW PROTOTYPING A

RESEARCH ISSUE— —

— PROTOTYPE BY SUPERCODERS

— DEVELOPMENT BY MERE
MORTALS

1. WHAT EFFECT ON DEVELOP-
MENT OF TECHNIQUES?

-2. WHAT WILL HAPPEN WHEN

MERE MOTALS START TO

PROTOTYPE?

M. Zelkowitz
U. of M.
11 of 22

IS NOT REALLY ADDRESSED
YET—MEASUREMENT

— PROTOTYPE USED FOR
EVALUATION, BUT HOW
EVALUATED?

— USER “SATISFACTION", “USER
FRIENDLY"”

— PERFORMANCE

— COSTS

— NEED MODELS OF PROTO-
TYPING AND PROBES CAN
BE ADDED TO PROJECTS TO
PERFORM EVALUATION

MZ?E‘

SCE
2 2N

AREAS OF DISCUSSION

@ PROFILES
® MODELS
e METHODOLOGIES

PROFILES

LACK OF KNOWLEDGE AROUT CHARACTERISTICS OF

A PROTOTYPE
WHAT IS REASONABLE COST RELATIVE TO FULL

DEVELOPMENT?

WHAT LEVEL OF RELIABILITY SHOULD RE
ACHIEVED?

WHAT LEVEL OF FUNCTIONALITY IS DESIRED?

NEED TO COLLECT DATA TO CHARACTERIZE THIS TYPE OF DEVELOPMENT

M. Zelkowitz
U. of M.
14 of 22

MODELS

= LIFE CYCLE MODELS
= ERROR MODELS
= COST MODELS

NEED TO COLLECT DATA TN GENERATE VARIOUS MODELS
AND TEST EXISTING MODELS ON PROTOTYPES

M. Zelkowitz
U. of M.
15 of 22

METHODOLOGIES

= HOW TO BUILD A PROTOTYPE

= HOW TO EVALUATE A PROTOTYPE

= HOW TO USE PROTOTYPE TO BUILD
FULL IMPLEMENTATION

M. Zelkowitz
U. of M.
16 of 22

ORIGINAL PAGE 1S
OF POOR QUALITY

FLIGHT DYNAMICS ANALYSIS SYSTEM

CURRENT PETHOD: (E.G,, TO TEST NEW OPR]T ulcuanousn
= ACCESS FORTRAN SOURCE LIRNARY
= MODIFY PROPER SUBRDUTINF
= RECOMPILE AND BUILD NEV LOAD MNDILE
= TEST NEW ALGORITHM
= RUN EXPERIMENT
e==| THUS NEED ODETAILED KNOWLFOGF OF SYSTEM
FDAS:
ENTER FDAS

FDASACCESSES DATA RASF AND ASKS FOR TASK

EXPERIMENTER SPECIFIFS CMNANGE

FDAS RECOMPILES FORTRAN SNURCFE AND RIHILDS NFW LOAD MODULE
= RN EXPERIMENY
e==| LESS DETAILED KNOWLENGRE NFEOED OF SOURCE PROGPAM

AND LESS TINE NEEDED YO RUN FXPERIMENT

M. Zelkowitz
U. of M.
17 of 22

FACTORS IN SOFTWARE DEVELOPMENTY

REQUIREMENTS

S12€

EXECUTION CHARACTERISTICS
USER INTERFACE

ALGORITHM DESIGN

cosY

GROUND SUPPORT SOFTWARE

KNOWN
KNOWN
KNOWN
KNOWN
KNOWN

KNOWN

M. Zelkowitz
U. of M.
18 of 22

FACTORS IN SOFTWARE DEVELOPMENT

REQUIREMENTS

S12€

EXECUTION CHARACTERISTICS
USER INTERFACE

ALGORITHM DESIGN

cosT

NEW DEVELOPMENY

M. Zelkowitz
U. of M.
19 of 22

PROTOTYPE STRATEGY

DEFINE A SUBSET OF THE REGUIREMENTS OF A NEW DEVELOPMENT
BUILD A PROTOTYPE TO THESE REQUIREMENTS
INSTRUMENT THE PROTOTYPE TO COLLECT USAGE AND PERFORMANCE
. DATA
COLLECT S.E.L. PROJECT DATA
EVALUATE PROTOTYPE
REDESIGN FEATURES THAT DO NOT MEET SPECIFICATIONS
BUILD FULL IMPLEMENTATION
EVALUATE EFFECTIVENESS OF PROTOTYPING ON FINAL PRODUCT:
= CHEAPER?
= RELIABILITY?
= EFFICIENCY?

= MAN/MACHINE INTERFACE?

M. Zelkowitz
U. of M.
20 of 22

AUTOMATEP ""0RES

USAGE OF FEATURES

TIMING DATA

ERROR COUNTS

HOW OFTEN PROTOTYPE IS BYPASSED

M. Zelkowitz
U. of M.
21 of 22

CONCLUSIONS

= GENERATE PROFILE OF PROTOTYPE DEVELOPMENT
~ 1S IT SUCCESSFUL IN NASA ENVTTONMMENT?

COME BACK NEXT VEAR!!!

M. Zelkowitz
U. of M.
22 of 22

. N83

PANEL #2
SCFTWARE TOOLS

J. Goguen/K. Levitt, SRI
I. Miyamoto, University of Maryland
P. Szulewski, Draper Labs

32361

ORIGINAL PAGE IS
OF PGOR QUALITY

EXPERIENCES AND PERSPECTIVES WITH SRI'S TOOLS
FOR SOFTWARE DESIGN AND VALIDATION

by Joseph Coguen and Karl N. Levitt
Couputer Science Laboratory
SRI International
Menlo Park, CA 04026

For the past 10 years SRI has had a major research program concerned with
progran specification, design and verification. The product of this work
has been an evolving methodology supported by specification languages and
tools for reasoning about specifications. Among the most inportant tools
are: syntax and type checkers; semantic checkers and theorea provers;
interpreters for processing test data; and analyzers for proving particular
properties of specifications (e.g., the absence of security violations). To
evaluate this methodology, we have undertaken successful large scale
applications to both fault tolerant computing and to secure computing. Our
research is now evolving to an environmeut that can support the entire
programning lifecycle. Among tools now under construction for this more
comprehensive methodology are structured editors, pretty printers, progran
libraries, and program testing systems. We are also considering the use of
graphics, e.g., pictures to display important properties of systems. This
paper triefly describes the current metlhodvlogy, with emphasis on the role
of specifications in the design process, and presents our experience (and
that of others who have used the techniques) on several significant
projects.

We have found it useful to consider a spectrum of different specification
languages, each most suitable for a different purpose. A major purpose of a
specification language is to support the decomposition and testing of
designs at an early stage, 50 as to forestall unnecessary effort at later
stages. Sometimes it is only necessary to obtain a prototype system which
demonstrates the feasability of some concept; in such a case, it would be
desirable to directly execute its specification. In other cases, one wants
to be able to easily verify some particular but subtle property of a system,
such as its ability to recover from certain classes of fa.its; then one
might want to structure the design to facilitate the proof. In other cases,
one might want to use specifications for documentation, and thus maximize
their understandability and flexibility. In still other cases, one might
want to be able to change easily from one design to another closely related
ope for a slightly different application or context. The languages and
environments that are best for one of these purposes will not necessary be
the best for another, and we have found that there are interesting trade
offs, for example, between the expressive power of a specification language
and its intuitive simplicity.

Although pot denying the utility of specifications, designers have in
general been reluctant to write formal specifications. Perhaps the most

compelling reasons for this have been the absence of a good specification
language with tool support and the absence of examples that can serve as a

K. Levitt
1 of 23

ORIGINAL PAGE I8
OF POOR QUALITY

model of a "good" specification; a specification with too much detail is not
worth the effort. Consequently, formsl methods have only been seriously
attenpted for those systems where reliablity is vital. We see these methods
as now becoming ready for a broader class of systenms.

In support of our efforts, we wre developing tools that izclude the following:
the STP theorem prover and its associsted Design Verification System
(developed by Schwartz, Shostak, and Melliar-Smith); PHIL, a meta-progrannmable
context sensilive structured editor (developed by Goguen and Lamport);

Pegasus, a systea for support of graphical programming; and OBJ, an ultra
high level programming language based on rewrite rules and abstract data
types (developed by Goguen). We are also doing some related work onacquir-
ing and expressing requirements, ard on performance analysis.

We have had particular success with the specification and verification
of two classes of systems for which reliability is vital:
fault-tolerant systems for aircraft control and secure operating
systens. For the former, we have developed a fault-tolerant computer
called SIFT (Software Implemented Fault-Tolerance), and have verified
that it is correct with respect to a reliability model. Several
subtle bugs in our original :oftware were uncovered in the process of
specification and verification. The most significant was that the
results of infrequently executed tasks were not voted on sufficiently
often and, hence, were not adequately protected against faults.

For the secure systems work, we (in cooperation witk Honeywell Systems and
Research, Ford Aerospace, and several other companies) have worked on
several secure operating systems, ranging from small guards and kernels to a
full, geveral purpose operating system (PSOS -- Provably Secure Operating
System). For PSOS, in particular, the salutary effects of prodycing formal
specifications were:

- A clean decomposition of the system into modules that are
largely independent

Minimization of the total number of modules through the
the identification of multipurpose, parameterized
modules

A clean user interface

A portable design in that each level in the hierarchy provides
an interface independent of how it is implemented

Identification of easily-formulated properties that were used
as the basis in proving a design to be secure.

K. Levitt
5of23

THE VIEWGRAPH MATERIALS
for the

J. GOGUEN/K. LEVITT PRESENTATION FOLLOW

K. Levitt
3o0f23

WORK AT SRI INTERNATIONAL ON SOFTWARE
SPECIFICATION AND REQUIREMENTS

JOSEPH GOGUEN
KARL N. LEVITT

COMPUTER SCIENCE LABORATORY
SRI INTERNATIONAL
MENLO PARK, CA

K. Levitt
SRI
4 of 23

OUR MESSAGE

- A "new" paradigm for software
development is gaining acceptance

- FORMAL (i.e., precise) REQUIREMENTS
and SPECIFICATIONS are now possible
for most systems

— Experimental languages and tools for
analyzing specifications and
requirements are available, e.g, SRI’s
Hierarchical Development Methodology
(HDM) and specification languages
SPECIAL and 0BJ

- Experiences with these techniques
have been positive

* SIFT (Software Implemented
Fault Tolerance) ultrareliable
flight-control computer

* PSOS (Provably Secure
Operating System)

- These techniques give promise of

reducing lifecycle cost

K. Levitt
SRI
5 of 23

PREFERRED APPROACH TO SOFTWARE

DEVELOPMENT

~--=> Requirments

I
|
V'
<{-=-> 1st Design
|

|
\

<-=> 2nd Design

<-- Implementation

Prototypes

Production
Systems

K. Levitt
SRI
6 of 23

ACTIVITIES AT EACH STAGE

Formal specification -- Supported in
functional behavior HDM and 0BJ
Verification of specs Supported
in HDM
Testing of executable Supported
specs -- with real in OBJ

and symbolic data

Interstage consistency Supported
(including design in HDM
and code
verification)

Pictorial descriptions In progress

of specs and code

K. Levitt
7 of 23

APPROACHES TO INTERSTAGE REFINEMENT

- Vertical refinement -- Hierarchical
decomposition using Abstract Data
Types

- Horizontal refinement -- Building a

module out of existing modules

- Program transformation -- Improving
the performance of a program while
preserving its functional behavior

K. Levitt
SRI
8 of 23

WHAT IS A SPECIFICATION

A specification is the DEFINING statement
of a system’s BEHAVIOR

It should resolve UNAMBIGUOUSLY questions
about how the system should resolve
in ANY situation

--> | System | -->
Inputs | | Outputs

A spec is a BLACK-BOX Description

UNAMBIGUOUS => specs are FORMAL

K. Levitt
SRI
9 of 23

QUALITIES OF A "GOOD" SPECIFICATION

-- Concise

~ Easy to produce (compared with an
implementation)

- Readable
-~ Executable (in support of testing)

-~ Support automated reasoning
(e.g., verification)

- Allow for performance analysis and/or
simulation

K. Levitt
SRI
10 of 23

FEATURES OF A SPECIFICATIUN LANGUAGE

- Allow specification just in terms of
"callable" functions. E.g., a "file"
system is definable in terms of

CreateFile, OpenFile, CloseFile,
WriteFile, ReadFile, MovePointer

An 0OBJ specification consists of
equations e.g.,

ReadFile (WriteFile(CreateFile(), val)
= val |

- Allow specification in terms of
abstract (i.e., high-level
data structures

An HDM specification would represent
a "file" in terms of a semi-infinite
array (FiieVal) and a pointer
(FilePointer)

WriteFile(val)
EXCEPTION: FileFull
EFFECTS:

’FilePointer = FilePointer + 1
’FileVal (’FilePointer()) = val

K. Levitt
SRI
11 of 23

FEATURES (cont.)

- PARAMETERIZATION, i.e., using
a library of previous developed
specifications

a "secure" file could be specified as
SecureFile(Contents, SecurityLevel)

whkzare:
Contents is any type
SecurityLevel is "Partially Ordered
Set"

- Logical and Set statements (including
infinite sets)

Finding an element val in a file:

EXISTS i : FileVal(i) = val

Number of appearances of element
val in file:

CARDINALITY({ i | FileVal(i) = val })

K. Levitt
SRI
12 of 23

OR!CINAL PAGE IS
OF POOR QUALITY

TOOLS IN SUPPORT OF HDM AND SPECIAL

specs |
|
|
| Syntax aad |
| Type I
| Checker |
|
| l l
| General | | Security | | Code |
| Design | | Verifier | | Veritier|
IVerifier(1) | | (2) N I) B

Notes:

1. Verifies properties of spec, e.g, "File will
never overflow"

2. Checks for information flows in violation with
Multi-Level Security Model

3. Languages supported: Pascal, Jovial, Fortran 77

K. Levitt
SRI
13 of 23

TOOLS IN SUPPORT OF OBJ

Syntax \ / Cases
Checker \ /

Y G e Cnm G SR R G G Gl G e N S

D G CES IR G GEIL TERD D YN EEE e W S -

K. Levitt
SRI
14 of 23

REFINEMENTS FOR SIFT ULTRARELIABLE COMPUTER

I1/0 Model
I
I
Replication
Model
I
I
Activity
Model
I
|
Operating
System
I
I
Pascal
Programs

BDX~-930 Code

System SAFE =>
"all tasks correct"

Task replicated;
Values voted on each
execution of tasks

Task activties: startup,
broadcast of values, vote
execute, synchronization

SPECIAL specs for 0S routines:
scheduler, voter, dispatcher
buffer manager, etc.

Code for each routine

K. Levitt
SRI
15 of 23

EXPERIENCE WITH SRI's FORMAL TECHNIQUES

Organization System Specs Design Code
Proof Proof

SRI SIFT x x x
PS0S x x
Real-time x
0s
Ford KS0S-11 x x
Aerospace
Honeywell SCOMP x x
Sytek SACDIN x x
Merdan Secure x x
msg system

K. Levitt
SRI
16 of 23

ORIGIMAL PAGE IS
OF POOR QUALITY

PSOS DESIGN HIERARCHY

- 8 e e D e A e T G R e > P G W D D W D et v U =P WS G D M v T GED Wy TS GND Gme P GNP T WD A G S W P SN S

LEVEL;
]
___ !
16 | USER REQUEST INTERPRETER * '
15 + USER ENVIRONMENTS AND NAME SPACES * '
14)} USER INPUT-OUTPUT ® '
13 | PROCEDURE RECORDS '
12) USER PROCESSES ® AND VISIBLE INPUT-OUTPUT ¥ |
11 CHerpTON AND DELETION OF USER OBJECTS # 1
10) D4 FORTES (*)[(C11) i
9 1 EXTLNDED TYPES (*)[C11) !
8 + SEGMENTATION AND WINDOWS (*)[C11) '
7) PAGING (8] H
6 | SYSTEM PROCESSES AND INPUT-OUTPUT [12]) H
5) PRIMITIVE INFUT/OUTPUT [G) H
N ARITHMETIC AND OTHER BASIC OPERATIONS * '
3 4+ CLOCKS [o] :
2 | INTERRUPTS (0] H
1) REGISTERS (*) AND ADDRESSABLE MEMORY (7] H
0O | CAPABILITIES # '
[}

- — . — W — W S - — $7" ~er > s ——— e " - W Nt Ty T P B b S P Sup e VO AP D SN ® N A Gup A D W W

" MODULE FUNCTIONS VISIBLE AT USER INTERFACE,
MODULFE PARTIALLY VISIBLE AT USER INTERFACE.

(I} = MODULE HIDDEN BY LEVEIL 1.
] = CREATION/DELETION ONLY HIDDEN BY LEVEL 11,

-y o S . — — S — o - S e a e WL e A s A Sy > S e M W i v - S A D T S S e .

K. Levitt
SRI
17 of 23

S/W Eng Methodology

PROTOTYPE

(o oclron BAGE™ T
GF BANR (:"4_ ye

it

REGS

oBJ

USER

PROTOTYPING:
EXAMPLE.

TOPICS:

SPECS

>—u| —‘»» CODE

VERIFICATION

Use of scenerios

ALSO need feedback to the designer/coder

e.g., performance models

Early in process

Feedback to user is a fuzzy concept

This roughly corresponds to levei of abstraction

K. Levitt
SRI
18 of 23

GENERAL MOTIVATION OR’G'NAL PA
&;\"'4

TO provide a precise scientific way
TO discover

a) What users want or need

(re guirements)

b) What “linguistic structures’* work best for a given purpose

(user interface d.sign)

¢) What is really going on in a given social context

(social system analysis)

* may be graphical, textual, speech, or mixed media; all are ‘linguistic’ in the sense of
being hierarchically structured into atoms, phrases, and discourse units.

K. Levitt
SR1
19 of 23

REQUIREMENTS

Two major components.

1. How the client will use the system.
information flow at the interface, inside the system, and in the client’s

organization.

2. Client's criteria for evaluation of the system.
a hierarchy of values: may be subjective factors and organizational

factors, as well as objective and individual factors,

These lead to two representation systems.

1. Abstract Data Flow Diagrams

2. Value System Trees

Note that both are graphical in nature.

K. Levitt
SRI
20 of 23

ABSTRACT INFORMATION FLOW

A. MOTIVATION

We want to characterize information by its uge and intention (social meaning),
not by its physical representation.

vs. operations research
This can be done if we look at the information from the viewpoint of those who
use it.

Such information is available ir. the users’ language.

B. DATA FLOW DIAGRAMS

Graphs, with “files,” -~nich reprecent some type of data, generally structured: and

“actions,” which are operations on that data.
We can have both iteration and recursion in DFDs.

Also hierarchical structure.

C. ABSTRACT DATA FLOW DIAGRAMS

“Abstract™ means independent of representation data characterized by relations

among op’s on it.

K. Levitt
SRI
21 of 23

TRAFFIC LIGHT PROBLEM @

()=

O

CAR = ADT

©

Ll

RIGHT

Y

AN
E)—————»

ORIGINAL PAGE IS
OF POOR QUALITY

=0

INTERSECTION

©
|

s

Caror > @m

SAFE

DOWN

O

“shstract car flow processor”’
can be compiled into a simulation

8TOP

|

ABSTRACT DATA FLOW DIAGRAM

Y

K. Levitt

SRI

22 of 23

SAFE

ONNORNNG

REGULATE TRAFFIC FLOW

_— /N T

PERFORMANCE SE’":V CE SAFETY FUNCTIONAL
REDS
/ ses ADFD
SIZE RELIABLE FAIR EFFICIENT

VALUE 8YSTEM TREE

Can be used to organize:

Management effort
Organizational structure
Accounting

Structured walkthroughs
Acceptance tests

Redesign criteria

Natural visualization

Can be used to compile tools for later phases.

K. Levitt
SRI
23 of 23

ORIGINAL PAGE IS ?
OF POOR QUALITY /7

3IGN OF SOFTWARE TOOL SYSTEM AS
SFER VERICLE

. N83 32362

Isar Mivamate

Decartment of Mathamalics and Computer Science
University ¢f Macrviand, Baltinore County
fatznsvillia, MD 21229

ABSTRACT

The paper tntroduces design cons:derations of an on-going reseacch
droject for developing an effactive and easy-to-use tool system that
supsocrts entire ma:ntenance phases The primary focus 1s the design

of tn “"tntelligent” user interface nechanism. By analysing why existing
teols and tool systems are no’ used very effectively, we can define
users requirements for the user interface mechanisms. specify design
criterts of user interface functions, and tntroduce scme features of

the imzlementation. Because this project 18 still in process., tntermediate
evajuation ind expectad effectiveness acre discussed. The author believes
that only a weli-designed tool system can be 2 powerful softwar:
enjineering technology transfer vehicle.

1. INTRODUCTION

Theroleofthesoftwaresystanm s extremely important in a computer-base! system,
The technologv to develop and maintain quality software is the Lay to the
sdvancement cf computer applications; such technology is called softwars
sanjineering

We hive surveye? current technigues, methodoloqies, and tools (or tool systems)
for producing high quality software [1]. The most sertous finding is that
3itheugh many techniques. methodologies, and software tools are avatlable,
they are nct used very much or very effectively in real software production
environments [2). Sometimes, progranmers do not know what i1tems are avaifable
of how to use them. Sometime, their productivity and quality of their software
fail to i1mprove anywav. Later we will discuss some reasons for the fatiures.

The author has experience in the development of a large-scale integrated tool
rystem. This project wae carri-d out 1n the suthor's former company from 1976
to 1978 We tried to develop a software support system named Software
Develorment & Miintenance Support System (SDMSS){é] that was supposed to cover
the entire software life cycle. Although we had developed some parts of the
sysctem, [frankly think we failed to develop an easy-to-use and effective tool
svsten. Ve did not soensd enough time designing the framework of the systan,
such 35 maintainability, portability, database, command languege. qraphics
cavability, ete Ve simply tried to integrate many attractive 1deas. We
raquired a very large host computer. much programming effort, Many resources
4> execute this system, etc We did not have any clear methodology for using
1!l of *he functions of the system. We learned many !aesscns from the failura
af this zrersct L. Miyamoto

U. of M.

1 of 12

SRIGINAL PAGE 16
OF POOR QUALITY

'no»ddition ty thiv expertance. the 3uthor has cromoted modern software
Ngineering te:hniques in the software ‘ndustries Throuah this type cof
professtonal develcpment. the author made valuable ‘indings abcut the 1ssues
2f tesrmnolngy transfer To summarize, transfer of teshnoloov it very

Ayffrselt 1f we lack t>rels that realilze and support the procesed methodology
er *t2chnigue
frem those expertences, we discovered Why 1t is diffien'r Lo transfer software

tbq:nocr:ng technology ¢rom the resecrch environment to tie nroduction
environment The procuction environment 1s 1n great need of these new ideas.

We a'se realize why extsting 1ndsvidual ‘tools and tool systems are not used
very much or very «{f{actively althoughthey were developed to be used frequently.
Scme of the problems come {rom mansgement, some come irom human factors, and
manv are associated with the tool or 'oo! syetem i1tself

However. manv of those reasone mav be 1nteorated as a2 "technology transter
problem " We would like ‘o i1ntreduce some 1deas for the transfer of software
#naineer:ing tools

{1 1 Why software tocols ate not used.

Jut survev (3] and some other usrveys {3,5) indicaty that we have many
tndividual tocls and severi! tcol systems However, almos’ none of these is
used effectively

For tndividual tools, some 3f{ the major reasons are as follows.

1Y Most teoals do not have z clearly defined methodelogy., and only the progran
tode ts avatlable Rarely 15 a user's guide avitlable

Z) Most tools have not vertfied their economic effectiveness.

1) Because of the difficulty in defining criteria for evaluating thas quality
and effectiveness of so‘tware tools. manv tools have not been tested by
ysers

4 Manv *taols yre not evajuated at al!l

' Some to02!s have been avaluated, but they are claarlv net cost-effective.

(&)

§Y 1t 185 verv hard to use or describe some tools

") Documentation (user's manad] design specifrcation, maintenancs
nanual., etc.) is poor Sometimes there i1s no avatlable documentation.

8 Tocls a2ssume manv predeternmined environmentai conditions which are not
documented. Most of the time. these conditions do not match the real
conditions of the users.

1. Miyamoto
U. ~f M.
2 of 12

JaMAL PAGE 1S
O S COR QUALITY

Py Usability 2f teo.s 1S very voor because of lack of proper methodelagy

10 Sometimes the tocl stsel! does not proverly support user activity
Wacause of poor understanding of ssftware production procares wmodels.

11 The reltabilsty of the algorithms, the guality of the impiemention, and
the efficiency of the tool are not sutficient for the user.

12 Manv 1ndividual tools acte not designed to have common input/output
tormats

" 13) Users strongly resist tools that were designed at other organizations.
149) Spectal-purpose tools service a very small audience.

19) Programmers Qenerally resist new or foreiqgn languages and tools. Expert
programmers are ‘he most resistant, as they are the most conservative

16) If the develooment group has a bad reputation, most programmers do not
want to use the products.

17) Sometimes. ‘he particular tools have a bad reputation,

18) Sometimas tools do not fit the existing working criteria

19) Miny .ools do not have esxtendability or modifiability to accommodate
each usar's environment

20 The maintenanze of the tool itself has not been taken :nto account properly;
and the quality and functionality of the tool becone 1neffective over time.

21) The portability of the tools ts very poor.

Savaral points represent the problem of designing our tools to 1mprove the
sttuation. For examole, reasons {, 6, 7, 8, 9, 12, 19, 20, and 21, all depend
on design or on support methodology to apply a tool's capabilities to the user’s
sroper droduction activites.

1. Miyamoto
U. of M.
30f 12

ORIGINAL PAGE IS
OF POOR QUALITY

D2 Whe vl svstens aré not used

Toal svstems are collecttions cf many i1ndividual tools. There are twe tvpes of
t20i svsten heterogenecus and homogenecus

The firses tyce of tool system integrates different types of tools and supports
n: common methodology for ustng the component tools The second typs alseo
tntegrates 1ndividual tools dut supports some <common methedcloay for using

the zomponent to:zls UNIX 1s representative of the first type. and SDMSS

1§ representative of the second type (o)

Each type has both merits and demerits, ne:ther 15 a perfect tool systen.
Existinc tocol svstems have the following major problenms.

1) In general, too! systems have the potential tc be Digger and bigger
To create and use 3 tool systenm requUires 4 large memory space, many
computer tescurces, i large database, a large-scale computer, sophisticated
terminal devices., etc.

2y A oarticular ool system 15 very expensive to use
) The development ccst of a tool system 1tself 1s extremely high

4+ Comoonents of tcol system are tightly integrated snd so adding or deleting
tool functions 1s auirte diffscult.

9). The maintenance of 2 tool system itself 15 tremendousiy expensive,
in fact, sometimes it 1s impossible to matntain.

6 The tnpu! and cutput of the zomponents are not untforsm.

7Y Manvy user interfaces of tcol svstemsdepend on the host operating
svetem, a2nd they are not easy to use.

8" Because many functions depend on the specific hardware or onrerating system,
che vortability of the tool system to other environments is very noor.

¥ Yery few tool systems are designed to support both expert programmers
and novices.

10 Most tool systems are not designed to support groups of users.

11) Few tool systems are graphics-orient#d, and s0 many users must use tex:
tvype tnformation

12 Most tool systeme d> not have any global-]level methodology. and are
Just a collection of individual tools.
Somet:imes., tocl systems enforce 3 very biased (e . g. itmproper, and alwiys
same) nmethodology to users

13) Management of the activities done through the tcol systems :s not avatlable.

