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Annotation

Within the context of a simple mechanical model the paper

examines the movement of a satellite with respect to the center

of masses under conditions of uniaxial aerodynamic attitude

control. The equations of motion of the satellite take account

of the gravitational and restorative aerodynamic moments. It

is presumed that the aerodynamic moment is much larger than the

gravitational, and the motion equations contain a large para-

meter. A two-parameter integrated surface of these equations

is constructed in the form of formal series in terms of negative

powers of the large parameter, describing the oscillations and

rotations of the satellite about its lengthwise axis, approxi-

mately oriented along the orbital tangent. It is proposed to

treat such movements as nominal undisturbed motions of the

satellite under conditions of aerodynamic attitude control.

A numerical investigation is made for the above integrated

surface.
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UNIAXIAL AERODYNAMIC ATTITUDE CONTROL
OF ARTIFICIAL SATELLITES

V. V. Sazonov
The Keldysh Institute of Applied Mathematics,

USSR Academy of Sciences

1. Introduction

The aerodynamic moment can be used on circular and slightly 	 Z*

elliptical orbits in the altitude range of as much as 500 km

for attitude control of the longitudinal axis of an artificial
earth satellite in regard to the oncoming air stream, the

velocity of which is practically directed alcrig the orbital

tangent.	 For this purpose, the shape of the exterior shell of

; the satellite is chosen so that, when the normal attitude con-

trol is disturbed, pitch and yaw restorative moments are created

that strive to line up the longitudinal satellite axis with the
E

velocity vector of the oncoming current.	 Since the projection

of the aerodynamic moment on the longitudinal satellite axis
is equal to zero, l in itself the aerodynamic moment can only

provide a uniaxial attitude control of the satellite.
r,

This attitude control principle was used aboard the Soviet

satellites Kosmos-149 and Kosmos-320 [2-4]. 	 However the atti-

tude control system of these satellites was not a purely aero-

1For certain configurations of the outer satellite shell the
projection of the aerodynamic moment on the longitudinal axis
is different from zero. This projection may result in a
twisting of the satellite (propeller effect [lj) and somer-
saulting. Therefore the shape of the outer shell of a satellite
that functions under conditions of aerodynamic attitude control
should be chosen so that this projection is identically equal to
zero.

Numbers in the margin indicate pagination in the foreign text.
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dynamic one. In order to create a restorative moment about the

longitudinal axis, two-degree gyroscopes were installed aboard

these satellites, also serving as absorbers of the perturbing

motion. By using the gyroscopes and the gravitational moment

it was possible to obtain a triaxial attitude control of these

satellites. But if it is enough for the satellite to have a

uniaxial attitude control in terms of the orbital tangent to

accomplish its flight mission, the principle of aerodynamic

attitude control in the pure form can be used. The present work

investigates the possibilities of such a method of attitude

control.

The satellite discussed below is regarded as a solid with

outer shell in the form of a sphere. The center of the sphere

does not coincide with the center of masses of the satellite

and lies on one of its main central axes of inertia. Such a

satellite may serve as a model of that shown in Fig. 1. Here

the instrument package has small geometrical dimensions, and

we can ignore the influence of the atmosphere on it. The sphere 	 L
acts as an aerodynamic stabilizer and has a mass much less than

that of the overall satellite.

The equations of motion of the satellite take account

of the gravitational and restorative aerodynamic moments. It

is presumed that the aerodynamic moment is much larger than the

gravitational, and the motion equations contain a large para-

meter. A two-parameter integrated surface of these equations

is constructed in the form of formal series in terms of negative

powers of the large parameter, describing the oscillations and

rotations of the satellite about its lengthwise axis, approxi-

mately oriented along the orbital tangent. It is proposed to

treat such movements as nominal undisturbed motions of the

satellite under conditions of aerodynamic attitude control. A

numberical investigation is made for the above integrated sur-

face.

2
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2. The Motion Equations	 OF POOR QUALITY

Let us consider a satellite (solid), the center o:

of which is moving in a circular orbit about the Earth. To

write the equations of motion of the satellite relative to the

center of masses we shall introduce two clockwise Cartesian

systems of coordinates.

