
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



5030-562

California
Methanol
Assessment
Volume II: Technical Report

I i

F—_

'NA- A —CB — 171 y 91) CaLItudNIA METdANCL
A"LSSMLNT. VULUMG 1: ILLHNICAL uEPORI
(Jet Propulsion Lab.) d-*6 p HL A9 y /Mr A01

CSCL luA

March 1983

Prepared by

Jet Propulsion Laboratory

and
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California

,;PL °ublication 83-18 (Vol. li)

N83-33341

U nc is s
G3/44 3601)

I



5030.562

California Methanol Assessment
Volume 11: Technical Report

R. O'Toole
E. Dutzi
R. Gershman 4

R. Heft
W. Kalema
D. Mayr-.,d

March 1983
c

Prepared for
I	 Electric Power Research Institute

Energy Resources Conservation and Development Commission, iq
State of California
through agreements with National Aeronautics and Space Administration,

and
j	 Atlantic Richfield Company Pacific Gas & Electric Company -
I	 Chevron USA, Inc, Phillips Petroleum Company

Conoco Coal Development Company Solar Energy Research Institute, ° l
E.I. du Pont de Nemours Co., Inc. U.S. Department of Energy
Exxon Research & Engineering Co. Southern California Edison Company }
Ford Motor Company Sun Company
General Motors Corporation Texaco, inc. L
Litton Energy Systems United States Synthetic Fuels Corporation t i
through grants tc and agreements with California Institute of Technology

'	 Prepared by
•	 Jet Propulsion Laboratory

and
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California

t

JPL Publication 53 . 18 (Vol. li)

y
v i



G ^t

za

i

^^	 a
i

^k

it

if

3i
f

r

Y	 ^

j^

Prepared by the Jet Propulsion Laboratory, California Institute of Technology
with the assistance and sponsorship of a multi-institutional assessment team
partly through an agreement with the National Aeronautics and Space Adminis-
tration and-partly through the California Institute of Technology.

Neither the various sponsors, the United States Government nor any agency
thereof, or the Jet Propulsion Laboratory, California Institute of Technology,
or any of their employees, makes arty warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness or
omissions, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned
rights.

Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
various sponsors or the Jet Propulsion Laboratory, California Institute of
Technology. The views and opinions of authors expressed herein do not
necessarily state or reflect those of all the sponsors or participants
involved in this effort.

(NASA Tasks RE-152, Amendment 297, CEC 500-82-024; RE-152, Amendment 326, EPRI
TPS81-795; and Caltech. Work Order. 91909).

3

it

1y

i

4!

i

j

y

i



i	 I

ABSTRACT

A joint effort by the Jet Propulsion Laboratory and the California
Institute of Technology Division of Chemistry and Chemical Engineering has
brought together sponsors from both the public and private sectors for an
analysis of the prospects for methanol use as a fuel in California, primarily
for the transportation and stationary application sectors. Increasing
optimism in 1982 for a slower rise in oil prices and a more realistic
understanding of the costs of methanol production have had a negative effect
on methanol viability in the near term (before the year 2000). Methanol was
determined to have some promise in the transportation sector, but is not
forecasted for large-scale use until beyond the year 2000. Similarly, while
alternative use of methanol can have a positive effect on air quality
(reducing NOX) SOX and other emissions), a best case estimate is for less
than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle
adoption rates. Methanol is not likely to be a viable fuel in the stationary
application sector because it cannot compete economically with conventional
fuels except in very limited cases. On the production end, it was determined
that methanol produced from natural gas will continue to dominate supply
options through the year 2000, and the present and planned industry capacity
is somewhat in excess of all projected needs. Nonsubsidized coal-based
methanol cannot compete with conventional feedstocks using current technology,
but. coal-based methanol has promise in the long term (after the year 2000),
providing that industry is r.-Tilling to take the technical and market risks and
that government agencies will Help facilitate the environment for methanol.

Given that the prospects for viable major markets ( stationary applica-
tions and neat fuel in passenger cars) are unlikely in the 1980s and early
1990s, the next steps for methanol are in further experimentation and research
of production and utilization technologies, expanded use as an octane enhancer,
and selected fleet implementation. In the view of the study, it is not advan-
tageous at this time to establish policies within California that attempt to
expand methanol use rapidly as a neat fuel for passenger cars or to induce
electric utility use of methanol et a widespread basis.
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EXECUTIVE SUMMARY

BACKGROUND

The California Methanol Assessment was organized by the Jet Propulsion
Laboratory OPL) of the California Institute of Tethnology (Caltech) through
an interagency agreement with the National Aeronautics and Space Administra-
tion. The 18-month study was a joint effort of JPL and the Caltech Division
of Chemistry and Chemical Engineering and was sponsored by various private
companies and public agencies that are potential stakeholders in methanol use,
production, and distribution. An in-depth analysis was performed of the
status and prospects for methanol use as a fuel in California, primarily in
the transportation and u_J_-!1ity sectors. Technical data were synthesized from
ongoing JPL studies, rte sponsors, and other sources. The data were then
analyzed for California markets to determine the role that methanol, can play,
the gaps in the current state of knowledge, and the efforts that are warranted
to ensure"; an efficient and appropriates transition into the mArketplace.

Methanol has lung been used as a chemical and chemical feedstock. The
United States currently produces about :3 million tons/year with an energy
equivalent of 100 trillion British thermal units (10 14 Btu). Methanol has
many potential benefits as a fuel. On an overall basis., it has been argued
that it could be the lowest cast synthetic liquid fue=l. The technology exists
to produce methanol from the country's extensive coal, reserves as well as from
peat $ petroleum, coke, natural gas, and bioenexgy feedstocks. In automotive
and some ether applications, the performance of methanol is superior per Btu
to that of gasoline and ether conventional fuels. Widespread methanol use
could have a net positive effect on the environment because it is as cle=an-
burning, low--polluting fuel that ostensibly yields lower atmospheric contri-
butions of NAx and unburned hydrocarbons. Gasoline-fueled vehicles could be
built and stationary power plants could be readily adapted to use of methanol.
Methanol can be produced from a variety of domestically available feedstocks
and used in a variety of applications. In addition, it is noncarci.nogenic.

Expanded production of methanol, unlike other sy*nfuels, will require
dedicated storage facilities and delivery systems. Thus, because it is not
now in general use as a fuel, more extensive methanol use would require either
new dedicated delivery systems or conversion of current systems. Can a volume
basis, methanol has half the energy content of gasoline, so both storage and
vehicular tanks would probably need to be increased in size, with some mitiga-
tion because of better fuel performance. Although safety and toxicity
problems seem to be no greater than those for gasoline, they are different
from today's fuels ) and their solutions would require additional education and
training. Methanol is hydroscopic, but a small fractio.^ of water can be
tolerated in its use as a fuel. Also, methanol could be transported in
existing pipelines if some adjustments were made for the fuel's greater
miscibility, and if batched load delivery systems were set up.

For methanol to become a viable transportation fuel in the long term,
both the fuel and automobile industries must participate in a strategy
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involving risk on investments that will not be returned quickly. The issue of
scale is important, for it has been suggested that;

(1) Methanol must ultimately be made from coal in large (25,000
tons/day or larger) western minemouth plants. 	 °

(2) Methanol must be pipelined to end-use markets in high-volume
pipelines (50,000 tons/day).

(3) Automobile manufacturers must mass-produce (at least 3011000
vehicles per year at a given company) optimized methanol-fueled
vehicles to achieve end-use economies of scale.

,j

(4) potential private passenger car buyers must see an established fuel
distribution network before they will purchase neat methanol-fueled
vehicles.

Each of the above points has been evaluated for the California Methanol
Assessment to determine if it is a critical element in the viability of
methanol as a fuel in California. Once this basic characterization of the
methanol fuel system was made, the analysis focused on what could be done as
the next step to facilitate an efficient evolution into the marketplace.

The State of California was chosen as a focus for the study because
methanol has many potential uses as a fuel for stationary and transportation
applications in California. There are unique benefits that could be derived
from widespread use of methanol in California because of the State's air-
quality problems and its number of potential feedstock sources for methanol.
Relative to the use of conventional fuels, use of methanol could reduce the
emissions of sulfur dioxide, nitrogen oxide, and reactive hydrocarbons into
the atmosphere of:.Cali£ornia urban centers.

During the past several years, there has been an increase in the number
of test programs for vehicles using methanol and methanol/gasoline blends.
The State of California has begun fleet tests, and in 1980'( 'he California
Energy Commission (CEC) issued a policy resolution on alcohol fuels,. Also,
utilities and policy-makers in California have shown an interest in methanol's
role in the utility sector, where it could have environmental and fuel
diversification benefits.

Clearly ) methanol has the potential for much greater use as an altern-
ative fuel in California. Caltech and JPL were greatly interested in exam-
ining the realities of that potential, and together they were equipped to
provide a useful interdisciplinary study of the problems and potentials.
.APL's long-term commitment to the national energy program, coupled with the
Laboratory's 30-year history as a leader in fuels research for space and other
applications, provided unique experience with chemical processl`^--;-^tombustion,
engines, turbines, fuel cells, environmental control, safety, toxicity,
systems analysis., and policy analysis. Current methanol-based fuel cell
research at JPL and emissions characterization studies at Caltech provided a
rich data bases Related efforts, such as the Advanced Coal Extraction Systems
study, and detailed coat models being developed for photovoltaic and other new
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energy systems, ensured a background and structure cond^Ya to a well.-rounded
overview of the probl€m.

The emphasis of the California Methanol Assersment has not°been placed
on generating new basic data, but rather on resolving conflicting information,
performing a more detailed market analysis in California submarkets than has
been publisttd to date, and synthesizing this information into a California
strategy. Some of the questions that needed to be addressed were:

(1) Could methanol become a significant fuel for California (and
elsewhere)_beginning in the 1980s and 1990s?

(2) When compared to alternatives, which options for the use of
methanol should be encouraged for California?

(3) What are the attributes of methanol in terms of cost, value,
environmental impacts, supply reliability, safety, and health?

(4) What are the possible and probable sources of supply and modes of
transportation and distribution?

(5) What are viable near-term approaches for the use of methanol as a
fuel in Califnrn;A?

APPROACH

The goals of this research effort have been to:

(1) Synthesize, evaluate, and document key technical issues (e.g., neat
methanol engine efficiency, economies of scale in methanol
prod::ction, environmental effects of methanol use, etc.).

(2) Identify the essential features of a mature methanol fuel industry
if it should develop.

(3) Identify and characterize potential near-term and long-term
methanol fuel markets.

(4) Characterize the next steps in terms of research or studies that
would further refine the potential role for methanol.

(5) F termine if selected policy alternatives can significantly alter
methanol potential.

After evaluating these key issues, a determination was made of the next steps
to be taken in the methanol market. These steps were then evaluated from the
perspective of each of the key participants (producers, users, equipment
manufacturers, distributors, regulators, legislators, etc.).

Thus, the end result of this study has been to determine if:there are
useful transition-period strategies, policies, research activities, regulatory
changes, or avenues of cooperation amore; the participants in the methanol
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market that would facilate`: ;ethanol achieving its longer-term role more
efficiently. This is ,'a very difficult problem And challenges fuel producers
and distributors, automobile manufacturers, end Oers, government agencies,
and researchers to determine sensible processes a d policies within a
timeframe that will allow methanol to be efficien,fily available for future
demands.	

li
/ I

The choice was made of the specific time pfriods used for near-term
(1982 through 1987), transition-period (1988 to 1 9,'97), and long-tertd (1997 and
beyond) ma:;ket analyses because of constraints o^ l the evoletion of methanol as
a fuel, i.e.:

(1) The near-term period of 5 years is short enough so that changes in
methanol production capacity can be estimated with reasonable
accuracy (plants are already in planning or construction stages)
and the state-of-utilization technology is relatively fixed.

(2) The transition period from 1988 to 1997 is the timeframe in which
methanol use would have to expand rapidly if it were to make a
significant impact on fuel markets by the turn of the century.

(3) The long-term market is'simply defined as beyond 1997 because. that
is a period by which some results would have to be realized to
motivate action now in planning, technology development, and policy
implementation.

An effort of this study has been made to examine the possible transition
paths of methanol into long-term fuel and stationary source markets. There-
fore, this study looks more deeply than other recent studies at the submarkets
in transportation, utilities, and industry that could be important in building
the supply, production, and delivery infrastructure necessary for widespread
use of methanol. For example; in the transportation fuel market potential
demand for methanol as an octane enhancer in Califonia is examined as a complex
market in itself. The perspective of large refiners and the independents in
terms of the value each would place on methanol for octane enhancement is
quite different. Similarly, in tre case of utilities, an attempt has been
made to carefully differentiat6 the value of methanol in various types of
generating units and under a number of environmental conditions^Ond regula-
tions. The results, when aggregato.d across the market sectors ., provide the
framework ftr identifying opportunities for structuring a transition strategy.
It is not suggested, however, that this study substitutes for the project
specific analysis-=a company would have to do to commit to a methanol,ve<ature.
The level of detail necessary for such an evaluation is simply beyond the
scope of this study.

"The study yids also taken a fairly detailed look at the methanol produc-
tion industry in the near term (1982 to 1987), as this period may also be
crucial to a transition strategy. This period is significant because methanol
production is already in a period of transition. The deregulation of natural
gas that is now in progress will greatly alter the structure of methanol
supply in the long term and may lead to significant price changes in the near
term.

4



Individuals that contributed to this study represented a broad spect ,
of disciplines, including chemical engineering, economical, petroleum enginOt,-
ing, policy analysis, and thermodynamic*. The sponsors of the study also
provided substantial data in the following areas;

(1) Production: At,l.antic Richfield Co * , Chevron USA,, Inc., Conoco Coal
Development Co., Exxon Research & Development Co., Phillips
Petroleum Co., Sun Co., and Texaco, Inc.

(2) Chemical: du Pont de Nemours and Co.

(3) Utility: Electric Power Research Institute, Pacific Gas and
Electric Co., Southern California Edison Co.

(4) Automotive technnology: Pord Motor Co., General Motors Corp.

(5) National synfuel incentives: Synthetic Fuels Corp # (SFC).

(G) State: roles: California Energy Commission (CSC).,

(T) Production equipment, Litton Energy Systems.

The findings were synthesised into an assessment framework and reviewed by JPL
and by the Technical Advisory Group, which i .i compoasrd of representatives of
th t spuiwvrs. AAk wmy &=4L4uic vas", %hc -:^[^3$C #R:^' d appreai h was that the informa-
tion was exchanged and discussed; by the Technical Advisory Group in the same
mentings that were held to review drafts of the interim and final reports.
Although agreement was not reached can all points, these meetings provided an
opportunity to discuss specific issues from the perspective of companies that
re or might bt-potentially involved in methanol production, distribution, and
se. Thus, although the study does not represent a consensus position of the
sponsors (the conclusions are solely those of JPL), there was a free exchange
of ideas so that a wade, range of positions could be considered. The reader is
referred to Appendix B in Volume II: Technical Re ort for the positions of the
various sponsors on the findings.

FINDINGS

Competitive Environment

A review was made of studies of the present and projected competitive
environment for methanol in Caalifoniaa with emphasis on: (1) the availabililty
and price of natural gays and residual oil to California utilities,:,-_and W the
likely range of cast for motor fuels in California. Table l pro ,jecta the
likens (base case) fuel consumption and cost for California for the utility
and transportation sectors. The precise values of the forecast prices and
quantities are not as important as the general climate for synthetic fuels in
the transition period of 1982 through 2000. The key factors during this
period are:

(1) The United States and California will remain dependent upon
imported oil, although regent off-- .short rail discoveries will
improve California's position.

5



Table 1. Base Case Fuel Forecast Summary for California
(quad/year)

1980 1985 1990 1995 2000

VEHICLE S
t~asoline 1.44 1.23 1.10 1.08 1.05
Distillate 0.25 0.30 0.35 0.37 0.40
SUBTOTAL 1.69 1.53 1.45 1.47 1.45

ELECTRIC UTILITIES
Natural Gas 0.52 0459 0.54 0.49 0.45
Oil 0.48 0.36 0.49 0.37 '> 0.13
SUBTOTAL, 1.00 0.95 1.03 0.86 0.58

INDUSTRY
Natural Gas 0.54 0.36 0.39 0.39 0.37
Distillate Oil 0.05 0.05 0.04 0.04 0.03
Residual Oil 0.04 0.04 0.03 0.03 0.03
SUBTOTAL 0,63 075 046 0.46 0.43

PRICES (1981 $110 6 Btu)
Gasoline ,,, «Melt ^_Q^,.u, ,^	 2;-.4 R 5-47
Residual ";1 (0.5% sulfur) 5.47 5.49 6.68 7.58 8.18
Aistillate'Oil 6.30 6.12 7.89 9.37 10.60
Natural Gas:	 Utilities 3.84 5.01 6.37 7.44 8.06
Natural Gas:	 Industrial 3.97 5.07 6.41 7.47 8.09

(2) Natural gas after deregulation will tend toward parity with the
price of residual oil.

(3) The contribution of synthetic t:tls nationally will probably be
less than 500,000 barrels (bbl)lday by the year 2000.

1

(4) Although there is significant oil worldwide and unused capacity in
OPEC to supply anticipated demands in the next 20 years at real
escalation rates of 2% annually or less, political disruptions
could drive prices up much taster.

(5) There s a plausible wide range of oil price scenarios in the
1990s, which work .against those large-scale capital projects that
must rely on hi&-price scenarios for viability.

(6) The real price decrease, since the peak. 1981 oil price level, has
severely impacted the enthusiasm fnr synthetic fuels and will
probably negatively impact such projects even if ,another sudden
price rise occurs.

6



iAir Quality

A special effort of the study that coincided with ongoing research at
Caltech was to perform a screening analysis of the likely impact of methanol
fuel on the air quality of the South Coast Air Basin. The Basin includes the
areas within the counties of Los Angeles, Orange, Riverside, and San Bernar-
dino, which has a population of about 11 million people. The Basin has
persistent and severe problems of air pollution caused by a combination of
factors. There has been an extensive gathering o' emissions and meterological
data for this Basin, which enabled the application of analytical models.

For this analysis, an existing Caltech air-quality model was further
adapted to treat methanol as a specific pollutant. The methanol chemistry was
included in the model for completeness to determine how methanol would contri-
bute to the formation of ozone. Thus, the model was able to distinguish seven
classes of reactive organic compounds. alkanes, ethylene, other olefins,
for--aldehyde, other aldehydes, aromatics, and methanol. The various reactive
hydrocarbons have different rates of reaction with NOx and with the
oxygenated species that promote the formation of photochemical smog. The
model uses a Langrangian form for representation of the equations of motion
that describe the diffusion and convection of chemical species within the
modeling region. It calculates the concentrations of chemical species along a
given trajectory of an air parcel traversing the Basin.

All calculations were based on the projected emissions inventory of
pollutants for tite year 2000. The air-quality impacts of methanol use are
quite sensitive to this initial baseline, thus the findings discussed below
should not be attributed to the intervening years between now and the year
2000. At that future date, the potential benefits of existing pollution-
abatement regulations would: have been zealized. At the same time, it is a
feasible date by which, if methanol were to become an important fuel in
California, air-quality effects from this change would be felt. Calculations
were performed to indicate the likely effect on air quality of using methanol
as a substitute for gasoline; no estimates were made of the effects of use of
methanol for stationary applica"Ions or diesel vehicles because other study
findings indicated these uses to--be relatively small contributors to the
emissions baseline.

Some of the following conclusions apply to the complete substitution of
methanol for gasoline in the South Coast Air Basin, based on projected emis-
sions for the year 2000. Even though this is not a feasible scenario for
methanol use, the intent was to bound the air-quality implications of
substituting methanol for gasoline and to calculate a limiting case.
Therefore:

• Even with do optimistic rate of neat methanol vehicle adoption, the
maximum impact by the year 2000 would be only a 3% to 4% reduction
in the peak hourly-average concentration of ozone.

•	 In the long term (beyond the year 2000), even the complete
substitution of methanol-fueled vehicles for gasc^l.ine-fueled
vehicles could lead to a reduction of 14% to 20% in: the peak
hourly-average concentration of ozone.
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Peak ozone concentration decreases approximately linearly with
methanol subs itution, starting with the year 2000 emissions
inventor,.

•	 The photochemical reactivity of methanol is relatively low.

With use of methanol, peak ozone concentration is reduced as
emissiono of NOx are reduced. The ozone concentration, however,
is much less sensitive to emissions of NOx than to reactive
organic. emissions.

•	 With methanol substitution, the ambient concentr,,4tion of
formaldehyde would not increase significantly.

•	 Total suspended particulates in general would not be greatly
affected by methanol substitution; however, fine nonvolatile
carbonaceous particulates would be reduced slightly if methanol
were substituted for gasoline. Methanol substitution for diesel
fuel would make this reduction much larger.

While the assessment of effects of methanol on air quality is only an
initial investigation and while.the accuracy of the data used in the modeling
calculations could possibly be improved, the study results clearly irgicate
that the impact of methanol of the South Coast Air Basin would be beneficial
in the long term. For some pollutants, the potential improvements are signi-
ficant. The most significant impact would be to reduce the peak level of
ozone, but only if a major portion of vehicles in use were methanol-fueled.
Even a small reduction in peak level would cause a reduction in the number of
days that the smog episodes occur, and thereby would cause an improvement in
the air quality for the residents of the Basin. Obviously, the use of methanol
is no panacea for the problems of air pollution. Other pollution-abatement
measures mould still be needed. If neat methanol-fueled passenger cars were
to become over-the-road competitive with gasoline vehicles in 1990,,and from
that point achieve a rate of sales consistent with the rate of adoption for
deesel-fueled vehicles since 1978, the vehicle stock would be about 12% neat
methanol fueled vehicles by the year 2000. With this percentage of
methanol-fueled vehicles on the roa4, the peak ozone would be reduced about
3.7% , from the base case. Obviously, the adoption of methanol vehicles could
occur more quickly, but this is unlikely given that near methanol will not be
over-the-road competi- tive for some time. Neat methanol has-more barriers to
overcome than diesel, so its rate of adoption will tend to be less, if
anything, than the diesel experience since 1978. Therefore, the 3.7% impact
on ozone by the year 2000 for neat methanol-fueled vehicles is probably.
optimistic and, in any case, only a modest factor in that timeframe.

11	 =_

PROJECTIONS

One of the goals of the study was to characterize the projected value of
methanol in the private marketplace. Such a determination will reveal whether
there are potentially viable markets for methanol in the near to mid term that
might help transition to widespread use of methanol as a transportation fuel.

8
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Near Term (1982 through 1987)

The methanol supply industry is already in a transition period. Adding
to the progressing deregulation of natural gas and a worldwide oversupply of
methanol, there is a prospect for coal-based methanol plants supported by
SFC. Also, there is much uncertainty surrounding the near-term structure
of the industry.

Factors acting upon the methanol industry in the near term will be:

(1) By 1985, natural gas will be deregulated and will move toward
parity with the mid to low sulfur (approximately 0.5%) residual oil
price. In the study's baseline scenario, this is expected to be in
the $4.75 to $5.00 per 1 millon (106 ) Btu range in 1987 (1981 $).

(2) Contracts for inexpensive natural gas, currently supplying the
conventional feedstock for methanol in the United States, will
virtually all have expired by 1985 to 1986. As a result, domestic
producers will be paying deregulated market prices for feedstock
natural gas.

(3) There, will be excess capacity in methanol production to supply
traditional chemical markets. Even if demands in traditional uses
such as formaldehyde return to pre-recession levels (if the housing
industry expands), the 1985 excess supply capacity will probably
exceed 1 billion (109 ) gal/year in free-world, markets unless fuel
uses expand.

Production

Given the above factors that are operating within the industry, three
possible marginal comm ccial production sources by 1987 are: (1) methanol
from conventional natural.-gas plants with unregulated gas feedstock cost, (2)
new remote natural-gas-based plants, or (3) SFC-supported coal-to-methanol
plants.

Virtually all of the existing plants will be operating on deregulated'
natural gas by 1987. Assuming a $5.50/10 6 Btu feedstock cost for natural
gas in fully amortized plants, the plant gate market price for methanol is
estimated at a minimum of $0.76/gal for methanol in 1987 (in 1981 $). It is
expected that these plants will remain viable at least through 1990, but that
no new conventional plants will be built based on pipeline natural gas.

The concept of barge-mounted plants producing 2000 to 3000 moons/day from
remote natural gas may become viable in this period. The key assumption here
is that the remote natural gas used would be available at far-below-market gas
prices. Two plant locations were evaluated for feedstock and transport casts
appropriate for methanol.: Cook Inlet (Alaska) and Indonesia. The implications
of these cost projections are that barge--mounted plants could yield a 20%
after-tax nominal return with a minimum acceptable delivered price of $0.58
to $0.66/gal (in 1981 $).

9
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col plants supported by price or loan guarantees have
been proposed to SFC. The study modeled a western-sited coal •to-methanol plant
and uni(^ ,,train transportation to the West CoasX. It was found to require,:'a
price of $0.821g41 delivered to California, even with loan guarantees. Zhus,
even with SFC support, western coal-to--methanol production will not be ^

I 
, ,ompeti-

tive with the other options, and it seems likely that any coal-to-methanol
plants started in the 1900s will have to be subsidized with price supports.
Further, subsidized methanol might tend to displace domestic production in the
chemical sector, rather than in the fuels market as intend.

N

Use

Although metho"I can be used in utilities &dd in industry as a boiler
or peaking fuel, it must compete with conventional fuels * In the 1.987
timeframe, residual oil and natural gas are expected to pq,)st approximately
$5.50/10 6 Btu, and methanol should cost approximately $9. 001 

log 

Stu.
Thus, the only potential for methanol use in the utilitylindustry sector would
be where environmental constraints force a willingness to pay a significant
premium 00.00 to $4.00/10 6 Btu) for methanol. One utility application that
seems to have some promise to justify promiums in this range is overfiring
boi lers using 10% methanol with natural gas or residual oil. Full-scale
boiler tests must be done to confirm if such premium-9 can be Juv stifi in

selected power plants where capacity is restricted because of emissions
limitations.

As in utility and industry applications, there are significant near-term
barriers to the expansion of refining and blending submarkets on the West
Coast because of lack of availablility of other necessary bl-4nding agents such
as isobutylene for methyl tertiary butyl eth*r (MTBE) and tertiary.butyl
alcohol (TBA) for low-level blends. It is Gxpected that methanol demand for
blending and refining will be only 300 to 500 tons/day in the near term
because of these constraints.

There now exists a very small methanol market for commercial fleet
vehicles, supported by several small companies performing vehicle conversions
to neat methanol. Even if1actory-optimized mtathanol vehicles were available
and the price of methano^	 l^fue was such that these vehicles would have an
over-the-road cost compe!4 itiveness with gasoline, the near • term potential
market is probably still limited to 4000 to 10,000 vehicle sales per year in
California. This is due to constraining factors such as uncertainty of resale
value, ready availability of methanol fuel, and required maximum trip lengths
fur the vehicles. If methanol vehicles were in last sold at this volume, it
would imply an increase in methanol demand of between about 20 and 75 tons/day.
Such a volume is: quite small In comparison to a remote natural-gas methanol
plant size . of 2000 to 3000 tons/day*

As shown in Figure 1, the most likely outcome in the near term is for
very limited quantities of methanol being consximed 7'within the state. The
maximum competitive market size would be approximately 4000 tons/day, even if
all the low-level blond potential of California were exploited. A more likely
outcome is that dema/Ad will be approximately 1000 tons/day, with perhaps
800 tons/day to ble4ding markets, 100 tons/day to vehicle fleeta, and 100 toA

10
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Production

There are already capacity additions planned. through 1987 based on
natural--gas feedstocks that may a&i as much as 1 billion gallons of excess
capacity relative to projected chemical demands. Thus, there is an ample
Supply of methanol for early utility experiments, fleet use, and octane
blending in the next few years. Beyond 1987, the potential exists for
additional capacity.

After a detailed comparison of the methanol production costs from both
California feedstocks (bioenergy., petroleum coke, heavy oil in rock) and other
out--of-state resources (we tern coal, Alaskan coal and remote natural gas), it

f

	

	 has been concluded that on two options would,be important to California's
transition, period: remote `Mural gas, and SFC--supported coal-to-methanol
plants.

A key factor in the conclusion that remote natural gas is the most
important source for methanol in the transition period is the expectation that
the markets will evolve slowly. Met"nol from remote natural gas is not
likely to be extremely elastic in supply. At large levels of fuel demand,
production costs from this source would begin to rise for two reasons longer
transport distances to California, and higher collection costs in le s-

;-`	 developed remote sites.

The major findings in the production cost analysis are that:

(1) Methanol is most efficiently produced from remote natural gas
in the transition period.

(2) Production costs from remote natural gas vary from the
reference case of $0.531gal in 1992 up to $0.66/gal at a 25%
return and down to $0.42/gal at a 15% return.

(3) The quantities of remote natural gas available on the Pacific
Rim at $1.50/10 6 Btu or less seem sufficient to support
California's near- to mid-term fuel demands.

(4) Rapid expansion of methanol supply from remote gas resources
will induce price increases as longer transport and higher
collection costs are incurred.

(5) California resources are not critical to a methanol fuel
transition.

p:	 (6) Methanol does seem to be in the competitive range with shale
`

	

	 oil or to be significantly cheaper than methanol-to-gasoline
or Fischer-Tropsch liquids.

(7) A high oil price scenario may also tend to induce methanol
`.	 production cost increases, which offset some of the apparent

t
gains in viability.
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(8) There does not appear to be a case in which unsubsidized
coal-to-methanol plants became commercial before the year 2000.

Use

Given the starting point illustrated previously in Figure 1 for the
bounds on the California fuel market for methanol. in 3987, similar snapshots
of utility, industrial, blends and neat transport fuel markets are made for
1992 (Figure 2). During the transition period, the most important factor in
the status of the methanol fuel market in California will be the comp,titive
environment in which it must compete. The pertinent. submarkets are blends,
fleets, private passenger cars, industrial fuels, and utility fuels. All of
these market potentials are shown in Figure 2 in terms of both 'breakeven
prices and market sizes. Some significant changes from Figure I are evident,
especially in the scale of the potential stationary applications market and
the addition of a light-duty vehicle submarket.

As shown in Figure 2, ` the transportation markets are the submarkets
where methanol can have a limited impact in the transition period. how°-level
blends (4.5%) of methanol and a co-solvent with gasoline should be comp-
at some level by 1992. The max l«um methanol use would be about 3000 tons/day
in California for this puruose. but actual use given TBA;limitations will
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Figure 2. California Methanol, Market in 1992 (1981 $)
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probably be,.!^maller, about 900 to 1000 tons/day. The fleet market is the n@Ytt
increment in\methanol demand that would be competitive at prices up to about
$0.90/gal, bu,)t would imply a maximum methanol demand of 1200 tons/day and a
more likely demand of approximately 100 tons/day.

The passenger car market would also achieve parity in the early 199ds
with the over-the-road costs of gasoline, although the margin would be slight.
A,key factor in this analysis is that only remote natural-gags feedstocks yield
methanol prices in the competitive range of fleets and passenger car markets.,
Because this feedstock source is not highly elastic, a very rapid penetration
rate for methanol-fueled vehicles would lead to methanol production-cost
increases. At rates 6f penetration consistent with diesel vehicles in the
period of 1978 to 1982, remote natural gas is sufficient to supply both fleets
and passenger cars through the 1987 to 1997 period,

Rapidly rising oil price's consistent with the high oil price;_-Icenario
may improve methanol viability somewhat, but Ythere will also be feedbacks in
methanol production costs that offset part of the apparent gain in competi-
tiveness. As a result, with either the base case or high-price scenario,
methanol from coal does not seem viable through the transition period. In
the low oil price scenario, light-duty vehicles do not become over-the-road
competitive until beyond the year 2000, even for methanol from remote natural
gas.. For this optimistic- case 8cenriri o ,_. the only viable methanol market is in
blending for octane enhancement or possibly overfiring in highly selective
utility applications.

The potential for methanol as a fuel in stationary applications is very
limited in the transition period because it cannot be produced competittively
with pipeline gas or even liquefied natural gas (LNG). This situation is
actually strengthened under a high oil-price scenario, where feedback effects
in methanol production costs will offset likely increases in pipeline gas.
Under the assumption that natural gas remains available to utilities (which
seems likely), the margin for error between costs for natural gas and methanol
is estimated to be sufficiently wide that methanol cannot compete on strictly
an energy basis.

The only other rationale for ysing methanol for stationary applications
in this timeframe would be that it has environmental value beyond its energy
content. The problem with environmental premiums is that there are current
programs in place that rely primarily on nuclear capacity, out-of-state coal
generation, and rep}awables to achieve environmental compliance. Burning
methanol within the South Coast Air Basin is neither as cow.:-effective as
these options nor as environmentally benign with respect to NOx and sulfur
output in the Basin. The one exception to the lack of environmental premiums
is the case where plants are operating we'll below capacity because of NQx
output limitations. These few plants are really the only transition-period
methanol market in the utility sector. If bench-scale tests are verified in
large-scale tests, the value of methanol may exceed that of oil or gas by more
than 0.00/108 Stu, which would make it a viable application.

