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Government or any agency thereof, The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof,

This publics' „on reports on work done under NASA Task RE-152, Amendment



ABSTRACT

This report describes laboratory tests performed to characterize
candidate encapsulation materials with respects to changes in their physical
and chemical properties caused by photothermak,aging, Several key material
properties relating directly to material degradation and deterioration of
performance have been identified and have been monitored as functions of aging
conditions and time. This handbook provides a status report on accelerated
testing activities and presents experimental data collected before and during
December 1982. It will be updated periodically as more data become available.

The use of them data in development and dissemination of predictive
models describing the rate of aging as a function of stress parameters is a
separate and ongoing task. A preliminary version of this model will be
published soon in a separate Flat Plate Solar Array Project report.
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SECTION I

INTRODUCTION

A.	 BACKGROUND

The Environmental Isolation Task within the Flat-Plate Solar Array
Project (FSA) has the responsibility of (1) developing new materials and
processes required to achieve low-cost, durable encapsulation of photovoltaic
( PV) modules at a total installed cost of $14/m2 for the encapsulation
package and ( 2) performing assessment and prediction of deployed PV module
lifetimep through development of a fundamental understanding of degradation
processes and mechanisms of the encapsulation materialsy and development of

'	 outdoor lifetime prediction models for encapsulated modules.

Toward this overall objective of life assessment and prediction, an
effort was initiated directed to the characterization of chemical and physical
responses of encapsulant materials to accelerated photothermal aging. This
offort involves exposure of materials to ultraviolet and visible radiations
elevated temperatures, liquid water spray and various oxygen concentrations.
The primary use of these data is in validating and refining analytical models
describing chemical changes in materials occurring on long-term exposure.
These data may also be used in ranking candidate materials that perform the
same functions within the encapsulation package and that belong to the same
generic chemical class of compounds with respect to their photothermal aging
responses.

These tests are complemented by mechanistic studies performed on
selected materials such as ethylene vinyl acet-te (EVA)y polymethyl
methacrylate (PMMA), and poly-n-butyl acrylate (PnBA). The studies involve
characterization and monitoring of chemical degradation caused by photothermal
aging, i.e., photooxidation, crosslinking and chain scission in polymers.
Transient species involved in the overall degradation processp e.g., chain
radicals and electronically excited states, are monitored in real time using
flash kinetic spectroscopy and transient electron-spin resonance (ESR)
spectroscopy. A status report of this work can be found in References 1
through 8.

J B.	 MATERIAL PROPERTIES MONITORED

The following properties have been monitored as a function of _aging times

(1)	 Optical Transmittance: Optical transmittance was measured on a
Cary 219 spectrophotometer equipped with a 4-in. integrating
sphere and ultraviolet (UV) optics. The collimated and total
transmittance were obtained as a function of wavelength in the
wavelength range 300-1200 nm. Besides providinga direct measure
of chemical changes involving formation of oxidi '.^ed species such
as carbonyl groups in the polymer optical transmittance,
measurements may also be used to monitor diminution of cell

a	
,

performance due to loss of transmittance of the encapsulant

1 t



material.	 Optical transmittance measurements also provide a
monitor of the UV screening capability of outer-cover films.

(2) Weight Loss:	 Weight-loss meaauremecits allow monitoring of lose of
polymer mass due to evaporation of plasticizers, leaching of
additives and formation of volatile degradation products.
Weight-loss measurements correlate with the rate of formation of
voids in the encapsulation package, which may cause delamination
and corrosion.

(3) Tensile Hodulus: 	 lUniaxial stress-strain response was monitored as
a function of photothermal aging time.	 Measurements were made as
a function of strain rate, up to yield. 	 This stress-strain
response can be used to calculate engineering or secant modulus of
the material.	 Work by Spectr.olab, Inc., indicates that the strain
isolation function of the encapsulation package requires a
tradeoff between the thickness of the pottant material and its
maximum allowable Young's modulus (Reference 9). 	 The measured
stress-strain response also yields information on the atress-
relaxation or creep behavior of these materials.	 Detailed creep
measurements onEVA will be reported in a Jet Propulsion-Laboratory
(JPL) publication.