Ox 1"2'x3 - a coordinate system rigidly bound to the

satellite. The point 0 is the center of masses of the satellite.

The axes Ox 1 ,Ox2 ,Ox3 are the major central axes of inertia of

the satellite.

OX1X2X3 - the orbital system of coordinates. The axis

ox  is directed along the radius vector of the point 0 with

respect to the center of Earth, the axis OX  is directed along

the orbital tangent in the direction of movement of the satellite.

we shall assign the position of the coordinate system

Ox1x2x 3 relative to the system OX 1X2X3 by using the angles

a, $, y (Fig. 2). The matrix for conversion from one of these

systems to the other has the appearance:

CL = Cosa WSp ,

a,, mound sinpwsX + sind sin s,

a ;, _ wa sinj sin X - sin 0i WS y,

5

0 i7	 Sink,	 tY14 = Sindevs}4,

ti f , - ^^ 5^4r^r.. J'.	 « 1!	 Silt d Stn f4 Ct^sX tuS,l yi^t ,1,

a„ Us,A., 	 a js = sin at sinp sin X +cosacosx.

We introduce the definitions: (w 1' W2' w 3 ) - the absolute

angular velocity of the satellite (hereafter the components of

3
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the vectors are given in the coordinate system Ox1x2x3); 	 L
A,B,C - the moments of inertia of the satellite with respect to

the axes Oxl ,Ox2 ,Ox3 ; (Ml ,M2 ,M3 ) - the major moment of the

external forces acting on the satellite; w 0 - const > 0 - is the

angular velocity of orbital motion; t is the time. The movement

of the satellite relative to the center of masses is described

by equations:

A*11 +(C-B)W w, = M,.

8dt 4(A-C)w,wj " Mx.

C !y 
f (e-A)w,u12 Mj ,	 (1)

COSp ((a), COS*( + wj Sin oc) - cue ty)SX51.

-t .cu j f typ(w,reso(+wjSinoc)-wo cosy

d - - u), sin ct + u , Mso( 0 to. Sin y.
dt -

Of the external moments acting on the satellite we shall

only consider the gravitational and restorative aerodynamic

moments. The components of the gravitational moment have the

form:

M9, . 3w.''(f -d)aRa jj , PNj = 3u); (A-C)a j, a 0 . fop = 34t„t(B -A)a j, 0 .ir .

In calculating the restorative aerodynamic moment we shall

consider that the outer shell of the satellite has the shape of

a sphere of radius R with center at point:

(Cl ;n,,r).

Here d < 0. With respect to the interaction between the
satellite and the atmosphere we assume the following: 1) the

atmosphere is immobile in absolute space; 2) the action of the

atmosphere on the satellite reduces to a resistance force applied

at the center of pressure and directed opposite the velocity of

the center of masses of the satellite; 3) the resistance of the

4
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atmosphere does not affect the evolution of the orbit. Under	 L
these assumptions the components of the aerodynamic moment are:

Mai 0 . Plan	 ,:. 1 r .QV 2JrR',1a„ ,	 - . i ,r1,V k 7' tl u

Here c  is the coefficient of aerodynamic resistance, p is the

density of the oncoming air stream, V is the velocity of the

center of masses of the satellite.

Until now the orbit of the center of masses of the satellite

was taken as circular. Such an assumption is perfectly justified

when the eccentricity is 40.01, although the calculation of the

density of the oncoming air stream should allow for even a small

orbital ellipticity. We shall assume that this density depends

on the height of the satellite h above the surface of the Earth

as:

)

where p,T is the density of the atmosphere at perigee, hn is

the height of perigee, H is the height of the homogeneous

atmosphere. For small orbital eccentricity formula (2) can be

represented as:

p = t ' C'%pttj(I- (osa,, It 

Herc:

1- .11

Pa is the density of the atmosphere at apogee, t 0 is the time

it takes for the satellite to pass through perigee.

Let us consider equations (1) when:

M; a Myt + Mat ( i - 1. L,:3).

5
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. u"= C . ae = - `r PA  "J"S 4d
2C w^

S2[ = , (i = 1,z .3) . 'C Wo(1 1 0)Wu

these equations can be written as:

52, _^gnzs), 3anan).
t-a'^'^t-^,

It ^t

^?, -_(/	 Q,V. -3a	 .110nr- 	 (3)

T - ^ (521^Sd S?, Sin-. - ty8cv5^.
coSX

^j -: - Q, .yr,r•t , .tl ^ COSd ♦ Si,t ^ .

