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Prepared by the Jet Propulsion Laboratory, Califoriia Institute of Technology,
for the U,S. Department of Energy thiough an agreement with the National
Aecronautics and Space Administration,

The JPL Flat-Plate Solar Array Project is sponsored by the U.S, Department of
Energy and is part of the Photovoltaic Energy Systems Program to initiate a
niajor effort toward the development of cost-competitive solar arrays.

‘This report was prepared as an account of work sponsored by an agency of the
United States Government, Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, o7 .ssumes any legal liability or responsibility for the accnracy, zom-
pleteness, v usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe p:ivately owned rights,

Reference herein (o any specific commercial product, process, or service by trade
nanie, trademark, manafacturer, or otherwise, does not riscessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, The views and ppinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof,

This publica:ion reports on work done under NASA Task RE-152, Amendment
66, DOE/NASA IAA No, DE-AI01-76ET20356,




ABSTRACT

This report describes laboratory tests performed to characterize
candidate encapsulation materials with respect to changes in their physical
and chemical properties caused by photothermal,aging, Several key material
properties relating directly toc material degradation and deterioration of
performance have been identified and have been monitored as functions of aging
conditions and time. This handbook provides a status report on accelerated
testing activities and presents experimental data collected before and during
December 1982. It will be updated periodically as more data become available.

The use of thes# data in development and dissemination of predictive
models describing the rate of aging as a function of stress parameters is a
separate and ongoing task., A preliminary version of this model will be
published soon in a separate Flat Plate Solar Array Project report.
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SECTION I

INTRODUCTION

A, BACKGROUND

The Environmental Isolation Task within the Flat~Plate Solar Array
Project (FSA) has the responsibility of (1) developing new materials and
processes required to achieve low=-cost, durable encaPsulacLon of photovoltaic
(PV) modules at a total installed cost of $14/m2 for the encapsulation
package and (2) performing assessment and prediction of deployed PV module
lifetime, through development of a fundamental understanding of degradation
processes and mechanisms of the encapsulation materials, and development of
outdoor lifetime prediction models for encapsulated modules.

Toward this overall objective of life assessment and prediction, an
effort was initiated directed to the characterization of chemical and physical
responses of encapsulant materials to accelerated photothermal aging. This
cffort involves exposure of materials to ultraviolet and visible radiation,
elevated temperatures, liquid water spray and various oxygen concentrations.
The primary use of these data is in validating and refining analytical models
describing chemical changes in mpaterials occurring on long-term exposure.
These data may also be used in ranking candidate materials that perform the
same functions within the encapsulation package and that belong to the same
generic chemical class of compounds with respect to their photothermal aging
responses.,

These tests are complemented by mechanistic studies performed on
selected materials such as ethylene vinyl acetute (EVA), polymethyl
methacrylate (PMMA), and poly-n-butyl acrylate (PnBA). The studies involve
characterization and monitoring of chemical degradation caused by photothermal
aging, i.e., photooxxdatxon, croeslinking and chain scission in polymers.
Transient species involved in the overall degradation process, e.g., chain
radicals and electronically excited states, are monitored in real time using
flash kinetic spectroscopy and transient electron-spin resonance (ESR)
gspectroscopy. A status report of this work can be found in References 1
through 8.

B. MATERIAL PROPERTIES MONITORED
The following properties have been monitored as a function of aging time:

(1) Optical Transmittance: Optical transmittance was measured on a
Cary 219 spectrophotometer equlpped with a 4-in, integrating
sphere and ultraviolet (UV) optics. The collimated and total
transmittance were obtained as a function of wavelength in the
wavelength range 300-1200 nm. Besides providing a dlrect measure
of chemical changes involving formatiion of oxidized species such
as carbonyl groups in the polymer optical transmittance,

' measurements may alsc be used to monitor diminution of cell
performance due to loss of transmittance of the encapsulant
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material, Optical transmittance measurements also provide a
monitor of the UV screening capability of outer-cover films.

(2) Weight Loss: Weight~loss measuremeiits allow monitoring of loss of
polymer mass due to evaporation of plasticizers, leaching of
additives and formation of volatile degradation products.
Weight-loass measurements correlate with the rate of formation of
voids in the encapsulation package, which may cause delamination
and corrosion,

(3) Tensile Modulus: Uniaxial stress-strain response was monitored as
a function of photothermal aging time. Measurements were made as
a function of strain rate, up to yield, This stress-strain
response can be used to calculate engineering or secant modulus of
the material. Work by Spectrolab, Inc., indicates that the strain
isolation function of the encapsulation package requires a
tradeoff between the thickness of the pottant materisl and its
maximum allowable Young's modulus (Reference 9). The measured
stress—-strain response also yields information on the stress-
relaxation or creep behavior of these materials. Detailed creep
measurements on EVA will be reported in a Jet Propulsion Laboratory
(JPL) publication.

(4) Swelling and Sol/Gel Ratio: Crosslinked polymers are insoluble in
any solvent, but they are subject to swelling. The extent of
swelling is determined by the crosslink density of the materials
and the match beftween its solubility parameters and those of the
solvent, Partiglly crosslinked materials can be extracted to yield
a sol fraction which has finite molecular weight and a remaining
gel which has a crosslinked network. Determination of swelling
behavior and sol/gel fraction yield fundamental information on the
network crosslink density and network topology, which are critical
chemical structural parameters in a polymer that control its
physical-mechanical response. The mechanical response of a polymer
changes on outdoor aging because aging causes changes in crosslink
density and network topology. Hence, the ratio of changes in
swelling behavior or sol/gel fraction after aging is a key measure
of the outdoor stability of these polymers.