(4) Swelling and Sol/Gel Ratio:	 Crosslinked polymers are insoluble in
any solvent, but they are subject to swelling.	 The extent of
swelling is determined by the crosslink density of the materials
and the match between its solubility parameters and those of the
solvent.	 Partifilly .crosslinked materials can be extracted to yield
a sol fraction which has finite molecular weight and a remaining
gel which has a crosslinked network.	 Determination of swelling
behavior and sol /gel fraction yield fundamental information on the
network crosslink density and network topology, which are critical
chemical structural parameters in a polymer that control its
phyaical-mechanical response. 	 The mechanical response of a polymer
changes on outdoor aging because aging causes changes in crosslink
density and network topology.	 Hence, the ratio of changes in,
swelling behavior or sot/gel fraction after aging is a key measure
of the outdoor stability of these polymers.

C.	 TEST DESIGN

Polymer samples were aged at 55 0C, 70oC, 850C., 105 0C, and 1350C.	 Aging
conditions for the four lower-temperature tests have been reported previously
(Reference 10) and are described only briefly here.	 The source of UV radiation
used in the four lower-temperature tests (55 0C, 700C, 850C, and 10500 was a
filtered medium-pressure Hg arc lamp, approximately 200 W/in. of arc length in
power.	 The lamp was placed inside a water-cooled Pyrex jacket. 	 A transparent
annular Pyrex oil bath was then fitted around the jacket.	 The samples were
mounted in the space between the Pyrex jacket and the oil bath, and were is

E

	

	 contact with the hot oil-bath jacket. The radiation apparatus is shown in
Figure 1. Samples (3 x 1/2 in.) were mounted directly on the inner surface of
the oil-bath jacket to allow free access of oxygen (open thermal aging).
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A = 450-WATT MEDIUM PRESSURE Hg LAMP

B - PYREX H 2O COOLING JACKET

C = OIL JACKET
s•

D = THERMOSTATICALLY CONTROLLED HOTOIL BATH
{SAMPLE SPECIMEN PLACED BETWEEN B AND C )

Figure 1.	 Photothermal Radiation Apparatus
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Samples for limited-oxygen-access testing were placed between two sheets of
Pyrex glass and the sandwich then was mounted on the bath. This arrangement
(covered photothermal aging) allowed limited access of oxygen with its edge
effects, as illustrated in Figure 1. Control experiments (with no UV) were
also performed by aging samples in a dark stagnant oven.

Although satisfactory data were obtained by use of this radiation
equipment, it lacked precise temperature control, especially at elevated
temperatures; e.g., a 100C rise in sample temperature was once observed
during one of the 1050C te3ts. This was caused by enhanced absorbance of
radiation by sample films turning yellow as a result of photothermal aging.
While the oil bath maintained at 1050C was supplying most of the heating
during the initial aging stage-, the additional absorbance of photons resulted
in the rise in sample temperature. Subsequently, an accelerated aging
chamber, the Controlled Environmental Test Chamber (CER), was designed and
constructed at JPL to achieve better temperature control.

A detailed description of the CER is to be found in Reference 11.
Briefly, the irradiation source in the CER is a medium-pressure Hg lamp
filtered to yield a photon flux of up to 6 fauns of AMl ultraviolet radiation
in the 295-375 nm wavelength region. xn addition, it can provide precise
temperature control and simulated rain and fog. Detailed calibration of the
photon flux was achieved by radiometry and actinometry.- Parallel aging tests
were performed inside the CER and at the JPL outdoor site in order to validate
its use as an accelerated testing device and to estimate the accelerating
factors achieved under specific conditions. The CER has also been demonstrated
to be a valid accelerated outdoor simulator with respect to photooxdation
(Reference 12). Figure 2 is a photograph of the CER.

The initial CER design allowed aging temperatures ranging from 250C to
600C. Subsequently, resistor-type heaters were added to the outside wall of
the CER to enhance its high-temperature capability. Additionally, a
thermostatted sample holder equipped with its own heat source was designed to
reach a sample aging, temperature of up to 135 0C. All heaters were
thermostatically controlled by the voltage output of a thermocouple that is
attached directly to the sample films. Continous temperature control within
+30C were obtained routinely by the CER, even at 1350C

D.	 TEST SAMPLES

Samples tested were ethylene vinyl acetate copolymer (EVA,_Springborn
Laboratories, ,Inc., A-9918); polyvinyl butyral (PVB, Monsanto Co. Saflex);
silicone rubber (room-temperature vulcanizing silicon elastomer, General
Electric Co. RTV-615) ethylene methyl, acrylate copolymer (EMA, Springborn

_A-13404); and ipoly-n-butyl acrylate (PnBA, Springborn A-13870). Two kinds of
C	 1aliphati	 d bc polyurethanes manu acture y H.J. Quinn Co. and Deve opment