14 It 15 diffrculs teo cover the entire softwarsz !i1fe cycle Secause of the
surtrent level of soohistication of sofiware technolooy .
: I. Miyamoto
U. of M.
4 of 12

ORIGINAL PAGE IS
OF POOR QuALITY

A oAl svstem Nas many crodblems teyoend those of taals This 18 why very few
X1t Ing ot o1 Cwol svestems are used very much or verv atfectivelv,

In order to 1n rease software deoduycttvity and sottware Jualsty 1) we must
design and use support tools 121 tool systems that asd osur softwaie
deve!ormant and matntenance activities at least

Therefore 4 question we must answe! 18 how to design effective and aasy-to-
tse Ltr0ls or tool svetens

A tecl or tool svstem can be a very powerful medium that transters software
engineariny methodology from researchers to dracttoners in the real world
Cateful’y Jesigned tool svetems can very affectively transfer technology

We belteve that tool design ts onlv one strong mechanism to aid transfer

Hf existing technology Ve also believe that tools must be easy-to-usa and
cest-effective to mike people apply new software engineeriny tachnology

: PROBLENMS

Ve sre designing a rather ambitivus ool system to support sottware maintenance
actrvitres which s called Pundora's Bagx (™) The taols ate avarlable
individually new Taking tnta account previous maror ptoblems. we hava
tarefully defined >ur desin ortteria

concerning the dig scale of tod) svstewms «Froblem 41 the Pandoera's Box

18 destgned to have several subsyvstems which 2ve independently axecutable
Entire whole functionalityes of tool system ace Joing to be very large but each
compenent 18 Jesioned to be very compact and to be executable on a auper mizro-
computer Therefore the usage cost s expected (o de very iow \Problem #20
These components and (unc 1onalities are Jesigned to use avaglable tool
functions ‘e g full use o UNIX environment) Then we will avoird wasting
much monevy fusitcating those functions The siru-tures of subsvstems are {2 bhe
moduiar and sl neceswsary interactiond ate to be done via databasa (Problam

84 Then the svetem structure 15 verv flaxthle 2 J each function s Jestgned
to be rathar small to incresase maintainabiloity of the tool system ttself
\2roblem #%)

Intersetions batween tocl functions are done dy database v f software
knowledge based and stnput-output formats are common. as :1n UNIX (Problem Wed
With UNTY environment as¢ a hest for this tool svstam the portadbility of the
svetem t# aspured t> some extant (Prodlem #8Y This toal svetem 1% graphics-
*riented Then users can use the graphicy capabslities of acolorgraphics terminal
and coelor x-v plotter In the svstem Pradphice are not secondarvy to ot

4 gubstitute for text type commands The poltev calls tor graphies ficst and
text next (Prodblem #11' The tool svystem 1s designed to heep ail Of the usage
history xnd register individua!l scenarios Using 3 scenario svstam and a
hierarahical minw system. we 2an manage the user's activitias and collact some
2anrgement daita ' Problem #1232 We have tried tod applyv the iatest tachnigues

to the dastgn of Pandora's Box and we limst the usage >f the asvstam da certiin
phases 2/ the ecfltware life cycle

We selected only alrendy evalusted tachniquas and tools (Prodlem #14)Y The
prabiens related with user interface and methodology (Problems #7. #9. #:d. and
$131) 4re desctibed orecisely tn the next section

. L Miyamoto
L of M.
Sof 12

ORIGINAL PACT:

!
OF POOR QUAL”
ER INTERFACE MECHANISM

s
[}
1
n
-
(%)
-
L
T -
-
C»

J

m

We ire design ¢ 3 soitwirs-maintensnce support tool system named 'Pandora's
Box" and would l:ke to introduce so>me 1deas from this provect Those 1deas
tre re'sted to the user interface design of this too! system. The user
tntecsface s designed to have twe fundamental functions for users One is 1
three-leve! menu hierarchy to serve different szenarios to various type of
programmers, f{rom expert programmers to novice programmers. Another tunction
is the Kknowledge-dasge gquidance mechanism f{or those users

3 ! Besic recuirements of user interface functions

Ve sssumed three types of users novice users, expert users, and frequent
ayner’ users Cach type of user has different requirements for the user
interf{ace functions

For example. novices need iquoted from (91

yimest 1n cliarity and simpitcity,

small number of user commands.

meaningful commands 'not 3 single ietter, and not with complex syntax),
juc1d error messaces and help factlities, and

teinfaccement from success

Nevices may want computer-directad mode and systenm's “f(riendliness "
Infrequent expert users pretfer

simple commands,

meantngful commands,

easy to remember cperations. and
prompting

On the other hand, frequent expert users want.

sowerf{ul commands, command strings, user-deftned commands,
minimal numher of Keystrokes,

brief messages (with access to detail 2t regquest). and
hich speed 1nteractien.

Eiperts demand uyser control! and system's "intelligence "
In order to satisfy all user levels, how should we proceed?

We might do the following 1) to expect a ‘graceful evolution' of usars
themselves, 2) to apply 'tnformation hiding' techniques to user 1nterface
mechanism. tr 3) to haveahierarchicalmenu selection system with
“:ntelligence” and "individual" scenario In qeneral. a menu selection
user i1nterface mavy give us

Ttttle training

Jittle memorizetion,

>lear structure for user activity,

eise :n destgning individua! small teol functions, and
s1mpliotty tn software structure.

Eut because of the predetermined entries 1n the menu. usage can be somehow
restrictive In order to design 2 gocd menu sel!ection system, we need to

make a big development effort 1. Miyamoto
’ U. of M.

6 of 12

ORIGINM. prey 13
7 2 Design criteria of hierarchical menu svsten OF PCO Ly

By taking 1nt) account the basic requirements of user intarface functions and

refercing t¢ the matertal [9) and borrowing some 1deas. we have se' up the
following design cctteria:

apply tntelligent user guidance mechanism,

use small number of chatces per screen,

considar semantic srganisation and give title,

shew hieratchy by graphic dasign,

permit simple back, left, right. up and down traversals in the
nenu hietarchy,

use proper combination of celors,

setmit type~ahead,

put most important and frequent chotces first.

begin chotces with keyword, :f possible, and

tequire an enter key or use light-pen mode consistently

Sone 2ther constderat:ions are:

.display rate.

response time,
.help/explain facilities,
short cuts/menu macrye, and
human reaction to colors.

3 3 Some features of usar intetface

3 hterarchical scenarios

The stenario hieraschy of Pandora's Box consists of three levels of nenus.

The top level is so-called "methodology-oriented menu" tor scenarto), and

thig will provide users "how-to-maintain scenari10os” which will gquide users
todoallofthe necessary maintenance activities. Those activities include

the detailed phase plans of each tvype of maintenance. The ccenarios are prepared
in {lexible wav {cr emacgency maintenance, planned ma:ntenance, deferred

ma:ntenance., and preventive @aintenance. The work breakdown structuczes and

necessary procedural steps are the elementary source of this level When users
interact with this scenario, users can get complete guidance as to how to

maintain usecrs progranms and data setswithout precise knowledge about maintenance
activities. The users 40 not need anv writtan guideline to maintsin thetr

software, they need only follow.

The second level menu 15 "how-to-select proper tool functions menu” to do

necessary action guided from the top leve! nenu. The eslementary information

of this level is a list of teol functions provided by the Pandora's Box. The
tool svstem will be expinded to contatn all of the functions necessary to do

3l] of the matntenance activities from maintenance requirements analysis ‘o

validation of maintained software The menu at this level :s constructed based on
an activitv-tools function] matr:ix The third level meny contains the
information about "how-to-use a particular tenis function” This level gives
users the exact :niormation about the user commands'o execute 3 pacrticular tool

function. 1. Miyamoto
U. of M.
7 of 12

ORIGINAL PAGE I35
OF POOR QUAL'TY

Novize User

0f exPeft USAE —mmp| HOW-TO-MAINTAIN MENU KNOWLEDCE BASE SYSTEM
st starting . ime (activity-manuy)

of maintenance E ~

Infrequent &

Ezpert User > HOW-TO-3ELECT TOOL FUNCTION

MENU (tools menu)

Freguent Q_

Exvert User “> HOW-TO-USE FUNCTION MENV
(conmand menu)

TOQL BOX

FI12.1 Hierarchical Menu Systenm

Figure 1 is a representation of this menu hierarchy. Users can access the Pandora’s Box in any way from
the top (in this case, users will be guided smoothly tc aext level menu and finally guided to command-

level menu,) to the lowest level of hierarchy to achieve some particular maintenance activity. The system
will record the histories of activity profile use for each user; and so the system can provide the best scenario
to each user individually when users access the system the next time. The system will guide users by scan-
ning the menu hierarchy up and down. The top level menu provides users with the methodology to main-
tair. software, Users do not need a maintenance guidebook and users manual of the tool system itself any
more.

The system will guide users and provide necessary information and functions to do the necessary activities.

1. Miyamoto
U. of M.
8 of 12

¢ WCE 1S
OF FUUK QUALITY

b. Knowledge-base guidance

When the system guides users, the sysiem refers 10 a knowledge base that contains software error information
and maintenance paitern information. The knowledge base contains exactly two types of error information;
ane is the genesal tendency type error occurrence distribution, the other is the error history of each user col-
lected during their use of Pandora’s Box. The latter type of error information is analyzed sccording to the

target program and individual user.

Some basic ideas of the error information collection mechanism within the autcmated tool system are given in

the previous article [6] .

]

error information/maintenance nattern
da‘ta bdase l

)

knowledge
scceptance {
process i
v
sdintenance pattern/
erzor knowledge base
]
tndividual inference optimum neny
erogran ~> mechanisn —> ANdiVIdY:] 3y svsten
information ma;ntenance
scanario
FIG. 2 Xnowledge Base Systen
I. Miyamoto
U. of M.

9 of 12

NAL PAGE IS
URICOOR QUALITY

In Ba.ntenance chase in generai, especially 1n a case of corrective
Bein.enance. to test modified programs in an efficient way s acst
tmportant and necessary As emphasised in (1), there are tathers

ciear relattonships Letwaen testing techniques and ercor types.

To detect » par.iculartypeotercor we need some specific techniques

Ve exsmine. these relationships and made vp testing techniques-error type
matzix tn the knowledge base system (7).

Refarsing to error information, we can get the information of the general
tendency of error occurrence distribution, and by refercring to the user's
sndividus! history, we may adjust this distribution to an tndividual user-
criented 2ne Based on this knowledge. atthetime when the user signs on to
Pandera's Box, we can provide the optimum individual maintenznoe scenacio.

This scenar:o 1s based on & priorstized menu s0 that the user can continue his/
her most necessary and effective sctivities

4 REMARKS

A technolcgy transfer problem ts not easy, because 1t is related to the
#rnd.ation, traintng, techniques, methods. supporting tools, management
ordantzattion, and human facters. Also, we don’'t know yet what should be
trainsferred Unless we know {t, we can't discuss how we should do technology
transfer This may cause severe questions like, "what (s acreally usetful
software engtneering technolagy to be transferred?”, ot "from whom to whom?*
Beside discusstions on the desk, we must take some approaches to improve

the si1tuation of existing tool wusage. We hopa that some of our ideas on the
design of user interface for tool systememay show some possible direction.

Finallv, "friendly"” and “intelligent” user interfece mechanism of well-
designed tool systems could be s powerful technoiogy transfer vehicle.

5 Acknowledgenent

The suthor would like to express his special thanks to Drs. Viotor Bastli
Ben Shnetderman, Kouichi Ki:shida, and to his tesesrch associates for their
advices and support.

1. Miyamoto
U. of M.
10 of 12

ORIGINAL PAGE 18
OF POOR QUALITY
REFERENCES

{13 1 Miysmoto, "High quality software productiin technicues”. TBS Pubd.
Co , 1902. Tokyn. Japan

£21 1 Miyamoto, "Management cof software maintenance (No.%)". bit, Sept.
1982, Xvoriteu Pub., Tokyo, Japan

25 1. Mivamoto, "Management of software maintenance (No 4)", bit, Aug.
1982. Kyoritau Pub , Tokyo, Japan

{41 Reifer Consultant, "Software Tools Directory”
%) NBS, "Software Tools Directory”, Oct. 1780
té] I Mivamoto, "Reliability Evaluation and Management (for An Entire

Software Life Cycle", The 2nd Software Life Cycle Management Workshoo,
1974

{71 1. Miyamoto, et al, "Conoeptual design of Pandora's Box", to be
aspeated

(83 1. Miyamoto, "Management of softwace maintenance (No.2), bit, July
1982, Kyoritsuy Pub., Tokyo, Japan

[9) Ben Shneiderman, Lecture Note of Scoltware Engineering Seminar,
Oct 1982, 3RA International 'ne¢c.

1. Miyamoto
U. of M.
11 of 12

THE VIEWGRAPH MATERIALS
for the

[. MIYAMOTO PRESENTATION WERE INCORPORATED IN THE PAPER.

. Miyamoto
U. of M.
12 of 12

Lr
4

o Pook cuary N83 32363

DESIGN AIDS FOR REAL-TIME SYSTEMS (DARTS)

Paul A. Szulewski
The Charles Stark Draper Laboratory, Inc.
Zambridge, Massachusetts, 02139
Abscract

Introduction

Design-Aids for Real-Time Systems (DARTS) is a tool that assiats in
defining embedded computer systems through tree-structured graphics,
military standard documentation support, and various arnalyses including
automated Software Science (1) parameter counting and metrics calculation.
These analyses provide both static and dynamic design quality feedback
which can potentially aid in producing efficient, high-quality software

systems,

DARTS Overview

DARTS uses a mix of hierarchy, control and communications primitives
and data structures to represent real-time systems. Requirements are
expressed as a functional hierarchy and designs as a tree-structured
hierarchy of communicating processes, This hierarchical structure pro-
vides two distinct advantages, the svstem can be viewed at different
levels of detail as required and changes (e.g., subtree move and delete)

can he easily implemented.

Although developed specifically to represent real-time interactions,
DARTS can be used co define both real-time and non-real-time systems.

Specific real-time capabilities include an ability to represent and model

(1) interactions between the computer system and external
sensors and effectors,

(2) interactions between processors in a distributed
gsystem design, and

(3) interrupt processing and the flow-~of-control in milti-

programmed software designs.

P. Szulewski
Draper Lab
1 of 20

OR'GINAL PAGE IS
OF POOR QUALITY

Through a friendly, msnu-orientad interface, a user can represent a
system; parform data flow checking; generate simulations of the design for
raaponse time, throughput, and utilization; request a wvariety of data
tables and graphical tree-structured output in various sizes; and

calaulate Software Sciance complexity measuras,

DARTS User Interface

o -

DARTS i8 implemanted as a PL/T program on an Amdahl 470 V/8, A
user is presented with a menu-driven, full-screen interface (21 which
users with no prior computer background have found easy to learn and use.
Through this interface, an analyst can build and maintain a library of
DARTS data bases, ganerate hoth graphical and tabular output, and initiate

various analysis functions,

DARTS Data Base

o e . e o v . e O AR

The DARTS data base is hierarchical, with records coiresponding to
each of the nodes in the DARTS tree. The records contain data pertaining
to control flow, data flow, and relational information for the nodes in
the treae, Various attributes can be associated with the nodes of the
tree., Nodes can hawe names, input and output variable lists, free text
descriptors, durations, and actual assignment statements to be executed
during a simulation. Nodes can also have predicates that determine the
flow of control at branch points. DNDurations can be deterministic or can
be given as random distributions, DARTS processes can be assigned
priorities to allow one process to interrupt another. Thus, interrupt

structures and preemption can be explicitly specified and modeled.

Data Flow Checking

Data flow consistency checking verifies that variables are produced
bafore they are referenced and referenced after they are produced.
Documentation outputs currently consist of a data bhase listing, the DARTS
tree, a data-flow table showing data producer/consumer relationships for
the nodes in the tree, data set/use tables, and module tables. These
graphical and tabular outputs are embedded easily 1into word-processing

files for automatic gpecification generation.
P. Szulewski

Draper Lab
2 of 20

0. 'GINAL. PAGE IS
Automatic Simulation 07 PONAR QUALITY

A simulation capability (3] is available to provide estimates of per-
formance factors, using a simulation lanquage developed at the University
of Birmingham, the Extended Control and Simulation Lanquage (ECSL). A
translator automatically converts a DARTS representation into an ECSL
program. Statistics on performance factors such as response time, down
time, utilization, and throughput are automatically collected and main-
tained by the DARTS/ECSL system. These statistics can he displayed in
histogram formats for analysis,

Software Quality Metrics

An experimental metric of software design quality is among the design
feedback analysis features in DARTS, These metrics, based on Software
Science 1], are useful in assessing the quality of competing software
designs as well as heing predictors of other software planning parameters

(e.g., size, effort, project duration, and number of modules).

Prior research (4,5) has shown that it is possible to identify and
count Software Science parameters in software design media. Experimental
data suggests that these metrics correlate with a subjective assessment of

the criteria they were intended to measure.

g_e_ferences

(1] Halstead, M.H., Elements of Software Science, Flsevier North-Holland,
Inc., New York, 1977.

{2] "Design-Aids for Real-Time Systems (DARTS): Users Guide," Version 3,
CSDL~-C-5441, The Charles Stark Draper Laboratory, Inc., January 12,
1982,

[3] Furtek, F.C,, DeWolf, J.B., and Buchan, P,, "DARTS: A Tool for
Specification and Simulation of Real-Time Systems," Proceedings of
the AIAA Computers in Aerospace III Conference, October 1981,

[4) Szulewski, P.A., Whitworth, M.H., Buchan, P., DeWolf, J.B., Quality
Asgsurance Guidelines and OQuality Metrics for Embedded Real-Time
Software Designs, CSDL-R-1376, The Charles Stark Draner Laboratory,
Inc., May 1980.

[5] Szulewski, P.A., Whitworth, M,H., Buchan, P., DeWolf, J.B., "The
Measurement of Software Science Parameters in Software Designs," ACM
SIGMETRICS Performance Evaluation Review, Vol., 10, WNo. 1, Spring
1981, P. Szulewski

. Draper Lab
3 of 20

THE VIEWGRAPH MATERIALS
for the

P. SZULEWSKI PRESENTATION FOLLOW

P. Szulewski
Draper Lab
4 of 20

0z Jjos
qeq Jadeiq
Dismo[nzs ‘g

8211C376-1

The Charles Stark Draper Laboratory, Inc.

Cambridge, Massachusetts 02135

A\
© ARTS

DESIGN-AIDS FOR REAL-TIME SYSTEMS
by
Paul A. Szulewski

Presented at the
Seventh Annual Software Engineering Workshop

December 1, 1982

Goddard Space Flight Center
Greenbelt, Maryland

Nd ¥o04 40
Vd TNiDo

8l 3p

(HARD R
qeq 1deiq
smapnzs °d

DARTS OVERVIEW

What is DARTS?
— An automated tool for the specification, simulation, and
analysis of distributed, real-time systems

What is its underlying model?

— Hierarchical structure
— Process oriented

What features aid the designer?

— Documentation in a variety of formats
— Explicit control flow and data flow

— Automatic simulation

— Automatic software quality analysis
What features aid management?

— Concise and understandable documentation
— Computerized data base

PROBLEM

® Defining requirements and preliminary designs
Crucial
But time consuming
Not Systematic

® Resulting deficiencies

Inadequate throughput/memory
Cost/time overruns
Reduced reliability, testability, maintainability

Project failure

0T Jo L
qey sedeiy
Mg '

0t josg
qeq sedeiqg
{SMaNzs ‘g

821vC376 7

REQUIREMENTS TREE

V

REQUIREMENT
DOCUMENT

REQUIREMENTS/DESIGN Mc THODOLOGY

“FUNCTIONS"

z—\

TRACEABILITY

—=2

SIMULATION
OUTPUTS

DESIGN TREE

"MODULES"

DESIGN
DOCUMENT

TUNIDNO

ALIVND ¥0Od 40
§l 39vd

0T 306
qe ladwuq
Psmopnzs °d

USING DARTS

DARTS
USER
INTERFACE

DESIGN AIDS
FOR REAL-TIME
SYSTEMS (DARTS)

DATA

EXTRACTION

® DISPLAYS
® TABULATIONS

DES!GN

ANALYSES

e DATA FLOW
¢ SIMULATION
® QUALITY METRICS

DESIGN FEEDBACK

REPORTS
DISPLAYS

ALIVND ¥oLd 40
8| 3Ovd NIDINO

0T 3o 01
qey deg
pismo[nzs g

8211C376-6

DARTS MENUS

Primary features

Darts invocation
Simulation
Utilities

Secondary features

Systems management
Tree management
Graphics

Tables

Analysis

0z jo 11
qey 1edeiqg
pismapnze °d

IVERATOR

PROCESS ARCHITECTURE TREE

WHILE TRUE |

o PREDICATE

WAIT FOR

SIGNAL

EXCHANGE
NODES

(o]
-
12 SEQUENCER é
DO PROCESS §
e
=<
SELECTON
. 12.1 1 122 123
GET WPUT DAT SEND OUTPUT
{xa 1 TYPE EO A XC 2
1221 1222
COMPONENT METHOD A METHOD 8

8] 30vd TUNIDNN

{GINAL PAGE '8
”ﬂ POOR QUALITY

AUTOMATED DOCUIEENTATION

DARTS OUTPUTS

“.
: 5, .
R '
G R iR w
—_ | |
] 4 WL |]
R e L L le L EE L .
AR B
3
i
nm mwm ?
sl hegt elligelble el _ |
h WE _Mmmwmmmmmmm mm_ EOlE bl b
Hl |
—m__ _n “
i TR m
g W B i
Wiy o8 g Dy
.m._:_f_;:mwm_;,mmm | ﬂ
3— mmn-mn.m mmm—n—“ mm—mn-m !

l s - .

»:J..\'
=Te) |
k

P. Szulewski
Dtaper Lab
12 of 20

0T Jo g1
qeq Jsodeiq
Dismonzs 4

8211C376-2

DARTS AUTOMATED SOFTWARE QUALITY MEASUREMENT

® Objective measure of software quality
® Uses Halstead’s software science method
® Accommodates varying levels of design detail

® Autrmatic measurements from DARTS data base

0T Jo ¢1
qe] 1adeiq
Dismaqnzs ‘g

DARTS THREE COUNTING METHODS

® Simple
All nodes are counted the same, and all indata and outdata
iists are counted

® Uninterpreted

Nodes are differenitiated as being either functional nodes or
decision nodes. Data lists are read accordingly: indata and

outdata for functional nodes, and predvar lists for decision
nodes. Each node is counted separately by node 1D

® Interpreted
Nodes are counted by name and all tabs are parsed for oper-
ators and operands. Data lists are ignored

8211C376-3

0Z Jo §1
qe] Jedeiq
nismopnzs ‘g

CSPhL ** DISIGN AIDS
FOR REAL-TIME SYLTEMS
PLOTTHLE (F1XLD)
DATARASE 15 TLST
OWRER IS5 PASSILS

r-71

Shity —'/

un oy \

PHOT

CONTIOLS AND * Dhb

DLYLAYS \ SY. :/
\‘A

SERVO FLLLT
SASTL.S

.

,/ 41 prens
COMPUTIY

222

\.

- - . . COMITHUR

. : {5 SOFT e

10 s . "\ll—.\‘um:;ils
~,

CouTINUED
ON PAGE 2

I
\
/—-! 72\\73
T N
LPA: 3

v A WOV on2

7
FLIGHr 1
(XhiLCL K
: W 7
. 11 CENERATIONS

. 2210

d ¥00q4
0
d TvnBo

Allvn
§i 39y,

0t 30 91
qe 1adeiqg
Dismanzy ‘g

DARTS EXAPLE
SOFTWARE COMPONENT LEVEL

Azyz2
(S "™ DESIGN ATDS

FOR REAL=TIMI SYSTEMS
PLOTTREE (MXKW)
VATAHASE 13 TINT
OWNER 1S PASIIIZ

PACE £

DATE: &1 NOV 1982
TIME: Stnkug
TOUNOSR: 7222

2 GENERATIONS

CRIPIITER
SXNTWALE
ELEMENTS

SETUP CYCLE A} corruoL Laws

LIE EO QHDE £
LMDE M) 2

‘4% TLIN CYCLE VAR

RN

RARDUM(IV0S) LE 5 W= ARG, T

MX-RANDOWS)DUR=5

Advnd ¥ood 4C
sl 39vd TUNIDIHO

DL "t DTEIGK AIID ranl s

¥OR PEAL-TIUE SySTEME L.TP. 28 WOV 1082
PLOTTREZ (y1..E43} TIAE 1343
DATATLTE 13 TLT A TIR T2224
OWRER 12 Pl fo 3 LE ERATIONRY

ALVYND ¥00Od 10

; i

i !

‘ i «s

b re : 0 O 1S A LT DTAR=S 1! ar ciepur=1s g
" 34

8! 3%vd WNIDIIO

0T Jo L1
qey sadmaiqq
nsmanzg ‘d

0T jo 81
qeg 1edeiq
smapnzs g

DARTS METRIC ANALYSIS

CSDL ** DESIGN-AIDS TOPNCDE 1D:7.2.2.2.4 PAGE 2
FCR REAL-TIME SYSTEMS 3 GENERATIONS DATE: 24 NOV 1982
HALSTEAD METRIC DATABASE IS: TEST TIME: 13:12:14
USER IS: PAS3132
COUNTING METHCD: SIMPLE UNINTERPRETED INTERPRETED
DISTINCT OPERATCRS 3 14 24
DISTINCT OPERANDS 29 20 21
TOTAL OPERATORS 35 31 56
TOTAL OPERANDS 55 42 %9
VOCABULARY 23 34 45
DESIEN LENGTH 90 73 105
ESTIMATED LENGTH 91.2 139.7 202.3
PERCENT OFF -1.33 -51.43 -92.65
DESIGN VOLUME 407.121 371.335 576.645
POTENTIAL VOLUME 8.529 28.529 29.529
DESIGH LEVEL 0.070 0.077 0.049
ESTINATED DESIGH LEVEL 0.242 0.C65 0.036
INTELLIGENCE CCNTENT 98.696 25.264% 20.554
LANGUAGE LEVEL 1.999 2.192 1.411
EFFORT 5509.715 4836G.555 11655.336

ALITYND ¥ood 10
S| 39vd IWNIDIHO

0T Jo 61
gt 1adeiq
nsmomeg g

DARTS SUMMARY

® User friendly

® Hierarchical structure
® Can accommodate reai-time software
® Static quality analysis

® Dynamic analysis

® Documentation support

® Design traceability

8211C376-4

0t Jo 0oC
qe Jadeiq
ysmanzg °d

8211C376-5

Near term

DARTS FUTURE

Validate existing metrics and add others to DARTS
design quality analysis feature. (This effort is pres-
ently under contract to Rome Air Development Center
#F30602-82-C-0130)

Long term

Consider DARTS as a part of an integrated software
engineering support environment

-

7

. £
Ngg 52354
\

PANEL #3
SOFTWARE ERRORS
T. Ostrand/E. Weyuker, Sperry Univac/Courant Institute

E. Solloway/W. Johnson/S. Draper, Yale/University of California
D. Buckland, Reifer Consultants

SOFTWARE ERROR DATA COLLECTION AND CATEGORIZA™ZON

Thomas J. Ostrand Elaine J. Weyuker
S~ftware Technology Research Courant Institute
Sperry Univac New York University
Blue Bell, PA 19424 New York, NY 10012

Seventh Annual Software Engineering Workshop
Goddard Space Flight Center
December 1, 1682

A study has been made of the software errors detected during
development of an interactive special-purpose editor system. This product
has been followed during nine months of coding, unit testing, funaotion
testing, and system testing. DNetected errors and their fixes nave been
described by testers and debuggers. To help analyze the relationship of
error characteristics to the various aspects of the software development
process, a new error categorization scheme has been developed. Within this
scheme, 174 errors were classified. For each error, we asked the
programmers to select the most likely cause of the error, report the stage
of the software development cycle in which the error was created and first
noticed, and the circumstances of its detection and isolation, including
time required, techniques tried, and successful techniques.

The programmers were also asked to give a written description of the
error, its symptoms, and its correction. The new error categorization
scheme was developed from these descriptions. Four generic attridbutes or
dimensions of software errors were identified; an error is classified by
assigning it a value for each dimension. The four dimensions and their
possible values reflect the specific errors studied for this project. As
the study is extended to development projects producing different types of

software and different types of errors, the dimensions and their values will

be extz2nded as needed. T. Ostrand
Univac
1 of 33

The four present error dimensions are:

0 Major Category - a broad description of the error, identifying
the type of code that wan changed to make the correction.
The seven major categories into which errors from the
interactive editor have been put are:

Data Definition Code that defines constants, storage areas, control
codes, transfer tables, etc.

Data Handling Code that modifies or initializes the values of
variables,

Decision Code that evaluates a condition and branches according
to the result,

Decision plus Code that evaluates a condition and performs a specific

Processing computation if the condition is satisfied.

Documentation Written description of the product.

System An error external to the program itself, including
operating system, compiler, hardware, etc.

Not an Error Problem reports that are resolved without changing any
part of the system or product.

o Type - more specific information modifying
the major category.

0 Presence - whether the error involves omitted,
superfluous, or incorrect code.

0 Use - vwhether the error involves an initialization,
update, or setting of data.

The interantive editor system is a small project; three programmers
spent about two person-years in its development and testing. The source
code consists of about 9000 lines of high-level language, and 1000 assembler
instructions., Obviously, this small size and the limited number of
programmers prevent us from drawing any far-reaching conclusions from the
error data, We view this study as a pilot effort whose primary results have
been the experience gained in collecting software error data, creation of
the error categorization scheme, and the formation of a number of hypotheses
about software development and validation methods.

