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Annotation

Within the context of a simple mechanical model the paper
examines the movement of a satellite with respect to the center
of masses under conditions of uniaxial aerodynamic attitude
control. The equations of motion of the satellite take account
of the gravitational and restorative aerodynamic moments. It
is presumed that the aerodynamic moment is much larger than the
gravitational, and the motion equations contain a large para-
meter. A two-parameter integrated surface of these equations
is constructed in the form of formal series in terms of negative
powers of the large parameter, describing the oscillations and
rotations of the satellite about its lengthwise axis, approxi-
mately oriented along the orbital tangent. It is proposed to
treat such movements as nominal undisturbed motions of the
satellite under conditions of aerodynamic attitude control.

A numerical investigation is made for the above integrated
surface.
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UNIAXIAL AERODYNAMIC ATTITUDE CONTROL
OF ARTIFICIAL SATELLITES

V. V. Sazonov

The Keldysh Institute of Applied Mathematics,
USSR Academy of Sciences

1. Introduction

The aerodynamic moment can be used on circular and slightly
elliptical orbits in the altitude range of as much as 500 km
for attitude control of the longitudinal axis of an artificial
earth satellite in regard to the oncoming air stream, the
velocity of which is practically directed alcng the orbital
tangent. For this purpose, the shape of the exterior shell of
the satellite is chosen so that, when the normal attitude con-
trol is disturbed, pitch and yaw restorative moments are created
that strive to line up the longitudinal satellite axis with the
velocity vector of the oncoming current. Since the projection
of the aerodynamic moment on the longitudinal satellite axis
is equal to zero,1 in itself the aerodynamic moment can only
provide a uniaxial attitude control of the satellite.

This attitude control principle was used aboard the Soviet
satellites Kosmos-149 and Kosmos=-320 [2-4]). However the atti-
tude control system of these satellites was not a purely aero-

lFor certain configurations of the cuter satellite shell the
projection of the aerodynamic moment on the longitudinal axis

is different from zero. This projection may result in a
twisting of the satellite (propeller effect [l]) and somer-
saulting. Therefore the shape of the outer shell of a satellite
that functions under conditions of aerodynamic attitude control
should be chosen so that this projection is identically equal to
zero.

*
Numbers in the margin indicate pagination in the foreign text.

Q*



dynamic one. In order to create a restorative moment about the
longitudinal axis, two-degree gyroscopes were installed aboard
these satellites, also serving as absorbers of the perturbing
motion. By using the gyroscopes and the gravitational moment
it was possible to obtain a triaxial attitude control of these
satellites. But if it is enough for the satellite to have a
uniaxial attitude control in terms of the orbital tangent to
accomplish its flight mission, the principle of aerodynamic
attitude control in the pure form can be used. The present work
investigates the possibilities of such a method of attitude
control.

The satellite discussed below is regarded as a solid with
outer shell in the form of a sphere. The center of the sphere
does not coincide with the center of masses of the satellite
and lies on one of its main central axes of inertia. Such a
satellite may serve as a model of that shown in Fig. 1. Here
the instrument package has small geometrical dimensions, and
we can ignore the influence of the atmosphere on it. The sphere
acts as an aerodynamic stabilizer and has a mass much less than
that of the overall satellite.

The equations of motion of the satellite take account
of the gravitational and restorative aerodynamic moments. It
is presumed that the aerodynamic moment is much larger than the
gravitational, and the motion equations contain a large para-
meter. A two-parameter integrated surface of these equations
is constructed in the form of formal series in terms of negative
powers of the large parameter, describing the oscillations and
rotations of the satellite about its lengthwise axis, approxi-
mately oriented along the orbital tangent. It is proposed to
treat such movements as nominal undisturbed motions of the
satellite under conditions of aerodynamic attitude control. A
numberical investigation is made for the above integrated sur-
face.
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Let us consider a satellite (solid), the center of masses
of which is moving in a circular orbit about the Earth. To
write the equations of motion of the satellite relative to the
center of masses we shall introduce two clockwise Cartesian
systems of coordinates.

Oxl,xz,x3 - a coordinate system rigidly bound to the
satellite. The point O is the center of masses of the satellite.
The axes Oxl,0x2,0x3 are the major central axes of inertia of
the satellite,

oxlx2x3 - the orbital system of coordinates. The axis
ox3 is directed along the radius vector of the point O with
respect to the center of Earth, the axis Oxl is directed along

the orbital tangent in the direction of movement of the satellite.

