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GEOMETRICALLY NONLINEAR ANALYSIS OF
LAYERED COMPOSITE PLATES AND SHELLS

ABSTRACT

A degenerated three-dimensional finite element based on the total

Lagrangi a n, incremental,  formulation of a three -tiimensi ona 1 layered

anisotropic mediun is developed, and its use in the geometrically

nonlinear, static as well as dynamic, analysis of layered composite

plates and shells is demonstrated via several example p roblems. For

comparison purposes a two-dimensional finite element based on the

Sanders shell theory with the von Karman (nonlinear) strains is also

presented. The elements have the following features:

• Geometrically Unear and nonlinear analysis

• Static and transient analyses

• Natural vibration (1 inear) analyse

• Plates and shell elements

• Arbitrary loading and boundary conditions

• Arbitrary lamination scheme and lamina properties

The element can be used, with minor changes, in any existing general

purpose programs.

The 3-0 dimensional degenerated element has computational

simplicity over a fully th reL-dimensional element, and the element

accounts for full geometric nonlienarities in contrast to the 2-

dimwnsional elements based on the Sanders shell theory. As demonstrated

1



via numerical examples, the (leflections obtained by the 2-D shell

element deviate from those obtained by the 3-D element for deep

shells. Further, the 3-0 element can be used to model general shells

that are not necessarily doubly-curved. For example, the twisted plates

cannot be modeled using the 2-0 shell element. Of course, the 3-D

degenerated element is comp ,itationally more demanding than the 2-D shell

theory element for a given problem. In summary , the present 3-0 element

is an efficient element for the analysis of layered composite plates and

shells undergoing large displacements and transient motion.
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Chapter I 	 PC.r7T IS

INTRODUCTION	 OV PuOR QUI,LI'rY

1 .1	 mot i vat i on

Composite materials and reinforces, plastics are increasingly used

in aircraft, space vehicles. automobiles, and pressure vessels. V;th the

or	
increased use of fiber- reinforced composites as structural elements,

studies involving the thermomechanical behavior of shell components made

cf composites are receiving considerable attention. Functional

requirements and economic considerations of design have forced designers

to use accurate but economical methods of determining stresses, natural

frequencies, buckling loads, etc.

An accurate prediction of the behavior of shell structures requires

a realistic modeling of the actual geometry, material behavior, and

kinematic description of the components. The partial differential

equations describing the large-deflection behavior of anisotropic

composite shells of arbitrary gecmetry are not amenable to classical

analytical methods. Consequently, numeri ca 1 and approximate methods must

be used to predict desired design quantities (such as stresses,

frequencies, and buckling loads). In the last two and a half decades

the finite element method has emerged as the most powerful

analysis method of structural analysis.

The majority of the researzh papers in the open literature on

shells is concerned with bending, vibr,tion, and buckling of isotropic

shells. As composite materials are making their way into many

engineering structures, analyses of shells made of such materials become

important. Further, with the increased application of advanced fiber

composites in jet engine fan or compressor blades and high performarce
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aircraft, studies involving transient response of composite shell

structures are needed to assess the capability of these materials under

dynamic loads. At the time the p rn,ject was undertaken, a finite-element

analysis of the nonlinear transient response of laminated anisotropic

shells was not available.

Finite-element analyses of shell structures in the past have used

one of the three types of elements: 1. A 2-dimensional (2-D) element

based on a two-dimensional shell theory; 2. A 3-0 element based on

three-dimensional elasticity theory; and 3. A 3-D degenerated element 	 1

derived fram the 3-0 elasticity theory. The 2-0 shell theory is derived

form the three dimensional continuum field equations via, for example,

an analytical integra-J, )n through the thickness is employed to reduce

the theory to a two-dimensional theory. in doing so the static and

kinematic resultants are defined and used to derive the equations. In

contrast to the 2-D shell theory, in the 3-0 degenerated element, the

shell geometry and displacement fields are discretized from the outset

in the sense of finite elements, and the element contains full geometric

nonlinearity. The unavailability of a convenient, general nonlinear

shell theory makes the 2-D shell element restrictive in its use. The

nonlinearity included in the 2-0 shell element is that due to the von

Karman strains, in which the products of the derivatives of the transverse

deflection are neglected.	 In contras*_ to the 2-D shell

theory, no specific shell theory is employed in the 3-0 degenerated

element; instead, the geometry and the displacement fields are directly

discretized and interpolated as in the analysis of continuum problems.

The 2-D elements based or. shell theory are the most economical, followed

by the 3-D degenerated element. While the 3-D element is most. accurate,
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at least in theory, the computational ccst prohibits its use in the

nonlinear trans; it analysis of shells.

The present study is motivated by the lack of a finite-element

analysis „f geometrica.ly nonlinear transient response of laminated

anisotropic shel is. The present study involved the development of a 3-0

degenerated shell element for the analysis of a layered anisotropic

medium, accounting for full geometric nonlinearity and transverse normal

and shear stresses. The following literature survey provides a

background for the present work.

1.2 A Review of the Literature

There exist a n o - er of theories for layered anisotropic shells.

Many of these theories were developed originally for thin shells, and

are based on the Kirchhoff-Love kinemat4c hypothesis that plane sections

normal to the undeformed midsurface remain plane and normal after

deformation.	 Excellent surveys of various shell theories can be found

in the works of Naghdi [1] and Bert [2]. Here we review the literature

on composite shells.

The first analysis that incorporated the bending-stretching

coupling (due to unsymmetric lamination in composites) is due to

Ambartsunyan r 3,4]. In his analyses Ambartsumyan assrmed that the

individual orthotropic layers were oriented such that the principal aces

of material symmetry coincided with the principal coordinates of the

shell reference surface. Thus, Ambartsunyan's work dealt with what is

now known as laminated  orthotropic shells rather than laminated

anisotropic shells; in laminated anisotropic shells the individual

layers are, in general, anisotropic and the principal axes of material 	
a
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Symmetry of the individual layers Rio not necessarily coincide with the

principal coor0inates of the shell.

In 1962 Deng, Di ster and Taylor [5] formu 1 ated a theory of thin

shells laminated of anisotropic material. 	 The theory is an extent, tin of

the theory devel^,ped ^y Sta y sky [6] for laminated anisotropic plates to

Donnell's shallow shell theory. Cheng and Ho [1] presented an analysis

of iaminated anisotropic cylindrical shells using Flugge's shell

theory. A first approximation theory for the unsymmetric deformation of

nonhomogeneous, anisotropic, elastic cylindrical shells was derived by

Widera and Chung [8] by means of the asymptotic integration of the

elasticity equations. For a homogeneous, isotropic material, the theory

reduces to the Donnell's equations.

All of the theories discussed above are based on the Kirchhoff-Love

hypotheses. in which the transverse shear deformation is neglected. The

Love's first approximation theories are expected to yield sufficiently

accurate resuits when (i ) the lateral dimension to thickness ratio is

large; (i i) the dynamic excitations are within the low-frequency range;

(iii) the material anisotropy is not severe. However, application of

such theories to layered anisotropic composite shells could lead to as

much as 30% or more errors in deflections, stresses, or frequencies.

For example, the thick-walled composite cylinders used for aircraft

landing gears require a laminated thick-snel1 theory for their analysis.

The effect of transverse shear deformation and transverse isotropy,

as well as thermal expansion through the shell thickness were considered

by Gulati and Essenberg [9] and Zukas and Vinson [i l)]. Gulati and

Essenberg [9] showed that the circumferential displacement components

and the twist couple would arise due to the anisotropy and transverse
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sheer deformation. Whitney and Sun [11] developed a shear deformable

theory for laminated cylindrical shells that includes both transverse

shear deformation and transverse normal strain as well as expansional

strai ns. Recently, Wi dera and Logan [12,13] presented refined theories

for noohomogeneous anisotropic c;'indrical shells.

As far as the finite-element analysis of shells is concerned,

layered composite shells have not received nearly as much attention as

ordinary shells. The works of Dong [14] on statically-loaded

orthotropic shell of revolution, Oong and Selna [15] on free vibration

of the same, Wilson and Parsons [16] on static axi symmetri c loading of

arbitrarily thick orthotropic ,hells of revolution, and Schrit and

Monforton [17] on laminated  ani sotrapi c cyl i ndri ca 1 shill 1 s are the only

ones that considered the finite element method before the 1970's (note

that the latter reference is the only one that considered laminated

anisotropic shells). In the 1970's there was an increased interest in

the finite-elefrent analysis of bending and vibration of laminated

anisotropic shells. Apparently the first finite-element application in

laminated anisotropic shells of arbitrary geometry is due to Thompson

and Bert C18], who treated free (i .e. , natural) vibration of general

laminated anisotropic thin shells. Other finite-element analyses of

layered anisotropic composite shells include the works of Panda and

Natarajan [19], Shivakumar and Krishna Murty [20], Rao^21], Seide and

Chang [22], and Venkatesh and Rao [23]. Recently, Hsu, et al. [24] and

Reddy [25] presented finite-element analyses of laminated  thick

cylindrical shells and laminated thick doubly curved shells,

respect  ve ly .

1
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All	 f the literature  cited above is limited  to the small

displacement theory of shells. In the analysis of thin ; iexible

composite shells one should take large deflections into account.

Because of the high modulus and high strength properties that composites

have, structural components could undergo large deflections before they

become inelastic. Therefore, an accurate prediction of disulacements

and stresses is possible only when one accounts for the geometric

nonl i neari ty .

Finite-element analyses of the large-displaceiiv^nt theory are based
1

on the principle of virtual work or the associated principle of

stationary potential energy. Horrigmoe and Bergan [26] presented

classical variational principles for nonlinear problems by considering

incremental deformations of a continuum. A survey of various principles

in incremental form in different reference configurations, such as the

total Lagrangian and the updated Lagrangian formulation, is presented by

Wunderlich[21]. In the total Lagrangian description, all static and

kinematic variables are referred to the initial configuration. In the

updated Lagrangian description all variables are referred to the current

configuration. Stricklin et al. [28] presented a survey of various

formulations and solution procedures for nonlinear static and dynamic

structural analysis. The formulations included are the pseudo-force

method, total Lagrangian method, the updated Lagrangian method, and the

convected coordinate method. The solution nethods included are the

solution by direct minimization of total potential, Newton-Raphson and

modified Newton-Raphson, and the f i rst- and second-order self correcting

methods.



1

The only large-deflection analyse, of laminated co-rposite shells

that can be found in the literature  are the static analysis of Noor and

Hartley [29] and Chang and Sawamiphakdi [30]. Noor and Hartley employed

the shallow shell theory with transverse shear strains and geometric

nonlinearities to develop triangular and quadrilateral finite

elements. Chang and Sawamiphakdi presented a formulation of the 3-D

degenerated element for geometrically nonlinear analysis of laminated

composite shells. The formulation is based on the updated Lagrangian

description and it does not include any numerical results for laminated

shells.

From the review of the literature  i t is clear that the 3-0

degenerated element has not been exploited fully for geometrically

nonlinear analysis of lam i nated anisotropic shells. Further, the

transient analysis has not Seen reported in the 1 iteratu 	 Ctiided by

these observations the present work was undertaken in the fall of 1981. 

1.' The Present Study

The present study was undertaken to develop a finite-element

analysis capability for the static and dynamic analysis of geometrically

nonlinear theory of layered anisotrc.,nic shells. The 3-0 degenerated

element with total Lagrangian desc-iption is used to analyze various

shell problems.