C. TEST DESIGN

Polymer samples were aged at 55°C, 70°C, 85°C, 105°C, and 135°C. Aging
conditions for the four lower-temperature tests have been reported previously
(Reference 10) and are described only briefly here. The source of UV radiation
used in the four lower~-temperature tests (55°C, 70°C, 85°C, and 105°C) was a
filtered medium-pressure Hg arc lamp, approximately 200 W/in. of arc length in
power. The lamp was placed inside a water-cooled Pyrex jacket. A transparent
annular Pyrex oil bath was then fitted around the jacket. The samples were
mounted in the space between the Pyrex jacket and the oil bath, and were in
contact with the hot oil-bath jacket. The radiation apparatus is shown in
Figure 1. Samples (3 x 1/2 in.) were mounted directly on the inner surface of
the oil-bath jacket to allow free access of oxygen (open thermal aging).
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Samples for limited-oxygen-access testing were placed between two sheets of

Pyrex glass and the sandwich then was mounted on the bath., This arrangement

(covered photothermal aging) allowed limited access of oxygen with its edge

effects, as illustrated in Figure 1. Control experiments (with no UV) were v
also performed by aging samples in a dark stagnant oven.

Although satisfactory data were obtained by use of this radiation
equipment, it lacked precise temperature control, especially at elevated
temperatures; e.g., a 10°C rise in sample temperature was once observed
during one of the 105°C tests. This was caused by enhanced absorbance of
radiation by sample films turning yellow as a result of photothermal aginyg.
While the oil bath maintained at 105°C was supplying most of the heating
during the initial aging stage, the additional absorbance of photons resulted
in the rise in sample temperature. Subsequently, an accelerated aging
chamber, the Controlled Environmental Test Chamber (CER), was designed and
constructed at JPL to achieve better temperature control,

A detailed description of the CER is to be found in Reference 11, |
Briefly, the irradiation source in the CER is a medium-~pressure Hg lamp
filtered to yield a photon flux of up to % suns of AMl ultraviolet radiation
in the 295-375 nm wavelength region. In addition, it can provide precise
temperature control and simulated rain and fog., Detailed calibration of the
photon flux was achieved by radiometry and actinometry. Parallel aging tests
were performed inside the CER and at the JPL outdoor site in order to validate
its use as an accelerated testing device and to estimate the accelerating
factors achieved under specific conditions, The CER has also been demonstrated
to be a valid accelerated outdoor simulator with respect to photooxidation
(Reference 12). Figure 2 is a photograph of the CER.

The initial CER design allowed aging temperatures ranging from 25°C to
60°C. Subsequently, resistor-type heaters were added to the outside wall of
the CER to enhance ite high-temperature capability. Additionally, a
thermostatted sample holder equipped with its own heat source was designed to
reach a sample aging temperature of up to 135°C. All heaters were
thermostatically controlled by the voltage output of a thermocouple that is
attached directly to the sample films, Continous temperature control within
+39C were obtained routinely by the CER, even at 135°C.

D. TEST SAMPLES

Samples tested were ethylene vinyl acetate copolymer (EVA, Springborn
Laboratories, Inc., A-9918); polyvinyl butyral (PVB, Monsanto Co. Saflex);
silicone rubber (room-temperature vulcanizing eilicon elastomer, General
Electric Co. RTV-615) ethylene methyl acrylate copolymer (EMA, Springborn
A~13404); and poly-n-butyl acrylate (PnBA, Springborn A-13870). Two kinds of
aliphatic polyurethanes manufactured by H.J. Quinn Co. and Development
Associates (PU 2-2591) also were tested, Four commercially available
outer-cover film materials are being evaluated. These are Korad (Xcel Corp.),
Tedlar (Du Pont Co.), Acrylar (3M Co., X~22416), and Kynar (Pennwalt Corp.).
The Tedlar sample tested was designated as UTB-100 and a new sample of Tedlar
(100BG30UT) is now being evaluated, Table 1l is a matrix of samples tested and
Table 2 is a matrix of the pottant samples versus aging conditions and aging
time. Table 3 is a similar matrix for outer-cover materials.,
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Table 1.

Matrix of Pottant and Quter Cover Materials Tested

MATEL AL
APPLICATION | ACRYLICS | POLYOLEFINS| FLUORO- | OTHER
CARBON | (SILICONES,
POLY URETHANES)
POTTANT EMA EVA RTV
(SPRINGBORN | (SPRINGBORN (GE RTV-615)
A-13404) A-9918)
PU (@QUINN)
PnBA PVB
(SPRINGBORN | (MONSANTO PU (DEVELOPMENT
A-13870) SAFLEX) ASSOCIATES 2-2591)
OUTER ACRYLAR TEDLAR
COVER (3M X-22416) (DU PONT
UTB-100)
KORAD KYNAR
(XCEL) (PENNWALT)




PWIL puB SUOTITpuo) 3urdy snsisa sojdueg Juellod JO XTIJER °7 STQEL

AL p
OF Poor ogffn-'}'

m'm o

ONIOV
800 1 - 8001 | 8001 - | 800t 8001 IVWEIHLOLOHd QI¥IA0D
ONIOV
U9 - 8001 | z£9 -l 8001 TYWYIHLOLOHd N3dO el
8001 - 8001 | 8001 - | 800l 8001  ONIOV TYWiIHL
ONIOV
- - - - |o08 - 008 IVWYIHIOLOHd QI¥IA0D
ONIoV |
- - - - 1008 - 008 TYWYIHIO10OHd N34O 01
- - | - - |oos - 008 ONIOV TYWIIHL
. ONIOV
- - - - |oos - 008 IYWIIHLOLOHd aIWIAOD
ONIOV ~
- - - - |oo08 - 008 TYWYIHLOLOHd N34O 8
- - - | o008 - 008 ONIOV TYWIIHL
ONIOV
- ooy - - Joos |oor 00S IYWYIHLOLOHd AI¥IAOD
ONIOV
- | oov - - |00s |oor 00S TYWYIHIOLOHd N3dO | 0L
- oov - - |o0s |oov 005 ONIOV TYWYIHL
| ONIOV
- 00v - - - | oov - TIVWIIHIOLOHd QI¥IA0D i
ONIOY
- oo¥ - - - | ooy - IVWYIHLOLOHd N3O SS
- 0% - - - | ooy - ONIOV TVWYIHL
"J0SSV | NNINO | vaud | YWI | ALY | 8Ad | (8166-Y NIOSONIUJS) NOILIANOD (29
*AlQ VA3 dW3lL
Nd ,
Y “IWiL ONIOV