We shall assign the position of the coordinate system
Oxlx2x3 relative to the system oxlx2x3 by using the angles
a, B, v (Fig. 2). The matrix for conversion from one of these
systems to the other has the appearance:

x, 1z, lx,
1 ekl ol Oy = OSaiOSp,

agla,la . ,
X bl el il Ay <05l Sinp oSy + Sind sin¥,

Xy |@a|asp|way

Q3 = o5 u‘nluma’-sindws&

X, Qg | Qs Ay

5

a,, Sing, Mgy = Sind(ﬂs’ ,
g = USACOLY, 4y 5(‘;145{”/1 QWsx - COSL 5 ),
Ay = Aspsind, Q33 = SINA SINPSINY +cOSA COSY .

We introduce the definitions: (wl,wz,w3) - the absolute
angular velocity of the satellite (hereafter the components of
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the vectors are given in the coordinate system Oxlx2x3):

A,B,C - the moments of inertia of the satellite with respect to
the axes 0x1,0x2,0x3; (Ml'MZ'MB) - the major moment of the
external forces acting on the satellite; wy = const > 0 - is the
angular velocity of orbital motion; t is the time. The movement
of the satellite relative to the center of masses is described
by equations:

Ag‘:’l +(C-B)wwy = My,

Bg%‘)"‘ (A-Clwiwy = My,

c 5%"'(5-4)@‘”: “Ms, (1)
f’le . Fé; (wycosu +w, sina) - w, tgpecsy,

. cosy
529 = Wy + Lgp(e, OSK + Wy Sinat) = Wo Zo3p °

t
AB | W, Sina (0 00SK + W, SEnY.
3—{_ 1 5n (_‘('3 °

Of the external moments acting on the satellite we shall
only consider the gravitational and restorative aerodynamic
moments. The components of the gravitational moment have the
form:

M’1 = 3“)02([ -B)E,ga,, . %‘ = .5‘():'@'()“”“”, H’] = 3«',."(8 'A)a" a,,.

In calculating the restorative aerodynamic moment we shall
consider that the outer shell of the satellite has the shape of
a sphere of radius R with center at point:

(d 0‘0 .’(’)o
Here 4 < 0. With respect to the interaction between the

satellite and the atmosphere we assume the following: 1) the
atmosphere is immobile in absolute space; 2) the action of the

atmosphere on the satellite reduces to a resistance force applied

at the center of pressure and directed opposite the velocity of
the center of masses of the satellite; 3) the resistance of the
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atmosphere does not affect the evolution of the orbit. Under
these assumptions the components of the aerodynamic moment are:

Mﬂl 0, Mas . J' C,_fvz.ll'dea,, . /"u\ - : ('r"v‘:fl ’r’lJ” ” .

Here Cy is the coefficient of aerodynamic resistance, p is the

density of the oncoming air stream, V is the velocity of the
center of masses of the satellite.

Until now the orbit of the center of masses of the satellite
was taken as circular. Such an assumption is perfectly justified

when the eccentricity is £0.01, although the calculation of the

density of the oncoming air stream should allow for even a small

orbital ellipticity. We shall assume that this density depends
on the height of the satellite h above the surface of the Earth

as:
(2)

where p_ is the density of the atmosphere at perigee, hﬂ is

the height of perigee, K is the height of the homogeneous
atmosphere. For small orbital eccentricity formula (2) can be
represented as:

[ explp(1-cosew, (t -t )],
Here:
N= O (Qu/pn)

Py is the density of the atmosphere at apogee, to is the time
it takes for the satellite to pass through perigee.

Let us consider equations (1) when:

Mf ‘M,l‘ ‘Nﬂl‘. ( ': = 10203)0

3

o



ORIGINAL PAGE I»
Using the nondimensional quantities: OF POOR QUALITY

O e 2 - lxpaV AR

[ 2wl
Q= 2.3 T Well 1)

these equations can be written as:

R, -IM(Q 4328, ),
RPN

Q.7 A}‘(Q (823 = 3@ tyy) - =0 /'A/t
D, (A0, 3ty RPNy, (3)
b] ~—-?(Q,wsau 524 8ine ) - Lgpcosd,

. cosd
W R 0 Pgp(Rtosa ¢ D ysinal- Gig

B ~SUnd 0 2,005 4 siny.