Following this introduction, a description of the 2-D shell element

is presented in Chapter 2. In Chapter 3 a detailed discussion of the 3-

D degenerated element is given. Application and comparison of the two

elements are illustrated via a number of shell problems.

n r
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Chapter II

A SHEAR REFORMABLE SHELL ELEMENT

2.1 Governing Equations

The basic equations of three-dimensional elasticity theory can be

simplified for thin flexible bodies. A set of simplifying assunptions

that provide a reasonable description of the behavior of thin elastic

shells are as follows:

1. the thickness of the shell is small comp ared to the other

dimensions;

2. the transverse normal stress is negligible;

3. normal  to the reference surface of the shel l before

deformation remain straight but not necessarily normal after

deformati on;

4, the thickness-to-radius of the shell is assumed to be small

compared to unity; and

5, in the second order terms, the derivatives of membrane

displacements are small compared to the derivatives of the

transverse displacement.

The shell under consideration is composed of a finite number of

orthotropic layers of uniform thickness, as shown in Fig. 2.1. An

orthogonal curvilinear coordinate system (&l,&2, C) is chosen such that

the Cl - and C2- curves are lines of principal curvature on the

midsurface C = 0, and C-curves are straight lines perpendicular to the

surface C = 0. A line element of the shell is given by (see [31])

(ds) 2 = [( 1 + C/R l )a l dC l ]2 + [( 1 + C/R 2 )a 2 dF 2 ] 2 + (dr ) 2 (2.1)

where a  and R i (i = 1,2) are the surface metrics and radii of

p

l
	

0
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curvature, respectively. In general, a  and R i are functions

of Ci only .

For constant values of a l , a 2 , R l , and P, 2 , the equations of motion

are given by (with c o - -T (1/R 1 - 1/R 2 ) and dx i = a i dl i ; see [25])

2	 2

ax 1 + ax (N 6 +c oM 6 ) + 1^ P 1 _7 - + [P 2 + P 3 ( - + ) J ^
1	 2	 at	 1	 2	 at

 2

	

aN	 Q	 6
2

U
2 
	 a m

ax 1 (N 6 - c oM 6 ) +ax2 + R2	 P1 a
	

+ [P2 + P3 ( R 1 +	 ) 
a -

2

bx + a x2 - 
(R1 + R2 - q ) = CP 1 + P 2 (R + R )] ^

1	 2	 1	 2	 1	 2	 at

am	 6M 6
	 620

	
62u

ax l + ax 2 - Q 1 P3 
at 

2 1 + [P 2 + P3 (Rl + R1)] 
a^

61,16 	 6M2	
62m2	 1	 1	 62u2

ax 1 + ax2 - Q2	 P3 at 	
+ [ P 2 + P3 ( R1 + R2)] 

at2	
(2.2)

where u i are the displacements of the reference surface along the & i and

C axes, m  are the rotations of the reference surface with respect to

the &i -axis, q is the distributed load, N i and M  are the stress and

moment resultants, and Q i is the shear force resultant:

L
(Ni 9M  ) = E

k=1

Q i	 E

k=1

C 

J	 ai ( 1 ,C) d C	 i = 1,2,6
Ck-1

C 

K i J	 a  dC	 i = 4959
Ck-1

(2.3)

Here P i are the inertias
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(P1 [,P,,P 3 ) - E f	 p(k)(1^C.C2)dC	 (2.4)

,k 1	 ' k -1

and Ki (i - 4,5)  are shear correction factors.

The strain-displacement relations for a large rotation (small

strains) theory of shells are given by (see [321)

E 1 - E1 + CK1

E 2 - E 2 + CK2

0
E 4 - E4

0E 5 - E5

E 6 - E 6 + CK6
	

(2.5)

where

au	 u0	 1	 3
E 1	 - ax	 + R

1
+2[(ax

a u3 u 1 2
+ R	 )1

a u
	 U 3 ) 21 

+( ax	 + R 	 +(ax
1	 1

au
 2 2

)	 ] 11	 1 1

au	 u
0	 2	 3E2 ` ax 2 + R 2

1
+ 2

au
3

[(a x2
u
22

+ r)
au	 u

2	 32
+ ( ax 2 + R 2 )	 +

au
1 2

(ax2)	 ]

au	 au	 au0	 1	 2	 3
E 6 -	 ax	 + ax	 + ( ax	 +

u1.
R	 1( ax

au3 
+

u 2
R	 )	 +2

au	 u	 au
1	 3	 1

( ax	 + R	 )	 ax	 +2	 1	 2

au	 u	 au
2	 3	 2

( 'x	 + R	 ) ax
1	 2	 12	 1	 1 1 2

o	 6u  u2
E	 +4 - 0 2	 ax 2	R2

o au 3	 u1
E 5 - m I + 3x  R1

am l	 1	 au I	u3
K 1	 ax l + R 1 ( 6x 1 + R1)
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6m 2 I 6u  u3
"2 =

ax 2 
+ 

-q (
aX2 + k2)

	

= 6m 1 + 60 	 6u2 aul

)	
(2.6)"6 ax 1 ax  - c 0 ( ax 1 - 6x  

Invoking the fourth assumption, the contribution from the underlined

terms in Eq. (2.6) can be neglected. The transverse normal strain and

normal stresses are neglected in the present theory.

The shell constitutive equations are given by

Ni	
AijE0 + Bij"j (i,j = 1,2,6)

M 	 B i j C i + Dij"j

Q2 = A44^4 + A45E5

0	 0
Q1	 A45 E4 + A55E5

(2.7)

Here A ij , B;
i
 and O

ij 
(i,j = 1,2,6) denote the extensional,* flexural-

extensional coupling, and flexural stiffnesses:

L	 Ck

(A ij ,B ij ,o ij ) = E	 f	 Qij	 (1 ,C,C 2 )dC.	 (2.8)
a

k	 Ck-1

where L denotes the total number of layers, and Q(k ) are the plane-

stress reduced stiffnesses of the k-th lamina, referred to the shell

axes.

Equations (2.1 )-(2.8) completely describe the dynamic equilibrium

of a 1 ayered, ani sotropi c shel 1. These equations can be solved in

closed form for the small displacement theory of simple-supported,

*Quantities A 44 1 45' A55 and A 66 are actually shear stiffnessess, not
extensional ones.
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cross-ply plates under sinusoidal distribution of the transverse load

(see [33,34]). In order to solve practically important problems that

involve other loadings, boundary conditions, geometry, and lamination

schemes, one must consider approximate method of analysis. In the

following section, an isoparameteric finite-element analysis of the

shell equations (2.1)-(2.8) is presented.

2.2 Finite-Element Model

A typical finite element is a doubly-curved shell element whose

projections on the t 1 -&2 -plane is an isoparametric quadrilateral

element. Over the typical shell element A (e) , the displacements (ul,u2,

u 3 , ml , m2 ) are interpolated by expressions of the form,

N
u i E	 ui(y ( 1.^2)

j=l

N

m i	 j: 
1 

mi4+j 	 l & 2 )

,	 i = 1,2,3

,	 i - 1,2
	

(2.9)

where 4,.
J

	the interpolation functions, and ui and 0i are the nodal

values of u i and W i , respectively. For a linear isoparametric element

with nine nodes (N = 9), this interpolation results in a stiffness matrix

of order 45 by 45.

Substitution of Eq. (2.9) into the variational formulation of Eq.

(2.2) yields an element equation of the form (see Reddy [34])

[K]{ p } + [M] {p} _ {F}	 (2.10)

where [Al = H ull, {u 2 }, {u 3 } , {m l } , { 02 }} T , [K] and [M] are element

stiffness and mass matrices, respectively, and {F} is the force

vector.	 In the interest of brevity, the coefficients of mass and

stiffness matrices are included in Appendix I.

s
i^
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To complete the approximation, we should approximate the time

derivatives in Eq. (2.10). Here we use the Newmark direct integration

scheme (the constant-average-acceleration method). Use of the Newmark

method to Eq.(2.10) yields (see Reddy [341)
w

[K]Ia) n+l - IF) no+l	 (2.11)

where

CK] - [ K ] + a o [M], (F) - 't F) n+l + [M]( a o JA I n + a l (o) n + a2(o)n).

ao - l /(^^t 2 )	 al - ao Z%t	 a2 - 1^ - 1.	 (2.12)

Once the solution (e) is known at t o+1 - (n+l )Lt, the first and second

derivatives (velocity and accelerations) of (e) at to+l can be computed

f rom

(e) n+1 - a o ((e) n+l - I e) n ) - a, (e) n - a 2 1 Al n

IA) n+l - InI n + a 3 1A) n + a4 (e) n+1	 (2.13)

where a 3 - (1 - a)At, and a 4 - aAt.

The a anent equations (2.11) can be assembled, boundary conditions

can be imposed, and the resulting equations can be solved at each time

step using the information known from the preceding time step

solution. At time t - 0, the initial values of (e) , (e) , and (0)

(obtained by solving Eq. (2.10) at t = 0) i l -e used to initiate the time

marching scheme.

In the present study the nine-node rectangular i soparametric

element was employed. Analogous to the shear deformable theory of

layered composite plates [34], the present theory can be recognized as a

shear deformable theory derived from the classical shell theory by

treating the slope-deflection relations (E 4 9 E, - 0) as constraints, and
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including the constraints into the variational formulation of the shell

equations by the penalty function method (see Reddy [25]). The elements

derived using such theory are very stiff (so-called locking is observed)

for thin shells, but yield good results for moderately thick shells. To

overcome the locking phenomenon. the reduced integration technique (see

Zienki ewi cz . Taylor and Too [35]) rust be employed In the evaluation of

the stiffness coefficients associated with the shear energy terms (i.e.

penalty terms). More specifical ly. the 2x2 Gauss rule crust be used for

shear terms (i .e. , those involving A44 • A45, and A
55 ) and the standard

30 ..)uss rule mist be used for the bending terms when the nine node

quadratic isoparametric element.

"
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Chapter III

OEGENERATED THREE DIMENSIONAL FINITE ELEMENT

3.1	 Introduction

The primary objecti. of this chapter is to review the formulation

of equations governing geometrically nonlinear motion of a continuous

medium. Due to the nature of the present manuscript, only necessary

equations are presented. For additional details the reader is referred

to [36-40].

We describe the motion of a continuous body in a Cartesian
1

coordinat e! system. The simultaneous position of all material points
i

(i.e., the configuration) of the body at time t is denoted by Ct,

and C o and 
Ct+At 

denote the configurati r ,is at reference time t - t o and

time t + et, respectively (see Fig. 3.1) . In the updated Lagrangian

description all kinetic and kinematic variables are referred to the

current configuration at each time and load step. In the total

Lagrangian description all dependent variables are referred to the

reference configuration. The updated Lagrangian is more suitable for

motions t h at involve very 'large distortions of the body (e.g., high-

velocity impact). The total Lagrangian is more convenient for motions

that involve only moderately large deformations. In the present study

:he total Lagrangian formulation is adopted.

3.2 7ormulation of the Incremental Equations of Motion

Here we present, a derivation of the equi 1 i bi i um equations at

different time steps using the total Lagrangian approach. The

coordinates of a typical point in C L is denoted by t 
	

(txl'tx2'tX3)'

The displacement of a particle at time t is given by



et

ct

x1

x2
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v

L i'T!