The experience will be applied to future er. ‘r studies, which are
planned on other software projects. The categorization scheme will be used
to classify the errors reported from these projects, and will be extended

T. Ostrand

Univac
2 of 33

with additional attributes and major categories. The hypotheses will be
examined in light of the error information collected from these additional
projectn.

Even within the amall scope of the data collected from the editor
project, some interesting relationships were observed between an error's
major category on the one hand, and the error's presence and the type of
testing which detected it on the other. Among decision-related errors
(major category decision or decision plus processing), 81% were omitted code
and 19% were incorrect code. For data definition errors, 31% were omissions
and 69% incorrect. Data handling errors were split approximately evenly
between omitted and incorrect code, as was the entire set of errors reported
on. Previous error studies have reported a similar majority of omitted code
errors involving decisions. In five software projects monitored at TRW
[(13), decision-related errors of omission ranged from 65% to 96§ of all
decision-related errors. In turn, the decision errors were 11% to 36% of
«ll errors. Glass [7] counted 60 "omitted logic" errors out of a total of
200,

At the present time the interactive editor has just been released to
customers; all errors reported to date have been detected during internal
testing activities., A very'lnrge majority of these pre-release errors were
isolated and corrected quickly. Less than 1 hour per error was expended to
isolate 79% of the errors and to correct 71%. Within 4 hours, 88% were
isolated and 90% were corrected. These figures are similar to the effort
measured by Weiss [16]) and Presscn [11].

Since our error collection spanned the entire development process, we
were able to observe substantial differences between the effectiveness of
unit and function testing for detecting some categories of errors. Unit

testing is performed by the software project's original coders, testing
T. Ostrand
Univac
3 of 33

their own modules or procedures. The goal is to find errors affecting the
functional behavior of these individual units. Function testing is
performed on the complete product by a separate testing group. A test plan
is developed from the user manual, and the test cases attempt to execute all
potential user activities with the product. Unit testing detectad twice as
many (22 vs. 11) data handling errors as funotion testing did. Function
testing was more successful on data definition errors (U7 to 7), decision
errors (20 to 10), and decision plus processing errors (25 to 1).

These figures may reflect an inherent weakness in the ability of unit
testing to detect certain categories of errors. Another possibility,
however, is that unit testing is most successful when errors occur primarily
through programmer failings, and least successful when errors» are due to
"high=1evel" problems such as ambiguous or incomplete apecifications. This
interpretation is supported by the programmers' choices of reasons for
errors occuring. The three most commonly cited error causes were Drograamer
srror (68%), poor specifications (13%), and glerical (9%). Of the 21 errors
due to poor specificatons, only one was detected in unit testing, and
seventean were detected in function testing.

Errors caused by poor specifications were not only detected later than
the average of all errors; they also required more effort to correct. Only
243 of specification-csused errors were fixed in under 1 hour, 52% in 1 to 4
hours, and 24% in 4 hours to 1 day and over 1 day. The relatively high
correc'.ion effort for these errors illustrates the common belief that the
cost of correcting an error increases when the error remains in the system
during multiple phases of the development cycle. Page [10], for example,
states that the correction cost approximately doubles as an error enters
each successive phase. These specification-caused errors entered the system

during program design, and remained undetected during coding and ugignt q
. ran

Univac
4 of 33

testing. In addition, the error fixing effort reported here is only the
time spent by the programmers in constructing fixes, and does not include
the effort expended by an independent tester in detecting the error and
supplying additional diagnostic information. If these vere included, the

total correction cost would be even higher,

References

(1) Amory, W. and J.A., Clapp, "A Software Error Classification Methodology",
MTR-2648, Vol. VII, Mitre Corp., Bedford, MA, 30 June 1973.

{2) Baker, W.F., "Software Data Collection and Analysis: A Real-Time System
Project History", RADC-ThK-77-192, Rome Air Development fenter, Griffis AFB,
NY, June 1977.

[3) Basili, V.R., "Data Collection Validation and Analysis", Draft Software
Metrics Panel Final Report, ed. A.J. Perlis, ¥F.G. Sayward, and M. Shaw,
Washington, DC, 30 June 1980.

(4] Basili, V.R. and D.M, Weiss, "Analyzing Error Data in the Software
Engineering Laboratory", Fourth Minnowbrork Workshop on Software Performance
Evaluation, Blue Mtn. Lake, NY, August 1981,

(5) Basili, V.R., M.V. Zelkowitz, F.E. McGarry, R.W. Reiter, W.F.
Truszkowski, and D.M. Weiss, "The Softw.r-= Engineering Laboratory", Tech.
Report TR-535, U. Maryland Computer Science Center, College Park, MD, May
1977.

(6] Endres, A., "An Analysis of Errors and Their Czuses in System Programs",

IEEE Trans, Softw, Epg., V-1 SE-1, June 1975, 140149,

{7] Glass, R.L., "Persistent Sr "tware Errors", JEEE Trans, Softw, Eng.,
Vol. SE-7, March 1981, 162-168.

{8) Litecky, C.R. and G.B. Davis, "A Study of Errors, Error-Proneness, and
Error Diagnosis in Cobol", Comm., ACM, Vol. 19, January 1976, 33-37.

(9] Mendis, K.S. and M.L. Gollis, "Categorizing and Predicting Errors in

Software Programs", Proc, 2nd AIAA Computers in Aerospace Conf., Los
Angeles, October 1979, 300-308.

(10] Page, J., "Evaluating the Effects of an Independent Verification and

Validation Team", Proc, 6th Ann, Software Eng. Workshop, Goddard Space
Flight Center, Greenbelt, MD, December 1981. T Ostrand
- Astrian

Univac
50of 33

(11) Presson, P.E., "A Study of Software Errors on Large Aerospace

Projects", Proc. Nat, Conf, on Software Iechnology and Management,
Alexandria, VA, October 1981

(12) Schneidewind, N. and H. Hoffman, "An Experiment in Software Error Data

Collection and Analysis", IEEE Irans. Softw. Eng.., Vol SE-5, May 1979,

[(13) Thayer, T.A., M. Lipow, and E.C. Nelson, Software Reliability, TRW
Series of Software Technology, Vol. 2, North-Holland, Amsterdam, 1978.

[(14] Thibodeau, R., "The State-of-the-Art in Software Error Data Collection
and Analysis - Final Report", General Research Corp., Huntsville, AL,
Jana 3,| 1978'

[{15]) Weiss, D.M., "Everluating Software Development by Error Analysis: The

Data from the Architecture Research Facility", J, Systems and Software,
Vol. 1, 1979, 57-70.

(16) Weiss, D.M., "Evaluating Software Development by Analysis of Change
Data", Tech, Report TR-1120, U. Maryland Computer Science Center, College
Park, M0, tlorans 1399

T. Ostrand
Univac
6 of 33

THE VIEWGRAPH MATERIALS
for the

T. OSTRAND/E. WEYUKER PRESENTATION FOLLOW

T. Ostra«d
Univac
7 of 33

SOFTWARE ERROR DATA COLLECTION
AND CATEGORIZATION

THOMAS OSTRAND ELAINE WEYUKER
SOFTWARE TECHNOLOGY COURANT INSTITUTE
SPERRY UNIVAC NEW YORK UNIVERSITY

SEVENTH SOFTWARE ENGINEERING WORKSHOP
GODDARD SPACE FLIGHT CENTER

DECEMBER 1, 1982

T. Ostrand
Univac
8 of 33

PURPOSE :

FEATURES :

SCHEDULE :

PROJECT DESCRIPTION

IMPLEMENT A LANGUAGE-SPECIFIC INTERACTIVE

EDITOR,

CONTROL STRUCTURES

- FORMATTING OF SOURCE CODE.

- DYNAMIC SYNTAX CHECKING

TEMPLATES FOR DATA DEFINITICNG AND

= PROMPTING FOR REQUIRED PROGRAM SECTIONS,

SPECIFICATION AVAILABLE
- CODING BEGAN

- FUNCTION TESTING BEGAN
= SYSTEM TESTING BEGAN

- CUSTOMER TESTING BEGAN

- RELEASE

11/80
4/81
11/81

4/82
6/82

11/82

T. Ostrand
Univac
9 of 33

PROJECT DESCRIPTION

STAFF: =1 FuLL TIME, 2 PART-TIME PROGRAMMERS
SIZE: - SOURCE CODE 9000 LINES HLL

1000 LinES AL

- OBJECT CODE 70,000 BYTES

T. Ostrand
Univac
10 of 33

CHANGE INFORMATION COLLECTED FROM PROGRAMMERS

CHECK-OFF INFORMATION

PROBLEM DETECTION METHODS

PROBLEM ISOLATION METHODS

ORIGINAL CODER

TIME REQUIRED FOR ERROR ISOLATION AND ERROR FIXING

SIZE OF CHANGE

WHEN PROBLEM WAS NOTICED

WHEN PROBLEM WAS CREATED

WHY DID THE PROBLEM OCCUR

T. Ostrand
Univac
11 of 33

CHANGE INFORMATION COLLECTED FROM PROGRAMMERS

WRITTEN INFORMATION

DATES

NAMES OF CHANGED UNITS

DESCRIPTIONS OF

® PROBLEM SYMPTOMS

® ACTUAL PROBLEM

0 FIX

OTHER MISCELLANEOUS INFORMATION

T. Ostrand
Univac
12 of 33

ERROR CATEGORIZATION METHODS

AMORY & CLAPP MITRE

ENDRES IBM DOS SOFTWARE
THAYER ET AL TRW APPLICATIONS
GLASS BOEING APPLICATIONS

CHARACTERISTICS OF THESE METHODS ARE:

TREE SCHEME FOR CATEGORIZATION

AMB 1GUOUS, OVERLAPPING, INCOMPLETE CATEGORIES

TOO MANY CATEGORIES

FAILURE TO DISTINGUISH BETWEEN:

® SYMPTOMS OF AN ERROR

® DESCRIPTIVE CHARACTERISTICS OF AN ERROR

® CAUSE OF AN ERROR'S EXISTENCE

T. Ostrand
Univac
13 of 33

ATTRIBUTES IN OUR CURRENT SCHEME

® MAJOR CATEGORY

@ TYPE

® PRSFSENCE

® USE

T. Ostrand
Univac
14 of 33

ATTRIBUTES
MAJOR CATEGORY

DATA DEFINITION DEFINE CONSTANTS, STORAGE AREAS., CONTROL

CODES, ETC,
DATA HANDLING - SET, INITIALIZE, OR MODIFY VALUES OF
VARIABLES,
DECISTON - EVALUATE A CONDITION AND BRANCH ACCORDING

TO THE RESULT,

DECISION & - EVALUATE A CONDITION AND PERFORM A
PROCESS COMPUTATION,

DOCUMENTATION - DESCRIPTION OF PRODUCT OR CCDE
CLERICAL - TYPING, HANDWRITING

SYSTEM - PROBLEM IN THE ENVIRONMENT EXTERNAL TO

THE PROGRAM AND 1TS DOCUMENTATION,

NOT AN ERROR - PROBLEM RESOLVED WITHOUT CHANGING THE
PRODUCT OR SYSTEM

T. Ostrand
Univac
15 of 33

ATTRIBUTES

TYPE: MODIFIES THE MAJOR CATEGORY
FOR ERRORS INVOLVING DATA:

ADDRESS - IDENTIFIES LOCATION IN MEMORY,

EXAMPLES: ARRAY INDEX., LIST POINTER.
TABLE NAME., OFFSET INTO A
DEFINED STORAGE AREA.

CONTROL. - DETERMINES APPROPRIATE FLOW OF CONTROL

DATA - PRIMARY INFORMATION WHICH 1S READ.
WRITTEN, OR PROCESSED,

FOR ERRORS INVOLVING DECISIONS:

LOOP

MULTIPLE-WAY BRANCH

T. Ostrand
Univac
16 of 33

ATTRIBUTES

PRESENCE : CODE 4AS
OMITTED - LEFT ouT
SUPERFLUOUS - PRESENT, BUT NOT NEEDED
INCORRECT - PRESENT, AND HAD TO BE
CHANGED,

USE: THE TYPE OF OPERATION PERFORMED ON DATA

SET
INITIALIZE

UPDATE

T. Ostrand
Univac
17 of 33

oeAjUN

€€ Jo 81
puensQ ‘L

Major Categories of Non-Clerical Errors

ALL ERRORS
DATA DEFINITION L | 54
DATA HANDLING F 32
DECISION I 31
DECISION & PROCESSING I 32
OTHER & UNKNOWN 7
W9 20 0 40
TOTAL NUMBER

£e Jo 61

pmmsd ‘1

Major Categories of Non-Cierical Errors

DATA DEFINITION NNy
NN\]

10 20 30 40 50
TITA'. NUMBER

NN DETECTED IN UNIT TESTING

DETECTED IN FUNCTiON TESTING

ALIYND yood 40
gl 39vd TVNIORO

tY do (¢

RZYITTRY

puensQ g

Major Categories of Non-Clerical Errors

CATA DEFINITION

DATA HANDLING

DECISION

DECISION AND PROCESSING §

OTHER & UNMKNOWN

ALL ERRORS

33

19

10 20

30 44 S

PERCENT

ALVND HOOd 40
§I 39Vd TWNIDIO

£€ Jo 1T

puexnsg ‘L

Major Categories of Non-Clerical Errors

ALL ERRORS

AN

DATA DEFINITION

DATA HANDLING

DECISION &\\\\\\%&\
DECISION AND PROCESSING § 1

10 20 30 40 &9
PERCENT

MY oetectep in uniF TESTING

e

AEAS \}:\-‘
Wavived

ALY ¥ond 40

8t S9va

deAIUN

£€ Jo 77
puensQ ‘L

Major Categories of Non-Clerical Errors

ALL ERRORS

DATA DEFINITION

DATA HANDLING

DECISION

DECISION AND PROCESSING -

OTHER & UNKNOWN 255X

10 20 30 40 50

PERCENT

DETECTED IN FUNCTION TESTING

ALIIVNO ¥00d 40
Sl 39vd TWNIDIMO

£€ JO £T

JBATU[)
puensoQ ‘L

Error Presence Attribute for
Each Major Category

DATA DATA DECISION PLYUS
DEFINITION HANDLING DECISION PROCCESSING
NUMBER OF ERRORS
IN THIS CATEGORY 54 38 31 32
69%

50%
- N
INCORRECT COLCE s %

| ——————— .
7%
65%
PERCENT 45%
OMITTED CODE 319, ‘ _' I J
] i

PERCENT 5%
SUPERFLUOUS CODE —

ALIYND 40O 4O
81 FOVd N0

SBATU[]

€€ Jo ¥C
pueisQ 'L

Error Isolation Effort

UNKNOWN

MORE THAN 1 DAY

4 HOURS TO 1 DAY

1TO4H

9]
‘-
.‘
o

LESS THAN 1 HOUR

ALL ERRORS

79

106

20 0 AQ S0 60 70 00

PERCENT OF ERRORS ISOLATED IN GIVEN TIME

9%

100

Ho

nd ¥ood 40

sl 39vd NI

ALY

€€ Jo ST
puensQ L

Error Isolation Effort

ALL ERRORS

UNKNOWN
N
MORE THAN 1 DAY
4 HOURS TO 1 DAY

1TO 4 HOURS

LESS THAN 1 HOUR

L

10 20 3% 40 60 70 20 90 100

PERCENT OF ERRORS ISOLATED IN GIVEN TIME

ERRORS DETECTED IN UNIT TESTING

Alivnd ¥ood 40
S1 a9Vd TUNISRO

oBAIUR)

€€ Jo 97
puensp ‘L

Error Isolation Effort

UNKNOWN

MORE THAN t DAY

4 HOURS TO 1 DAY

1TO 4 HOURS

LESS THAN 1 HOUR

ALL ERRORS

10 20 30 40 S0 sv 76 30 90 100

PERCENT CF ERRORS ISCLATED IN GIVEN TIME

ERRORS DETECTED IN FUNCTION TESTING

Allvnd ¥ood 40
&) 2oUd TYNIDNO

JBAIUQY

€€ Jo LT
puenso ‘L

Error Isolation Effort

UNKNOWN

MORE THAN 1 DAY

4 HOURS TO 1 DAY

170 4 HOURS

LESS THAN 1 HOUR

ALL ERRORS

10

gttt
20 3 40 56 60 70 50

PERCENT OF ERRORS iSULATED In GIVEN TIME

ERRORS DUE TO POOR SEECIFICATIONS

00 Y00d 40

[N
v

Lin

]
.

<vd TYNIDINO

IS S
LTI

SBAIUQ)

€€ Jo 8¢
puensq ‘L

Error Fixing Effort

UNKNOWN

MORE THAN 1 D+Y

4 HOURS TO 1 DAY

1TO 4 HOURS

LESS THAN 1 HOUR

ALL ERRORS

19

=
-

10 20 30 40 0 €0 70 80

PERCENT OF ERRORS FIXED IM GIVEN TIME

100

ALITVND ¥oOo4 d0
81 J9Vd YNIDIMO

Error Fixing Effort

ALL ERRORS

W

10 20 0 L 5 60 70 80 ¢ 100

PERCENT CF ERRORS FIXED IN GIVEN TIME

NN ERACRS DETECTED IN UNIT TESTING

Almvnd ¥ood 40
81 3vvd WNIDIYO

£t Jo 0¢

Error Fixing Effort

UNKNOWN

MORE THAN 1 DAY

4 HOURS TO 1 DAY

1704 HOUeS

LESS THAN 1 HOUR

JBAINY
puenso ‘L

ALL ERRORS

10 20 0 L 50 60 70 80 90

PERCENT OF ERRORS FIXED IN GIVEN TIME

ERRORS DETECTED IN FUNCTION TESTING

100

ALIYNO ¥o0d 40
8l 39%vd WNIDIO

SeARUN

£€ Jo 1€
puensQ ‘L

Error Fixing Effort

ALL ERRORS

UNKNOWN

MORE THAN 1 DAY

4 HOURS TO t DAY

1TO 4 HOURS

LESS THAN t HOUR
S0 69 70

10 20 30 40
PERCENT OF ERRORS FIXED IN GIVEN TIME
ERRORS DUE TO POOR SPECIFICATIONS

nd Yooy
40
Yd Wivisiyo

ALy
8! 3o

SUMMARY OF RESULTS

UNIT TESTING DETECTS DATA HANDLING :URS WELL.,

FUNCTION TESTING DETECTS DECISION-RELATED ERRORS
AND DATA DEFINITION ERRORS WELL,

LARGE MAJORITY OF DECISION-RELATED ERRORS ARE
OMISSIONS, (AGREES WITH PRIOR STUDIES),

MOST ERRORS DETECTED BEFORE RELEASE ARE !S™ ATED
AND CORRECTED WITH LITTLE EFFORT, (AGREES WITH
WEISS AND PRESSON),

SPECIFICATION-CAUSED ERRORS ARE MORE DIFFICULT TO
CORRECT THAN OTHERS.,

T. Ostrand
Univac
32 of 33

LONCLUSIONS OR HYPOTHESES

= MULTI-DIMENSIONAL ERROR CATEGORIZATION SCHEME IS
EASIER TO USE AND MORE USEFUL FOR APPLICATIQNS THAN
TRADITIONAL TREE SCHEMES,

=~ CODE COVERAGE IS UNSATISFACTORY AS A BASIS FOR TEST
CASE GENERATION AND AS A MEANS OF ASSESSING TEST
ADEQUACY, BECAUSE OF THE LARGE NUMBER OF ERRORS IN-
VOLVING OMITTED CODE.

= UNIT TESTING IS AN INHERENTLY WEAK METHOD FOR DETEC-
TION OF ERRORS CAUSED BY POOR SPECIFICATIONS.,

~ EFFORT SPENT IN PRODUCING HIGH-QUALITY SPECIFICATIONS
WILL SUBSTANTIALLY REDUCE THE COST OF CORRECTING
SOFTWARE ,

T. Ostrand
Univac
33 of 33

%
Ng3 32365

Classifying Bugs Is a Tricky Bunlnen*

W. . ~is Johnson *
St.i-hs. Draper **
Elliot ».loway *

* Department of Computer Science
Yale University
P.O. Box 2158
New Haven, Connecticut 06520

** Institute for Cognitive Science
University of California, San Diego Mail Code C015
La Jolla, California

1. Context: Motivation and Goals!

About 2 years ago we decided to build a computer-based programming tutor to help students
learn to program in Pascal; we wanted the system to identify the non-syntactic bugs in a
student's program and tutor the student with respect to the misconceptions that might have
given rise to the bugs. The emphasis was on the system understanding what the student did and
did not understand; we felt that simply telling the student that there was a bug in line 14 was
not sufficient --- since oftentimes the bug in line 14 was really caused by a whole series of
conceptual errors that could not be localized to a specific line in the program. However, in order
to design the system we needed to know what bugs students did make in their programs and
what misconceptions they typically labored under. On the basis of bug types found in a number
of pencil-and-paper studies with student programmers (novices, intermediates, and advanced)
[9, 10}, we built and classroom tested a first version of such a programming tutor [11]. In the
process of testing that system we instrumented the operating system on a CYBER 175 to
automaiically collect a copy of each syntactically correct program the student programmers
attempted to execute while sitting at the terminal; we call this form of data “on-line protocols”.
We collected such protocols on 204 students for an entire semeste: (7 programming assignments).
We have systematically analyzed only a small portion of these data: the basis for this paper is
the hand analysis of the first syntactically correct program that students generated for their first

2

looping assignment,® i.e., 204 programs.

This work was co-sponsored by the Personnel and Training Research Groups, Psychological Sciences
Division, Office of Naval Research and the Army Research Institute for the Behavioral and Social Sciences,
Contract No. N00014-82-K-0714, Contract Authority Identification Number, Nr 154-492. Approved for
public release; distribution unlimited. Reproduction in whole or part is permittad for any purpose of the
United States Government.

E. Soloway
%This problem is given in Figure 8, which will be discussed in section 4. Yale

1 of 18

The story we tell in this paper deals with our experiences in analyzing these 204 on-line
protocols. In particuler, we will describe the observations we made in trying to build a bug
classification scheme; the actual details of what bugs we found, their frequency, etc. can be found
in [5]. The key observation is the following: while one might think that building a classification
scheme for the bugs would be straightforward, it turns out not to be so simple; in fact, we will
argue that:

Bugs cannot be uniquely described on the besir of features of the buggy program alone; one
muast also take the programmer's intentions a. i inowledge state into account.

2. A Simplified Example

Consider the problem statement in Figure 1, which is a simplified version of the first looping
problem that the students in our study had to solve in Pascal. From a novice's perspective the
difficult part of this problem is making sure that the negative inputs are filtered out before they
are processed. There are two common approaches to solving this type of problem in an Algol-like
language such as Pascal. In Figure 2 we depict a solution in which a negative input causes
execution of one branch of a conditional, while a ncn-negative input causes execution of the
major computation of the loop. We call this type of structure a Skip-guard Flan:® a
conditional statement is used to guard the main computation from illegal values. Notice that one
pass through the loop will be made for each input value. The second approach is given in Figure
3; here an embedded loop filters out the illegal values. Notice that one pass through the outside
loop will be made for each --- and only each --- legal value. We call the nested loop structure an
Embedded Filter Loop Plan.

Write a program that reads in integers, that represent the daily rainfall in the New Haven aiea,
and computes the average daily rainfall for the input values, If the input is a negative number, do
not count this value in the average, and prompt the user to input another, leyal value. Stop
reading when 99999 is input; this is a sentinel value and should not be used in the average
calculation.

Figure 1: Simplified Looping Problem

Now consider the buggy program in Figure 4. The problem with this program is that if the
user first types a negative input, and then types the sentinel value 99999, this value will
--- incorrectly --- be processed as a legitimate value. A number of questions come to mind:

1. How should we classify this bug?
2. What piece of code is to blame?
3. What mental error on the student’s part might have caused this bug?

3See [8, 3, 0]for a more complete discussion of programming plane.

E. Soloway
Yale
2 0of 18

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
IF RAINFALL < 0
THEN
WRITELN('BAD INPUT, TRY AGAIN')
ELSE
BEGIN
TOTAL :
DAYS
END;
READ(RAINFALL) ;

TOTAL + RAINFALL;
DAYS + 1;

]

END;

Figure 2: Using a Skip-Guard Plan

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
WHILE RAINFALL < 0 DO
BEGIN
WRITELN('BAD INPUT, TRY AGAIN');
READ(RAINFALL)
END;
IF RAINFALL <> 99999 THEN
BEGIN
TOTAL TOTAL + RAINFALL;
DAYS DAYS + 1;
READ(RAINFALL)
END;

END;

Figure 3: Using an Embedded Filter Loop Plan

4, What piece of code should we change to make the program correct!
In order to answer these questions, however, we need to answer another one first:

What programming approach was the user trying to implement? Thai is, did the student intend

to implement the skip-guard plan or did he try to implement the embedded filter loop
plan?

Answers to the first 4 questions will be different depending on how we answer this last question.

We will continue this example by presenting first an argument that supports the choice of the

skip-guard plan, and then an argument that supports the choice of the embedded filter

E. Soloway
Yale
30of 18

ORIGINAL PAGE IS
OF POOR QUALITY

READ(RAINFALL)
WHILE RAINFALL <> 99899 DO
BEGIN
WHILE RAINFALL < 0 DO
BEGIN
WRITELN('BAD INPUT, TRY AGAIN’);
READ(RAINFALL)
END;
TOTAL := TOTAL + RAINFALL;
DAYS := DAYS + {;
READ (RAINFALL)
END;

Figure 4: Sample Buggy Program

loop plan; we will then describe a basis for making a choice between the two competing
positions. Consider, then, Figure 5 in which we depict the buggy program again, plus a
generalized, template version of the skip-guard plan. We can describe the buggy program in
terms of a difference description between it and tbz generalized plan. As shown in Figure §,
there are 3 differences:

1. need an IF instead of a WHILE inside the loop,

2. have an extra read inside the loop,

3. will always execute the processing steps since there is no way to skip around the
processing.

The first difference is a plausible bug for a novice to make; in our examination of novice
programs we have seen novices confuse IF and WHILE: students sometimes construct a loop with
simply an IF, and sometimes they use just the test part of the WHILE statement? [2, 6],
Similarly, the second difference is also plausible for novices; again, we have found that novices
often add bits of spurious code, oftentimes attempting to mimic the redundancy they civen use in
formulating plans and actions in the real world. Finally, if we assume that the programmer
really meant to simply test RAINFALL, then all that is missing is an ELSE to cause the skip
around the computation; novices notoriously have trouble with the ELSE parts of conditionals.
Thus, the buggy code in Figure § is not that different from the skip-guard plan; when
considering differences from only this plan it is entirely conceivable that the novice
programmer was trying to implement this plan in his code.

‘While this may seem strange to us as expert programmers, if we take a moment to reflect, we can see that using
WHILE for a conditional and a loop, and IF for only the conditional part is somewhat arbitrary, given their meanings
in English.

E. Soloway
Yale
4 of 18

ORIGINAL PARY B3
OF PCCR QiiranNY

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO Skip-Guard Flan
BEGIN
WHILE RAINFALL < 0 DO IFx < min
BEGIN THEN
WRITELN('BAD INPUT, TRY AGAIN'); BECIN
READ(RAINFALL) print error messege
END; END
TOTAL := TOTAL + RAINFALL; ELSE
DAYS := DAYS + 1; BEGIN
READ(RAINFALL) process input
END; END

BUG DESCRIPTION:

[

need an IF instesd of s WHILE
have an extrs READ in inner loop
3. missing ELSE; orocessing of input
vill never be skipped

N

Figure 5: Bug Description Assuming Sksp-Guard Plan

Now consider Figure 6 in which we again depict the buggy program. This time, however, we
show differcnces between it and a generalized, template version of an embedded filter loop
plan. Notice that the code matches the plan well; the only bug is a missing guard before the
code that processes the input: the running total update and the counter update must be
protected from including a sentinel value in the computation.

The analysis 1n Figures 5 and 6 would lead to different answers to the first 4 questions above.
For example, if we believe that the analysis in Figure 5 is correct, we might say the following to
the student:®

It seems that you are having some trouble with conditional statements. For example, did you
realize that there exists a statement called IF that allows you to test

To correct your program, you might want to add an ELSE clause...