Associates (PU Z-2591) also were tested. Four commercially available
outer-cover film materials are being evaluated. These are Korad (Xcel Corp.),
Tedlar (Du Pont Co.), Acrylar (3M Co. X-22416)p and Kynar (Pennwalt Corp.).
The Tedlar sample Eested was designated as UTB-100 and a new sample of Tedlar
( 00BG30UT) is now being evaluated. Table l is a matrix of samples tested and
Table 2 is a matrix of the pottant samples versus aging conditions and aging
time. Table 3 is a similar matrix !or outer-cover materials.
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Table 1. Matrix of Pottant and Outer Cover Materials Tested

MATEh AL

ACRYLICS POLYOLEFINS FLUORO- OTHERAPPLICATION
CARBON (SILICONES,

POLYURETHANES)

POTTANT EMA EVA RTV
(SPRINGBORN (SPRINGBORN (GE	 RTY-615)
A-13404) A-9918)

PU (QUINN)
PnBA PVB
(SPRINGBORN (MONSANTO PU (DEVELOPMENT
A-] 3870) SAFLEX) ASSOCIATES Z-2591)

OUTER ACRYLAR TEDLAR
COVER (3M X-22416) (DU PONT

UTB-I00)

KORAD KYNAR
(XC E L) (PENNWALT)
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Table 3. Matrix of Outer Cover Samples versus Temperature and Time

TEMPERATURE,
0 

AGING TIME, days

ACRYLAR
X-22416

TEALAR
UTB-100

KORAD KYNAR

55 600 365 0 200*

85 200 30 15 200

150 2

* AT 60°C

"a :I

f
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SECTION 11	
g

EVA (SPRINCBORN A-9918)

The following figures and tables offer data on optical transmittance
(Figures 3 through 13) mechanical properties (Figures 14 through 25 f 'gables 4
through 6)i weight loss (Figures 26 through 28). other properties (Tables 7
through 9) of EVA (Springborn A-9918).
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B.	 MECHANICAL PROPERTIES
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Figure 15. Change inStress/Strain Response as a Function of
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L
^

E	 i
i

s

r
}. 22{

Y
,+	

3J



6UU

CONTROL ORICI NAL PAGE IS
---------- 200 H	 00 'POOR QUALITY

400 H
500 H

/ ^ r

/ r•
r /r ^

/ r
r^

e ^'

0	 10	 20	 30	 40	 50 	bo

400

N
C

NN
W
DG

a	 ^

N

a

200

s^

x

r^

0



600

400

N

C

..O

n
W
OG
H
N

-*

200





600

400

OC

,.# I

200

4.



N

4
N
N
W9
N

6d

i

-0	
10	 20	 30	 40	 50

STRAIN, 0/0	 f

Figure 20_. Change in Stress/Strain Response as a Function of
Open Phototherma;l Aging of EVA at 10500

I

t

i

a

27



60r

IOC

N
.C.

N
N
W

F-
V1

200

01/0"
0 10 20 30 40 50 60

OSTmAIN, /o

Figure 21. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of EVA at 1050C

a

i	 28	 f

.6

i
y	 ..	 <	 ..	 lk

r

t

N

14

1

C



600

400

N

N
V1
W'
DG
h^
t/1

200

O

MF

A

t



600

ORDINAL PAGE 19
	 CONTROL

OF POOR QUALM ----- 84 h

_..._.._ 168 h

400

N

NN
W
OC
F-
N
	 ....I

i

Y_	 0	 10	 20	 30	 40	 50	 60

STRAIN, °lo	
.'

Figure 23. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of EVA at 1350C

;riH
x

t 30	
^4

,.	 ,.,

200	
—_r—y_--...........

••

e0000000
0



1

A 00

400

;y

i	 N
^	

C

NN
W
GG

j	
tn

200 "^ ^^!	 ,_^,,. _... • _ ^.

.•00

0
-

0 10	 20	 30	 40	 50	 60
STRAIN, %

Figure 24.	 Change in Stress / Strain Response as a Function of
Covered Photothermal Aging of EVA at 1350C

r=

4

31

w_

'
(	

r



CONTROL

ORIGINAL PAGE IS
OF POOR QUALM

C

N'
N
W
DC

168 h

336 h

—•—•—•— 672_h

— — --- 1008 h

-
•

'0^	 •• Imo,

•'-J

/'04400
0

j 0	 10	 20	 30	 40	 50	 60
STRAIN,

f
`	 Figure 25. Change in Stress/Strain Response as a Function of

Thermal Aging of EVA at 1330C

F

f

s;