Figure 3.1 Motion of a continuous body in Cartesian coordinates

^......
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to 
n t 	 - 0 x or 

t 
u i = t x i -0 x i 	(3.1)

The increment of displacement during time t to t 4 At is defined by

u i n 
t+1ui - t u i	 (3.2)

The principle of virtual displacements can be employed to write the

	

equilibrium equations at any fixed time t. 	 The principle, applied to

the large-displacements case, can be expressed mathematically as

follows:

I	 t+pt^i 
bu 

i dV0 + 
f V t

+ atV 
Po 	Si, 6( t+At 

C  
i j )dVo

0	 0

f 
	

t+,tTi 
du i dA 0 + f V t+AtFi bu i dV 0	(3.3)

0	 0

where summation on repeated i r 4 ices i s implied; V o , A o , and p 0 derote,

respectively, a volume element, area element, and density in the initial

configuration, Si.l are the components of the second Piol,^-Kirchhoff

stress tensor, 
ci.l 

the components of the Gr-ten-Lagrangian strain tensor,

T i the components of boundary stresses, and F i are the components of the

body force vector. The superposed dots on u i denote differentiation

with respect to time, and b denotes the variational symbol. In writing

Eq. (3.3) it is assumed that 
ciJ 

is relateC to the displacement

components by the kinematic relations

t+1.	 I t+,t	 t+at	 t+at	 t+atci	 2 (	 ui	 +	 u i +	 um i	 um	 )	 (3.4)

where ui .; = au ; /3x^. The strain components t+At ci j can he expressed i n

terms of current strain and incremental strain components,

i
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Z r^t C 	1 ( t u	 + C u	 + t o	 to	 )

ij	 '1	 i,j	 j ,i	 m,i	 m,j

+ T (u i ,j + u 
j,i 

+ tum,i um ,j 
+ um,i 

tum ,j) + 7 um,i um,j

= tai j + ( e i j + n i j )	 (3.5)

where e i j and n i j denote the linear and nonlinear incremental strains.

The stress components t+et S i j can be decomposed into two parts:

t+etSi 
j = t S i j + S i j	 (3.6)

where S i j is the incremental stress tensor. The incremental stress

components S i j are related to the incremental Green-Lagrange strain

components, e i j = e i j + n i j , by the generalized Hooke's law:

S i j	 C i jkl'kx'	 (3.7)

where C i jkt are the components of the elasticity tensor. Using Eq.

(3.4)-(3.7), one can be express Eq. (3.3) in the alternate form

f 
	 p0 t+1 u  6u  dV0 + 

f 
V 

C 
ijkl

(e kl"ij + nkl6ei j )d V0

0	 0

+ f 	 t Si j 6e i j dV0 = 6W - f V t S i j 6n
ij 

dV 0 	(3.8)
0	 0

where N is the virtual work due to external loads.

3.3 Finite-Element Formulation

3.3.1 Geometry of the Element

Consider a solid three-dimensional element shown in Fig. 3.2. The

coordinates of a typical point in the element can be written as

x i = E ^j(^1,&2) 1 2r (x i ) top + . ^ ^j(C1,&2)	
2	

(xi)bottom
^ 1	 ^ 1

(3.9)
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E2

i

i	 ^4,

\ V

e2 2

i —,1

&1

x l , E1

Figure 3.2 Geometry of the degenerated three-dimensional element
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where n is the number of nodes, 4,1(C19C2) are the finite-element

interpolation (or shape) functions, which, in the element take the value

of unity at node i and zero at al l other nodes, &1 and { 2 are the

normalized curvilinear coordinates in the middle plane of tnP shell,

and C is a linear  coordinate in the thickness direction and x  , x2, and

x3 are the global coordinates at node i . Here 1 .^2. and C are assumed

to vary between -1 and +1 . Now 1 et (see Fig. 3.2)

	

v3k

i	

a (x k )top	 (xk)bottom	
(3.10)

e3  = v3v3^

where v 3 i s the k-th component of the vector v3. Then Eq. (3.9)

becomes

n

x i . , E1 [^ (xi ) mid + `^j 2 h j ej	 (3.1 1 )

where h  is the thickness of the element at node j. For small

deformation, the displacement of every poinc in the element can be

written as

n

	

u i = F.	 ( -M + C 2 (e 1 i02 - e2 i 01) ]	 (3.12)
j =1

where 01 and 02a re the rotations about (local) unit vectors e^ and e2,

respectively, u l , u 2 , and u 3 are the displacement components

corresponding to the global coordinate xl, x ?- , x 3 directions

respectively, and u^ , u2a nd u3 are the values of the displacements

V 4-

t	 it
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(referred to x) at node i.	 In writing Eq. (3.12), we assumed that a

line that is straight and normal to the middle surface before

deformation is still straight boi* not necessarily 'normal' to the middle

surface after deformation. The strain energy corresponding to stress

perpendicular to the middle surface is ignored to improve numerical

conditioning when the three-dimensional element is employed. This

constraint corresponds only to a part of the usual assumptions of a two-

dimensional shell theory. The relaxation of the requirement that

straight lines perpendicular to the middle surface remain normal to the

deformed middle surface permits the shell to experience shear

deformation - an important feature in thick shell situations.

3.3.2 Displacement Field in the Element

In the present study the current coordinates t x i are interpolated

by the expression

n

txi	 E 41 ( txi + 2 Chi te3i)
	 (3.13)

j =1

and the displacement by

tn
	

t j	 1	 t"j	 o f
ui	 jEl 41 j L u 	 + 2 Chi (e3 i - e3 i) 	(3.141

n	
j	 1	 t+et"j	 t"j

u i = j^l ^'j^u i + 2 Ch i (	 e3i - e 3i ))	 (3.15)

Here ti and ui denote, respectively, the displacement and incremental

displacement components in the x i -direction at the j-th node. The unit

vectorsei and e2 can be obtained from the relations
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	 c.

CF

ej 	
t	

L(E 2x ea) /^E2x t3

^iei	 t ei x ri	 (3.16)^2 = t3 ^l

where	 is the unit vector along the (global) x 2 -axis. If we assume

that the angles 81 and A2 are very small, then we can write

e3 = - te281 + te182	
(3.17)

Substituting Eq. (3.17) into Eq. (3.15), we obtain

n
u i	 E yj[uj + 2 Ch j ( te2i e l + telie2)1	 (3.18a)

j =1

or

{ u} _ [T]{A} (3.18b)

where Jul is the column of three displacements at a point, {o} is the

column of 5n (five per node) displacements: u^ , 8^ , 82, j

= 1,2,3, and [T] is the transformation matrix defined by Eq. (3.18a).

Thus, for each time step one can find the normal vectors from Eq.(3.16)

and (3.17) and the incremental displacements at each point from Eq.

`

	

	 (3.18), once the five generalized displacements at each node are

known. Next we discuss the procedure of determining the generalized

displacements of an element.

3.3.3 Element Stiffness Matrix

The strain-displacement equations (3.4) can be expressed in the

operator form

a
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( of = [A]( u 0	 (3.19)

where (e( _ {e ll e 22 e33 2e 12 2e 13 2e23 1 T , [A] is a function

of oui j , and (u o I is the vector of the components of the displacement

gradient

(u o } _ (ul,l u 1,2 u 1,3 u 2,1 u 2.2 u 2.3 u 3,1 u 3,2 u3,31T (3.20)

The vector (u 0 1 is related to the displ acement increments by

(u 0 1 _ [N](u} _ [N][T](e}	 (3.20)

and

te)	 [A][N][T](e}

[B](o}	 (3.21)

where [N] is the operator of differentials.

Substitution of Eq. (3.21) into Eq. (3.8) yields

f  po [T] t (u}dVo + ( t [KL ] + t [KNL ])(n} = t+et (R} - t+et(F)	 (3.22)

0

where t [K L ], t [K NL ], [RI, and (F} are the linear  and nonlinear stiffness

matrices, force vector, and unbalanced force vectors:

t [KL ]	 f	 t [B ]T [^ ] t [B ]d Vo	
t 

[KN L ]	 j	 t [B ]T [ S ] ` [a ]d V0
V	 V0	 0

	

(F} = f	 t [B; T {S}dV 0	(3.23)
V 0

Here [S] and (S} denote the matrix and vector, respectively, of the

second Piola-Kirchhoff stress.

Since we are dealing with laminated composite structures, the

important thing is how to perform the integration through the

thickness. One way is to pick Gaussian points through the thickness and
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then no explicit integration through the thickness is performed. The

CPU time will be increased if the number of layers is increased, because

the integration should be performed separately for each layer. The

other way is to perform explicit integration through the thickness and

reduce the integral to a two-dimensional problem. The Jacobian matrix,

in general, is a function of t 1 , t 2 , and C. Zienkiewicz, et al. [35]

suggested that terms in C to the first power may be neglected, provided

the thickness-to-curvature ratios are small. This approximation implies

that the derivatives of x i with respect to C 1 , & 2 , and C are

substantially the same at either end of a mid- surface-normal line. Thus,

the Jacobian [J] becomes independent of C and explicit integration can

be employed.	 If C terms are retained in [J], Gaussian points through

the thickness should be added. In the present study, it is assumed that

the Jacobian is independent of C.

f	 3.3.4 Time Integration and Mass Matrix

r
Any attempt to solve Eq. (3.22), whether by direct integration or

by modal analysis, should take advantage of the symmetry and bandedness

of the stiffness matrix. The initial conditions for Eq. (3.22) are the

displacements and velocities at time t - 0; therefore, the direct

integration requires the information at the previous time t, in order to

pradict the state of motion at the current time t+bt. The direct

integration techniques can be divided into two types: 	 expl i cit and

implicit integrations (see [41-451). 	 In explicit integration, we

solve u at time t+bt based on the equilibrium conditions of the

structure at time t. The central difference method is an example of

explicit integration method. 	 In the implicit method the solution at

time t+bt is based on the equilibrium condition of the structure at
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time t+0t. The Houbolt, Wilson, and Newmark methods provide examples of

the implicit method. In the present study the Newmark direct

integration scheme is employed.