Here the dot indicates a differentiation with respect to t,

f(z"t7) ^ &xttlV,-cos,))•

	

Eyadtions ( 3) are simplifications. For example, they do
	

L
not , llow for so important a fact as the difference in atmos-

pheric density values at the sunlit orbital segment and that

in the Earth's shadow. Nevertheless these equations can reveal

the main features of the dynamics of uniaxial aerodynamic atti-

tude control.

We shall point out several properties of equations (3).

To shorten the notation we shall use the vector conventions.

We introduce the vector:

"(01.Qx..0a. t, a,p)r

and define the function:

F(z.r.7)c X

6
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such that set (3) can be written as:

i = F(a,z.7).	 (31)

Set ( 3 1 ) has the property (E) (5) with respect to the

matrices:

S- diag (1,1, - 1.-1.	 S' • diaj(-1,1.1.1.- I, - 1).

i.e. the function F(z,T,n) satisfies relations:

SF(S^.- r,7j• -F(x,z,7), S'f(Sg,-r.7)•-Fls.r,7). 	 (4)

Moreover:

F(a,r+ :^r,7)-F(2.r.7). F(x ♦9Ce^,T,n)^S^f(S^,^'. ^►),
(5)

where:

ey =(0,0,0.:.0,11)'. S . .ddv (1,-i.-1, t,-t,-f).

When n = 0, set (3 1 )  is autonomous: &F(z,r,o)/xr +o.

Set (3) admits of stationary solutions:

f?, =0;S!== tosXe; A 3 =-Wn3r0; 4t -# r0. y0 W0,X. X. ,f,	 (6)

that describe the position of equilibrium of the satellite in

the orbital coordinate system. In all these positions of

equilibrium the axis 0x 1 coincides with 0X1 , the axis 0x2 (0x3)

coincides with the axis 0X 2 or 0X3.

3. The Integral Surface

we shall call the movement of the satellite in which the

angle 6 between axes 0x 1 and 0X1 (e - arccos (cosacos W does

7
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not exceed a certain value o the regime of uniaxial aerodynamic

attitude control. For example, we may take A - 15°. Depending

on the values of the satellite parameters, different approaches

are possible f^r realization of the regime of aerodynamic atti-

tude cc:itrol and its investigation. In particular, we may con-

sider one of the equilibrium positions (6) to be the nominal

undisturbed motion of the satellite in this regime. In this

case analysis of the regime of aerodynamic attitude control will

primarily consist in investigating the stability of the chosen

position of equilibrium. Such an approach is natural when the

aerodynamic and gravitational moments acting on the satellite

are comparable in magnitude ter	 But if the aerodynamic

moment preponderates tae*'), it is advisable to conduct the

investigation of the regime of aerodynamic attitude control in

different fashion. We discuss below one of the possible methods

of such an investigation. The analysis will be based on the

infinitesimal r - r/w .

We shall write set (3) as:

S2, p(Q,k),	 3114414").

t(, OA 1)0, f(/-a)jQ j 0,

f i)^	 t(f a ^A^)(S2tS1Z -.3a„ u u )^ 1^'(T, f)p,.,

(ns1 (Qt	 l yACV$f.

When E - 0 this set has solutions for which:

P., cosy , 11
3 _ - Si", •t V O,

while the variables y and 01 are determined by equations:

(7)

(8)

(9)

L

8
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Fig. 3 shows the phase picture of the not (9) in the case of

V - 0.2. The stationary solutions (6) of set (7) at E - 0

correspond to the stationary solutions of this set:

A, - Q. Va-X. JXA; ",YV

Motions of type (8) and (9) can be used as nominal undis-

turbed motions of the satellite in the regime of uniaxial

aerodynamic attitude control when the aerodynamic moment acting

on the satellite is infinitely large. In these motions:

VO.
i.e. the axis 0x1 is directed exactly along the orbital tangent.
When E # 0, set ( 7) does not have solutions ( 8), (9), but when

E << 1 it is possible to construct its integral surface, similar	 L
to the family of such solutions, in the form of formal power

series. The motions that belong to this integral surface shall

be regarded as nominal undisturbed movements of the satellite

in the regime of uniaxial aerodynamic attitude control.