R
i

32

r,

6(

400

200



OF POOR QUALITY

Table 4. Modulus at 5% Strain as a Function of Open Photothermal
Aging of EVA at 300C, 70oCp 85 0Cp 1050C, and 1350C

TEMPERATURE TIME OF MODULUS, ib/in.2
°C AGING h 5% STRAIN

ROOM TEMP. (30) 0..0 1015

70 400 586
500 650

200 582
85 800 628

200 836
105 800 566

135 84 734
168



Table 5. Modulus at 5% Strain as a Function of Covered Photothermal
Aging of EVA at 30 0C, 700C, 85 OCo 1050C, and 1350C

TEMPERATURE, TIME OF MODULUS, Ib/in.2
°C AGING, h 5% STRAIN

ROOM TEMP. (30) 0 1015

200 671
70 500 630

200 846
U5

800 504

200 550
105 800 664

168 600
336 580

135 672 625
1008 869



F^

fi

E

6

Table 6, Modulus at {5% Strain as a Function of Thermal Aging
of EVA at 30 0C, 70oC, 850C, 1050C, and 1350C

TEMPERATURE TIMEE OF MODULUS, Ib /In. 2oC
NAGI NG , h 5/o STRAIN

ROOM TEMP. (30) 0 1015

200 855

70 400 554

500 640

200 577

85 800 700

200 786

105 800 610

168 560

336 582
135

672 742

1008 870
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C.	 WEIGHT LOSS
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T oC TIME OR
AGING, h

CROSSLINKING 3
DENSITY, MOL/cm SOL % GEL % MOL WT

(SOL)

30 0 5.62 x 10"
6 30 70 206,000

85 800 4.32 x 10"6 33 67 118,000

200 3.11 x 10"6 33 67
105

800 5.86 x 10-6 33 67 91,000

84 7.0 x 10"6

168 5.6 x 10 _6
135

336 11.3 x 10"
6 55 45

1008 20.4 x 10-6 22 78

D.	 OTHER PROPERTIES

Table 7. Sol/Gel and Molecular Weight Data •o a Function of Open
Photothermal Aging of EVA at 30oC t 700C, 850C # 105oC,
and .135°C



Table 8. Sol/Gel and Molecular Weight Data as a Function of Covered
Photothermal Aging of EVA at 30oCp 70oC, 85oC, 105oCp
and ,13500

T,oC TIME OF
AGING, h

CROSSLINKING 3

DENSITY, MOL3cm SOL % GEL %
MOL WT
(SOL)

30 0 5.62 x 10-6 30 70 206,000

85 800 7.8 x 10-6 29 71 75,000

105 800 10.10 x 10"6 34 66 44, 0'v0

168 7.1 x 10"6 39 61
336 33.8 x 10"6 29 71

135 672 72.8 x 10"
6

26 74

1008 39.8 x 10"6 18 82
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40



Table 9. Sal/Gel and Molecular Weight Data as a Function of Thermal
Aging of $VA at 300C, 700C, 8500, 105OCp and 13500

T oC TIME OF CROSSLINKING 3
SO L, % GEL, % ►VIOL WT

AGING, h DENSITY, MOL /cm (SOL

30 0 5.62 x 10-6 30 70 206,000

85 800 2.29 x 10-6 35 65 168,000

105 800 1.33 x 10-6 37 63 174,000

168 6.76 x 10-6 26 74
336 5.34 x 10 -6 30 70

135 672 5.59 x 10-6 30 70
1008 6.09 x 10-6 33 67
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SECTION III

PVB (MONSANTO .SAFLEX)

The following figures and tables offer data on optical transmittance
(Figures 29 through 33); mechanical properties (Figures 34 through 39 9 Tables
10 through 12); weight loss (Figures 40 through 42) of PVB (Mansanto Saflex).
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B.	 MECRANICAU PROPERTIES
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Figure 36. Change in Stress/Strain Response as a Function of
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Table 10. Modulus at 5% Strain as a Function of Open Phatothermal
Aging of PVB at 30oC p 70°C a and 1350C

TEMPERATURE,
0C

T^`^r1E	 OF
AGING, h

MODULUS, Ib/in.2
5% STRAIN

ROOM TEMP', (30) 0 348

70 400 244

135 84 52,800



Table 11. Modulus at 5X Strain as a Function of Covered Photothermal.
Aging of PVB at 3000p 70oC 9 and 13500