The Newmark integration scheme can be thought of as an extension of

the linear acceleration method:

t+ot {a} = t {a} + At2{n} + [(2- - O) t {e} + ^ t+et {e} ](ot) 2 (3.24)

t+ot {e} 	t {e} + co - Y ) t {n} + Yt+°t{e}]ot

where {a} is the generalized displacement vector of any point

and 0 and Y are the dimensionless parameters of generalized

acceleration. Chan et al. [46] have discussed the special case

A 12 and Y 2,w hich coincides with a procedure developed by Fox and

Goodwin [47]. For the constant average acceleration we have

_	 and Y	 and for the linear acceleration p = 1 and Y

To apply the Newmark integration scheme to the equilibrium

eruations (3.22), we start from

t+A W (k) = t+ot{a} (k-1 ) + {a} (k)	 (3.25)

where k is the iteration number. The velocity and acceleration of any

point in the element can be written as

.

tu i	 E	 j tu i + E 1 7 41 Ch j (te 3i - oe3i)	
(3.26)

j 1
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	tui	 yj t"
uj + : y y jCh j ( te3 i 	°e 3i)	 (3.27)

J u l 	 i 1

Since we are dealing with transient problems, the load vector {R} can be

a function of time. From Eq. (3.27) we have for the i-th component

t +ate _ a (t+ate - te)	 a 2 	 a 3A i	 o	 i	 i	 2 i 	 3 i

t+Otei = te i + a4 tei + a5t+Ate1	 (3.28)

where

a°	
^(et)2 ' a 1 =	 ' a 2 = OAt

	

a3	
2^ - 1
	 a4	 ^t(1 - Y)	 a5 = Yet	 (3.29)

Substituting Eq . (3.22) into Eq . (3.28) , we obtain

	

t+Otej = a ( 0 1	 - A ie l .) - a e j .	 a teJ + teJ

	

3i	 o 1 2i	 2 li	 2 3i	 3	 i	 31

	

t
+Atei 

= te j+	 a tej + a t+otej	 (3.30)
3i	 3i	 4	 3i	 • 5	 3i

Finally the complete approximation of the equations of motion over an

element becomes

(a 0t [M] + t [K]) {e (0 } = t+ "t { R} - t+pt{ F (k -1 )}
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+ a2[t(P1}	 ^L ( t (P 2 ) - t i p	 (3.31)] + a3{ P4^ 	(3.31 )

where

[M]	 f
V P

o t[T]T t[T] dV0

0

{P1} - f
V 

P o t {o} [T]dV0

0

{P2} - j	
PO t+nt {e} (k-1 )[T]dV0

v 0

{ P3} - j
V 

P O t {e} [T]dV0
0

{ P4} - j
V 

Po t {e} [T]dV 0	(3.32)
0

Equation (3.31) can be expressed in the following final farm:

	

[K]{o} - `t{ R} - t +ct{ F} (k -1)	
(3.33)

where

CK] - a0 tCM, + tCY]

	t+a {R } - t+Gt { R} + a2 [t { P 1 1 - -t (t(P2}	 t{ P 3 ^) ] + a 3 { P41

(3.34)

This completes the finite-element formulation of the 3-D degenerated

e 1 eme nt.



29

CHAPTER IV

NUMERICAL VALIDATION OF THE ELEMENTS

4.1	 Introduction

The present chapter is devoted to the validation of the finite

elements developed herein based on the two-dimensional shell theory and

three-dimensional continuum theory. The elements are validated by

comparing the present results with those available in the literature for

static bending, natural vibration, and transient response of isotropic

plates and shells. Numerical results are presented to bring out the

limitations and restrictions of the present elements. All of the

results presented here were obtained on an IBM 370/3081 computer with

double precision arithmetic.

The results to be discussed are grouped into three major

categories:	 (1) static bending, (2) natural vibration, and (3)

transient response. All results, except for the vibrations, are

presented in a graphical form.

4.2 Static Analysis

Here we present a discussion of four example problems, all

involving shell structures.

4.2.1	 Cylindrical Panel Under the Influence of Gravity (i .e. , ender its
own weight)

Consider the circular cylindrical panel shown in Fig. 4.1. 	 The

geometric parameters and material properties are listed below:

R = 25.0 ft	 E = 3 x 10 6 psi

a -25.0 ft	 v =0.0

h = 3.0 in.	 g = 90 psi

9 = 40°
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Figure 4.1 Geometry of the cylindrical shell used in Problem 1
of Section 4.1
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The panel is supported on rigid diaphragms on the curved edges and free

on the straight edges. We wish to find the deformation of the panel

under its own weight. Many authors Aave employed this problem as a

standard test problem for checking new elements or numerical schemes.

The radial displacements along the central curved line  are shown in Fig.

4.2 for both the 3-D element and the 2-0 deformable shell element. The

longitudinal displacements along the supported edges are shown in Fig.

4.3. A uniform mesh of 2 x 2 eight-node elements was used in one

quadrant for this analysis. The solutions agree ve y closely with those

obtained in Reference [48].

4.2.2 Cylindrical Shell Subjected to Radial Pressure

Consider the circular cylindrical panel shown in Fig. 4.4. The

shell is clamped along four edges and subjected to uniform radial inward

pressure. The loading is nonconservative, that is, the direction of the

applied load is normal to the cylindrical surface at any time during the

deformation. The geometric and material properties are

R	 2540 mm, a - b - 254 mm, h - 3.175 mm,

9 - 0.1 rad, E - 3.10275 kN/mm 2 , v - 0.3

Due to the symmetry of the geometry and deformation, only one quarter of

the panel is analyzed. A load step of 0.5 KN/m 2 was used in order to

get a close representation of the deformation path. Fig. 4.5 shows the

central deflection versus the pressure for the first of the three sets

of panel dimensions:

(i) a - 254 mm, b - 254 mm ( deep shell)

(i i) a - 635 mm, b - 635 mm

(iii)	 a - 1270 mm, b = 1270 mm ( shallow shell)

In cases (ii) and (iii) the analysis was limited to linear solutions.

j
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Fiqure 4.2 Vertical deflection along the midsection OC
(see Fig. 4.1 for the geometry)
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a = 254 mm, b = 254 mm,

R - 2540 mm, h - 3.115 mm,

11 four edges are clamped:

u= v = w = 1
x	 y

_	 = 0

Figure 4.4 Geometry of the cylindrical shell problem
discussed in Section 4.2.2.
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Figure 4.5 Load-deflection curve for the clamped cylindrical shell
problem discussed in Section 4.2.2
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Table 4.1 contains a comparison of the center deflections obtained by

using the two elements for various meshes. From the results presented

in the table it is clear that for shallow shells both elements give

almost the same results. The difference in the deflections predicted by

the two elements increases as the shel ; becomes shallow (case (iii) ).

4.2.3 Cylindrical Shell Subjected to Center Point Load

Figure 4.6 shows a circular cylindrical shell which has the same

geometric (except, h - 12.7 mm) and material properties a^ the one in

Problem 2.	 The longitudinal boundaries are h i :,g , id and immovable, ana

the curved edges are free. A concentrated p6nt load is applied at the

center. One quarter of the panel w.s analyzed using a 2x2 mesh of nine-

node quadrilateral elements. The load step is 0.5kN. Figure 4.7

contains the plot of the central deflection versus the load. The

results agree very closely with those obtained by Dhatt [49].

4.2.4 Spherical Shell Subjected to Point Load at the Center

The spherical shell shown in Fig. 4.8 is subjected to a

concentrated load P at the crown. The boundaries are all hinged and

immovable. The geometric parameters and material properties are given

below:

R1	 R 2 = 2540 mm

a = u = 784.9 mm

h = 99.45 mm

E = 68.95 N/mm

v = 0.3

One quarter of the shell was analyzed by a 2x2 mesh of nine node

quadrilateral elements. The load step is 10 0. Figure 4.9 contains a

i
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Table 4.1 Comparison of linear center deflections obtained by the 2-0
and 3-0 elements for Problem 2.

Case	 Mesh 3-0 2-0

2x2
(i)

0.52579 0.52321

30 0.52505 0.52265

2x2
i)(i

0.35888 0.39431

30 0.3205 0.34228

2x2 0.30636 0.37667

30 0.28674 0.27021



)r

Dy = 0

38

JR;G{P^t+L P
OF POOR QUALITY

Figure 4.6 Geometry of the cylindrical shell problem
discussed in Section 4.2.3
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0.0	 0.5	 1.0	 1.5	 2.0	 2.5

Load (in kN)

Figure 4.7 Load-deflection curve for the cylindrical shell
problem discussed in Section 4.2.3
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Figure 4.8 Geometry of the s pherical shell discussed in
Section 4.2.4.
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comparison of the center deflections obtained using the 2-0 and 3-0

elements, which agree with that of Leicester [50], who used a shallow

shell 2-0 finite element.

4.3 Natural Vibration of Cantilevered Twisted Plates

Here we discuss the results obtained for natural frequencies of

cantilevered twisted plates. This analysis was motivated by their

relevance to natural vibrations of turbine blades. Consider a

cantilevered plate with a twist angle 0 at the free end. The plate is

made of an isotropic material. Table 4.2 contains the natural

frequencies of a square plate for various values of the twist angle 9.

A 2x2 mesh and 4x4 mesh of nine-node elements are employed to study the

convergence trend. The results of the refined mesh are included in the

parentheses. The results agree with many others published in a recent

NASA report. Tables 4.2-4.5 contain natural frequencies of twisted

plates for various aspect ratios and side-to-thickness ratios.

4.4 Transient Analysis

Here we present results of the nonlinear transient analysis of a

cantilevered beam and a spherical shell. Both problems have been solved

by other investigators.

4.4.1 Cantilevered Beam Under Uniformly Distributed Load

Consider a cantilever beam under a uniformly distributed transverse

step load, as shown in Fig. 4.10. The geometric parameters and material

properties are given below:

L=10 in

h = 1 in

Op!(`! i	 b = 1 in
Cr
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Problem discussed in Section 4.2.4
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Table 4.2 Natural Frequencies of Twisted Plate Vibration (a/b = 1, a/h = 20)

_	
E h 3

W = Wa ^o^	 p =	 = 
0.3-^ v

12(1 -v )

Twi s t
Angle 1 2

bbd e
3	 4 5 6

00 *	 3.4556 8.4110 22.0999 28.2089 31.9740 55.1625
**(3.4583) (8.3353) (21.0238) (26.7465) (30.1454) (52.0784)

15 0 3.4359 10.2920 21.5199 27.2054 32.7430 44.5375

300 3.3790 13.7014 19.9840 25.C943 34.3341 45.8987
(3.3694) (14.2222) (18.9795) (26.8104) (34.4591) (45.7547)

450 3.2908 18.1009 15.9097 23.5680 35.5332 45.7013

60° 6.1800 17.8319 15.5635 24.1842 36.1466 44.9152

* 2 x 2,9-node mesh
**4 x 4,9-node mesh

i
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Table 4.3 Natural Frequencies of Twisted Plate Vitration(b/a n 3, a/h = 20,
3 x 3, 9-node mesh)

3
W = wb 2 p	 D	 Eh	 v n 0.3

12(

Twi st
Angle 1 2 3

Mbde
4 5 6 7

00 3.4150 20.8772 21.6190 65.9706 66.2590 127.256

15° 3.4009 20.8798 22.1118 21.6032 68.0938 69.3258 130.284

300 3.3598 19.4048 25.3743 60.2183 73.5180 77.4493 138.176

450 3.2956 17.5289 29.8404 58.2600 80.9488 88.5246 148.8975

600 3.2136 15.7431 34.8827 55.8921 89.2028 100.7760 155.070
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Table 4.4 Ntk tural Frequencies of Twisted Plate Vibration (a/b - 1, a/h - 5)

3
W - Wb2 p/i 6 , 0 • Eh2 , v - 0.3

12(1 -v )

Twist
Angle 1 2

Mbd e
3 4 5 6

00 *	 3.33916 7.3948 10.8083 18.4930 23.7907 26.0552
**(3.3390) (7.3559) (10.883) (17.757) (22.769) (24.125)

15- 3.31713 7.4816 10.8053 18.4043 23.6767 24.9474

(3.3110) (7.4504) (10.774) (17.771 ) (22.694) (24.083)

300 3.2538 7.7593 10.5248 18.4091 23.3734 24.6116
(3.2538) (7.7089) (10.478) (17.795) (22.471 ) (23.943)

45 0 3.1570 8.1435 10.1270 18.3843 22.9126 24.0566
(3.1569) (8.0728) (10.062) (17.79) (22.1 17) (23.651 )

600 3.0370 8.5855 9.67198 18.3089 22.3670 23.3533
(3.0366) (8.4814) (8.5911) (17.730) (21.694) (23.160)