Moreover, we would classify the bugs as an (1) incorrect statement type, (2) spurious read, (3)
missing ELSE. On the. other hand, if we believe that the analysis in Figure 6 is correct, then we

5We do not want to argue abcut the best pedagogical strategy for interacting with the student; that in itself is a
very difficult question. The particular response shown is simply meant to illustrate one type of response to this

situation. E. Soloway
Yale
Sof 18

ORIGINAL PAGE IS
OF POOR QUALITY

READ (RAINFALL) Embedded Filter Loop Plan
WHILE RAINFALL <> 99999 DO
BEGIN WHILE x < min DO
WHILE RAINFALL < 0 DO BEGIN
BEGIN print error messago
WRITELN('BAD INPUT, TRY AGAIN'); READ «x
READ(RAINFALL) END
END; sentinel guard plen
TOTAL := TOTAL + RAINFALL; process input
DAYS := DAYS + I;
READ(RAINFALL)
END;

BUG DESCRIPTION:

1. missing conditional (gusrd) on
processing the input

Figure 6: Bug Description Assuming Embedded Filter Loop Plan

might say something like the following to the student:

You should notice if the sentinel value follows the input of a negative value that your program
will compute an incorrect average,

The bug type then might be a missing guard (conditional) plan.

By this time the reader's intuition is surely saying that the correct analysis of the buggy
program in Figure 4 is that the programmer intended to implement an embedded filter loop
plan. The bug counts (3 for the skip-guard plan and 1 for the embedded filter loop
rlan) provide quantitative support for this decision. However, we feel that the key in the
decision process --- and the basis for our intuition --- is our understanding of the student's
program provided by the plan analysis in Figure 5: thus, the bug categorization and bug count
Jollow from our understanding of the program --- and not the other way around. We purposely
choose an example over which there would be little controversy. However, the point was (1) to
show how much reasoning we often do about programs implicitly, and (2) to show how different
bug categorization and bug counts could be as a function of choice of intended underlying plan.

While the above decision was relatively clear, let us perturb the buggy code a bit further and
see how murky these type of decisions can --- and do --- become. In Figure 7 we show three
buggy program fragments; let us compare the bug categorization and bug counts using the two

E. Soloway
Yale
6 of 18

ORIGINAL PAGEZ |19

alternative plans for each of the programs. OF PoOR QUALITY

¢ Figure 7a
» Using the embedded filter loop plan we get the following bug differences:
1. the WHILE and IF keywords have been interchanged
2. there is a missing read for a new value
3. there is a missing guard on the subsequent input processing
» Using the skip-guard plan we get the following bug differences:
1. missing ELSE on the internal IF
e Figure 7b
» Using the embedded filter loop plan we get the following bug differences:
1. the WHILE and IF keywords have been interchanged
2. there is a missing guard on the subsequent input processing
» Using the skip-guard plan we get the following bug differences:
1. spurious READ
2. missing ELSE on the internal IF
e Figure 7c
» Using the embedded filter loop plan we get the following bug differences:
1. missing read for a new value
2. there is a missing guard on the subsequent input processing
» Using the sksp-guard plan we get the following bug differences:
1. the WHILE and IF keywords have been interchanged
2. missing ELSE on the internal IF

We would argue that the programmer of the code in Figure 7a intended to encode a
skip-guard plan: again, the bug counts (3 for the embedded filter loop plan and 1 for the
skip-guard plan) support the intuition that it is more plausible that the programmer simply
left out an ELSE, as opposed to swapping keywords, etc. However, the code in Figures 7b and ¢
are not so easily analyzed: the bug counts are the same and the plausibility of the bug types are
reasonably similar. In order to make a reasoned decision we need to bring other evidence from
the program to bear. For example, in Figure 7b the programmer used a WHILE loop to correctly
implement the outer loop; this is some evidence that he understands how and when to use this
construct. Thus, we might be confident that the programmer really meant IF in the program in
Figure 7b. On the other hand, the inciusion of the spurious READ is unsettling. However, the
program in Figure 7c is certainly the most problematic: the bug counts are the same, the
plausibility of the bugs are similar, and the additional outside information is equivocal. The
moral of this program is that it can be exceedingly difficult to make decisions about plans --- and
bugs --- by simply lvoking at the code.

The point of these latter examples is to illustrate how quickly the decision about what the
E. Soloway
Yale
7 of 18

ORIGINAL PAGE IS
OF POOR QUALITY

» b
KEALCFATNEALL) READ(RATNFALL)
WHILE RAINFALL <> 99999 CO WHILE RAINFALL < 99999 DO
REGIN BEGIN
IF RAINFALL < O THEN IF RAINFALL < O THEN
WKITECNC BAD INPUT . TRY AGAIN') BEGIN
TOTAL = TOYAL « RAINFALL. WRITELN('BAD INPUT, TRY AGAIN'),
UAYS, LAYS e] READ(RAINFALL) .
HEAD (RAINFALL) END,
END TOTAL = TOTAL » RAINFALL,
DAYS = DAYS o 1,
READ(RAINFALL)
END.,
[4
READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN

WHILE RAINFALL < 0 DO
WRITELN('BAD INPUT, TRY AGAIN'),
T0TAL = TOTAL + RAINFALL,
DAYS = DAYS o 1,
READ(RAINFALL)
END

Figure 7: Clouding the Waters: Additional Buggy Programs

programmer intended gets murky, and how additional information outside the buggy area needs
to be brought to bear, We see again that for the programs in Figure i the bug categorization
and bug frequencies change depending on what decision is made about the programmer's

intention,

Finally, the fact that the programs we have shown are novices’ programs is reaily irrelevant to
the point in question: the problem is that the intention of the programmer effects the bug
categorization and the bug. count. Quite reasonably, we would not expect a professional
programmer to mistake an IF for a WHILE. The observation that we would not expect this
particular confusion would in fact aid us in inferring the intention --- it would not, we believe,
simply make the problem go away. In fact, we might well see buggy code such as Figure 4,
Figure 7 from a professional programmer.

3. Methods for Specifying the Intention of a Program

In the above section, the basis for describing bugs was the difference between a program and
the programming plans that specified a correct program. There are other methods of specifying
the intention of a program:

¢ /O Behavior
E. Soloway
Yale
8 of 18

¢ Programming Plans

o Corrected Version of the Buggy Program

¢ Program Description Language (PDL)
In what follows we will examine each of these in turn, and explore their good points and the bad
points with respect to using a m:thod as a basis for developing bug difference descriptions.

1/0 BEHAVIOR

An 1/O specification for the problem in Figure 1 would be quite close to the problem statement
itself. The obvious problem with this method is its vagueness with respect to the code: many
different code fragments can misbehave in the same manner (e.g., there are many, many ways to
generating an infinite loop --- but the 1/O result is the same in all cases). One needs to be able
to make finer-grain distinctions than are facilitated by a comparison of the code to simply 1/0

specifications.

PROGRAMMING PLA:IS

The major problem with this method is the need to guess what plan the programmer intended
to implement. However, once the decision is made, then describing the bug as a difference
between the plan and the code is relatively easy. One method of coping with the plan decision
problem is interviews with the originral programmers; this technique has been used to “validate”
change report data in several software monitoring projects (e.g., (12]). Unfortunately, in a class
of 200 students writing code at different terminals, interviews with subjects is a bit more
difficult.

The major benefit derived from building a bug description using this methcd is an accurate
reporting of the cause of the bug. That is, clearly the goal of a bug taxonomy in which one
captures bug type and bug frequency is the ability to pinpoint the sources of the bugs: one
would like to know which bugs came from misunderstandings of the specifications docuiaent and
which bugs arose from coding errors, etc. For example, in the previous section if we assumed
that the programmer intended to implement a skip-guard plan then we would say that there
were a number of coding level bugs (e.g.,, WHILE instead of IF, missing ELSE, spurious READ).
However, if we assume that the programmer intended to implement an embedded filter loop
plan, then the source of the bug may be a problem of specification interpretation: the
programmer may not have thought that someone would ever input the sentinel value after
inputing an illegal (negative) value. Thus he felt no need to guard subsequent computation. (An
intervivw with the programmer would be particularly useful in this specific case.) Thus, bug
categorization and bug origin is directly influenced by the choice of underlying plan structure in
the buggy program.

CORRECTED VERSION OF THE BUGGY PROGRAM

E. Soloway
Yale
9 of 18

The typical method of describing a bug is to compare the original buggy progrum with the
corrected version of that program (e.g., [12, 7, 1]). While there is no guessing as to the intention
of the original programmer, we see 2 basic problems with this approach:

o The choice of the particular corrected program used ase the measure o relatively
arbitrary. That is, there are few hard guidelines for making changes to code. Thus,
different programmerss could well take the same buggy program and correct it in
different ways. This would result iu two different bug descriptions --- an intuitively
unsatisfactory situation. Moreover, different bug descriptions couvld lead to different
conclusions as to the origins of the bugs, which, afterall, is the the point of doing the
bug categorization in the first place. For example, if the buggy program in Figure
4 were corrected by implementing a sksp-guard plan, then the difference between
the buggy program and the corrected program would result in a bug description
containing 3 coding level bugs. On the other hand, if the program is corrected by
putting in a guard around the subsequent computation to protect against a sentinel
value, then the bug description would only contain 1 bug, a missing conditional
(guard plan) --- which may or may not be a coding level bug (as discussed above).
While we might prefer the programmer to make the latter change, there is nc way to
guarantee this situation.

Interviewing the original programmer might shed some light on his intentions --- and
guide the subsequent bug analysis or even bug correction. However, this additional,
programmer-supplied, information goes beyond the corrected program --- and
approaches a bug description based on the programmera original plan.While we have
some mctbodologlcal reservations about using interviews collected after the fact,® the
main issue is that information gotten from the interview is of a different sort than the
information gotten from the corrected program --- where the former information is
much more akin to the programming plans described above.

o What ia actually counted can be quite problematic. For example, if we correct the
buggy program in Figure 7c¢ by adding the missing ELSE, we also need to add a
BEGIN-END block around the running total update and the counter update. Should
we count this as 1 bug ¢~ 2 bugs? It seems unfair to count the BEGIN-END block
against the programmer, since this change is required by the “real” change. On the
other hand, however, in the next section we will show programs in which the “real”
bug ss a missing BEGIN-END block. Thus, it is not inconceivable that a programmer
could add the ELSE in Figure 7c, but forget to put in the now necessary BEGIN-END
block. What one counts is a tricky issue.

The upshot of these two problems with categorizing and counting bugs based on a corrected
version of the program was suggested above: one is less confident of the origiv. of the bugs, and
thus is less confident about percentages of bugs with those origins. Depending on the particular
corrected solution and the particular choice of couuting scheme, one could paint a picture of a

%The problems with using interview data has received significant attention in psychology. For example, Ericsson
and Simon [4] have argued that one can reliably only use verbal information given by the subject as the oubject io
doing the taek, Thry argue that such a concurrent verbal report is effectively an on-line dump from short-term
memory. In conirast, a report after the fact could be a story about what the subject thought he was thinking, and
that significant distortions can occur in this type of situation, While one might ugunbly feel that the Ericsson and
Simon position is a bit extreme, nonetheless, it seems only prudent to exercise care in interpreting mtet\ngwl data.

oloway
Yale
10 of 18

program that contained many more coding level ervors, say, than specification-based errors. The
worst part of this situation is that we would not have a good way of knowing how right or wrong
this analysis was -- since we don't know how the bug categories and counts would have turned
out if a different corrected version were used as the basis for difference descriptions.

PROGRAM DESCRIPTION LANGUAGE (PDL)

PDL’'s come in all flavors; some are very close to the code, while others are more high level,
and closer to the plan level description. The former PDL would suffer from the same problems as
using a corrected version as the standard. The latter type of PDL would suffer from the problems
associated with using the programming plans as the standard.

4. An Ex‘tended Example

Let us aow consider an actual example from the on-line protocol data. In Figure 8 we depict
the problem the students were trying to solve; in Figure 9 the program on the left is a buggy
program generated by a student in our study. If we take a “local view” of the bugs in this
program, we can generate a corrected version as shown in Figure 9 (right band side). Notice that
if we do a difference description between the corrected and the buggy versions we can come up
with 8 changes:

e The rainyday counter, COUNTI, will be always be updated; in order to correct for
the times when a negative rainfall is input, we need to decrement COUNT1. Thus, [1]
added a begin-end block after (NUM < 0) test, and 8] added a decrement of the
rasnyday counter.

e COUNT2 must be made to contain the number of rainy (not just valid) days.
COUNT?2 keeps track of the non-rainy valid days in the loop. Thus, we need to
subtract the non-rainy days (COUNT?2) from the total valid days (COUNT1) in order
to get the number of rainy days: [8] changed addition of COUNTI and COUNT? to
subtraction of COUNT? from COUNTI.

e The guard on the average caiculation is incorrect. Thus, (4] changed guard on average
caleulation to COUNTL.

e The divisor in the average calculation should be the valid day counter, COUNT1, not
the valid, but non-rainy day counter, COUNT2. Thus, [6] changed COUNT? to
COUNT1 in the divisor of the average calculation.

o If there is no valid input the program should neither calculate the average, nor should
the program print it out --- as well as not printing out the maximum. Thus, [8] added
a legin-end block afier division guard around average caleulation and output
statementas.

e The WRITELNS give a message about what should be output; in order to make the
message agree with the actual output, the variables need to be changed: (7] the valid
day counter neede to be COUNTY, while the |8] rainy day counter needs to COUNT?.

Given the number of changes that need to be made to the counters (COUNT1 and COUNT?2), it

would appear that the student has some confusion over the roles of the two counters.
E. Soloway
Yale
11 of 18

The Noah Problem: Noah needs to keep track of the rainfall in the New Haven area to determine
whea to launch his atk. Write a program which he can use to do this. Your program should read
the rainfall for each day, stopping whea Noah types “00000", which is not a data valee, but a
sentinel indicating the end of input. If the wser types in a segative value ihe program shouwld
reject it, since negative rainfall is mot possible. Your program should prist out the mumber of
valid days typed in, the aumber of rainy days, the average rainfall per day over the period, and
the maximum amount of rainfall that fell oa any one day.

Figure 8: The Noah Problem: A First Looping Problem

E. Soloway
Yale
12 of 18

OR!GIMAL PAGE IS
OF POOR QUALITY

BUGGY EXAMPALE
BEGIN
WRITELN (*PLEASE! INPUT AMOUNT OF RAINFALL').
READLN,
READ(NUM) ,
CONTI =0,
CONT2 =0,
S =0,
HIGHAN = 0,
WHILE (MM <> SENTIMAL) 0O
BEGIN
IF (MM > 0)
THEN
SUK = SUM ¢ NN,
COUNTL = COUNT] ¢)
IF (NUM > HIGHNUM)
THEN
HIGHMM = NUM,
IF (WM = 9)
THEN
COUNT2 s COUNT2 » 1,
IF (\M < 0)
TREN
WRITELN (*"LLEGAL INPUT, INPUT NEW VALUE'),
READLN.
READ(NUM) .
END,
COUNT2 = COUNT? » COUNTL,
IF (o >)
THEN
TOTAL = SUM/COUNT2,
WRITELN ('AVERAGE RAINFALL WAS ° TOTAL,‘ INCHES PER DAY'),
WRITELN ('RIGHEST RAINFALL WAS ° HIGHNUM, ' INCHES‘),
VRITELN (COUNT2,' VALID DAYS WERE ENTERED'),
WRITELN (COUNT, ' RAINY DAYS IN THIS PERIOD °).
END

OORREOCTED VERSION
GEQIN

WRITELN ('PLEASE! INPUT AMOUNT OF RAINFALL'),
READLN,
READ(WMM) ;
COUNT) = 0,
COUNT2 = 0,
am =0,
HICHNN c O,
WILE (NN <> SBNTINAL) 0O
8EQIN
<+ (MM > 0)
THEN
SUN (= SUN * NN
COUNTL = COUNTL + 1,
IF (NN > HICHNUN)
THEN
RIGHAN = NN,
IF (N = 0)
THEN
COWNT2 .= CONT2 ¢ 1,
IF (MM < 0)
THEN
® gdd this line ®)
oounil ;v oounil - §; (®add this line %)
GRITELN ('JLLEGAL INPUT, INPUT NEW VALUE').

A (® 6dd this line)
READLN.
READ(NUM)
€N,
oounls :»m sounil - sounls; (® changed (his line)
IF (eownts > 0) (® honged [his line %)
THEN
dopin (®ad3 this line)
TOTAL = SUR/esunil; (2henged this lins %)
WRITELN (°AVERAGE RAINFALL WAS ° TOTAL.' INCHES PER DAY'),
WRITELN (°HIGHEST RAINFALL WAS ° HIGHNUM, *® INCHES').
nd; {® add this line %)

WRITELN(eownds. * VALID DATS WERE ENTERED'):
WRITELN(cound®,* RAINY DA/S IN THIS PERIOD ‘),
END.

(® changed Ihis line ®)
(® dhanged this kine %)

o [1] added a begin-end block after (NUM ¢ 0) test, ond 3] sdded o decrement of the rainyday counter
¢ [8) changed sidition of COUNTL and COUNT2 to subtraction of COUNT2 from COUNTI.

o [6] changed guard on sverage calculstion to COUNTL

o [8] changed CUUNT2 to COUNTL in the divisor of the sversge calceiatios.

o (8] sdded o begin-end block sfter division guard sround sversge calculation and ovtput stetements.
o [7] the valid day counter nveds to be COUNTL, while the [B] rainy doy couater needs to COUNT2.

Figure 0: A Buzgy Program uand a Corrected Version

E. Soloway
Yale
13 of 18

However, consider now a different corrected version of this buggy program as depicted in
Figure 10. A difference description between the buggy version and the corrected version yields the
following set of bugs:

e We ca: make COUNTI only keep track of the rainy days; this is consistent with code
already in the program: the line that adds COUNT2 and COUNT1 now makes sense
<= COUNT2 now keeps track of the valid days, and the divisor in the average
calculation suggests that COUNT?2 should be the valid day counter. In order to make
COUNT1 perform in this manner, we need to [1j add a begin-end pasr around all
computation afler NUM > 0test, up to the NUM w= 0 teot.

o If there is no valid input the program should neither calculate the average, nor should
the program print it out --- as well as not printing out the maximum. Thus, we need
to [3) add a begin-end block after division guard around average calculation and
output statementas.

e The guard on the average calculation is incorrect. Thus, [8] changed guard on average
calculation to COUNTL.

Which description should we choose! And why? Nutice that neither of the corrected versions
were that unreasonable. However, it would seem to us that one should choose the second bug
description over the first. The basis for that decision is the hypothesized plan structure
underlying the buggy version: it appears to us that the student was trying to structure the
actions in the main loop in terms of cases. For example, the program explicitly tested for NUM
> 0, NUM = J, and NUM < 0 and took the appropriate actions --- almost. In order to make
the case structure work, the code following the NUM > 0 up to the NUM == 0 test should be
grouped together. While one cannot put ton» much faith in the indentation of a novice's
program,’ it apgsars that the indentation supports this analysis. Thus, what is missing from the
main loop is a begin-end pair surrounding the code between the NUM > 0 test and the NUM =
0 test. On this analysis, the student does not have a misunderstanding surrounding the two
counters, but rather has a coding level misunderstanding about how to block code together.
Moreover, this same .nisunderstanding can explain the lack of a begin-end pair surrounding the
average calculation in the next two write statements. The reduced bug count in the second
description follows directly from this analysis: in effect there are . nly 3 bugs in this program, 2
of which have the same underlying origin.

This example illustrates a point made earlier: the bug categorization and bug count follow
from an understanding of the program that is provided by the hypothesized plan structure of
the program. That is, to understand a buggy program. one must make inferences about what
plan structure the programmer intended to implement; the program only “makes sense” in terms
of these plan descriptions.

"We have observed in the on-line protocols that the physical layout rf s student’s program suffers as the student
makes changes to his program in the process of debugging it. E. Soloway
Yale
14 of 18

BUGGY EXAMFLE
BEGIN
YRITELN ('PLEASE! INPUT AMOUNT OF RAINFALL’),
READLN.
READ (NUM) ,
COUNTL =0,
COUNT2 = 0,
SUM = 0,
HIGHMM = O,
WHILE (MW - SENTINAL) DO
BEGIN
IF (NUM > 0)
THEN
SUM = SUM + NUM,
COUNT1 = COUNTL + 1,
IF (NUM > HIGHNUM)
THEN
HIGHNUM = NUM.
IF (NUM = 0)
THEN
COUNT2 = COUNT2 + |,
1F, (NUM < 0)
THEN

WRITELN (*ILLEGAL INPUT, INPUT NEW VALUE'),

READLN,

READ(NM) .

END,
COUNT2 = COUNT2 + COINTL,
IF (N > 0)

THEN

TOTAL = SUM/COUNT2,

ORIGINAL PAGE
OF PooRr QUALIT'YS

ANOTHER CORRECTED VERSION

BEGIN

WRITELN ('PLEASE! INPUT AMOUNT NF RAINFALL®),

READLN,
READ(NUM) ,
CONTL =0,
COUNT2 = 0,
SM =0,
HIGHNUM = 0,
WHILE (NUM <> SENTINAL) 00
BEGIN
IF (N > 0)
THEN
bepin
SUN = SUM + NUN,
COUNT1 = COUNT] » 1,
IF (NUM > HIGHNUM)
THEN
HIGHNUM = NUM,
od;
IF (N = 0)
THEN
COUNT2 = COUNT2 + 1,
IF (NM < 0)
THEN

(® add this line ¥)

(® add this line ¥}

WRITELN (' ILLEGAL INPUT. INPUT NEW VALUE'),

READLN,

READ(NUM)

END,
COUNT2 = COUNT2 + COUNT],
IF (countig > 0)

WRITELN ('AVERAGE RAINFALL WAS * TOTAL, ' INCHES PER DAY'), THEN

WRITELN ('HIGHEST RAINFALL WAS ' HIGHNUM, ' INCHES'),

WRITELN (COUNT2,' VALID DAYS WERE ENTERED').

WRITELN (COUNTL.' RAINY DAYS IN THIS PERIOD '),

END

TOTAL = SUM/COUNT2.

(® changed this line ®)

bogin (® add this line)

WRITELN {'AVERAGE RAINFALL WAS ' TOTAL,' INCHES PER DAY'),
WRITELN ('HIGHEST RAINFALL WAS ' HIGHNUNM, ' INCHES'),
end; (® odd this line 9)
WRITELN (COUNT2,* VALID DAYS WERE ENTERED').
WRITELN (COUNT1,* RAINY DAYS IN THIS PERIOD °),

END

o [1] add a begin-end pair arround all computation after NUM » 0 test, up to the NUM = 0 test
o [2] add a begin-end block aftar division guard around average calculation and output statements
o [8] changed guard on average calculation to COUNTI

Figure 10: A Bugggy Program an an Alternative Corrected Version

E. Soloway
Yale
15 of 18

6. Concluding Remarks

We have argued that a bug description is a difference description between the realization and
the intention specification. We have presented a aumber of techniques for specifying the intention
and have pointed out the problems associated with each type of specification in developing an
accurate picture of bug types and bug frequency. While no technique is without its problems, we
have argued that the understanding provided by a plan analysis of the buggy program stands a
better chance, as compared to the other techniques, of providing a more accurate categorization
and count of the bugs --- and thus a more accurate reflection of the origins of the bugs.

E. Soloway
Yale
16 of 18

References

1. Basili, V., Perricone, B. Software Errors and Complexity: An Empirical Investigation. Tech.
Rept. TR-1195, University of Maryland, Dept. of Computer Science, 1982.

3. Bonar, J. Understanding the Novice Programmer. Dissertation, in preparation.

3. Ebrlich, K., Soloway, E. An Empirical Investigation of the Tacit Plan Knowledge in
Programming. in Human Factors in Computer Systems , J. Thomas and M.L. Schneider (Eds.),
Ablex Inc., in press.

4. Ericsscn, A. and Simon, H. "Verbal repons as data.” Peyehological Review 87 (1980),
215-251.

8. Johnson, L., Draper, S., Soloway, E. The Nature of Bugs in Novices' Pascal Programs. in
preparation

8. Miller, L. A. "Natural Language Programming: Styles, Strategies, and Contrasts.” IBM
Systems Journal 20 (1981), 184-215.

7. Ostrand, T., Weyuker, E. Collecting and Categorizing Software Error I’ata in an Industrial
Environment. Tech. Rept. 47, New York University, Dept. of Coimputer Science, 1982.

8. Rich, C. Inspection Methods in Programming. Tech. Rept. AI-TR-604, MIT Al Lab, 1981.

9. Soloway, E., Ehrlich, K., Bonar, J., Greenspan, J. What Do Novices Know About
Programming? In A. Badre, B. Shaeiderman, Ed., Directions in Human-Computer Interactione,
Ablex, Inc., 1982.

10. Soloway, E., Bonar, J., Ebrlich, K. . Cognitive Strategies and Looping Constructs: An
Empirical Study. Communications of the ACM, in press.

11. Soloway, E., Rubin, E., Woolf, B., Bonar, J., Johnson, L. MENO-II: An Intelligent
Programming Tutor. Journal of Computer-Based Instruction, to appear.

12. Weiss, D. Evaluating Software Development By Analysis of Change Data. Tech. Rept.
TR-1120, University of Maryland, Dept. of Computer Science, 1981.

E. Soloway
Yale
17 of 18

THE VIEWGRAPH MATERIALS
for the
W. JOHNSON/S. DRAPER/E. SOLOWAY PRESENTATION
WERE INCORPORATED IN THE PAPER

E. Soloway
Yale
18 of 18

N83 32

ERROR TAXONOMY
WHAT CAN BE GAINED?

by

D. E. Buckland

Reifer Consul tants, Inc.

December 1, 1982

D. Buckland
Reifer Cons.
1 of 28

ORIGINAL PAGE IS
OF FOOR QUALITY

System development has been and continues to be an evolutionary
process. Technology is rapidly catching up with the science
fiction writers of yesterday. We see some form of computer in
Just about all of our equipment, including cars, watches,
cameras, home appliances, weapons systems, communications
devices, space ships, etc. In the good old days, hardware did it
all. Today more and more capabilities are being fashioned by
some form of software, and computers are becoming smaller, more
powerful and far more complex. We’ve recognized that, no matter
what our task is, experience is our best teacher. In the field of
system development we’d like to profit not only from our own
experiences, but also from the experiences of our fellow computer
scientists.

In order to . chis, we need a history of what we’ve done. We can
accomplish tniy by implementing some of the formal procedures and
documentation reguirements from the older, hardware side of the
house. In order to profit from our mistakes, we need to Keep
track of what went wrong, and what was done to correct each
situation. One technique used to accomplish this is to implement
an error taxonomy.

Exactly what is an error taxonomy? Simply stated, it is the
classification and quantification of errors. Numerous studies
have been conducted in an attempt to provide quantitative data on
errors that occurred in relatively large systems. The study of
errors is important for the following reasons:

oA major item impacting costs, risks and uncertainty in
system development is the lack of Knowledge of what causes
errors, why they occur and how they can be reduced (or at
least located more quickly). The development of error data
bases for systems is a step towards the statistical
quantification of error occurrence. Once error occcurrences
can be quantified, steps can be taken to reduce them.

o Identification of relationships between error occurrences,
causes, criticality and time of error occurrence can lead to
improved methods of detecting errors before they become
difficult and costly to correct.

O Reliable error data can be used to measure the impact (both
positive and negative) of modern software development and
validation m:rthodologies and tools on quality and
productivi ty.

o The formal error documentation process forced by error data
collection itself can provide better error control and help
assure appropriate corrective actions are taken.

Errors cann be categorized in a ruinber of ways. The Key is to
define categories that are useful and applicable to the
appltication. The more common categories are:
D. Buckland
Reifer Cons.
2 of 28

o0 Time of occurrence ORIGIMAL PAGE IS

o Level! of criticality OF POOR QUALITY
o Error type
o Time of introduction

The main reason for reporting problems is so that each problem
. can be resolved in a timely fashion. During system development
and subsequent use, procblems are found and reported reguiarly.
If a formal reporting process is not used, even in a one man job,
some problems fall by the wayside, and linger to make themselves
nown at some inconvenient time in the +future. Programmer X
discovers a problem in programmer Y‘’s code, and with full
intentions of telling him C(or her) about it as soon as his test
time is finished, becomes involved in another problem, or runs
off to a meeting, and forgets. Or how many times have we heard
*Such and such doesn’t work correctly® with no indication of what
was being done or what was expected? Much time and effort must
then be expended to investigation prior to resolution.