Table 3. Matrix of Outer Cover Samples versus Temperature and Time

AGING TIME, days

TEM"?"CATURE' " ACRYLAR TEDLAR KORAD KYNAR
X-22416 UTB-100 .
55 600 365 0 oo
Y 200 © 15 200
1% 2
* AT &0°C
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SECTION II
EVA (SPRINGBORN A-9918)

The following figures and tables offer data on optical transmittance
(Figures 3 through 13); mechanical properties (Figures 14 through 25, Tables 4
through 6); weight loss (Figures 26 through 28); other properties (Tables 7
through 9) of EVA (Springborn A-9918).

it




TRANSMITTANCE, %

A,

ORIGINAL PAGE 1S
OF POOR QUALITY

OPTICAL TRANSMITTANCE

100

90—

80—

o
=)
1

m
o
|

'
o
|

30 -

20

i

10

oL

CONTROL —
— == 100, 200, 400 h
------- 525 h

| l 1 |

400 - 500 600 700 - 800
WAVELENGTH, nm

Figure 3. Change in Optical Transmittance as a Function of
Open Photothermal Aging of EVA at 70°C

10




TRANSMITTANCE, %

100

90

80

70

60

50

40

30

20

10

—— CONTROL
——— 100, 200, 400 h
=emeen= 500 h

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 4.

500 600 700
WAVELENGTH, nm

Change in Optical Transmittance as a Function of
Covered Photothermal Aging of EVA at 70°C

11

800




100 l l |
N Lw
20— -
80 I~ -
0 CONTROL
— == 100, 200, 400, 500 h
70 = -
|
|
R 60 i -
w |
O
z L
é 50 i -
= l
yd ]
& 40-" -
I
I
30 -
|
|
20 -
|
|
10 —
oL l | | ]
400 500 600 700 800
WAVELENGTH, nm
Figure 5. Change in Optical Transmittance as a Function of

Thermal Aging of EVA at 70°C

12

W —e



TRANSMITTANCE, %

100 !

80 —

70 1~

60

30 I~

20 H

10

' l ' A
——— CONTROL, 100, 200 h
=== 400 h ]
------- =800 h

ORIGINAL pAGE
OF POOR QUALITY i
l ‘ 1

400

Figure 6.

500 600 700 800
WAVELENGTH, nm

Change in Optical Transmittance as a Function of
Open Photothermal Aging of EVA at 85°C

13

N I R S R R A e L R e :

.
LS e



TRANSMITTANCE, %

100

90

80

70

60

50

40

30

20

10

CONTROL
——e 100 h N
........ =200, 400, 800 h
.
ORIOINAL PAGE 18 ~

OF POOR QUALITY

400

Figure 7.

500 ‘ 600 700 800
WAVELENGTH, nm

Change in Optical ‘fransmittance as a Function of
Covered Photothermal Aging of EVA at 85°C

14

e

P



TRANSMITTANCE, %

100

90

80

70

60

50

40

20

10

——— CONTROL
———200 h -
----=-= 400, 800 h

ORIGINAL PAGE IS _
OF POOR QUALITY

] | | l

400 500 600 700 800
WAVELENGTH, nm

Figure 8. Change in Optical Transmittance as a4 Function of
Thermal Aging of EVA at 85°C

15




TRANSMITTANCE, %

100

90

80

70

60

50

40

30

20

ORIGINAL PAGE 1S
OF POOR QUALFTY

| | - i ' |

400 500 600 700
WAVELENGTH, nm

Figure 9. Change in Optical Transmittance as a Function of
Open Photothermal Aging of EVA at 1059C

16

800

SN S



TRANSMITTANCE, %

100

90

80

70

o
o

50

40

30

20

10

] i | |
comemm= 100 h
-------- 200 h
e e 400 h
= 800 h ]
ORIGINAL PAGE IS
OF POOR QUALITY ]
] ] | ]
400 500 600 700 ' 800
WAVELENGTH, nm
Figure 10. Change in Optical Transmittance as a Function of

Covered Photothermal Aging of EVA at 105°C

17



w\ e e

100 ] T T T
90 ad
80 - / (0 HRS —
! ———100 h
! . smenme= 200 h
[ ORIGINAL PAGE IS ——— 400 h
70— J OF POOR QUALITY crmemimea 800 h -
® s | | ._
w :
@]
Z
E 501 -
=
[Ve]
~ 40 -
30— -
20 | | -
190 -
0 | | l 1

400 500 600 700 800
WAVELENGTH, nm :

Figure 11. Change in Optical Transmittance as a Function of
Thermal Aging of EVA at 105°C

18

RN



20SET 38 VAR 3O Sutdy Tewaayjojoud paiaa0)
jJo uoI3lduUNng © SE 3dueIJTWSURIY 1eo13dp ur a3uey)

+z1 °an31g

ORIGINAL PAGE IS
OF POOR QUALITY

* e———— i W
AERmE Sa—

wu ‘HIONITIAVM
oolLlL 0001t 006 008 00 009
| i | | | i
r— wco_. oooooo LYY XY
y 9gg === —
y goL =====
JOUNOD
a..ncoon-acccoooou .\.
...... o~
............................... J..\/\Hf —
S

19

9% ‘IDNVLLIWSNVYL

0oL




D0S€ET 3® VA 3o 3urly Temaayy
3o uorioung ® se eouejlllwsueal [ed13dg ur sSueyy g7 91nd1g

OF POOR QUALITY

ORIGINAL PAGE IS

wu ‘HIONTIIAVM
0001 006 008 00Z 009 00§ 00 00€
[ T _ T [ T 3 _

Y BOG! =eecosccce ..... .