* 2 x 2,9-node mesh
**3 x 3,9-node mesh
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Table 4.5 Natural Frequencies of Twisted Plate Vibration (b/a - 3. a/h • 5,
3 x 3.9 -noce mesh )

_	 3
W n wb2 Fp-FM	 0 n 	 Eh	 v n 0.3

12(1 v2)

Twist
angle 1 2

Mode
3 4 5 6

00 3.3908 15.551 19.124 21.065 59.924 61.949

15 0 3.3161 15.192 19.231 21.572 60.088 60.830

300 3.3336 14.379 19.549 22.811 60.576 58.472

45 0 3.2674 13.449 20.060 24.404 61 .360 55.874

600 3.1833 12.548 20.741 26.139 62.416 53.381
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Figure 4.10 Cantilevered beam under uniformly distributed load
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Linear soln:	
3-D Element
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0	 2	 4	 6	 8	 10

Load parameter, p = (pL3/EI)

Figure 4.11 Load-deflection curve for the static bending of the
cantilevered beam shown in Figure 4.10
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v - 0.2

p - 10 lb sec2 /i n4

The cantilever is analyzed using O our nine-node 2-0 shell and 3 0

degenerated elements (see Fig. 4.11). The load applied is

nonconservative, because the load follows the deformed beam and stays

normal to it at all times. Figure 4.11 shows the tip deflection versus

load obtained in the static analysis. Figure 4.12 contains plots of tip

deflection versus time; obtained using the 2-D and 3-D elements and by

Bathe et al. [37]. The time step employed is 1.35 x 10 -4 sec. The

reason for the difference between the solutions predicted by the shell

element and 3-0 element is that the load in the 3-0 element follows the

deformed shape and is perpendicular to the deformed beam, whereas in the

2-0 shell theory it is always vertical. Consequently, the vertical load

component is larger in the 2-D shell element than in the 3-D element,

and thus explains the difference in the solutions.

4.4.2 Spherical Cap Under P 'i symmetri c Pressure Loading

Consider a spherical cap, clamped on the boundary and subjected to

axisymmetric pressure loading. The geometric and material properties

are

R = 22.21 in

h = 0.41 m

E - 10.5 x 10 6 psi

v - 0.3

pg = 0.095 lb/in 3

0 = 26.670

p  = 100 psi

i
^i	 ^
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a - 10 -5 sec

This problem has been analyzed by Strickl in, et al. [51] using an

axisymmetric shell element. In the present study the spherical cap is

discretized into five nine-node 2-0 and 3-0 elements. Fig. 4.13 shows

the center deflection versus time. The present solutions are in

excellent agreement in most places with that of Stricklin et al. [51].

The difference between the solutions is mostly in the regions of local

minima and maxima.
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CHAPTER V

NUMERICAL RESULTS FOR COMPOSITE PLATES AND SHELLS

5.1	 Introduction

In this chapter we discuss the numerical results obtained by the 2-

D and 3-D elements for the nonlinear analysis of layered anisotropic

composite plates and shells. Most of the results presented here are rew

and therefore cannot be compared with other results to make quantitative

judgements concerning their accuracy. Results for both static bending

and transient response are discussed.

5.2 Static Analysis

5.2.1 Orthotropic Cylinder Subjected to Internal Pressure

Consider a clamped orthotropic (E 2 - 2.0 x 106 psi, E l /E 2 - 3.75,

G12/E 2 - 0.625, v - 0.25) cylinder of radius R - 20 in and length 20 in,

and subjected to internal pressure p o - 6.41 n psi (see Fig. 5.1). The

problem was analyzed, for linear deflections only, by Rao [21] using

shallow thin shell elements. A mesh of 2x2 nine-node elements is used

in an attempt to analyze the problem. The linear center deflections

obtained by the 2-D and 3-D elements are 0.0003764 in., and 0.0003739

in., respectively. These values compare favorably with 0.000366 in. of

Rao [21] and 0.000367 of Timoshenko's analytical solution [52]. The

latter two solutions are based on classical shell theory.

In the large-deflection analysis the present results are compared

with those of Chang and Sawamiphakdi [30]. A value of 2.5 ksi is used

for the load step. Figure 5.2 shows a comparison of the present

deflection with that of [30], which used a 3-0 degenerated element based

on an updated Lagrangian approach. The agreement is very good.

*A.__
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Figure 5.1 Geometry of the cylindrical shell problem
discussed in Section 5.2.1
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5.2.2 Nine-Layer Cross-Ply Spherical Shell Subjected to Uniform Loading

Consider a spherical shell cross-ply laminated  of nine layers of

graphite-epoxy material (E l /E 2 - 40, G 23/E 2 n 0.6, G13 - G12 - 0.5 E 2 ,

and v12 - 0.3) , subjected to uniformly distributed loading,  and simply

supported on all its edges (i.e., transverse deflection and tangential

rotations are zero). In Fig. 5.3, a comparison of the load-deflection

curves obtained by the present elements with those obtained by Noor and

Hartley [29] is presented (for the parameters h/a - 0.01 and R/a -

10). The results agree very well with each other, the present 2-0

results being closer to Noor and Hartley's solution. This is expected

because their element is based on a shell theory.

5.2.3 Two-Layer Cross-Ply and Angle-Ply (45°/-45°) Cylindrical Shells
Under Uniform Loading

The geometry of the circular cylindrical shell used here is the

same as that shown in Fig. 4.1. The shell is assumed to be simply

supported on all itr edges. The material properties of individual

lamina  are the same as those used in Problem 2 of this chapter. A mesh

of 2x2 nine-node elements in a quarter shell is used to model the

problem. The results of the analysis are presented in the form of load-

deflection curves in Fig. 5.4. Frcm the results, one can conclude that

the angle-ply shell is stiffer than the cross-ply shell. This can be due

to the bending-stretching coupling.

5.2.4 Two-Layer Cross-Ply and Angle-Ply (45°/-45°) Spherical Shells
Under Uniform Loading

The geometry and boundary conditions used in this problem are the

same as those used in Problem 2 of this chapter. The geometric

parameters used are: R/a = 10, a/h = 100. The load-deflection curves

for the cross-ply and angle-ply shells are shown in Fig. 5.5. From the
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plot it is apparent that, for the load range considered, the angle-ply

shell, being stiffer, does not exhibit much geometric nonlinearity. The

load-deflection curve of the cross-ply shell exhibits a varying degree

of nonlinearity with the load. For load values between 100 and 150, the

shell becomes relatively more flexible. (which can be due to bending-stret-
ching coupling)

5.3 Transient Analysis

5.3.1 Two-Layer Cross-Ply Plate Under Uniform Load

The problem is the same as that analyzed by Reddy [53] using a

plate element. The geometric and material parameters used are

a n b n 244 1 n. , h n 0.635 1 n. , P o n 0.5 x 10 -2 psi

	

E 1 n 17.578 x 106 psi, E 2 n 0.7031 x 10 6 psi, G 12	 0.5 x 10 6 psi

	

p n 0.2547 x 10 -5 lb-sec 2 /in 4, v12 n 0.25, 6t	 0.002 sec.

Figure 5.6 contains a plot of the center deflection versus time obtained

by the 3-0 element. The solution is in excellent agreement with that of

Redo [53].

5.3.2 Two-Layer Cross-Ply Cyl indrical Shell Under Uniform Load

AcylindricaIshel1witha n b n 51n,R n 101n,h n 0.1 in is

simply-supported on the four edges. The deep shell is laminated with
4

two 1 ayers (0°/90° ) and 1 oaded by a uni form step 1 oad P n LP n 50.
E h4

Figure 5.7 contains a plot of the center deflection versus ?ime for 2 -1)

and 3-0 elements with 6t n 0.1 x 10 -4 sec. The solutions obtained using

the two elements are in good agreement. In Fig. 5.8, the solid line

indicates the center deflection versus time for load P n 1000 and time

step Fit n 0.3 x 10 -5 sec. The amplitude is almost twelve times that due

to load P n 50, whereas the load increases twenty times. The dotted

-ors

QUALMY
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line in (-ig. 5.8 is for p t - 0.1 x 10 -5 sec, which gives slightly

smaller deflections.

5.3.3 Four-Layer Angle Ply (45°/-45°/45°/-45°) Cylindrical Shell
Under  n orm Load-

Here we present results for a cylindrical shell which has the same

geometry as problem 5.3.2. The four-layer angle ply (450/-45°/45°/-450)

laminated  shell is simply supported on four edges and is subjected to a

uniform step load P - 50. Fig. 5.9 contains a plot of the center

deflection versus time for 2-D and 3-D elements. The two elements yield

solutions that agree very well, except that the 2-D element gives

negative values of the deflection at the end of the cycle. The

discrepancy is due to the fact that the 2-D element does not account for

geometric changes from one time step to the next.

5.3.4 Two-Layer Angle-Ply (45°/-45°) Spherical Shell Under Uniform
Load! ng

Consider a spherical shell with a - b - 10 in, R - 20 in and h =

0.1 in, simply supported at four edges and excited by a uniform step

load. The shell consists of two layers (45°/-45°). Figure 5.10 shows

A	 A

the center deflection versus time for P - 50 and P - 500 with time step

0.2 x 10 -5 sec. For the small load the curve is re l atively smooth

compared to that of the larger load. This is due to the fact that the

geometric nonlinearity exhibited at P = 50 is smaller compared to that

at P - 500.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary of the Present Study

A special three-dimensional element based on the total Lagrangian

description of the motion of a layered anisotropic comp ,)sit- medium is

developed, validated, and employed to analyze composite shells. The

element has the fol i awing options:

• Geometrically linear and nonlinear analyses

• Static and transient analyses

• Natural vibration (linear) analyses

• Plate and shell elements

• Arbitrary loading and boundary conditions

• Arbitrary lamination  schemes and lamina  properties

The element can be used, with minor changes, in any existing general

purpose program.

6.2 Conclusions

The present 3-0 degenerated element has computational simpl icity

over a fully three-dimensional element, such as those developed in [49-

501, and the element accounts for full geometric nonlinearities in

contrast to 2-D elements based on shell theories. As demonstrated via

numerical examples, the deflections obtained by the 2-D shell element

deviate from those obtained by the 3-0 element for deep shells.

Further, the 3-0 element can be used to model general shells that are

not necessarily doubly-curved. For example, the vibration of twisted

plates cannot be studied using the 2-0 shell element discussed in

Chapter 2. Of course, the 3-D degenerated element is computationally

more demanding than the 2-0 shell theory element for a given problem.
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In summary, the present 3-D element is an efficient element for the

analysis of layered composite plates and shells undergoing large

displacements and transient motion.