14
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Production

In the period bevy ,d 1997s if they preconditions on methanol development
have been successfully achieved, there are really only two potential feedstock
sources for methanolz western coal and Alaskan North Slope natural, gas. Both
of these feedstocks exist in sufficient quantities to supply an eAtablisheed
and growing methanol, fuel demand, and have further strategic value* as domestic
sources which are not subject to Middle Eastern political and social insta-
bility, For natural gas the supply elasticity is such that quantities of
10,000 to 20,000 tons/d*y can.-,probably be supplied before large supply cost
increases take places. These cost increases result from increasingly higher
feedsti---k aecquiaeition and collection coats, and also from costs associaated
with lon^ar product transport times. As a result, these 

coat

	 increase
until they j potential for North Slope gas could be exploited fa y' ut 104000
tons/day?. Of course, if the gas pipeline to the Norttx Sl.op^ is constructed,
methanol will cease to be a relevant option. For coal-to-methanol plants,
larger quantities might lower production coats for +a, period while production
and transport economises are exploited. The minimum acceptable selling price,,
for cowl-to--mathanol production, shown in Figure 3, in expressed
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as 4 range reflecting uncertainty about the potenkial ocotomiot of scale,
required rates of return, and transport options. Even under the mi-^At
optlmisti%., *asumpti%:ns, coal-baaed *vithonol would not be competitive in
stationary applications. while , in the baseline case ('41.0% return, modem
economies vif aQale and pipeline transport), methanol woald not he co,-^ipetitive
with gsnolxnt^ until beyond utt-,, year 2000. Thus, it i4 not an tit ilia ted that

plants in the United 18states will 
be 

initiated in
this century.

Use,

The domiaent long-term market for methanol as a fuel, as shown in
Figure 3, is in light-duty passenger vehicles. That is not to say that there
will not be other important markets, but they will be much smaller in size, in
this Amaller but important category, methanol may be used in utilities in the
period be

y
ond the year 2000 for limited peakiog requirements, and 

by 
industry

and utilities as a boiler fuel in environmtatally sensitive areas.

The highest value submarkets are for octane., blending, but these mar-
kets are very small,, totaling to no more than 2000 tons/day. Light-dkity
vehicles should 

be 
the next highest value market which is also small

all1vt F-i c-lurea 3	 -- thkow"o th."a t the prilspeets 14"Or ffilethiawal use in
stationary applicatiops are not very optimistic in the case where natural
gas is available. 

In 
fact, as strictly an energy source, methanol is not

likely to c.ompete with LNG or medium Btu gas (MEG) as a fuel source for
combi4ed-cyele plants or for repovering oil fired boilers. There may be a
small utility role, for xiietivanal in dual-fueling plants under strict control
for NO, t^missitnls.

PUBLIC AND PRIVATE SECTOR ROLES

From California's perapective, there art two overriding motivations for
examining methanol as an #lternative fuel 

in 
stationary and transportation

applit-ationaz aezurity of supply and environmental improvement. However,
both of these factors ma

y
 not be suffioient to induce methanol implementation

if their value is not sufficient to make methanol viable 
in 

specific
tions. An examination was made based on the available date to see if there is
juatifiiation for government Intervention in the private marketplace to either
fa ,i^ilitate or acct-lerate methanol production and use, given 

the 
projection of

what that cnonsequenQes would be of letting the market determine methanol intro-
ductioll and evolution. Thus, the goal here was to determine from the data
developed 

in 
the study atid other source's whether as government role is justi-

fied and ) if so, what tho impact of government policy would be an the methanol
fuel market.

The first step in determining the appropriate policies for the public
sect-or ill the evolution of methanol as a futA in California is to examine to
what degree the private 

market 
is not providing proper lacentives for methanol

use. Rationales for justifying a, 
public 

role were examined for 
an 

oil import
premium and an environmental premium based on lower emissions. Although
quantitative estimates oa there types of premiums are admittedly impreciat-,
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1
they do provide some rough guidelines on whether the social benefits of
methanol are sufficient to justify its cost,.

In areas where there was simply too much-uncertainty to formulate a
policy for methanol use in the state, the objective is to evaluate whether
the preconditions exist in terms of efficient markets and other institutional
mechanisms for the expansion of methanol.-fuel use if it meets the market
test. Emphasis was placed on examining mechanisms that help the market
reflect the cost and benefits of methanol as they become known and that
efficiently transmit them to both potential producers and consumers.

The rapid changes in events and trends in the last decade are an
indication that our understanding is Quite limited of how energy markets in
general and international oil markets n particular will evolve. During the
last 8 years since 1974, the forecasts ' of energy demand have changed dramat-
ically in response to a better understanding of supply and demand elasti.ci
ties, Middle East politics, and the evolving policy of the United States.

Oil Import Premium Policy

Implementing an oil import premium policy, such as a tariff on oil
imports, is more efficient 'than subsidizing a specific option Mike methanol
or shale oil.) in that it does not bias the selection process. Based on a
recent study* which placed a bound on the likely value of a United States
import premium from $8.00/bbl to $20.00/bbl, Table 2 shows the impact of the
premiums on the baseline cost of gasoline. The implication is that if
methanol were competitive with gasoline at $1.74 in 1990, there would be
season to believe that a national policy of imposing an import premium (for
inaZance through a tariff) would induce a methanol market. If methanol
required a gasoline price of more than $2.03/gal in 1990 (in 1981 $) to be
competitive, thet even a premium would not induce a methanol market. The
study analysis indicates that an increase in gasoline prices of $0.19/gal (in
1981 $) does significantly accelerate the period at which methanol, becomes a
viable transport fuel (by about 4 years) for lmethanol made from remote natural

;r

Table 2. Gasoline Prices With the United States Import Premium

Baseline Gasoline with
-= Gasoline Import Premium

Year	 Market Price, $ $8/bbl	 X207bbl

1990	 1.55 1.74	 2.03
1995	 X.80 1.99	 2.28

*World Oil, Energy Modeling Forum, Instituee for Energy Studies, Stanford
University, ERG Report 6, February 19f2.
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gas. For methanol from coal, the breakeven timeframe is so far in the future
that an import premium would not have a significant impact.

The conclusions of this study on the issue of national security are
that: (1) if there is a value W/bbl) above the free-market oil price to oil
import reduction in the United States, there would be little 'impact on coal-
based methanol; (2) any attempt to implement such a policy should be done at
the national level, where the costs are spread among all beneficiaries; (3) an
oil-import premium should be implemented in a neutral manner (e.g., oil-import
tariff) to allow the market to select the beat alternatives; (4) an import
premium of $8/bbl would raise the retail price of gasoline about $0.19/gal,
which would accelerate the aver-the-road competitiveness of methanol and other
synfuels 4 to 5 years if the premium were believed to be of a stable duration;
(5) from a fuel security vievrpoint, methanol is not significantly different
from other synfuels that substitute for imported oil.; and (6) within Cali-
fornia, the value which can be justified for a California-only oil import
premium is smaller because the market power component (impact of substitution
on lowering the world oil price) is reduced considerably compared to the
nation as a whole, as most of the benefits would accrue to others.

Environmental Policies

Another nationwide concern with special significance for California is
the air-quality problem in its urban centers. In this regArd, methanol does
have unique properties compared to other transportation synfuels such as"shale
oil, Fischer-Tropsch liquids, and products of direct coal liquefaction, as
well as conventional gasoline and diesel fuel. It is also clear that substi-
tution of methanol for oil in utility applications can lead to some benefits
as a result of reductions in NOx, SOx, and particulate emissions. The
value of these benefits to the utilities, however, is not as clear.

Utilities in the South Coast Air Basin (Los Angeles and vicinity) and in
the Ventura Country Air Pollution Control District (especially Southern Cali-
fornia Edison and Los Angeles Department of Water & Power) are required to
reduce their NO, emissions by 60% by the year 1990. Use of methanol in
some units could be included as part of an overall strategy to satisfy this
requirement. This could lead to payment of a premium for methanol. A similar
requirement is under consideration to limit SOx emissions in the South Coast
Air Basin, and there may be requirements to reduce particulate emissions.

The premiums for the values for methanol as a pollution abatement
strategy Mould be an additive for NOx and SOx. Thus, the potential
premium value is approximately $0.65 to $0.90/106 Btu, or about $0.05/gal
of methanol. This size premium is not likely to induce use of methanol in
many plants. The cost difference that has been calculated between methanol
and conventional utility fuels is much larger than this value. Nevertheless,
in the longer term it would be highly desirable if a market syster.,were
established to create a stable mechanism for determining the value'of the
premium that methanol or other clean fuels should have as part of an efficient
environmental program. Based on the data that exist to date, however,
implementation of a policy to internalize these environmental attributes of
methanol would not significantly accelerate methanol use.
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Subsidieo

As far as the State of California is concerned, there is little to be
gained from subsidizing production of methanol because the Federal Government
has already assumed that role. Eventually it ma

,
ay be ,.n`'taliforniA's interest

to have a western coal-to-methanol projact among those awarded assistance by
SFC. The State can improve the likelihood of this type of project by helping
prospective project sponsors and supplying data on California markets for
methanol, There does not seem to be a justification, however, for any
state-sponsored production subsidy to either augment or duplicate SFC's
program,

The one area where the State, through its Public Utility Commii/;ton
(PUC), can make a contribution to lowering the cost of methanol production is
in further development and the eventual demonstration of the once-through
methanol, coal-gasification, combined-cycle concept. Potential efficiency
gains in the once-through process imply that a cost saving of about 20% (aside
from utility financing impacts) may be possible from such a system when
compared with a dedicated methanol plant. Proposed experimental programs by
California utilities for development of this process should be given careful
consideration by PUC.

Near-Term Programs

To improve the acceptance of methanol as a fuel, the State of California
might implement the removal of institutional barriers arising from regulations
and restrictions not conceived with methanol in mind. The California Energy
Commission (CEC) has been active in searching for such unintended, barriers and
has been successful in eliminating the most important obstacles. For example,
the state gasoline tax will be levied on methanol on a Btu basis equivalent to
gasoline rather than on a gallon basis. Taxing methanol on a gallon basis
would have penalized methanol relative to gasoline. The State has also
sponsored tax credits for converting vehicles to neat-methanol use, which have
been responsible for initiating fleet conversions within California. In
general,, GEC has been diligent in encouraging alcohol-fuel use through barrier
elimination, developing test information through its alcohol fleet test
program, and providing incentives for vehicle conversion.

The focal point of the State's plan currently is the $5 million pro-
gram to purchase and support approximately 1000 fleet vehicles, to establish
50 to 100 commercial refueling stations in California, and to test methangl-
fueled California Highway Patrol pursuit vehicles„ These activities are
intended to help develop market stimulus, which will eventually lead to a
self-sustaining methanol fuel market. Related efforts are also under way to
demonstrate methanol in heavy-duty diesel engines and in stationary applica-
tions (repowering and co-firing). These other programs for different types of
applications are important to CEC's strategy of developing methanol uses that
displace the majority of refined products from crude oil, The Commissions's
rationale for this strategy is that an alternative fuel that only displaces_
gasoline, for example, could have adverse effects on the existing petroleum'
product slate, necessitating refinery modifications and/or relative price
changes in refined products. The stated goal of these programs is to
accelerate the "take-off" point for self-sustained commercial market growth.
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Given the abrupt reduction in the expectation for conventional fuel
prices that has occurred in the past 2 years, and the significant rise in
projected cost of synfuels, it is important to assess what government prograams
can realistically accomplish in this environment. First, it is clear that the
viability of synthetic-fuel projects has deteriorated significantly in this
2-year period, as evidenced by the cancellation or postponement of numerous
synfuel projects. Second, the excess capacity in OPEC oil production makes a
near-term oil disruption less likely than it was a few years ago. The net
effect of then factors is that the market viability of the long-term neat
methanol.-fueled vehicle market supplied by western coal has been pushed back
until after the year 2000 in the most likely scenarios. The major fuel
producers have little incentive, in the view of this study, to wove aggres-
sively toward creating the supply and distribution network needed for the use
of neat methanol as a large-scale transportation fuel in the foreseeable
future. There are, however, other selected markets where methanol will be
used successfully during this period; octane enhancement, some captive
fleets, and limited use by utilities. Programs that are oriented toward these
limited goals can be successful in the period before 1990, but not if they are
expected to lead to a private passenger car market.

In stationary applications, the potential market with the greatest
promise for being economically viable is overfiring with a small percentage
(10% to 15%) of methanol. This concept, if successful, can lead to a
justifiable premium for methanol sufficient to overcome its added cost if the
capacity factors of plants constrained by NOx emission restrictions are
expanded. In effect, the value of this additional operational capacity added
to the value of methanol fuel can be substantial, but it is lim tam to those
plants that are NO.-constrained. This study strongly supports the conduct-
ing of tests to confirm the potential performance of methanol in the over-
firing mode. To be of greatest value, however, it is important for overfiring
with methanol to be tested against overfiring with natural gas. A significant
proportion of the benefits of overfiring may be achievable at lower cost with
natural gas overfiring, which would reduce the justifiable premium for
methanol. This submaarket of utility operations is relatively small (1750
tons/day of methanol) compared to utility fuel use, but quite significant
relative to current use of methanol as a fuel. Thus, although a major use of
methanol, is not anticipated as a fuel, substitute for residual oil or natural
gas in utilities, it may be benefic.ally used in highly selective applications
(e.g., overfiring ire environmentally restricted plants).

One possible method for achieving greater use of methanol within
California is for government policy to be used to promote: (perhaps even
require) utility applications as a means to provide a base for expanding fuel,
use into transportation markets. For a number of reasons, it is believed"that
this policy would not be a desirable means to transition,to large-scale use of
methanol as a transportation fuel. First, the value of raethartol in transpor-
tation markets (especially octane enhancement) is considerably higher (i.e.,
at least double) than its value as a utility fuel. As a result, methanol, will
be used first in these higher value markets and will be applied only to lower
value uses aa^ the methanol competition increases production and Lowers pricy:.
Second, the cost of producing methanol in large quantities will be taco high to
compete with conventional utility fuels. Thus, utility customers would have
'to pay a large premium 43/10 6 Btu for methanol from remote natural gas)
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over current utility fuels, which cannot be justified by any realistic
assessment of the benefits. Third, the evVerience gained in transporting,
handling, purchasing, storing, and using methanol would be based on utility
use, which would not carry over to transportation fuel companies. Fourth,
although the quantities of fuels used by utilities are sufficiently large to
utilize the output of a coal--to-methanol plant (once thought to lower cost
through volume production), the cost of methanol would be considerably higher
than from much smaller plants based on remote natural gas„ Thus, the strategy
of inducing utilities to use methanol, through public policy as a means of
transition to more widespread use in other applications is not attractive.
This conclusion is not intended to imply that public support of programs is
inappropriate to test methanol use in potentially viable utility applications,
but rather that these programs should be justified based on their own merits
as to their ability to benefit utilities and their customers.

One often discussed obstacle in implementing widespread use of methanol
in transportation is that the retail distribution system must expand rapidly
in anticipation of automobile manufacturers producing and selling neat
methanol-fueled vehicles to the general public. The problem with distributing
methanol is that part of the existing gasoline distribution system (seals,
hoses, patches in tanks, etc.) would not be compatible with methanol use.
Compounding the problem is the fact that the most recent cycle of replacementq
at retail outlets has been done with fiberglass tanks instead of steel, which
makes the existing system even less compatible with methanol. Creating a
parallel system for methanol by replacing functional equipment now used for
gasoline presents a significant cost and hence an obstacle to methanol. The
lead time that exists, however, before methanol can compete as a private
passenger car fuel provides time to create a threshold distribution system
much more efficiently. Currently in California there are approximately 18,000
retail gasoline stations supplying transportation fuels to the public. As a
general rule, the tanks and pipes in these stations have an expected life of
20 years, which, with a uniform replacement rate, would imply about 900
replacements per year. Even a single company therefore could create a
threshold distribution system in a short lead time. For example, if 20% of
the regularly scheduled replacements (tanks, pipes, pumps) were made for
methanol-compatible systems each year, that: would imply approximately 150 to
180 conversions per year. Thus, if this program were started in 1990, by 1996
about 1000 systems would be in place that could be used to distribute
methanol. Some cleaning of the system would have to be done when the
conversion actually took place, but that would not impose a major cost.
The cost of methanol-compatible systems versus conventional systems installed
without this program is a crucial factor in its usefulness. The cost for
replacing a tank, piping, and two pumps at a typical service station is
approximately $50,000 (in 1981 $) for a fiberglass system, and somewhat less
expensive for a steel system. The latter, although less expensive, has a
lifetime that can be considerably smaller, depending on the climatic condit-
tions to which it is exposed. In addition to the costs of more frequent
replacements with a steel systems there are additional costs arising from
station disruption and the risk of damage caused by undetected leaks. With
the relatively dry climate in much of California, the added cost for methanol-
compatible systems should not be great or a major impediment to methanol use.
The costs of such a program would seem to be fairly modest when compared with
a coal-'to-methanol plant. For example, if the extra cost for a methanol-
compatible system were $5,000 per installation, then 150 stations per year
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would cost $750,000. Although this is not a trivial .pm of money, the cost
over S years ie $4.5 million to create a threshold distribution system of 900
retail outlets, which is leas than 1% of the cost of a 5000 tons/day coal-to-
methanol plant. If instituted in this type of incremental fashion using the
normal, replacement cycle, the retail distribution barrier need not be a
massive obstacle to widespread methanol use. Obviously, the transport system
would involve more than the retail distribution outlets, but the delivery
system is well within the capability of the private sector of the economic
viability of methanol is favorable.

CONCLUSIONS

A successful strategy for making a transition to widespread use of
methanol as a fuel must be consistent with the realities of the fuel market in
which it must compete. It is clear that in the last year and a half, the
climate for introduction of synthetic fuels has changed dramatically. In
1981, oil prices in constant dollars reached a peals from which they have since
fallen approximately 20%, but even more important is the change in expectations
for the future. It is widely believed that real oil prices will frill in 1983
and then remain constant in real terms through 1985 and only rase to 1981
levels by the end of the decade.

When this study was first conceptualized in 1980, the expectat,,;on was
that more emphasis could be placed can actual mechanisms to implement large-
scale methanol, use in the next 10 to 20 years. However, as a result of
changes in the ail market as well as more realistic estimates for methanol
production costs, elaborate transition strategies are not possible at this
time. Methanol is simply too costly for large -scale implementation (e.g.,
substitution for utility fuels or gasoline as a neat transportation fuel) to
be feasible.

These general conclusions, and the more specific ones that follow,
repres ant the best judgment of the study's authors based on the data and
analysis incorporated in Volume II; Technical Report. Not every finding can
be rigorously proven, because this subject requires some judgment on ,future:
behavior of fuel markets, technologies, and government policy, which cannot be
known with certainty. Thus, the conclusions are offered as logical
interpretations of the existing data.

Supply

•

	

	 The sources of methanol in the near term will be dominated by
natural gas as the feedstock. After deregulation of pipeline gas,
no new plants are likely to'be built based on this resource,
although it is anticipated that most existing plants will continue
to operate for the rest of the 1980s and early 1990s.

•

	

	 New plants throughout the world, already under construction or in
planning stages rising remote natural gas, will be sufficient to
satisfy modest fuels demands through 1987.
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	 The projected excess methanol production eapecity relative to
chemical market demands through 1987 could exceed 1 billion gal/
year,

•

	

	 while large quantities ol,' western coals exist that are potentially
available for metianol.fzonversion for use in California (in
particular, the subbituminous coals of Black Mesa, San .Juan, Yampa,
and Powder River), substantial support including price supports and
loan guarantees would be required to be viable.

n

	

	 In the near-term and transition periods, the likely quantities of
methanol demanded could not justify a methanol pipeline from
western coal fields.°

•

	

	 Where large volumes or distances are required, there is a clear
economic advantage of transporting methanol by means of tankers or
pipelines when do6ipared with rail or truck.

Indigenous California resources are either too limited in :supply
(bioenergy, petroleum coke) or too expensive (heavy oil in>rock) t
support a major transition to methanol'fuel within thin State.
Small selective markets, however, will probably be se'ved by these
in-state resources.

•

	

	 Existing methanol producers will compete soocessful,ly in chemical
markets at production costs of $0.67/gal through 1987.

•

	

	 There is sufficient remote gas to supply California demands for the
next 15 years at prices that would undercut any unsubsidized
coal-to-methanol project.

•

	

	 One of the implications of SFG°s proposed support o"i coal-to-
methanol plants may be to displace methanol produced.;.by the united
States chemical industry.

•

	

	 Methanol producers should-be able to compete for use of some remote
natural gas with LNG producers given that methanol has a higher
value per Btu in transportation applications than LNG and methanol
has a production advantage in smaller gas reserves.

Demand

s

	

	 The stationary applications market will be small. If the dual-
fueling concept can be demonstrated to work effectively and plants
currently limited in operation by,,NOx regulations can be operated
at rated capacity using 10% methanol, the implied premium may be
sufficient to make methanol competitive in these plants. The
maximum market in this case is only 1510 tons/day, and the
dual-fueling technology is yet to be demonstrated at full scale.

f	 •	 No economic use exists for methanol as a fuel for repowering
boilers, even with the credit for eliminating the need.-for
environmental control technology.

,
_li -
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a	 A ;small market will exist for methanol as°a gasoline blending agent
by the smaller (topping and hydro-skimming) refineries. This
market seems to be presently existent at current methanol prices.

•	 Blends (low-level) have a maximum market in California of approxi-
mately 4000 tons/day of methanol, but it is limited by the
availablltty of tertiary butyl alcohol. Thus, the actual demand
will probably be small in the near term.

s	 Feat methanol-fueled vehicles will experience a slow g"wth rate
because they will not achieve even a slight over-the-road cost
advantage (based on remote natural gas-based methanol) until after
1990, although this advantage will increase over time (coal-based
methanol would not be competitive until beyond 2000).

•	 If methanol-fueled vehicle use were to g row as quickl as the
diesel market, which is doubtful, the proportion by -Ke year 2000
would be about 12%, which would present a level of demand
consistent with remote natural gas-based methanol from the pacific
Rim.

With likely improvements in conventional gasoline vehicles,
projected fuel factors as low as 1.3 for neat methanol-fueled
vehicles are unrealistic in the long term. Potential improvement
from a 1.7 fuel factor (existing technology) to a 1.6 fuel factor
in the long term (advanced technology) is possible.

Strategy

r	 Methanol availability in the long term can be effectively aided by
the State of California by facilitating methanol transport by
tanker and pipeline. In the near term, port facilities at Long
Beach and San Francisco Bay, and at coastal power plants are suffi-
cient for any anticipated needs. In the long term, pipelines from
western coalfields will be crucial links in efficient systems if
the methanol demand expands.

®	 Given proper incentives to act, utilities would need a 4- to 8-year
development period for widespread conversion and use. The trans-
portation sector would require a 20-year period. At current
prices, however, there is little incentive to begin this process.

•	 Artificial demand created by regulations to induce greatly
increased methanol use (i.e., 50,000 tons/day) will lead to rising
methanol supply costs as longer transport and higher remote gas
collection costs are incurred, and thu6 would, be self-defeating.

®	 Attempts to favor the use of in-state feedstocks will only slow the
methanol transition by raising methanol production costs.

0	 Methanol can form part of an effective strategy for the control of
photochemical smog and fuel diversification after the year 2000.
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Even in the absence of government intervention, the private ,sector	 f
is fully capable of implementing large-scale use of neat methanol	 f
as a transportation fuel when it comes viable..

e	 'There is no evidence that the 1ederived likely roles" for methanol	 a
resulting from $overnment policy to correct externalities silnifi--
canrly affects the free market taete of methanol use in the period
through -) 995

RE00tAMNDATIONS

	", s 	a Technology -development should be p.Mrsued to improve methanol 	 <,
viability in the long term. Production technologies (e.g*)
co-productaon, once-through concepts), utilization technologies
(e,g., advanced neil mQ anol automobile engines, methanol	 °

	

s	 ovearfiring) , and demon:t;=ions (ey. g. , California fleet program)
can contribute to smprova ng the viability of methanol versus

	

3	 ((' conventional fuels.

•	 Further work maybe done to improve the demand analysis of methanol
r	 c	 oiT selective target markets where methanol may command a^.	 g	 y	 premium o

value: performances automobiles, ,,reflected fleet operators, specific
t	 refiners, etc,

v

	

	 In the policy areas, the most productive activities would be to
create better institutions to take into mount the environmental
value of methanol (e.g * , markets for 4censes to emit NO, or
sox).o

at	 The selective markets that seem viable in the near term (octane
enhancements, utility boiler overfiring, selected centrally-.fueled

	w j	 fleet operators) should be pursued to gain the experience in°
e,.	 handling, maintaining, and operating with methanol fuels.
r

• Policies "that attempt to orapidly expand makli nol use through
mandates should not be enacted because they-would be self-
defeating. Relatively inexpensive feedstocks cannot supply a large
mathaanol°fuel, market$ opportuniti4s for technological advance would
be lost, and the chance^tto use the normal repd.a ement cycle, for
distribution systems could not be taken advantage of "i "'= ethanol

	#	 were forced into the fuel market too rapidly*
d
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CHAPTER ONE

INTRODUCTION

The technical support for the conclusions in the Summary Report is
embodied in the chapters which follow. 	 These chapters are a result of a k

critical review of the recent literature on the subject, information supplied
by the study sponsors, and our own analysis.

As a means to facilitate covering a very broad subject as efficiently as
k

possible, many of the major parts of the study were done in parallel (e,g.,
methanol production, utilization in vehicles, utilization in stationary
sources, and air quality implications of methanol use).	 There was a common
framework established for each examination, i.e., the emphasis was on covering
the status of each technology, the long-run potential, the transition period
analysis, and finally the policy options which might influence the transition
paths.	 This techical volume divides each technology into a separate chapter.
A different approach is attempted in the summary volume, where many of the
sections are organized by timeframe rather than by technology. 	 The intent is
to have the summary report be a cross-cutting presentation of our findings.
Through this type of organization it is hoped ;:hat the reader can focus on the R;
most relevant form of the information for his own purposes, r __

Within the technical report, we have used Chapter 2 to define most of
the different routes or end-to-end systems by which methanol could be brought
to alternative end-use markets in California.	 This chapter serves as both a
framework and a synthesis of the alternatives which are pertinent to both the
long-run methanol market and the transition analysis.

As the starting element in an end-to-end system, the feedstock. w

alternatives are reviewed in Chapter 3.	 Relevant sources for feedstock
include options within the state (petroleum coke, heavy oil in rock, and

33

biomass), those which could be imported directly (western coal) and those
which could be used for conversion at their source (western coal, Alaskan coal r
or remote natural gas).	 The scale of these resources, locations of deposits,
and resource quality are characterized in this chapter.

For each of the different feedstock classes for methanol production, we
have performed a production cost analysis. 	 First, the conversion technologies

r are 'briefly discussed to identify the most important characteristics of each. s.
A prototype plant is then .specified and costed in a consistent manner.
Finally, a product cost analysis is done using a present value type of
analysis.	 A representative set of sensitivities are run to identify how f 

: production costs are influenced by such factors as changes in rates of return,
plant capacity factor, higher feedstock costs, capital cost overrun and

r changes in the start-up date.	 These plant specifications, plant cost
estimates, production cost estimates, and sensitivities were made for methanol
plants based on coal, natural gas, petroleum cake and bioenergy. 	 Since
methanol may be competing not only against conventional oil and gas sources, 3

but also against other synfuels, a cost comparison has been made with uncon-
ventional sources such as coal liquefaction, coal gasification, and shale oil,;

s
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The next component of an end-to-end system is the transport, storage,
and distribution needed to bring the product or feedstock to its end-use
market or conversion location, respectively. In Chapter 5, the distribution

and transport problems are identified, possible solutions discussed, and the
cost of alternative options evaluated. The importance of transport is illus-
trated by the significant range of transportation-related costs which can be
experienced among rail, pipeline, tanker and truck modes. Another aspect of
methanol transport and storage is the necessity for keeping water out of the
system and the potential difficulty with corrosion in existing tanks and
pipelines.

One of the most desirable attributes of methanol is its environmental
characteristics. Since all sulfur is removed prior to methanol synthesis, the
fuel can be burned sulfur free. In addition, the NO x emissions from end-use

combustion of methanol are also significantly lower than from oil-based pro-
ducts. A concern has been raised that aldehyde emissions may pose problems

which offset some of these benefits. In Chapter 6 the issue of the environ-
mental consequences of widespread methanol use is evaluated, primarily with
respect to its use in vehicles. A model of the Los Angeles Air Basin is used
to examine the air quality consequences of different levels of neat methanol
vehicle use in the basin, compared to projected emission profiles for the year

2000.

As a means to establish the starting point for the evolution of the
methanol fuel market, a brief description of the chemical market is given in
Chapter 7. The current sources and uses of chemical methanol are identified
and a projection obtained from other sources is included. Of particular
interest in the transition period to fuel methanol is the expanding methanol
production capacity throughout the world. These new sources are identified
together with their expected impact on the demand/supply balance.

One of the most significant motivations for examining synfuels is to
develop an alternative transportation fuel to conventional petroleum. Uses of
methanol in alternative transportation markets are examined in Chapter 8. One
potential market is as a blending agent for octane enhancement or in higher
level blends as a volume expander. Another possible market is for neat
methanol use in vehicles, where a particularly important issue is how effi-
cient neat methanol-fueled vehicles will be in terms of the fuel factor
required compared to gasoline-fueled vehicles. Two possible transition
mar_ets for neat methanol vehicles, medium- and heavy-duty vehicles and light
duty fleets, are also examined. In each of the above submarkets dealing with
vehicles, a review is conducted of the technical issues, the economics
involved in the application are assessed, transition path constraints are
identified, and finally-, policy options which might alter the transition path
are examined.

Another area where large-scale fuel use occurs in California is in
electric utilities and industrial boilers. The potential in California for
methanol use in both of these applications is significant for one major
reason: environmental concern. Although methanol is not likely to compete 	 E

with natural gas or residual oil on an energy basis, it has additional value
in High pollution areas such as the Los Angeles basin. This additional value
may arise from using methanol to achieve NOx emission standards, thereby

1-2
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(6) California has unique fuel requirements because of environmental problems
that make it a valuable study focus.

The basic framework of the study was constructed by assembling as
sponsor organizations, which are either involved now or would be instrumental
in a successful methanol market. The intent of this approach has been to work
directly with many of the most knowledgeable sources of information on: fuel
production (ARCO, Chevron, Conoco, Exxon, Phillips, Sun, and Texaco), chemical
methanol (du Pont), utility potential (EPRI, PG&E, SCE), automobile technology
(Ford, General Motors), national synfuel incentives (Synthetic Fuel Corpora-
tion), state governmental roles (California Energy Commission), and production
equipment (Litton), and to synthesize the collective wisdom of this group and
subject it to analysis by JPL teams. Thus, the emphasis has not been placed
on generating new basic data, but rather on resolving conflicting information,
performing more detailed market analysis in California submarkets than has
been published to date, and synthesizing this information into a California
strategy.

Although many sponsors were involved in supporting this study, provid-
ing data, and reviewing its findings, the conclusions are not necessarily
agreed upon by each of the sponsors. This document doesnot represent a
consensus view in any respect; in fact, with such a diverse set of sponsors,
it is not surprising that there are many divergent viewpoints (see Appendix B
of the Technical Report for sponsor comments).

Although the focus of the study is on methanol utilization within Cali-
fornia, examination of methanol production, however, was not so constrained,
as it would have artificially distorted the results. This broader view was
given to policy issues as well, and includes an examination of national policy
toward synfuels, but concentrates on options that can be implemented at the
state level. Thus, although it is recognized that there is a world market for
methanol with inherent supply/demand implications, the study has concentrated
on California's particular markets, regulations, air quality problems, and
competitive environment.

C.	 ORGANIZATION

i
z

This Summary Report contains eight sections that are drawn from the Cali-
fornia Methanol Assessment - Volume 11, Technical Report, JPL Publication
83-18, JPL Report 5030-562, March 1983. The technical chapters deal with
particular subjects (e.g., feedstocks, methanol production, transport, util-
ization in vehicles, etc.) throughout the analysis period from 1982 through

'

	

	 the year 2000, covering the pertinent aspects of technology, economics, and 	 F
policy. In this Summary Report, these topic areas are synthesized by time-
frame (near-term industry, transition paths, and long-term markets), and
cross-cutting topics (policies, environmental implications). The choice of
the specific time period used for near-term (1982-1987), transition-period
(1988-1997), and long-term (1997-beyond) market analyses was made partly For r
convenience in organizing the discussion and partly because of real constraints
in the evolution of methanol as a fuel. For example, the near-term period of
5 years is short enough so that changes in methanol production capacity can be 	 F

estimated reasonably accurately (plants are already in planning or construction

i
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CHAPTER TWO

OVERVIEW OF CALIFORNIA METHANOL
ENERGY DELIVERY SYSTEMS

s

A.	 INTRODUCTION

This chapter provides an overview of California methanol energy delivery
systems based on the results of the detailed analysis in the following chap-
ters. This overview is intended to serve as an introduction to the various
systems that have been proposed for supplying methanol to California, and for
using it as a fuel within the state. The overview also provides an indication
of the relative significance of the methanol options in terms of potential
supply and demand quantities and price competitiveness with alternative fuels.