Y LY ——e em s

Y 9€E —— —— s .=

T LT p— S
10UNOD Nl

00¢

ol

0c

0t

o o 9
© v
% ‘IDNVILIWSNWIL

o
~N

08

06

oot

20




B, MECHANICAL PROPERTIES
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Table 4, Modulus at 5% Strain as a Function of Open Photothermal
Aging of EVA at 30°C, 70°C, 85°C, 105°C, and 135°C

TEMPERATURE TIME OF MODULUS, Ib/in.2
°c AGING, h 5% STRAIN
ROOM TEMP. (30) 0.0 1015
400 586
70 500 | 650
200 582
85 800 628
200 836
105 800 566
135 84 | 734
168 *

*SAMPLE DEGRADED, UNABLE TO OBTAIN MODULUS DATA
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Table 5. Modulus at 5% Strain as a Function of Covered Photothermal
Aging of EVA at 30°C, 70°C, 85°C, 105°C, and 135°C

TEMPERATURE, TIME OF | MODULUS, Ib/in.2
oc AGING, h 5% STRAIN
ROOM TEMP. (30) 0 1015
200 671
70 500 630
}
s 200 846
' 800 504
200 550
105 800 664
168 600 ‘
| 336 580 {
135 672 625
1008 869 :
4



Table 6, Modulus at :5% Strain as a Function of Thermal Aging
of EVA at 30°C, 70°C, 85°C, 105°C, and 135°C

TEMPERATURE, TIME OF MODULUS, Ib/in.2
oc AGING, h 5% STRAIN
ROOM TEMP. (30) 0 1015
200 855
70 400 554
500 640
200 577
85 800 700
200 786
105 800 610
168 560
336 582
135 672 742
1008 870
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D. OTHER PROPERTIES
Table 7. Sol/Gel and Molecular Weight Data as a Function of Open
Photothermal Aging of EVA at 30°C, 70°C, 85°C, 105°C,
and 135°C

° TIME OF CROSSLINKING MOL WT
W71 AGING, h | DENSITY, MOL/cn® | SO % | GEL % | Tisoy)
30 0 5.62 x 1076 30 70 206,000
85 800 4.32 x 1076 33 67 118,000
N 200 3.11 x 1076 33 67

105

800 5.86 x 107° 33 &7 91,000
84 7.0 x 1076
168 5.6 x 107
135 -6
336 1.3 x 10 55 45
1008 20.4 x 107° 22 78
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Table 8, So0l/Gel and Molecular Weight Dats as a Function of Covered
Photothermal Aging of EVA at 30°C, 70°c, 85°C, 105°C,
and 1359C
o TIME OF CROSSLINKING o MOL WT
T°C1 AGING, h | DENSITY, MOL/em® | SO % [ GEL, % | Tigey)y
30 0 5.62 x 107% 30 70 206,000
85 800 7.8 x 107 29 71 75,000
105 800 10.10 x 1076 34 66 44,000
168 7.1 x 1076 39 61
336 33.8 x 1070 29 71
135 672 72.8 x 1076 26 74
1008 39.8 x 1070 18 82
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Table 9, Sol/Gel and Molecular Weight Data as a Function of Thermal
Aging of EVA at 30°C, 70°C, 859C, 105°C, and 135°C

° TIME OF CROSSLINKING o 0 MOL WT
T°Cl AGING,h | DENSITY, MOL/em® | SO % | GEL, % | Tiso)
30 0 5,62 x 1078 30 70 206,000
85 800 2,29 x 107 35 65 168,000
}
105 800 1.33 x 107° 37 63 174,000
168 6.76 x 1076 2 74
336 5.34 x 107 30 70
135 672 5.59 x 107 30 70
1008 6.09 x 1076 33 67
41




SECTION III

PVB (MONSANTO SAFLEX)

The following figures and tables offer data on optical transmittance
(Figures 29 through 33); mechanical properties (Figures 34 through 39, Tables
10 through 12); weight loss (Figures 40 through 42) of PVB (Mansanto Saflex).
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A, OPLICAL TRANSMITTANCE
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Figure 29. Change in Optical Transmittance as a Function of Open

Photothermal Aging of PVB at 70°C
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Figure 30. Change in Optical Transmittance as a Function of Covered
Photothermal Aging of PVB at 70°C
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Figure 31. Change in Optical Transmittance as a Function of
Thermal Aging of PVB at 70°C
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B. MECHANICAL PROPERTIES

600

400

STRESS, Ib/in.2

200

| [ I

ORIGINAL PAGE 18
OF POOR QUALITY

CONTROL

—— 200 h
~==—= 400 h

STRAIN, %

Figure 34, Change in Stress/Strain Response as a Function of
Open Photothermal Aging of PVB at 70°C
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Figure 35, Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of PVB at 70°C
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Figure 36. Change in Stress/Strain Response as a Function of
Thermal Aging of PVB at 70°C
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Figure 37. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of PVB at 135°C
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Figure 38, Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of PVB at 135°C
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Figure 39. Change in Stress/Strain Response as a Function of
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Table 10, Modulus at 5% Strain as a Function of Open Photothermal
Aging of PVB at 30°C, 70°C, and 135°C