6.3 Recommendations for Additional Study

The 3-0 element presented herein can be modified to include thermal

stress analysis capability and material nonlinearities. While the

inclusion of the--mal stresses is a simple exercise, the inclusion of

nonlinear material effects is a difficult task. An acceptable material

model could be a generalization of the Ramberg-Osgood relation to a

layered anisotropic medium. Areas that r equire further study are the

inclusion of damping effects, which can be more significant than the

shear deformation effects, and material damage effects.
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APPENDIX II: NOMENCLATURE

A	 - area of element

Aij	 - stretching stiffness matrix

a,O	 - dimensionless parameters of generalized acceleration

a 	 - surface metric

C 	 - strain in the i -th direction

i- strain in the ith direction at the reference plane

Bij	
- bending-stretching stiffness matrix

C 	 - configuration at time t

Cijkl	
- elasticity tensor
	

r

D	 - Eh 3 /12(1 - v2)

Dij	
- bending stiffness matrix

{e}	 - generalized displacement vector

co 	 - 2 (^ - `KZ)

E 
	 - Young's modulus

E T	- unit vector along the global axes

e	 - unit vector along the local axes

eij	
- linear incremental strain

^1 ,
 

&2 ,& - curvilinear coordinate system

{ F }	 force vector

$i	
- rotations of the reference surface with respect to C2-axis

h	 - thickness

[K]	 - stiffness matrix

K 	 - shear correction factor

L	 - number of layer

M i	- moment resultatnt

[M]	 - mass matrix



16

viJ	
- Poisson's ratio

N i	- stress resultant

'Ii j	 - rionli near incremental strain

P i	- inertias

q i	 - distributed load

Q i	- shear force resultant

A1 , 92	- rotations about unit vector ele2

{R}	 - balance force vector

R,.R 2	- radii of curvature

P	 - density

Si.l	
- 2nd Piola Kirchhoff stress tensor

[S] - stress matrix

( S
i 

}	 - stress vector

dS	 - length of line  element of the shell

Ili	 - stress vector

yi	 - interpolation function at node i

[T] - transformation matrix ')etween displacement vector { u } and
generalized di splacemL:it vector { p}

T i	- traction component

At	 - time increment

u	 - incremental displacement vector

to	
- displacement vector at time t

u^	 - displacement gradient

v i	- vector along the local axes

V	 - volume

tx	 - coordinate at time t

bW	 - virtual work due to external loads
{L}	 - column of generalized nodal displacements
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S X Ŝ' Z Z Z :L Z Z _ _ _ _ __ __ __ __ —_ __ :V V h ^^ Cu '^ N ^^ ^ 	 Z -_

=
	=T'w M w+ +. ,++ r r_ 

^_ t ----------- - ---
x Z Z Z Z Z Z S Z Z Z Z Z Z Z Z Z Z Z S S Z Z S	 S Z S x x S S x S Z S Z S Z Z Z Z S Z S X Z Z Z S 	 S S S

X iC YX]KSC ----- - - --- - - - -------- - - - ------------- -----------
: _

_^ <	 (	 z-	 -
.	 -:A 2	 77	 -::U	 Z 	 Zs

•	 s..rac- -	 ^	 _	 xX	 z_.z	 ---	 S.T

Jf	 z --	 .._-_Z	 Z..	 .Z	 L	 Jf
W -< 	 <A	 z	 z	 -

•	 <2-! >	 Y-^ Jf ^^	 Z	 <AA

z	 n 3-x	 2 Zz	 zz	 x-

z- _	 .. _	 a -	 -	 <	 _	 - _ Z	 J_ _	 _-

=Z	 Z_<_-	 _	 -	 _ _	 X<	 -	 --	 - -
... Z_

<	 Z---< G __ ___	 -	 _	 _	 _-	 <___	 -an-z=	 < z_-__-__	 _<	 =<__<' __	 _	 z««<zx
---_	 <	 > -__- Z - z	 -	 =z	 -<=<._	 <=

y ^=	 2 _ 	 _	 2_	 _	 r	 r

Z	 ...n
..	 __ _	 -	 - _	 _ 2 _ _ _< Z	 2 <

a<̀ -< - --

>_>^<I

zz
-2 - Z-	 - -=< -»»>ZZ=	 L

ii

i
f



OHiC:iNAL 1'AUr iQ

ti	 OF POOR QUALITY

i

^__'1 s OOOO CV O^ J^O ► ^^^ "^^	 ^QOOCe0e0aC^OS—a7C^^__̂: TC' '_C''.. ._C , ===--- — —
i a s z z z z z z z a z z Y i i i i- z z z == s z z z z z z z z z z- z z z z z z z z----°__-^-_

^ $ 	 z^ it iifi s C—T:i iIgziii ziIii1. : 11.z=f14zxxx^Cx '̂ x^xa_ii-2 ac ic - - --zi ---i---i---

'l.
Gi

_

1

L

<

<
E
2

r —• ti X

c

_n

Z
. J1	 17

z
ti

. v

Z	 -

	

^ i 	^ •

	

_	 • <	 Z
s

<	 \\	 _	 <

<

	

i " Z —.  z	 • 4 —	—

<<

Y.



<

t .i

Of pG..ic :

c

- N '1 S s C ti O V1 ' N r! ^^ V L S - + .. - u L ^. = . :+ 1 \: s 10	 - + "^ ^•	 _ _ j -1 -
—^ --	 VNNNNNNNVNn'n'nMinwr nw^ •• --- - SSSS?—. ^11`1:	 ^•JC^:JJ^:— ^	 _

x xx: z icic z iczzxxxzi^i _> izi2ii -- -- — i--- ---- ----i------i--i:

z

a

s

zzz
c c c

.	 n 	 • z z z

2 z .^

-	 . <

Ic

.^ v_	 _ < _ iii _ -. _ _ - .^	 - - _- - _	 .,•. - - ^ ..-., ^

9



i

OF POOR QUALITY

- ------------------------- ----------------------
---------—^^S^

cco^o^r• ^^^ ,̂ ^ ,"^^aoaoaaooxxacx=•c,c. c^c^a^	 ----	 - -	 ----^^^^ -- — —	 — — -%N:y.-_.hN	 ?. NN-----	 7 7 z 7 = r = — = — — ^: ^JN:V NN
' — — — —	 `- 	 `1NN

^;,'4	 ZZZZ	 fZffZZZ2ItItiIIIf**f f Zff fiftill
- - — - - - -Z --	 XXX -- Xis -X Z ----XX X` — Z -Z X X - XX — xXZX Z XX 7 - XX-- -- — X X X X

ZZ:

1 •Z

r
—Z

<—

—
za :< a <I Q

J.n
-C c Z

zz

p1
1 --- r



OF PCIGI"?

-o	 ---
_

y NNNVNNNNnnrn nnn^nnne+z	 ZtJ z zJr it`4%p 41 1414 J42J'CC z^"^^^_ _:N_NyNNNNNNNNNNNNN_NNN%N`^N.^_.N!ljNN%NNN%%,%^N%%N:V VNN`_.N.'_.N^%%,%	 V

:Y:==Yx:YxxxY:xxYxxx- -------

-X

- Z	 2

X ..	 n

2	 - ---	 2<? - 2	 ^^Z Z	 2 -	 22	 ---	 —,CZ - 

-- S z 	 _



URIGWAL P GE i YOF POOR Q

Yz

r.

L

l;

Z

:v",=^C^,CG,Z^==C.r,^C^_=	 ==°C'	 ^J ^l:^ac^z=^.==?^^^c3^ •^^oaaoaoaoaoaoaaaoa.^ac^aac^^ 	 - ------	 NN!'.4 ^c"i f"i
NNNNNNNNNN`d NN ^4 11,;VNN :\: :41NN*nw+^ rn wrw+ +i+^w+r .+.w^w^ . w^w+w.r.nw^Mlw .w=eMw^ M^n=

W art* Witt% it* =	 z	 =z si	 i^ ,̂r; r NNg141 = ,;zfg:it z^x x x ac x ii kxxX ` iix:xxYicz ---------------------------------ixxixixixxxixxxxxxxzxizxxxi-- -- —

t	 Z	 c;	 s 	 ^ :	 ^.	 ^

= C	 =	 < Z

r.



<2

W

J1

_

s

-- - - - - - - - - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ssa.. raarsr ^	 ^	 r ^,^o^o;,:a^^o^o^.; 	 aoznsaodcM A M A A A A A M A A/^ 1 A A A A A A M A M A M M M A A M M A M M M M M A A A -, M A^ 1 M M A M A M M M ^, A M ^ M

ii	 xiiAxxxxxxxxxxxxxxxixixxxxxxiiiixxxixixiammixixxizxixx-	 -	 -	 -- ------ - --- -	 -	 -	 -

a

t3>

> —

•_ • z _.

> > > >

— _ < a

——_—> >___

i A



N

T

_	 GEN

OR^G&
OF QO 

R 
Qv ^L^^^

O

<

t
z

-------------------------------------------------------
aoa a0 	 CN	 ., C1(2,_-
'^-

^i^^^^sg^^^^g^i^z^^=^,r^;zzz^=z^^==^=^r^i^^^^iz^^irs^ii^z

_ Z

X =
z- _

_	 ^ Z

-- X	 N X

— X	 Zc s

•	 Z	 Z	 Z	 Z	 Z
^

^I -

r



1	 t	 I 

Z

=ti^=--o-m =z= ^ =iF3-n=Z='===o== s r = A s=
-

`
-

z _ 
Z == =

— l=trSS-rr. 0 .;, all 	 ; J .CJICJ	 cc;:.Afs^^rarrr=r:s -sas- --=rss-srrs=r---rra-r-r-----r-rr--=

XXXXXX7^ZYZZXZ ZZlZ Z7(ZZZXZZZXXZZlt z Z Z ZZZXZ^XXZZZZZZ=ZZZI

zo
— X 1; N	 _ •	 . • • •	 • _ — p

_Z ..dam\	 — •	 • • • •	 r _

— 2 	 CC —	 X •	 • • • •	 \	 \	 • z 1 =

zcc

= -fix ^	 < n ---X	 <	 =_ -: r• t^	 r

PAS_	 _	 -_ __ =tt

'^	 w• ^ ^X \r \. • _ a f • _	 ^	 ^ .. 1. n 	 _ _ ^	 •

L
`..:.

_ _ .q .y X	 n n X -..	 -..	 X • • t n •	 X	 -	 X X \	 ^ ^	 - G

X2	 X	 -I t-ZX n ^ -2SSZS •x \ I21	 I	 IT
\«_r n <

.c _	 xx

•^ r. T T T T T^ . ` v	 r `^

i



.i

1

L

ORIGINAL PAGE 19
Uf POOR QUALITY

Sz-:V- Z z 4z ZS = :, =

^ 
=: ` Z ES	 ^= t^ ^^a S te --Z_ ^.pzjc' X

--------------h' 	 1;('+• •^Mrn.^,n^-^^+r..'nw^=lZZ	 Z^ S -1`

ixix3Y—iziSczY:zzixi_iszx:zz_iiri:z:icz:3^:icziixzxiiz^zz:xi—	 --- -- -- — ------- ----- —	 ---- — -- —

i	 q
<	 q

•	 'A	 ^	 1.

z r	 --	 q	 Z
<	 - ^_	 Y < <

q	 1.