The general approach was to set up energy delivery systems consisting of
subsystems for resource extraction, conversion to methanol, transportation and
distribution, and end-use, and to quantify for each system such key factors
as resource supply, end-use demand, the minimum required price of delivered
methanol based on production cost and the target price for methanol based on
prices of competing fuels. To facilitate comparisons, all resource and fuel
quantities are expressed in terms of quads (quadrillions Btu at the higher
heating value) or quads per year of delivered methanol (i.e., with conversion
efficiency taken into account), and all prices are expressed, in 1981 dollars
per million Btu (t/106 Btu) of methanol.

B.	 DATA COMPILATION AND ANALYSIS

A

be shipped directly from a production facility in Indonesia to a coastal power
plant in California, without passing through a real distribution facility.

Data compilation and analysis for each of the systems identified in aat
Figure 2-1 are discussed in the following subsections. Worksheets used in this
process are included as an addendum to this chapter.

F

The bottom line for the supply worksheets is the minimum required price
of methanol in dollars per million 'Btu delivered to the distribution center in 	 x
the first year of operation. This was estimated by starting with the feedstock

2-1	 p

Preliminary investigations led to the conclusion that, in practically
all cases, methanol produced in large quantities from a specific source will
not necessarily be targeted for one specific use. Instead, the methanol can
be applied to a variety of uses. Thus, rather than focus on individual energy
delivery systems that cover all the ground from resource to end use, it was
decided to split the systems into those that supply methanol and those that
use it. The endpoint of the first type of system is a set of methanol distri-
bution centers located near California metropolitan areas. This concept is
illustrated in Figure 2-1, which identifies the systems covered in this
chapter. All logical combinations of subsystems studied to date were included
in this analysis. The one exception to the distribution center path is the
dispersed production of methanol from biomass for use in dispersed agricul-
tural applications. It should be noted that in the approach illustrated in
"Figure 2-1, the distribution center may be a dummy node: e.g., methanol could
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cost and adding the value added for transport and conversion. The conversion
cost computation method used in Chapter 4 assumes escalation of the methanol
selling price at the same rate as for competing fuels so that competiveness in
the first year of operation assures competitiveness over the life of the plant.

The focus of the demand worksheets is a target price for methanol at the
distribution center which would make it competitive with the fuel currently
used (or likely to be used). This was obtained by starting with the projected
price of th ,% competing fuel and subtracting out distribution costs, dealer
mark-up, differences in efficiency, etc. The process of comparing the minimum
required price at the distribution center with the target pric,4 to determine
the competitiveness of methanol is illustrated in Figure 2-2.

1. CASE A: Western U.S. Coal/Minemouth Conversion/Pipe-13i ne Shipment

Western resources were divided among six regions, each with rela-
tively uniform coal properties, feedstock cost, and transportation constraints
(see Figure 3-3, p. 3-14).	 The total resource figures are those reported in
Chapter 3.	 Strippable reserves identified in Chapter 3 are shown for
comparison in Table 2-2.

Coal prices and projected escalation rates were taken from Reference 2 A

and substantiated via discussions with suppliers.	 A number of sensitivities
on feedstock escalation rates were examined (see Chapter 4), although only the
baseline case of constant real feedstock costs is sutimiarized in this chapter.
Fifty-five percent conversion efficiency was assumed, resulting in a feedstock
cost per million Btu nearly double the coal price.	 Some potential constraints
on the rate of expansion of coal mining were identified.

The estimated pipeline cost was taken from Chapter 5.
4

The value added in the conversion of coal-to-methanol was taken from the
reference case in Chapter 4 for the Texaco gasification and 101 metlianol
synthesis combination sized at 10,000 tons/day.

The value added for conversion was combined with the feedstock and
transport cost to obtain the minimum required price of methanol delivered to
the California metropolitan area distribution center. 	 The conversion cost was
found to be the biggest part of the required methanol selling price and its
sensitivity to such factors as plant size is investigated in Chapter. 4.

2.	 CASE B:	 Western U.S. Coal/Mineniouth Conversion/Unit Train of Tank
Cars tj

The transport costs here are taken from Chapter 5. 	 The first three
coal-producing regions -would require new railroad construction. 	 The existing
capacity for transport into California is represented an the unused capacity

pp	 of the two rail lines connecting California with the coal regions. 	 (The
capacity estimates for cases B-4 ) B-5 and B-6 should not be added.)

2-3
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3.	 CASE C: Western U.S. Coal./Unit Train/California Conversion Plant/
Pipeline to Distribution Center, and CASE D: Western U.S.
Coal/Slurry Pipeline/California Conversion Plant/Pipeline to
Distribution Center

These cases assume that any large coal-to-methanol plant located in
California will have to be sited at a considerable distance from any metro-
politan area, and that additional transport will be needed to convey the
methanol from the plant to the distribution center.

4. CASE E: Alaska Coal/Minemouth Conversion/Pipeline to Port/Ship

Chapter 5 identifies enormous coal reserves in Northern Alaska (3.5
trillion tons) and moderate reserves in the Cook Inlet area which could
present less of a logistics problem. Since the Northern Alaskan resource is
currently of little value, the feedstock cost for methanol prodtiction was
assumed equal to the cost of underground extraction (about $30 /ton). However,
this cost is based on Continental U.S, operations and could be much higher in
Alaska. The feedstock cost for the Cook Inlet coal was 	 on estimates for
the Beluga coal-to-methanol project.

In the Cook Inlet case,-a port facility could be built at the conversion
plant site. For Northern Alaska production, it was assumed that either a new
pipeline would be built to a southern port or that connections would be made
with the existing petroleum pipeline (availability of excess capacity is
doubtful). No cost data were available to distinguish between these options.

The conversion economics are based on the Beluga project, which plans to
use a Winkler gasifier with ICI synthesis (see Chapter 4).

5. CASE F: Remote Natural Gas/Barge-Mounted Conversion Plant/Pipeline
to Port(Alaska North Slope only)/SHIP

Remote natural gas is defined here as gas for which pipeline
shipment to market is impractical. Since the worldwide supplies of such gas
are very large, it has zero opportunity cost and the cost to a methanol
producer was set equal to an estimated extraction cost ($1/MBtu of gas). The
Alaska pipeline considerations discussed in the preceding case also apply
here. The conversion economics used here are for the Chapter 4 reference case
for a barge-mounted plant sized at 3,000 tons/day.

6. CASE H: California Petroleum Coke/Conversion at Refinery

`

	

	 This is a straightforward case, but feedstock availability maybe
constrained by other uses within the refinery. Feedstock and conversion costs
are from the reference case in Chapter 4.



it

7.	 CASE J: California Biomass/Truck or Rail/Local Conversion	 i
Plant/Truck or Rail/Local Uses or Central Distribution

For existing biomass resources, it is assumed that they will be 	 j;s
converted in local plants and the resulting methanol will be used locally.	 ?
For energy crops, which represent a potentially larger resource, rail	 n
transport and central methanol distribution were assumed.

Resource costs and energy crop quantities were taken from unpublished
data compiled in the JPL Bioenergy Mission Analysis Task. Conversion eco-
nomics are discussed in Chapter 4. The conversion costs in Chapter 4 were
based on a conventional field-erected design. Recent studies by Intemr,tional
Harvester have indicated that conversion costs can be reduced by use of small
factory-assembled units drawing on biomass collected over a small area. Plant
gate costs as low as $`10/MBtu may be achievable.

Methanol users with tax liability can currently benefit from a "tax
credit" for biomass-based methanol. The so-called "credit" is actually
treated as a deduction and is worth $.20/gal ($3/MBtu) to a 50 percent tax
bracket user.

8. CASE N: Existing Oil-Fired Utility Boilers/Supplied by Existing
Pipeline System, Rail, or Ship (for coastal plants)

Projections of demand for this and all other stationary applica-
tions were taken from Chapter 9. Prices of oil and gas for the baseline and
high oil price scenarios are discussed in the Summary Report. Prices for
other- alternative fuels were based on production costs in Chapter 4 and are
summarized in Table 2-1. Natural gas is shown as a competing fuel for this
and other utility cases, but its long-term availability is very uncertain.

Differences in efficiency when burning methanol, and costs, of
distribution and of modifications to existing facilities are discussed in
Chapter 9. Distribution of methanol to existing utility boilers would be a
complex problem. Several power plants are located on the coast with marine
terminals for easy supply by ship. Southern California Edison (SCE), the
largest potential methanol user, supplies about three-fourths of its oil
through a network of pipelines. Other plants are supplied by rail and a few
swaller ones by truck. The target prices for Case N are based on use of the
SCE pipeline system, but they can be easily adjusted for other methods.

9. CASE P Industrial Boilers and Heaters/Supplied by Rail or Truck

ss

This case applies to industrial fuel use in boilers, process
heaters, furnaces, etc. Both existing and new or replacement units are	 C'

included. Some industries have low value by-products available as fuel (e.g.,

refineries) and others have narrow fuel specifications (e.g., steel makers) so	 s
that only a part of their energy use is included. Most of the considerations
in establishing the target price are similar to those in the preceding case,
except-that these units generally use distillate oil rather than residual oil.

k
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10. CASE Q: Existing Combined-Cycle Units

•

	

	 This is a special case of two SCE facilities that are viewed as
likely near-term users among stationary appliz-ations because of their
environmental sensitivity and relative sim-plicity of supply. Both are located
at likely distribution centers: one at the port of Long Beach and the other
at Cool Water, ini&nd from the Los Angeles basin and adjacent to key rail
lines. Modification costs are the same as for Case N.

11. CASE R Other Stationary Applications/Supplied by Rail or Truck

This case includes several dissimilar applications that have
similar target prices.

Repowering of existing steam turbine units to increase capacity,
while improving efficiency and emissions is discussed in Chapter 9. The
modification costs in the worksheet represent only the difference between
repowering to burn methanol and repowering to burn oil.

Fuel cells have the potential to capture a portion of the utility
peaking and intermediate load demand, although the economics are not clear at
this time.

Utility peaking turbines could be a likely near-term methanol applica-
tion, but fuel use is quite small and likely to remain so as a result of
successful utility load management programs.

New industrial cogeneration units based on gas turbines could represent.
a substantial market for methanol. The demand shown here is only the
electricity generation portion (the industrial use is included in Case F).

12. CASE S: Fleet and Private Neat Methanol-Fueled Cars and Light
Trucks (Supplied by Conventional Methods with Additives Blended at
Distribution Centers)

Demand and cost adjustment factors for this and other mobile
application cases are discussed in detail in Chapter 8. Distribution costs
are considered to be the same per gallon as gasoline, resulting in a,differ-
ence per million Brus. 'Dealer mark-up and excise taxes are assumed to be the
same per gallon for both fuels. The ratio of efficiencies in the worksheets,
expressed in terms of higher heating value, are somewhat misleading. When
expressed in terms of lower heating values (more commonly used by auto engine
analysts) a more substantial improvement is found for methanol.

The worksheet lists a current fleet demand of 0.15 quads/year, but the
near-term fleet market for methanol would be limited to about 0.01'quad/yeas
by several factors, the most significant being the absence of a resale market
(see Chapter 8)
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13. CASE T: Meet nod Private Cars and Light Trucks with Dissociated
Methanol Engines (Supplied by Conventional Methods with Additives
Blended at Distribution Centers)

This case is essentially the same as Case S except that ehe
vehicles would use ndvanced technology engines 	 dissociated methanol
engines) to provide substantial efficiency improvements.

14. CASE U: Heavy Trucks and Buses Burning Neat Methanol (Supplied by
Conventional Methods with Additives blended at Distribution Centers)

The competing fuel 
is 

distillate (diesel oil). Methanol engine
effici ency was assumed to be the same as diesel.

15. CASE V: A 4.5-Percent Methanol blend with Gasoline for Existing
Cars (Supplied by Pipeline for Blending at the Refinery)

There are three blending situations that result in different
methanol target prices, with a further differeotintion between regular and
premium gasolines. The highest price would be paid by small refineries
(toppers and hydro-skimmera) that must buy octam enhancers 

on 
the open

market. An intermediate target price applies to an integrated refinery and is
based on eliminating high value octane enhancers while adding methanol to
maintain the same octane number. The low target price in the worksheets
applies to a refinery that has 

no 
excess of octane enhancers and would use

methanol only for its added volume. The target prices in the worksheet are
derived in Chapter 8.

16. CASE W: Agricultural Uses (Supplied by Truck from Locnl Biomass
Sources, Case 1).

Agricultural applications now use a variety of fuels with gasoline

being the most significant.



C.	 SUMMARY OF RESULTS

The supply and demand data from the worksheets are summarized for
comparison purposes in Tables 2-2 and 2-3. The methanol target prices at the
distribution center (Table 2-3) can be compared directly with the minimum
required supply prices (Table 2-2).

a

t

{

,
,

9

Making these comparisons, the most obvious conclusion is that methanol
will become competive with gasoline in automotive applications long before it
is competitive with other fuels. In the baseline oil price scenario, methanol
from remote gas should be competitive by 1990, but methanol from coal will be
competitive only for advanced technology engines.	 In the high oil price
scenario, the results indicated that coal-based methanol would compete with
shale-based gasoline for the automotive market.

!	 In the stationary applications sector, the situation is not nearly as
promising for methanol.	 Methanol would play a role in this sector only under

Athe high oil price scenario and then only if natural gas and LNG from remote
gas are not available (an unlikely combination of circumstances).

In most cases, the resource quantities are sufficient for many decades
3

of demand, but this is not true of Cook Inlet gas, which would be the source
of the lowest priced methanol for California.	 It should be noted that some of
the demand elements are substitutes for each other (e.g., turbines and fuel
cell., ), and thus the quantities should not be added.

1
A further note of caution in regard to using the results in Tables 2-2

and 2-3 is that they represent averages and/or baseline cases for groups of

j	
methanol sources and applications that have much internal variation and can be
very sensitive to a broad spectrum of variables.	 These variations and
sensitivities are explored in the following chapters.
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CHAPTER THREE

ENERGY FEEDSTOCK SOURCES FOR METHANOL

itial raw material resources for methanol production were identi-
.^, .....^acterized, and quantified. Resources identified were those within

California or readily accessible to California, and applic;!.ble for methanol
production systems contributing significantly to California ' s liquid fuels
supply. Established and potential conventional. resources (natural gas,
petroleum, petroleum coke, coal, and biomass residues), and unconventional
resources ( heavy petroleum shale oil, and bioenergy crops) were addressed.
The most promising methanol alternatives appear to be those which utilize
coal or natural gas feedstocks at the source, or en route to California.

A.	 INTRODUCTION

The purpose of this subtask was to provide identification and quanti-
fication of the potential energy resources that may be used as feedstocks for
the production of methanol for California, and to provide a tabulation of the
quantities and locations of the energy resources. This display of methanol
resources according to availability is intended to aid in economic, technical,
and policy analysis of alternative end-to-end methanol production systems.

Methanol feedstocks will critically influence the location, production
process, product distribution, and scope of the methanol industry. The feed-
stock resource, in effect, may become the principal determinant of the nature
of the industry. This overview is intended to guide resource considerations
for preliminary feedstock selection; a more focused examination of the
preferred candidate resources follows the selection of preferred options.

1.	 Approach

The study concentrated upon major industrial resource availabil-
ities, distinct from the smaller-scale, regional resources that right support
"neighborhood" production. 	 Although small—scale, local methanol production
facilities may be feasible, the diversity and scattered nature of local
resources defies the scope of the study. 	 Starting with current methanol"
feedstocks, such as natural gas, the study ranged through the likely raw
materials occurring in the state and in areas capable of supplying methanol
feedstocks, with some broad concern for economics. 	 LNG from Africa and from
Saudi Arabia was not considered among the candidates, nor was coal from f^
Colombia or Appalachia; it seemed probable that in addition to unfavorable
transport economies, these resources would be sought by competitive users.;

The description of raw material resources potentially available for
methanol production was based upon the existing literature and a familiarity
with the state ' s geography and its natural resources.	 The study commenced
with a survey of the extensive literature describing the classic processes and
the raw materials adopted elsewhere in the world's methanol industries. }£
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Data and conclusions relative to coal resources were derived from an
active research program conducted by JpL for the U.S. Department of Energy
and dedicated to the definition and design of advanced underground coal min-
ing systems. A significant component of that program enlisted the University
of Kentucky to assess and classify both surface and underground U.S. coals
according to mining conditions. The resulting basin-by-basin study fully
describes the western coals potentially available for methanol production.
Supporting information was obtained from the 1981 Keystone Coal Industry
Manual, other coal resources publications, and discussions with coal company
representatives.

Data concerning California's biomass resources for methanol production
were drawn mostly from information published by the State of California.
Natural gas, petroleum, and unconventional petroleum resource data were taken
from publications issued by the California Oil & Gas Division, Department of
Conservation.

The study screened candidate raw materials for California methanol pro-
duction against a framework of criteria that specified the nature and charac-
teristics of the desirable feedstocks. In this consideration, the influences
of economics and process selection were excluded from the resource considera-
tions, and were purposely left to other chapters of this study.

In order to determine feedstock candidates worthy ok consideration, it
was decided that, as prerequisites, the acceptable methanol raw material can-
didate should:

• Be a carbon-based substance, natural or synthetic, having molecular
chemistry that makes carbon exothermally available to the methanol
molecule simply or with few process steps and, preferably, that
provides hydrogen in association with the available carbon.

• Permit conversion of the raw material feedstock molecules to the
methanol molecules with a significant net gain to energy.

• Be reliably consistent in nature and in chemistry.

• Be regular in supply.

o Be abundant in California or abundantly available to California by
secure means of transportation.

e
In order to display the spectrum of methanol raw material candidates for

consideration in California's evaluation, a classification system was devised.
Two main classes were created to distinguish between "established" and "poten-
tial" resources. The established are taken as those now flowing, or immedi-
ately ready to flow; potentials are those that probably exist in the measures
indicated and have potential if technology and economics permit exploitation.
The established resources can be quantified with reasonable accuracy; the
potentials tend to be hypothetical, and are subject to additions from
discovery, consumption draw--down and recovery limitations.



A principal subgrouping separates each main class into the conventional
resources and the unconventional. Each subgroup thereafter has been divided
into domestic and imported (i.e., outside. California) raw materials.

The following sections of the report provide an overview of California's
resources in order to establish a background against which candidates can be
evaluated as part of a range of options, together with descriptions and
classifications of the potential resources.

B.	 OVERVIEW

An analysis of California's potential methanol raw materials, without
reference to economics, longevity of supply, centralization of resources and
political controls, can view a wide array and generous supply of candidates.
The state has been among the leading producers of crude oil in the United
States, has been a major natural gas supplier, and has a large production of
biomass incidental to crop and forestry harvests. However, the forces that
make methanol production worthy of consideration at this time are also those
forces that have worked to make California an energy importing region; the
state's population and energy demands have increased, its fossil fuel resour-
ces are being depleted, and its energy imports are becoming more costly.
Moreover, the time frame required for a widespread introduction of methanol
for significant substitution implies a continuation of these trends. Accord-
ingly, California's energy future, including methanol production and use
potential, must increasingly rely on non-California feedstocks.

In 1978, the state produced only about one-third of its petroleum con-
sumption. It was part of a pattern that had seen the state's consumptions
grow, productions wane, and resource discoveries diminish. Imports grew to
fill the gap. In 1981, the official estimate of the state's recoverable
petroleum resources stood at about 5 billion barrels. These resources are
being drawn down at the rate of about one million barrels daily by production.

California's domestic natural gas resource declined through. the
1970s. Currently, California has about 4 trillion cubic feet of natural gas
resources. Natural gas consumption in the state is about 4.7 billion cubic
feat/day; 1 billion cubic feet/day is produced in the state, and the rest is
imported. Import supply potentials are very great, and given stimulating
prices, a generous supply to California seems assured during the remainder 	 '€
of this decade.

r

'

	

	 Coal available to California in nearby states is generous. A recently
completed JPL/University of Kentucky study identified a potential 900 billion
tons of bituminous and subbituminous coals in Arizona, New Mexico, Colorado,
and Utah; about one--half of this resource is mineable. This is the "front
tier" of significant coal resources that might support methanol production
for California. Beyond, in a second tier of states, a potential 1.4 trillion
tons,, mostly subbl- ;:,urinous and lignite, occur in North Dakota, Montana, and
Wyoming. Thesiw rerjurce estimates are derived from a geologic interpretation
of the coal-bearing basins of the western United States.

?	 3-3
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Coal occurs in many counties in California as a mineral pnetz-xenon, but
only in five counties as significant deposits. The total resource identified
is 90 million tons, mostly lignite in unfavorable mining environments.

Biomass resoures are significant in California as a result of extensive
agricultural and forestry activities. In bulk, each class of biomass resource
seems great; however, agricultural residues have collection and storage prob-
lems, and are seasonal in nature. In addition, the potential of dedicated
crops that might support a methanol production industry is not significant.
To generate 1,500 tons of feedstock daily (at about 7,000 Btu per pound), the
cultivation of about 30 square miles of land would be required, and economics
may not permit the dedication of land, water, labor and other resources to
biomass production for methanol. However, biomass may emerge as a suitable
candidate for supplying regional or local productions of modest scale, par-
ticularly in areas where the concentration of biomass residues in centralized
facilities already exists. Municipal solid wastes, for example, may well
support modest local methanol productions.

This overview has been prepared as a framework for a classification and
description of the substantial resources.

C.	 DESCRIPTIONS AND CLASSIFICATION OF RESOURCES

`	 To assist the processes of resource evaluation, a classification scheme
was devised.	 Potential methanol resources, according to the classification

`	 scheme, are identified in Table 3-1. 	 The raw materials identified are the
classic feedstocks for methanol production, or are the natural alternatives 5
available in and near the state. 	 All of the selected resources conform to the

i	 requirements established in Chapter 3.

j	 Not all the resource statistics are firm data. 	 The fossil hydrocarbon

!	 estimates, for example, are subject to resource discovery and increased exploi-
tation efficiencies. 	 Others, like some biomass candidates, are summary est-
mates of annual yields, and are considered forecasts dependent upon seasons,

f

weather, crop rotAtion.and the marketplace. 	 Some data describing offshore
candidates, such as tfexico's natural gas resources, are highly uncertain, and
a reasonable .estimate fias been provided.

The description of pot.en.tial diethanol resources has not addressed
economic, transportation and competitive factors. 	 Those influences are	 -a
studied and reported in other parts of this study.

In classifying the resource spectrum, a major subdivision between the
developed and the potential -resources seems useful. 	 The developed are those
flowing, or available to flour -now or in the immediate future-.	 The potential
division incorporates the developed, and adds the resources which can be
identified but are not yet on- stream.	 Thereafter, each of the two principal
divisions branches to two subclasses, the conventional and the unconventional.
These are further divided into .California and imported categories,

n
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1..	 Established and Potential Conventional Resouices

a.	 Domestic Resources (within California)

Natural Gas. The state produces about 20 percent of its
natural gas consumption, drawing principally from onshore resources and adding
from offshore productions (Figure 3-1). The Oil and Gas Division Supervisor's
Report for 1979 records 4.4 trillion cubic feet as the established in-state
resource in December 1979. Assuming no additions through discovery, the
resource was approximately 3.7 Tcf in 1981.

However, it is characteristic of the natural gas production industry
that resources are critically influenced by market price, and the state
resource at any time should be assessed in consort with the ruling price
level. The .tune 1980 Staff Report (CEC) advises that a doubling, of the gas
price, for example, would act to expand greatly the volume of established
resource. In accord, and judging that price increases will follow deregu-
lation, it seems reasonable to indicate California's potential gas resource at
twice its established quantity.

Coal. The state produces no significant quantity of coe1.
Ninety million tons of lignite are scattered through five counties, mostly in
geology discouraging to mining (Figure 3-2).

Petroleum. The state's crude oil production has verged on a
million barrels per day since the 1950s. In December 1979, the known recover-
able resource remaining was estimated at 5 billion barrels. The principal
production locations are Wilmington, Elk Hills, Midway-Sunset, Kern River,
Belridge South, San Ardo, and Huntington Beach. Together, these
fields produced 63 percent of the state total in 1979.

The state's exploration is considered nearly complete, with the impli-
cation that resources will be depleted as production continues. However, a
significant residual volume o;: petroleum lies in all of the reservoirs repre-
senting the majority fraction of identified oil that would not respond to con-
ventional drilling techniques. Extraction efficiency in the state has been
approximately 25 percent of oil in place. Advanced extraction techniques may
increase that efficiency, and methods may be developed to exploit the
residuum; thus. the recoverable resource quantity may be significantly
increased.

r

Agricultural Industry Wastes. In 1979, the A. D. Little
Company examined California's biomass energy potentials in a study for the
California Air Resources Board. Data from the Little study were used in
assessing,bioenergy resources. Wastes from harvested crop processes and
animal dressing are dispersed throughout the state. Generally, they are
subject to decay, are diverse in character, and need some intense preparation
prior to processing. Overall, they aggregate nearly 900 thousand tons/year,
but their potential use in methanol production is discouraged by problems ofs	
collection, preservation and storage.

3-6
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(Source: Ref. 16).

Figure ,3-1. CALIFORNIA OIL AND GAS FIELDS
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Agricultural Field Residues. Rice stalks, corn stalks and
other crop wastes are produced at an annual weight of about 8,600,000 tons.
However, high moisture content, contaminants and the dispersed nature of much
of this resource suggest that as little as 1,000,000 tons (about '15 TBtu)
annually mightbe usable. These resources, however, are dispersed in location
and seasonal in occurrence.

Dairy Feed Lot and Poultry Wastes. As a collected resource,
these manures amount to about 3,500,000 tons in California every year. About
47 percent of these wastes is returned to the soil, and 28 percent is marketed
for other purposes. A. D. Little's study determined that in only three areas
of the state would there be concentrations of industrial significance.

Municipal Solid Wastes. The total annual production of MSW in
California approaches 19 million tons. A. D. Little .reported that 31 of
California's 58 counties each produce less than 200 tons per day. Eight
counties with concentrated populations each produce 1500 tons or more daily,
and in aggregate, about 13 million tons annually. If 70 percent of that mass
were collected, with its 61 percent combustibles (4800 Btu per pound), and
were converted in processing with 60 percent efficiency, about 50 trillion Btu
would be realized.

Forestry Wastes. Slash, toppings, limbs and brush constitute
the work site residues from logging. Sawdust, bark, offcuts, trim and shav-
ings are the wood wastes from milling. The former has traditionally been left
to enrich the forest soil; the latter has usually been disposed of in waste
burners or boilers. Presently, much of the mill waste is used in particle-
board processing.

Approximately 4,615,000 tons/year are wasted in California's forests,
and 5,068,000 tons/year in mills. One-third of the forest wastes might be
collected and that value salvaged. However, competition exists, and will
probably increase, for the milling coproductions.

b.	 Imported Resources

i'

	

	 Natural Gas. California imports gas from the southwestern
states, the Rocky Mountain states, Canada and Mexico via pipelines. The
resources upon which these supplies depend are indefinite because they expand 	 1

with discovery and in response to price. Much of the data is proprietary. A
California Energy Commission Staff Report (1980) advises that the state's

y

	

	 needs can be met for the next 100 years at gas pricing of $3/Mcf (at the time	 j
of this study, market price was in the neighborhood of $2.20/Mcf). Beyond
that time frame, an extended supply life will vary with pricing and technology u

i	 improvements.

t
The Canadian and Mexican gas resources are not fully explored. For the 	

r
purposes of this report, we have assumed that the present rate of supply from

i
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Canada to California will be available for the next 80 years. It has also
been assumed that Mexico ' s gas supply to the state will increase from 100 Bcf
to 600 Bcf/year and will hold that pattern for 100 years.

Potentially, even more important than the extent of natural gas reserves
within the state are remote gas deposits on the Pacific rim which could be
converted to methanol and shipped to California ports. There are a number of
rationales why such gas could be used as a methanol feedstock and supplied at
prices well below that for pipeline gas.

There are a number of developing countries with significant gas re-
sources on the Pacific rim, including Mexico, Indonesia, Colombia, Ecuador,
Chile, Peru, Bolivia, China, and Malaysia. In addition, of course, there are
significant natural gas reserves in Alaska which should be.distinguished
between north slope and southern resources. The key to utilizing these
resources for methanol production are:

(1) Countries with large gas reserves and small existing and potential
domestic gas markets.

(2) Countries with significant gas reserves but without means to
establish pipelines and other infrastructure to utilize the gas
directly.

(3) Undeveloped countries with need for foreign exchange who will make
decisions on whether to sell remote gas to methanol producers or
LNG conversion strictly on the basis of greatest return.

The available information on gas reserves, production rates, consumption in
these Pacific rim areas is summarized in Table 3-2.

I

^	
s

In addition to the reserve base, we have made a quick analysis of what
limits exist on methanol production from these gas resources. The first
implication of this table is that there are large quantities of natural gas
(most of it associated) being reinjected, flared or exported (approximately
1,325 trillion Btu/year, not counting Alaska). For estimating the limits from
these sources, it is important to note that we are not predicting in any way
that this gas will be or is economically justified to be converted to methanol.
The intent is to see how far the resource base in non-pipeline gas could carry
the transition to fuel-based methanol in the most optimistic case that methanol
is the most attractive option for utilizing these gas reserves. Thus, the
intent is to derive physical rather than economic limits on the resource base. 	 r

Given these qualifiers, the results on the far right-hand side of Table
3-2 show that there j.s a significant potential for methanol production from
natural gas in the next 15 years. Using the quantity of natural gas currently
reinjected or flared in Pacific rim countries (excluding the U.S. and Alaska)
would support over 20 full-scale (3,000 tpd) methanol production plants, or
about 6.6 billion gallons per year. In addition. the resource base is
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Another simple way to bound the potential methanol production limit is
to assume that the current proportion of natural gas flared, injected, or
exported will diminish over time as internal demands increase. As an example,
we have assumed that internal consumption doubles and that the remaining
resource is available for export as methanol or LNG. The product limit
measured this way is larger; about 44 plants* and over 14 billion gallons of
annual production could be sustained for 20 years. Of course, in reality such
plants would be built sequentially rather than all at once. Thus, on a
resource limit basis there are adequate resources to sustain the building and
operation of one 3,000 tpd methanol plant each year for 20 to 40 years and
supply them with feedstock in the Pacific rim. The transition period
implications of these resource limits are dealt with in Section V of the
summary report, entitled "The Transition Period." On the basis of what has
been learned, it is clear that low opportunity cost gas could provide
sufficient feedstock to begin a methanol transition. On the other hand, there
is clearly not sufficient resource to supply a large proportion of the U.S.
fuel market. Thus, our evaluation confirms the conventional wisdom that
remote gas is a transition fuel for methanol, and it is of sufficient quantity
to sustain west coast markets through the remainder of this century at any
realistic neat methanol vehicle penetration rate.

Syngas (SNG). SNG, derived from coal and produced at mine
mouth or in California from imported resources, offers a very large downstream
option for gas supplier and user. The technology of this resource supply is
not yet in place.

Liquid Natural Gas (LNG). LNG is an essential resource in the
world marketplace, but is not yet available in California because of con-
straints surrounding delivery arrangements.

g
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Coal. Kaiser Steel Corporation's operation at Fontana,
California, imports coking coals from Utah and New Mexico at a rate of about 2
million tons/year. This established traffic draws upon captive mines that are
located among resources estimated at 631 billion tons (JPL estimate). About
one-.half of that resource estimate is considered exploitable with today's
mining technology. These coal resources are partly bituminous (typically 24
million Btu per ton) and partly subbLtuminous (typically 19 million Btu per
-ton), with sulfur and ash in the low range.

Western coal resources in the states of Arizona, New Mexico, Utah,
Colorado, Wyoming and Montana, as well as Alaskan resources may constitute a
vast potential feedstock for methanol production. A recent JPLIUniversity of
Kentucky study has indicated that the Rocky Mountain Province may have over
2000 billion tons of coal reserves. Table 3-3 illustrates the characteristics
of these reserves.

If Alaska's south slope resources are added at 50 percent dedication to
methanol, three plants and 800 million gallons annually could be added, and
the north slope has the potential for 8 billion gallons per yearif 30
percent of the resource base were converted to methanol.

i
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Table 3-3. ROCKY MOUNTAIN PROVINCE C©A:LS*

1) Remaining
less than

0-500 ft.

190

2) Remaining

50 ft.