TEMPERATURE, TIAE OF MODULUS, Ib/in.?
oc AGING, h 5% STRAIN
ROOM TEMP, (30) 0 348
70 400 244
135 84 52,800
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Table 11, Modulus at 5% Strain as a Function of Covered Photothermal
Aging of PVB &t 30°C, 70°C, and 135°C

TIME OF

TEMPERATURE, ‘ MODULUS, Ib/in.>
°c AGING, h 5% STRAIN
ROOM TEMP, (30) 0 348
200 100
70 400 47
168 638
336 2610
135 672 39, 200
1008 90,000%

56
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Table 12, Modulus at 5% Strain as a Function of Thermal
Aging of PVB at 30°C, 70°C, and 135°C
TEMPERATURE, TIME OF MODULUS, Ib/In.2

oc AGING, h 5% STRAIN
RCDOM TEMP. (40) 0 348
200 219
70 400 238
168 3110
336 32,277
139 672 70,500
1008 71,600
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C.

WEIGHT LOSS, %
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Figure 42. Weight Loss as a Function of Thermal
Aging of PVB at 55°C, 70°C, and 135°C
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SECTION IV
RTV SILICONE ELASTOMER (GE RTV-615)
The following figures and tables offer data on optical transmittance
(Figures 43 through 51); mechanical properties (Figures 52 through 60, Tables

13 through 15); weight loss (Figures 61 through 63); other properties (Tables
16 through 18) of RTV silicone elastomer (GE RTV-615).
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Figure 43. Change in Optical Transmittance as a Function of
Open Photothermal Aging of RTV at 70°C
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Figure 44. Change in Optical Transmittance as a Function of
Covered Photothermal Aging of RTV at 70°C
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Figure 45. Change in Optical Transmittance as a Function of
Thermal Aging of RTV at 70°C

64

T NS

St R RES

DG

i



TRANSMITTANCE, %

100 :
-
90[:
R T
ORIGINAL PAGE I8 ., .
80 OF POOR QUALITY
70 +— e ()
= 800 h
60—
50
40—
30—
20—
10—
0 1 ] L ]
- 400 500 600 - 700 800
WAVELENGTH, nm
Figure 46. Change in Optical Transmittance as a Function of

Open Photothermal Aging of RTV at 859C
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Figure 47. Change in Optical Transmittance as a Function of
Covered Photothermal Aging of RTV at 85°C
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Figure 48. Change in Optical Transmittance as a Function of
Thermal Aging of RTV at 85°C
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Figure 50, Change in Optical Transmittance as a Function of
Covered Photothermal Aging of RTV at 105°C
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B. MECHANICAL PROPERTIES
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Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of RIV at 70°C

Figure 53 .
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Figure 54. Change in Stress/Strain Response as a Function of
Thermal Aging of RIV at 70°C
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Figure 56. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of RIV at 85°C
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Figure 60. Change in Stress/Strain Response as a Function of
Thermal Aging of RTV at 105°C
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Table 13, Modulus at 5% Strain as a Function of Open Photothermal
Aging of RTV at 30°C, 70°C, 85°C, and 105°C

TEMPERATURE, TIME OF MODULUS, In Ib/in.2
oC AGING, h A1%;01,, 5% STRAIN
| SAMPL i) SAMPLE 2
ROOM TEMP. (30) 0 110 322
200 186
70 400 141
500 167
)
200 335
85 800 314
100 238
105 200 300
800 285




Table 14. Modulus at 5% Strain as a Function of Covered Photothermal
Aging of RIV at. 30°C, 70°C, 85°C, and 105°C

TIME OF

TEMPERATURE, °C AGING h MODULUS, Ib/in.? 5% STRAIN
SAMPLE | SAMPLE 2
MP., 0 A
ROOM TEMP. (30) s ™
, 200 234
70 400 217
500 234
200 308
85 800 301
200 341
105 800 312
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Table 15, Modulus at 5% Strain as a Function of Thermal Aging
of RIV at 30°C, 70°C, 859C, and )05°C

TEMPERATURE, °C Nt MODULUS, Ib/in. 2 5% STRAIN
| SAMPLE 1 SAMPLE 2
ROOM TEMP. (30 0 f Sl -
OOM TEMP. (30) 110 322
200 158
70 400 158
500 179
]
200 275
85 800 270
200 266
105 800 263
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Figure 61. Weight Loss as a Function of Open Photothermal

Aging of RTV at 70°C and 85°C

83




12

10

8
.O"'a
m\
v
S 4
froen
xI
O
4
z

I ] I 7 | I T
A 70°C ORIGINAL PAGE [
OF POOR QUALITY
O 85°C
0] 105°C 7

100

Figure 62,

e e e

> 4 s ! O
200 300 400 500 600 700 800
TIME, h

Weight Loss as a Function of Covered Photothermal
Aging of RTV at 70°C, 85°C, and 105°C

84




R

WEIGHT LOSS, %

12

ORIGINAL PAGE IS n
O 70°C OF POOR QUALITY

A 85°C
(] 105°C

100 200 300 400

TIME, h

500 600 700 800

Figure 63. Weight Loss as a Function of Thermal Aging
of RIV at 70°C, 85°C, and 105°C

85




ORIGINAL PAGE 1S

D.  OTHER PROPERIIES OF POOR QUALITY

Table 16, S0l/Gel and Molecular Weight Data as a Function of

Open Photothermal Aging of RIV at 30°C, 70°C, 85°C,

and 105°C
o.| TIMEOF CROSSLINKING ) , | moLwr
T,7C| AGING,h | DENSITY, MOL/em® | SOL, % | GEL, % (SOL)
%0 5 SAMPLE 1 | samPE2; 1 | 2 | v 1 21 1 T 2
2.04x10-4[7.97 x 104 4 % 2000
70 500 2.70 x 1074 A 96 2000
85 800 7.62 x 1074 4 96 2000
105 800 7.42 x 1074 4 9% 2000
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Table 17,