I	 X <—	 - z

	

<<	 —Z	 <	 2 -Z Z = 2 q	 -

Z

1



0R;G1"' 1% PACE IS
OF POUR QU ALi {'Y

_'V n !1^ GI+b z ti t1^	 t:^ z yn Z 3Z :*.X Z= r= ^ `ZEZ z r.: = ^ vzrc^ z -'ht-r.4% J'	 0Js6" 	 J'	 41 +^+^^^^	 - ao oaoma4oao^a^ac.^. _ c^a==_vY=

X X X X	 Z Z X X 2 Z X X Z X X X X X X Z L X Z 2 1 X. .a: Y X Z Z Z X Z X Z Z Z X Z X X Z Z X Z Z Z Z

Ir

: n	 +

z	 >	 • C -•	 z	 a
2^	 •ONJ+	 a\	 .

s	 r>	 ^ r+n ^+	 ar
s	 -	 Nas	 aoao

> -	 -

- =-x^ - • — i	 -a;=-	 zi

<	 <++^ .. ^^ n om.	 .: - =	 ZZ^Z	 Z

1> 7 
	 _ •,C__>_

	 J, _

=Z: if	 = - z, -<
^SZ_

M



ORIGINAL PAGE ':
OF POOR QUALITY

-------------------------------------------------------
O T .z. - 1	 r, p n a^ - V en 3^ .^ a: - "+ t: L CDT - •^ = Z Q a= Z	 A Z .Z Z Z z X

=	 ^`^^^YY=^eY^^^^^o^c^oY^YrY^c^ct^;.:.^cYYYYYYz^52YYY^Y^i^^YY`Qz^Y^Y:Y
------ ---i---i---ii

z
ra

L

I:

— s —

i	 —

- Z = i .-- Jf

J St	 ZZS---•-`---

^_ -__-_... ^	 i	 « .,L	 - n _ter	 _ -	 _

-
_ «	 2	 -_	 - >_>_>-^..^.

__ ♦
Z_-'l, 1. <a	 -_

2 ZZ
-	

-<

i s n n 	 2 ^2 ^2.- J

^...........	 > n > n 'tea	 -

<	 ssss ^^l:;nf: ^ n ^ Jf

<
lYSt-- ti _—•1.^^r+-n_—

2

i



PrAcV 1$

OF POOR QUALITY

-:V F-*, zell 	-'^"^?^%\^^1D"rZ=^^w^^^^bZz^1%+^

a
It '144 444 4kEqg ut,14 44

^O,O^O`Q`G^O 'Q^O r^ •• '""^""^ •^^bOO^OOOCbLC; CCaC^aaaa	 ..	 ^ ► C----_--
2 ---

YiZx x _xxxxxxxxxx x xxxxxxvxxxxxx: xxxxxxxxxx	 ix^ziiczici[--- -- - -------------- - - - - --

f

s
1

1.

2

n

777'l.

2 2 2 X- X-	 Y	 -	 -	 X	 S Z Z	 Z	 x
- 22ZZ22f f : >< ><	 ><	 ^><	 1.	 :^.	 ><

_ _ _ > > > > > >	 n • n a a n 	 Z
2 > >	 >	 + n a n a a >	 - --..... ->

Y Y Y .^.^ Z=	 ....-. -_	 ... -.	 Z=	 .-...---- Z=

^ --"- - _	 ..^Z22• --=Cam_-- _ -	 - ► 	 i .:l7'l.	 x.17_ ► ..._-l.
^.J7Jr AJ1.1)A	 -	 -	 --zvz

s_	 _ ► -	 ► Irs ---	 Z_ ► 2rz-___	 - 21..^'!'_--_	 Zl z__ _ _ _
--	 21: --	 '.

►
. .Z	 _\-_^S_r__..T.. •M\www=_\	 1	 -Z_\- •--^L_\-:. C __► ^LYL^ ZS _--..	 __-..-^ ► __	 -_-^... -..__^ -^..'^^..	 -__

s

1



r
ORICANAL PAC t 14

OF POOR QUALITY

C"i^^^X•hr=r^^^'.^3-1:r'^? .^:r^^'r—y z .'J .: ^ 1^^ y = — ^^:. ^ 1\J'^5^^ ^ :^.+^51^^0'^7C ^ '— ^^ — tiNNNNti V V^4 ow +.wn ++++
	

-r — _ -- — — r ^ n^ r b1 .^.	 ^.J : J .^. J O G '. L.

X`YXXXX][7cX](XS2XXXX^Xx iZ[ziXZix Yx7?xZX^xX7[z7Ci]CXXx XXXXX7C—(`Xz—	 --- — —	 ------- — — ------------------

:.7

x

— —	 n a s

— —	 n f n

— —	 — — —	 —
2 	 z ^ — — ---------------

--=—r+
--

--------__.:_	 r-..ssnsnff^rff:r.r^^^n.,,srff .r•.f--------------



i

c

z

x

Z

	

r N Itk	 n • . • i. i :i

OF PGCH Q jkd i 'r

= v^,is Z raS!= 3-4AZ^7Z r-aoS z =-7,z Z a z ac: _- - = ^c^ =-Fj A -c 7, jzm_Sz =^,=,_ r
^^r► ^^^^^^.^^^^^^^^^^ ► ^^^^^r^.^ -+_ a00aC0_ T_. a_ ST12_ 0_ 1_0000_ a00L_ S OOZLS_ 0_ 0

gttattezf'f itJEZSSt yet te**L,z
-	 - - ----- ----- ---- -----------

:s
W

' W
•U

.Z

c	 zZzz
^u ,c
izzz
•o ^O

s
z •z z-

	

ZZ	 z

	

- rZ	 z
Z •l. 1. Z

	

Zl.9Z	 Q^;
t 111	 •< —	 <	 —
___	 - -	 Z •^ ZZ	 =ZZ

Z 1 t Y	 ^ ^^—	 — .7	 =	 J'

r-̂ == - 3^	 -	 c- c -	 <Q

	

Z-	 X11%	 2=-- •-TZ	 - -
- —^—_ •J: '1. 17 1. _—	 Z-- .^

	 ^	 —	 .... ...
•,—	 — 

— ^^^^1 ^—^—^ <L	 .n—<	 — 1:	 T X	 — _ 1. ^C

^T
^z

i Z

ZZ

^. ------ 

LC

s



ORIGINAL PAGE IS
r,'► POOR QUALITY

'J NN,y ^^ rn wa r men w+/+1 wi t—t— -----	 ••, ^'^^ .^J1 ^•^	 ^.0 1'1 C •J • Q IC •C ': Z C - — — — — - — — — -^Zsoos000sos00000000aaa`oaa^icozaosaaoeoom^onrssnssaoac^ossaoacxsss- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
s**ititiJE**It4AA#	 zItri;t2 it* 22tg2 *-*if if if**Ezz
xi_icx^ ic ][ ic`xzxxxxxiii:iriiiiiii: iiicii-	 - - -- ---- --- -- - - -	 - --	 - --- ---

i
^	 _̂ ^ X =

cr<-

Z Z	 -	 t	 \

< <	 ^	 .....n > "•` ^. 1.	 — —

nn	 iz	 --	 — - --x—••, —	—^

-	 x n 	 n Z 2	 _ - - .^..^.	 ^ -	 X

J'_>-
<-=Z277,n <=-2•^'^-• n -	 s X n $ 

•_̂	 C __ •.:	 ,^	 ...»>^	 \ \ \_\\ —\ < x:.22'" _
ZZ--__ —O	 —<A— ^: a n 	 222 — ZZZ Z—Z

ZS _.	 — _ —< 1.	 ^^ ^'22	 v =2^ 4	 —_

J:



r
<z

c

a

1T	 PA' 19

OF POOR

=-o-	 - o---o-	 _	 --'VI"'t'^^2'-:VMt^
	 40 T,	 +'^^%. r 1a^aC^Z.:^^.g2;^,^^=2 ..t:

^O "'t c0	 00^1C^CT. 6̂% % 2T.T- ^^ 1 v v ^,1- : ---------C1 '1 'r' N'J "NN-nwl en	.+
^^¢aoocsooaos^o+oog9oao^ c _	 ^:^^Z^^^_:^e:e^ ce:: 11.
t g44444tt 'lit ^tttt.4 A  t4tt#4ttA=#tutttit*tt4atta'ttgtttt€t'k
z ^Cxxx^x'

>s

.r

f	 —	 —	 I —

•	 i i	 < <	 Z

.	 n f	 :jf .-	 -I	 ^ i

L < _	 _	 c •

s	 ^ t	 a a	 -	 n

a -	 ^1,	 a =	 n _
X	 2_	 a s	 ^..>^	 --	 Xa

V ....	 __	 a a	 _ _	 X -	 -	 •X

n 	 -	 .t	 s n 	 <	 -	 •nom 	 -<
_ Z	 - N 	ZZ--	 s a	 _\-1	 ....N	 --^

N^	 SZ-- X• n 	 v ->^ Z.- a	 -

z,.	 _ <=	 -	 ---_	 a	 <-z -» w .^•z	 <_	 rz -

- v,vX ;4x ,<_	 - --_ _" - x .i	 - _V1	 >=z= - J	 = r

.z--= r = r.=-zz zz^x z -• zxx

	

ti_ n C Z ^ J7 ^ — __ X ^---^ ^ :. n — Z ^ 2^^	 .. ^ < < Y-- -- ^ ----_ 1.

ti .

I R

;n
.i

1
S



0MGM-11" PAGE IS

OF POOR QUALITY

c

o^aoG^ x= ^+n?n o A ao =°_ :,= =.Z4a ,:-,!ter =,== C ^0 = ^ v ^+^	 +aoc^==tV	 C^s^ _rnnw^ w^ ? SSA -t----.!`sue 1^. ^'^: r^ ^J^OO^OOG^^GC^O---- - ----- ^aDaOmSJaCa0^07CT^C^7,C C, .,ccc. c:	 = = as

i^ i^ 5iisrx ii [j8S2 i ^iki XiiXz;K ^i ^ i i zi iizzzzziiSjii jz_'̀ iiiiiiiiiiiiiiiiiii .;iXiixiiiiz

r

1

s	 i
X ^J

r	 i _
X<X n —	 —

i	 at

• •	 a

z
<

< X 	X a...x	
<

x X	 <aX
G	 < ZZ Z	 L<Z	 -__	 X Y

_ x

-	 Z
<_ G

^J X X=	 _ Z_ G	 ^i i	 X Z = 	 Z K

G 	 — ^^: _^ _	 __ n _ n__	 <	 .. .,	 a	 a Iii	 .. ^'fie

QZ	 = Z _	 '^	 _—_ _	 _ Z2—	 —	 X Y z	 ZZ .._	 zzzz	 ZZ.. = Z ^.	 -•••Z.__—^

n



Cn'G11`^AL PAGE is

OF POOR QUALITY

T^ O 	 c x ZZZZ Z ZZZ Z ^-	 N^111r=h.-^ ,^+^ -- -~^--f=^=^^
:?F?F?^szssszzszsszzsssszsssaFszssrzrjsz

: II xxxx zxxxxxxzxXxxxx—,zxzYZii ii ii ix iiixxx^xx: xxzxzx-- -	 - - --- ---------------- --

N -
y N

a

— N
7C i

..
y y

^

• > > > -
V

_	 _
X X X -

- ^ - <

N a ^ In fV . t . ♦ a	 - I	 -

-	 ---+	 ---	 -	 s	 -	 -	 a<a<ca<a=

<

x.	 x I	 - xxx .. —>	 Z Z	 - - ----

J:

.-Q



GRiGHVAL PAGE IS
OF POOR QUALITY

ti

.11AIc^cec-Csc! c	 19 li:. C J^Z^ C^^^^^^^^^^^OC^a=a0 7p ^=^ 1Q^^: Cam: 1Z

zsszzszzszzzzzzzrszzszzzZZSZZZZZZZZrssZZZZZZzZzzzz.0?!^iiziYxx^2Yi Y Sc zXZ7c ZX7[X7CXiC27f7[Z7C7(Z2z z7^Z7C7i 	 iX^Yxir- --	 -- - - ----- --- - -----	 -- - -

.n

U

Yr
T
a

s

Q

Z

T

1 ^

X - -l.

a Z	 Y

Z

—
=	 Z

s	 }

X

X —

-_i

-	 Z Z

}
<}

1	 —
i

X	 =

s
-	 2	 = Z<
t	 _

'V X	 -
_	 < <	 -	 N	 ;n

2

.—	 <^<	 Z	 7 
-- ---	 Z..Z—

Z 
T —

n

>_ _	 •ZZ	 T —	 —	 --Z	 _ —^	 —Z2Z	 —

Y



4
It

y

Z	 1	
fl^^, 

rj,^(._V

Oa ^ ..	 ^ 1 ^^_^ 1 Y

U^ 
PUp12 C2

=F4"13ZI ^ 4f3 = pia+aoZ =='. ^+^ : 3^^o^ z 	 mss: ^:^^o^ = = +as^::^o3^z=^:%+ir.-,rte	 -	 -•---^^^-lV.^.'^NNNNNN' . ^+n'nw^ 'w.nnM^► nrilStilitllSS^ ^.^J`

if§ifnnnIn s { if n it 31IfIN 314 z4 JFR431 n XK43;N 3144n91	 sss94 4F szz 4 NNKNIfY 	 Yi?Y ,l_R7f l[Y Yi '̂ YZZZZ Y YXY^^^Z^IZ^ ]R XX]f^I7[^lY Z=7[ ZY Z^Y
>

N
W
5

aS

- =	 -	 + x - M ===i: -	 -
- -	 7	 -

_ 	 Z.A
Z 	 z^

-tZ I 2	 z I	 --	 ZZ r z	 -!	 .-Z.