19

resources in beds not faulted or in
15 degrees, by depth of cover:

500-2000 ft.	 2000-4000 ft.

	

428	 630

resources under 2000 feet of cover,

	

50-15 ft.	 15'-42"	 42"-28"

81	 375	 72

truded and dipping

	

4000 ft.	 Total

832	 2080

by seam thickness:

	

28' 1 - 14" 	Total

71	 618

*All figures in b,llionJ of tons.

This report concentrates on seven coal regions containing significant
resources that could support potential methanol ;production for California
(Figure 3-3). These regions are:

(1) Arizona (Black Mesa)

(2) Southern Utah (Kainarowi.ts, Kolob-Alton, Heart' Mountains)

(3) New Mexico-Colorado (San Juan)
d

(4) Central Utal-Colorado (Piceance, Uinta, Wasatch, Emery)

(5) Wyoming-Colorado (Green River, Yampa)

(6) Wyoming-Montana (Powder River Basin)

(7) Alaska (Beluga, Susitna, Kenai)

The characteristics of these individual regions, including potential
F̀

	

	 constraints on resource availability, are discussed below. Potential coal 	 `-
resources and coal duality data for the six regions, compiled for the JPL coal
resources study, are summarized in Table 5-4-.

j

Arizona (Black Mesa). According to the :1981 Keystone Coal
Industry Ma:ival, the Black Mesa area has 2100 million tons of reserves, mostly
0-1700 feet from the surface. Strippable reserves are estimated to be 980.
million tons, mostly within 0-130 feet of the surface. The coal resources 	 if
study by JPL/University of Kentucky has indicated that the Black Mesa region
may have a potential 50 billion tons of resources buried under less than 2000
feet of cover. Most of the coal seams are 42-inches to 15-feet thick.

i
e.
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The Black Mesa coal region is totally within the jurisdiction of the
Navajo and Hopi tribes. Currently, Peabody Coal has lease agreements with the
Indians for 64,858 acres. Peabody operates two coal mines in the Black Mesa
area; almost all of the coal produced is supplied to electric power generating
plants.under long-term contracts. Coal from the Kayenta Mine is shipped via
electric rail to the Navajo generating plant in Page, Arizona. Coal from the
Black Mesa mine is transported via slurry pipeline to the Mohave generating
plant in Nevada. Coal from these two mines has approximately 10,700-10,800
Btu/lb, 4.3 percent ash, and 0.46-0.49 percent sulfur.

The possibility exists of a third mine opening in the Black Mesa region,
making more coal available in tbs near future; however, final say on exploi-
tation of coal resources in this area rests with the Navajo and Hopi tribes.
Coal transportation from this region is only via private rail and slurry
pipeline.

Southern Utah (Kaiparowits, Kolob-Alton, Henry Mountains).
These coal fields have bituminous coal resources, somewhat higher in sulfur
than most western coals, that are largely undeveloped. The JPL/University of
Kentucky study indicates that there may be approximately 60.7 billion tons of
resources in these coal fields. The largest coal field, the Kaiparowits, may
have over 30 billion tons of potential resources with relatively low sulfur
and ash contents; the Henry Mountains field has about 1.4 billion tons of
potential resources of similar quality. The Kolob-Alton fields have about 15
billion tons of coal that are relatively high in sulfur and ash. Data from
the JPL study for these coal fields are summarized in Table 3-4.

The Kaiparowits coal field, which is currently undeveloped, contains
over 30 percent of Utah's coal resources. The JPL study indicates that there
are about 44.2 million tons of resources in this field; the U.S. Geological
Survey has estimated that there is a potential 30 billion toms. Some of the
utility-owned coal reserves in this area, originally intended for the cancelled
Kaiparowits power plant, may be used in a planned coal gasification project.
In addition, a 400 MW power plant maybe planned for the area.

In the Kolob-Alton fields, there are no mines currently operating.
Keystone estimates that the Alton coal field may have 200-400 million tons
of strippable reserves. Much of the Alton coal is under less than 60 feet
of overbarde +n, much of which is soft and will not need to be blasted. Over
28,000 _acres with coal rights are currently held as federal leases by Utah
International and Nevada Power. In addition, a planned power plant near St.
George, Utah, will probably use coal resources from this area. The Kolob coal
field has coal that is of relatively poor quality (high ash and sulfur
contents).

According to the JPL study, the Henry Mountains coal field has a poten-
tial 1.4 billion tons of reserves. Keystone estimates that the area has 340
million tons of coal in place at depths of 1400 feet or less, in beds more
than 4-feet thick. Most of the valuable coal land in this area is held by
Amax Coal Co., but there are currently no operating mines in the Henry Moun-
tains field. Plans for the Intermountain Power Project may involve use of
Henry Mountains coal.



These coal fields are located mainly on federal and state land. Several
environmentally sensitive areas (Zion National Park, Cedar Breaks National
Monument, Bryce Canyon National Park, and Capitol Reef National Monument) are
in the region and may impede development of these coal fields. Other con-
straints on development include remoteness, rugged topography, and lack of
railroad spurs.

New Mexico-Colorado (San Juan). The San Juan coal basin in
northwestern New Mexico and southern Colorado contains a potential 180 billion
tons of resources, according to the JPL study. Over one-half of this tonnage
is in seams 42-inches to 15-feet thick, and under less than 2000 feet of
overburden. These subbituminous coals are low in sulfur, but moisture and ash
vary widely. Characteristics of the San Juan coals as defined by the JPL
study are shown in-Table 3-4.

According to Keystone, the San Juan Basin contains 6.5 billion tons of
strippable reserves. Companies owning reserves in the San Juan area include
Utah International, Consol, E1 Paso Natural Gas Co., Pittsburgh & Midway, and
others. The best-known and best-developed coal field within the San Juan
Basin is the Navajo Field, within the Navajo Indian reservation. Coal mined
from Utah International's Navajo and San Juan mines, which ranges from 8600-
9200 Btu/lb, is all committed to the Four Corners utility and transported
there via a short railroad line that runs from the mine to the utility.

Much of the land in this area is owed by Indian tribes. The rest is
owned by the federal government, the state, railroads, and other private
industries. Access by :rail is currently a problem for many of the coal
regions within the San 'Juan Basin; new railroad spurs are needed for other
markets.

Central Utah-Colorado (Emery, Wasatch, Uinta, Piceance)_. This
area has predominantly bituminous, low-sulfur coals, with high heating values
(11,000 - 14,380 Btu/lb). According to the JPL study, this area has a poten-
tip .;. asource total of 335.3 billion tons; about 62.8 billion tons are in
seams thicker than 42 inches, under less than 2000 feet of overburden. The
Emery field is the smallest, with potential resources of 20 billion tons. The
Wasatch field, adjoining the Emery field to the north, has a larger amount of
resources characterized by much greater coal thicknesses (some resources occur
in beds thicker than 15 feet). The Uinta Basin has coals of similar quality,
but the total coal thickness is substantially less. The Piceance Basin
directly to the east of the Uinta Basin has large amounts of coal resources
mostly concentrated in seams thicker than 42 inches. A large proportion of
the coal in these four areas occurs at depths greater than 2000 feet. The
characteristics of these Goals as defined in the JPL study as shown in
Table 3-4.

According to Keystone (1981), the small Emery field has 630-900 million
tons of coal considered recoverable; 140 million tons of this coal may be
recovered by surface mining. This field may eventually supply coal for the
Intermountain Power Project (planned to be on-line by 1986), but no railroad

i
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{serves the field at present. The Wasatch area, with 14 currently active mines,
has a potential resource of 10.2 billion tans in seams; greater thaw 4-feet.
thick, under 3000 feet or leas of overburden. The JPL eativ ►mates are much
higher. Constraints on mining this retource include thick overburden,, fault-
ing, and water problems. Presently, the northern part of the Vasatc.,,a area. is
served by three rail spur lines; southern area producers must truck coal. The
Piceance and Uinta areas together have large amounts of resources; much of the
coal currently mined is coking coals from underground mines.

Lands in this area underlain by coal are mainly federal, state, and
privately owned. The Uinta-Piceance areas also have vast oil shale resources
on federal lands, and potential conflicts may arise concerning leasing for-
coal/oil shale resource extraction. Competition for scarce water supplies may
also be a constraint. In addition, many coal resources in this area are
high-quality or coking-quality coals, deeply buried and faulted. Transpor-
tation problems exist in this region, because many areas are not served by
rail spurs, and much of the existing trackage is not adequate for heavy unit
trains.

Wyoming-Colorado (Green River, Yampa). According to the JPL
study, the Green River Basin of southwestern Wyoming and northwestern Colorado
has a potential 800 billion tons of reserves of mostly subbituminous coals,
ranging from 8000-12,000 Btu/lb, with ash and sulfur percentages similar to
other Central Rocky Mountain Province coals. Most of the coal is in seams
greater than 42-inches thick, but much of the resource is buried under more
than 4000 feet of overburden. Characteristics of the Green River Basin coals,
from the JPL study, are given in Table 3-4.

Keystone (1981) and the U.S. Bureau of Mines estimates that there may be
2.9-3.6 billion tons of strippable coal in the Green River Basin area of
Wyoming and Colorado. Presently, about 37 percent of Colorado and Wyoming's
coal production comes from this area. There are 20 active mines in this area;
15 percent of them are surface mines, which produce 98 percent of the region's
coal. Most of the coal is used for electric power generation in Colorado,
Wyoming and other states.

Most. of the land in this area is federal land, administered by the Bureau
of Land Management and the U.S. Forest Service. Parcels of state and private
land occur within the federal land. Some of the coal areas are located near
Rocky Mountain National Park and other wilderness areas, preservation areas,
national wildlife refuges, national monuments, and state recreation areas and
parks. Large areas of strippable coal deposits are located near existing
railroad facilities.

Montana-Wyoming (Powder River Basin). The Powder River Basin
contains 30 percent of the resources of the entire Rocky Mountain Province.
The JPL coal resources study indicates that the area may have as much as 570
billion tons of coal resources. About 40 percent of these resources lie
within 2000 feet of the surface; one-third are in seams greater than 15 -feet
thick. Powder River Basin coals generally have low ash and sulfur contents.
Table 3-4 presents JPL study results on the Powder River coals.

J
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According to Keystone (1981), the Powder River Basin has nearly 23
billion tons of strippable reserves. 	 The U.S. Bureau of Mines estimates that
there are about 31 billion tons of strippable reserves; individual atate esti-
mates are as high as 47 billion tons. 	 The area is known for strippable "super-
beds" of coals 50- to 250-feet thick under less than 300 feet of overburden.
Most of the current and planned activity in the Powder River Basin is in the
northern and eastern parts.	 Many private companies and utilities operate ?si
strip mines and own reserves in the Powder River Basin. 	 The coal is primarily
used for electric power generation in Wyoming, Montana, and about a dozen "4
midwestern power plant6.

The federal government administers about 25 percent of the land in the
Powder River Basin; of this land, one-quarter is owned by Indian tribes. 	 Six {
percent of the land is state-owned and the remainder is private land.: tg:

S	 .i

Many strippable deposits are located near existing rail facilities mith
access to the Pacific Northwest and the Midwest, but the area is somewhat
remote from California.

^f

-	 Reclamation.	 A ma .'or potential constraint on exploitation of rr
all the western coal fields is thp,: requirement for reclamation or surface-
mined land.	 Most state laws requzl'e that the land must at least be reclaimed
to a condition capable of supporting its existing use prior to mining.
Reclamation activities are monitored by the states and the U.S. Office of
Surface Mining (OSM) in the Department of the Interior; reclamation on Indian a
lands is under the jurisdiction of the OSM and the individual Indian tribes.

:f

Returning the land to its previous use is difficult in the semiarid
and arid West.	 Land uses in the Rocky Mountain Province coal-bearing areas f
include cattle and sheep ranching, dryland farm tig., some irrigated farming,
and forestry, depending on elevation and rainfall. 	 Large tracts are covered
by vegetation communities including sagebrush scrub, prairie andgrassland,
and pine forest.	 In some areas, irrigation may be necessary during the first
year of reclamation to revegetate surface-mined areas with vegetation compa-
rable to what existed prior to mining.	 Some areas of higher elevation, such
as Black Mesa in Arizona.; may not need irrigation for reclamation. 	 Some of
the strippable areas in the Green River and Powder Riven Basins may also have
sufficient rainfall to ensure reclamation success. 	 Both surface and ground
water resources need to be evaluated in the water-scarce areas before mining
is planned.

1

The generally poor soils of the Rocky Mountain Province tend to compound
reclamation and revegetation problems.	 Soil horizons are poorly developed, 'a

humus content is low, and sufficient topsoil for revegetation is often
absent.	 Erosion rates tend to be high. ^A

Reclamation costs in the Rocky Mountain Province coal-bearing areas
average about $3000/acre.	 Areas with poorer soils and extremely low rainfall j
may have much higher reclamation costs, or reclamation may not be passible at
all.
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Alaska (Beluga). According to a recent study* of the Depart-
G	 ment of Natural Resources, the State of Alaska has coal resources of 1.4

billion short tons of "measured" resources, 1101.7 billion short tons of
"indicated and inferred" resources, and "hypothetical" resources of 1774
billion short tons. A large proportion of these resources are located in
northern Alaska in the NPRA. In the southern area, the coal fields around
Cook Inlet (Beluga, Susitna, Kenai) are particularly interesting as potential
sources of coal for methanol conversion to California. The coals in these
fields are mostly subbituminous with approximately 9500 Btu/pound. In
addition, they are mostly low-sulfur coals which can be surfaced mined.

The state of Alaska estimates that "indicated and inferred resources" in
the Beluga;, Kenai and Susitna fields at about 10.5 billion short tons. Since
a 5000 ton-per-day methanol plant would require about,6 million tons per year
of feedstock, there is ample coal in the Cook Inlet region to support a number
of methanol conversion plants. Much of this coal is located within 25 miles
of the coast, which would reduce transportation cost by rail to terminal
facilities for shipment to California by tanker.

.In northern Alaska, the resource base is much larger with a much higher
proportion of bituminous coals. The "measured" resources alone in this area
are nearly 500 million tons, while the "indicated and referred" resources are
over 200 billion tons.; Thus, the Alaska resource is very large compared to
near-term and mid-term demand for methanol which could utilize this feeds`•ock.
In the near-term, the most likely area for development is the Beluga field
which, with low opportunity cost for the coal, the potential for inexpensive
tanker transport for methanol, and possible SFC support, is the most likely
coal.-to-methanol concept which would affect California methanol markets
directly.

Crude Oil. The state currently imports by tanker vessel about
270 million barrels of crude from Alaska's North Slope production via Valdez.
A fraction of the state's annual crude stocks comes from Indonesia, whose
sweet crude goes to specialty products. Other imports represent transfers,
mostly from the Gulf Coast, to balance product streams.

2. Established and Potential Unconventional Resources

ii

Y

r

u

i
a

r

^E
i
^t

a.	 Abandoned Reservoir Crude. About 66 billion barrels of crude
oil unavailable for extraction by conventional technology exist in California's
reservoirs. This figure represents that component of the original resource
which would not respond to conventional drilling techniques. Its volume
approaches 74 percent of the original, in-place resource measurement, or about
thrice the total volume produced. This very large potential resource may	

y

become exploitable by advanced procedures. Presently, this resource is 	 z
unconventional, but known and measured. 	 a

r	 W

* McGee, D. L., and Emmel, K. S., Alaska Coal Resources, State of Alaska,
Alaska Department of Natural Resources, April 1979.

a
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b. Heavy Oil in Rock. Widely scattered in California, mostly in
the coast ranger, is a series of rock occurrences bearing concentrations of
beavy oil fractions. These appear to be exposed reservoir members from which
, he volatile hydrocarbons have fled. Several outcrops are very extensive. A
ae,w have been investigated, while others are not well known. The McKittrick
diatomite, for example, in its exposure along the Kern River, is well explored
where it outcrops updip from a major heavy oil reservoir. This singular occur-
•_P;nce offers a mineable hydrocarbon resour-e with recoverable crude estimated
at 800 million barrels. Other significa,,t oil-rock resources occur at Santa
Susanna, Edna, San Ardo, Casmalia and Po.Int Arena. Established reserves are
esti,_tated at 1,850 million barrels; potential reserves are estimated at 4,000
million barrels.

These resources appear amenable to surface mining techniques. Proces-
sing to extract crude may tend to be resource-specific, as this genre of oil
host rock exhibits varying characteristics; some may present separation
difficulty..

C6 Kerogen and Kerogen Derivatives. Exploitation of the exten-
sive kerogen-rich marlstones of the Piceance Basin in northwestern Colorado
and those of the Unita Basin in northeastern Utah has been sought and planned
since the 1920s. Development of this resource potential now appears imminent,
and pilot mining and processing programs are in progress. Large-scale produc-
tion is still to be realized, and until such facilities are on-stream,
California can only consider kerogen or its syncrude as another potential
resource.

The order of that potential is between 400 and 600 billion barrels in
place as a national resource based upon criteria of formations at least 15-
feet thick and containing at least 25 gallons of kerogen per ton. Exploi-
tation by conventional mining practices would degrade that potential
seriously. Unconventional procedures are being tested.

With few exceptions, development activities in the 'bit shale" basins
are being conducted by the major U.S. petroleum producing corporations.

d. Biomass. Unconventional biomass resources are those of more
or less ordinary character cultivated and dedicted to unconventional purposes.,
in this case methanol feedstock probably derived by pyrolysis or anaerobic
activity. Several potential resources are sugar cane, short rotation tree
crops, eucalyptus, desert plants, and marine kelp.: In some circumstances,
one or more of these potential resources may merit in-depth investigation,

but land, irrigation, and preprocess handlingrequirements may discourage
first-place consideration.

D.	 CONCLUSIONS

California offers a varied, favorably distributed and generous selection
of raw material candidates for methanol production. 'There are choices avail-

w
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able. between domestic and imported, plant and mineral, and dedicated and co-
product supplies,

As would be expected, the flow crossroads of the imported Yaw materials
tend to coincide with the population centers. The agricultural, and silvi-
cultural, resources tend to cluster in areas which are less well served by
transportation networks.

The diversity of the potential raw material supplies For a methanol 	 k

industry dedicated to California's fuel needs makes production location a
component of the industrial decisions to be studied. The potential long-term
and reliable raw material candidates lie out of state. Some are currently
being imported; others may be available for import to the state. Tile domestic
resources are either short lived or less consistent in makeup than are the,
coal, gas and petroleum supplies situated outside California. Methanol pro-
duction from coal or naturra Sas at the source, or en route to California for
transport to the staate, emerges as the most promising methanol alternative
from the perspective: of potential exploitable resources.
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CHAPTER FOUR

METHANOL AND OTHER SXNFUELS;
PRODUCTION OPTIONS AND COSTS*

A. INTRODUCTION

a

In this chapter, an .attempt is made to characterize the pertinent process
technologies, calculate production costs, perform sensitivities, and compare
the alternatives for methanol and other synfuels. It is important to acknowl-
edge that the cost estimates used in this chapter are based on existing pub-
lished sources; JPL has not performed any detailed engineering cost estimates
for the study For methanol production alternatives we have compiled a 	 =	 '
fairly comprehensive set of recent estimates, compared them, attempted to
resolve inconsistencies through discussions with some of the project sponsors,
and presented our findings based on a consistent set of financial and
technical parameters.	 For competing synfuel alternatives, we have not made as
detailed an evaluation, but we have taken public documents and imposed a
consistent set of financial parameters as in our methanol production cost k	 3
analysis.	 Given the tremendous uncertainties involved in the estimation of
costs for these large-scale projects, it is important to maintain the perspec-
tive that point estimates of cos y, for any plant which is undemonstrated

_	 commercially are unreliable.	 In this report an attempt has been made to apply
contingencies of appropriate levels to technologies at different stages of
development to help generate more meaningful estimates. 	 We have also per-
formed numerous cost sensitivities to important cost drivers to generate a
range of product costs associated with alternative systems. 	 More important, -
however, than these these mechanical procedures, we have based our conclusions
on the premise that absolute decisions cannot be made on the basis of small
differences in estimated production costs for alternative synfuels at this
point in time.	 As a result of our evaluation, however, we do feel that some
options tend to dominate others under any reasonable set of assumptions.
Thus, firm conclusions can be drawn about 	 few of the relative options and
they will be identified and discussed.

The organization of this section of the report is to identify and
characterize the alternative methanol production technologies, discuss their_
status, and project their investment and operating costs. 	 A similar analysis k
is then done for the competing synfuels which would be alternatives to methanol
in various applications. 	 Finally, an evaluation is performed of the production
economics of all the options on a consistent basis, and sensitivities are
performed,

B.	 METHANOL PRODUCTION TECHNOLOGIES

The production technologies of relevance to methanol production for
California applications are influenced by the resource base which would supply t
feedstocks.	 In our analysis we have considered Western coal, Alaskan coal,

z

=	 * All cost or price figures in this or subsequent chapters are in 1981 dollars
unless explicitly stated otherwise.
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remote natural gas, petroleum coke, and biomass as potential feedstocks.* Each
of these options is discussed below.

1.	 Western Coal-to-Methanol Plants

The basic process for converting coal to methanol is to gasify the
coal, producing a synthesis gas which is then synthesized into methanol through
different processes. The existing (first generation) technologies to perform
this gasification process are the the Lurgi Dry Bottom, Winkler, and Koppers-
Totzek technologies. Of these, the Lurgi Dry Bottom is probably the most
thoroughly commercially proven approach. For methanol synthesis there are two
commercial technologies: ICI and Lurgi. Major improvements in gasification
technology are under development including the following technologies: Texaco
Partial Oxidation, Shell Koppers Entrained Bed, Lurgi moving bed slagging
gasifier and the Winkler fluidized bed gasifier.

a.	 Capital Cost Overview. In examining coal-to-methanol produc-
tion costs, we attempted to obtain sufficient recent estimates so that the
various sources could be checked against one another. Three basic sources of
data were evaluated: (1) plant cost estimates provided to JPL by sponsors
of the study,** (2) published cost estimates funded by the Department of
Energy,*** and (3) c yst estimates on plant concepts which are currently in the
planning stages by companies other than sponsors of this study.**** These
estimates are shown in Table 4-1, where adjustments have already been made to
put all dollar values in 1981 terms, place contingencies on a consistent (15%)
basis, use a plant utilization factor of 90 percent, and combine account

See Chapter 3 for a detailed discussion.

** Estimates were obtained from three of the energy production companies
involved in our study. This data is not public information and we cannot
cite the specific sources, except to indicate that the plant cost
estimate used for the basic reference case (Texaco Partial Oxidation
gasification technology for 5000 tons-per-day of methanol output in 1992)
is JPL's synthesis of these three industry sources.

** Recently, Oak Ridge National Laboratory has completed work on a two-phase
study for the Department of Energy: Phase I, "Indirect Liquefaction of
Coal-To-Methanol and Gasoline Using Available Technology" and Phase II
(available only in draft form) "Indirect Liquefaction of Coal-To-Gasoline
Using Texaco and Koppers-Totzek Gasifiers." These two in-depth studies
were used to check the accuracy of our industry estimates.

i

T

k

3e

*** Two other estimates were obtained on actual projects which are in the
planning stages for near-term construction and implementation. The first'
project was a detailed cost estimate of the Hampshire project published

E	 in Synfuels on September 24, 1982. The second project involves an
F

	

	 industry source not among this study's sponsors which asked not to be	 j

identified in the report, thus we have made some slight modifications to
i	 the project scale and description, but have retained the basic	 j

r	 information content of the cost estimate.
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Table 4-1. CAPITAL COST ESTIMATES: COAL TO METHANOL (millions 1981$)

SOURCE:

PLANT COST ESTIMATES

JPLa JPLb JPLc ORNLd ORNLd HAMPSHIREe
GASIFICATION TECHNOLOGY; TCGP Lurgi Winkler Lurgi Lurgi Lurgi

COAL SOURCE: West West Alaska East Fast West
PLANT SITE; Minemouth Developed Hinemouth Developed Developed Minemouth

OUTPUT;	 McOH (106 gal/yr) 498 242 746 693 1091
SNG (104 Btu/day) - 59 - 145 37

GASOLINE (106 gal/yr) - -- - - - 277
DIRECT FIELD COST

Coal Preparation $62 $57 $ 142 $152 $159 $65
Air Separation 145 71 121 113 174 163

Gasification 268 105 226 139 139 206

Gas Processing 63 20 -29 48 52 62

Acid Gas Removal 114 55 74 92 117 96

Gas Separation - 46 - 53 31 -
Methanol Synthesis 92 71 14U 150 206 77
Retorming 6 Compression - 38 49 - 12 -
Emission Control 62 24 15 79 88 61

Steam S Power 150 175 205 252 264 61
Product Storage 24 17 24 28 56 32

Utilities 66 102 110 162 168 109

Offsites 145 85 488 99 113 255
CO2 Drying 6 Compression 43 34 - - - -

Methanol Conversion - - - - - 79
Purge Gas Methanation - - - 29 8 1

Contingency * * 243 306 349
SUBTOTAL $1191 T900 $1906 $1702 $1936 $1221

INDIRECT FIELD COST - - - 629 714 270

Wo`_kcamp - - 108 ** ** 90
Engineering 119 106 144 ** ** 207

Owner Admin. b ngr. 39 35 - ** ** 213

TOTAL INSTALLED PLANT $1349 $1041 $2158 $2331 $2650 $2001

INDIRECT CAPITAL COST
Start-up S Training 101 38 131 122 138 74

Land 3 2 3 - -
Working Capital 68 56 121 130 143 19

Paid-up Royalties 7 6 10 13 29 ***
Initial Catalysts 6 Chem. 7 6 20 ** ** ***
TOTAL CAPITAL REQUIREMENT $1535 $1149 $2443 $2596 $2960 $2094

a	 Derived from data obtained from this study's sponsors.
b	 Do-rived from data obtained from this study's sponsors.
c	 Derived from data obtained from Placer Amex.
d	 Derived from data contained in Liquefaction Technology Assessment - Phase if 	 Indirect.

Liquefaction of Coal-to-Methanol and Gasoline Using Available Technology, Oak Ridge National
Lab, ORNL-5664, February 1981.

e	 Synfuels, "Hampshire Projects 7.8 percent Real Return on Syn-Gavoline Project," September 24,
198 2,	 p 3.

*Contingency included in direct field cost subsystems.
**No breakdown of indirect field cost available,
***No cost given for these categories.	 As an estimate paid-up-royalties and initial catalysts and

chemicals would be approximately $8 million each.

i
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categories into a consistent framework. In spite of the above adjustments,

the basic data in Table 4-1 are not readily comparable. Differences exist
between the estimates resulting from differences in process technology, plant
location, coal characteristics, plant scale and product slate. In addition,
there are some differences in procedures in the basic cost estimates for
identifying the allocation of direct versus indirect field costs. We have not
attempted to correct for any changes in this latter type of costing procedure.
As a result, the comparison which we will make is at the total capital
requirement level, which subsumes these allocation problems between direct and
indirect costs.

In order to make meaningful comparisons between these plant estimates,
corrections must be made for plant scale, plant location and output slate.
These factors are important influences on plant capital cost. First, with
regard to scaling we have analyzed in Sections B.l.c and E.3 various factors
to be considered in scaling-up coal-to-methanol. plants. Our judgement is that
a conservative scaling factor would be 0.65 up to 4000 tons-per-day (tpd) and
then 0.83 for plants larger than 4000 tpd. Thus, in Table 4-2 we have used
these values for adjusting plant scales. A secon i adjustment was made for the
site of the plant construction. In discussions with Chevron, Conoco, ARCO and
Fluor, it was suggested that in the absence of a plant designed and costed for
a specific site, it is essential to at least correct for cost differences
usii.,g "location factors" which represent a broad adjustment for the difficulty
of building plants in more remote locations. AV,; ough the specific location
factors of the companies cited based on their owu experience varied somewhat,
a representative set of factors is shown in Se_,tlon B.l.c of this chapter.
Using these location factors, we have adjuk d <„lstern (Illinois) sites to
western (mine-mouth) sites using a 14.3 perQL.nt increase and would expect a
Cook Inlet site to be approximately 16.7 percent higher than a Western mine-
mouth site. Obviously, the site conditions at an actual plant site would
affect these figures considerably, but actual experience has shown that these
adjustments are reasonable averages for the locations in question. Finally,
some adjustment must be made to the product outputs of the estimates in Table
4-1 to normalize for the mix of products produced. This normalization has
been done by taking the relative values of the products in question and
converting into "methanol value” equivalent. For example, some of the plants
in question produce significant quantities of SNG and LPG along with either
methanol or gasoline. Since energy content does not adequately represent* the,

Table 4-2. RELATIVE WHOLESALE PRODUCT VALUES IN 1992
TO WHOLESALE GASOLINE '(1981$/106Btu)

In the case where a plant produces both gasoline and SNG, for example, the 	 A

mix of these two products significantly affect the value of the output since'
the ,plant-gate price of SNG is forecast to be only 59 percent of the
wholesale gasoline price in 1990.
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output of a plant with joint products, a gasoline-equivalent value has been
computed. Consistent with the DRI forecast for 1992, the following relative
plant-gate values in Table 4-2 have been used for product normalization. This
particular normalization is for use of methanol as a transportation fuel in an
optimized neat methanol vehicle (which may achieve a 15% efficiency gain over
gasoline on a Btu basis). Clearly, if methanol were considered as a utility
fuel the relative price corresponding to distillate or residual oil would be
appropriate. In this case the main function is to achieve consistency, which
makes this choice somewhat arbitrary.

The results of these attempto at making a consistent comparison are
shown in Table 4-3 on the basis of the total capital requirement in 1981
dollars per annual gallon of methanol capacity. In the first row of the table
there are no area or scale adjustments, thus only the product outputs have
been normalized according to the relative values in Table 4-2.

The differences in total capital requirements per annual gallon of
methanol capacity appear fairly significant in the baseline case, ranging from
$3.27 for the Winkler plant in Alaska to $2.32/annual gallon for the Lurgi
plant in southern Illinois. The JPL baseline case for the TCGP process at a
Western mine-mouth site is $3.09 per annual gallon at a plant scale of 5000
tons-per-day or 498 million gallons-per-year. The methanol plants not coast
estimated at Western mine-mouth sites in the baselir- ►e case are adjusted in the
second row of Table 4-3 using the independently derived area adjustment
factors in Section B.l.c of this chapter. The net effect of this change is to
raise the estimated cost of all non-mine-mouth plants approximately 14 percent
to account for the difficulty of moving men and machinery to remote sites,
loss of labor productivity in difficult environments, and added infrastructure
costs in relatively undeveloped locations.

In the third row of Table 4-3 an adjustment is made for scale differ-
ences in the alternative plants. A scaling factor of 0.$3 was used to bring
the capacity of all the plants to 996 million gallons-per-year of methanol.*
This scale factor was independently obtained from estimates supplied to JPL by
industry part .ilants in the study and sponsors.** The result of the scale
adjustments significantly affect only those plants which were much smaller
than the 996 million gallon-per-year capacity chosen for the normalization.
Thus, the JFL'reference case for a TCGP plant of 5000 tors-per-day falls from
$3.09 to $2.75/annual gallon, the JPL Lurgi plant falls from $2.75 /gallon, the
JPL Lurgi plant falls from $2.88 to $2.38/annual gallon and the Hampshire
plant (converted to methanol output) falls from $3.23 to $2.96/ annual gallon.

L

The most interesting comparisons are for the cases shown in row four
where both site and scale adjustments have been made. As an overall observa-
tion, the capital cost estimates are very consistent. Four Lurgi plants are

i
t

* At smaller plant capacities (i.e., below 4000 tons-per-day) the scaling
factor would be more significant, falling to perhaps 0.65, however, none of
the baseline estimates were this small.

** Information supplied by ARCO, Conoco and Chevron was used to derive this	 j
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shown which vary from $2.70 to $2.96/annual gallon with the reference case
used in subsequent analysis at 12.82/annual gallon. For the TCGP case there
is also very close agreement with the JPL reference case at $2.75/annual
gallon and the ORNL estimate for their TCGP case adapted from coal-to-methanol-
to-gasoline estimate at $2.80/annual gallon. In fact, the only plant which is
more than 10 percent different from these used in this study is the Cook Inlet
case which is $3.12/annual gallon. AcP:;ually, the location of the plant in
Alaska would easily account for this twall difference in capital cost in
addition to the fact that it is a less efficient technology which would.
require additional coal handling facilities relative to most of the other
plants. Thus, in our examination of coal-to-methanol plant costs, there seems
to be a fairly consistent perception among these very recent estimates that
the total capital requirement would be approximately $3/annual gallon for a
Western mine-mouth plant of a 500 million gallon per year scale, and that this
might be reduced somewhat, to about 0.75/annual gallon if the plant scale is
doubled_

b.	 Near-Term Technology. 	 For commercial plants which might be
completed in the late 1980s, we have assumed that the Lurgi Dry Bottom gasi-
fier and methanol synthesis is the appropriate technology on which to base our
estimate of coal-to-methanol production costs. 	 This choice is primarily
motivated b	 the full commercial status of this a 	 gy	 approach in which both Lurgi ^
gasifiers and methanol synthesis units have a successful history of operation.