Here the dot indicates a differentiation with respect to 1,

P(T,7) = explP(1-cosT)).

Byuations (3) are simplifications. For example, they do yal
not cllow for so important a fact as the difference in atmos-
pheric density values at the sunlit orbital segment and that
in the Earth's shadow. Nevertheless these equations can reveal
the main features of the dynamics of uniaxial aerodynamic atti-
tude control.

We shall point out several properties of equations (3).
To shorten the notation we shall use the vector conventions.
We introduce the vector:

!g(Qf'Ql'QI' "d'ﬁ)r

and define the function:

Flr.t.p)ek!



ORIGINAL PAGE |g
OF POOR QUALITY

such that set (3) can be written as:

i=F(2,19). (3*)

Set (3') has the property (E) [5] with respect to the
matrices:

S -diag(1.4,-1,-1.-1.1), S’ «ctiag(-1.1.9.1,~1,-1).

i.e. the function F(z,t,n) satisfies relations:

SF(S2.-T.g)=-F(r.t.9), SF(S'E,-T.p)=-Fr.T.7). (4)
Moreover: §
F(a,t+2m,9)=F(2.7.9). F(2+xe,, 1'.9)'5”‘75'1.73 ), (5)
where:

e, =(0.0,0.1,0,0), 5'-d¢'¢’ (1,11, 1,-1.-1). 5

When n = 0, set (3') is autonomous: ¥F(2,T,0)3T 0.

Set (3) admits of stationary solutions:
S),=O;Qz=wsl°; S)"‘s‘." ,c;d'ﬁ"“ x."o.%-“"‘f- (6)

that describe the position of equilibrium of the satellite in
the orbital coordinate system. 1In all these positions of
equilibrium the axis Ox, coincides with OX,, the axis Ox, (0x,)
coincides with the axis ox2 or 0X,.

3. The Integral Surface

We shall call the movement of the satellite in which the
angle 6 between axes Ox, and OX, (6 = arccos (cosacosB)) does
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not exceed a certain value A the regime of uniaxial aerodynamic
attitude control. For example, we may take A = 15°, Depending
on the values of the satellite parameters, different approaches
are possible Ior realization of the regime of aerodynamic atti-
tude ccutrol and its investigation. In particular, we may con- /8
sider one of the equilibrium positions (6) to be the nominal
undisturbed motion of the satellite in this regime. 1In this
case analysis of the regime of aerodynamic attitude control will
primarily consist in investigating the stability of the chosen
position of equilibrium. Such an approach is natural when the
aerodynamic and gravitational moments acting on the satellite
are comparable in magnitude (& :*' .. But if the aerodynamic
moment preponderates (#%»1), it is advisable to conduct the
investigation of the regime of aerodynamic attitude control in
different fashion. We discuss below one of the possible methods
of such an investigation. The analysis will be based on the
infinitesimal ¢ ./~ .

We shall write set (3) as:

R, p(Q,0y 3aau,),
EOIApI0, E(-ANRN, Sawal) ptpay,
ED,  E(1-2 1 AN R,92, - 30, 4y )1 P(T)a ., (7)

y - ;,;,f; (82, co%at + 82 Sinw) /’://swst.

d = L f’p(Q,ros« t8 sinad) - -:%3; .

p oo Deund 1 8 cons 4 Sind.

When ¢ = 0 this set has solutions for which:

9,'“’5’,1),:-5{_,){_,‘ ﬁ"o (8)

while the variables y and Ql are determined by equations:

Y~ , 8y« 4p Sin¥eosy. (9)
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Fig. 3 shows the phase picture of the set (9) in the case of
u = 0.2, The stationary solutions (6) of set (7) at ¢ = 0
correspond to the stationary solutions of this set:

'..0' chun 3!/!:”,*0

Motions of type (8) and (9) can be used as nominal undis-
turbed motions of the satellite in the regime of uniaxial
aerodynamic attitude control when the aerodynamic moment acting
on the satellite is infinitely large. 1In these motions:

1} p-o »

i.e. the axis Ox1 is directed exactly along the orbital tangent.

When € ¥ 0, set (7) does not have solutions (8), (9), but when

€ << 1 it is possible to construct its integral surface, similar {9
to the family of such solutions, in the form of formal power

series. The motions that belong to this integral surface shall

be regarded as nominal undisturbed movements of the satellite

in the regime of uniaxial aerodynamic attitude control.