We shall seek the integral surface of the set (7) that

merges into the family of solutions ( 8), (9) when E - 0 in the
form:

c?,	 ^1,'(H,1'„r,.^,f^,tt.^e.r.A^elr.tl,.T.?)•

t'(a',V..f.^i,t') eern,t.►,.^.^)•^'^XIXn,.r.r)... 	 (10)

where:

X -{^^.c?,,t.u.t ) 	 ^^ •t!^(A..1^,.r•eJ)^ t^2fih.h•.^. f)+...^

S2^ ^Q(.1.^',.t. f.r)_ 4/, siir^tnsa + l L ^l^`, ^?,.t.y)* • .	 (11)

We shall regard the above series as formal, i.e. we are not con-

cerned about their convergence.

9
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Inserting series (10), (11) into set (7) and equating the

expressions for identical powers of E on tie left and right, we

obtain a sequence of recurrent relations:

AR - V+r .

tk '' ^IwS?^ + {^ 5.► ► - ^ 4aV*I] ire tir.0
r

S?

	

	
d ^ 

4p Sin1.VS,1 { 3T^ / .y:A

6t si/t .Y A,, evs .1) ► 9 jk

0^ 4 H (S? lk ft ^ a .S?,^ dill 1 ^ ^ qi4

Here gjk (j - 1 .... ,6) are known functions that depend on:

1	 i)I . .1 I . d'lP/J>f
..	 ► . ► ,	 . .

when r I • - ,	 A. I

It is easy to see that this sequence uniquely defines the

unknown coefficients of series (10), (11). The coefficients

of c in these series have the form:

^^	 Al f,^,..,, ir ►_., , 	 r ^	 111 µ)4), ,»1r

4	 Y'

t)	 ^' Al l	 ; . Pix	 All a )./ ..)	 y. t! 1 I ^i/I'» 1i^1 fir, .) 1.

Ar

Ut	 N N u wsa ' 1', ► .I f, I )

Let us point out several properties cL the integral sur-

face (10), (11). To shorten the rotation we introduce the

vector function:

10
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r

	

	 ,

^+ d r( X S2 7, y, F ). /S `(,); 51,,7, rl,t)) .
+	 t,

Using relations (4) we can prove that:

Y, s;,	 .f E)	 - l^(n,	 ,,t,7. f).	 (13)

By virtue of relations (5) we have:

	

Q(X, Sz,. 
'z.^^,^..7^t) _ c^(r.u,.r+7.t):	 (14)

4-
yp 12, , T. tj, ^) = s ^p(^. ^1, , r, 7 . f) f Yr e,,.

( . i	 , „ ^,	 f t >	 /'(,r, 5),, 'r , , t ), (15)

We can show that when X., 0. x/2 , •9•, 3X/2

i.e. the stationary solutions of (6) lie on the constructed

integral surface.

When n = C, series (10), (11) do not contain T, and the

integral surface specified by these series can be numerically

11
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investigated rather easily. Let us consider the case n - 0 in

more detail. With precision down to terms of order 0(e) we can

write set (11) in form (9). This set is equivalent to the

equation of mathematical pendulum:

w^ 1 # s(^ri A M^

t

and is integrated in elliptical functions. Let us consider the

periodic oscillatory and rotational  solutions of set (11)

(rj = 0), similar to the periodic oscillatory and rotation solu-

tions of set (9).	 Without restricting the generality we shall

consider that u *- 0 and Y(0) - 0.

Let us first deal with the oscillatory periodic solutions.

It is easy to prove that the T-periodic solution of set (9)

1 (l) , S1 1 0),  for which ti (0) = 0, satisfies relations:

by virtue of the last two equations, a 1. 1 (Tj4) = 0. For the set

(11) (it - 0) lot us examine the boundary-value problem:

,1(0) V,(p) r0	 (7- - v).	 (17)

Using the properties (12), (13) of functions P and Q, we can 	 12

prove [5,6) that any given solution )(t), a2 1 (r) of this problem

satisfies relations (16) and, consequently, is T-periodic. For

the corresponding solution of set (311:

1 I the case of n = 0 we shall call the solution X( t).^?,(r)(t(t))
of the set (11) ((3 1 )) the rotational periodic solution if there
exists a number r r ()	 (period) such that: r(t.r).^^^.;

The T values of different sign correspond to rotations in dif-
ferent directions.