The key characteristic of this type of process is that the temperature g
within the gasifier is kept below the ash fusion temperature so the ash-can be
removed in that form rather than as a slag. 	 As a result, the process is more
effective with coals which have a relatively higher ash fusion point (most k
Western coals have this property). 	 Other important chavacterist;:ics of this H
system are: .¢

•	 Coal is gasified under pressures of 350 to 450 psi. t

•	 Residence time within the gasifier is approximately one hour.
'f	 a
jt

•	 Product gas has a high methane content.
j

•	 NorE-_king, high ash fusion temperature coalQ must be used in this
sysicem. 3

• 	 Devolatilization takes place at 11500 to 14000F.-

The implications of the above characteristics are that because of low
operating temperatures, relatively 	 a	 -p	 g	 p	 ,	 e y 1 rge volumes of by-products are produced.
(e.g., tar, oil, phenols and ammonia). 	 Second, since the temperature in this
system is conducive to methane formation, the Lurgi process is more likely to =f
be used when joint production of methanol and SNG is desired.	 The system
could be modified by adding steam methane reforming of the purge gas to
convert the methane into synthesis gas, but this would add complexity and cost

f to the process.	 As a result, the application of this technology matches the f#
I requirements of electricity and methanol co-production where the methane could

be used directly in downstream.processes without loss of energy value
E associated with seducing its pressure and temperature.

H

f 4-7



Un

As a result of the above considerations, the bosol ine 'plant spe Af ca
t ons for the near-term Lurgi Dry Bottom technology are as shnim in Table
4-4. 'the key features of 'tile system are: about 56 percent of the output is
in the form of medium Btu gas, the overall thermal efficiency is high at 53
percent, and there are significant sulfur and ammonia by-products. It should
be noted that this is not suggested to be an optimized plant in terms of
product state, but rather just a representative plant of near-term technology..

f

Based on the plant characteristics shown in Table .0,-4, the capital and
operating costs were estimated, by industry sources in 1981 dollars and are
summarized in Table 4^5. Total capital requirement is approximately $1.2
billion in 1951 dollars with a net operating cost of approximately $152
million annually. The detailed capital cost breakdown of this particular
plant concept is shown in Table 4-1 as case B.

The product costs :Crony this type of Lurgi, plant under a wide range of
assumptions are presented in tables at the end of Section C.3 in this chapter.
However, it is useful to present a summary of the productionn.cost results as
the technical systems are discussed to make the technology versus cost rely
tionship clear. Thus, following each technical description, a :figure will be
included which gives the production costs for a reference case* and sensiti-
vities for: lower (15X) return-„:u--equity, higher (25Z) return-to-equity, 85
percent capacity factor, 6 percent product escalation rate, 8 percent feed-
stock escalation rate, 33 percent higher feedstock basal costs, 25 percent
greater cost for plant investment and for a 1987 start-up.

A ,few factors which are particularly important in the production cost
analysis from this type of plant are: the Lurgi technology is most suited to
co-production of methanol and either b1BG or SNG this technology is proven at
commercial scale and thus a modest contingency of 15 percent has been assumed,
and because of the low caking, tendencies and relatively high ash fusion
temperatures of most Western corals they would work well in this system. As a
reference case assumption for .feedstock, it has been assumed that the
delivered, cost of coal to va California site would be $38 per ton. A summary
of the produ^tion cost anelysis is shown in Figure 4-1 for the Lurgi Dry
Bottom Plant.

Production cost for the reference case is $1.32 per gallon in 1981
dollars for a 1992 start-up. This cost figure is biased upward by tine fart
that the co-produced product (MBG) was assumed to be valued at th6e 1992
forecast price of natural gas to a California utility of $0.07M Btu.
Thus, all the excess casts of production over market value was attributed to
the methanol product.. Since our emphasis is on. methanol, this assumption

The reference case is discussed in more detail in Section C.2 (Table 4-31)
of this chapter. A summary of these assumptions is: 20 percent nominal
return-to-equity, 100 percent equity financing, 20-year lifetime, 90 percent
plant capacity factor, 1992 start-tip, 10 percent investment tax credit, 5
years ACRE depreciation an 95 percent of capital, 8 percent capital cost
escalation through 19$6 and 7 percent thereafter, 7 percent escalation. on
O&M, 7 percent escalation on, feedstock costs, '2 percent for insurance and
local taxes and a combined state 

and
 federal income tat rate of 51 percent.

l
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Table 4-4. DRY BOTTOM LURGI COAL-TO-METHANOL
PLANT CHARACTERISTICS

PLANT CAPACITY (109 Btu /day) 106.8

METHANOL (tons-per-day) 2425

(106 gal/year) 242

(109 Btu /clay) 47.4

MBG (109Btu/day) 59.4
THERMAL EFFICIENCY 63

COAL FEED: (106 tons-per-day) 8564

(106 Bta-per-pound) 9900

BY-PRODUCTS	 SULFUR (tpd) 40

AMMONIA (tpd) 62

CARBON DIOXIDE (106 SCFD) 115

PLANT LOCATION California

OPERATING FACTOR 0.90

WATER REQUIREMENTS (gals per minute) 3900

PURCHASED POWER (megawatt hrs) 78

seems appropriate and it illustrates a problem with this type of technology.
Methanol is a higher-value product than MBG on a Btu basis and thus co-pro-
duction of MBG* is not desirable from a profitability point of view, unless
the by-product is competitive on its owr. merits. In this case, the gas
by-product in effect would have to be subsidized by the methanol sales,
resulting in a price of $1.32 per gal on. One should not interpret this
approach to imply that this process can produce competitive fuel gas, but
rather that any by-product can only be sold at its market value.

'i	 The sensitivity analysis shows clearly that the required return-to-	 } rl
I	 capital on such capital intensive plants is the key cost driver. At a 15	 :k
f	 per-cent return, the required price is reduced to 10.98 per gallon, white at	

f
a 25 percent return, it would increase to $1.76 per gallon. For feedstock
costs, an increase in the escalation rate from 7 percent to 8 percent over the

s	 plant lifetime increases product cost by 10.06 per gallon, while an increase 	 £{
C	 of 33 percent in basic feedstock cost from 08/tan to $50/ton raises the

I'

	

	
product cost from $1.32/gal to $1,42 /gal. An earlier .start-up date (1987) 	 d;
reduces cost to $1,,27/gal, since Qome real escalation in capital cost is
avoided

r	 *Approximately 600/Btu/cubic foot.

I
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Table 4-5. LURGI PLANT COST DATA (millions 1,981)*

CAPITAL REQUIREMENTS

Erected Plant Cost* 900.0**

Detailed Engr. and Cons't Mgm't 106.2

Owner Admin. and Engr. 34.5

Paid Up Royalties 6.0

Initial Catalysts & Chemicals 6.0

Total Plant Investment $1052.7

Personnel Training $	 6.9

Start-up Cost 84.0

Land 0.6

Working Capital 60.0

TOTAL CAPITAL REQUIREMENTS $1204.2

OPERATING COSTS

Coal $ 107.5

Water & Electricity 21.1

Catalysts & Chemicals 2.8

Supv. & Operating Labor 12.2

General & Administrative 3,7

Operating Supplies 0.6

Maintenance 26.3

Insurance 2.6

State & Local Taxes 18.4

By-Product Credits (43.3)

TOTAL OPERATING COSTS $ '151.9

*Includes 15 percent contingency

*The data for this particular plant were obtained from
one of our study sponsors and checked against the Oak
Ridge study cited earlier.

**A detailed breakdown of these erected plant costs can
be found in Table 4-1.
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C.	 Second Generation Technol2ya. In our transition and 'long-run
analysis, we must also consider improvements which will take place in coal
gasification technology. There are numerous candidates including: the
slagging Lurgi,:Koppers-Totzek, Winkler and Texaco Cost Gasification Process
(TCGP) technologies.

\

(

	

	 Technology Options. Each of these second generation tech
nologies offer certain advantages depending upon the coal feedstock available
and the desired product. For the purposes of this study, the Texaco Coal Gasi-
fication Process (TCGP) process was chosen in our mid-1990's case for methanol
from Western coal. This selection was based on four key considerations.
First, unlike the Lurgi processes the TCGP technology produces a relatively
pure synthesis gas in respect to CO and H2 content with little or no tars,
liquids or other hydrocarbons requiring further conversion, recovery or
treatment. While this additional processing (e.g., steam reforming of the
purge gas to produce synthesis gas) could be done, it would impose additional
capital costs and some efficiency loss. Second, for gasification where
further processing is to be done, as in methanol production, it is desirable
for the operating pressure to be high enough to provide the makeup synthesis
gas at the methanol-synthesis process pressure, thus eliminating the need for
makeup gas compression and more process energy. Third, the TCGP process will
be demonstrated at commercial scale in the near future (e.g., Cool Water coal
gasification plant where 1000 tpd of Western coal will be converted to medium
Btu fuel gas). Fourth and finally, this process has been demonstrated at
least at small scale to work on Western coals.

Although we selected the TCGP process as the gasification technology for
the Western coal care in the mid-term, it is recognized that other processes
are more appropriate in particular cases. For instance, if a utility were to
co-produce methanol with SNG or medium Btu gas at an electric generating
plant, then the Lurgi process may be superior. In the case of utilizing
Lignites or subbituminous coal in Montana, Texas, or Alaska, the Winkler
technology may be the dominant choice for that case. Thus, the selection made
here is dictated by a range of considerations peculiar to our West Coast
methanol scenario.

Two candidate commercial methanol synthesis processes were considered;
ICI and Lurgi. From the standpoint of performance, no major distinction was
r. de. The ICI process was selected as the basis of this study mainly because
there are a larger number of commercial plants worldwide using this process.
Also, as a matter of convenience, some of the reference studies which were

r	 used for cost estimation had also used the ICI process,

Texaco Coal Gasification and ICI Process. The overall
production facility is self-contained including the coal-to-methanol plant
itself along with the on-site support facilities, utilities, and oxidation
process under high pressure using oxygen as t'ne oxidant. A diagram of the
coal-to-methanol process is shown below in Figure 4-2.

In the coal preparation process the coal is received, conveyed, crushed
and mixed with wa ger to form a pumpahle slurry, which is then pumped under
pressure into the gasifier. The oxygen process consists of air compression,
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Table 4-6. TEXACO COAL GASIFICATION - ICI METHANOL
SYNTHESIS PLANT SPECIFICATIONS

PLANT SCALE
10,000 tpd5000 tpd

PLANT CAPACITY	 (109Htu/day) 97.5 195.0
Methanol Output	 (tons-per-day) 5000.0 10,000

(841110118-per-year) 497.5 995.0

OVERALL THERMAL EFFICIENCY 55Z 55%

COAL FEED	 (106 tons-per-day) 6788 13,576
(106 Btu-per-lb) 12,500 12,500

BY-PRODUCTS:	 Sulfur	 (tons-par-day) 26.0 52.0

PLANT LOCATION Western Western
minemouth Minemouth

PURCHASE POWER None Noma

OPERATING FkCTOR

91,

90%

term: it captures the most sig-ificant, scale economics, can be supplied in
unit train load, represents a reasonable scale-up in drat time period and is
appropriately scaled to potential California markets. 

In our analysis a
10,000 tpj 11%etil l.,11jol plant will also be costed and evaluated as a poeesible
productior, option in tho longer term (e.g. 1997).

It 'is also interesting to observe that wherever the plant 
is 

sited,
i•e., at the coal source or in California, the shipment of methanol by rail
tank car could, be as high or higher in. numbers of cars than the coal coming
"Into the plant. For example, depending upon the tank car capacity, the volume
from A 5000 tpd plant would 

be as shown in Table 4-7i The transport unit cost

Table 4-7. METHANUL TRANSPORT BY RAIL



KAIPAROWITZ SAN JUAN ROSEBUD
5,000	 10,000 5,000	 10,000 5,000	 10,000

COAL 6,,787 13,575 7,872 15,743 7,528 15,056
SULFUR 26 52 49 97 81 162
ASH 440 879 1,267 2,534 683 1,366

7

is

z
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of methanol could easily outweigh the advantage of siting the plant at the
coal source, depending on how the methanol is shipped and in what unit-size
cars.

Pipelining the product methanol from a 5000 tpd plant is not feasible.
This would call for only an 8-inch diameter line not fully used over a year's
production. For a special case of a single or central consumer, such as a
utility, this might be practical over short to moderate distances. Pipelin
ing methanol from a 10,000 tpd plant (about 2000 gpm) would call for a 10-inch
line. This size pipeline could be practical from the plant to a central dis-
tribution center.

Capital and O eratin Costs. The cost estimates used in this
study for the Texaco Coal Gasification ICI methanol synthesis process were
obtained from industry sources within the study sponsors and checked against
published studies. Thus, although the cost projections are not specific to a
particular company, they are representative of those currently being used in
the liquid fuels industry to make decisions on methanol projects. The cost
estimates are shown below in Table 4-8 for both 5000 tpd and 10,000 tpd plants.
The factor used to scale from 5000 tpd to 10,000 tpd was a 0.85 exponential
scaling factor, which will be discussed in detail, together with its implica-
tions in a later section of this report. Although it does not imply major
economies of scale relative to those traditionally achieved in the chemical
process industry, it does reflect the limitations of the methanol production
technology, which limits single production trains in key subsystems to about
5000 tpd

Western Coal. In addition to the coal costs shown in Table 4-8
(p. 4-16), which corresponds roughly to a Kaiparowitz (Utah) type coal source
delivered to a California plant site, other cases were also considered. For
example, other possible Western ,coal sources are the San Juan Basin (New
Mexico) and Rosebud field (Montana). In addition, we have also considered
alternative prices for coal which are appropriate to a mine-mouth location for
the plant. Coal characteristics and feed rates are summarized below in Table
4-9.

In a general sense, Western coals are more highly reactive, have more
oxygen content, and have less sulfur content than Eastern coals. All of these
factors are positive for methanol_ production since gasification cost is

Table 4-94 REQUIRED WESTERN COAL FEED RATES (tpd)
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PLANT;SCALE
COST CATEGORY 5000 tpd 10,000 tpd'

CAPITAL REQUIREMENTS

Erected Plant Cost** $1,190.6 $2,146.1

Engineering & Construction Management 119.1 214.6

Owner Administration & Engineering 38.8- 70.0

Paid-up Royalties	
1

6.8 12.3

Initial Catalyst & Chemicals 6.8 12.3

Total Plant Investment $1,362.1 $2,455.3

Personnel Training 8.0 10.0

Start-up Cost 93.0 147.5

t	 Land 3.0 5.0

Initial Working Capital 68.1 123.0

TOTAL CAPITAL REQUIREMENTS $1,534.2 $2,740.8

ANNUAL PLANT OPERATING COSTS

Coal*** $	 78.4 $156.8

Catalysts & Chemicals 3.4 7.1

Supv. & Operating Labor 14.6 17.4

General & Administrative 4.4 5.2

Operating Supplies 0.7 14

Maintenance 34.4 54.5

Insurance 3.4 6.1__

State & Local Taxes 24.1 43.1

Sulfur Credit (0.7) (1.6)

NET ANNUAL OPERATING COSTS (1981) $ 162:7 290.0

*The cost data for the 5000 tpd plant was .synthesized from data pro-
vided by Conoco and Chevron and then checked against independent
estimates shown in Table 4-1.

**Includes a 15 percent contingency.
***Other sensitivities will be considered for feedstock cost, in this case

$1.30/million Btu delivered to the plant was assumed.
t
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potentially lowered (all else equal) by reducing the size of the oxygen plant
and the sulfur removal unit. 3y

d.	 Coal-To-Methanol Plant Cost Estimates. 	 In comparing our
capital costs estimates for coal-to-methanol plants with earlier published
studies*, it is clear that our estimates are relatively high. 	 This dis-
crepancy is not simply a matter of increased conservatism, it is attribut-
able primarily to two sources: {

a

a	 Western plants will cost more to construct than in Eastern loca-
tions.	 This difference is especially important at mine-mouth

a	 locations.	 As a general guideline, location factors will have the
following relation to erected plant cost.**

3

Gulf Coast	 1.00
a

Illinois	 1.05 a
Western Site	 1.20
Cook Inlet	 1.40

These differences arise out of added costs of moving men and equip- g
ment to remote locations and lower productivity of working in
difficult climates with high turn-over rates.

o	 Perhaps the most "suspect" single factor in estimating plant costs f

is the scaling factor*** for projecting the cost of larger plants. TM

In many of the studies on methanol conversion we examined, a much
more optimistic scaling assumption was made. 	 For example, in the
Acurex study**** cited earlier, the scaling exponent was assumed to
be 0.6 to reconcile different plant sizes, while the Kentucky

j

Department of Energy derived a 0.73 scale factor.	 In our view,
there is far too much uncertainty at this point about coal-to-
methanol production to anticipate significant. cost reductions ?-

1

* For example, see Clean Coal Fuels, Acurex Corp., Volume III "Evaluation
of Clean Coal Fuels," July 1981, p 3-18; Coal To Methanol, EPRI AP-1962,
August 1981, pp 6-18; The Potential for Methanol From Coal, Kentucky A

Department of Energy, December 1979, p 26.

** These location factors were compiled through discussions with cost
analysts at Chevron and Fluor,; but the specific values shown are JP:L's
synthesis of this information. 	 These values have been used to reconcile
cost estimates in Table 4-1.

*** The scaling factor (a) is defined as the exponent which is used in the
following equation: 	 C2 = C l (S2 1S l )	 where Cl and C2 are
the capital cost of plants one and two respectively, and S l and S2
are their respectivecoal feed rates.

i

****_Clean Coal Fuels, Volume III, "Evaluation of Clean Coal Fuels," July
1981.

t`4-17x
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through economies of scale. This conclusion applies to both
economies projected through traditional scaling factors or direct
plant estimates at large scale (e.g., Badger report*).

A more reasonable approach at this point in time is to evaluate
plants which utilize one full train in gasification, shift conver-
sion, emission controls and coal handling, which is achieved in the
4000 to $000 tons-per-day of methanol scale. Once experience is
gained in an actual production environment, the potential economies
of scaling can be better evaluated. Until that point, more conser-
vative projections are warranted. Since plants larger than 5000
tpd would essentially be duplicating production trains, a scaling
factor at 0.85 was used in increasing capacity from 5000 to 10,000
tpd.** JPL obtained estimates for scaling factors from three of
the project sponsors which ranged from 0.8 to 0.9 for a coal-to-
methanol plant larger than 5000 tons-per-day. Also an internal
estimate was done by scaling each of the plant sections from 5000
to 10,000 tons-per-day to determine whether new trains had t., be
added or subsystems could `rye expanded in scale. Our findings are
that of the major process units in a coal-to-methanol plant (coal
handling, oxygen production, gasification, methanol synthesis, gas
processing and power) only coal handling and power units display
major scale economies (i.e., 0.6 scaling factor'), whereas the other
major process units are nearly proportional to scale (scaling
factors of 0.9 to 1.0). Offsite units (mainly utility systems) do
display major scale economies in the range of 0.6, but as a result
of these economies offsites tend to become a smaller proportion of
total plant investment as the plant scale grows.

In scaling up from 5000 Cons-per-day to 10,000 tons-per-day, as
shown in Table 4-8, JPL has used the following scaling factors
applied to the cost categories in Table 4-1. These results, shown
in Table 4-10, yield the estimate for the 10,000 tan-per-day plant
summarized in Table 4-8.

In an recent study by ORNL*** an estimate was made of scaling coal-to-
methanol plant which concluded that a 0.7 ,scaling factor was appropriate for
scaling from an 1800 tons-per-day plant to a 7200 tons-per-day plant. This

* Conceptual Design of a Coal To Methanol Plant, Badger Plants Inc.,
February 1978.

** This scaling factor is, in .Each,, a derived value specific to methanol
production facilities beyond 5000 tpd. Since measured'_ scaling factors
vary from under 0.4 to over 13 for specific processes, but only average
0.6, it would only be appropriate to use this average if 'better informa-
tion were not available.

*** "Liquefaction Technology Assessment - Phase l: Indirect Liquefaction of
Coal,--to-Methanol an0 Gasoline Using Available Technology, 10 Oak Ridge
National Laboratory ''k. M. Wham, et al., ORNL-5664, February 1981, Appendix

A, pp. 85-104,

1
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Table 4-10. SCALING FACTORS BY PLANT SECTION FOR
TCGP SCALE-UP FROM 5000 TO 10,000, TPD

COST CATEGORY SCALING FACTOR

!	 10,000 TONS
DAY PLANT COST
(millions 19810

DIRECT FIELD COSTS (DFC)

Coal Preparation 0.60 94

Air Separation 0.93 276

Gasification 0.95 518

Gas Processing 0.80 110

Acid Gas Removal 0.80 198

Gas Separation 0.80 -

Methanol Synthesis 1.00 184

Reforming & Compression 0.80

Emission Control 0.60 198

Steam & Power 0.60 227

Product Storage 0.60 36

Utilities 0.60 100

Offsites 0.60 220

CO2 Drying & Compression 0.80 75

INDIRECT FIELD COSTS ( IFC) a 285

INDIRECT CAPITAL COSTS (ICC)

Start-up & Training b 158

Land c 5

Working Capital d 123

Paid-up Royalties e- 12

Initial Catalysts & Chemicals a 12

TOTAL CAPITAL REQUIREMENT 0.837 $2,741

a	 Estimated at 13.25X of DFC
b	 Estimated at 6.5% of DFC plus IFC
c	 Estimated at $5000 per acre
d	 Estimated at 5.0% of DF%" plus IFC
e	 Estimated at 0.5% of DFC plus IFC

!

t^.	
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much lower scaling factor results primarily from the base plant upon which the
analysis is done. First, starting from such a relatively small plant, one
would expect significant scale economies in process units which would be ex-
hausted at larger scale. We concur that at plant scales below 5000 tons -per-
day, scaling factors of 0.65 to 0.70 would be appropriate. Our scaling factor
is only appropriate fs scaling up from 5000 tons-per-day. Secondly, the
scaling analysis done by ORNL was for a Lurgi plant co-producing SNG, which
differs significantly from the TCGP plant scaled in this study in the
distribution of plant costs among plant sections. One would expect a larger
proportion of plant costs in gasification, air separation and methanol
synthesis in the TCGP plant, all of which exhibit modest, if any, economies of
scale once 5000 tons-per-day of output is reached. The Lurgi plant, on the
other hand, has more of its costs in steam and power which have more favorable
returns to scale. The net result of these two factors (baseline scale and
technology differences) that the apparent disaggrement on scale effects is
much less than implied by the absolute scale factors used.

A few points are suggested by our examination of scaling coal-to-methanol
plants. First, scaling factors should not be expected to be constant as plant
scale is increased significantly. For relatively small plants, the indirect
costs for utilities, infrastructure, etc., tend to be a larger proportion of
total plant investment and these categories have significant economies of
scale (Q = 0.6). Also, some of the direct process units can be increased in
size without proportionally adding additional process trains. At larger plant

	
t

scales the proportion of oftsites to total plant investment tends to diminish
and the limit to up-sizing process units is reached. Thus, the scaling factor
has a positive relationship to plant scale.* Second, a large part of coal-to-
methanol capital cost is in gasification, air separation, and methanol synthe-
sis units which, should have scale factors near unity at 5000 tons-per-day and
larger plants, and thus will not likely have major scale economies in these
large plants. Third, the technology and plant location will also affect the
cost impact of scaling since these factors do influence the relative propor-
tion of plant costs in plant sections which scale relatively well (coal
handling, offsites, utilities) versus plant sections which scale relatively
poorly (gasification, air separation, methanol synthesis). Thus, for example,
small Lurgi gasification plants located at Western mine-mouth locations may
show economies of scale (Q = 0.7 to 0.75) for a wider range of scales than an
Eastern TCGP plant. Clearly, site-specific and technology-specific analyses
must be done to accurately estimate the cost of major scale changes.. 	 Y4

As a-means to evaluate the sensitivity of methanol production costs to
the potential econ -r!ies of scale in larger plants, we did consider a lower 	 u
bound case for the scaling factor. Aside from our baseline estimate (most
probable case) of scaling up from 5000 tons- per-day with a scaling factor of
0.84, an alternative case of 0.70 was used with the result shown in Figure
4-3, indicating that scaling is not likely to be a driving factor in
coal-to-methanol viability by itself.

e.	 Production Cost Summary. The production cost calculations for
methanol from coal using the TCGP/ICI technology are presented in Section C.4

i
r

* Economies of scale diminish at the margin.
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Figure 4-3.	 SENSITIVITY OF METHANOL PRODUCTION COST TO ECONOMIES OF SCALE

of this chapter.	 A-summary, however, is presented here in Figure 4-3.	 Com-
pared to the Lurgi system, the most significant difference in that the absence
of the large MBG by-product improves the methanol production economics. 	 Under
the reference case assumptions, production costs are $1.00/gallon for TCGP /ICI
compared to $1.31/gallon for the Lurgi system. 	 As in the earlier case, the
return-to-capital is the most significant sensitivity factor, reducing the
production cost to $0.73/gal for a 15 percent return. and up to $1.36/gal for a
25 percent return.*

Other sensitivities illustrate that changes in feedstock costs are not
`	 major drivers of methanol product cost.	 Raising the escalation rate on coal

from 7 percent to 8 percent (from 1% to 2% in real terms) raises the product'
cost to $1403/gal, while increasing the initial coal cost 33 percent raises

!	 the p•zduct cost to $1.05/gal.	 One factor which does change the production f	 '
costs significantly is the expected escalation rate for the product.	 The
reference case assumption is that methanol escalates at 8 percent per year,
along with expected oil and gas prices. 	 If a company were to assume that

A 20 percent nominal return, after taxes is the reference case assumption on
100 percent of the investment.

4-21_
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product prices would only keep up with inflation (6%) after operation begins,
the initial cost would increase to $1.14/gal.

Similar calculations for the plant represented in Figure 4-4 were done
foZ 10 0 000 tpd plant to understand the impact of scale on production econ-
omics. For the 10,000 tpd, the production costs under the reference case
assumptions were $0.90/gal, or about $0.10/gal less than for the 5000 tpd;
plant. In any event, the potential for these economies to be realized will
depend upon successful demonstration of the TCGP process at smaller sale, thus
any realization of such economies is far into the future. Our base case
scenario to be discussed in the transition analysis is that only a 5000 tpd
plant is a realistic candidate for construction in the mid 1990x.*

2. Methanol From Remote Natural Gas

Remote natural gas (RNG) is another potential feedstock for the
production of methanol. It is interpreted here to mean natural gas that
exists in sufficient quantity to support a full-scale (2000 to 3000 tpd)
methanol synthesis facility for several years (10-20 or more), and which is
now not readily transportable by pipeline to end--use markets.

There have been many studies and proposals made over the last decade
outlining scenarios to exploit gas resources which r-it thi6 category. Most of
them revolve around the use of offshore barge-mouat.ed plants or prefabricated
ocean transported plants. One rather ambitious concept, based on converting
Alaskan north slope gas to methanol, involved a very large complex of several
units at Prudhoe Bay to produce methanol, sharing 25 percent of the capacity
of the Alaska pipeline to Valdez, and ocean tanker transport to California.
This ^Jternative is discussed elsewhere in the report in more detail.

The predominant factors involved in the selection of possible systems
include: gas sources, locatidns, production facilities, transportation of
product in bulk, technical feasibility and gas cost. It appears that all of
the potential sources which are large enough to support a large conversion
unit (2000 tons-tr-day of methanol and greater) would involve ocean trans
prrt either totally or partially. The four main sources considered as most
likely after considerable review were:

* Although we will not present a detailed description ofthe plant and process
technology, we have also considered one final near to mid-term coal-to-
methanol option. That option is Alaskan-Cock Inlet coal, converted using
Winkler gasification. The overall capital requirement (in 1981 dollars) for
this plant was assumed to be the sum of a total plant investment of $1,624
million and $209 million in other owner costs for a 5000 tpd plant. Net
operating and maintenance costs were $43.6 million and feedstock costs were
$84.9 million in the base case and $113.2 in the higher feedstock cost
sensitivity. The production cost result was $1.13/gal for the reference
case assumptions at the plant gate. Although this is higher than the
TCGP/ICI case, it must be recalled that transportation costs are not yet
added in this part of the report.

k
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•	 Alaskan North Slope Gas

•	 Alaska Cook Inlet

•	 Foreign Offshore or Near Shore

•	 Canadian and Mexican Sources

a. Alaskan Gas-To-Methanol Sources. The Alaskan methanol concept
involves converting natural gas, liberated as a by-product of North Slope oil
production, to methanol. The conversion would beat the gas source, i.e.,
Prudhoe Bay; the methanol would-be pipelined, either concurrent with crude oil
or in slug flow, to Valdez and then shipped by ocean tankers to Los Angeles
for subseq,-ent distribution and use. This concept has been proposed as an
alternative to pipelining the gas to the lower 48 states.

The resource, pipeline and tankers involved, dictated a very large
system, some 70,000 tons-per-day of methanol product. This volume, over 20
million gallons-per-day, would require a 24-inch pipeline if a separate line
were built for the methanol alone. Another concept would be to transport the
methanol with crude oil in the existing oil pipeline using 25 percent of that
line's capacity, if that capacity were available, which is not likely in the
near-term.

The sharing of the existing line has been challenged and may be a weak
point to the concept. The necessity of such a large facility all but rules it
out as a near-term practicality for methanol for California and thus is not a
transition option. The 70,000 tons-per-day would be very large relative to
the size of near-term methanol markets in California. For example, this plant
would provide about 25 percent of the gasoline equivalent for the year 1990
for the State of California. This seems well in excess of the most optimistic
published estimates of the displacement o f current fuels even if this were
shared with utilities on a fifty-percent basis.

Furthermore, for a facility this large to be economically feasible, it
should be able to support its own dedicated pipelines. In addition; the
product might be distributed to other Western states. Since this scenario
involves such a large quantity of methanol and would therefore require a large
market, it is not considered as a near-term transition option for the Calif-
ornia Methanol Assessment. In this chapter the focus is upon nearer-term
options which involve smaller markets and hence production facilities.

t
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b.	 Domestic U.S. Western Offshore Gas Sources. The building of
methanol plants on barges, floating platforms, used tankers, etc., has been
proposed by many companies (Litton, Swedyards, Conoco, Mitsui, et al.) as a
means of developing gas reserves in remote areas. An excellent case can be
made for such facilities to supply methanol to the U.S. from distant gas
sources, such as Indonesia and elsewhere. As the distance increases so does
the contribution to methanol cost due to ocean transport.

If the basic concept is valid over long distances,. then it should be as
valid or more valid for sources closer to the U.S. shores. There would also
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be more opportunity for tankers to play a part in collecting and transporting
methanol from smaller of£aliore converting stations which could not justify
separate pipelines and land based terminals. The added advantage of a domestic
supply versus foreign would be a longer-term strategic factor.

Using a combination of barge-mounted or floating=station plants and
tankers servicing several offshore stations and port terminals, the economic
plant size might be broadened to include some much smaller than the maximum
current land-based plants. The maximum capacity would still be practically
unlimited since multiple units could always be employed.

Assuming there is sufficient gas available from several offshore oil
stations to provide enough methanol to occupy the unit tankers, the total
transport distances could be equivalent to the foreign stations and still be
feasible. The concept selected as more favorable than a large Prudhoe Bay
plant was an offshore barge at Alaska's Cook Inlet. The advantages are:

•	 No major pipeline for product.

•	 Flexible plant size.

•	 Prefabrication cost savings.

•	 U.S. source.

The Litton barge concept* and size was used as a basis for capital and oper-
ating cost estimates after it was compared with other estimates. It involves
a floating barge fed by gas from a near-shore source producing fuel-grade
methanol at a rate of 2,800 metric tons-per-day. From Litton's estimate, the
barge would be about 500 ft x 320 ft, would coagume about 100 million SCFU of
gas, and have on-board storage capacity of .3 million gallons of product.

C. Foreign Off-shore or Near-Shore Gas Source s. A single case
was selected and based on the development of a gas supply offshore southeast
Asia. It is assumed for purposes of this study that this would be somewhere
in Indonesia. Costs of tanker transportation to Los Angeles were taken, as
proportional to great circle distances in comparing other published estimates
from Indonesia to Los Angeles, Yokohama and Gulf Coast, and from Valdez to Los
Angeles. No specific site was selected, but the distances were taken as being
to Los Angeles from the general area of Djakarta.

This ease has been included mainly for its comparative value. It is
noted here, however, that the may be an alternate fuel chemically from
foreign crude oil-derived fuels, but it remains a foreign source and subject
to some hazards of price change and cut-off risks.