We shall seck the integral surface of the set (7) that
merges into the family of solutions (8), (9) when ¢ = 0 in the

form:
Q, \):H'u“/,:{,r) TRV IR o PS § Q'.r‘f),

RSN 3P ) L
O QNN LTE) s Y (a, 0,.7.9)s

: ’:‘)u(‘.ﬂ,.”.'/) .o,
A H ) s e (K9, ) ¢ ¢ (80,1 9)0 (10)
PR B (K 0,T.9) 0 ey (0.0,.9)s -

where:

Y -POQ00) - QB ) R0, 8 ) e,

é,am.».\,*,.z.'/.r); I CRLLLIAE XY AU PR A7) FAR (11)

We shall regard the above series as formal, i.e. we are not con-
cerned about their convergence.
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Inserting series (10), (1l1) into aset (7) and equating the
expressions for identical powers of ¢ on tha left and right, we
obtain a sequence of recurrent relations:

du - ?M .
Pr-9u.

PP W IR L g-%ﬁ; Yusin sy + N8 0y,

S« Naly e %‘;—;‘-n, - '33" Yp SNy 08) + ;:3 ! Yk,

P - < (&asind ¢ Aacos) * §s5k .
Qu v M (S2uecs) S0 5uy)+ 96
(k=1.0....,

Here 9jk (3 =1,...,6) are known functicns that depend on:

A N TN LYY} Sy YT A IIF, ., Ve,
A AL LY AT X V By 2 I, .,

when” 7.4 &/

It is easy to see that this sequence uniquely defines the
unknown coefficients of series (10), (ll1). The coefficients
of € in these series have the form:

‘. é(’l‘.“.-')'t“'".,' /" “’ M)U,-m,d ,

" y
AP ".‘V‘ ‘;:;‘.“"" . A ‘l;"j“x (v 1, ¢ s BN ),
° A )
. o, i 1y 3 - .
Oy Ak nk ‘;“" (0, Capsin ey ).
1y, - An¥-peony,

Gy (v eusd -ty uny)

Let us point out several properties c{ the integral sur-
face (10), (11). To shorten the rotation we introduce the
vector function:

10

M . Sl .
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FN 0T, .0 ) (D Q5000900 BN YD
¥, o8, 84,7.9, E) AN .0

<«

Using relations (4) we can prove that:

SO X0, T.n ) g9, .6,
PO 0, ) PUE Oty ),
@or g, 0y ) == QA8 1,98 ;

N X, e E) Py E),
PY s, o €)= (0T E),

(J(”‘ "‘),. 'l.'/.f.); ()(X- (‘)f»‘t’{,‘c)'

By virtue of relations (5) we have:

‘;(’. ")1.T IS ',', («I)" ‘;"x- 24,7, 7'( ).
P8yt 72 g, ) P¥ 82,008,
QY s24, 't'ufn‘.'l.l)"Q("Q"T’%U;

PO, 92,,T.0,8)= 57’(5-32,.'('7- €+ e,

Peyen, O p ) PO g F),

QuYon, Qe 1,9.8) QX0 C,9, ).

We can show that when ¥ . %/, 7, 3/ :

@(«Y.,,o,z-_ noEYS (0. c0s¥,,-5in¥ ¥, 0,0)7,
P(Xe,0,T,0.¢8)- (Yo, 01,9, €)=0,

(12)

(13)

(14)

{15)

i.e. the stationary solutions of (6) lie on the constructed

integral surface.

When n = (, series (10), (11) do not contain 1, and the

integral surface specified by these series can be numerically
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investigated rather easily. Let us consider the case n = 0 in
more detail. With precision down to terms of order O(e) we can
write set (ll) in form (9). This set is equivalent to the
equation of mathematical pendulum:

20 0 usin 2y w0

and is integrated in elliptical functions. Let us consider the
periodic oscillatory and rotational1 solutions of set (l1)

(n = 0), similar to the periodic oscillatory and rotation solu-
tions of set (9). Without restricting the generality we shall
consider that u >~ 0 and y(0) = 0.