TEMPERATURE, TIME OF MODULUS, Ib/in.2
°C AGING, h 5% STRAIN

ROOM TEMP. (30) 0 348

200 100
70 400 47

168 638
336 2610

135 672 391200*'
1008 901000*

* 1% STRAIN

J

t

x 56
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Table 12. Modulus at 5% Strain as a Function of 'Thermal
Aging of PVH at 300C, 70oC, and 1350C

TEMPERATURE, TIME OF 2MODULUS, lb/in.E 
C AGING, h 5% STRAIN

RC -*W TEMP. (JO) 0 348

200 219
70 400 238

168 3110
336 32,277

135 672 70,500
1008 71,600
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C.	 WEIGHT LOSS
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59	
v

`W



2 C

1

1 6

1

0 1 2
N
V1
0

10

W

8

6

4

2

8

4

	

	
pal(INAL PAGE 1$
OF POUR QUALITY

 
+

O 55° C

0 70°C

0 135°C

0	 100	 200	 300	 400	 500	 600	 700	 800	 900 1000

Figure 42. Weight Loss as a Function of Thermal
Aging of PVB at 55 0C, 700C, and 1350C

E

t	 ^;

60



3

s

hti

Aolftd

SECTION IV

RTV SILICONE ELASTOMER WE RTV-615)

The following figures and tables offer data on optical transmittance
(Figures 43 through 51); mechanical properties (Figures 52 through 60^ Fables
13 through 15); weight loss (Figures 61 through 63); other properties (Tables
16 through 18) of RTV silicone elastomer (GE RTV-615).
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B.	 MECHANICAL PROPERTIES
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Figure 53. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of RTV at 700C
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Table 13. Modu lu s at 5% Strain as a Function of Open Phototbermal
Aging of RTV at 30°C t 70oC t 850C } and 1050C

TEMPERATURE, TIME OF MODULUS, In Ib/in.2
°C AGING, h ^'tr 5% STRAIN

SAm h;,l SAMPLE 2
ROOM TEMP. (30) 0

110 322

200 186
70 400 141

500 167

200 335
85 800 314

100 238

105 200 300
800 285



i

Table 14. Modulus at 5% Strain as a Function of Covered Photothermal
Aging of RTV at 30oC, 7000p 850C, and 1050C

j

TEMPERATURE, 0C AGINGFh MODULUS, Ib/in. 2 5% STRAIN

SAMPLE 1 SAMPLE 2
ROOM TEMP. (30) 0

110 322

200 234
70 400 217

500 234

200 308
85

800 301

200 J4 1
105 800 3 2

r^

e

81



Table 15. Modulus at 5X ftrain as a Function of Thermal Acing
of RTV at 30 OC, 7000, 8500o and 10500

TEMPERATURE, °C AG
TIME

 N OF MODULUS, Ib/In. 
2 

5% STRAIN

SAMPLE 1 SAMPLE 2
ROOM TEMP. (30) 0

110 322

200 158
70 400 158

500 179

200 275
FS 800 270

200 266
105

800 263

Paoli
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oT	 C TIME OF
AGING, h

CROSSLINKING 3
DENSITY, MC)[,/cm SOIL	 %'' GEL Qfp

'
MOL WT

(SO L)

SAMPLE 1 SAMPLE 2 1 2 1 2 1 230 0
2.04 x 10 -4 7.97 x 10 4 4 L 96 2000

70 500 2.70 x 10`4 4 96 2000

85 800 7.62 x 10 -4 4 96 2000

105 800 7.42 x 10- 
4

4 96 2000

'l

.t

CgIO NAL̀ PAGE 0
D.	 OTHER̂ ^^w x^rx s	 OF POOR QUALfff

Table 16. Sol./Gel. and Molecular Weight Data as a Function of
Open rhotothermal Aging of ItTV at 30 0C, 700Cy 85oC,
and 10500



87

Tab to l7^ 5a11C^1 gnrl hfal^cul^ ►• ^^iSlit 00ita as a^'unct ,oar o
00,44rad Nototbarmal Aging of RTV at 30OC, 7000:

859C, and 10500

T, oc TIME OF
hAGING,

CROSSLINKING 3
DENSITY, MG4/cm SOL, % GeL, % MOLWT

(SOL)

SAMPLE 1 5AMFL2 2 1 2 1 2

2. 04 x 10' 4 7.97 x r 0''^ 4 96 2000

70 500 4,69 x 10"4 3 97 2000

85 S00 7 .69 x 10-4 4 96 2000

105 800 8.79 x 10-4 4 96 2000
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Table 18. Sol/Gel and Molecular Weight. Data as a Function of
Thermal Aging of RTV at 30 00p 700C. 8500, and 1050C