* Although Litton is no longer in the business, their plant concept and coat
data were retained because it is quite consistent with estimates of
comparable plants offered by Swedyards and Mitsui. The data on -the'Li,tton
Concept was taken from their publication, "Barge .-Mounted Methanol Conversion
Plants," Litton Energy Systems; plant cost data obtained from Dr. A. L.
Baxley, then of Litton.
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As noted above, no specific sites were selected. For the Western U.S.
offshore base, the transport distances from offshore stations to Los Angeles
was taken from Cook Inlet. For the Indonesian base, the transport distance to
Los Angeles is so great, about 9000 great circle statute miles, that slight
variations from site to site would be insignificant. There is no basis at
this time to allow specific site selection, and the barge-mounted concept is
relatively independent of site-specific variables.

d.	 Barge-Mounted Plant Concept. The use of a floating or barge-
mounted facility for chemical processing instead of a land-based plant has
been proposed regularly over the past 20 years. Designs have varied from
shipboard desalinization units to supply freshwater to arid areas, to con-
verted tankers for chlorine production to barge-mounted ammonia synthesis
units. Standard designs are now available from several suppliers for methanol
barge-mounted plants, such as Swedyards of Sweden, Mitsui, and others. The
concept was developed for remote locations, where land-based construction and
overall infrastructure were very expensive or prohibitive. It has been
extended to include offshore and near-shore locations and in combination with
product tankership transport to get around other difficulties such as lack of
pipelines, long construction schedules, etc.

The advantage claimed for this concept include:

•	 Shorter overall schedule from contract to start-up.

•	 Economy of shop fabrication and modular construction.

•	 Elimination or significantly reduced land-site and infrastructure
requirement.

•	 Development of remote resources whic.,.. would be uneconomic for
land-based facilities.

•	 Overall reduced cost compared to land-based facilities of
comparable service in remote locations.

The concept has been developed to a detailed design, and the cost factors halve
	 i

been analyzed and numerous applications considered. It has been generally
accepted as technically and economically feasible in many regions of the world
but still awaits final applications. The problem up until now has been that
with regulated gas in the U.S. and the import duty on chemical market methanol,
there has been no economic advantage to such plants. With market gas rising
in the U.S. to residual oil prices and fuel applications exempt from the
import duty, these plants are potentially, more economic in the future.	 _.

In the time frame of this study (before 2000), it seems likely that
several of these units will be in operation worldwide in the conversion of
natural gas to methanol.

In 1976, a study for use of a floating plant for methanol from remote
gas was completed by Conoco and Mitsui. It concluded that:

o	 The concept was technically feasible.
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g. The Methanol Process. A proprietary process operates on
various feedstocks. After desulfurization the feedstock is mixed with steam
and passed through a reformer. Heat is recovered and water separated from the
process gas thus formed. The gas is compressed before entering the methanol
synthesis loop, where it is converted to methanol in proprietary converters.
The methanol is separated from the synthesis gas by condensation and then
distilled to produce quality requirements,

The utility systems produce all the necessary steam, electrical. power,
and fresh water for plant operation. Depending on plant requirements, the
utility system can include:

•	 Auxiliary boiler and superheater,

•	 Sea water desalinization.

•	 Cooling water.

•	 Compressed air for instruments and pneumatic tools.

•	 Inert gas to be used during start-up and shut-down.

•	 Diesel generator.

•	 Control and instrument systems with date recorder.

•	 Fuel systems for auxiliary boiler, superheater, and l5as turbine.

•	 Fire-fighting systems.

A summary of the basic plant specifications and other data is shown below in
Table 4-11.

Table 4-11. BARGE-MOUNTED METHANOL PLANT SPECIFICATIONS

PROCESS FLOWS

Natural Gas Input	 100 million ft3/day

Methanol Output	 .296 million gallons/year

Storage Capacity	 1B mi.lioa gallons

OVERALL THERMAL EFFICIENCY	 57 percent

BARGE SIZE	 500 ft x 320 ft

PLANT LAYOUT	 two independent parallel trains
with common utilities

k	
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CAPITAL REQUIREMENTS
Total Plant Investment $ 350
Contingencies 60

Plant Investment 410

Initial Catalyst & Chemicals $ 9
Paid-up Royalties 2
Start-up Expense 8
Working Capital 20

Total Capital Requirement $ 449

OPERATING COSTS
Operation and Maintenance $ 42.2
Feedstock Costs** ($1.00/10 6Btu) 33.6
Transport Cost*** 13.1

Total Operating Costs $788.9

*Cost data supplied by Dr. Al Baxley of Litton Industries and checked
against other estimates as shown in Table 4-13.

**At $1.50/106Btu feedstock cost would be $50._3 million annually.
***For Indonesia it would be $49.5 million per year,

;r
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h. Relative Efficiencies. A coal-fed methanol conversion plant
produing a fuel-grade product may have a coal feed-to-product ratio on a
weight basis from about 1.55 to about 2.00 lbs/lb. Using 12_,000 Btu/lb as the
higher heating value (HHV) of the coal feed and 9,763 Btu/lb as the HHV of the
product methanol, the overall thermal efficiency, assuming no imported power
or fuel and no byproduct heat value, would range from 40 to 50+ percent.

Various natural gas-fed methanol synthesis processes claim gas-feed
rates from 26.7 x 10 6Btu/short ton of methanol to 35 x 106Btu/ST. Using
the same HHV for methanol of 9,763 Btu/lb above, the overall thermal effi-
ciencies range from 52 to 68 percent.

It would appear that from a straight thermal efficiency viewpoint,
natural gas-fed plants enjoy an average of 15 percentage points advantage. A
gas plant enjoys a lower capital cos; by several factors, These advantages
are almost totally cancelled by the lower cost of coal on a Btu basis versus
conventional natural gas. It becomes clear that gas which may be priced at
some opportunity cost near coal on a Btu basis such as remote natural gas,
will produce a product which would compete i4ggressively as a fuel. The added
transportation cost component becomes a critical factor in the economic
feasibility of methanol fuel, even with a very favorable gas-feed cost. And
the relative remoteness to the market will probably determine the ultimate
delivered cost and perhaps influence strongly the bid price for remote gas
supplies.

Table 4-12. METHANOL PLANTS - BARGE-MOUNTED CONCEPT (millions 1981 $)*



ESTIMATE SOURCE
CAPACITY

(millions gallons)
PLANT INVESTMENT
(millions 1981 $)

PLANT INVESTMENT
PER ANNUAL GALLON

(1981 ^)

Litton* 296 $410 $1.39
Conoco** 211 288 1.36
Company 1** 190 245 1.29
Company 2** 211 220 1.04
Company 3** 207 290 1.40
Company 4** 211 293 1.39

World Bank*** 199 295 1.48

*Dr.. A. L. Baxley, Litton Energy Systems, 1982.
**Conoco, "Indonesian Gas Utilization Project," 19.81. 	 Various estimates

i
by companies which were interested in supplying barges to Conoco, but
whose names must remain confidential.

***World Bank, "Emerging Energy and Chemical Applications of Methanol:
Opportunities for Developing Countries," 1982.
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i.	 Capital, Operating and Product Cost Estimates. The capital
and operating cost estimate (Table 4-12) for the RNG barge-mounted plants were
based largely upon similar estimates prepared by Litton Energy Systems and
supplied to JPL by private communication from Litton. Estimates for barge-
mounted plants by other sourceswhen adjusted for scale differences were quite
comparable (see Table 4-13 for this comparison).

Adjustments were made to the capital costs in minor areas such as
contingencies and format to make these gas-fed plants on the same basis as the
estimated coal-fed plants. Treatment of financing costs, rates of return,
evaluation, etc., are according to the economic program used for this overall
study. Operating costs were taken directly, but the cost of gas was varied
over a wide range. Product transportation by ocean tanker was used directly
for the Cook Inlet case. This was adjusted for distance and turn-around time
to derive a consistent unit rate for the Indonesian case.

In order to verify that the cost estimate used in the analysis for our
baseline case was consistent with the best data available, it was compared
with other available sources. As a result, plant investment estimates made by
Conoco, Mitsubishi, Mitsui, Nissho Iwai, Swedyards and the World Bank were
obtained. The comparison in Table 4-13 shows that the estimates are very
consistent, with the exception of the Mitsui estimate which seems too low even
for construction of a natural ,gas methanol plant built on the Gulf Coast,

A summary of the production costs of methanol for the barge-mounted
concept is shown in Figure 4-5. The reference case assumptions are the same
as those used in the coal-to-methanol plants. Significant differences from
the earlier cases are attributable to two driving factors. First, the plant

i
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Table 4-13. PLANT INVESTMENT ESTIMATES FOR BARGE-
MOUNTED METHANOL PLANTS (1981 $)
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investment for a natural ga`s'plan2 is approximately $1.50 per annual gallon of
capacity, whereas the coal-to-methanol plants were nearer $3 per annual gallon
capacity measured in constant dollars. The second major factor is the higher
process efficiency of 65 percent for natural Baas plants versus 55 percent for
the TCGP process and only 45 pe^veent for the Winkler system operating on Alas-
kan coal. With the feedstock cost of only $1.00/106Btu to $1.50/106 Btu
and a higher efficiency, the barge-mounted concept is less expensive on a
feedstock basis as well.

The reference case results show $0.53/gal as the plant gate production
cast. Decreasing the required return-to-equity to 15 percent decreases the
production cost to $0.42/gal, while increasing it to 25 percent raises the
production cost to $0.66/gal. Raising the feedstock cost is an important
sensitivity since 'remote natural gas costs will vary significantly deper„ding
on both collection costs and the value of the gas in alternative uses. At
prices of remote gas of $1.50/106Btu and $2.00/10 6Btu, the production cost
rises to $0.58/gal and $0.64/gal, respectively. The barge-mounted concept is
less affected by a 25 percent capital cost overrun than the coax: plant with
much less total, investment required. This capital overrun sensitivity is to
raise the cost to $0.60/gal front $0.53/gal.

3.	 California Feedstocks

In the analysis of alternative methanol production technologies for
California markets, it is important to consider indigenous feedstocks. In
,particular, California, has two resources which are potentially interesting:
1,netroleum coke and bioenergy. Other potential resources such as California's
deposits of heavy oil in rock or residual oil, which becomes available as
heavier crudes are refined in the state, are simply too expensive to extract,
in the former case, or two high in opportunity cost to utilize economically as
a methanol feedstock.

f

.1 .	 Petroleum Coke. Petroleum coke is a combustible, solid
by-product of caking processes and oil refining. The solid coke contains a
very high percentage of carbon, some sulfur, nitrogen and heavy metals.
Because of its low reactivity, coke produced from low sulfur crude oils finds
wide acceptance for use a3 metallurgical cake. But as increased quantities of
heavy crude oil containing substantial quantities of sulfur are processed in
refineries, the coke will not have a preferential value because of its high
sulfur content. Its use as a direct fuel in California is preempted, because
its combustion products produce excessive air pollutants. Petroleum coke can
be easily gasified to produce a clean syngas which can be synthesized to
methanol, a high-value elean. fuel. Capital and operating costs are summarized
in Table 4-14.

In the first case, the cost was estimated as if the plant was a grass-
roots facility, while in the second case the plant is assumed to be located
right at A refinery site, which is the feedstock source and provides economies
in support facilities. In addition, the plant is scaled at 2000 tpd in order
to be consistent with the coke by-products at California refineries. Thus,
although the plant may appear to be sized small relative to the coal cases, it

J
^s

a.
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Table 4-14. PETROLEUM COKE-TO-METHANOL CAPITA.
AND OPERATING COSTS (millions 1981)*

STAND-ALONE
PLANT

REFINERY
SITE

PROCESS DESCRIPTION

Feedstock:	 Petroleum Coke (tpd) 3,100 3,100

Product:	 Methanol (tpd) 2,000 2,000

Plant Capacity Factor:	 M 90 90

CAPITAL REQUIREMENTS

Erected Plant Cost $527.6 $418.0

Engineering & Construction Management 52.0 42.0

Owner Administration & Engineering 17.0 13.6

Prepaid Royalties 3.0 30

Initial Catalysts & Chemicals 3.0 3.0

Total Plant Investment $602.6 $479.6

Personnel Training 3.2 3.2

Start-up Cost 37.2 29.7

Land - -

Working Capital 30.1 39.1

TOTAL CAPITAL REQUIREMENTS $673.1 $542.6

ANNUAL PLANT OPERATING COSTS

Petroleum Cope (1.80/106Btu) $ 55.2 $ 55.2

Catalysts & Chemicals 1.4 1.4

Supv. & Operating Labor 8.2 8.2

General & Administrative 13.7 13.7

Operating Supplies 6.0 6.0

Maintenance 21.1 16.7

Insurance 1.4 1.1

State 6 Local Taxes 9.2 7.3

TOTAL ANNUAL PLANT OPERATING` COSTS $116.2; $109.6

*Cost Estimate made by JPL using the Texaco Coal gasification and IrI
methanol synthesis plant costs described in Table 4-8.

4-33
v	

Fj



y

r

9

F

f^

1
}

T

is appropriate to the overall production facility. It is further assumed that
the process technology involves TCGP gasification and ICI methanol synthesis
processes.

The key considerations in estimating the cost of a petroleum coke-to-
-methanol facility compared to a coal feedstock is that the plant in the former
case would be situated at a refinery site„ This location would take advantage
of reduced feedstock transportation and achieve economies on certain process
trains. For example, the facility could share utility capacity with the
refinery operation. Another savings compared to a grassroots coal -to-methanol
plant would be the much reduced ash recovery subsystem and reduction in cost
for support facilities ( roads, security, etc.) being at a developed site.

The production cost summary in Figure 4-6 reveals that petroleum coke
would be a fairly high cost methanol option in, the nearer -term. The reference
case feedstock cost of $1.80/10 6Btu is fairly expensive,, although it must be
remembered that it represents a delivered cost at a California plant site. In
addition, the higher cost compared to the TCGP process is partly attributable
to the smaller plant scale (2000 tpd) which is necessitated by the quantity of
petroleum coke available at refinery sites. Thus, although performing the
production cost sensitivities at a larger-scale plant would reduce the esti-
mated cost somewhat, it would be a meaningless estimate since plants of that
scale would not be built. The approach. in selecting plant scales for evalu-
ation throughout the study has been to consider the whole end-to-end system
from feedstock to final user.

The cost sensitivities are basically self explanatory. First, for the
grassroots plant, the return-to-capital is the most important cost driver as
evidenced by a reduction from $1.32/gal in the reference case ( 20% after-tax,
nominal return-to-equity) to $1.01 /gal with a 15 percent return in comparable
terms. Chaves in petroleum coke cost from the $ 1.80/106Btu reference case
to either $2.40/106Btu'or $1.20/106Btu would result in product costs of
$1.41/gal and $ 1.23/gal, respectively.

For the plant built at the refinery site, the reference case cost is
reduced to $1.07/gal. At a 15 percent after-tax return the cost would be
$0.86/gal, while at a 25 percent after-tax return the cost would be $1.37/gal.
In the case where feedstock could be obtained for $1.20/10 6Btu instead of
$1.80/106Btu in the reference case, the minimum required revenue falls to
$0.99/gal. Thus, it would take a combination of events to bring the petroleum
coke case into the competitive range with remote natural gas. If a plant built
at a refinery site would be acceptable with a 15 percent after-tax return and
the opportunity cost of the petroleum coke were $1.20/10 6Btu then the
required revenue would be approximately $0.78/gal, which is still too high to
compete in the near term.

fl

b. Methanol from Biomass. The conversion of biomass feedstocks
by thermochemical means generally involves technologies that utilize high
temperatures to convert the carbon constituents of the biomass to more useful
alternate energy forms, such as:

Combustion:	 to produce heat, steam, and/or electricity.
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EM i Lslis :
	 to produce low or medium Btu gas, liquids, and char.

Gasification: to produce a synthetic gas converted to SNG, methanol,
ammonia, and/or Fischer-Tropsch liquids.

Liquefaction: To directly produce gasolines, distillates, and heavy
fuel oils.

The alternate biomass feedstocks available to produce the above products
include agricultural and industrial wastes as well as wood produced by
silviculture, (the intensive controlled farming of cellulosic forms).
Agricultural waste products, which are conducive to a central gathering or
collection depot with minimum gathering or transportation costs and in
sufficiently large quantities to construct and build economical conversioi,
facilities, include corn stover, corn cobs, sugar cane bagasse, rice and wheat
husks, and straw. Industrial waste products with similar parameters to the
above agricultural wastes include municipal solid wastes, pulp mill wastes,
sawdust, and the residue left after wood harvesting.

Feedstock Selection. The feedstock options for methanol from
biomass involve utilizing agricultural and industrial wastes or production of
a biomass feedstock by silviculture methods. In the latter alternative,
technologies are employed similar to growing agricultural crops, including
systematic intensive planting, fertilizing, cropping, and selective harvesting
of the material. In the near future, the feedstocks which are considered to
have the highest potential for thermochemical conversion are woody plants and
trees. Using waste products tends to constrain the scale of the conversion.
%acility because of rapidly rising transport costs of collecting dispersed
residues for feedstock. Thus, in order to achieve overall system economies,
the more energy intensive silviculture forms are assumed.

Wood consists principally of cellulose and lignin. An analysis of wood
on a dry basis shows the carbon content to be about 50 percent, the hydrogen
content about 6 percent, and the oxygen content varying from 35 to 40 per-
cent. Sulfur and nitrogen contents are very low, and ash content varies from
0,1 to 3 percent. The analysis of wood used in this assessment is indicated
in Table 4=-15.

The moisture content of green wood varies from 50 to 60 percent on a
weight basis. Field drying of ;wood reduces this to about 20 percent mois-
ture. For purposes of this evaluation, the moisture content of the wood, as
received, was considered to be 50 percent on a weight basis.

Conversion Facilities. The conversion of wood biomass to
methanol can probably be accomplished with commercial fixed bed gasifiers,
although there would be costs associated with cleaning tars and oils from the
gas. Development of advanced gasifiers which maximize the co-hydrogen yields
and reduce tar and oil formation would therefore improve costs significantly.

Other gasifier technologies considered for wood gasification were the
fixed (moving bed), fluidized bed, entrained, molten bath-type, and catalytic
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Table. 4-15. ANALYSIS OF WOOD FEEDSTOCK

ULTIMATE ANALYSIS

cwt. X)

Carbon 54
Hydrogen 6
Oxygen 38
Nitrogen 0.2
Sulfur 0.1
Ash 2

TOTAL	 100%

Higher Heating Value Btu/lb 	 9000
106 MBtu/dry ton	 18

gasification reactors. Most of these options are in very early stages of
development and will not become commercially available during this decade, the
exception being fluid bed gasifiers. Although those systems currently operate
at atmospheric pressures, they will undoubtedly be adapted to operate at high
pressure for synthesis to methanol since this reduces the cost needed for
syngas compression. In summary, then, low-pressure fixed-bed gasification
is assumed in the near-term with a shift to high-pressure technology by the
mid-1990s.

Process Description. The following facilities process 2000
tpd (wet) of wood to produce 570 tpd of methanol fuel. The wood is gasified
in a 500 psi fixed-bed gasifier along with 500-tpd 98 percent oxygen. The
resultant syngas is synthesizedto methanol by the ICI methanol synthesis
process. The overall energy balance of the system is assumed to be 55
percent, including process energy and feedstock in relation to methanol
output. The overall plant and operating cost data for the system are
summarized in Table 4-16. This cost estimate was derived from work done by
JPL as part of another study* for DOE. As a way to verify its accuracy, it
was checked against a comprehensive study** of fuels from biological processes
done, by the Office of Technology Assessment. In that study the total plant
investment of a.wood-to-methanol plant was estimated at $88 million in 1979

* Gershman, R., Dutzi, E. J., Ekman, K. R., and Walton, A. L. Methodology
Development for Evaluation of Bioenergy R&D Options, Jet Propulsion
Laboratory, JPL D-282, September 1982.

** Energy from Biological Processes, Volume II - Technical and Environmental
Analyses, Office of Technology Assessment, Washington, D. C.-, September
1980, pp. 139-141.
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Table 4-16. WOOD-TO-METHANOL PLANT AND OPERATING COST SUMMARY
(millions 1981 0

PROCESS DESCRIPTION

Methanol Output (tpa) 575

Wood Feedstock (dry short tons) 1,000

Construction Schedule (%/yr) 20,40,40

CAPITAL REQUIREMENTS

Erected Plant Cost* $149.9
Engineering and Construction Management 15.0

Prepaid Royalties 0.7

Initial Catalysts and Chemicals 0.7

Total Plant Investment $166.3

Personnel Training 1.0

Start-up Cost 8,3

Land 0.5

Working Capital 8.3

TOTAL CAPITAL REQUIREMENT $184.4

ANNUAL OPERATING COSTS

Feedstock $	 10.6

Catalysts & Chemicals 0.8

Supv. & Operating Labor 5.2

General & Administrative 3.2

Operating Supplies 1.9

Maintenance 2.9

State & Local Taxes 2.9

Insurance 0.4

TOTAL ANNUAL COSTS $ 30.5

*Includes 15 percent contingency.
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dollars for a 40 million gallon-per-year plant. This estimate is equivalent
to $111 million in 1981 dollars or $2.78 per annual gallon. The Jil l, estimate
for total plant investment is $166.3 million or $2.91 per annual gallon.
Titus, the JPL estimate is consistent (be gs than 5 percent difference) with the
O`1'A estimate, although it was derived independently.

Production Costs. The production costs f<om biomass feed-
stocks are heavily influenced by the non e-availability of a gasifier speci-
fically designed for this feedstock in small-scale operations. Resultr: in
Figure 4-7, therefore, are applicable to "conmaercial" technology and will
probably he improved with time. In the reference case, the production cost
estimate is $1.12/gal, which decreases to $0.89/gal with a 45 percent return.
An increase of 33 percent in Feedstock coat from $16/ton (wet) to $21/tan
increases the production coat to $1.18/gal. The impact of a capital cost
overrun *1 25 percent is quite significant, as it raises the methanol coat to
$1.27/gal.

Although these plant-gate costs are high relative to remote natural gas,
it must be considered that there: are tax credits which i(itay make wood-based
methanol viable for certain small-scale applications. There is also the 	 1

potential for new technology to reduce costs through innovative concepts
designed specifically for wood feedstocks. Th-e Energy Systems Division at
International Harvester, for example, is working on a gasifier which would be
m anu£.ictured and delivered to the plant site needing only modest site develop-
ment. 'Through personal communication from International Harvester we have
been informed that the estimated cost of the system they are developing is
approximately $7.4 million investment cost, $2.24 million annual operations 	 3

and maintenance cost, and $1.37 million in feedstock cost. Methanol production
from this system would be 6.7 million gallons-per-year. If these figures are
taken as accurate (JPL has no way to verify their accuracy since the gasifier
is proprietary). the resultant cost of methanol is $0.62/gal in 1981 dollars.
This cost is w,F:hout any adjustment for bi,oenergy credits, which would reduce
costs further. 0bviously, this concept could be important in the near term if
they system is developed with the cost and performance goals now envisioned.
It would be very speculative at this point for JPL to make any prediction on
whether there is a reasonable likelihood for this to occur, since we do not
have access to the proprietary information necessary to evaluate the system in
detail.

4.	 Advanced '.Technology

One of the more ,interesting advanced concepts which might lower the
cost of methanol production in the long roan is by means of the once-through ji
methanol process associated with an integrated combined-cycle coal gasifica-
tion plant. This concept has been studied by the Fluor Corporation for EPRI*
and offers the following advantages: (1) by employing a once-through methanol
synMiesis prOLeSs, the overall methanol conversion efficiency can be raised to

Economic Evaluation of the Co-production of Methanol and Electricity with
Texaco Gasificaation_- Combined Cycle Systems," Electric Power Research
Institute, EPRI Report AP 2212, January 1982.

w
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68.8 percent from 57 percent in a. dedicated coal-to-methanol plant, (2)
unconverted synthesis gas is not recycled to methanol reactors, thereby
eliminating power for compression of recycled gas, (3) energy is also saved by
avoiding the need for gas shifting, and (4) heat liberated during methanol
synthesis can be fully utilized in the :power plant's steam system. Thus,
there is potentially some real gains which can be made in the cost of methanol
production, but this result relies.on._a few key qualifications: (1) new
technology for once-through methanol synthesis must be developed, since this
concept currently exists only at the small laboratory scale, (2) electricity
from the combined-cycle coal gasification plant must be competitive on its own
to justify the add-on methanol synthesis unit, and (3) the gasification concept
has yet to be demonstrated on a large scale. If these obstacles can be
satisfactorily overcome, Fluor has estimated that approximately a 30-percent
cost reduction in methanol could be achieved with a utility-owned plant
co-producing methanol and electricity versus a privately-owned dedicated
methanol plant. Of this 30-percent cost reduction, Fluor attributes about 18
percent to efficiency improvements and 12 percent to lower financing costs.
Although these cost figures are quite soft, given the state of technology
development for this system., it is certainly a concept with merit which
deserves further research and development effort. Given its current status,
it would seem unlikely to be fully commercial as an integrated system until
the mid to late 1990s.

f

s



I

(3.	 SYN'P1ltiM! VORL ALTERNAXIVRS

Sittee the nation js examining many synftiels asalternat , 48, tca imported
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Table 4-17. SYNFUEL PLANTS TECHNICAL ASSUMPTIONS

r

i

DESCRIPTION VALUE

Plant Location Utah - .Minemouth

Plant Capacity
Gasification 250 109 Btu/day Product
Liquefaction 25,000 tpd coal feed

Operating Ba p is 90% (330 days per year)

Project Operating Life 20 years

Commercial Operating Date 1992

Construction Expenditure Rate
Year 1 10
Year 2 20
Year 3 30
Year 4 20
Year 5 20

Coal Feedstock
Source Kaiparowitz
Btu/lb 12,500

Energy Content (106Btu)
Barrel of Oil Equivalent 5.8

f	 i

expansion takes place too rapidly in a particular option. Some bottlenecks
(e.g., engineering and design) affect most synfuel projects equally while
others are more specific to a particular option (e.g., acquiring water rights
for shale plants). In this study it was not possible to examine the
alternative scenarios sufficiently to take into account these second order
impacts.

i

1.	 Shale Oil

Within the Western states of Colorado, Utah, and Wyoming, there are
high grade* deposits of oil shale with the equivalent of nearly three-quarters
of a trillion barrels of oil. These Western sources cover approximately 	 au
25,000 square miles in mostly remote areas.

x
* 20 to 30 gallons of oil per ton of shale.
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Two basic approaches are being studied for shale oil recovery: above-
ground retorting and in-situ gasification. In the former approach, the shale
is wined, crushed and transported to the retorting facility to break down the
kerogen in the shale and finally the organic vapors are condensed to form a
usable feedstock. With the leading in-situ concepts, the shale is fractured
underground, heated (either with self-combustion or by an external source) to
break down the kerogen, and the vapors and condensates are brought. to the
surface. Because it is further along in development, the focus in this report
will be on the surface retorting technology. A number of technical approaches
have been suggested for above-ground retorting, but there is limited commercial
experience and none is likely to be economic at current oil prices.

A major issue in shale oil development is the cost of providing offsite
support facilities or infrastructure development. In this case, these costs
are included in the basic capital cost estimate* (Table 4-18) along with
production-related support facilities. Costs of building such plants have
changed quite rapidly in the past year as more detailed engineering and cost
estimating have been completed.**

The cost data-in Table 4-18, when adjusted for escalation and interests
costs during construction, bring the total capital requirement at the date of
commercial operation to nearly $5.4 billion. At this plant cost, the crude
oil product from shale is quite expensive relative to 1982 oil prices. Obvi-
ously, a great deal of uncertainty exists concerning the eventual cost of such
a facility as indicated by the substantial disagreement between TOSCO and
Exxon concerning the Colony project. In order to reflect this uncertaint y , we
have made a sensitivity calculation with a 25 percent additional capital cost
to our reference estimate and consider only the cost range as meaningful.

In order to provide a check on the cost estimate developed by Bechtel,*
a recent source was obtained late in this study from the Office of Technology
Assessment*** which expanded upon a major assessment**** of oil shale

* Cost of plant and operating equipment for all the synfuels comparisons
were drawn from the following reports which were updated to 1981 dollars
and put on a consistent basis.

a. Acurex Corp., Alternative Fuel Strategies for Stationary and Mobile
Engines: Evaluation of Clean Coal Fuels, Volume III, July 1981.

b. Bechtel, Economic Feasibility of Synthetic Fuels Projects, November
1981.

c. ESCOE, Coal Conversion Comparisons, DOE EF-77-C-C1-2468, July 1979.

r	 d. ESCOE, Synthetic Fuels Summary, DOE DE-AC01-77-ET-10679, March 1981.

l:
^,

	

	 K* The estimate for the Colony project prepared by TOSCO in January 1982 was
for $3.77 billion while the Exxon, U.S.A. estimate also in January 1982
was $4.94 billion and the Exxon Research and Engineering's estimate is
$5.3 billion for the 50,000 barrel per day facility.

*** Office of Technology Assessment, "Increased Automotive Fuel Efficiency
and Synthetic Fuels," September 1982, pp. 170-172. 	 {

`	 **** Office of Technology Assessment, "An Assessment of 'Oil Shale
Technologies,, pp. 179-200.
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Table 4-18. SHALE OIL PLANT AND OPERATING COSTS (millions 1981 $)*

PROCESS CHARACTERISTICS
Output (bbls. per day) 50,000

CAPITAL REQUIREMENTS

Erected Plant Costs $2,100
Infrastructure Investments 734
Engineering and Construction Management 210
Start-up Costs 75
Working Capital 105

TOTAL CAPITAL REQUIREMENT $,310224

ANNUAL OPERATING COSTS (1981 $) $	 273

CAPITAL COST (1981 $/BOE)** $64,480

*Bechtel, 1981; Office of Technology Assessment, 1982.

**As a means to 'compare alternative synfuel processes
a summary value of capital costs in 1981 dollars per
annual Barrel of Oil Equivalent (5.8 million Btu) will
be calculated.

technology completed in 1980. The most recent OTA cost estimate for shale
capital cost is in the range $2.6 to $3.5 billion after adjusting to 1981
dollars. This capital cost is consistent with the estimate in Table 4-18.

•^	 9

As shown in Figure 4-9, the reference case results for shale oil produc-
tion costs are $72/bbl in terms of upgrading the shale oil to gasoline. The
reference case in crude shale oil terms is $60/bbl. The adjustment to gaso-
line was made to facilitate the comparison with methanol, methanol-to-gasoline,
and Fisher-Tropsch liquids.

Also shown on the left-hand side of Figure 4-9 is the projected cost of
wholesale gasoline iti 1992 on a per barrel basis in 1981 dollars. The base r

+

	

	 case assumption (solid line in bar graph) is $52.50/bbl with the pessimistic
scenario price at $68/bbl and optimistic scenario price at $38/bbl. The basis
for these alternative price scenarios is discussed in Section III.0 of the
Summary Report. These estimates are presented just to give a basis of
comparison for the synfuel estimates.

k

The only case which appears to produce comparable costs in the 1992 time
frame is where the return-to-equity is 15 prcent which results in wholesale 	 j

r:

	

	 gasoline from shale per barrel at a cost of $50/bbl and a crude shale cost of 	 i
$41/bbl. The other cost sensitivities of higher O&M costs, 25 percent capital
cost overrun, and slower product price growth, all increase the shale-to-

t,'

	

	 gasoline cost to over $70/bbl and over $60/bbl for crude shale oil. In all 	 R
the shale sensitivity cases, the feedstock is treated as an operations cost
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and thus does not appear as a separate entity. Titus, even in 1992 shale oil
will be above the price of conventional oil and gasoline in the baseline
scenario at a 20 percent return requirelmdnt.

2.	 Coal Gasification.
As illustrated in Figure 4-8, coal gasification is the firstpro—

cessing step to producing a wide range of products. Low Btu gas, which is
composed of carbon monoxide ) hydrogen and nitrogen having a Btu content of 100
to 200 per standard cubic foot (SOF), call be used as a fuel or further pro-
cessed into hydrogen. Another possible product, medium Btu or synthesis gas,
contains approximately 200 to 600 Btu/SCF and can be further processed into
11111111ollia, methanol ov hydrocarbons, or used directly as an industrial fuel or
chemical feedstock. The higher quality product, high Btu gas or substitute
natural gas (SNG), can be produced through methanation, which converts -carbon
monoxide and hydrogen to methane (600 to 1000 Btu/SCE) in the presence of a
platinum catalyst.. This last product call be mixed with natural gas and
pipelined for use in utility, industrial or residential applications.

tta lly gas*fj	 fluidisedI cation systems exist, including moving bed, fluid , d bed and
entrained suspension concepts. They differ with respect to size of coal feed,
flow of reactants and products, residence time of cool particles, reaction
temperatures and pressure.

The Lurgi gasifier has been used in the gasification cost analysis
because it is fully commercial and can be used oil a variety of western coals.
The basic data was obtained from Acurex, ESCOE, and Bechtel, and then modified
to be consistent with the assumptions utilized in our methanol plant estimates.
All costs in Table 4-19 are in 1981 dollars; contingencies are as indicated in
this footnotes for each process. The sources used for estimating tile plant
costs, for the high and medium, Btu gas cases are shown in Table 4-19. Adjust-
ments have already been made to place all the figures in 1981 dollars and to
adjust for construction at a Western mine-mouth site (where needed).