A . v v



L

p^;r MAL FAG[ IS
o . ?OOR QUALITY

4-40 3^NnJF:'̂ `^O^=^^J"+ t^1 0 ► aC ^ ^ ^ ^ .^ -l`"7C Z -^hr`=
 ^^ 1 ^^ _ =y am. I =^LZ ;

{^^^,str^szzs^rizz^^sszszssszzsr^zss^za^a^^{ss^^^ss^s{s^sszz

s	 ^o

2
^O

^O

v

s
,a

<

an

i
	

z

r

i
r



OF

w
s
r
1

y
z
r1

G
1.

2

1.

-^.^^oZZ- '-"i:
^^:1NNNNNC '^.'.^+n"q'^^'+"'+^'^"+^"^^+ irrrrrr tSt: 	^{'1: t. .^ ►̂ ^G^pJJ^:..

N\ N_ N N_ N_ N N_ N N_ N_ _1 N N_ _N 'd 1 N .'. ^4.14  N N C. N	 N N N N `. N N N N N^ . h

V

r

w
Z 1i

z <	 >
i

x ate_-><



2

PAGE IS
OF POOR QUALITY

r

<

z

J-aOC^S^^•n!1p^^ZZ-,y.+:^J^ca: -ti	 :^^^2-S4100,0,t ;z ^^+^+•^.DOcwc;o0ccc^ C N CN Pte: " ^S_ --- -	 -	 .--
C,4 VNNNNNNNNCJNNN • N' 11 CJ `^:^ 1 .'. ..`JNN C., til inw^in w nin-'Aa. ••.nn.^nw^w^.nrnw.:.

1 Nx4x1N44N4KNN4RN4 :-?z49NgT4rss4{zzsszszzzsZSZS::zarzs2xxxxi-xxx xxxk x xxxx xxxxaiziiicxxisxiiiiiii ` iix^iiiiix : zimiiii-	 -	 --- ----- -------- - ---- -------
N •	 ,y -

Z ^+
^. J	 N N	 :^

z z •
s -r	 ry	 z

Z Z • a n 	 • ./^ 1. Z • n 	 -- s

- 2 2	 a;..; \ \ \ _ -_

.. _ 2	 Z 2 Z

ZZ :	 -_ - - Z Z	 2 Z 2 Z'=

z--
- -_	 - - - - - -

«" n __----
v^I2Z---_--

'•x.'.22=
z 7[^sSi	 Z _I_<=<^=^_Z^.T^=—7•

-.f,



;r

OF . jOR QUALITY

4r	 40 CZ= lawt^^, ► ^^_^'r ht ^c'^
NNNNNNNN1r Arw+AA "^^^ A -^"^ilss r!!=ir1	 r_ J`^'^ .^: Cv Cd O J^ O Jam ►►►► ^

- A A A A A A A A A A A A A A r r n r` A A A A A A A A A/ A r A A A M A M A M A A i .. A A/ A A ^' 1 A A A A"' ^' 1 A A

-	 ?F?F?^F?qtr?^^F^F=^F^F=sss^F=^F?Fszzi^F'F=̂ jFssa^szszz
—	 Y_ ^c:x:z_^Scz Y^x:z__^s::: ax :z::zx_zxz_xzx_Y:xzxYSczxxzzY

^n

x
r
Tr

x

-

n	 _-••s-s	 =__;,_	 -z	 =	 r	 ."	 ..-.Z --_	 ica'«a«= - r-- ---	 = - A	 <---=

-.z<7.-:n-------------l1-_<«aG<<<<__Jf-----------

n



;n

z

Z

<

<Z
Z

r
2

z -

z

URIGMAL PAGE Is
OF POOR nUALITY

ti

---------------------------------------------•---------J^47G1 ^^KAZ:•C z roS5=-74 ^tCz—V^+57,. ZCz=-7,jA2:-O'r-ZZl yn.7 Z^eD=-
M^n'n'n'nn'nr '. r,"w,Mf"— ^ ",^r"+"'". .rCczZ T	 Sr 2z z - 22=5?.: - Z.7zz z  z Zr
szzs sszzz,s^zsszzzzz=r=zzzzrzszrzzzzzrzzsrss=zzzzzzzzsrzzz
YxZ ic^Ziicxxic^iXXXXfXXXXXXXXzxzs_ ziXXiXXXX2Siii 

n
z

-cr-
^	 =r	 r	 --.o

SC	 •.o nr
- W	 M
r>	 i-rs -+

X•^^—_

W-

- >

> -+ 7 _

S

-	 .^ u1 ,r. - .. M 2	 2 ^ }

:zz	 zzz	 n z-	 ^	 z
^r#a=^r^	 = z

r

>
22 1

Z	 Z22

> > >

<	 f, Il 'l.	 —	 if 111

	

z--+iii	 -^»> :i nn-•• --- -^.,-^-	 •XXX	 -

	

- X X X	 _	 '^	 X X X	 X -

z	 -r-ts _ = a=z=i=	 __- -
_ _^_ x x x_ ^ r n n C n n :^;: r f r z x x x^ z z X:__



Z

is

OF POOR QUALITY

r1 w1 r+^I1w A/MI^ r1 ? rrrSrrr=	 ^'^:.	 11^ 11C ,4 ,c4z C C C SC. --^	 :	 so cc cc=rrsrarasaaaaaarraarra=aSrrarrSSSrr===aaraaar=ar=arrrr=r
.. ^zsssssszrs{zzszszsrzzssrszrzzzzasr^sszzsss^ss^zsssszzz

y

r.
1

_ - i -- X X X X X X	 X	 X

X:

_ 77.7-- -+'L 1 - --mac

__

... ► - 2 - X X X :: - - -----------

	

 - - -	 - -

ti

• t

r ^

« i

	

- - ^ 'n :!1 J7	 Jf..yy_

^a—

s i i i i i ,,; n

_ _ ^_ - :/7 J7 f r :/7
- - -	 f

- - _- - : - - - - --z- -	 --

	

17 'l: ^ :n J7 N J7 J7 T ^ - J7 17 :!: ^ 'l. J7 1. "I.	 l7



OF POOR Q

ti

10-409=;(,A "^._'.
30 040 401% C% Ck a+ c%

zszzszrzzz

^[RZXXX]CXX]1

N	 •

i`.

_	 s

t

-^	 a c^ a

s a n n n a
n n

11 ;y N N Jf :.

.,..A ... a	 N N N

<	 N J:

^f a

is n

^ N:^ NSnrz_



M	 y.	 T	 •
♦ 	 .^
• J	 •	 NI

°	 , I•	 M	 :	 ^	 r	 V ryep	
N	 . ;	 •

++f ^ ^ ^• ^°°^S ^ S u .°. X17 _i	 ••^ ^N	 i^ • ^^r ^O V r .^r	 ^ r O ♦

	

♦ 	 V	 r	 ;	 i t	 M^	 ^

2
e
• 	 •

i	 •	 i	
``

J	 ^	 O

3p	 3J v •

fry=	 ;r^^•	 ^	 ^3t _ ^i^ N 	 ^_ ^f ^__	 z_.<	 f	 _ •py <
	 <	

<• 
W	 <

Y 	 r	 r^.1

r	 41 t	 • •	 G	 Y	 ^r	 r + • • • • t • • •

	vs•7 < ^••7 <	 u^=^< ••u w ••V.l	 aa6.:n< Z•.••< ^77<

DF POOci	 iTY

A Y

a ! r. t ^ r > Y
^ •♦^ ^ 4

^ a	 O T	 J• y T	 ^ ^ ^ i^ u ^° ^

A s a w^ ► — ^ v•	 je •_7 V J ^ i gs • r w^trti77 ws< 4	 i`Ori^QS^• vOi eiW L
•^ a C a t -^	 L )! a^ a 3_
V

a
e t i+ O 3 M O /

n
^ M C

Qr

`•JS4L •̂

r r

•^7r

O r

•

r	 y n 
VY^

Y	 • 077 0

[ y
07 r

.wj O 7
tf_

C`
7

O 8 yG_

•
n n

f	 = t t • •r
i

O
r

Y
Y

L
y

7

= Y
T

^ Y
p

Y
1

a
•

YC
83_.^

..°
	 =_

Y r n! • ^r

OO 3 t Ov N n

'
Zo

469Y <•
l^N^ VlN Y	 N• 41, ^^f 3

Y
rte~ •^ r r

Y

3
Y •

• ^^^..a.n s ^i<_^ Vii+ s-+ ^^_^n-^a.^a^: a s` o^ s,s
O O	 • ^ ••1 ^0• ^ _^^/^r ^Al1 ^	 '1 rL w Y 1

z 00



>

	

	 iw
i	

r

e	 =	 Y	 M

• ^	 w	 ^"	 A	 r	 A
d	 k	 1r	 i

^^	 Y Y	 w	 i	 .	 w•

N

Y	 ♦ 	 t ♦ 	 .	 w	 r^ ♦ 	 . A N`

•	 V •	 w s `
i N 82u . 	< 	 w	 0 w i: f

}4•
•1 1.

5 a e• 3 Y	 ^	 . M A.	 r r— r •	 ^007 OW2  8W-74 !AZ	 r	 r	 jj r	 e.< .I F <	 J - J <	 ^ 1. N S N < ^ O• M< < <
N

v	 • ^	 •	 w i^

^N ^ w	 ^	 ^•	 • ^	 j ^

• r	 i 1^ ^ ^ Z — w ... r	 V	 O	 0

i	 •• ^^	 t^	 vY W	 s 3 ^` • u
•^4*	 Y.^	 r ww!I	 O • ^y^ r i	 +5.	 ~ • w	 1at	w^i. G6.

ze

b"gMV 1 44w 0 A 's^A —0 V4/Ow^ r Y Y O^F1r<=61 J 1 •. Y	 V^ Cis	
:ZY J=V
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