T, oC TIME OF CROSSLINKING 3 SOLI '% GEL, % MOL WT
AGING, h DENSITY, MOL/cm (SQL)

30 0 SAMPLE 1 SAMPLE 2 1 2 1. 2 1 2
2.04 x 10"4 7.97 x 10" 4 96 2000

70 500 2.75 x 10"4 3.5 96.5 2000

85 800 5.83 x 10"
4

4 96 2000

105 800 6.08 x 10-4 3.5 96.5 2000
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SECTION 'V

k	 EMA (SPRINCHORK A-13404)

The following figures and tables offer data on mechanical properties
(Figures 64 and 65, Tables 19 and 20); weight loss (Figures 66 through 68);
other properties (Tables 21 through 23) of ERA (Springborn A-13404).
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TEMPERATURE, °C AGING Fh MODULUS, LBAsp 
2 

5% STRAIN
yY

ROOM TEMP. (30) 0 3548

168 3016
135 336 2871

672 2552

Table 19. Modulus at 5% Strain as a Function of Covered
Photothermal Aging of EMA at 300C and 1350C



Table 20. Modulus at 5X Strain an as Function of Thermal
Aging of EMA at 300C and 1350C

TEMPERATURE, °C
A TIME

MODULUS, Ib/in. 2 5% STRAIN

ROOM TEMP. (30) 0 3548

168 3398

135 * 336 3530
672 2736

1008 4231

* IN A COVERED CONFIGURATION (SANDWICH)
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B.	 WEIGHT LOSS
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Figure 66. Weight Loss as a Function of Open Photothermal
Aging of EMA at 1350C
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Figure 67. Weight Loss as a Function of Covered Photothermal
Aging of EMA at 1350C
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2tGINAL p

C.	 OTHER PROPERTIES	
OF POOR QUALITY

Table 21. Sol/Gal, and Molecular Weight Data as a Function of
Open. Photothiarmal Aging of BHA at 30 0C and 1350C

To 0
C ' TIME OF

AGING, h
CROSSLINKING 3

DENSITY, MOL/cm SOL, % GEL, %

30 0 2.0 x 10"4 15 85

84 3.5 x 10-4 10 90

135 168 3.42 x 10-4 11 89

336 3.55 x 10-4 12 88
672 2.77 x 10"4 18 82



Table 22. Sol/Gel and Molecular Weight Data as a Finction of
Covered Photothermal Aging of EKA at 30 00 and 1350C

T, 
0 
c TIME OF

AGING, h
CROSSLINKING	 3DENSITY, MOL/cm SOL, % OELI %

30 0 2.0 x 10 -4 15 85

168 1,0 x 10-4 22 78

336 0.8 x 10-4 26 74
135

672 1.0 x 10-4 32 68

1008 2.3 x 10-4 20 80

98
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Table 23. Sol/Gel and Molecular Weight Data as a Function of
Thermal Aging of FMA at 300C and 1350C

T 0C TIME OF
AGING, h

CROSSLINI ING	 3DENSITY, MOL/cm SOL %, GEL, %,

30 0 2.0 x 10-4 15 85

168 3.61 x 10 -4 10 90
336 3.53 x 10- 10 90

135 672 3.74 x 10- 10 90
1008 3.63 x 10-4 11 89

* IN A CLOSED (SANDWICH) CONFIGURATION

41

9



tF

j	 SECTION 'VI

PnBA (SPRINGBORN A-13$70)

The following fi,gureR and tables offer data on mechanical properties
(Figures 69 through 71 9 Tables 24 through 26), weight loss (Figures 72 and
73); other properties (Tables 27 through 29) of ,PnBA (Springborn A-13870).
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TEMPERATURE, °C A M 
OF
I^ MODULUS, 16/in, 2 5%S(RAIN

ROOM TEMP, (30) 0 175

84 281

135 168 1250

336 2175

Table 24. Modulus at 5% $tra n as a Function of Open ►
Photathermal A$iig of PnBA at 3000 and 135QC

w



Table 25. Modulus at 5% Strain as a Function of Covered
Photothermal Aging of PnBA at 30 00 and 1350C

{i{

I

NATURE, oG AG NO Fh MODULUS, IbAn. 2 5% STRAIN

TEMP, (30) 0 175

168 155

135 336 4915
672 4:50

1008 350

1

s[



__

Table 26. Modulus at 5% Strain as u Function of Thermal
Aging of PnaA at 3000 and 1350C