None of the cost estimates in Table 4-19 are based upon definitive
engineering and design cost studies, thus, tile discrepencies among them are
not surprising. The range estimated by OTA does bound to three estimates
obtained for high Btu gasification even though the OTA. estimates were based on
different scenarios. As a result, we feel these estimates are representative
of the best data publicly available. As more detailed engineering and design
take ,,; place and actual experience is obtained (e.g., Coolwater), the accuracy
of the estimates will improve. Based on the experience that more detailed
engineering for site specific plants has resulted in higher cost estimates,*
it is our judgement that cost figures near tile upper end of the range in Table
4-20 should be used for planning purposes and even then a range of capital

*Merrow, E. W., Chapel, S. W., and Worthing, C., A Review of Cost Estimation
in New Technologies: Implications for Energy Process Plants, R-2481-DOE,
RAND Corporation, Santa Monicao Calif., July 1979.



SOURCE PLANT TYPE

CAPACITY
(109 Btu

PER STEAM DRY)

CAPITAL
REQUIREMENT

(millions 1981

CAPITAL COST
PER DAILY
BARREL OF OIL
EQUIVALENT
(1981 $)

Bechtel* High Btu 250 $2,500 $58,000

Acurex** High Btu 216 2,134 57,350
(Lurgi DB)

DOE*** High Btu 250 2,147 49,800
( Lurgi,)

OTA**** High Btu 290 2,350 - 3,019 47,000 - 60,400

Bechtel* Medium Btu 250 1,790 41,500

DOE*** Medium Btu 282 1,919 39,500

*Bechtel, "Economic Feasibility of Synthetic Fuels," November 1981.

**Acurex Corp., "Alternative Strategies for Stationary and Mobile Engines:
Evaluation of Clean Coal Fuels," Volume III, July 1981.

***U.S. Department of Energy, "Cost Factors: 	 Capital and Operations and
Maintenance Factors of Representative Energy Systems and Facilities,"
DOE/MA-0063, Vol 3, April 1982.

****Office. of Technology Assessment, "Increased Automobile Efficiency and
Synthetic Fuels:	 Alternatives for Reducing Imports," September 1982. 

a

a	a

costs should be used for decision making.	 As a result of these considerations,
the cost figures in Table 4-20 which have been used for thebaseline coal j
gasification estimates are consistent with the Bechtel estimate in Table 4-20,

'	 with approximately $58,000 and $41,500 per daily barrel of oil equivalent for
'	 high and medium Btu gasification, respectively.

Using the plant cost and operating; data in Table 4-20, the production
cost estimates for each of these gasification options has been made and

r

summarized in Figures 4-10 and 4-11 for the SNG, and MBG plants, respectively.
In each of these figures, the left-hand bar represents the likely competition
in terms of natural gas to California utilities.	 In the reference case
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Table 4-19. CAPITAL INVESTMENT ESTIMATES FOR COAL
GASIFICATION PLANTS (1981$)



Table 4-20. PLANT INVESTMENT AND OPERATING COSTS*
FOR COAL GASIFICATION (millions 1981 ^)

LURGI
(SNG)

LURGI
(MBG)

PROCESS FLOW:
Coal Input (tpd at 16.6x/10 6Btu/ton) 27,500 27,500
Yields:	 MBG (106Btu/stream day) - 282

SNG (106Btu/stream day) 245 -
Phenol (BPD) 702 960
Naptha (BPD) 763 -
Tar Oil (BPD) 1,640 1,645

OVERALL THERMAL EFFICIENCY 57% 65%

CAPITAL REQUIREMENTS (10 6 1981$)
Total Plant Investment** $2,034 $1,771

Other Owner Costs $575 $501.

TOTAL CAPITAL REQUIREMENTS $2,609 $2,272
1981 $/BOE*** $58,000 $44,700

OPERATING COSTS (10 6 1981$):
Feedstock**** $124.6 $129.3
O&M $128.6 $124.6

*Synthesis of data in Table 4-19 and sources for Table 4-19.
**Includes 15 percent contingency for Lurgi Dry Bottom and 20 percent

contingency for Lurgi Stagger.
***BOE stands barrel of crude oil equivalent at 5.8 million Btu per barrel.

****At $0.80/10 6Btu mine-mouth coal price, also evaluated at $1.10 and
$1.40/106Btu.

f

assumptions, none of the plants appear competitive in the 1992 time frame with
the base case scenario of gas costing $6.68/106Btu to California utilities
in 1992 in 1981 dollars. The higher bound of $7.51/10 6Btu and the lower
bound estimate of $4.38/10 6Btu, all in 1981 dollars represent the pessimis-
tic and optimistic scenarios, respectively, discussed in Section III.0 of the
summary report. Even in the case of a 15 percent return,* the medium Btu gas
case and the Lurgi SNG Plants produce gas at costs above the base case costs 	 a
of natural gas. Only utilities with their types of financing** would find

* Nominal,-after-taxes.

** In leveraged financing cases the nominal return in our terms which would be
consistent with utilities would be approximately 12 percent.
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these systems potentially interesting in the 1992-1995 period; however, we do
not expect significant activity in adding capacity of this type during the
198(!x.

other sensitivities are not particularly interesting since the projected
eosts are so high relative to expected natural gas costs. A measure of the
risk in each plaank, however, is provided by the 25 pe:,carnc capital cost overrun
sensitivity, which implies an increase in product cost of $IA/1068:u to
t2.05/106Btu in the three gasi ication cases. Thus, even with lower cost
financing, the products could be uncompetitive if capital costs rise above the
reference c*se levels.

3.	 'indirect liquefaction.

Synthesis  gas produced in the gasification process described Above
can be further processed into higher valued products: methanol, M-gas or
Fischer-T'ropsch liquids. All of these products have the desirable property of
being sulfur-free, since it musk be removed from the synthesis gas prior to
further processing. The methanol process has been described In detail in
$ectiow A. Thus, only the M--gas and Fischer-Tropsch processes are described
in this section, although the methanol plant has been increased in scr,le to
comparable levels with the Fischer-Tropach plant.

In the M-gas process, crude methanol is vaporized iaa a reactor and
passed through za catalyst where the methanol is converted to waiter and hydro-
carbons. This reaa:tion is highly exothermic and can be accomplished through
different processes w1ai.'a include both fixed and fluid beds. The key aspect
of the M-gas conversion is that the thermal, efficiency of the process, although
high (approximately 90 percent), still involves a loss to the heat content of
the product. in addition, there is an increase it) capital cost over a coal-
to-methanol plant of aapproxiately 8 percent for costs associated with the
M--gas process reacor. 'Thus, there is nearly an ?8 percent increase in costs
as measured in dollars per million Btu of product compared to methanol, produc-
tion. As will be discussed later, there is also a significant and-use
efficiency loss compared against optimized a yeaat methanol vehicles.

The Fischer-Tropach process wits developed first in the early 19206.
This process was used by Genitany during the 1940s and is currently operating
commercially in South Africa. As la methanol production, the Pischer--Tropseh
process is "indirect" because first a synthesis gas is produced, then a cata-
lytic process under pressure converts the synthesis gas to hydrocarbons. Two
processes are currently in operation. The lurgi ARGR ; process employs a fixed
bed reactor and an, iron catalyst, while the synthol process ut l,izes an
entrained bed reactor. 'rile primary di-f.ference between these processes is that
the synthol: technology produces relatively more light products and gasoline,
while the ARGE process yields relatively more diesel fuel and heavy oils. Tile:
Fischer-Tropsch, M-gas and methanol processes are summarized in Table 4,-21 at
comparable scales.

The data for the methanol and M-gas plant costs in Table 4-21 were
derived: by scaling and adjusting the basic methaanol, plant data in 'cable 4-80
in order to preserve consistency of the cost estimates. A scaling factor of
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Table 4-21. PLANT AND OPERATING COSTS FOR INDIRECT PROCESSES

METHANOLa
(TCGP)

M-GASP'
(TCGP)

FISHER-TROPSCHc

PROCESS DESCRIPTION

Coal Input (tpd) 28,735 28,735 28,735

Product Yield:
Methanol (10 6ga1/yr) 1,865 °- -
Gasoline (BPD) - 62,250 29,418
LPG - - 3,121
Jet Fuel - 6,336
Fuel. Oil - - 9,503

Overall Thermal Efficiency 55% 50% 39X
109Btu input/day 665.2 665.,2 665.2
109Btu output/day 365.9 327.0 261.2

CAPITAL REQUIREMENTS (millions 1981$)

Erected Plant Costd $3,597 I^AjO53 $2,786
Other Owner Costs 1,037 1,169 804

TOTAL CAPITAL REQUIREMENTS 54,634 $5,222 $3,590

1981 $/BOE 73,500 92,600 79,700

OPERATING COSTS (millions 1981$)

Feedstocke $173.0 $173.0 $173.0
O&M 182.6 191.3 157.3

a	 Derived from the 5000 tans-per-day Texaco/ICI plant cost shown	 in Table
4-8 and scaled up using a 0. 84 scaling factor as shown in Table 4-10.

b ,Derived from the methanol plant cost estimates abow+n in Table 4-8 using
the scaling factors shown in Table 4-10 and adjustment factors for
capital costs of methanol conversion and efficiency losses supplied by
Conoco and Chevron.

c	 Acurex:	 "Alternative Fuel Strategies for Stationary and Mobile Engines:
Evaluation of Crean Coal Fuels." 	 Volume III, July 1981

Fluor Corp., "A Fluor Perspective on Synthetic Liquids: Their Potential
and Problems," 1979.

OTA, "Increased Automobile Fuel Efficiency and Synthetic Fuels."
September 1982.

d	 Plant cost contingencies are assumed to be 15 percent for All three
systems.

e	 $0.80/106Btu mine-mouth-coal cost.



0.84 was used as discussed in Table 4-10 to scale the methanol plant up to
approximately 19,000 tons-per-day. For the M-gas plant, a capital cost
adjustment of 12.5 percent was used along with an efficiency loss of 10
percent to convert the coal-to-methanol plant costs to coal-to-methanol-
to-gasoline.* As a check on this conversion, an independent estimate for
M-gas was obtained from an ORNL study.** After adjusting for base year
dollars to 1981 and western site location, the ORNL estimate for M-gas capital
cost was approximately $81,200 per daily barrel of gasoline output, while the
estimate derived indirectly from our methanol plant colic is $83,900 per daily
barrel of gasoline output. This 3 percent difference is extremely minor given
the uncertainty band surrounding the cost estimatesin all these synfuel
plants.

h	
qq

-1

s

The Fischer-Tropsch plant costs were derived from three sources
footnoted in Table 4-21, which imply that the range of expected capital
requirements is from $65,000 to $81,000 per daily barrel of crude oil
equivalent in 1981 dollars. The estimate used in Table 4-21 is consistent
with an $80,000 per daily barrel capital cost and, thus, is onthe more
conservative end of the range.

The production cost results for these plants (Figures 4-12, 4-13, 4-14)
illustrate some reasonably clear choices among systems. Fischer-Tropsch
products appear to be extremely expensive versus M-gas, shale, or neat
methanol as a transportation fuel. The system is too'in,efficient and produces
a significant quantity of low-value products, making it less viable against
the other; synfuel options or conventional oil to gasoline. In.effect, it is a
commercial option ,which has been eclipsed by other alternatives for transpor-
tation fuels; As shown in Figure 4-12, the reference case assumptions imply a
cost of about $95/bbl in terms of gasoline value equivalent,*** compared with
a conventional baseline of $52.50 in 1992. Even lower cost financing of 15
percent return only lowers the cost to $70/bbl.

The relative sensitivities of the methanol production case have already
been discussed thoroughly in Section A of this chapter. One change which must
be noted-is the effect of the scale increase on the reference case. Costs are
projected at $0.77/gal which is reduced from the 5000 tpd plant of approxi-
mately $0.95/gal just on predicted scale economies.**** Although such improve-

*Suggested capital adjustment and efficiency loss given to JPL by
discussions with technical staffs at Conoco and Chevron.

**"Liquefaction Technology Assessment - Phase 1: Indirect Liquefaction of
Coal-To-Methanol and Gasoline Using Available Technology," ORNL - 5664,
February 1981.

***For the Fischer-rropsch process, the slate of products was converted into
dollar valuer using the relative prices of gasoline, LPG, jet fuel and
fuel oil and then the weighted value of all the products converted to
gasoline equivalent value.

****The 5000 tpd plant production cost figure has been adjusted for mine-mouth
coal costs of $0.80/106Btu.
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ments are somewhat speculative at this point and should be used with caution
for the absolute value of the cost level,* it is appropriate for comparison
with these other large-scale plants, which are also assumed to benefit from
scale economies.**

The choice between M-gas and neat methanol becomes clearer when they are
converted to either Btu equivalence or, even better, performance equivalence.
This conversion has been performed in Table 4-22 for three cases: Btu equiva-
lence, 1.7 fuel factor for neat methanol to gasoline and a 1.5 fuel factor for
neat methanol to gasoline. These examples bound';the realistic possibilities
for neat methanol in comparison to gasoline or M-gas.

It is apparent from Table 4-22 that neat methanol, from a production
viewpoint, is superior to M-gas as a potential competitor to conventional
gasoline. There is a benefit in capital cost of production, higher conversion
efficiency and end-use efficiency. The far right-hand column indicates that
the end-use efficiency is a key factor in the long-run, as optimized neat
methanol vehicles may become available. It is important to realize that the
comparison above is not a prediction that neat methanol is viable versus
gasoline in the 1992 time frame, rather that M-gas is not competitive on
comparable terms and the relative economics of M-gas and neat methanol become
more clearcut as utilization technology improves. Transportation costs and
dealer mark-up would be higher per gallon of methanol and close this gap
somewhat, but not enough to offset the overall advantage of neat methanol over
M-gas.

Table 4-22. NEAT METHANOL VERSUS M-GAS REFERENCE CASE COMPARISON
(1992 in 1981 $/gal)

1...74

f

*In looking at near and mid-term markets, the production costs from the
5000 tpd plant have been used. Methanol production costs based on the
Large plant in this section is only useful for comparative purposes.

a

**The methanol and M-gas plants were scaled using a 0.84 exponential scaling
factor reflecting some economies in engineering, coal handling, utilities, 	

s}

and offsites.

=t

f4
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k

BTU 1.7 ;	 1.5
EQUIVALENCE FUEL FACTOR FUEL FACTOR

Methanol $ 1.57 $ 1.31 $1.16
M-Gas 1.74 1.74



If

4. More Advanced Synfuel Processes

There are other processes undo_ development which could compete
pith those discussed above if they perform successfully at their targeted
,osts. Among these processes are a number of direct liquefaction technologies
Which share similar processing concepts. Generally, coal is slurried with a
olvent-and then heated and put under pressure in-order to dissociate the coal
structure. Coal liquids are subsequently separated from the remaining coal
structure.*

Among those technologies which appear most promising are the solvent
•efined coal (SRC) system, the Exxon Donor Solvent (EDS) process, and the
[-Coal process. The primary advantage of these systems is the potential for
such higher efficiencies (e.g., 65% for SRC) than the indirect liquefaction
technologies, which will lower costs for coal and coal handling. Pilot plants
are scheduled for these processes in the 1980s which should improve our know-
ledge of their potential,_ For the near-term, however, it is our judgement
that these systems are too experimental to enter significantly into the near
term transition analysis. Thus, we have not made cost projections of these
plants because it is simply too early to judge their merit.



D.	 PRODUCTION COST OVERVIEW

The decision to proceed with a large-scale capital investment is, of
course, a highly complex process which involves a great deal of detailed
analysis. While we cannot attempt to duplicate this process in this study, we
have assembled a consistent set of data for comparison and applied a consistent
economic methodology to provide a useful figure of merit. It must be realized,
however, that the degree of uncertainty in some of the estimates which follow
makes some of the perceived differences among them inconsequential. The dis-
cussion which follows will indicate4 where the data quality does not warrant
making choices on processes or alternative systems which are overwhelmed by
the uncertainty in the basic estimates. Particular attention will be devoted
to looking for dominant choices where one system will be superior to others
over a very wide range of dimensions and energy market conditions.

Production cost estimates in this chapter represent the full cost of
supplying methanol from various feedstocks. By this definition of "cost" we
mean the minimum revenue requirement. The basic approach is to derive an 	 ti
estimate of those costs incurred by a privately-owned company as a result of
engineering, constructing, and operating and maintaining a methanol production
facility. These costs, appropriately aggregated over the system lifetime and
converted to a yearly basis, are divided by the expected annual methanol	 {
output of the specific system analyzed. The result is an estimate of the full
cost per gallon of methanol from that production system: that is, if the
system were to produce exactly its expected output and if that output was
"sold" at a price equal to the "minimum revenue requirement," the resulting
revenues would exactly recover the full costs of the system over its lifetime,
including a return on the investments of stockholders and creditors.

The full costs referred to above include a compensation to investors for
the opportunity cost of their committed funds, and thus the model is inherently
a discounted cash flow approach. It differs from a conventional venture
analysis, however, in that the revenu {=: stream is derived rather than input.
Required revenue per gallon ( or million Btu) is found as the minimum energy
price consistent with recovering all costs.

The minimum required revenue approach can be explained in terms of
standard concepts from capital budgeting theory. 	 First, the project repre-
sented by the methanol production system is constrained to have a net present
value of zero.	 Alternately, the required revenue is defined as that which
gives the methanol project an internal rate-of-return exactly equal to the
opportunity cost or hurdle rate-of-return to the owning company.

The baseline assumption used in the study is a hurdle rate of 2O% in
nominal, after-tax ( current , dollar) terms on the entire project (i.e., 100%
equity).	 This assumption was discussed at length with a number of the project
sponsors and judged to be appropriate for the types of projects being analyzed
in this study.	 While some firms may decide to leverage themselves at the
corporate level, the major fuel producers in the U.S., are not likely to make
specific project decisions on this basis.	 For the sake of making sensitivity
analysis calculations, cases. with 15% and 25% nominal returns have also been
made.	 It is our view, however, that the industry would need to expect at
least the 20% nominal after-tax return ( approximately 15% real) on methanol

$b

plant, investments to make the decision to proceed.
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A graphical representation of the revenue requirements approach is shown
in Figure 4-15. The cost of the project, represented by the "cost of capital'
area, is the annual capital cost of the plant on both a per-unit product basis
(left axis) and annual basis ( right axis). Thus, all the construction costs,
equipment costs, inventories, working capital requirements, contingencies,
etc., have been present-valued and reduced to a constant annual equivalent,
which provides for capital repayment and an assumed after-tax return. The
variable costs grow over time as feedstock, material, labor, etc., escalate
due to increased scarcity and general inflation.

One typical feature of capital intensive energy process plants is that
once installed, their total production costs are less sensitive to changes in
the general price level than non-capital intensive systems. Thus, even though
the early production costs may tend to be higher than the competition (as
depicted in Figure 4-15), they may be overtaken by more rapidly escalating
fuel prices. Obviously, to make such investments on the expectation of making
up for early losses in later years is a highly risky undertaking, as the
recent drop in oil prices in 1982 illustrates. In a later section on
near-term investment decisions in methanol production, the criteria for
investments in methanol capacity expansion will be discussed in some detail.

a
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In the results to follow, we will present a range of production cost
information which involves many sensitivities on capital cost, fuel cost,
escalation, required rates of return, year of operation and inflation.	 These
sensitivities are important for two reasons.	 First, we want to understand and
distinguish r%9se cost drivers which are particularly important to methanol
production cost.	 Second, many of the cases considered are particularly per-
tinent to a distinct phase of the development of the industry.	 For example,
we have computed the impact of scale and required equity return on unit
production costs.	 This information will be useful in characterizing the
evolution of the industry where the earlier investments in coal-to-methanol
capacity will be both smaller scale to gain experience and command a higher
required return to compensate for scaling and market risks.

'.gF

7}

Thus, the material which follows is part of the raw material for our
transition analysis on the industry production side, but does not lay out our }

production scenarios. 	 The latter analysis is presented in the Summary Report
in the section on methanol transitions (section V). 	 Obviously, required f

methanol prices in no way indicate that the value of the fuel in various usea
is high enough to justify that price.	 The interaction of industry required

prices and value of the fuel in various uses will determine its market value.
In later sections we will also look explicitly at methanol value.

i

1.	 Captial Cost Summary

The detailed derivations of the capital a ►ad operating cost require-
ments are given in Sections B and C. 	 This brief jummary (Tables 4-23 3 4-24)
is simply intended to present again in a concise fashion, the actual figures
used in the required revenue calculations. 	 It is important to note a few key f
facts about the methanol production plant specifications in Tables 4-23 & 4-24.

1

o	 Although the scales of some of the plants are different, it is our
contention that the plants are appropriately scaled given the
overall system configuration.	 For example, the collection and
transportation of wood mitigates against large plant scale. 	 In the
case of natural gas, we are considering only remote barge-mounted
synthesis plants, thus limiting potential scale. 	 As a result,
although some systems may appear to be at a disadvantage due to {

scale, this is not true when the end-to-end-system is considered,
which is done in another part of the report.

o	 Not all of the technologies in Tables 4-23 & 4-24 are at the same
stage of development as of the writing of this report. 	 We have
adjusted for this inconsistency by assuming larger contingencies

y

for processes in earlier stages of development. 	 For example, since
the Lurgi dry bottom gasification process is commercial, we have 1
assumed a 15 percent capital cost contingency.	 Similarly, 'a low
contingency is assumed for the barge-mounted methanol synthesis ?;

process (17X), but larger contingencies (20% and 25%, respectively)
are assumed for the Lurgi slagger and shale retort, since they are
in earlier sta$es of development. In addition, in our transition
analysis, we have also assumed that these processes are implemented
in time frames consistent with development through pilot plants,
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demonstratons and finally commercial-scale systems. Not all these
systems are candidates for full-scale commercial production in the
late eighties.

o	 Finallr,, we have attempted to explicitly acknowledge the
uncer4 ainty of the costs for all these systems compared to
conventional fuels by doing sensitivities on various aspects of the
process assumptions and examining the impact on production costs.
These results are presented at the end of this chapter.

2.	 Financial Assumptions

The economic methodology used in this study requires that assump-
tions be made For the following financial parameters: general inflation rate;
escalation rates for capital equipment, operations and maintenance expenses
and feedstock costs; debt-equity ratio; before-tax interest rate on debt;
required after-tax return on equity; appropriate local, state, and federal tax
rates; system lifetiae; and depreciation method. Each of these parameters
will be discussed below, and are summarized in Table-4-25.

Table 4-25. ECONOMIC ASSUMPTIONS SUMMARY

ASSUMED VALUES
DESCRIPTION 1982 - 1990 1990 - 2000

General Inflation Rate 7.0% 6.0%

Construction Escalation Rate 8.0% 7.0%

Operations & Maintenance Esc. Rate 7.0% 6.0%

Return-to-Equity (nominal after-tax) 15%,, 20%,	 25% 15X,, 20%

Interest Rates on Debt (before-tax) a,14% 12%

Debt/Equity Ratio* 0/100 0/100

Depreciation Schedules;
Plant and Equipment ACRS - 5 yrs ACRS - 5 yrs
Buildings ACRS - 10 yrs ACR8 - 10 yrs

Federal Income Tax Rate 46% 46%

State Income. Tax Rate 9% 9%

Investment Tax Credit 10% 10%

Insurance and Other Taxes e«	 2% 2%

The debt/equity assumption is really more general than Ad'icated in Table -
4-25.	 A 15 percent nominal after-tax return, for example is the same cost
requirement as a 25 percent equity return, -a 16 percent interest rate and a
70130 debt equity ratio.	 Thus, our results are consistent with a variety
of financing options, which are summarized in Table 4-28.

f
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a.	 Inflation Rate. The general inflation rune is assumed to be 7
percent ;rom 1981 to 1990 and G percent from 1991 to 2000.* These rates
correspon4 4o the GNP price deflator taken from DRI's Spring 1982 Energy
Review** and are consistent with the other escalation rates utilized in this
etudy. ObvioL.,.'y, this rate has been rapidly changing over the last decade
and could deviate substantially from this assumed level. Since a change in
the GNP deflator is implicitly included in both our escalation factors and
discount '`actors, much of this variability would cancel out.

1.	 Escalation Rates for Capital, Variable Costs and Feedstock
Costs. Capital costs were assumed to escalate at 8 percent throughout the
construction period up to 1989 and at 7 percent thereafter in nominal terms or
1.0 percent in real terms. Operations and maintenance costs were assumed to
escalate at 7 percent for the entire forecast period. Thus, we have assumed
that the recent pattern of real escalation in these factors continues.

Feedstock costs were assumed to escalate at different rates depending
upon the feedstock in question.	 Table 4-26 summarizes the assumptions used

`	 for all methanol produc ,t;.on feedstocks. 	 A more thorough description of the s

energy forecast assumptions may be found in Section III of the Summary Report.
9

r C.	 Debt-Equity, Cost of Debt, Return on_Equity. 	 Projects of the
size and scope envisioned in this report can be financed in a variety of k

ways.	 The base case a°a-emption is that the viability of the project should be
based on a hurdle rate which is assumed to be 100 percent equity financing
with either 15, 20, or 25 percent after-tax return-to-equity. 	 In addition to
this base case, a number of other sensitivities will be considered to illus-
trate the impact on product cost of financing alternatives. 	 In Table 4'-27 the
financing sensitivities considered have been summarized. 	 The choice of the
app'ropr.iate financing structure and required return for a given project will
depend on the overall economic climate prevailing at the time the decision to
proceed is made, the status of the technology process used, the availability
of governmental incentive programs, etc. 	 These considerations will determine
the assumptions used in our transition analysis.	 This section of the report
is merely explaining how the production cost projections were made, not the {
:rationale for them.

i

d.	 Tax Rates, Tax Credit.	 The combined (state and, federal)
effective income tax rate is 51 percent. 	 This composite rate was computed. .'g

according to the equation:

Combined effective tax rate 	 federal tax rate + state tax rate

(federal tax rate x state tax rate)

}

`	 *Actually the rates in DRI were 7.1 percent and 5.9 percent which were s

rounded off for simplicity.

**Data Resources, Inc., Energy Review'Spring 1982, Volume 5, Number 5, 1982.
14
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Table 4-26. FEEDSTOCK COSTS * ( 1981 $/million Btu)

FEEDSTOCK COSTS (atplant) ESCALATION RATES
1981-1990 1991-2000

BASE CASE SENSITIVITIES W W

$1.00
Natural Gas $1.50 910 8.0

2.00

' $1.20
Petroleum Coke $1.80 9.0 8.0

$2.40

7.0 6.0Wood Waste $1.80
$2.40

$0.80

Coal** $1.10 8.0 7.0

$1.40

Data Resources, Inc., Energy Review Spring 1982, Volume S, dumber 5, 1982.

** As a means to get appropriate coal prices for use in the base case and
sensitivity analysis we have obtained direct price quotations from the coal
fields under study:	 Black Mesa, Southern Utah, San Juan, Vinta, Green
River and Powder River.	 The figures in Table 4-26 bound the pertinent
range for coal costs in these areas.

where the federal tax rate is 46 percent and the state tax rate is assumed to
be 9 percent. The investment tax credit used in the cost calculations is 10
percent.

e. System Lifetime and Plant Capacity Factor. System lifetime 	 N
for all the plants^` as assumed to be 20 years and the plant was assumed to
operate 330 days per year.

f. Depreciation Method. Allowable percentages in the Economic
Recovery Tax Act of 1981 were used. Ninety-five percent of the plant was
assumed to be 5-year depreciable, and 5 percent of the plant was assumed to be
10-year depreciable. Because in all cases, the plants would come on line
after 1986, depreciation rates were used as shown in Table 4-28.

}
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Table 4-27. FINANCING ASSUMPTIONS

TEN-YEAR DEPRECIABLE !;^FITAL FIVE-YEAR DEPRECIABLE CAPITAL

Year Rate Year Rate
1 -,	 .10 1 .20

2 .18 2 .32

3 .16 3
.24

4 .14 4 .16

5 .12 5 .12

6 .10

7 .08

8 .06

9 .04

10 .02

:r

a.

^a
r

I
w,

NOMINAL AFTER-TAX BEFORE t	 DEBT/EQUITY
FINANCING OPTION RETURN ON EQUITY DEBT RA ..	 RATIOM M
REFERENCE CASE 20.0 - 0/100

Sensitivity 1 15.0 - 0/100
Sensitivity 2 25.0 - 0/100
Sensitivity 3 13.5 - 0/100
Sensitivity 4 11.0 - 0/100

EQUIVALENT CASES 15.0 - 0/100
to our 15% nominal 18 .5 .14 30/70
after-tax case 34.0 .14 70/30

EQUIVALENT CASES 20.0 - 0/100
to our 20% nominal 25.6 .14 30/70
after-tax case 50.7 .14 70/30

EQUIVALENT CASES 13.5 - 0/?00
to our 13.5% nominal 28.6 .14 30/70
after-tax case 16.3 .14 70/30

EQUIVALENT CASES 11.0 - 0/100
to our 119 nominal 12.7 .14 30/70
after-tax case 20.3 .14 70/30

Table 4-28. DEPRECIATION SCHEDULES	 G



i
A cost comparison of all the methanol plants described in Table

4-23 under the reference scenario assumptions of Table 4-29 is shown in Figure
4-16.	 These are all plant-gate costs. and thus should not necessarily be

4 considered as indicating preferred options until end-to-end systems are
f compared.

On a plant gate basis, however, it is clear that remote natural gas is
r the least expensive method for producing methanol in the short-run under the

reference scenerio assumptions of Tab-le 4-29 and the sensitivities which have
been run for the various systems. 	 Even if remote gas feedstocks were to cost
$2.50/10 6Btu, it would have a decisive edge over the alternatives. 	 The

 implications of results are discussed in the report summary and the transition
analysis section of this chapter.	 One feature which is consistent throughout
all our sensitivities is that the capitalization of the project (equity share

LAO and the return-to-equity) are the cost drivers on the production side. 	 A
second important factor is the expected annual increase in the methanol

i product price.	 If it is anticipated that it will grow at the expected rate of
inflation (6%), then the minimum acceptable selling price is significantly
higher than if it is expected to grow at 2 percent above general inflation ($X
nominal).	 Methanol production costs are particularly insensitive to feedstock
costs and moderate changes in plant scale. 	 For reference purposes, the
production cost results are shown in Table 4-30 for the methanol cases, and in
Table 4-31 for the alternative synfuel cases.

4. Other Production Alternatives

Although they do not fit into the previous sections of the report,
two production cost issues which are pertinent to our transition analysis are
LNG and Gulf Coast methanol production. The former is important because it
will determine the value of remote natural gas as an alternative to methanol
production and the latter is a market which could attract methanol from remote
natural gas away from fuel.markets.

Table 4-29. REFERENCE CASE ASSUMPTIONS

F.k

°

t 

y

Year of Commercial Operation

System Life (years)

Discount Rate (nominal, after-tax)

Investment. Tax Credit

Composite Income 'Tax Rate

Insurance and Other Taxes

Ten-Year Depreciation Factor_

Five-Year Depreciation Factor

t
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'GATE SYNFUEL PRODUCTION COST SUMMARY (1981 )

SENSITIVITY
SHALE
PLANT

SNG
LURGI
DB

SNG
LURGI
SLAGGER

MBG
PLANT M-GAS

ISCHEA-
TROPSCH

LNG
PLANT

Reference Case 61.74 11.47 9.85 9.66 73.00 94.50 4.84

15% Return 44.52 8.40 7.28 7419 51.80 69.60 3.79

85% Capacity 65.52 11.83 10.15 9.96 77.30 100.15 5.47

6% Product ESC 70.56 13.07 11.22 11.00 83.18 107.69 5.58

33% Lower 'Feed Cost - 11.86 10.21 10.04 74.79 98.00 5.16

33% Higher Feed Cost - 10.89 9.31 9.09 70.34 89.32 -

1997 Start-up - 12.05 10.39 - 10.22 75.66 99.71 5.37

25% Greater Cap. Cost 74.82 13.53 11.58 11.32 84.10 111.31 5.68

1987 Start-up - 11.01 9.46 9.28 69.98 90.94 4.74

35% Higher O&M 63.67 - - - - - -

66% Higher Feed Cost - - - - - - 5.89

UNITS $/bbl $/106 $/106 $/106 $/bbl $/bbl $/106
Oil Btu Btu Btu Gasolint Gasoline Btu

Equiv. Equiv.

In the case of LNG, a set of four plant cost estimates* were used to
derive a composite LNG plant cost estimate shown in Table 4-32. The results
of running the assumptions in Table 4-32 in the financial model are shown in
Figure 4-17 and do not yet include transportation costs. Under the refer-
ence case assumptions, the production costs are $4.84/106Btu, while at a 15
percent return the costs fall to $3.79/106Btu. Adding regasificati.,on at the
destination point adds approximately $0.75/106Btu to all the LNG costs in
Table 4-32.