So1/Gal and Molecular Weight Data as a Function of
Covarad Motothermal Aging of RIV at 30°C, 70°C,
8500, and 1050C

TIME QF

CROSSLINKING

MOL WT

. O § -

T, °Cl AGING, h | DENSITY, MOL/gn® | SOL % [ GEL, % (SOL)
ao . 0 SAMPLE V] SAMPLEZ LY 1 2 11 1 2 1 vV ] 2
_ ]2.04 x_10~%7.97 x 104 4 96 2000
70 500 4.69 x 1074 3 97 2000

85 800 7.69 x 107 4 9% 2000
105 800 8.79 x 1074 4 9% 2000

ORIGINAL PAGE IS
OF POOR QUALITY
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Table 18, Sol/Gel and Molecular Weight Data as a Function of
Thermal Aging of RIV at 309G, 70°C. 85°C, and 105°C
) TIME OF CROSSLINKING 0 MOL WT
T, 7Cl AGING, h | DENSITY, MOL/em® | SOL % | GEL, % (5OL)
SAMPLE 1 | SAMPLE 2 ] 1 2 1. 2 1 2
30 0 = = :
2.04 x 107*17.97 x 107" 4 96 2000
70 500 2.75 x 10'4 3.5 96.5 2000
85 800 5.83 x 1074 4 9 2000
105 800 6.08 x 1074 3.5 96.5 2000

ORIGINAL PAGE IS
OF POOR QUALITY
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SECTION V
EMA (SPRINGBORN A~13404)
The following figures and tables offer data on mechanical properties

(Figures 64 and 65, Tables 19 and 20); weight loss (Figures 66 through 68);
other properties (Tables 21 through 23) of EMA (Springborn A-13404).
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Figure 64. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of EMA at 135°C
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Thermal Aging of EMA at 1359C
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Table 19.

Modulus at 5% Strain as a Function of Covered
Photothermal Aging of EMA at 30°C and 135°C

TEMPERATURE, °C

TIME OF
AGING, h

MODULUS, L8/ip.2 5% STRAIN

JT

ROOM TEMP. (30)

0

3548

135

168
336
672

3016
2871
2552
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Table 20. Modulus at 5% Strain as a Function of Thermal
Aging of EMA at 30°C and 135°C

TIME OF
TEMPERATURE, °C AGING, h MODULUS, Ib/in.2 5% STRAIN
ROOM TEMP. (30) 0 3548
168 3398
135 * 336 3530
672 2736
1008 4231

*IN A COVERED CONFIGURATION (SANDWICH)

PSSR S

iy

Ey
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C.

OTHER PROPERTIES

ORIGINAL PAQE
OF POOR QuaLrry

Table 21. Sol/Gel and Molecular Weight Data as a Function of
Open Photothirmal Aging of EMA at 30°C and 135°C
° TIME OF CROSSLINKING .
¢l AGING, b | DENsiTY, MOL/en® | SOt % | GEL %
80 0 2,0 x 1074 15 85
84 3.5 x 107 10 %0
135 168 3.42 x 10'4 N 89
336 3.55 x 1074 12 88
672 2.77 x 1074 18 82

97




Table 22. 8S01/Gel and Molecular Weight Data as a Function of
Covered Photothermal Aging of EMA at 30°C and 135°C
0 TIME OF CROSSLINKING o |
T, "Cl AGING, h | DENSITY, MOL/ecm® | SOL % | GEL, %
30 0 2,0 x 1074 15 85
168 1.0 x 1074 22 78
135 33 0.8 x 1074 2 74
| 672 1.0 x 1074 32 68
1008 2.3 x 1074 20 80
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Table 23, Sol/Gel and Molecular Weight Data as a Function of
Thermal Aging of EMA at 30°C and 135°C

| TIME OF CROSSLINKING

T, °Cl AGING, h | DENSITY, MOL/em® | SOL % | GEL, %

30 0 2.0 x 1074 15 85
168 3.61 x 1074 10 9

ase| 3% 3.53 x 107 10 %
672 3.74 x 1074 10 90
1008 3.63 x 1074 n 89

*IN A CLOSED (SANDWICH) CONFlGURATlON
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SECTION VI
PnBA (SPRINGBORN A-13870)
The following figures and tables offer data on mechanical properties

(Figures 69 through 71, Tables 24 through 26); weight loss (Figures 72 and
73); other properties (Tables 27 through 29) of PnBA (Springborn A-13870).
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A.
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MECHANICAL PROPERTIES

Figure 69,

STRAIN, %

Open Photothermal Aging of PnBA at 135°C
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STRESS, Ib/in.2
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Figure 70.
Covered Photothermal Aging of PnBA at 135°C
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Figure 71,

STRAIN, %

Change in Stress/Strain Response as a Function of
Thermal Aging of PnBA at 135°C
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Table 24,

Modulus at 5% Strain as a Function of Open
Photothermal Aging of PnBA at 309C and 135°C

TIME OF

TEMPERATURE, °C AGING, h MODULUS, Ib/in,? 5% SRAIN
ROOM TEMP, (30) 0 175
84 281
135 168 1250
336 2175

105




Table 25,

Modulus at 5% Strain as a Punction of Covered
Photothermal Aging of PnBA at 30°C and 135°C

TEMPERATURE, °C PP MODULUS, Ib/in,2 5% STRAIN
ROOM TEMP. (30) 0 75
168 155
135 33 915
672 450
1008 350
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Table 26,