In order to identify and solve problems in a timely fashion, a
clean, simple problem reporting mechanism is required. Using
such a mechanism, problem status reports can be produced that
enable management and staff alike to evaluate what is left to be
done, ausign priorities so that the more painful items are taken
care of first and group similar problems together for expeditious
handling. When problem reports are up to date, test coverage can
be maximized ay staying clear of Kknown problem areas,
concentrating on new territory and reducing duplication. When
thorough problem reports are required; test objectivity increases
because test conditions must be substantiated. The problem
report itself serves as a form of communication between reporter
and resolver, and problem turnaround increases. A careful
analysis of problem status reports can identify weak areas, spot
trends and enable the application of past experiences in the
future.

The reporting mechanism must include the filling out and
gathering of problem reports, enable expedient investigation,
archive the resolution and enable problem evaluation. All of
this should be accomplished with a minimum of clerical time. A
Key point to remember is to gather enough data at the time so
that informaticn you may need in the futurc is readily available.

When implementing a problem reporting system, several factors
need to be considered beforehand. The first is to define a
common set of terms so that all involved with the system are
speaking the same language. Establish and publish a 1list of
Keywords, acronyms and abbreviations. Next one should design a
problem reporting form. This should be Kept to one page and
should make use of checkboxes wher? practical. Plenty of space
should be provided for both the problem symptom and the
resolution. Allow for problems to be reported against a
baseline, with all deviations from the baseline noted (patches,
etc.). One central point of control! should be maintained, where
new prob'ems can be logged open, and resolved problems closed.

D. Buckland

Reifer Cons.

T A

ORIGINAL PAGE I8
OF POOR QUALITY

This may be as simple as a notebook or as complex as an automated
system. 0O¢ prime importance is to assure that the system |is
flexible and growth oriented. It is much easier to gather data
in real time than to acquire it from the memories of those
involved when the project is completed.

Information on problems is usually collected in serial fashion.
When a problem is discovered, the following is needed:

o Who found the problem? Should a question arise as to the
nature of the bug, facts not included in the report itself,
interpretation of the test, recreation of the problem, etc.,
it will be necessary to speak with the reporter.

o When was this problem found? Recording this date enables
the analyst to arrive at such facts as what phase of the
life cycle this occurred in, how long the problem has been
open and how long it took to resolve, and also to track how
many problems were opened during given phases.

o What happened? The reporter should detail the exact
symptoms whenever possible. This includes, but is not
limited to, the system identification, hardware and software
configurations, test case, inputs, test programs, expected
outputs or reactions, etc. There should be enough detail to
enable the programmer to recreate or pinpoint the problem.
Remember, it is entirely possible that one problem can have
several symptoms.

o What was being used? The system the problem occurred on,
along with any test equipment should be identified. This
will enable the programmer to determine whether the problem
is configuration dependent, or possibly caused by a hardware
failure.

o Is this a reoccurrence of a previously closed problem? This
would indicate that a problem may have occurred in
configuration management, or all of the causes had not yet
been discovered.

o What is the level of criticality? The category must take
into consideration whether or not the problem itself is
mission critical, prevents further checkout of mission
critical areas of the system, will involve a 1ot of rework
and impact schedule, is cosmetic in nature, etc. The level
of criticality is not always evident when the problem is
originally reported, but may change as investigation reveals
the mitigating conditions.

When a problem is resolved, the appropriate historical
information should be recorded. Analysts will need to Know:

o Why did it fail? The clinical reasons for the failure must
be recorded. The modules and interfaces involved should be
noted. The exact cause should be given, whether it was an

D. Buckland
Reifer Cons.
4 of 28

ORIGINAL PAGE IS
OF POOR QUALITY

error or oversight in the requirements, a design +failure,
coding error, test error, human operation fault, etc. This
information will allow the analyst to identify error trends
and weak areas, and suggest recovery actions.

o What was the solution? Exactly what was done to resolve the
problem? This might be to correct a piece of documentation,
revise the code, or even do nothing at all. Depending on
when a probltem is found, it is sometimes more costly and
more risky to fix it than to work around it.

o Who supplied the resolution? Should questions arise in the
future, this is the person to whom they will be directed.

o When was it closed? The presence of this date indicates
that the problem is not active, and will not be included in
the °“current open® count. It also enables time information
to be extracted.

During the time that a problem is open, it may prove helpful to
give it a status, such as new, patched, reported fixed on a
certain baseline, retry, recreate, revised, etc. These can
indicate to those using the report actions that need to be taken
to close the problem. For instance, a problem that is
categorized as critical, but has not been reproducible, would
carry a recreate status to indicate that the programmer wishes to
be informed immediately when the problem re-occurs. Or a problem
reported as fixed on a given baseline should be val.dated prior
to its being officially closed.

Now that we have the ability to collect all of this fine datas,
what can it tel) us? €y way of example, let me share with you a
study that was conducted by Reifer Consul tants, Inc. of errors
reported during the development and use of the Deep Space
Network/3 in preparation for the development of the Deep Space
Network/4.

The problem reports for this program were initially meant to
indicate to the programmers that a problem existed, and not much
more. In preparation for this study, a team of analysts
evaluated existing taxonomies, and with a little embellishment,
deveioped a taxonomy applicable to this JPL projeact. A three
dimensional classification scheme was devised to capture
meaningful error data in a manner suitable for additiona)
statistical and trend analysis. Each of the dimensions is
summarized below:

o Iime nf Occurrence - Defines in which of the four DSN phases
of the software life cycle the error occurred. The four
times were: Development, Verification, Acceptance or
Transfer.

o Criticality - Defined in which level of severity the error
could be categorized. The three levels of severity were:
Critical, Dangerous and Minor. D. Buckland

Reifer Cons.

S of 28

CRIGINSL PAGE 18
OF POOR QUALITY

o Catsgocy -~ categorized the cause of the error. The ten
error typ.s weres Computation, Logic, Data handling,
Interface, Data base, Operation, Requirements incorrect,
Design, Clerical and other.

(Because it is important to precisely define terminology, ! have
enclosed a detailed description of the taxonomy as an appendix to
this paper.)

The same team of analys’s then analyzed spproximately 16008
problem reports, ard interviewed people involved with the
projects in an attempt to fill in the blanks. Using the DSN/RCI
software error taxonomy, each problem report was categorized in
terms oF its category, criticality and time of occurrence.

A preliminary analysis of the resulting data base was performed.
Summaries of the data were compiled and evaluated vo that
recommendations for improvement could be formulated. His tograms
were used to identiéy anparent trends and conclusions without
resorting to & detailed statistical analysis. The histograms
combine errot cdata within accuracy range of plus or minus 14,
Three histogrins fcliow along with a discussion of the
observations. To simplify the graphs, the common abbreviations
listed in Table | were used.

Table 1§
ABBREVIAT I ONS/ACRONYMS

o Time of Occurrence

D ~ Development -~ design, coding and unit test

V - Verification - integration and testing of subsystem

A - Acceptance - Formal testing and acceptance of subsystem
T - Transfered - software subsystem operationai

U - Unknown

o Criticality Levels

A - Critical C - Minor
B - Danqerous U -~ Unknown

o Error Category

CO - Computational Error oP - Operation Error
LO - Logic Error Rl - Requirements Incorrect
DH - Data Handling Error DE - Design Error
IN - Interface Error CL -~ Clerical Error
DB - Data Base Errar 0T - Other
D. Buckland
Reifer Cons.

6 of 28

ORIGINAL PACL IS
OF POOR QUALITY

A histogram illustrating errors by time of occurrence ‘Figure 1)
was produced. The undefii..d time occurrences resulted from
probiem reports which had no time of occurrence and for which no
time of occurrence could be ascertained. The observations we can
make based on this histogram are as follows:

0 The data seems to indicate that formal problem reporting
procedures were not strictly enforced during the development
of most of the subsystems investigated by this study.

o The software verification and acceptance testing processes
uncovered a large number of errors. Unfortunately, there
were stil) many more errors not discovered until the
subsystem was placed in operation.

The next histogram (Figure 2) illustrates errors by criticality
leve! for each of the three criticality indices. An additional U
classification was included to identify anomalies for which no
criticality level could be ascertained. The observations we can
make based upcn this histogram are as follows:

o Level B errors were in the majority. Al though work arounds
could be devised, such a large number of errors makes
existing quality assurance practices suspect.

0 A large number of level A erroi's were identified. Critical
errors of such a large proportion immediately call attention
to review procedures and testing approaches used during
development.

The next histogram (Figure 3 illustrates criticality level by
error category. An additional classification, “"questionable®,
consists of ‘“"cther® oprablem reports for which no change was
generated. Thene "questicnzble® errors were the subset of
"other® .rroras Lihich rosulted Ffrom documentalion requests,
gripes, misunderstandings, politics and potential! hardware
failures. The observations we can make based on this histogram
are as follows:

O Design errors seemed to cause a large number of critical
errors. This provided us with further evidence ¢ the need
to investigate earlier detection of design errors.

o Data handling errors were also a cause of a large number of
critical errors.

o Surprisingly, ‘other" errors contributed a large number of
critical errors. This could be attributed to the user who
could not operate or understand orerational anomalies and
categorized them as critical to get immediate attention.
This data emphxsized the need to revamp the existing problem
reporting procedure and to investigate ways of improving the

man/machine interface. D. Buckland
Reifer Cons.

7 of 28

NUMBER OF ERRORS

400

300

200

100

oAl PAGE |S
OF POOR QUALITY

FIGURE 1
ERXORS BY TIME OF OCCURRENCE

D. Buckland
Reifer Cons.
8 of 28

NUMBER OF ERRORS

400

300

200

100

CXNAL pacy 1y
Gt POVR Q[!{- ITY

FIGURE 2
ERRORS BY CRITICALITY

D. Buckland
Retter Cons.
Y oof 28

GINAL PAGE IS
OF POOR QUALITY

L

FIGURE 3
ERRORS BY CATEGORY

Level 8 7/

Level A

322

301

300

%/////////////A .

(=]
o

o:
¥ 2]

p—

SHONY3 40 YIGWON

8

,..-////

oT 0T?

co

ORIGINAL PAGE IS
OF POOR QUALITY

o Design and requirements errors were the largest single
source of problems.

o Some errors of the "questionable® subcategory of “other®
were not errors Gbut really requests for changes or
documentation. This seemed to indicate the nced to improve
existing problem reporting procedures and the mechanisms
used for quality control.

The major findings of this study can be summarized as follows:

0 Software error data is an important management tool tecause
it indicates where problems exist and where management
attention should be placed. For future projects, the
classification of error data should be performed as
anomalies are reported. This would help assure that the
error was more fully understcod as it was reported. It
could also be used to identify error-prone modules and
provide information upon which repair or replace decicions
could be based.

o Analysis of the DSk roftware error dita base indicated that
many of the critical errors occurred duriny the requirements
definition and design phases. These errcors are the most
coetly to correct, especially if they are not caught early
in the development cycle.

o Many of the "other®" error types could be attributed to
poorly defined man/machine interfaces (e.g9., commands that
are difficult to use or whose incorrect usage causes the
system to halt), improper and imprecise procedures for
handling exceptions, inadequate documentation and/or user
misconceptions (requestsd for enhancements/modifications
that were not real'y problems at all).

ACKNOWL EDGEMENT

Portions of this paper are based upon work performed by Reifer
Consul tants, Inc. under Contract L0-724925 to the Jet Propulsion
Laboratory, California Institute of Technology. It utilizes Deep
Space Network anomaly data compiled by Ms. Connie Johnsen and
analyzed by SoHaR, Inc. wunder subcontract to RCI. Many peop'e
supported our efforts and all of their contributions are
acknow!l edged. Special thanks are extended to the DACS at Rome
Air Development Center who has agreed to distribute the error
data base free to interested parties.

D. Buckland
Reifer Cons.
11 of 28

ORIGINAL PAGE [¢
5
OF POOR QuALITY

Appendix

Software Error Taxonomy Definitions

Time of Error Occurrence

Four time classifiers were chosen because they were compatible
with the DSN anomaly report data provided as input. The classifiers
are as follows:

(D)

(v)

(R)

Development - Anomalies in this category were reported
uring the design, coding and module unit testing act-
ivities. Most required design or programming revisions
to be made. Errors in the category typically dealt with
design problems between modules or with functional
limitations of design. An example follows:

"A system was required to provide human readable
error messages on a log device. Unfortunately,
the function was not specified in either the re-
quirements and design specification. The error
was discovered during a design review and an
anomaly report was opened. Under such circum-
stances, we would state that the anomaly had
occurred during development.”

Verification - Anomalies in this category were reported
during integration and testing activities. Most were
specification deviations that required the code to be
revised. An example follows:

"Module X expects a true or false condition as
input from module Y. Unfortunately, module Y has
not been specified to provide the true or false
input. A test identified this problem during
testing and an anomaly report was written scoping
the rework. Under such circumstances we wouild
state that the anomaly had occurred during ver-

ification."

Acceptance - Anomalies in this category were reported
during formal testing of the software. Errors in this

category usually stem from requirements problems or im-
proper mechanization. An example follows:

"The system malfunctions when accepting more than
six simultaneous inputs. The error was discovered
during formal testing when the program was stressed
and an anomaly report was written. Under such
circumstances, we would state that the anomaly had
occurred during acceptance."

D. Buckland
Reifer Cons.
12 of 28

CRICINAL PiGe i
OF POOR QUALITY

(T) Transfer - Anomalies in this category were reported after
the software package was put into operation in a live
environment. These anomalies usually resulted from halts,
failures or malfunctions. An example of such an anomaly

follows:

Error Criticality

"The software halfts when a zero input value is re-
ceived. This error was discovered during operation
when the DSN was reducing telemetry data. Under such
circumstances, we would state that the anomaly occurred

during transfer."”

The three error criticality classifiers used are defined as follows:

o Level A - Critical error (error impacts mission performance
or seriously degrades capability and no workaround exists).
An example follows:

"The system halts when the value of one of its inputs
exceeds its nominal end of range. Manual intervention
is required before operation can be resumed. Under such
circumstances, we would state that a level A error had
occurred."

o Lzvel B - Dangerous situation {error exists that could degrade
performance or capability hut a workaround exists). An example
follows:

"A particular utility function causes the system to halt
to await operator's action. The utility function is not
required for correct system operation and can be
disabled temporarily to correct the problem. Under

such circumstances, we would state that a level B error

had cccurred."”

o Level C - Minor problem (error exists that doesn't impact
performance or capabilities and can be fixed at a more leisurely

pace.

Error Category

An example follows:

"An informational message is displayed twice (rather
than once) each time it is enabled. No other
negative effect happens. Under such circumstances,
we would stice that a level C error had occurred.”

The third dimension o¥ the DSN/RCI error taxonomy is error category.
Each of the ten error categories was defined so that insight into the error
causes could be ascertained. The ten categories are defined as follows:

D. Buckiand
Reifer Cons.
13 of 28

-~ By g s gy .
L LRt R

£oE P oem
‘;\"!f f 9‘\1’(5”\.’

Computation - Computation anomalies are errors in or re-
sulting from coded equations. Examples of computation

errors include: (a) Incorrect operand in equation, (b)
Incorrect use of parenthesis, (c) Incorrect equation,
(d) Missing computations and (e) Rounding or truncation
error.

Logic - Logic anomalies are errors in sequencing, control

or Yoop conditions. Examples of logic errors include:

(a) Logic out of sequence, (b) Wrong variable being checked,
(c) Missing logic or condition tests, (d) Too many/few
statements in loop and (e) Loop iterated incorrect number
of times.

Data Handling - Data handling anomalies are errors in hand-
Ting input/output. Examples of data handling errors include:
(a) NData initialization incorrect, (b) Variables not set
properly, (c) ‘ariable type incorrect, (d) Data packing/
unpacking incorrect and (e) Subscripting error.

Interface - Interface anomalies are errors in ccurunications
between a routine and other routines, the data base and/or
the user. Examples of interfacz errors include: (a) Data
incorrectly transmitted from one routine to another, (b)
Data incorrectly set/used from the data base, (c) Improper
input/output synchronization and (d) Data sent to wrong
destination.

Data Base - Data base anomalies are errors in present data.
Examples ov data base errors include: (a) Data should have
been initiclized in data base but wasn't, (b) Data initialized
to incorrect value and (c) Data base units are incorrect.

Operation - An operation anomaly is an error occurring

as the software executes. Examples of operation errors
include: (a) Operating systems errors, (b) Hardware
errors, (c) Operator errors, (d) Compiler or support soft-
ware errors and (e) Test execution errors.

Requirements Incorrect - Requirements errors deal with im-
proper or ambiguous functional and software requirements

specifications and not with implementation and/or
operation. Software may correctly solve the wrong problem
if it is specified improperly.

Design - Design errors deal with improper architectural and
de§a1 ed design specifications which form the basis to
which the program and the data base are mechanized.

Clerical - Clerical anomalies occur when people are involved
in the translation. Examples of clerical errors include
keypunch, typos and/or transliteration.

Other - QOther is a "catch-all" for other types of errors not
encompassed by the'scheme. Zrzarmples nf ather errors include
incorrectly reporting that an anomaly had occurred when in

reality it was a programmer ~iscanception. D. Buckland
Reifer Cons.

14 of 28

'HE VIEFWGRAPH MATERIALS
tor the

D. BUCKTAND PRESENTATION FOLLOW

D. Buckland
Reifer Cons.
15 of 28

ERROR Ta&aXONOMY

WNHAT CaAaN BE GAINED?

by

D. E. BucKland

Reifer Consultants, Inc.

25550 Hawthorne Boulevard, Su'ire 208/Torrance, California 90505

D. Buckland
Reifer Cons.
16 of 28

8C Jo L]
'Suo) I1aj10y

puepong ‘d

HWHAT DOES 17T DO7?

Y4

Reifer Consultants, Inc.

AN ERROR T&XONOMY IS & TOoOoOw

THAT ENeBLES US TO BETTER
LEARN FROM OUR MISTARKES

ALITYNd y¥oog
40
81 29vd Jyniono

-—
AR rternad gt b ROV Skt bee s abasdd 2w p e wers

8¢ Jo 81
'SU0)) 1J19Y
puepyong °q

Y4

Reifer Consultants, nc

PROBLEM

0

0 0 0 O

SO THEY CaAaN BE RESOLVED!

STATUS REPFPORTS

Aaid In the Evaluation of tthat Yoau

Have Left To Do

Group Similar I tems Together
Expedi tious Handl ing

Assign Priorities

Increase: Test Coverage
Objec tissi tyr
Conmnmunication
Turnaround

Reduce Time & Paperwork

Learrn From Past Experiences

Tden ti fy WealW Spots

Spot Trends

HHY RESORT PROBLEMS >

For

O 0
N
39
8%
Qr
e3
28
iz

]
AN murend, coqneg by RO Nt b B teqaiwhmen] Gaband goma vo

BT JO 61
‘SU0) 110y

puepyang "

Redfer Cor sultants, inc

WHAT IS THE MECHANI SM7P

A CLEAN, SIMPLE FPROBLEM REFPORTING SrsTeEmM

Lo
(=]
[=]
o

Problem
Probl em
Probl em

Probl em

AF rneler b P LN TN B T B DR 2 e LN

Repor ts
Investigation
Resolution

Evaluation

Indivicdual
Basis

ALIYND ¥ood 40
S1 39vd IVYNIDINO

8T jo 02
‘SU0)) 1910y
puepong q

Reifer Consuiiants, knc.

RECORD ENOUGH DAaTa TO GET aT THE

INFORMSTION YOU MY NEED LATER

BUILD IN FLEXIBILITY

REFORT BY BASEL INE

USE CHECKBOXES MWHERE POSSIBLE
PLAaN AaHEAD

AUTOMAST E

ONE CENTR&L POINT OF CONTROLUL

0 000 0 00

COMMON TERMINOLOGY

AN mrustetisls ceqn gt e KOE N tes b regseahnes) ndfand juae arther

ALYND ¥ood 40
§1 30vd TYNIOINO

8C Jo 1T
'Su0) 19j1ey

puepjong ‘g

/ \\)// NHEST WI L I NEED TO KNOW?
\\\V";

Reifer Cons Jltants, inc.

AT TIME OF DISCOVERY :

o WHO FOUND 1T7

o MWHEN WasS 1T FOUND?

o WHAT HAPPENED?

o WHAT WAS BEING USED?

o IS THIS A& REOCCURRENCE OF & JLOSED

PROBLEM?
o WHAT

IS THE LEVEL OF CRITICASLITY®?

Al matensls o oght by ROE Ned 1o e ropnadiced wathue® prcr weete

TVNIDIEO

A

H

ALYND ¥oOod 40
L)

[o
[

8C Jo Tt
"SU0) 19j10Y
puepjong 'q

IWNHAST WILL I NEED TO KNOW?T <con t>

Y4

Reifer Consultanits, Inc.

AFTER THE PROBLEM HAS BEEN CLOSED:

WNHY DID IT FAaIL™”
HWHAT WS THE SOLUTIONT?

WHO ASSIGNED THE RESOLUTIONT?

c 0 0 0

WHEN HWaAaS 1T CLOSED?

!

AN mutenssds copyengbt by RCE % 10 b copemhinex] wthost s wnbien ot

ALIYNO ¥OOd 40
St 3DVa TYNIDO

8T Jo €7
'SU0) 19j19y
pueppng q

Reifer Consultants, inc.

o PROBLEM OCCURRENCE RAaSTES
o RESOLUTION RA&aTES
o INFORMATION BY CATEGORY

Sy s tem
Subsystem
Modul e
Criticality
Baseline
Problem Type

000000

|

a

Al pusterab cgnnght ty KO Nt dos Bne ngwiehaedd cothonst pemi et

AlLYnd ¥ood 40
& "MYd TUNIDIMO

y <v4

Reifer Consultants, Inc.

82 JO 2
e WEHEN
puepjong ‘q

/4

A ANGSL Y SIS OF

Al masterah copnrght n ROE Mot 1o bes eopriahoced suthout punsr wette

~l1aaa

FUTTING

SOFT L4

FROM DSHN"=

Study Conducted by RCI for JPL 1

1981

IT T

~E ERRRORZ=

UsSE

40

IMIERNMO)

ALVND YHoOod
e IMd

ﬂd-: .q“}n ,q . N

o

G POUR QuiniTy

Vsl
V.
Wl
A
L3
[N}
o
W™
"..
!
b
.
»
-
[}
. A}
W W
)
W
3
(T3]
-
ud [
w
.
¥
w “
.y
R T
[0 -
W .
™~
SEp.
[]
) h
N a ’
- b %
SHOMN Y 0 NISWON

14 :
N N ;
/ [\V] b

N

(N s

/ R A

ZA ;
/ N
X

Y Buckland
Retfer Cens.
a8 of N

82 Jo 97
‘SuUo0) Iajioy
puepng ‘g

Reifer Consultants, Inc

ERRCRS ¥ CRITICALITY

400
300
I
(o]
2 83
“ o8
< 200 o2
= (e -]
2 o
5
°
2 '8::
28
100 —
3G
0

AN envaten s cognemht bn KET Ned Lo dw soyiahaesd vitbead 1 oaw wntne

- sameAe e

PR)

GF FUOR QUALITY

Reifer Consultants, Inc.

322

301

300

200

173

152

NUMBER OF ERRORS

100

LEGEND:

Red = Level A . 36
Purple = Level 8 i
Black = Level C

A aterials copinonshin b KT Niat s bee ropsteslimest withonsd penwe wistton comesent

D. Buckland
Reifer Cons.
27 of 28

8C Jo 8T
"SU0D) 19j10Y

puepong ‘q

Rewier Consultants, Inc

THE OthrdiT1IFI CesT IO OF b O

Croorn T o I = i <

IR OFR TeatdT el =SS0 1N T T O

o blh e e =1) a3
L= 28] S ey 1 d Rt
DaCRNE BF § o/B— W o o D1 A b S

ALITYND ¥0O0d 4C

AN ennaterials cegnglit be. KU1 ad tiade sojmobpedf o # sl ja g cavier o6 2

SI 39vd VNIDIHO

PANEL #4
COST ESTIMATION
N. Rone, IBM

R. Tausworthe, IP1
R. Britcher J. Gattney, IBM

. N83

MAINTFNANCE ESTIMATION METHODOLOGY
BY

KYLE Y. RONE

ENTERNATIONAL BUSTNESS MACHINES CORPORATION
FEDFRAL SYSTEMS DIVISION

HOUSTON, TEXAS

K. Rone
IBM
1 of 28

INTRODUCTION

As a project nears the end of its Jevelopment phase und prepares to enter
a maintenance phase, several questions ar .e for which there are no ready

ansvers:

o How many people are required to maintain the system?

o What is the required critical skills level to support the

project?

o What is the required staffing level to be responsive to

customer needs?

o How much of the staffing level can be used to perform new

development work?

The purpose of this paper is to develop a rational, systematic approach
to answering these questions. The approach selected uses a Rayleigh
curve method of projection combined with a modified matrix method to
forecast maintenance needs and required staffing levels. The curves
generated by both methodx are differenced to ascertain how much new work
can be performed given the staffing line. Finally, actual project data

is .compared to the projection to validate or modify the process.

K. Rone
IBM
2 of 28

DETERMINING MAINTENANCE NEEDS

In order to determine maintenance needs in the future, it is first
necessary to examine the entire software development process. Studies by
Peter Norden of IBM (Reference 1) have shown that research and development
projects are composed of cycles. When these cycles are related to one
another and added together, a curve results which represents the entire
project. Furthermore, these curves can be approximated by the Rayleigh
curve forms given in Figure 1. Since software systems follow a life

cycle process similar to other research and development projects, the

Rayleigh curve method is selected for use in this methodology.

To use this method, the foregone development phase is examined for actusl
manpower expenditures. A Rayleigh curve is then generated which
approximates the curve of the expenditures during the development process.
The resultant curve beyond the delivery point of the software system
represents a projection of manpower needs during the maintenance process

which is driven by the work expended during the development process.

K. Rone
IBM
3 of 28

MARIGINAL PAGE 1S
OF POOR QUALITY

LIFE CYCLE MODEL CUM EFFORT
LTY ICS r—

e R p—

L1 1 Lttt ity
2 4 6 8 10t 2 4 6 8 10t
Ymax
Y’ = 2Kateat! Y = K(1edt

IMPORTANT PARAMETERS:
K =TOTAL MY FOR ENTIRE PROJECT

K=e%oY mnaxety'max = Je y'maxety'max

a= %l

K. Rone
IBM
4 of 28

DETERMINING A REASONABLE LEVEL OF SUPPORT

The Rayleigh curve method, then, projects future work based on past work,
This method however is based on pure work required and does not address
other project needs as critical skilla and response to software nystem
problems. Civen that the developrent work stops ot some point, then the
curve will eventually go to zero. whercas, as long as software support 1is
required, the project will continue to supply it. A method is required,
then, to determine a reasconable level of software development support to

be provided to the customer at some steady state period in the future.

To accomplish these goals, a study 18 performed across the software
project to determine functional elements and drivers for each project
area. These functional elements and drivers are then used to develop a
matrix approach to estimating support levels for each project area. Each
element is then quantified by software size, number of test cases
required, or by development manpower level. These quantifiers are then
transformed into maintenance levels for the element by use of the

following general equation:

Maintenance Level - ELEMENT SIZK

(Productivity)(Complexity Factor)(Level Pactor)

Where: Productivity = development or test productivity factor
Complexity Factor = varies about .5 based on the complexity
of the element

Level Factor = 12 (length of development)
K. Rone
IBM
5 of 28

The resultant maintenance levels are then tempered and modified based on
judgments concerning critical skills and operations support and the
totals are increased by a fixed percentage to cover management and
support, An example of a matrix for a given area of software is depicted
in Figure 2. All areas are summarized for the project to determine the
required support level (Figure 3). This generated level can be plotted
with the Rayleigh curve as shown in Figure 4. The Rayleigh curve

represents current effort required basea on past effort. The optimal staffing level to be

reached in steady state is represented by the support line.

Gl GNAL Do 1
OF POOE ¢y ot

K. Rone
IBM
6 of 28

8C Jo L

ndi1
aucy 'y

FUNCTION

SM BASIC

SM/SP

SM-DISP
CONT.PROC.

DOWNLIST

SM ROLL INS

SM,DL,ANNUN.
PREPROC.

STs-1 STS-2 DEV.
SIZE SIZE LEVEL
10875 11792 3.2
4657 4709 1.3
9109 12041 ~ 3.2
10106 10106 2.7
45 7574 2.0
8658 8658 2.3
- - 8
FIGURE 2.