12
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the equations are valid (cf. (12), (13)):

by virtue of which:
z(r+ z ) s 5S'^(z) .

It follows from this that the second and fifth components of the

vector z (T) (corresponding to variables 0 2 and a) are

T/2-periodic functions of T, while the remaining components

are T/2-antiperiodic functions. Setting T = 0 in (18), we

find the boundary conditions:

which are satisfied by the solution of z(T). The scalar form

of these conditions is:

S2,(0) (0)-a(0)=S2,(y)=d^4^=P(_T) =0.

It can be shown [ 5,6] that in the case n = 0 for any given

solution of z(T) of the boundary-value problem ( 3 1 ), (19)

relations ( 18) are valid and, consequently, this solution is

T-periodic.

Let us turn to the rotational periodic solutions. Any

given rotational T-periodic solution of set (9) y(T), Q1 (T),

for which Y(0) = 0, satisfies the relations:

By virtue of the first two of these relations we have

y(T/4) = 7/2. For the set (11) h = 0) let us consider the

13
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a'lo X( iT) - -x au (T ;0)•	 (21)

It can be proved that any given solution Y(T), Q 1 (T) of this

problem satisfies conditions ( 20) and thus is T-periodic. For

the corresponding solution of set ( 3 1 ) (n = 0):

2 (•C ) = iio( ).S2,fc ). •1 , 0 , F I

the equations are valid (cf. (12), (15)):

S(- rj^^(T),(t+Th)= S^(z)+are4 ,	 (22)

by virtue of which:

Setting T = 0 we find the boundary conditions:

Sz(o)=r(o). SS'z (TI ) =zty)-Xe4,.	 (23)

which are satisfied by the solution z(T). The scalar forms

of these conditions is:

S1 3(0)	 I0

It can be proved that, when n = 0, any given solution z(T) of

the boundary problem (3 1 ), (23) satisfies relations ( 22) and,

consequently, is a rotational T-periodic solution.

Numerically solving the boundary problems ( 19), (23) for

the set ( 3 1 ) in the case n = 0, we can construct periodic solu-

tions in explicit form that lie on the integral surface (10),

(11). If there exists a family of such solutions for T values

that belong to a certain interval T1 < T < T2 , this family will

form a subset of the investigated integral surface that wholly

consists of periodic solutions. The subset has dimensions of

13
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2, and its parameters may be the period and phase (in the solu-

tions of boundary problems (19) and (23) the phase is fixed,

but due to the autonomy of set (3 1 ) when n 0 this parameter

can be chosen at will).

4. Numerical Investigation of the Integral Surface
When n=

A numerical construction of the solutions of the boundary
problem (3 1 ), (19) in the case n = 0 was done as follows. A

certain value of the period T was assigned and for this value

the problem (19) was solved by the zeroing method. As the

first approximation of the unknown initial conditions
0 1 (0), 0 2 (0), 0(0) we used the values:

S2,(o) =zk 3̂ '. n:(o1=+.plc)=o.

where k is the root of the equation:

X(k) _ rte.	 (24)

K(k) is a complete elliptical integral of the first kind. Such

values of 52 1 (0), 0 2 (0), S(0) are obtained by converting from the

initial conditions of the solution of boundary problem (9),

(17) to variables Q2 and S as per formulas (8). We observe

that equation (24)  has real roots only when 	 /14

For X = 0.25, u = 0.2, K = 10.30, Fig. 4 and 5 show the

dependence on T of the initial conditions Q 1 (0) , S2 2 (0) , a(0)
of the solutions of boundary-value problem ( 19) (for K = 30

Fig. 4 shows only 01 (0) as a function of T). By virtue of the

second relation ( 4), the curves obtained from the curves in

Fig. 4 and 5 by the transformation:

0,(0)'• -S1r(0),S2,(U)-•.01(0). NO- _A60. l ' ••p .