Modulus at 5% Strain as a Function of Thermal
Aging of PnBA at 30°C and 135°C

TEMPERATURE, °C

TIME OF
AGING, h

MODULUS, Ib/in.2 5% STRAIN

ROOM TEMP. (30)

0

175

135 *

168
336
672
1008

169
174
181
171

* IN' A COVERED (SANDWICH) CONFIGURATION
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WEIGHT LOSS, %
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- ORIGINAL PAGE W - '_
OF POOR QUALITY )
—
—
1 | | | | | 1 | |
0 100 200 300 400 500 600 700 800 900 1000
TIME, h
Figure 72, Weight Loss as a Function of Covered Photothermal §
Aging of PnBA at 1359C .
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WEIGHT LOSS, %
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Figure 73. Weight Loss as a Function of Thermal Aging of PnBA

at 1359C in a Covered (Sandwich) Configuration
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OTHER PROPERTIES

Table 27, Sol/Gel and Molecular Weight Data as a Function of
Open Photothermal Aging of PnBA at 30°C and 135°C
L o TIME OF CROSSLINKING .
T,°C| AGING, h | DENSITY, MOL/cn® | SOL % | GEL, %
30 0 4.34 x 107 15 85
84 6.61 x 1074 6 94
168 7.69 x 1074 6 94
135 -4
336 8.14 x 10 5 95
672 9.8% x 1074 3 %
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Table 28. Sol/Gel and Molecular Weight Data as a Function of
Covered Photothermal Aging of PnBA at 30°C and 135°C

o TIME OF CROSSLINKING - -
1.°Cl AGING, h | DENSITY, MOL/em® | SO % | GEL, %
0 4,34 x 104 15 85
168 4,79 x 1074 n 89
j35 | 336 27.12 x 1074 1 99
&2 7.08 x 107 6 94
1008 14.13 x 10-4 6 94
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Table 29. Sol/Gel and Molecular Weight Data as a Function of
Thermal Aging of PnBA at 30°C and 135°C

- o~| TIMEOF CROSSLINKING
T,"Cl AGING,h | DENSITY, MOL/cm® | SOL % | GEL, %
30 0 4,34 x 1074 15 85 |
168 4.28 x 107 16 84
st | 3% 4,29 x 1074 16 84 g
672 4.18 x 1074 16 84 :
1008 4,37 x 1074 15 85

* IN A CLOSED (SANDWICH) CONFIGURATION

F i S R a1 5 AT ST
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SECTION VII

POLYURETHANE (H,J. QUINN -~ DEVELOPMENT ASSOCIATES 2~-2591)

The following figures and tables offer data on optical transmittance
(Figures 74 through 76); mechanical properties (Figures 77 through 80, Tables
30 through 32); weight loss (Figures 81 thrugh 83); other properties (Tables
33 thrt)mgh 35) of polyurethane (H.J. Quinn Co., -- Development Associates
Z~2591).
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A.  OPTICAL TRANSMITTANCE ORIGINAL PAGE 1S
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Figure 74. Change in Optical Transmittance as a Function of
Open Photothermal Aging of Polyurethane at 70°C

114

e

BT R T g, e L

ks S

o

=iy



TRANSMITTANCE, %
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Figure 75, : |
Coverad Photothermal Aging of Polyurathane at 709G
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Figure 76. Change in Optical Transmittance as a Function of
Thermal Aging of Polyurethane at 70°C
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B, MECHANICAL PROPERTIES
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Figure 77. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of Polyurethane at 70°C
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Figure 78. Change in Stress/Strain Response as a Function ef
Covered Photothermal Aging of Polyurethane at 70°C
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STRESS, Ib/in.2
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ORICINAL PAGE §
PAGE g
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200 I~

STRAIN, %

Figure 79. Change in Stress/Strain Response as a Function of
Thermal Aging of Polyurethane at 70°C
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* IN A CLOSED (SANDWICH) CONFIGURATION
Figure 80. Change in Stress/Strain Response as a Function of

Thermal Aging of Polyurethane at 135°C in a Closed
(Sandwich) Configuration

120

e T . o s

el



Table 30,

Modulus at 5% Strain as a Function of Open Photothermal
Aging of Polyurethane at 30°C and 70°C

TEMPERATURE, °C A"Z“.‘,Sé o MODULUS, Ib/in.? 5% STRAIN
ROOM TEMP. (30) 0 380
200 205
70 400 18

121

* PU (QUINN)




Table 31, Modulus at 5% Strain as a Function of Covered Photothermal
Aging of Polyurethane at 30°C and 70°C
o TIME OF , " 2 ,
TEMPERATURE, “C AGING, h MODULUS, Ib/in.” 5% STRAIN
ROOM TEMP, (30) 0 380
200 153
¥
70 400 154
1354% 168 73
336 FLOW
*  PU (QUINN)
** PU (DEVELOPMENT ASSOCIATES Z-2591)
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Table 32, Modulus at 5% Strain as a Function of Thermal
Aging of Polyurethane at 30°C and 70°C

TEMPERATURE, °C | TIME OF AGING, h MODULUS, Ib/in.2 5% STRAIN
ROOM TEMP, (30) 0 380
70% 400 300
168 101
1354+ 336 54

* PU (QUINN)
“* PU (DEVELOPMENT ASSOCIATES Z-2591)
¢ IN A CCVERED (SANDWICH) CONFIGURATION
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WEIGHT LOSS

WEIGHT LOSS, %

ORIGINAL PAGE 18
OF POOR QUALITY

1

100 200

300 400 500
TIME, h

Figure 81, Weight Loss as a Function of Open Photothermal
Aging of Polyurethane (Quinn) at 55°C and 70°C
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WEIGHT LOSS, %
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TIME, h
Figure 82, Weight Loss as a Function of Covered Photothermal