MAINT. CRITICAL OPN TOTAL
LEVEL SKILLS SUPPORT SUPPORT
1.4 1.4
.6 .6
i.4 1.4
1.2 1.2
1.0 1.0 2.0
1.1 1.1
I3 o N

EXAMPLE OF AREA MATRIX

ALlviws icod 10
8! A5Vd TYNIDIYO

AREA

AASD

AASD

CON/QA

SEC. SUPP.

SDL

ASVO

SAS Ms&S

Wd1

8T jo 8
auoy 'y

MATRIX ESTIMATE SUMMARY

SIZE
272918 FW

43318 FW

875K S/L

1247 TC

FIGURE 3. EXAMPLE OF MATRIX ESTIMATE SUMMARY

MAINT.
LEVEL
42.0
31.9
5.0
11.0

36.0

8z.5

208.4

OPN &

SUPPORT

12.0

29.0

M&S

10.0

10.1

1.0

TOTAL

50.0

6.0
11.0
47.0

103.0

ALYND ¥00d 40
S1 A9%Yd TYMIDINO

ORIGINAL PACE 1S
OF POOR QUALITY

LEVEL

TIME

FIGURE 4. PLOT OF RALEIGH AND SUPPORT LINE

K. Rone
IBM
Voo 8

ORIGINAL PAGE IS
OF POOR QUALITY

MANPOWER AVAILABLE TO PERFORM NEW WORK

The plot ot the Rayleigh curve and the support line can alsc be
represented as two equations. By integrating the difference between the
two equations and evaluating over the time of interest, the area between

the curves is generated. This area represents the amount of manpower

past work, and hence, can be applied to new tasks (Figure 5).

K. Rone
IBM
10 of 28

A™TINAL PAGE IS
OF POOK QUALITY

LEVEL

TIME

FIGURE 5. MANPOWER AVAILABLE TO PERFORM NEW WORK

K. Rone
iBM
il of 28

ORIGINAL PAGE IS
OF POOR QUALITY

CONVERTING DIRECT FESTIMATES TO TOTAL PROJECT COSTS

Using the manpower avallable to perform new work requires that direct
work estimates be converted to project costs consistent with the project
costs represented by the curves, To derive this relationship, examine

the direct costs and overhead costs from actual data snd calculate:

PROJECT FACTOR = Total Project Cost

Direct Estimate

Using this factor, an estimate for a change or group of changes can be
turned into a total project cost and used to "fill up" the area between

the curves (Figure 6) until the project's capacity to perform new work is

exhausted.

K. Rone
1BM
12 of 28

ORIGINAL PAGE Ig
OF POOR QUALITY

LEVEL

TIME

FIGURE 6. USING THE MANPOWER TO PERFORM NEW WORK

K. Rone
I1BM
13 of 28

VALIDATION OF THE PROCESS

This methodology can be validated only by using (ne process and comparing
the result to actual data. Since the maintenance phase has not yet
occurred, a comparison of the method to an independently derived
projection is an alternate approach, Figure 7 represents the use of the
methodclogy on the Onboard Shuttle Software project. The figure presents
the Rayleigh curve representing Release 19 of the flight software.

Actual data from the project was compared with the curve as shown from
1/78 through 9/79. The results compared within 7% of real costs. The
projected costs beyond 9/79 compared within 5% of projected costs derived
by a bottom up estimate. The data from 1/77 to 1/78 were not comparable
due to previous project costs embedded in the actual costs and functional

design costs not included in the Rayleigh curve.

K. Rone
IBM
14 of 28

$¢'W

ORICINAL PhGY jy
OF POOR QuALITY

Releame 18 0o

Rolsaie 19 o4

Suspert Line OO
(Y98}

Project ous L
(Asruals—~8/79
Eat Pvap 9779}

\.
N

N <
>

urn

1 T 1) T
I:“’IC 119 100 L] 1] Ve 11

FIGURE 7, USING THE METHODOLOGY ON THE ONBOARD SHUTTLE SOFTWARE PROJECT

K. Rone
IBM
15 of 28

ORIGINAL page 1y SUMMARY

OF POOR QTR
The Maintenance Estimation Methodology is a method of projecting
maintenance needs and required staffing levels, The methodology is

summarized in the following steps:
SOFTWARE DEVELOPMENT AND MAINTENANCE PROJECTION

1. Use previous projection or actual data and assume that the work

stops after last designated release.

2. Use Rayleigh curve method to project maintenance needs after the

release,

3. Use matrix method to determine support line needed in a steady state

period.
4. Compute the area between the two curves by integration.

5. Estimate the new work to be performed by transforming direct work

estimates into project estimates.

6. Deterwine 1f new work fits under the support line. If not, either

adjust schedules or phasing to reach support line.

7. Add new work scope and recompute Rayleigh curve to compare phasing

and for basis of next projection. :([;MROM

16 of 28

REFERENCES

1. Norden, Peter V., "Useful Tools for Project Management," Management
of Production, M. K. Starr (Editor), Penguin Books, Inc., Baltimore,

MD, 1970, pp. 71-101,

K. Rone
IBM
17 of 28

THE VIE'/GRAPH MATERIALS
for the

K. RONE PRESENTATION FOLLOW

K. Rone
IBM
18 of 28

8T JO ol

nel
auoy 'y

MAINTENANCE ESTIMATION METHODOLCGY

PRESENTATION

ALNVND ¥20d 40
g1 39vVd TWNIDIO

space shuttle programs

K.Y. RONE

AUGGST 7, 1980

Wt

BTN

8¢ 3O OC

N

SPACE SHUTTLE "ROGRAMS

953-1473

T ce MAINTENANCE ESTIMATION MITHLLLLLGY Gate 2/1€/80 1 5

1BM —

PREMISE

A SYSTEMATIC METHOD OF MAINTENANCE ESTIMATION IS NEEUED ON THE PRGJECT

[} CONRFIDENCE GOF BEING ABLE TO MEET REQUIREMENTS GF TEE JOEB
IN THE FLTURE

[} RATIGONAL, SIMPLIFIED METHOD OF PRGJECT ESTIMATICON FOF
RUNGUTS AND PROPOSALS

®

RERSONAELE ALLOCATION OF BLCCK UPDATE MANPOWER IN THE FUTURE.

ALIIVND ¥OOd ¢

Sl 39vd WD

SPACE SHUTTLE PROGRAMS _ .
9

L& G 2
Tide MAINTENANCE ESTIMATION METHODOLOGY Qare . £,80 Page___ ot

IBM

WHAT IS NEEDED?

Wil

BC J0 1T
auoy Yy

ALIYND ¥ood 40
81 39vd wNIDRIO

Wel
suoy Yy

8T Jo T

SPACE SHUTTLE PROGRAMS

Tide MAINTENANCE ESTIMATION METHODOLOGY

Dae 1/16/80 | Poge 3 of 9

IEM

® NEED: A METHOD OF DETERMINI

1INING MAINTENANCE NEEDS IN THE FUTURE

°® SOLUTION: RAYLEIGH CURVE METHOD

L] USE:

ES50ONY

b L]
[T} 4
Tive

. YR

PACIHELT CURVE

TesTa
VaLiOaTION
’

rLan

EXTENSIDN ,MODFICATIOY

PROJECT MCY

Tuat

953-1471

o8
‘

3%
are
o3
53
-l e
< W

W1

8T Jo st
auoy ‘Y

SPACE SHUTTLE PROGRAMS

953-1471

Tide MAINTENANCE ESTIMATION METHODOLOGY

Dae 1/16/8B0 4 o 9

IBM

USE: (CONTINUED)

LWECYCLE MODEL

¥ = ae o'

. CUM <FFORT
o
%
i »
oWy
|
'
b i
[}
| i
1 i
1 |
| {
11 1 % 2 2 9° 3 2
? L] [y [w» o,
¥: Kitew)

WAPORTANT PARAMETERS.

‘K= FOTAL MY FOR ENTIRE PROJECT

K=C$‘r.“"|'w =vee Ymax

12 l".w

- 'V'-n

S%
-2
o2
eF

s
€z
M
24

W4l

82 10 $T
auoy 'y

SPACE SHUTTLE PROGRAMS

Tate MAINTENANCE ESTIMATION METHODGLOGY Dawe 1/16/80 Page S _o1_9
L] NEED: A METHOD OF DETERMINING A REASONABLE LEVEL OF SOFTWARE

DEVELOPMENT SUPPORT IN A STEADY STATE PERIOD

] SOLUTION: MATRIX METHOD

[] USE: -

DETERMINE FUNCTIONAL ELEMENTS OF PROJECT

QUANTIFY MAINTENANCE NEEDS BASED ON: LEVEL = FUNCTION
SIZE/ ((PRODUCTIVITY) (COMPLEXITY) (FACTOR))

CONSIDER CRITICAL SKILLS, LEVEL 3 TEST, OPERATIONS
SUPPORT AND MANAGEMENT AND SUPPOPRT

SUMMARIZE FOR PROJECT
PLOT WITH RAYLEIGH CURVE

RAYLEIGH CURVE REPRESENTS CURRENT EFFORT REQUIRED
BASED ON PAST EFFORT

SUPPORT LINE REPRESENTS LISE TO TEND TOWARD AND
REACH IN STEADY STATE

TIME

953-1471

o
“

o
-, kO

4
(Y

)
4

L R U A
LI I T
S

'd

L

RT JO €T
w0y ‘Y

SPACE SHUTTLE PROGRAMS - -

Tise MAINTENMANCE ESTIMATICN METHODOLOGY Lo 2/16/80 | poge 6 o1 9
. NEED: A METHOD OF DETERMINING MANPOWER AVAILABLE TO PERFORM
NEW WORK

[) SOLUTION: CALCULATE AREA BETWEEN CURVES

® USE: - INTEGRATE DIFFERENCE BETWEEN CURVES
- EVALUATE OVER TIME OP INTEREST

- KREA REPRESENRTS EFPORT NOT USED IN MAINTERANCE
OF PAST HORK WHICH CAN BE APPLIED TO NHEW TASKS

9531477

23
39
2
9=
Po}
c >
>0
oM
3z

8C Jo 92

WAl
suoy 'y

Title

SPACE SHUTTLE PROGRAMS

MAINTENANCE ESTIMATION METHCDOLIGY

Date 17/16/80 | page 7 o0 9
IBM

953-1471

NEED: A METHOD OF CONVERTING CR ESTIMATES TO TOTAL PROJECT COSTS
SOLUTION: PROJECT COST EQUATIONS
USE:

EXAMINE “CR" AND "FIXED® CCSTS IN RECENT PROPOSALS

DETERMINE RELATYONSHIP BETWEEN CR AND TOTAL COSTS
PROJECT COST =

6.25 (CRA + CRS + CRV)

WHERE CRA = APPLICATION CR COSTS
CRS = SSW CR COSTS
CRV =

VERIFICATION CR COSTS

PROJECT COSTS REPRESENT THE COSTS WHICH WILL BE
USED TO "FILL UP" Til

Ti:Z AREA BETWEEN THE CURVES

vd IVNIDIO

2

3,
v

ALTvnd ¥ood 40

gt A

Wil

8T Jo LT
suoy 'y

SPACE SHUTTLE PROGRAMS

Tide MAINTENANCE ESTIMATION METHODOLOGY Oate 1/16/80 | Poge 8 01 9

IBM

® NEED: VALIDATIOA

® SOLUTION: COMPARE RESULTS OF THE SCHEME TO PA‘'T PROJECT DATA AND
CURRENT PROJECTIONS

® COMPARISON:-

RESULTS CO#PARED WITH RESULTS OF THE EXTENSION
PROPOSAL

COMPARES WITHIN 7% OF REAL COSTS
COMPARES WITHIN 3-5% OF PROJECTED COSTS
EARLY COSTS NOT COMPARABLE DUE TO:

o ALT COSTS
(-] OFT FUNRCTIONAL DESIGN COSTS NOT INCLUDED
IN RAYLEIGH CURVE

COMPARISON FAVORABLE

ALIvnd ¥00d 0
Sl ZOvYd iYidu.do

953 14N

8T Jo 8¢
Wl
auoy 'y

SPACE SHUTTLE PROGRAMS

Tite MAINTENANCE ESTIMATION METHIDCLUCY ‘D.re 1/16/80 Page _ 3 ct
5007
Rolezze 16 ,e0e
Asloase 19 4+ 4 ¢
Support Lme OO0
{195)
-1
Progct Deta see
(Actuals—~9/7%
Ext Prop 8779)

. +
100~
+
e
.\
° ——
y L 1 T T T
vy s vrs e e ys2 el
953-147

Alivnd yood 40
§l 39vVd TUNIDIHO

ﬂ'\'\'l";hp'l\u 1

Pttt
STAFFING INPLICATIONS OF SOFTVARE PRODUCTIVITY MODELS

Robert C. Tausworthe

Jet Propulsion Laboratory y y
Californis Institute of Techmology :
Pasadena, California

ABSTRACT

This paper investigates the attributes of software project
staffing and productivity implied by equating the effects of two
popular software models in a small neighborhood of a given
effort-duration point. The first model, the '"communications
overhead’’ model, presupposes that organizational productivity
decreases as a function of the project staff size, due to
interfacing and intercommunication, The second, the so-called
t"sof tware equation,’’ relates the product size to effort and
duration through a power-law tradeoff formula., The conclusions
that may be reached by assuming that both of theae describe
project behavior, the former as a global phenomena and the latter
as a localized effect in a small neighborhood of a given effort-
duration point, are that (1) there is s calculable mazimum
effective staff level, which, if exceeded, reduces the project
production rate, (2) there is s calculable maximum extent to
which effort and time may be traded effectively, (3) it becomes
ineffective in a practical sense to expend more than an
additional 25-50% of resources in order to reduce delivery time,
(4) the team production efficiency can be computed directly from
the staff level, the slope of the intercommunication loss
function, and the ratio of exponents in the software equation,
(5) the ratio of staff size to mazimum effective staff size is
directly related to the ratio of the exponents in the software
equation, and therefore to the rate at which effort and duration
can be traded in the chosen neighborhood, and (6) the project
intercommunication overhead can be determined from the staff
level and software oequation expoments, and vice versa, Several
examples are given to illustrate and validate the results.

eThe research reported in this paper was carried out at the Jet
Propulsion Laboratory of the California Institute of Technmology
under a contract sponsored by the National Aeronautics and Space
Administration.

R. Tausworthe

JPL

1 of 34

ORIGINAL PAGTL (5
OF POOR QUALITY

STAFFING INMPLICATIONS OF SOFIVARE PRODUCTIVITY MODELS

Robert C. Tausworthe

Jet Propulsion Laboratory
California Institute of Teclhnology
Pasadena, California

I. INTRODUCTION

Brooks [1], in The Mythical Map-Month proposed a simple
model of software project intercomxzunication to show that, if
each task of a large project were required to interface with
every other task, then the associated intercommunication overhead
would quickly negate the believed advantage of partitioning a
large task into subtasks. While not meant to be an accurate
portrayal of an actual project, the model e¢ffectively illusirated
an increasing inefficiency symptomatic of projects too large to
be performed by a single individual.

Putnam [2], in a 1977 study of software projects undertaken
by the US Army Computer Systems Command, discovered a statistical
relationship among product Lines of code, ¥Work effort, and Time
duration for those projects, whose best-fit formula was a powor~
lav relationship, now referred to as the ""software equation,’”’

L = o, %033 71.33

(I have taken the liberty of changing Putnam’s notation in order
to be consistent with my notation in the remainder of the
article.)

One rather startling extrapolation one may make from the
software equation is that in order to halve the duration of any
one of the projects studied, it would have taken 16 times the
resourcos actually usod! I say ""extrapolation’’ because I
suspect the software oquation is more likely to be applicable
incrementally—that is, if one were to require a 5% shortening of
the schedule, then a 20% (actually 21.5%) increase in resources
would be required.

In this paper, 1 will generalize both of these models
parametrically, and suppose that both do describe the statistical
trends of software projects in small neighborhoods about a chosen
project situation. Dy equating the model behaviors in these
neighborhoods, we shall be able to see how the parameters of one
model relate to the parameters in the other. In addition, we
shall discover some rather interesting facts adbout some actual
projects for which published data exists.

R. Tausworthe
JPL
2 of 34

CE!IG!N,’\L‘ PANE 13
OF PCOR QUALITY

I1. A GENERALIZED INTERCOMMUNICATION OVERHEAD MNODEL

Let us suppose that a software project is to develop L kilo-
Lines of executable source language instructions, and that this
number remains fixed over all our considerations of effort,
duration, staffing, etc. That is, we shall suppose that the
product size is invariant over the neighborhood of variability in
these parameters—a project utilizing greater effort attempting
to shorten the schedule slightly would produce the same program
as a smaller effort requiring somewhat more tiie.

Let us denote by W the York effort (in person-months) to be
expended in the production of the L lines of code, and let the
Time duration, in months, be denoted by T. Then the average
full-time equivalent Staff size, 8, in persons, is

S=V¥V/T

and the overall]l team productivity can be defined as the number

-,

P=L/ VW (kilo-1ines/person~month)

Let us further suppose that the average fraction of time
that cach staff member spends in intercommunication overhead is
dependent on the staff size alone, within a particular
organizational structure and technology level, and let this
fraction be denoted by t(S):

t(S) = (intercommunication time) / (hours/mo. worked)

Generally speaking, one intuitively ezpects t(S) to increase
monotonically in 8 due to the expanding number of potential
interfaces that arise as staff is increased.

But the jindividusl average productivity of the steff, defined as

the individual productivity during non-intercommunication
periods, Pi' is somowhat greater than P, being related to it by

P=P, [1- ¢t(5)]

The relationship between the number of kilo-lines produced,
the effort, and the staffing is

L-Piwtl-t(S)l

iLet us denote by '0 and T, the eoffort and time,
respectively, that would be reqnireg by a single unencumbered
individual to perform the entire software task (assuming also
that it could be done entirely by this individual, no matter how
long it took). Then, with respect to the actual W and T, there
is the relationship

R. Tausworthe
JPL
3 of 34

ORIGINAL PAQE 1S
OF POOR QUALIY
'o =L/ P‘ =W [1-¢t(8)] = To

This W represents the least effort that must be expended, and T
is the maximum time that will be required. By substitutiang W/
for S, one obtains an sffort-time tradeoff zelationship

w=1/[1-¢t(u/v)]

where w = '/Io and t = T/Tp sre ’'normalized’’ offort and
duration, respectively.

The rate at which an increase in staffing results in an
increase in normalized work effort is then

du
-— w w3 ¢'(8) >0
oS

where t'() refers to the derivative of ¢t with respect to S.
Because of the monotone character of t(S), an increase in staff
leads to an increase in effort.

The overall staff production Rate, R, is the number of kilo-
lines of code por month produced by the entire team of S persons,

The factor

n=[1- t(S))]

is then the team production efficiency. Note that the normalized
task effort is the inverse of the production efficiency,

w=1/19

The maximum rate of software production will occur when the
derivative of R with respect to S becomes zero, 8 condition
requiring a value Sy that will satisfy the relationship

t'(So) = [1 - t(So)] / SO

¥We shal)l refer to this staffing level as the paxipup effective
staff. Two particular examples of t(S) will serve to illustrate
the characteristics of the intercommunication overhead model.

R. Tausworthe
JPL
4 of 34

ORICINAL Pany s
OF POOR QUALITY

Linear Intercommunication Overhead. Let us assume first, as
did Brooks, that the overhead is linear in staff,

t(5) = to(S-1)

that is, there is no overhead for 1 person working alone, but
when there are S~-1 other people, then each requires an aversge
fraction t, of that individual’s time, Undoer these assumptions,
the maximum effective staff level is

So = (1 +¢t,)/ (2¢)
This value yields a maximum team production rate of

R, =P, 83/ (28,-1)

and team efficiency
no-(1+t0)/2=80/(280-1):0.5

This perhaps alarming result states that a team producing at its
maximum rate is burning up half its effort in intercommunication
overhead! The behavior is illustrated in Figure 1.

The normalized effort-duration tradeoff equation for this
model takes the form

(1+to)(l)"1
which has its minimum value at the maximum-production-rate point,

T n=4to/(1+to)’:4to

mi

at which point the normalized effort is
00‘2/(1+t0)<2

Figure 2 shows the characteristic of this tradeoff law at t,
values of 0.1 and 0.2, for illustrative purposes.

According to this model, it pever pays to expend more than
twice the single-individual effort. Moreover, even though the w
producing the shortest gchedule is less than 2, the effective
range is much less than this, as shown in the figure. Effort can
be traded for schedule time realistically only up to about 1.25
Wo. and a factor of two saving in time can only come about if the
individuoal intercommunication can be kept below about 15% per
interface.

R. Tausworthe
JPL
5 of 34

Normalized Tear rate, R!P

ORIGINAL PAGE IS
OF POOR QUALITY

e e e g R -
Unencumbe red
rate
Interface
loss
Exponential
Linear
- L] “l
‘0 ‘1 0.1
L | , 1. |
0 5 10 15 20

Staff size, S

R. Tauswwithe
n
o of 34

Duration Ratio, T;’To

ORIQINAL P H
OF POCR QUALITY

1.0 1
0.9
08
0.7
06 w—
0.5 o~
~
0.4 |- -
- _ ~
S——
Software
Equation, r= 4
— -~
0 3 e \ . -
S—
—
02 —
0.1 | 1 1 1 | S
1 2 3 5 6 7 8

Work Effort Ratio, W/Wo

R. Tausworthe
JPL
7 of 34

Duration Ratio, T/Tg

0.2

0.1

ORIGINAL PAGE 1S
OF POOR QUALITY

=~ Software
Equation, r = 4

“~ Software
Equation, r = 4 -
I | | | | 4 |
2 3 4 5 6 7 8 9

Work Effort Ratio, W/Wg

R. Tausworthe
JPL
8 of 34

ORICINAL PAGE IS
OF POOR QuUALITY

Exzponentially Decaying Intercomuunication Overhead. One
unsettling aspegt of the linear intercommunication overhead model
is that, at some staffing level, the production rate goes to
zero, and beyond, unrealistically into negative values. Perhaps
s more realistic model is one which assumes that t(8) tapers off,
never exceeding unity, at a rate proportional to the remaining
fraction of time availpble for intercommunication as staff
increases, or

t'ty) =ty [1 - ¢(S))
Then we are led to the form
t(S) =1 - expl ~t4(8 - 1)]
The maximum effective staff in this case becomes
So =1/ tg
and the maximum production rate is

Roax =P; Sexpl -1 +1/81] 2z P, S/ e

The team efficiency at this rate is
ng = expl -1 +1/8] x1/e

Now this is perhaps even more alarming 2 revelation than before,
because it says that when producing software at the maximum team
rate, that team is burning up 63% of its time in
intercommunication! The consolation, as shown in Figure 1, is
that the t~am performance under this assumed model is superior to
that of the linear—~time team model. More staff can be applied
before the maximum effective staff level is rcuched.

The effort-duration tradeoff equation according to this
model is

t=tyo/ [t +1n(e)]
The minimum © occurs at
wg =exp(1 -1t;3) <o
and the minimum value is
tmin-tlexp(l-tl),:;etl
The form of this tradeoff is shown in Figure 3 for t; values of
0.1 and 0.2, for illustrative purposes. Note that the minimum <t

is much broader in this model, so that, although the actual
minimum occurs whenm w is about e¢ in value, the realistic

R. Tausworthe

JPL
9 of 34

ORIGINAL PAGE IS
OF POOR QUALITY

effective range for w is less than about 1.5. That is, it is not
cost-effective to expend more than about 1.5 times the single-
individual effort W, in an attempt to reduce the schedule time.
A reduction in schedule by a factor of two is possible only when
the individusl intercommunication factor t) can be kept below
0.2.

Conclusions from Intercommunication Overhead MNodels. Both
of the examples of intercommunication overhead above bespesk a
maximum effective staffing level at which the project is 37-50%
officient. Beyond this point, further staffing is counter-
productive. Both examples conclude that the maximum practical
extent to which added effort is effective in buying schedule time
is limited to about 25-50%., Significant schedule reduction
factors are possible only wher the intercommunication factors can
be kept below 15-20%.

III. MATCHING THE SOFIVARE EQUATION MGDEL
Let us generalize the Putnam Software Equation as the fozam
L=c¢y 4P T4

and let us define r = q/p, the expoment ratio. As in the previous
section, L is held constant with respect to effort—duration
tradeoff considerations. The value of p is assuredly positive:
it generally requires more work at a given T to increase L. If ¢
is positive, effort can be traded to decrease the schedule time
required to deliver a given L. The larger r is, the larger the
increase in effort required to shorten the schedule, and the
larger the team production inefficiency. If q is zero, then L is
a function of W alone, T is determined solely by the staffing
level, T=W/S, and no additional effort is required to reduce
schedule time (in the neighborhood in which the p and q=0 ars
valid). If q w re ever to be negative, then an increase in \
would render sa increase in T, a sitvation indicating overmanned
projects.

Substitution of T = W/S, differentiatics with respect to S,
and normalization of the software equation prioduces the result

duw
—=wr/ [S(1l+r)])=sce/ (1+72)
28

Let us now suppose that both the software equation and the
intercommunications overhead model agroe at the point (L, W, T).
The two models can be equated by suitable choices of the
'*technology constant,’’ ¢y, and individual productivity, Pi'
Then, in addition, let us suppose that the derivatives of effort
with respect to staff level for both models also agred at this

R. Tausworthe
JPL
10 of 34

OR!GINAL PAGE IS
OF POOR QUALITY

point., Such can only be attempted when r > 0, boecause the
derivative in the intercommunication overhead model is always
positive. When this is the case, the two models may be said to
agree in the neighborhood of the point (L, W, T),

Thus, by equating the derivatives, we arrive at a
relationship between the parameters of the two models:

S t'(S) r

o e B om O ot Wt s momtre. ([e ot s S

(1~ ¢t(8)] 1 +r
or
n=8t'(8)Y (r+1) /¢

Let us now examine this relationship for the two examples of the
interface overhead model:

Linesr Intercommunication Overhead. Substitution of the
lincar t(S) form into the neighborhood agreemont condition yields

2r [+ ty]
S = [------ ‘ I -2 l=8;r/ (r+05)]
L1+2r JL 2¢

This oquation states that the staffing level is related to the
maximum offective staff point through the software exponent
ratio, r. At tho Putnam value, r = 4, the staffing level is 89%
of the maximum effoctive level, and the team efficiency is

no=0.55 (1+¢ty) = 55-65%
w=18/(1+1¢t;) z1.5-1.8

As seon in Figure 2, projects having this high an o are at the
point that extra effort is very ineffoctive.

Exponentially Decaying Intercommunication Overhead. By
substituting the oxponsntisl form for t(S) into the neighborhood
agrecement condition, we {ind

S=r /[ty (1+¢))= S r/ (1 +1)

Again, we sec that tho staffing level is related to the maximum
effective staff via the exponent ratio. The Putnam value r = 4
produces

R. Tauswotthe
JPL
11 of 34

ORIGINAL PAGE IS
OF POOR QUALvY

S = 0.8 §
n = oxpl -(5-1)/85) = exp[-0.8 + t;] = 45% - 55%
w=1/n=cexpl 0.8 - ¢,] x1.8-2.2

Although this example indicates a somewhat more comfortable
margin below maximum effective staffing than did the linear
model, it nevertheless shows an alammingly low cost inefficiency.

IV. EXANPLES USING AVAILABLE DATA

Several dats sets of project resource statistics published
in the literature readily show that Putnam’s value of r=4 is not
universal. Specifically, Freburger and Basili [3) pudblisk dats
which yield the following 3-parameter best power—law fits:

Ly = 1.24 w095 1~0.094 (r=-0.1)
L, = 0.22 wW0.78 10.78 (r=1.0)

in which Ly is kilo-lines of dolivered code, and L; is developed
delivered code. It is interosting here to note that the former
relationship is nearly independent of T, whereas the latter shows
s definite beneficial W-T tradeoff characteristic. The negative
q in the former relationship indicates that, on a delivered code
basis, added resources in one of the projects would have extended
the schedule! An equivalence between the software equation and
the intercommunication overhead model cannot be established when
r is zero or negative.

This data set is not the only one to show a negative q:
Boehm [4), in his Software Ecopomics book, has a data base nsed
to calibrate his COCOMO software cost model. A 3-parameter best
power—law fit to the adjusted data produces the rolationship

0
L = 0.942 W0.675 1-0.028 (r=-0.41)

Agein, the tradeoff equstion indicates that the projects in that
data base were perhaps overmanned.

Gaffney [5], on the other hand, did a 3-parameter best
power—law fit of IBM data (Federal Systoms Division, Manassas) to
arrive at the relationship

L = o, W0.63 10.56 (r=0.88)

This last value of r aligns more closely with the Freburger-
Basili value for developed delivered code.