15
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will also specify the initial conditions for the solutions of

boundary problem (19). The curves shown in Fig. 4 and 5 con-

sist of separate pieces. In the scale of the figures the

breaks between certain pieces are unremarkable and for clarity

we show them by circles. The Jacobian:

dI .Q r(y^ d^^) Ib(r)
1- al S),(o). n	 p^(11).(0)J	

(25)

calculated for solutions belonging to an identical piece, has

an identical sign. The sign of J changes in moving to an

adjacent piece.

Fig. 7 and 8 show graphs of the functions:

VT) ' a(7 ),P(7 ) ( 0 ` I = "')

for several of the calculated T-periodic solutions of set (3).

An analysis of these figures reveals that the breaks of the

curves in Fig. 4 and 5 are due tc resonances between the slow

(with frequency tih) and fast (with frequency %I—K) oscillations

of the satellite. The presence c,f such resonances suggests a

divergence of the series (10) and (11). This situation is

typical for periodic solutions of sets of differential equations

with a large parameter [7,8]1.

In order to construct the rotational periodic solutions

that lie on the integral surface (10), (11) when n = 0, the

boundary-value problem (3'), (23) was solved. The solution was

done by the method of zeroing. As a first approximation of the

1 I [7] an independent set of differential equations is examined
with small positive parameter p that regularly figures in it,
and periodic solutions of this set with a period of til/ were
sought. If, in the set of [7], we replace the independent
variable T	 3ji and make another series of manipulations, we
can obtain a set with the large parameter 1/,u, similar to the
set (3) . .y

W. 1

16



OF POOR QUAL"I

unknown starting conditions Q 1 (0), Q 2 (0), S(0) the value was

used:

where }: is the root of the equation: 	 /15

h(k)	 iki VP*.

Such values of 52 1 (0) , S2 2 (0) , R(0) are obtained by changing from

the initial conditions of the solution of the boundary-value

problem ( 9) , ( 21) to variables S2 2 and S by formulas ( 8) . For

X = 0.25, ^j 0.2, K = 10.30, Fig. 4 and 9 show the dependence on

T of the initial conditions 52 1 (0), Q 2 (0), Q(0) of the solutions

of the boundary problem (23) (for K = 30 Fig. 4 shows only

52 1 (0) as a function of T). By virtue of the second relation

of (4), the curves obtained from those in Fig. 4 and 9 by the

transformation:

will also specify the initial conditions of the solutions of

the boundary problem (23). The curves shown in Fig. 4 and 9

consist of separate pieces. In the scale of the figures the

breaks between certain of the pieces are not notable and for

clarity we indicate them by circles. The reason for the

occurrence of these breaks is the same as in the case of the

oscillations: resonances between the slow and fast motions of

the satellite. The behavior of the sign of the Jacobian:

a f ^a,^c1. ^^, a

for the calculated solutions of problem (23) is similar tc, that

described above for the sign of the Jacobian (25). Fig. 11 and

12 show examples of the rotational periodic solutions of the

set ( 3) .

In order to investigate the stability of the discovered

17
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periodic solutions of (3), the characteristic equation of the

corresponding set of equations in variations was examined.

Using the property of symmetry of the set (3) and of the

investigated periodic solutions, it can be proven that this

characteristic equation is reciprocal. Furthermore, by virtue

of the independence of set (3) in the case n = 0, this equation

has a root equal to 1 with multiplicity of at least 2. In view

of these remarks, this particular characteristic equation can

be represented as:

(p-f)"(p1 - a,p+f)(p4-alp +1) =o,	
(26)

where a l and a2 are certain coefficients. If a l and a2 are real

and:

la,I	 Irr,ls2

all the roots of equation (26) will lie on the circle 1 p I = 1

and the necessary conditions of orbital stability of the

investigated periodic solution will be fulfilled. Otherwise,

this solution is unstable. Figs. 6 and 10 show graphs for the 	 /16

dependence on T of the coefficients a 1 and a 2 for several of

the calculated periodic solutions of (3). As was found for the

solutions shown in Fig. 4, 5 and 9, the necessary conditions

of orbital stability are fulfilled for all values of T, except

for the small neighborhoods of the points of discontinuity of

the graphs of the initial conditions and narrow zones (with ,s

width AT ti 0.05) of parametric resonance. The latter are pro-

duced in the neighborhood of the points specified by the rela-

tions a 1 ^ -2, a 2 % -2, a 1 ti a 2 (cf. Fig. 6,10). 1	Since the

By an appropriate replacement of the variables, equations (3)
can be reduced to the Hamiltonian form: the external moment
acting on the satellite is susceptible of a force function:

V	 i4i^f lAir^^ ti,k^CQ f ) ^'l{iV'j/R^^Qrr

Therefore, in keeping with the theorem of Krein-Helfand-Lidskiy
(9], zones of parametric resonance will occur in the neighbor-
hood of only some of the points al Id a2.

18
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axis are very narrow,

reliability. Two such

In Fig. 6 and 10 the;

cillations (Fig. 6) when

rotations (FiS. 10) when

zones of parametric resonance on the T

it is difficult to determine them with

zones have been found with certainty.

are shown by the letter R. For the os

T = 16.16 we have a 2 = -2.023; for the

T = 13.86 we have:

I m a, - - Ion a, = 0. 103.

Using the first terms of the series (10) for a and S we

can establish that, when n = 0, the maximum angle em between

the axes Ox  and OX  in the case of solutions that belong to

the integral surface (10), (11) will not exceed:

As shown by computations, this estimate is rather good for the

nonresonant periodic solution. According to such estimate, when

X = 0.25, u = 0.2, K > 10 and 1011max < 2 * , we have 6m K 4°.

The obtained result suggests the possibility of using nonresonant

periodic solutions as the nominal undisturbed movements of the

satellite in the regime of uniaxial aerodynamic attitude control.

5. Numerical Investigation of the Integral Surface
10) , (11) When n	 0

When n # 0 the solutions that belong to the integral sur-

face (10), (11), in general, are not periodic, and the numerical

investigation of this surface is complicated. To check for the

existence of such a surface the set (3) was numerically inte-

grated on large intervals of time. On the segment 0 < T < 200 n

solutions of this set were calculated with initial conditions

(cf.	 (8)) :

*
For nonresonant solutions of the boundary problems (19) and
(23), IQ11max = Q1(0)"
**
For orbits with an altitude above 250 km, this interval com-

prises more than 6 days.

19
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^(4))4".-), to) =uw. s2,(0)= cos X'. s2,(n)=- su,X0. 4 (6)	 -n.

The computations were done for a = 0.25, U = 0.2, K = 10,

n = -0.1 and n = -0.3. The findings are shown in Fig. 13-24.

On each figure in the plane:

(X; nwd ZIT), .(2,)

crosses indicate the Points:

1 d'(':ra)(rnod2ff),Q,IZ n i t ))(01=0.

Such figures are usually known as stroboscopic pictures. These

figures also show for each solution the maximum angle 0 m between

the axes Ox  and OX l' 
This angle is found from formula:

►,, - max aucvs ( (aSY('0rVSp(-r))
0c7,:an71

A comparison of Figs. 13-24 with Fig. 3 reveals a rather

good agreement between the obtained stroboscopic pictures of

the solutions of (3) and the phase pattern of (9). A comparison

by pairs of Fig. 3 with Fig. 13 and 14, 15 and 16, 17 and 18,

19 and 20 suggests that, for identical parameters Y 0 and X10'

when n = -0.1 the agreement between the stroboscopic pictures

and the phase curves in Fig. 3 is more accurate than when

n = -0.3. In all the versions of the analysis it was found

that 0m < 15°. This result, as well as the results of §4,

testify to the possibility of using the satellite motions that

belong to the integral surface (10), (11) as nominal undisturbed

motions in the regime of uniaxial aerodynamic attitude control.

The above-considered mathematical model of a satellite is

quite idealized. This is in keeping with the fact that, at any

rate, it is described by differential equations that can be

converted to the Hamiltonian form. Nevertheless an analysis

of this model can produce substantive results in the dynamics

L .
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of aerodynamic satellite attitude control systems. The methods

used in the work can be employed to investigate a broad class of

such systems.
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