TEMPERATURE, 0C AG 
TIME 

OFh MODULUS, Ib/in, 2 5% STRAIN

ROOM TEMP. (30) 0 175

168 169
336 174

135*
672 181

1008 171

* IN A COVERED (SANDWICH) CONFIGURATION
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Figure 73. Weight Loss as a Function of Thermal Aging of PnBA
at 1350C in a Covered (Sandwich) Configuration



OTHER PROPERTIES

Table 27. Sol/Gel and Molecular Weight Data as a Function of
Open Photothermal Aging of PnAA at 300C and 13500

T^ o
C TIME OF

AGING, h
CROSSLINKING 3

DENSITY, MOL/cm SOL % GEL,

30 0 4.34 x 10-4 15 85

84 6.61 x 10"4 _6 94

168 7.69 x 10-4 6 94
135

336 8.14 x 10"
4

5 95

672 9.K x 10-4 3 97



u 28. Sox/cal and Molecular Weight Data as • Function of
Covered photothermal. Aging of PnBA at 30 00 and 13500

Tt0C TIME OF
AGING, h

CROSSLINKING	 3DENSITY, MQL/cm SOL % GEL, %

0 4.34 x 10"4 15 85

168 4.79 x 10^
4_

11 89

135 336 27.12 x 10"4 1 99

672 7.08 x 10
-4

6 94

1008 14.13 x 10"
4

6 94

f
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oT,	 C TIME OF
AGING, h

CROSSLINKING
DENSITY, MOL/cm3 SOLD % GEL, %

30 0 4.34 x 10 -4 15 85

168 4.28 x 10 -4 16 84

135'`
336 4.29 x 10"4 16 84

672 4.18 x 10-4 16 84
1008 4.37 x 10-4 15 85

* IN A CLOSED (SANDWICH) CONFIGURATION

Table 29. Sal/Gal, and Molecular Weight Data as a Function; of
Thermal Aging of PnBA at 3000 and 1350C



SECTION VII

POLYURETHANE (N.J. QUINN -- DEVELOPMENT ASSOCIATES Z-2591)

The following figures and tables offer data on optical transmittance
(Figures 74 through 76); mechanical properties (Figures 77 through 8 10 0 Tables
30 through 32); weight loss (Figures 81 thrugh 83); other properties (Tables
33 through 35) of polyurethane (N.J. Quinn Co. -- Development Associates.
Z-2591) .
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Figure 74. Change in Optical Transmittance as a Function of
Open Photothermal Aging of Polyurethane at 700C
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Figure 76. Change in Optical Transmittance as a Function of
Thermal Aging of Polyurethane at 700C
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B.	 MECHANICAL PROPERTIES
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Figure 78. Change in stress/Strain Response as a Function 
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Covered Photothermal Aging of Polyurethane at 7000
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Table 30. Modulus at 5% Strain as a Function of Open Photothermal
Aging of Polyurethane at 300C and 700C

TEMPERATURE, °C
TIME OF

AGING, h MODULUS, Ib/in. 2 5% STRAIN

ROOM TEMP. (30) 0 380

200 205
70* 400 118

* PU (QUINN)



'able 31. Modulus at 5% Strain as a Function of Covered Photothermal
Aging of Polyurethane at 300C and 700C

TEMPERATURE, °C AG E OFh MODULUS, IbAn. 2 5% STRAIN

ROOM TEMP, (30) 0 380

200 153
70*

400 154

135** 168 73
336 FLOW



Table 32. Modulus at 5% Strain as a Function of Thersal
Aging of Polyurethane at 3000 and 7000

TEMPERATURE, °C TIME OF AGING, h MODULUS, Ib/In. 2 5% STRAIN

ROOM TEMP, (30) 0 380

70* 400 300

135** 0
168
336

101
54

i

* PU (QUINN)
PU (DEVELOPMENT ASSOCIATES Z-2591)
IN A COVERED (SANDWICH) CONFIGURATION



C.	 WEIGHT LOSS
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ble 33. Sol/Gel ,end Moleedlar Weight Data as a Function of Open
Phototharmst Aging of polyurethane +st 300C and 700C

0
T '

TIME OF
AGING It

CROSSLINKING
DENSITY, MOL/cm 50L^ °lo GPL, %s MOL WT

(SOL)

SAMPL 1 ;AMPLE 2 1 2 1 2 1 2.30 0
166.0 x 10'6 71.0 x 10'x' 4 96

i0* 400 57.0 x 10"6 2 1 79 100,000

* PU (QUINN)