R. Tausworthe
JPL
12 of 34

Linear

Exponential

ORIGINAL pagp
IS
OF POOR QuaLiTy

1.0 }—

Og/s ‘3415 annejay

Exponent Ratio, r = g/p

R. Tausworthe
JPL
13 of 34

Team Production Efficiency, N

09 |-

c8 I~

0.7 =

0.6

05

04

ORIGINAL PAGE 9
OF POOR QUALITY

i

Exponential

3

Exponent Ratio, r

R. Tausworthe
JPL
14 of 34

ORIGINAL PAGE IS
OF POOR QUALITY

V. CONCLUSION

This article has shown that when there is a positive
effort—duration tradeoff relationship in s software projecvt, it
is possible to estimate the team production efficiemcy and
proximity to maximum effsctive staffing. These figures can be
used to advantage by software managucs who mus’! judge the
effectiveness of increasing resources in order to shorten
schedules. It points out the necessity of keeping accurate
records of software project statistics, so that the parameters in
the model can be estimated accurately,

Low values of r in an organization are 2 mark to be proud
of, showing efficiency in terms of structuring subtasks for clean
interfaces. High (or negative) values of r may bde indicative of
overall task complexity, volatility of requirements,
organizational inefficiency, or sny number of other traits that
tend to hinder progress. The value of r may thus be treated as a
figure of merit-—a measurable statistic indicative of the
efficiency of a set of projects in performance of assigned tasks.

The ratio S/Sy; is another indicator for menagement. When
low, it indicates that adding resources can potentially helpas
project in troudble., If closer to unity, it is a warning that
adding resources may not help, will not appreciably shorten the
schedule, will incur expense at a low return in producuivity,
and, if applied often in other projects, will thereby contribute
to an organizationsl reputation for expensive software.

R. Tausworthe
JPL
1S of 34

1, Brooks, F. P., The Mythical Map-Month, Addison-Wesley Pub.
Co., Reading, MA, 1975,

2. Putnam, L. H.,, ""Progress in modeling the software life
cycle in s phenomenological way to obtsin engineering
quality estimates and dynamic control of the process,’
Second Softwase Life Cycle Management ¥orkshop, sponsored by
US Army Computer Systems Command and IEEE Computer Society,
Atlants, GA, Avg. 1978,

3. Freburger, K., and Basili, V. R., ""Ths Software Engineering
Laborstory, Relationship Equations,’'’ Report TR-764,
University of Maryland Computer Science Center, College
Park, MD, Msy, 1979.

4. Boehm, B. V., Softwsre Economics, Prentice-Hall Publishing
Co., Englewood Cliffs, NJ, 1982.

S. Gaffney, J. E., ""An Approsch to Software Cost and Schedule
Estimation,’” submitted to Journsl of Defepse Systems
Acguisition Mansgement. (pending).

R. Tausworthe
JPL
16 of 34

THE VIEWGRAPH MATERIALS
for the

R. TAUSWORTHE PRESENTATION FOLLOW

R. Tausworthe
JPL
17 of 34

be jo 81

1df
el ¥

dyuoMmsn

STAFFING IMPLICATIONS
OF SOFTWARE PRODUCTIVITY MODELS

o=

Robert C. Tausworthe

RCT-1
12-1-82

bt 3O o6l

1df

auomsne], Y

e INTERCOMMUNICATIONS OVERHEAD MODELS

® PUTNAM SOFTWARE EQUATION

® COMBINED EFFECTS

® CONCLUS!ONS

RCT-2
12-1-82

Tdr

pE Jo 0T
ayuomsne] 'y

NOMENCLATURE

LINES OF DELIVERED SOURCE CODE (THOUSANDS)

WORK EFFORT (PERSON-MONTHS)

AVERAGE FULL-TIME EQUIVALENT STAFF (PERSONS)

PRODUCTIVITY (KILO-LINES OF CODE/PERSON-MONTH)

TEAM PRODUCTION RATE (KILO-LINES/MONTH)

RCT-3
12-1-82

ve Jo IT

1df

yjiomsne] Y

INTERCOMMUMICATION OVERHEAD MODEL

t(S) = (INTERCOMMUNICATION TIME)M(hrs/mo. WORKED)

P = Pi (1 - t(S)]

Pi = INDIVIDUAL PRODUCTIVITY DURING NON-INTERCOMMUN ICATIONS
L = PiW [1-t(S)]

R = PiS (1 -t(S)]

t(S) = 0FORS <1

t(S) INCREASES MONOTONICALLY FOR S > 1

RCT4
12-1-82

1dr

P€ Jo TT
ayyomsne] 'y

EFFORT - DURATION TRADEOFF

INTERCOMMUNICATION OVERHEAD MODEL

W
W

1
0 1_t(ﬂ.T_0)
WO T

WHERE THE S INGLE-INDIVIDUAL-TASK Wg, TO VALUES ARE

W0 = T0 = LIPi

WO IS LEAST EFFORT REQUIRED

T0 IS LONGEST TIME REQUIRED

Alivnd ¥ood 40
81 a0vd TYNIOIHO

RCT-5
12-1-82

be Jo €2

1dr

ayjromsne], o

® | INEAR INTERCOMMUNICATION OVERHEAD

t(S) = tO (S-1) FOR S>1

T . 4t0
min w 2
= ~ 4t AT = <2
T« +t0)2 o W 1*%

© EXPONENTIAL DELAY INTERCOMMUNICATIONS OVERHEAD

t(S) = 1-exp [-(S-l)tll

T .
_min _ _ W]
T tl exp (1 tl) AT W - exp (1 t1] <e

0 0

i S0 = STAFF SIZE AT Tmi n IS THE "MAXIMUM EFFECTIVE STAFF"

Alvnd ¥ood 40
8l 30vd WNIDINO

RCT-6
12-1-82

DURATION RATIO, TIT0

ORIGINAL PAGE I8
OF POOR QUALITY

TIME - EFFORT TRADEOFF
LINEAR OVERHEAD

0.2}

0.1 l I | |

1 2 3 4 5
WORK EFFORT RATIO, W/W

RCT-7
12-1-82

R. Tausworthe
JPL
24 of 34

DURATION, T/T,

gty

A, | Pk 13
N X . *'ﬁ (‘?g'ﬂziw

TIME - EFFORT TRADEOFF
EXPONENTIAL OVERHEAD

1.0

| 1 T i I | LI

0.2 —
0.1 | \ | | A B
| 2 2 4 5 6 7 8 910
WORK EFFORT RATIO W/W0
RCT-8
12-1-82

R. Tausworthe
JPL
25 of 34

NORMALIZED TEAM RATE, R/P.

ORIGINAL PACE 1S
OF POOR QUALITY

PRODUCTION RATE

l l o
UNENCUMBERED
RATE N

INTERFACE
LOSS

EXPONENTIAL |

LINEAR R
| | | |
5 10 15 20
STAFF SIZE, S
RCT-9

12-1-82

R. Tausworthe
JPL
26 of 34

ve Jo LT

dy

aypomsne] 'y

SOFTWARE EQUATION

GENERAL FORM

- P
L ckWT

® DENOTE r = q/p

® PUTNAM's ORIGINAL EVALUATION

L - ckw°-33 1.3

® DEFINES TIME-EFFORT TRADEOFF

e PUTNAM's VALUE OF r =4

RCT-10
12-1-82

1%Nd ¥004 40
WSO

JUVd

L)

Al
§ 1

v€ Jo 82

1dr

ayIomsne], 'y

NEIGHBORHOOD EQUIVALENCING

e ASSUME OVERHEAD MODELS DESCRIBE GLOBAL EFFECTS OF STAFF SIZE
ON PRODUCTIVITY FOR GIVEN L

e ASSUME SOFTWARE EQUATION EXPLAINS LOCALIZED BEHAVIOR IN
NEIGHBORHOOD OF A PARTICULAR (W, T) POINT FOR GIVEN L

o MAKE BOTH MODELS AGREE AT (W, T) AND HAVE SAME SLOPE AT THIS
POINT, FOR GIVEN L, BY PROPER CHOICE OF TECHNOLOGY CONSTANT,
Cpr AND INDIVIDUAL PRODUCTIVITY, Pi

® NEIGHBORHOOD EQUIVALENCE CRITERION

st'(S) __r
1-tS) 1+r

RCT-11
12-1-82

DURATION RATIO, TITO

CRIGINAL PAGE IS
OF POOR QUALITY

LOCAL BEHAVIOR, LINEAR OVERHEAD

SOFTWARE

EQUATION, r =4
0.2} .

0.1 ! | I N U N B
1 2 3 4 5 6 7 8910

WORK EFFORT RATIO, W/WO

RCT-12
12-1-82

R. Tausworthe
JPL
29 of 34

ORIGINAL PAGE IS
UF POOR QUALITY

LOCAL BEHAVIOR, EXPONENTIAL OVERHEAD

1.0
0.9

0.8
0.7

0.6
0.5r

0.4

0.3
S—
\ Y
0.2F SOFTWARE _% .
EQUATION, r =4

0.1 1 \ L | S S
| 2 3 4 5 6 7 8 910
WORK EFFORT RATIO WIW0

DURATION, T/T,

R. Tausworthe
JPL
30 of 34

bE Jo 1t

1df

ayuomsne], 'y

RELATIVE STAFF, S/ S0

1.0

e
w

RELATIVE STAFF VS EXPONENT RATIO

1 l

i LINEAR

L 1

EXPONENTIAL

|

—_—

0 1 2
EXPONENT RATIO, r =g/p

3

1
4

ALIIYND ¥oOd 40
Sl 3LvVd UNIDINO

RCT-14
12-1-82

PRODUCTION EFFICIENCY

ORIGINAL PAGE 18

OF POOR QUALITY
N e
=3 o
1] [
tl
—— e K =)
_ ~
| — <
- - N
-
<
e
2
()
o
><
L
— -1
| | | _ | o
o o 00 ~ =) 7 <
-t o o o o o o

U *AJN3121443 NOILINAOYd WYL

R. Tausworthe
JPL
32 of 34

12-i-82

RCT-15

EXPONENT RATIO, r

bE JO ¢F

1dr

dfiomsntj 'y

EXPONENT RATIO DETERMINATIONS

¢ PUTNAM's OR'GINAL VALUE, r =4

® FREBURGER-BASILI (U. OF MD)
r=1.0 (DEVELOPED, DELIVERED CODE)

r=-0.1 (DELIVERED CODE}

o GAFFNEY (IBM-MANASSAS)
r=0.88

& BOEHM (TRW)
r =-0.041 (ADJUSTED DATA)
r =0.086 (RAW DATA)

RCT-16
12-1-82

dr

vE 3O €
ayyIoMSNE], 'Y

CONCLUSIONS

e TIME AND EFFORT CAN BE TRADED ONLY SO FAR

® THE EXPONENTS OF THE SOFTWARE EQUATION ARE RELATED TO THE S/S

RATIO, AND THEREFORE ARE INDICATORS OF HOW NEAR A PROJECT
IS TO BEING OVERSTAFFED

® WHEN S/Sg IS NEAR UNITY, ADDITIONAL STAFFING WILL NOT HELP A
PROJECT

® |IT IS NEVER EFFECTIVE TO APPLY MORE THAN TWICE THE SINGLE-
INDIVIDUAL-EFFORT TO SHORTEN SCHEDULE TIME

e THERE IS A NEED FOR MORE STATISTICAL STUDY OF r AS A FUNCTION
OF OTHER PRCJECT CHARACTERISTICS

RCT-17
12-1-82

43
ORIGINAL PAGE 1S /&

OF POOR QUALITY
_N83 32368

Estimates of Software Size
From State Machine Designs

Robert N, Britcher John E, Gaffney¥*
IBM, Federal Systems Division National Weather Snrvice .
Gaithersburg, Md. Silver Spring, Md,

* On leave from IBM Corporation, Federal Systems Division

J. Gaffney
IBM
1 of 26

There is a greatly evident need for improving the estimates of the amount of
function to be provided by a software system. State Machine models (1,2) are
being employed to record software designs as they evolve, So, it appears
natural to attempt to derive estimates of the amount of code that will
uitimately result from these designs by using quantities directly available
from them as they are created, This paper demonstrates that the length, or
size (in number of Source Lines of Code) of programs represented as state
machines can be reliably estimated in terms of the number of internal state
machine variables, Variables, here, are defined as the unique data required
by a state machine's transition function, not the data retained in the state
machine's memory., They are equivalent to Halstead's (3) operands, Data
collected from the SACDIN project (4) was used to develop software size
estimating formulas for a software system from which the state machine
representation is available at various levels of abstraction, Hence, the
methodology presented should be employable at successive stages of the
development process to provide estimates (with, hopefully) increasirg accuracy.

An important aspect of developing softwire is the derivation of estimates of
the amount of fun.tion (typically presented as a SLOC count) the system is to
provide, This paper presents code size estimatfon formulas that can be
successively applied as the design for a software system evolves, The
estimation of software size and development cost (assuming certain rates) in
terms of man months per thousand lines of code (see reference 5) can be made
relatively early in design and refined as the design effort proceeds., The
code size estimation formulas can be applied to a state machine
conceptualization of a software system at the highest level and individual
procedures at the lowest,

A program can be regarded, and hence estimated, evaluated, and/or compared
with another program in a number of different ways. Here, we are concerned
with two principal ways, the linguistic and the structural, From the
linguistic point of view, a program can be regarded as a string of tokens or
symbols. Halstead (3), who did pioneering work using the linguistic approach,
demonstrated a fundamental relationship between the size of the operand and
operator vocabulary and the length of the program text, stzted in terms of the
number of tokens or symbols constituting it, This relationship is:

N =n,1lo0g;n7 + n9logong, where N = number
of tokens, nn; = operator vocabulary size, and 7, =
orerand vocabulary size.

In assembly code, the "operator" corresponds to the op. code symbol, and the
"operand"” correspcnds to the "address" or operand field of tkc fnstruction.
Also, "I", the number of instructions is proportional to "N, :*e number of
tokens; or I = aN. 1In fact, I = b,njlogyny, approximately, i+ “shown by
Gaffney for the case of AN-UY K-7 assembly code (9). Christeusen et al. have
also observed that “program size is determined by the data that must be
processed by the program (10)". We assert that the "vatlable count”, obtained
from the state machine design, at the "procedure level” (as described more
fully below) corresponds to "njy", the operand vocabulary size in Halstead's

J. Gaffney
IBM
2 of 26

formulas, It 1s of interest to note that relationships similar to those
developed by Halstead and others for software, part of the material that may
be termed "software linguistics”, have been noted between text length and
vocabulary size in natural languages by Herdan (6).

From the structural point of view, a program can be considered principally in
terms of data flow or in terms of function., In the former, the amount of
function, stated in terms of the number of lines of code, is related to the

data flow into and out of each module (see Kafura and Henry (7)) or into and
out of a program as a whole (see Albrecht (8)). 1In the function approach, the
number ¢f unique inpnts and outputs for a procedure, a module, or a program as
a whole is implied by the size of the function in that software element,
Whereas, here, we assert the equivalence between the Halstead approach and the
function approach, by relating the number of variables in a state machine
procedure to the number of source lines of code: the variables are equivalent
te the operands in Halstead's formulas,

A program, or a subdivision of one, such as a module, can be represented as a
"state machlne”, as depicted in Figure 1, The "State Machine" consists of two
principal parts, the "transition function” and the "state data”. The former
gives rise to the actual code., The latter is the "memory” of the program.

The transition function, call it "T" is a fuuction whose elements are ordered
palrs of ordered pairs (2), to wit:

T = [(present svate, input), (new state, output)] .

Thus, "T" really symbolizes the combinational logic of the program, not
different in principle from a program wichout memory. The state machiue
characterization of a program is an adaptation of the "Mealy-Moore"” model of
sequential machines originally developed to represent automation in general and
telephone switching circuitry in particular (11).

As described by Britcher and Moore (4), the SACDIN Dialog Manager was designed
using the state machine model. Some 8000 lines of code (S/370 assembly plus
some macros, including comments), were written, based on a state machine
decomposition consisting of 20 machines, comprising 74 transitions, or

procedures. We derived several formulas (by regression), One of them was:

S = 8,825 x V%.oggV, where S = estimated number of SLOC,
including comments (about 40%).

(The statistics of the fit,to the data from which it was derived)is given in
the table below:

Relative Error (1)

(§ - 8)
S

Size Estimating Avg. by Std. Deviation

Formula Procedure by Procedure Avg, Overall
S = 8.825 x VloggV .027 .564 -,0097

= 2
S = 21,3282xV 222 .518 .0845 J. Gaffney

IBM

3 of 26

FIGURE 1

State Machine Representation of a Program

ORIGINAL PARGE {4
OF POOR QUALITY

Input - Qutput
(External) Transition (External)
Function
L
Present State New State
State Data
State Machine
T = [(p. state, input); (n. state, output)]
J. Gaffney
IBM

4 of 26

Note: (1) S = estimated SLOC's (w/comments); S = actual SLOC's (w/comments)

The variable V is the "variable count” obtained from the state machine
design, It corresponds to 72, the number “"operands” in Halstead's formulas,

The software code size formula, S = 8,825xVlogeV, was verified using the

data from another major SACDIN software component, "Crypto“. The relative
error, indicative of the degree of fit of the estimating formula to the Crypto
data, is tabulated below, and compared with the corresponding figures
representing the degree of fit to the Dialog Manager.

Relative Error Dialog Manager Crypto
Average by Procedure .027 -.1056
Standard Deviation by . 564 .8917

The relatively good fit of the size estimating formula derived from the Dialog
Manager program and applied to the Crypto program supports our contention that
the formula is a general one, applicable provided that proper design
decomposition rules are followed.

The data suggests that there are relationships between the counts of variables
in state machine representations of software designs and the amount of code
produced from the design, These relationships can be used to estimate code
size based on designs implemented using the state machine technology. The
data also suggests a connection between the state machine and Halstead
software models,

‘"The formula for the numher of SLOC, given above, can be converted :to one
representing the number of assembly language SLOC, without comments. Tie
expansion ratio of the language in which the SACDIN programs were written is
about 1,2, and these programs had about 4C%Z comments, Therefore, S, assembly,
without comments is:

S ~ 8,825 x 1.2 x .6 x VlogoV = 6.354 VlogeV

Any software system should be decomposable into 6 "levels", ranging from level
0, the initial program specification, through level 5, the code. The levels
are depicted in Figure 2. The formulas presented above were derived for
application at level 4, the procedure level, From this point of view of
levels, the design and code are essentially more detailed statements of the
requirements (the later ones addressed ‘o the machine, while the earlier or
higher levels are addressed to people).

Since any software system should have the same number of decomposition or
specification levels, a system having more code should have proporiionally
more ‘‘boxes’’ at each level. Hence, one should be able to produce an estimate
based on the number of boxes at a certain level, recognizing that, on the
average, about the same amount of function (and hence code count, for a
language at a certain level, e.g., assembly) should be resident in a “box” ata
given level in the specification hierarchy. A similar notion is used by some

J. Gaffney

IBM
5 of 26

AricwiiL ok b FIGURE 2

AL TY
Levels of Specification
Overal! Software
System Level
0
RETH st nte Product Level
.15t Decormpatsition of Level
the State Sr.ace} 'y e o0
(CPCI Level)
N —
Integration Level !
(8.5 Spec., CPC, or Level
CPPS Level) 2 o o 0
Module Leve!
{Final Decomposition Level
CPDS or of the State Space) 3 ¢ o0
C-5 Spec
Level
& -
\ Procedure Level -
L!‘;!‘ o0 L4 L]
Source Code Procedure |
Procedure 2
Level S
Procedure N
J. Gaffney
IBM

6 of 26

hardware estimators, Based on experience, a hardware estimator might
estimate, for example, that a certain amount of function might require "about

1/2 type x box", where he is familiar with a "type X" box which is an element
of an existant system,

Based on the SACDIN data, we note that each level 4 procedure machine has an
average of 6 variables, and hunce has an average of 68 SLOC (assembly). Also,
there is an average of 4 level 4 machines per level 3 machine. Hence, there
is an average of 273 SLOC per level 3 machine, Finally, there is an average
of 20 level 3 machines per level 2 machine, suggesting an average of 5460 SLOC
{(assembly) per level 2 machine.

Acknowle@ggment

The authors express their thanks for the support provided by Mr. Don Zarefoss
of IBM, FSD, Gaithersburg, Maryland during the course of the developments
described here.

J. Gaffney
IBM
7 of 26

REFERENCES

1. Linger, R, C,, Mills, H, D,, and Witt, B, I.,, "“Structursd Programming
Theory and Practice,” Addison-Wesley, 1979, pg. 32.

2. Ferrantino, A, B,, and Mills, H, D.,, "State Machines and Their Semantics
in Software Engineering, "IEEE COMSAC, Chicago, Fall, 1977.

3. Halstead, M, H,, "Elements of Software Science", Elsevier, 1977,

4, Britcher, R. N,, and Moore, A. R., "Increased Productivity Through the Use
of Software Engineering in an Industrial Environment", "IEEE Computer
Society Fifth International Computer Software and Applications
Conference"; Novemker, 1981, IEEE Catalog No, 81CH1698-0; pg. ":'.

5, Cruickshank, R, D,, and Lesser, M., "An Approach to Estimating and
Controlling Software Development Costs”, in "The Economics of
Information Processing”, Vol. 2; pg. 139; Springer-Verlag, 1982,

6. Herdan, G., "The Theory of Language as Choice and Change",
Spr!nger-Verlag; 1966, pg. 86 and other pages.

7. Henry, S,, and Kafura, D, H,, "Software Structure Metrics Based on
Information Flow"”, IEEE Transactions on Software Engineering Volume
SE-7; Number 5, September, 1981, pg. 510,

€, Albrecht, A, J., "Measuring Application Development Productivity"”,
Proceedings IBM Applications Development Symposium, Monterey,

California; October 14-17, 1979; GUIDE International and SHARE, Inc.,
IBM Corporation, pg. 83,

9. Gaffney, J.E.,, "Software Metrics: A key to Improved Software Development
Management”; presented March, 1981, Pittsburgh, at the conferemnce,
"Computer Science and Statistics; 13th Symposium on the Interface”;
also proceedings published by Springer-Verlag, 1981,

10. Christensen, K,, Fitsos, G, P., and Smith, C.P.,, "A Perspective on
Software Science, "IBM Systems Journal; Vol. 20, No, 4, 1981,
pgo 372"387.

11, Ssavage, J., E., "The Complexity of Computing”; Wiley, 1976, No. 11,

J. Gaffney
IBM
8 of 26

THE VIEWGRAPH MATERIALS
for the

R. BRITCHER/J. GAFFNEY PRESENTATION FOLLOW

J. Gaffney
IBM
9 of 26

*

ESTIMATES Qf SOFTWARE SIZE
PR
STATE MACHINE DESIGNS

R. N, BRITCHER J. E. GAFFNEY, JR.*
IBM, FeperaAL Sysiems Division, NATIONAL WEATHER SERVICE
GA1THERSBURG, Mp, S1Lver SprinG, Mp.

PRESENTATION AT

SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA, GCDDARD SPACE FLIGHT CENTER
DECEMBER 1, 1982

ON LEAVE FrRoM IBM, FEDERAL SysTems Division

J. Gaffney
IBM
10 of 26

SOFTWARE DEVELOPMENT WORK EFFORT ESTIMATION
THE STATE MACHINE MODEL
SOFTWARE SCIENCE/LINGUISTICS BACKGROUND

' STATE MACHINE/SOFTWARE LINGUISTICS EQUIVALENCE

J. Gaffney
IBM
11 of 26

MOTIVATION

ESTIMATION OF AMOU!T OF FUNCTION PROBABLY MORE
DIFFICULT THAN ESTIMATION OF WORK RATES.

MORE HAS BEEN DONE ON ESTIMATING WORK RATES THAN
SOFTWARE SIZE.

NEED TO QUANTIFY REQUIREMENTS IV TERMS OF LIKELY
AMOUNT OF CODE IMPLIED BY THEM.

SUCCESSIVE REFINEMENT FROM REAUIREMENTS TO CODE
SHOULD BE MATCHE? BY ESTIMATION PROCESS.

J. Gaffney
IBM
12 of 26

SOFTHARE DEVELOPMENT

WORK EFFORT
ESTIMATION METHODOLOGY

WORK HCURS = WORK RATE * AMOUNT OF SOFTWARE FUNCTION

SOME MEASURES OF SOFTWARE FUMCTION
SOURCL LINES OF CODEt
OPERANDS
STATE MACHINE VARIABLES

1. Gaffney
1BM
13 of 26

WORN EEEORT ESTIMATICN PROCEDURS

LSTIMATE AMOUNT OF SOFTYARE 3 UNCTTON”

ESTIMATE WORKN EEEOR]

J o Gattuey
IBM
14 of Qo

SOFTWARE FUNCTION MEASURES

LINGUISTIC: REPRESCNTS A PROGRAM AS A SEQUENCE OF SYMBOLS,
EQUIVALENT TO DISCOURSE

SOFTWARE SCIENCL
OPLRANDS

* STATE MACHINC: REPRESENTS A PROGRAM AS A FUNCTION WITH
MEMORY
MATHEMATICAL CONCEPT
SEQUENTIAL LOGIC
'ARIABLES

J. Gaftuney
IBM
15 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

STAGES OF REFINEMENT CF
SCFTWARE DCFINITION

REQUIREMENTS === MPUTS/QUTPUTS
REFINE |DETAIL
REFINE JESTIMATE DESIGN —*DESIGN LANGUAGE

‘ CODE —&-510C

J. Gaffney
IBM
16 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

QVERALL
FUNUTION

1]

SUR.FUNCYION SUR-FUNCTION SUB-FUNCTION
) » L
ELEMENT ELEMENT CLEMENT
al " in
INEQRMATION FLOW-NCTWORY QF ELEMENTS
DAYA LINES
froemmeed ee{,
| e ELENMENT T)]
JR—— w1) —i
] -
F ELEMENT
[4 —
7 pq rd
’.—-——-—
¢ ELEMENT ELEMENT
| v n
h———‘ r—_[—_———

J. Gaffney
IBM
17 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

HALSTEAD SOFTWARE SCIENCE/LINGUISTICS

e —— S o 4% o o s A —"— S

MODEL GF A PROGRAY

OperRAND VoCABULARY S1ZE

= % 1L0Gn] * 1)LOGny = K‘I\

AN
No.” oF OreraTor VocaguLary 1o+ OF SLOC
TOKENS Size
EXAMPLE:
LA X
OeeraTOR (0P, CODE) OPERAND (ADDRESS)
N = A!U'ZLOCQZ

B-nﬁLOGn*z

n*3=No. OF INPUTS/QUTPUTS AT ALGORITHM
LEVEL

J. Gaffney
IBM
18 of 26

ORIGINAL PAGE IS
OF POOR QuALITY

STATE MACHINE MODCL

APPLIES TG PROGRAMS AT VARIUUS LEVELS OF ABSTRACTION
OVERALL——*=INDIVIDUAL PROCCDURE

APPLICABLE AT SUCCESSIVE LEVELS OF RUFINEMENT

BASED ON THE MCALY-MCORE MODCL OF SEQUEMTIAL MACHINES
DEVELOPED 25 YEARS AGO

MAPS GENIRALIZATION QF “INFUT” (PRUSEMT PLUS PAST) TC
"OUTPUT" (PRLSENT)

J. Gaffney
IBM
19 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

State Machine hepresentation of a Program

Input Output
(External) Transu‘uon (External)
Function
Present State New State
State Data

State Machine

T = [(p. state, input); (n. state, output)]

J. Gaffney
IBM
20 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

Overalt Software
System Level
0
ity
Baseline /Sottware Product Level
(First Decamposition of Level
the State Space) oy * oo
(CPCH Level)
Integration Level
(8.5 Spec., CPC, or Level
CPPS Level) 2 e
Module Leve!
(Final Decomposition Level
CPRS o of the State Space) 3 o0
C-5 Spec
Level
\ Procedure Leve! -
.. - .
Source Code Procedure 1
Procedure 2
Level 5
Procedure N
Levels of Specification
J. Gaffney
IBM

21 of 26

ORIGINAL PAGE 1Y
OF POOR QUALITY

FAN-OUT OF MACHINES
AT SUCCESSIVE LEVELS OF REFINEMENT OF DETAIL

LEVEL 2
(INTEGRATION)

LEVEL 3 I
(MobuLE) '
i ; 20, AVERAGE

LEVEL 4
(PROCEDURE)

e e
4, AVERAGE

J. Gaffney
IBM
22 of 26

ORICGINAL Pa. .
OF FOOR QUALITY

ESTIMATION METHODOLOGY

THERE ARE THE SAME NUMBER OF LEVELS, REGARDLESS OF AMOUNT
OF CODE

EARLIER ESTIMATES:

DECOMPOSE OVERALL REQUIREMENT INTO SUCCESSIVELY
DETAILED STRUCTURE OF "BOXES” AT DIFFERENT “LEVELS”

COUNT NUMBER OF BOXES AT LOWEST "LEVF!" OF DETAILING,
MULTIPLY BY "AVERAGE" NUMBER OF INSTRUCTIONS.