Let us first deal with the oscillatory periodic solutions.
It is easy to prove that the T-periodic solution of set (9)
y(v), nl(\), for which y(0) = 0, satisfies relations:

M)y a e K) - -x),
DT (1), QAT T ) 0. (16)

by virtue of the last two equations, nl(T/4) = 0. For the set
(11) (n = 0) let us examine the boundary-value problem:

et R (F)wo (70 (17)

Using the properties (12), (13) of functions P and Q, we can
prove [5,6] that any given solution y(1), ul(t) of this problem
satisfies relations (16) and, consequently, is T-periodiz. For

the corresponding solution of set (3'):

1In the case of n = 0 we shall call the solution ¥(),2,(1){z(r))
of the set (11) ((3')) the rotational periodic solution if there
exists a number 720 (period) such that:a(ter)aye)..n,

Qe 7Y QN2 1) 2t) e 2 @)

The T values of different sign correspond to rotations in dif-
ferent directions.

12
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the equations are valid (cf. (12), (13)):

Sa(-t)-2(t), SE(-T+x) 21 L), (18)

by virtue of which:
2t+ ;):SS'!(‘I:) .

It follows from this that the second and fifth components of the
vector z (1) (corresponding to variables 92 and o) are
T/2-periodic functions of 1, while the remaining components

are T/2-antiperiodic functions. Setting v = 0 in (18), we

find the boundary conditions:

S#o) =210, S'2(L)=2(L). (19) ’

which are satisfied by the solution of z(1). The scalar form
of these conditions is:

$2,(0)- B(0) = (1) = 2, () = (-] )= p (L) = 0.

It can be shown [5,6] that in the case n = 0 for any given
solution of z(1) of the boundary-value problem (3'), (19)
relations (18) are valid and, consequently, this solution is
T-periodic.

Let us turn to the rotational periodic solutions. Any
given rotational T-periodic solution of set (9) vy(t1), Ql(r),
for which v(0) = 0, satisfies the relations:

¥(-7)= -¥(T), N(T+F)=¥T)+ X,

Q,(-T)=R24T), (t+F)=02,0). (20)

By virtue of the first two of these relations we have
y(T/4) = n/2. For the set (11) (n = 0) let us consider the

13
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sop ¥(f)-% 0 (Tzo0. (21)

It can be proved that any given solution y(1), Ql(r) of this
problem satisfies conditions (20) and thus is T-periodic. For
the corresponding solution of set (3') (n = 0):

() = PLH(1),40¢),1,0,E ]

the equations are valid (cf. (12), (15)):
S2(-T)=2(T), ET+Th)=S"2(T)+me,, (22)

by virtue of which:
U-T+ ;'7-') = §S8"z(T f-Z:) +ITe,.

Setting 1 = 0 we find the boundary conditions:
S2(0) =2(0), SS'%(L)=2(L)-xe,. (23)

which are satisfied by the solution z(t). The scalar forms
of these conditions is:

Q4(0) = M(0) = 4 ()= R22(T) = ¥(F)-F =p(F)=0-

It can be proved that, when n = 0, any given solution z(t1) of
the boundary problem (3'), (23) satisfies relations (22) and,
consequently, is a rotational T-periodic solution.

Numerically solving the boundary problems (19), (23) for
the set (3') in the case n = 0, we can construct periodic solu-
tions in explicit form that lie on the integral surface (10),
(11). If there exists a family of such solutions for T values
that belong to a certain interval T) < T < T, this family will
form a subset of the investigated integral surface that wholly
consists of periodic solutions. The subset has dimensions of

14
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2, and its parameters may be the period and phase (in the solu-
tions of boundary problems (19) and (23) the phase is fixed,
but due to the autonomy of set (3') when n = 0 this parameter
can be chosen at will).

4. Numerical Investigation of the Integral Surface
(10), (11) When n = 0

A numerical construction of the solutions of the boundary
problem (3'), (19) in the case n = 0 was done as follows. A
certain value of the period T was assigned and for this value
the problem (19) was solved by the zeroing method. As the
first approximation of the unknown initial conditions
2,(0), 2,(0), B(0) we used the values:

Q(0)=2kvp, R:(0)=1, plc) -0,
where k is the root of the equation:

Kik) - v, (24)

K(k) is a complete elliptical integral of the first kind. Such
values of 91(0), QZ(O)' B(0) are obtained by converting from the
initial conditions of the solution of boundary problem (9),

(17) to variables Qz and B8 as per formulas (8). We observe

that equation (24) has real roots only when ryniF.