Table 34. Sol/Gel and Molecular 'height Data as a Function of Covered
Phot thermal Agn ^Ff P l r ,&#-hane at %nor 7000 nd 1350Ca	 ig 	 Yu	 ^	 a

T e °C TIME OF
AGING, h

CRO;SSLINKING 3
DENSITY, MOL/cm SOL % GEL % MOL WT

(SOL)

30 SAMPLE 1 SAMPLE 2 _2 2
2166.0x)0 -6 71.0 x Y0-

6
4 96 5,000

70* 400 52.0 x 25 75 10,000

168 x 10-6 18 82

135**

336 1.1 x 10-6 12 88

F
Y

t a

r

4

PU (QUINN)	 a
** PU (DEVELOPMENT ASSOCIATES Z-2591)



Table 35. Sol/Gel and Molecular Weight Data as a Function of
Therwtl Aging of Polyurethane at 30 0C, 700C and 1350C

T 0 TIME OF CROSSLINKING 3 $OL, °lo GEL, °lo MOL WT
r AGING, h DENSITY, MOL /cm (SOL)

30 0
SAMPLE 1 SAMPLE 2 1 2 1 2 1 2

166.0 x10"6 71.0 x 10'6 4 96 5,000

70* 400 105.0 x 10"6 10, 000

168 27.6 x 10 -6 8 9;2

135**
336 4.4 x 10°6 17 83

PU (QUINN)
** PU (DEVELOPMENT ASSOCIATES Z-2591)

IN A COVERED (SANDWICH) CONFIGURATION



SECTION VIII

KORAD (XCEL CORP.)

Figure 84 offers data on transmittance spe. cl;,ra of Korad (Xcel Corp.).
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Figure 84. UV/VIS Transmittance Spectra as a :Function of
Open Photothermal Aging of Korad at 850C
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SECTION IX

TEDLAR (DU PONT uTB- 100?

V gures 85 through 87' offer data can abnarbanaa spectra of Tedlac

(Du Pant UTB-100).
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SBCUON X

ACRYLAR ON CO. X-22416)

Figures 88 through 93 offer data on opticel properties of Acrylar
(3M Co X-22416),
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AND

ACRYLAR FILM (3 mils)
AFTER 800 h OF
PHOTOTHERMAL AGING
AT 850 AND 6 suns
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Figure 89. UV/VI5 Transmittance Spectra Before and After 800 h
,-	 of Open Photothermal Aging of Acrylar Film at 850C

139 {



ZR0 x2

Z4

V
w 0

tA
z.

-2

ACRYLAR AT 460 nm	 (DIRECT AND SPHERE)
(CONTROL 91.6 t 0.5%)

C) a 0 r1 c2,0a 060 6 o O 'el	 0,60

0 850C.

D 7000
600C

2000
	

3000	 4000

STRESS-FREE AGING TIME, h-

Figure 90. Change in Transmittance of
. 
Acrylar Films at

460 nm at 60°C, 700C and 800C

ORI©INAL PAGE 1s
OF POOR QUALM

i

I

2

r

i

S



•

p O
_

01 C C

i
ij

ORIGINAL POM I
OF POOR QUALITY

R

c

N
4

0
^

co
q

E

f

ui N44

W po
p ,A

q

Ca
Z

O
00

^Q

Wa 44

^8

O

4!
N

t	 1

W	 I

i

, O



4,

c Ji

^i

1.1«1

Z 2:
tlGl

0 4 i

:i

0.

ORIt31NAL PAW M

OF P(IQR QUALITY

3,5

3:0

u xi s

z

2:00
I	

kA

i i

1:0

f_

k_
0 .5

0

N

WAVE NUMBERS

f

1

WAVE NUMBERS

llig ra 92. Pf-TR :AUsorbane a Spectra Wore and After 34 days of
Aging of Acrylar Vilms (fit-22416) in CER apt 550C



CIMIMIA PME
OF FOR QUALITY

V4 rot

fI	a^^l`^ Y^II^^ Y r

bi

UA

acs

d

EMOOM

i.



SECTION XI

KYNAR (PENNWALT CORP.)

Figures 94 and 95 offer data on optical properties and Table 36 offers
data on shrinkage of Kynar (Pennwalt Corp.)
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Table 36	 Shrinkage as a k'unctiort of 'I.liermal. Aging
of Kynar iat Dark Ono at 1500C

TIME OF AGING, h LINEAR
SHRINKAGE, %

0.5 31

1.0 30

2.0 34

3.0 34

5.0 34

29.0 34
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