METHOD ANALOGOUS TO HARDWARE “FUNCTION" ESTIMATION
BY BOX COUNT, THEN MULTIPLYING BY “AVERAGE" COST OF
BOX.

LATER ESTIMATES:

COUNT NUMBER OF VARIABLES PER PROCEDURE
APPLY FORMULA FOR EACH PROCEDURE TO GET SIZE ESTIMATE,

J. Gaffney
IBM
23 of 26

ORIGINAL PAGE I3
OF FOOR QUALITY

STATE MACHINE MODEL ESTIMATING FORMULAS

FOR
LEVEL NO. LEVEL NAME ESTIMATING FORMULA
(ASSEMBLY CODE)
4 | PROCEDURE 6.354 ViogeV (68)
§ MODULE 25,416 Viog,V (273)
2 INTEGRATION ! (5460)

WHERE: V = THE STATE MACHINE "VARIABLE COUNT” (AT THE PROCEDURE
LEVEL); IT CORRESPONDS TO HALSTEAD'S n9, THE "OPERAND"
VOCABULARY SIZE,

J. Gaffney
IBM
24 of 26

ORIGINAL i to

OF POOR QUALITY
DEGREE OF FIT OF ESTIMATING FORMULA

\RELATIVE ERROR

DEFINING SYSTEM

VERIFICATION SYSTEM

:OVERALL -,0096 -.,0474
.AVERAGE, BY PRroO-
CEDURE 027 -.1056
'STANDARD DEVIATION
BY PROCEDURE . 564 8917
J. Gaffney
IBM

25 of 26

CRIDIVAS, 1o SO
OF ~oouRr QilviLnry

“THE CRUCIAL INGREDIENT OF SCIENCE, THIS IS
THE HABIT OF MIND THAT LINKSCURIOSITY WITH
DISCIPLINED, RIGOROUS, SUSTAINED INVESTIGATION
TO EXPAND THE LIMITS OF KNOWLEDGE",

WILLIAM K, STEVENS
“THE NEW YORK TIMES"
Nov, 9, 1982

PAGE (-1

J. Gaffaey
IBM
26 of 26

ATTENDANCE LIST

DUCEMBER 1, 1982

X X X X N X F IR N NN NN IR N R N N R IR

“JH NGHS',
FREORENL ALy
RYY AYNR Ty,
PHYLT LD ARCANYY
ROReRT ANEN
CYEQT T AVYERS

ANART RATLEY

JUYRT ARKeNRE
ALFTXANDED npARNRS
DA“UV DAD Y

vis easlr)

JIVMY aenyV
TOSEDH ATSUIO
MIFHFL' @ ATSSOMETTR
CHFRYI, RT[Tu™R
NERMNRAM B F HMLNAVTS
TACK ANan

NAVIN wriiry

DAL ROLTHROVY
BORER [ANRACHOFE
RIAKHARN ARENFSNN
PAT. BERMANTLHAY
A, AR ITGS

FRFD RO /ST
CYNTHIA BROWN

V] grgym

NOMNA RUCKTAND
RRTAM P PLFR

TOM QP y<

JUSEDR 3NTRTONM

JIM O AANMNT NG
NAYE CARN

TOMN CART

1L.LAYN CARPENTER
JOMHN CARenN
JEFF CHeN

STFVF AREUVRANT
LOIIS ~uMiaop
VIF CH'"ARMH

PANL CrEMENTS
CARY CNATS

TER A4 aNe

R, CMRTL?

AR IMC RFSFARCY
Y Xa
W5 CTVTL
KREUEARCH & DaTA
IMLV o M
ARIMC

SFRVTCF

oy
nEFC

ML S

o8¢

UMIV NE Mn
QA

WA A/HQ
cscC
LGENERA],
CRAFRAL
JH8A
C8C
AL |
FETDRFRMY
{rrey
Mt

CeC

CTA
GSFC
ceFe
RELEER CQUSH,TANTS
TFXAS INSTR'MENTS
WTTRE (CARP

JSDA

ELEFTRTA
ELECTRTA

MATFRTAT

VPl
"8C
CSFr
GRFC
eWi
GeC
CeC
NRL
CSs¢C
NRY,
NSA
[TTOI
NASA/HQ

RIGINAL PAGE 18
OF POOR QUALITY

SYS

RIJTARCH ~pRO

SUPPORT™ NFFICE
JUDTCAL CFNTER

LORLRT CWITCKNSHAVK
RAY CUuRLTY

RITL DFCY¥eR
NUNCAN
CHART.ES NIfKSyN
JOHN NTRCKUAMS
NAVIN PISATY

JIM noRaTyc
PENNTS p, ~aF
FA”L Dﬂ[- ngt lNIGPR
MICKFY 0'TaTHN

TUM NUNN

NAVE ECKUADRDT IR
QAETSY FovaR)e
VALTFR FILTS

PUNICE VG

MARY AVN wSFANNTARTY
SUFLTEN T8LINGFR
CORTA RBTHpRIKENGF

WILLTAY ©TavR
MARCTA ¥Tyma®
CATHY FRANK
YURY FPRMKYKTL
NAN FRTYENMAWN

JOHN GAFFNFY
RICHARD .1, GALF
GARY gARN
PATRTCK rARY
CARQY, CIAMMD
KEYTM GI'L
AMRIT aney
JOSFDPH GAGHEN
MAMCY ~pnpvaN
A, J, SRACF
ART CRFgY

FD GRETWRURG
JOF AREGNR

PICK HAMYL™QM
JOHN HASUMALTY,
CLLENY NERPRTNA
PONG HTLTMER
TUM HONGSYNY
RARRARA HNT MFS
ADRINN HNAYK

NTLWRAFFFNRETD

[ﬂ“
Q4

CSC
RLL]
ITRIYVA

USDA

ORIGINAL PAGE 'S
OF POOR QUALITY

CRARUIS RURKAY

[l" "

ROSTNT ARRDSPACT CaMpAyy

M1V
veR

1R5

AP MmN

VASA =T ANITLY

CSC
IRy
WSET
newe
cSC

felal A §

vgﬂﬂ
SYS
weEr
s8¢
M rv

TNE) SYS

nNeyY CARD

agE Wmn

NATTOMAY, WEATHER QKRVTCR
TRI=TAQ NFFTOR
RURROIIGHS CORP

gske

nea/scere

CSC

SYRACHUSF 1TNTY

SPr
asEe
1"V
CsC
\,.’l.l
VSR

BRELT

TARYRATIRIFS

RFSFAR(CH & NATA SYS

(SFr

CFNS{IS RUOENRY

MYTR

GSC
JPL

erhchiinn VAGE IS
Or POOR QUAUTY

RAY HQUGUTNON NATTIOMAY, RUREAU OF STANNARDS
RAN WOWASTY USDA
WILLTAM YyMpupry DNTY

NAVIN HUTCUYENS UNIYV NF MN
NORMANW INELSNUY ITTR]

POM JARLECKI D)

JEVNNVY JACQNES GSFr
LILLTAN YAVIFRAN GSFe
PAVIN JOBSTIMNG BENDIYX
FHRIS IDMER ITTRY
RORERT JMORE I/M

DEMNTS KAFRNRR T2-2

AWEN KARNMATZKE GSF¢C

RETH KAT? UMiv ng mn
FRANCES KAZLAUSKY NAVDAR
MIRANNE KINGSTMN UsSpa
RERNARN R, KLETN IRM/FRD
RICH KNIMKFL FARN AEROSPACH
JOHN KMIGHT uUrIvV OF va
RICHARD KnNAX C8C

JOHN KAGUT RESFARCH & DA™A SYS
NANCY WRAMFR GsFe

JEFF KNHM SASC
CHRPISTM T.AVE IRM

RORERT LARSON USDA

NANCY TLANBENTHAL GRF~/

KAREN T E£ADER ITTRI
FRMIF LE® GSC
GERTRUNE LFE NATY AseNr
RAYMAND TEPESQUENR GSFr

KAR[LFvVTTT SRl

JAY LIFBRWTT? GWy
ANTHANY MATQONE GSFC

HEMRY WMATEF ITT
NASEFMA MAPQNF GSFC

JERRY MARGH ITTPI
THNAMAS MASTERS NSA

J. E, VMATHEYS BFNDIY

TOM MARTTN NSA

ANM MAPI® NCOARE RIRRQNI'GHS CORP
W, L. MCrDY FAA

FRANK MCAARRY GSFr

MARPY ANN MFGARRY ITTRI

JOHN MCOPWEFR NFPT AF COMMERCR

D MFDFIROS
REPR NMEFSAN
PHYL MFRWARTHY
PNAVIN MIFHAEY
TSAQ MTYAMNATN
KAREN wQorE

S, MNHANTY
JOMN MiISA

MATTHEW NADETMAN
CHPIS NABIMS
BERNIE NARROW
RQR NET.SNN
RORERT NTTCHMAN
RORFRT NAQMAN

FHARLES NESTERFICHFR
PANL ONDRUS

TOM NSTRAND

THAMBS ONSTERINGF

JEPRY PACE
GERRY PARCAVER
RAYMNAND PANYL
LENNTE PFNMY
WALTFR PENNY
¥ARL PETFRS
JOHN PTETRAS
MICHA™T, PLETT
RITL PNSTHIIMA
JERRY PRENTICE
NOUGH.ASS P!I'TVMAM

JIM RAVGTEY
CHHAYA RAQ
GENRGE RA1TE
GERATDTNF RIZZARNI
SAM RENDWTN®E
SALLY ®ICHMOWD
NON RORBTNSR

MIMI RMNBFRTSAN
JIM RQRINSAN
WILLTAM RORINSON
JOHN RNCFARD
MICHAE! PQYLEDFR
JORGF LUTS RAMFU
¥YLE RNWF

ILESLTE RMSHBRONK
RON RUTLFDGE

CRIGINAL PAGE IS
OF POOR QUALITY

cec

CTA

G8FC

FL.EFT 4ATFRYAY SUPPORT NFFICE
UmMae

GSFC

QROFT JINC

BFL' LARS

csC

NSA

GSFC

GSFC

FL.EFT MATFRTAY. SUPRPART AFRIACE
COALTEAE QF WINLTAM g MpAPY

MTTQE Can

GSFe
SPRPRY/UINTYAC

U § SFCRPET™ SERVICF

csC

HItD
NATTQOMAY
uspsa
USDA
GSFr
MTTRE
cec
Gser
11D
QUAMT S/W MOEMT

QURKACT WEAPNMS CEMTFR

UMIV AF mD
GFNFRAL ELECTRIC
usop

AFDSC/SFS

MTTPE

CsC

NSA

ITIR]

NSA
SACHS/FREFMAN ASSNC
RI'RRONGHS CNRD
CsC

ITTRI

IR

IRM/FSD

DNT/TSC

ORIGINAL PAGE I8
OF POOR QUALITY

JQUN SApD

PANL SAHFFFRD
RQAER SCHA' TN
LEF RCHUMACHTR
RICHARN SElgy
PA'', SFRAFTN
TEPESA SHKEC[S
SYLVTA SHgPR™RA
MARTY SHM)MAM
DAV IR S{MKT S
CEME SViTH

JOHUN SV LTH
VATHERN |4TTH
JERRY SynprrASse
LAY |yV)HEQ
Lt 1mt SNLTNWAY
QYN SNS
MITCHEY L SPIFGET,
JOSEPH STA7ZANT
ROBRERT STEPHFWS
T, STEVENS
TEORY SIRARDTTN
STFVF SunpTyv
BANL S7UTEMSY]

KEJI TASAKI

RORERYL [AYSWARTHRE
WAVYNF TAVLOR
JAVES TYRpETTY
KENNTTH mowm

RETSY mMyoyn

PANLETTE VAN nORMAM

M, VTLBRNO)
SUSAN VOTST

ARNCFE WMANDTNATAN
JACK WAJFRTCH
SHARNAN WALTYGNRA
CHRRVER WaTLLACK
POLORKES WALLACK
RANRY WATHENy

ROM WEFKS

NAVIN WETSe
FLATVE WRYNKER
VIRGTNTA WTLNIAMS
PAM, WTLYIS
ALTCF WOMG

SOFTWARFE A & F
MARTIN “ARIFITA
AP TNA ARERQSPACE
Y peg Ccnwvp

naeLyY F Mh

L {al AL

SES

GENPRAL FLEOTDIC
Na¥ae POVYTEAMTICAT TYSTIT
[AM

newn

A8y

NASR=T ANGI WY
GENFRRL, DYWAMTCS
(sSC

YALT UyTy

(;.QF“

CNYTET, TR SV
oo

NASA/HQ

ispe

GFNFRAL DYIANTCS
(=S¢

NPAPER T,AR

GSFC

JPL

csC

VSA

ARINC RFESFARCH €cQRp
ce¢

P M
RFSTARCH £ DA™A SYS
NBSA=T.ANGLEY

.-\'IRD[]'V(;US Cmeo

AnT

csq

RAYTHFOQM SERVICF FQ
NATTON RIREANY NP STANNARDS
17791

H1als)

1,8, MAVAL PRSEARCH LAR
CPURANT INSTI™

GS¥Fr

PALYTFCHNTCAL INSTITUTE
nerT

ORIGINAL PAGE 18
OF POOR QUALITY

RAYMNND YEW
CHART.ER VYnUMAN
CRANCOTSF VQUSSEST

SANL ZAVFLER
M, ZELKOWITZ

UNIV NF Mn
CFY ENTFRRORISFS
UNIV ng Mp

AFTDSC
UNIV nE MD

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-Originated Documents

SEL-76-001, Proceedings From the First Summer Software
Engineering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. 2elkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Desian Specifications Languag2s
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, February 1978

YSEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 1), W. J. Decker and
W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

TPhis document superseded by revised document.

SEL-78~004, Structured FORTRAN Preprocessor (SFORT
PDP-11/70 User's Guide, D. S. Wilson and B. Chu, September
1978

SEL-7€~005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Raxleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Grsen,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon

Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design bnéIronment.

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1580

SEL-80-002, Multi-Level Expression Design Language-
Requirement Tevel (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacz2craft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer

sttems(Comgatlbllltx Stuay T, Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-004, System Description and User's Guide for Code 580
Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation
Models for Software Systems, .7, F. Cook and F. E. McGarry,
December 1980

+SEL-Gl-OOl, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-002, Software Engineering Laboratory (SEL) Data Hase
Organization and User's Guide, D. C. Wyckoff, G. Page, and
F. E. McGarry, September 1981

SEL-81-003, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, and G. Page, September

19

+SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

*smL-al-oos, Standard Approach to Software Development,

V. E. Church, F. E. McGarry, G. Page, et al., September 1981
SEL-81-105, Recommended Approach to Software Development,

S. Eslinger, F. E. McGarry, and G. Page, May 8

SEL-81-006, Software Engineering Laboratory $SEL) Document
Library (DOCLIB) System Description and User s Guide,

W. Taylor and W. J. Decker, December 198

*SEL-SI-OGT, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

ol
'This document superseded by revised document.

B-3

SEL-81-008, Cost and Reliability Estimation Modeis ;CAREML
User's Guide, J. F. Cook and E. Edwards, February

T —

SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker an
F. E. McGarry, March 198

SEL-81-010, Performance and Evaluation of an Independent
Software Verification and Inteqration Process, G. Page and
F. E. McGarry, May 1961

SEL-81-011, Evaluating Software Dev¢ -opment by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort
Distribution Over the Life of Medium Scale Software Systems,
December

G. O. Picasso,

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
nearing Workshop, December 1981

SEL-81~014, Automated Collection of Software Engineerin
Data in the Software Engineering Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, tvaluation of Management Measures of Software
Development, G. Page, D. N, Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program

(SAP) S¥stem Deascription, W. A. Taylor and W. J. Decker,
August 1982
SEL-82-003, Software Engineerin l.aboratory (SEL) Data Base

Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers:
Volume 1, July 1982

SEL-82-005, Glossary of Software Engineering Laboratory
Terms, M. G. Rohleder, December 1982

SEL-82-006, Annotated Bibliography of Software Engineering
Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basill and D. M, Weliss, December 2

B-4

SEL-Related Literature

"Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Reso!rce Expenditures,” Proceedings of

the Fifth International Conference on Software Enginee:ing.
New York: Computer Soclieties Press, 1

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

r"'!3.35111, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships fur Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

++Basili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation Problemz?",
Journal of Systems and Software, February 1981, vol. 2,

no. 1

++Basili, V. R.,, and K. Freburger, "Prc- ramming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,

no. 1l

Basili, V. R., and B. T. Perricone, Software Errors and
Complexity: An Empirical Investigation, University of
Maryland, Technical Report TR-1195, August 1982

HBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,*
Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 1981

H"I‘his article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1Y82.

Basili, V. R,, R. W. Selby, and T. Phillips, Metric Analysis
and Data Validation Across FORTRAN Projects, University of
Maryland, Technical Report, November 1982

Basili, V. R., and R, Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedin of the Worksho
on Quantitative Software Models for ReIiab%lIty, Complexity
an ost, ober

Basili, V.R., and D. M. Weiss, A Methodology for Coll)ecting
Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

Basili, V. R., and M, V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

**Basili, V. R., and M., V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

**Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M, V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York:
Computer Societies Press, 1978

++Basili, V. R., and M. V. Zelkowitz, "The Software
Engineering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical
Memorandum, June 1982

Card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memo-~
randum, September 1982

**This article also appears in SEL-82-004, Collected Software

Engineering Papers: Volume 1, July 1982.
B-6

HChen, E., and M. V. Zelkowitz, "Use of Cluster Analiysis To
Evaluate Software Engineering Methodologies," Proceedings

of the Fifth International Conference on Software Engineer-
ing. New York: Computer Societies Press,

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, Decemder 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Miller, A. M., "A Survey of Several Reliability Models"

{(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedings), March
1980 '

Page, G., "Software Engineering Course Evaluation,” Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Usel in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and

Management of Software Complexity" (paper prepared for the
University of Maryland, December °976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

*+This article also appears in SEL-82-004, Collecteu .Joftware
Engineering Papers: Volume 1, July 1982.

B-7

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

**Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Piojects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science. New York:
Computer Societies Press, 1979

Zelkowitz, M., V., "Dat: Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations

%gr Computer and Information Science (proceedings), November
982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

*?This article also apgpears in SEL-82-004, Collected Software

Engineering Papers: Volume 1, July 1982.

B-8

% U.S. GOVERNMENT PRINTING OFFICE: 1983-381-791:267

	GeneralDisclaimer.pdf
	0010A02.pdf
	0010A03.pdf
	0010A04.pdf
	0010A05.pdf
	0010A06.pdf
	0010A07.pdf
	0010A08.pdf
	0010A09.pdf
	0010A10.pdf
	0010A11.pdf
	0010A12.pdf
	0010A13.pdf
	0010A14.pdf
	0010B01.pdf
	0010B02.pdf
	0010B03.pdf
	0010B04.pdf
	0010B05.pdf
	0010B06.pdf
	0010B07.pdf
	0010B08.pdf
	0010B09.pdf
	0010B10.pdf
	0010B11.pdf
	0010B13.pdf
	0010B14.pdf
	0010C01.pdf
	0010C02.pdf
	0010C03.pdf
	0010C04.pdf
	0010C05.pdf
	0010C06.pdf
	0010C07.pdf
	0010C08.pdf
	0010C09.pdf
	0010C10.pdf
	0010C11.pdf
	0010C12.pdf
	0010C13.pdf
	0010C14.pdf
	0010D01.pdf
	0010D02.pdf
	0010D03.pdf
	0010D04.pdf
	0010D05.pdf
	0010D06.pdf
	0010D07.pdf
	0010D08.pdf
	0010D09.pdf
	0010D10.pdf
	0010D11.pdf
	0010D12.pdf
	0010D13.pdf
	0010D14.pdf
	0010E01.pdf
	0010E02.pdf
	0010E03.pdf
	0010E04.pdf
	0010E05.pdf
	0010E07.pdf
	0010E08.pdf
	0010E09.pdf
	0010E10.pdf
	0010E11.pdf
	0010E12.pdf
	0010E13.pdf
	0010E14.pdf
	0010F01.pdf
	0010F02.pdf
	0010F03.pdf
	0010F04.pdf
	0010F05.pdf
	0010F06.pdf
	0010F07.pdf
	0010F08.pdf
	0010F09.pdf
	0010F10.pdf
	0010F11.pdf
	0010F12.pdf
	0010F13.pdf
	0010F14.pdf
	0010G01.pdf
	0010G02.pdf
	0010G03.pdf
	0010G04.pdf
	0010G05.pdf
	0010G06.pdf
	0010G07.pdf
	0010G08.pdf
	0010G09.pdf
	0010G10.pdf
	0010G11.pdf
	0010G12.pdf
	0010G13.pdf
	0010G14.pdf
	0011A02.pdf
	0011A03.pdf
	0011A04.pdf
	0011A05.pdf
	0011A06.pdf
	0011A07.pdf
	0011A08.pdf
	0011A09.pdf
	0011A10.pdf
	0011A11.pdf
	0011A12.pdf
	0011A13.pdf
	0011A14.pdf
	0011B02.pdf
	0011B03.pdf
	0011B04.pdf
	0011B05.pdf
	0011B06.pdf
	0011B07.pdf
	0011B08.pdf
	0011B09.pdf
	0011B10.pdf
	0011B11.pdf
	0011B12.pdf
	0011B13.pdf
	0011B14.pdf
	0011C01.pdf
	0011C02.pdf
	0011C03.pdf
	0011C04.pdf
	0011C05.pdf
	0011C06.pdf
	0011C07.pdf
	0011C08.pdf
	0011C09.pdf
	0011C10.pdf
	0011C11.pdf
	0011C12.pdf
	0011C13.pdf
	0011C14.pdf
	0011D01.pdf
	0011D02.pdf
	0011D03.pdf
	0011D04.pdf
	0011D05.pdf
	0011D06.pdf
	0011D07.pdf
	0011D08.pdf
	0011D09.pdf
	0011D11.pdf
	0011D12.pdf
	0011D13.pdf
	0011D14.pdf
	0011E01.pdf
	0011E02.pdf
	0011E03.pdf
	0011E04.pdf
	0011E05.pdf
	0011E06.pdf
	0011E07.pdf
	0011E08.pdf
	0011E09.pdf
	0011E10.pdf
	0011E11.pdf
	0011E12.pdf
	0011E13.pdf
	0011E14.pdf
	0011F01.pdf
	0011F02.pdf
	0011F03.pdf
	0011F04.pdf
	0011F06.pdf
	0011F07.pdf
	0011F08.pdf
	0011F09.pdf
	0011F10.pdf
	0011F11.pdf
	0011F12.pdf
	0011F13.pdf
	0011F14.pdf
	0011G01.pdf
	0011G02.pdf
	0011G03.pdf
	0011G04.pdf
	0011G05.pdf
	0011G06.pdf
	0011G07.pdf
	0011G08.pdf
	0011G09.pdf
	0011G10.pdf
	0011G11.pdf
	0011G12.pdf
	0011G13.pdf
	0011G14.pdf
	0012A02.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012A12.pdf
	0012A13.pdf
	0012A14.pdf
	0012B01.pdf
	0012B03.pdf
	0012B04.pdf
	0012B05.pdf
	0012B06.pdf
	0012B07.pdf
	0012B08.pdf
	0012B09.pdf
	0012B10.pdf
	0012B11.pdf
	0012B12.pdf
	0012B13.pdf
	0012B14.pdf
	0012C01.pdf
	0012C02.pdf
	0012C03.pdf
	0012C04.pdf
	0012C05.pdf
	0012C06.pdf
	0012C07.pdf
	0012C08.pdf
	0012C10.pdf
	0012C11.pdf
	0012C12.pdf
	0012C13.pdf
	0012C14.pdf
	0012D01.pdf
	0012D02.pdf
	0012D03.pdf
	0012D04.pdf
	0012D05.pdf
	0012D06.pdf
	0012D07.pdf
	0012D08.pdf
	0012D09.pdf
	0012D10.pdf
	0012D11.pdf
	0012D12.pdf
	0012D13.pdf
	0012D14.pdf
	0012E01.pdf
	0012E02.pdf
	0012E03.pdf
	0012E04.pdf
	0012E05.pdf
	0012E06.pdf
	0012E07.pdf
	0012E08.pdf
	0012E09.pdf
	0012E10.pdf
	0012E11.pdf
	0012E12.pdf
	0012E13.pdf
	0012E14.pdf
	0012F01.pdf
	0012F03.pdf
	0012F04.pdf
	0012F05.pdf
	0012F06.pdf
	0012F07.pdf
	0012F08.pdf
	0012F09.pdf
	0012F10.pdf
	0012F11.pdf
	0012F12.pdf
	0012F13.pdf
	0012F14.pdf
	0012G01.pdf
	0012G02.pdf
	0012G03.pdf
	0012G04.pdf
	0012G05.pdf
	0012G06.pdf
	0012G08.pdf
	0012G09.pdf
	0012G10.pdf
	0012G11.pdf
	0012G12.pdf
	0012G13.pdf
	0012G14.pdf
	0013A02.pdf
	0013A03.pdf
	0013A04.pdf
	0013A05.pdf
	0013A06.pdf
	0013A07.pdf
	0013A08.pdf
	0013A09.pdf
	0013A10.pdf
	0013A11.pdf
	0013A12.pdf
	0013A13.pdf
	0013A14.pdf
	0013B01.pdf
	0013B02.pdf
	0013B03.pdf
	0013B04.pdf
	0013B05.pdf
	0013B06.pdf
	0013B07.pdf
	0013B08.pdf
	0013B09.pdf
	0013B11.pdf
	0013B12.pdf
	0013B13.pdf
	0013B14.pdf
	0013C01.pdf
	0013C02.pdf
	0013C03.pdf
	0013C04.pdf
	0013C05.pdf
	0013C06.pdf
	0013C07.pdf
	0013C08.pdf
	0013C09.pdf
	0013C10.pdf
	0013C11.pdf
	0013C12.pdf
	0013C13.pdf
	0013C14.pdf
	0013D01.pdf
	0013D02.pdf
	0013D03.pdf
	0013D04.pdf
	0013D05.pdf
	0013D06.pdf
	0013D07.pdf
	0013D08.pdf
	0013D09.pdf
	0013D10.pdf
	0013D11.pdf
	0013D12.pdf
	0013D13.pdf
	0013D14.pdf
	0013E01.pdf
	0013E02.pdf
	0013E03.pdf
	0013E04.pdf
	0013E05.pdf
	0013E06.pdf
	0013E07.pdf
	0013E08.pdf
	0013E09.pdf
	0013E10.pdf
	0013E11.pdf
	0013E12.pdf
	0013E13.pdf
	0013E14.pdf
	0013F01.pdf
	0013F02.pdf
	0013F03.pdf
	0013F04.pdf
	0013F05.pdf
	0013F06.pdf
	0013F07.pdf
	0013F08.pdf
	0013F09.pdf
	0013F10.pdf
	0013F11.pdf
	0013F12.pdf
	0013F13.pdf
	0013F14.pdf
	0013G01.pdf
	0013G02.pdf
	0013G04.pdf
	0013G05.pdf
	0013G06.pdf
	0013G07.pdf
	0013G08.pdf
	0013G09.pdf
	0013G10.pdf
	0013G11.pdf
	0013G12.pdf
	0013G13.pdf
	0013G14.pdf
	0014A02.pdf
	0014A03.pdf
	0014A04.pdf
	0014A05.pdf
	0014A06.pdf
	0014A07.pdf
	0014A08.pdf
	0014A09.pdf
	0014A10.pdf
	0014A11.pdf
	0014A12.pdf
	0014A13.pdf
	0014A14.pdf
	0014B01.pdf
	0014B02.pdf
	0014B03.pdf
	0014B04.pdf
	0014B05.pdf
	0014B06.pdf
	0014B07.pdf
	0014B08.pdf
	0014B09.pdf
	0014B10.pdf
	0014B11.pdf
	0014B12.pdf
	0014B13.pdf
	0014B14.pdf
	0014C01.pdf
	0014C02.pdf