Aging of Polyurethane (Quinn) at 55°C and 70°C
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WEIGHT LOSS, %

12

. Figure 83,

Weight Loss as a Function of Thermal Aging
of Polyurethane (Quinn) at 55°C and 70°C
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OTHER PROVERTIES

Table 33, S0l/Gel and Molecular Weight Data as a Functien of Open
Photothermal Aging of Polyurethane at 30°C and 70°C

TIME OF CROSSLINKING , MOL WT
AGING, h | DENSITY, MOL/em® | SOL % | GEL, % (sOL)
o SAMPL 1\ | GAMPLE 2 | 1 | 2 ) 3 | 2 1 2
166.0%10™%| 71.0x 106 | 4 96 |
400 57.0x1076 21 79 10,000

NS

* PU (QUINN)
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Table 34.

Sol/Gel and Molecular Weight Data as a Function of Covered

Photothermal Aging of Polyurethane at 30°C, 70°C and 135°C

o~ TIME OF CROSSLINKING . MOL WT
T/ °Cl AGING, h | DENSITY, MOL/cm3 | OL % | GEL, % (SOL)
” SAMPLE 1| SAMPLE2 | 1 [ 2 [ 1 [ 2 | 1 | 2
166.0x 1070] 71.0x j0-6| 4 96 5,000
70% 400 52.0 x 25 75 10,000
168 x 106 18 82 .
]35**
336 1.1x 107 12 88
*  PU (QUINN)
»* PU (DEVELOPMENT ASSOCIATES Z-2591)
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Table 35. Sol/Gel and Molecular Weight Data as a Function of
Thermal Aging of Polyurethane at 30°C, 70°C and 135°C

0 TIME OF CROSSLINKING oL © 8 MOL WT
T,°Cl AGING, h | DENSITY, MOL/eam® | SO % | CEL % | o))
% . SAMPLE 1| SAMPLE2 | 1] 2 | 1] 2 1 2
166.0x107%] 71,0 x 106] 4 9 5,000
70% 400 105.0 x10™6 10,000
168 27.6 x 1076 8 92
]35**‘{ ..6
336 4.4 x 10 17 83

*  PU (QUINN)
*% PU (DEVELOPMENT ASSOCIATES Z-2591)

¢ IN ACOVERED (SANDWICH) CONFIGURATICN
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SECTION VIII

KORAD (XCEL CORP,)

Figure 84 offers data on traasmittance spec’ra of Korad (Xcel Corp.).
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Figure 84. UV/VIS Transmittance Spectra as a Function of
Open Photothermal Aging of Korad at 85°C
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SECTION IX
TEDLAR (DU PONT UTB-100)

Figuves 85 through 87 offer data on absorbance spectra of Tedlar
(Du Pont UTH=100).
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Figure 85. UV/VIS Absorbance Spectra as a Function of Open
Photothermal Aging of Tedlar UTB-100 at 85°C
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UV/VIS Absorbance Spectra Before and After 30 days

of Aging of Tedlar UTB-100 in CER at 55°C
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SECTION X

ACRYLAR (3M CO. X-22416)

Figures 88 through 93 offer data on optical properties of Acrylar
(3M Co. X~22416),
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Figure 89. UV/VIS Transmittance Spectra Before and After 800 h i
of Open Photothermal Aging of Acrylar Film at 85°C
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Figure 90, Change in Transmittance of Acrylar Films at
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ABSORBANCE

ORIGINAL PAGE IS
OF POOR QUALITY

o Sy B G PR

4.0 ] "1 w | ] | l T W ! T T T
3,5 o
v CONTROL
3.0}~ o
2;5""‘* o
2b0"‘“‘ e
105"“ -
0.5~ \\ ‘J -

7
0 b ‘) 1 o | | | d 1 \“’\P"/\"
3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 400
WAVE NUMBERS

A, Q romrmmmesm gy e : 1 l B et R e

3,5/ M X34 days -
CER EXPOSURE

2,0 | .
2.5~ !I sl
2,0} "
15 \/ o
1.0/~ ! -

O'SLM
|

S3000 3600 3200

Fgura 92.

o 1 | SR ] MM
2800 2400 2000 1800 1600 1400 1200 1000 800 600 400
WAVE NUMBERS

FI=IR Absorbanee Spectra Before and After 34 days of
Aging of Acrylar Films (X~22416) in CER at 55°C

142

ren s T i g




DoCS 32 B30 T (9THIL-E) S=IEE zeiiaoy 30 Buiy

z0 sfep 7or 32IFF PUT 3303 22

~cg SINBLE

203dg PoURGIOSGY EI-AE

SHISVHIN AT SHIGYHIN IATHL

0007

g%%ﬂ%%%%%%% %ﬁ@ﬁ@@nﬂ%%&ﬂ%@ﬂ@@ggﬂm 0072 0022
: 1 7 ] T i : m T 7 T T T i

NAL PAGE IS
POOR QUALITY

DNVIIOSAV

ORIGIN

OF
d

=
»

B o

\f}
+
)

LA

1A%

IINVINOSHY



SECTION XI

KYNAR (PENNWALT CORP,)

Figures 94 and 95 offer data on optical properties and Table 36 offers
data on shrinkage of Kynar (Pennwalt Corp.)
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Figure 95. Reflectance IR Spectra Before and After 29 Hours of
Thermal Aging of Kynar Film in a Dark Oven at 15000
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Tabla 36, Shrinkage as a Function of Thermal Aging
of Kynar in Davk Oven at 1500C

| LINEAR
TIME OF AGING, h SHRINKAGE, %
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