For A = 0.25, u = 0.2, x = 10.30, Fig. 4 and 5 show the
dependence on T of the initial conditions 91(0), 92(0), B(0)
of the solutions of boundary-value problem (19) (for k = 30
Fig. 4 shows only Ql(O) as a function of T). By virtue of the
second relation (4), the curves obtained from the curves in
Fig. 4 and 5 by the transformation:

Q,(0) -+ 'S),(()),SI,((:)-v,\‘)l(o)'p(o) BT T,

15
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will also specify the initial conditions for the solutions of
boundary problem (19). The curves shown in Fig. 4 and 5 con-
sist of separate pieces. In the scale of the figures the
breaks between certain pieces are unremarkable and for clarity
we show them by circles. The Jacobian:

;. A8lg)u(F) B

02,00, @, p0] e

calculated for solutions belonging to an identical piece, has
an identical sign. The sign of J changes in moving to an
adjacent piece.

Fig. 7 and 8 show graphs of the functions:

¥(), (), pl7) (0=T = T)

for several of the calculated T-periodic solutions of set (3).
An analysis of these figures reveals that the breaks of the
curves in Fig. 4 and 5 are due tu resonances between the slow
(with frequency ~h) and fast (with frequency “v/k) oscillations
of the satellite. The presence ¢f such resonances suggests a
divergyence of the series (10) and (11). This situation is
typical for periodic solutions of sets of differential equations
with a large parameter [7,8]1.

In order to construct the rotational periodic solutions
that lie on the integral surface (10), (11) when n = 0, the
boundary-value problem (3'), (23) was solved. The solution was
done by the method of zeroing. As a first approximation of the

lIn 7] an independent set of differential equations is examined
with small positive parameter p that regularly figures in it,
and periodic solutions of this set with a period of “1//u were
sought. If, in the set of (7], we replace the independent
variable 1 + /j and make another series of manipulations, we

can obtain a set with the large parameter 1//u, similar to the
set (3).
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unknown starting conditions 91(0), 92(0). B(0) the value was
used:

000 M 2y 0,01, flO)-0,
where k is the root of the equation:

KW= 75 W

Such values of 91(0), 92(0), B(0) are obtained by changing from
the initial conditions of the solution of the boundary-value
problem (9), (21) to variables 92 and B by formulas (8). For
A =0.25, w 0.2, «k = 10.30, Fig. 4 and 9 show the dependence on
T of the initial conditions 91(0), 92(0), B(0) of the solutions
of the boundary problem (23) (for k = 30 Fig. 4 shows only
Ql(O) as a function of T). By virtue of the second relation
of (4), the curves obtained from those in Fig. 4 and 9 by the
transformation:

()= -R21(0), R, (2)>0,(0), ple)-+ ~p(0), T-+-T.

will also specify the initial conditions of the solutions of
the boundary problem (23). The curves shown in Fig. 4 and 9
consist of separate pieces. 1In the scale of the figures the
breaks between certain of the pieces are not notable and for
clarity we indicate them by circles. The reason for the
occurrence of these breaks is the same as in the case of the
oscillations: resonances between the slow and fast motions of
the satellite. The behavior of the sign of the Jacobian:

alo, ().ud).p )
3 Q,0), Q, (0. p(e))

for the calculated solutions of problem (23) is similar tc that
described above for the sign of the Jacobian (25). Fig. 1l and
12 show examples of the rotational periodic solutions of the
set (3).

In order to investigate the stability of the discovered

17
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periodic solutions of (3), the characteristic equation of the
corresponding set of equations in variations was examined.
Using the property of symmetry of the set (3) and of the
investigated periodic solutions, it can be proven that this
characteristic equation is reciprocal. Furthermore, by virtue
of the independence of set (3) in the case n = 0, this equation
has a root equal to 1 with multiplicity of at least 2. 1In view
of these remarks, this particular characteristic equation can
be represented as:

(p-1) ‘(p‘-a,,ou)(,o‘-a;p +1) =0,

(26)
where a, and a2 are certain coefficients. 1If a, and a, are real
and:

Jay) <2 Jals
all the roots of equation (26) will lie on the circle |p| =1

and the necessary conditions of orbital stability of the
investigated periodic solution will be fulfilled. Otherwise,
this solution is unstable. Figs. 6 and 10 show graphs for the
dependence on T of the coefficients a; and a, for several of
the calculated periodic solutions of (3). As was found for the
solutions shown in Fig. 4, 5 and 9, the necessary conditions
of orbital stability are fulfilled for all values of T, except
for the small neighborhoods of the points of discontinuity of
the graphs of the initial conditions and narrow zones (with a
width AT { 0.05) of parametric resonance. The latter are pro-
duced in the neighborhood of the points specified by the rela-
tions a, ¥ -2, a, R -2, a, 41 a, (cf. Fig. 6,10).1 Since the

Iﬁy an appropriate replacement of the variables, equations (3)

can be reduced to the Hamiltonian form: the external moment
acting on the satellite is susceptible of a force function:

U -dwiiral pag rcal) JeapVrRiday

Therefore, in keeping with the theorem of Krein-Helfand-Lidskiy
[9], zones of parametric resonance will occur in the neighbor-
hood of only some of the points a, A a,.

18



ORIGINAL PAGE I3
OF POOR QUALITY

zones of parametric resonance on the T axis are very narrow,

it is difficult to determine them with reliability. Two such
zones have been found with certainty. In Fig. 6 and 10 the;
are shown by the letter . For the oscillations (Fig. 6) when
: 16.16 we have a, = -2.023; for the rotations (Fig. 10) when
&L 13.86 we have:

Ima,=-Ima, = 0.103.

Using the first terms of the series (10) for a and B we
can establish that, when n = 0, the maximum angle em between
the axes Ox1 and Ox1 in the case of solutions that belong to
the integral surface (10), (11) will not exceed:

A 3114 1)1y e -

As shown by computations, this estimate is rather good for the
nonresonant periodic solution. According to such estimate, when
A =0.25, y=0.2, x >10 and |2,] . < 2", we have 6 < 4°.

The obtained result suggests the possibility of using nonresonant
periodic solutions as the nominal undisturbed movements of the
satellite in the regime of uniaxial aerodynamic attitude control.

5. Numerical Investigation of the Integral Surface
(10), (11) When n # 0

When n # 0 the solutions that belong to the integral sur-
face (10), (11), in general, are not periodic, and the numerical
investigation of this surface is complicated. To check for the
existence of such a surface the set (3) was numerically inte-
grated on large intervals of time. On the segment 0 € v < 200 n**
solutions of this set were calculated with initial conditions

(cf. (8)):

*For nonresonant solutions of the boundary problems (19) and
{323), |91| = 191(0)

max

* %
For orbits with an altitude above 250 km, this interval com-
prises more than 6 days.
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N(0)-¥,, R.(0) =R, Na(0)=C05¥0, 2,(0)=-5in¥, ., L(C)=p(0) 0.

The computations were done for A = 0.25, u = 0.2, k = 10,
n==0.1and n = -0.3. The findings are shown in Fig. 13-24.
On each figure in the plane:

(¥{mod 21),Q,)

crosses indicate the points:

"¥(27n)(mod 27T), R ((R7 1)) (1 =0, 1. .. 100).

Such figures are usually known as stroboscopic pictures. These
figures also show for each solution the maximum angle Gm between
the axes Ox1 and oxl. This angle is found from formula:

e = max anccos (cosd (T)eosp(t)) .
01~ 200m

A comparison of Figs. 13-24 with Fig. 3 reveals a rather
good agreement between the obtained stroboscopic pictures of
the solutions of (3) and the phase pattern of (9). A comparison
by pairs of Fig. 3 with Fig. 13 and 14, 15 and 16, 17 and 18,
19 and 20 suggests that, for identical parameters Yo and 910'
when n = -0.1 the agreement between the stroboscopic pictures
and the phase curves in Fig. 3 is more accurate than when
n = =0.3. In all the versions of the analysis it was found
that em < 15°, This result, as well as the results of §4,
testify to the possibility of using the satellite motions that
belong to the integral surface (10), (l11) as nominal undisturbed
motions in the regime of uniaxial aerodynamic attitude control.

The above-considered mathematical model of a satellite is
quite idealized. This is in keeping with the fact that, at any
rate, it is described by differential equations that can be
converted to the Hamiltonian form. Nevertheless an analysis
of this model can produce substantive results in the dynamics
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of aerodynamic satellite attitude control systems. The methods
used in the work can be employed to investigate a broad class of
such systems.
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Fig. 6. Stability of solutions of
the boundary problem (19), x = 10.
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