The second production case involves the situation for existing Gulf
Coast methanol producers who will have their gas contracts expire in the raid
1980s and be forced to either produce on market gas or cease operations.**

* Obtained from Conoco data which included estimates by Mitsui, Nissho Iwai,
Sumitomo and Conoco.

Af

f

4

t

** The specific assumptions used were that capital expenditures would be $39
million for working capital, OEM would be $29.9 million annually, naturalY
gas would be $159.4 million at $4.75/106Btu, and plant output would be	 G
296 million gallons-per-year. -x

i

e}
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Table 4-32. LNG PLANT AND OPERATING COSTS (10 6 1981 $)	 a

SYSTEM OUTPUT (M 3 day) 2800

CAPITAL COSTS
Plant Investment $345.5
Other Owner Costs 32.9

OPERATING COSTS $ 18.0
1

FEEDSTOCK COSTS* $ 23.9

*Feedstock Cost assumed $1.00/10 6Btu in
baseline case.

The question of interest is whethe- they can compete assuming that the plant
cost is sunk and market gas will cost somewhere between $4.50/106Btu and
$5.00/10 6Btu in 1987. Our results shown it Figure 4-18 show that under the
reference assumptions and a $4.75/10 6Btu market gas cost with no capital
charges other than for working capital, the methanol production cost would be
$0.67/gal. Other sensitivities on this option change the results slightly to
the $0.70 to $0.75/gal range. This range of prices for the existing U.S.
producers has some interesting implications for the transition analysis
discussed in the next section.
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E.	 TRANSITION PERIOD PRODUCTION OPTIONS.

As one examines realistic options for methanol production in the late
eighties and early nineties, the factors which seem most critical are: the
future of the remote natural gas production, the role of the Synthetic Fuels
Corporation in stimulating methanol fuel production, and the question of
whether there will be a Western coal-to-methanol plant in this century. Each
of these points will be discussed below as part of our analysis of transition
paths.

r

i

1.	 Near Term (1985	 1987)

The most significant question regarding methanol in this near-term
period is the future of the existing U.S. methanol production capacity4 in
order to evaluate this issue we :Wade some projections of production costs for
existing plants in the 1985-87 time frame under the assumptions that the
producer would be operating on market gas* and that the plant cost is sunk.

It is our understanding from industry sources that the existing natural
gas contracts for U.S. producers will virtually all be expired in the 1984-86
period. Thus, as deregulation occurs these producers will have to purchase
market gas if they wish to remain in production. By 1985, the residual oil
price is forecast to be $4.50/106Btu in constant 1981 dollars, thus, natural
gas for industrial users will be very close to this price, assuming that the
long-run equilibrium price for natural gas is parity with residual oil at the
end-use point.

Even with capital costs assumed to be sunk (except for a small investment
in working capital), the minimum production cost for such a producer would. be
$0.67/gal in 1981 dollars at the plant gate in 1987. Although this operating
cost is high by current standards, it is still sufficiently low to keep ex-
isting producers in the market. Obviously, this conjecture is only valid for
existing plants, which justifies the assumption of sunk capital costs. It
would not be expected that any additional U.S. capacity based on non-remote
gas be built in the future.

Four factors are crucial in the expected continued viability of the U.S.
industry. First, expectations of oil prices and hence natural gas prices have
moderated considerably in the last year. Whereas crude oil price, forecasts of
$45 /bbl in 1981 dollars, for 1985 were common ** a couple of years ago, now they
are expected to be only $33/bbl. *** As a result, the market gas forecast in
the same terms has fallen from $5.50 to $4.50 per 106Btu. A second factor
which helps maintain the viability of the existing industry is the high cost
of capital in both the U.S. and around the world. Existing producers with

* Market gas simply means tha;" 1"t commands the market value of U . S. natural
gas which is presumed to be parity with mid-sulfur residual oil.

14

** For example, see DRI Energy Forecast, Autumn, 1980.x

** See DRI Energy Forecast, Spring 1982.
r

}
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amortized plants are somewhat shielded from entry by the high, cost of new
capacity. A third factor is that transportation costs to the Gulf'Coast area
are expensive for production based on remote natural gas in Alaska, Indonesia,
or Saudi Arabia. These tanker costs would be over ten cents per gallon from
either Alaska or Indonesia. The final factor favoring continued U.S. market
gab-L=ad methanol production is the import duty of 18 percent on imported
chemical market methanol. At a projected market value of chemical grade
methanol of $0.74/ga l , the duty alone would add $0 . 12 to the cost of each
gallon.

The pattern which emerges therefore is that the existing "market gas" to
methanol producers will represent the marginal producer in the chemical market
during the mid to late 1980s. Thus, there may be some producers who have
lower costs including transport* than the existing U.S. mainland producers,
but they will not have the capacity to satisfy the demand, and will earn high
returns. The fuel market as it evolves, however, is a very different case.
First, there is no duty on methanol used as a fuel which is a significant
savings and, second, the transport cost to West Coast ports is less than to
the Gulf Coast from Alaska and Indonesia. The potential producers from coal,
remote natural gas, and other sources will thus have to make it in the fuel
market in the near term.

2. Remote Natural Gas

There are large quantities of associated and nonassociated natural
gas which could be converted to methanol (see Chapter 3). To the extent that
these resources do not have access to pipelines, have undeveloped markets in
the host country, or that methanol production is more profitable than LNG
conversion, there couli be considerable methanol production capacity created
in a reasonably short time. The lead time, for instance, for a barge-mounted
methanol plant is about 3-years for a plant with a capacity of nearly 300
million gallons-per-yea''±w

According to out., calculations, the cost of producing methanol from this
source in 1987 is shown in Table 4-33 for various feedstock costs ($1.00 and
$1.50 /106Btu) and discount rates (15% $ ,20X, and 25%).

Our reference case is , that 20 pecent return is needed on such projects
to compensate for the large risks involved.: There are, however, possibilities
for some leveraging by the World Bank in underdeveloped countries or by the	 }
governments of foreign manufacturers of barge-mounted plants (e.g., Japan).
Under such an arrangement, an equity return of 25 percent could still be
obtained on a 60/40 debt to equity capitalization and still be totally con..
aiatent with our overall 15 percent case in Table 4-33.** i

For example. there are existing plants in Canada and Mexico who may
maintain 4cr-2sr, to below-mariket natural gas indefinitly, thus giving them a

l'	 ^hnmpet^.k^-ve edge.

** if debt is supplied at 16 percent interest, the overall cost of capital
after taxes is (0.6)(.16)(1-0;.51) + (0.4)(0.25) 	 14.7%.

l
i
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Table 4-33. METHANOL PRODUCTION COST FROM REMOTE NATURAL GAS - 1987

RETURN TO FEEDSTOCK COST METHANOL PLANT-GATE COST
EQUITY ($/106 Btu) gal	 $/IOOBtu HHV

15X
$1.00 $ 0.42 $ 6.49
1.50 0.47 7.26

20% 51.00 0.51 7.88
Reference Case 1.50 0.55 8.50

25% 41.00 0.66 10.20
1.50 0.71 10.97

Under the most optimistic scenario examined, natural gas might be pur-
chased and delivered to the plant gate for 41.00 / 106Btu with a 15 percent
overall ra ge-of-return on 100 percent of the invested capital. With these
assumptions, the plant gate cost of methanol would be approximately $0.42/gal
or $6.49/106 Btu.* Even if such a scenario were to occur, it is not likely
that large amounts of methanol could be financed in this manner--the World
Bank and foreign government participation is likely to be limited to a few
plants to demonstrate the concept and economic viability of projects in "a few
selected countries."**

Two factors contribute to the like:.ihocd *f barge--mounted methanol
plants being built before Western coa,1--to-methanol production facil?lties.
First, they are less risky from a technological sense because commercially
proven technology would be used throughout. A manufacturer would essentially
deliver a turnkey plant which would limit the ultimate owner's exposure to
construction risks. Second, such a plant would obviously be built with open
sea access which would provide less expensive tanker transport for the
methanol product. The estimate used in this study is four to five cents per
gallon for transport from Cook Inlet on U.S. carriers, and twelve to fourteen
cents per gallon from Indonesia on foreign carriers. A summary of these
delivered costs are shown in Table 4-34 for both Cook Inlet and, Indonesia.

The results shown in Table 4-34 illustrate why the existing industry
centered in the Gulf Coast has some measure of protection against new
entrants. Imported methanol from Indonesia is uncompetitive with chemical
grade methanol after import duties (approximately 13 cents /gal) are added to
the figures in Table 4-34. Even at 15 percent return, the delivered price

^F

T.

*Cost in dollars per million Btu is for higher heating value.

**World Bank, "Emerging Energy and Chemical Uses of Methanol; Opportunities
for Developing Countries," April 1982, p. vii. 	 tx

^i
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Table 4-34. METHANOL FROM ALASKA AND INDONESIA
(1987 operation in 1981 $)

COOK INLET
REQUIRED RETURN

15%	 20%

INDONESIA
REQUIRED RETURN

15%	 20%

PRODUCTION COST* $0.42 $0.51 $0.47 $0.55

TRANSPORT COST 0.05 0.05 0.14 0..14

DELIVERED TO LONG BEACH $0.47 $0.56 $0.61 $0.69

Feedstock cost i.s highly site-specific, but in this case, $1.00/
10 6 Btu was assumed for Cook Inlet in that the colleLtion system
would not be started from a zero base, which would be true in some
Indonesian sites.	 Thus for Indonesia, the baseline assumption
above was for $1.50/ 10 IBtu, whereas at $1.00/106Btu the delivered
product costs would fall by approximately seven cents per gallon in
each case.

would be $0.74/gal, which is higher than methanol from market gas, expected to
be $0.67/gal based on market gas at $4.75/106Btu in 1981; dollars in 1987.
Of course, at 20 percent return, the Indonesian methanol would be $0.82/gal.*'
Only at natural gas costs under $1.50 per million Btu, collected and brought
to the methanol plant gate, would imported Indonesian remote gas-to-methanol
begin to compete in chemical markets.

3.	 Near-Perm Prospects for Coal-to-Methanol

There is virtually no incentive for large scale Western coal-to-
methanol projects being built in the near term under purelyprivate sector
forces. Consideration of projects supported by the SFC will be deferred to a
later section of this report.

The case for using Western coal to produce methanol, is based on
relatively low mine-mouth coal prices in the West, scaling plants upward to
very large sizes at the mine-mouth (e.g., Badger plant), and pipeline trans-port trans-
port of the methanol product to use centers. In the current market, none of
these factors is sufficient to induce non-subsidized Western coal-to-methanol
development. It must be kept in mind that the emphasic,is on the near term
(i.e. up to 1992), because the long-run concept of large plants located at
Western mine-mouths with pipelines for moving methanol may be the ultimate

Actually, prices would be higher to the Gulf Coast area since these 	 3
transport costs are to long Beach.
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evolution of a large-scale fuel methanol market. However, before such growth
can take place, the preconditions must be established and a natural
progression of events must occur.

First, as was discussed earlier in this chapter, the economies-of-scale
in methanol production are not as significant as in some types of chemical
process plants. Measured cost capacity factors vary from 0.33 to 1.39, with
the average about 0.6 overall.* In the case of methanol, much of the increase
in scale is accomplished through additional process trains so that the
individual units are not increased in size. In such cases, abetter "rule of
thumb" is to only scale subsystems at 0.9 scaling factors where additional
process trains are added and at 0.6 where process units are expanded to the
new capacity. If this procedure is followed for methanol plants, the weighted
average scaling factor for the plant is about 0.85 since the major processes
(gasification and methanol synthesis) are full scale at about 4000 to 5000
tons-per-day of methanol output. Some economies can be expected in coal
handling and utilities, which accounts for some improvement in cost per unit
of output as scale is increased. The implications of this scaling potential
is that making very large plants (e.g. 25,000 tons-per-day and up) is not the
total answer to making inexpensive methanol. The figures in Table 4-35
illustrate the effect of scale and the implied errors if the chosen scale
factor is wrong.

As indicated in Table 4-35, the potential errors of using simple scaling
factors are large. Studies which employ the traditional 0.6 factor fora
factor of five scale-up when 0.85 is the "correct" value, introduce a 33
percent underestimate of capital cost to the project. Obviously, the poten-
tial errors are also large the other way. If 0.6 is correct, then the use of
0.85 in this study would introduce a 50 percent overestimate in a five-fold
scale-up case. Two points are illustrated by this brief discussiu::. First,
doing scaling by ratio factors is very imprecise and is only justified for

Table 4-35. POTENTIAL ERRORS IN SCALING COAL-TO-METHANOL PLANTS

ACTUAL COST-CAPACITY FACTOR

0.6	 0.7	 0.8	 0.85	 0.9	 1.0

Percent Error

Scale up 5 times 0 -17 -28	 -33 -39 -48
at 0.6

Scale up 5 times +50 +27 +8	 0 -8 -21
at 0.85

f

i

*"A Review of Cost Estimates in New Technology: Implications for Energy Pro-
cess 'Plants," Rand Cor k,., Edward Merrow, et al., R-2481-DOE, July 1979, p 77.
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relatively modest scale changes. Second, although the resources available in
this study would not permit* detailed estimates of large-scale plants, it is
felt that in the absence of actual cost data showing otherwise that large
economies of scale in coal-to-methanol production are very suspect under
existing commercial technology. ns a result, the incentive for industry to
move to large coal-to-methanol plants is not great based on only modest
expectations of scale economies.

A second consideration in early Western coal-to-methanol for West Coast
markets is the probable location of the plant. Although the overall system
would be less expensive with the plant at the mine-mouth** and pipelined
methanol product, the volume necessary for construction of such a pipeline is
extremely large; in fact, too large for a reasonable progression in coal-to-
methanol plant sizes in the near term. The relationship between pipeline
diameter and methanol output which would utilize its capacity is shown in
Table 4-36 on an approximate basis. As is evident from this chart, a plant or
cluster of plants would have to produce over 45,000 tons -per-day to utilize
the capacity of a 20-inch diameter pipeline or approximately 70,000 tons-per-
day to utilize a 24-inch diameter pipeline. Since it is very unlikely that a
small pipeline (i.e., 10 to 12 inch) over such a long distance would be
economically justified, early plants would have to utilize rail transport for

Table 4-36. DEDICATED PIPELINE CAPACITY FOR METHANOL TRANSPORT

PIPELINE DIAMETER
(inches)

METHANOL OUTPUT
(tons-per-day)

8 8,000

10 12,000

12 17,500

14 24,000

16 30,000

20 45,000

22 60,000

24 70,000

`F
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*In fact, until better data is available based on actual construction costs
for a demonstration plant, doing detailed cost studies on large plants is rt

not justified since it would not increase the accuracy of the estimate(
significantly.

**Assuming for the moment that construction costs would be the same at the
mine-mouth compared to nearer the market, there is evidence that this
assumption would not be true for early plants.
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the methanol product if built at the mine -mouth. Thus, much of the advantage
of mine-mouth conversion would be lost.

In addition to the transport factor, another consideration which weighs
against mine-mouth plant locations is that mine-mouth construction would have
a cost penalty in remote locations. Although each site would, of course, have
unique characteristics, as a general guideline, remote Western sites would
cost nearly 15 percent more than an Illinois location as a reference point.
Thus,, early coal-to-methanol plants which are likely to be sized at 4000 to
5000 tons -per-day at most and could not justify a dedicated pipeline would
suffer an added cost penalty if located at the mine -mouth.

A final factor which could influence early coal-to-methanol plants is
the fact that the Texaco gasifier is not yet fully commercial. Fully
commercial systems, Lurgi and Koppers -Totzek, may not be as well suited to
mine-mouth siting. These systems, because of the gasification processes,
favor production of medium Btu gas or SNG along with methanol. Since this gas
must be piplined or used at the production site, it is not well suited to
mine-mouth sites. Thus, there are some forces which make the prospect of
mine-mouth conversion and pipeline transport to California unlikely in the
near- to mid-term.

Taking into account the considerations discussed above, there are only a
_	 few concepts for coal -to-methanol for West Coast markets which satisfy the

various constraints.	 Three such cases were examined to determine if near-term
coal-to-methanol would be competitive with other production sources and viable
for California ' s end-use markets:	 ( 1) Lurgi technology producing methanol and
MBG near the use site, (2) Winkler gasification and ICI methanol synthesis
producing methanol at a Cook Inlet site, and (3) Texaco gasification at a -.
Western mine-mouth site with rail transport of methanol product,

a.	 Case 1:	 California Site - 1992.	 Such a plant, if it were
built, would employ commercial technology. 	 Thus, we assume that the Dry
Bottom Lurgi is the most reasonable gasification process in the near term.
Second, since this process would produce by-product MGB or SNG, the plant

t
would have to locate near a short -haul gas pipeline or a direct market. 	 The
logistics of rail transport of coal feedstock and the economies of scale in

z

gasification and methanol synthesis implies a plant which produces approxi-
mately 2,500 tons-per-day of methanol and nearly 100 million -SCFD of MBG.	 The f
most likely plant site in the West is probably Texas because the MBG could be
utilized nearby as a chemical feedstock. 	 If the methanol is to be used in
California, however, the least expensive end-to-end system would be to locate-
the plant near a railroad line (e.g., Barstow, California) then pipeline the
gas a short distance to use in industrial or utility boilers. 	 The costs of
such a plant are described in Section B of this chapter and summarized in
Table 4-37 with the remainder of the system costs.

b.	 Case 2:	 Alaskan Site - 1992. 	 Another potential concept for

0

near-term consideration is to utilize Alaskan coal near. Cook Inlet for conver-
sion to methanol.-	 The appeal of this concept is that the subbituminous coal
would be mined near the plant site and the product could be shipped by tanker le	 a
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Table 4-37. NEAR-TERM (1987) PRODUCTION COST COMPARISON
FOR COAL-TO-METHANOL CONCEPTS (1981 $)*

CALIFORNIA
PLANT SITE

COOK INLET
PLANT SITE

WESTERN U.S.
MINEMOUTH SITE

Methanol Output 2,425 tpd 5,000 tpd 5,000 tpd

MBG Output (10 6 SCFD) 98 SCFD - -

Feedstock Cost Delivered $0.21 $0.16 $0.10
Conversion Cost 0.95 0.93 0.85
Product Delivery (plant 0.02 0.05 0.10

to market)

TOTAL (methanol equivalent) $1.18 $1.14 $1.05

*The assumptions for this case are from the reference case of 20 percent
return on 100 percent equity capitalization delivered to a coastal power
plant (e.g., Long Beach).	 Feedstock costs are $2.07/10 6Btu delivered in
California and $1.25/10 6Btu for coal to the Cook Inlet plant, and
$0.85/10 6Btu for mine-mouth coal in Utah.

to California ports.	 Some premium would have to be paid for construction at
this location, but the transportation savings would be significant to West
Coast markets.	 In addition, the opportunity cost for this coal resource,

r	 although low in sulfur, is not too high at the mine-mouth because of the high
transport cost given its low Btu content per ton. 	 Given the type of coal
available for feedstock, the most likely gasification technology could be a
Winkler system with ICt methanol synthesis. 	 The cost analysis shown in Table
4-37 is for such a system.

A comparison of the estimated production costs in Table 4-37 shows that
the options are fairly close in costs from all the sources. 	 In fact, given
the uncertainty in any of `here. estimates, it is not really possible to favor
one over another. 	 It is clear, however, that theyare all too expensive to be
viable 'versus gas-fed plants in this time period.

c.	 Case 3:	 Western Mine-Mouth - 1992.	 By 1992 the status of the
Texaco gasification technology will be more mature, which would permit the
construction of a mine-mouth plant with little or no gas by-product. 	 The
primary advantage of this concept is the potential efficiency gain of the
Texaco aystem in methanol production. 	 Transportation costs for coal are
significantly reduced, but without a product pipeline the savings in coal
transport is offset by the added methanol transport costs.

=`^
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COKE WOOD

Feedstock Cost $0.26 $0.18
Conversion 0.77 0.91
Methanol Transport Cost 0.01 0.03

TOTAL $1.04 $1.12

*Reference case assumptions used here were 20 per-
cent return after tax on 100 percent of capital.
Petroleum coke cost of't1.80/10 6Btu and Wood
cost of $32 /Con.

The obvious conclusion is that unsubsidized coal-to-methanol plants are
not competitive sources of methanol in the short-run. Capital costs are too
high to overcome the inexpensive feedstock costs of Western mine-mouth sites.
and the market is not sufficient to warrant methanol pipelines which are
necessary for viable methanol from coal in the long term. It may still be
sensible to build plants near the mine-mouth even before pipelines are built,
because the total transport cost of coal, and product is not significantly
different among these plant options. Thus, as volume increased, the
mine-mouth plants could gain further as pipelines are constructed.

4. Other Near-Term Options in California

Two other options do exist for producing methanol within California
for transition applications in the near term: petroleum coke and biomass.
Although neither of these feedstocks are plentiful enough in quantity to
supply large-scale use of met;nanol for fuels in vehicles, they are indigenous
to the state and potentially competitive for specialized uses. A summary of
the delivered cost of methanol to use sites in California is shown in Table
4-38. The petroleum coke plant is assumed to be at a refinery site and
therefore takes advantage of certain economies in offsites and materials
handling costs, offsetting some of the economies of downsizingto 2000
tons-per-day of output. This scale is consistent with petroleum coke
availability at the large refineries in the state. The projected methanol
costs are competitive with the coal-to-methanol cases, but not with methanol
from remote natural gas.

The biomass system is assumed to be scaled at 575 tons-per-day of
methanol output on the basis that any larger system would require feedstock
transport over too long a distance to be competitive. Thus, any economies in

Table 4-38. 1987 METHANOL PRODUCTION COSTS
FROM CALIFORNIA FEEDSTOCKS (1981 $)*
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methanol conversion would be mo.ce than offset by added feedstock gathering
costs.

The system using methanol from wood is slightly more expensive from our
calculations than the petroleum coke case. Of course, it must be realized
that the potential scale of this system is severely limited within the state
and therefore it is not a potential large-scale methanol source. In addition,
there are incentives in. place which would further :reduce these costs to system
users. Credits exist which could reduce the apparent cost $0.40/gal for
methanol from biomass feedstocks used in 10:1 gasoline blends, but even in
neat uses the credits can be as high as $0.20/gal for firms with tax liability
to offset. Thus, with the existing tax incentives, methanol from biomass
feedstocks may be viable in selected small-scale applications.

5. Near-Term Summary

The dominant supply option for expansion of methanol capacity in
the near-term is methanol from remote natural gas from Cook Inlet, Indonesia
or other foreign sources. This competitive advantage is attributable to both
technical and economic sources. There is an inverse relationship between the
hydrogen content of potential feedstocks and the complexity of the plant
needed: to produce synthesis gas for the methanol synthesis process. Natural
gas, therefore, has a significant advantage over coal-based systems owing to
the high hydrogen content of natural gas. This relationship is illustrated in
Table 4-39, where the capital cost per gallon of annual capacity is shown for
a set of representative feedstocks.

Given the relationship of capital costs shown in Table 4-39, it is clear
L,sat unless the feedstocks for systems such as residual oil, coal and lignites
:irk considerably less expensive than natural gas, there is no motivation* for
huil.aing such plants. While these feedstocks will be less expensive versus
aarket gas after deregulation, it will not be true for remote natural gas,
which makes the latter source a dominant choice in the near to mid term.
Another economic factor which may also be important in the near-term market is
that the scale of efficient plant size is smaller for natural gas-based
plants, thus making them more consistent with near-term markets. Finally, the
technical risks of such investments are reduced because the technology has
been used extensively at full-commercial scale. Thus, required returns may be
lower for such plants because of lower technical risks, reduced scale of
investment, and perhaps greater market flexibility, since these plants would
utilize tanker transport which could service Japanese as well as U.S. markets.

6. Role of Synthetic Fuels Corporation

There is a real dilemma in assessing the Synthetic Fuel Corpora-
-tion's role in methanol production.. Unlike methanol, the marginal source of
crude oil for the United States is imported crude from the Middle East. Thus,

*Excluding, of course, incentives provided by the SFC and alcohol fuel from
biomass credits.

k
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Table 4-39. APPROXIMATE CAPITAL COST* PER GALLON
OF ANNUAL CAPACITY (1981$)

FEEDSTOCK CAPITAL COST/ANNUAL GALLON

Natural Gas (Industrial Site) $ 1.00

Natural Gas (Barge-Mounted) 1.50

Residual Oil 1.50

Coal 3.00

Lignite 3.40

*Capital Cost estimate is at a common site for total plant
investment and is only for basic capital of construction
excluding escalation interest costs, working capital and
start-up costs.

the presumption is that any synthetic fuel plants which do come on line tend
to displace foreign production. 	 Actually, of course, it is not so clearcut.
Synthetic fuel production will affect marginal supply sources both domestically
and from imports.	 Price-competitive shale oil, for instance, could make some
forms of tertiary recovery uneconomic.	 But even in this case, much of the
impact is upon the same firms in either case and would affect growth rather

r
than existing production capacity. 	 The methanol industry is somewhat a
different.	 After 1985, when natural gas is deregulated and contracts for
natural gas at below market rates expire, the existing U.S. production '3

capacity will become the marginal producer for chemical methanol. 	 Thus, the
dilemma is whether the SFC should subsidize a project which might ultimately
displace an otherwise viable U.S. plant. 	 Most of these methanol projects
which have been proposed to the SFC have projected fuel markets for their j
output, but the actual sales mix when they are put into operation could be
quite different.	 Obviously, this problem does not apply to methanol converted
to gasoline, but is a concern otherwise.	 As will be shown below, the support
given by the SFC could make the difference of some projects competing in
chemical markets where they would not if left to the private market.

The potential impact of SFC support of Western coal-to-methanol projects
for use in California takes three forms: 	 price guarantees to reduce the risk
of falling market prices (possibly from foreign competition based on remote 4

natural gas), loan guarantees which would permit some projects to leverage
their financing significantly beyond what they could obtain without support,
and price supports whichwould directly subsidize selling prices. 	 The value
of loan guarantees to the large energy companies is less significant than to
consortia formed for project ventures since most of these corporations already
have access to preferred interest rates and perform their financing on a

k
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company-wide basis 'rather than for specific projects. In the case of project
consortia, the effect of SFC loan guarantees is quite substantial. To illus-
trate this effect, one can adlply take the two near-term coal-to-methanol
projects described in Section B of this chapter and examine the impact of
leveraged financing. As an example, it will be assumed that a project could
be financed at 60 percent debt with a 16 percent interest rate and 40 percent
equity which is expected to yield a 25 percent return after-taxes to equity
holders. All other assumptions remain the same as in Section B. The results
are summarized in Table 4-40 for a comparison of financing options, and an
example of the impact of a particular price guarantee mechanism is also
illustrated. In the latter case, the price guarantee takes the form of an
initial price and guarantees real escalation of 2 percent annually over the
general inflation rate compared to a base case where the product is assumed to
escalate only at the rateof inflation (6Y). Not examined in Table 4-40 is
the price support impact since it is clear that with a sufficient price
support any plant could be made viable.

As illustrated in Table 4-40, the combined effect of both incentives is
sufficient to bring the minimum acceptable methanol price down approximately
one-third from the unsubsidized c8se. Even this combined_ effect, however, is
not sufficient to compete with remote natural gas from Alaska in West Coast
markets which could be delivered to Long Beach for approximately $0.56/gal
with a 20 percent after-tax return and $1.00/106Btu feedstock cost. Even
remote gas to methanol from Indonesia could be delivered to West Coast fuel
markets for $0.69/gal, which substantially undercuts any Western coal-to-
methanol concept, and is also below the Alaskan coal case, which would be
$0.81/gal when five cents for transport is added to the figures in Table 4-40,
or theWestern mine-mouth case, which would be $0.79/gal with rail transport.

7.	 Financing Impacts

The impact of required rate-of-return on coal-to-methanol
production costs is illustrated in Figure 4-19, where the nominal after-tax
rate-of-return is varied from 11 percent to 25 percent. Other assumptions in
Figure 4-19 correspond to the reference case assumptions for the 5000 ton-per-
day TCGP/ICI coal-to-methanol plant. With these highly capital intensive
plants it is clear that the required .rate-of-return is a crucial determinant
of methanol product cost. In Figure 4-19, for instance, methanol cost rises
from $0.56/gal to $0.65/gal, $0.73/gal, $1.00/gal and $1.36/gal at required
rates of return of 11 percent, 13.5 percent, 15 percent, 20 percent and 25
percent, respectively. The reference case assumption is that these plants 	 #
would require a hurdle rate-of-return within the transportation fuels
industry* of 20 percent. Within that industry the actual means of financing
is not that crucial because financing is done at the company level, not on a

Meetings were held with the project evaluation staffs of several of the 	 a

study sponsors to discuss the appropriate required returns on large projects
.

	

	 like coal-to-methanol production. The criteria varied somewhat by company,
but 20 percent in nominal terms or '15 percent in real terms emerged as the
baseline value for the non-regulated fuel producers. On projects in
developing countries where production risks or market risk are judged to be
especially high, the required return might be raised to 25 or 30 percent. 	 t
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Table 4-40. IMPACT OF LOAN GUARANTEES AND PRICE SUPPORTS ON MINIMUM
ACCEPTABLE PLANT-GATE METHANOL PRICES (1981 $/gal)

i

1987 MINIMUM ACCEPTABLE PRODUCT PRICE

(1) (2) (3) (4)
PROJECT SFC SFC SFC LOAN

PRIVATE LOAN GUARANTEE PRICE GUARANTEE AND PRICE
VENTURE ONLY ONLY GUARANTEES

ALASKAN COAL 1.25 0.92 1.12 0.76

CALIFORNIA SITE 1.45 1.11 1.27 0.93

WESTERN MINE-MOUTH 1.10 0.83 0.96 0.69

(1) The "Private Venture" case assumes that the owners require a 20 percent
on total investment; the return must be earned assuming that methanol
product escalates only at the general inflation rate (6%).

(2) The "SFC Loan Guarantee Only" case retains the assumption that owners
will not count on real methanol product price escalation, but with loan
guarantees they are able to attract 60 percent debt financing at 16
percent to complement the 40 percent equity share assumed to earn 25
percent after taxes.

(3) The "SFC Price Guarantee Only" case implies that the initial required
price would be guaranteed to escalate at 8 percent annually (2% real)
whereas project sponsors would normally require that the project yield
the required return it the project escalates only at the inflation
rate.	 It is further assumed that the project is financed with 100
percent equity financing at an after-tax return of 20 percent. 	 No price
subsidy is implied, however, just protection from prices not rising at 2
percent in real terms.

(4) The. "SFC Loan and Price Guarantee." case combines both incentives:
leveraged financing as in case (2) with the price guarantee escalating
at 2 percent above inflation (case 3).
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Figure 4-19. SENSITIVITY OF COAL-TO-METHANOL PRODUCTION
COSTS TO REQUIRED RATES OF RETURN (1981 0
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project basis.	 Thus, tt;e required returns used in this study correspond to
hurdle rates of return which are used for decision making on whether projects
should be pursued.	 Averaged realized rates-of-return may be lower than those
used for decision making purposes, resulting from many factors in project
implementation.

The sensitivities in Figure 4-19 are intended to show the impact on
methanol minimum required prices of the financing casts associated with
subsidized or guaranteed loans and regulated utility financing costs. 	 An
overall return on a project of 13.5 percent to 15 percent is comparable to the
types of financing support which are being considered by the Synthetic Fuels
Corporation.*	 Thus, the impact of loan guarantees to project sponsors who can

For example, if the project equity support were required to be 30% of the
capital investment and yield a 30% return, then with debt borrowed at 12%
for the remaining 70% of the capital requirements, the nominal after-tax
required rate-of-return (k) would be 13.2% with a 50% tax rate, [k - (.30)

}

(.30) + (.12) (.70) (1-.5)). 	 This example is not implied to be a policy of
the SFC, but rather an example of the potential impact of loan ;;uarantees to
some project sponsors.	
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take the full advantage of the tax benefits of the project as well as leverage
the project is to lower the minimum acceptable price from $1.00/gal to
$0.65/gal to $0.73/gal in this hypothetical example.

In the terms used in this study, the impact of utility financing on a
project of this type would be to lower the minimum acceptable product price to
approximately $0.56/gal.* Thus, the impact of financing is substantial, but
it is also somewhat misleading to interpret this financing impact as a
solution to lowering the cost of methanol production. The high returns
required and low leveraging in the fuel production industry are a reflection
of the higher production market risks in this industry. The kinds of returns
allowed in the regulated utility industry simply would not compensate for
these real risks. The financing incentives of the Synthetic Fuels Corporation
are an attempt to subsidize projects by having the government assume some of
this risk in order to stimulate a synthetic fuels industry. Thus, SFC support
may be a way to get some experience with methanol production, handling, and
marketing, but it likewise is not a solution to the high cost of methanol
production unless risks and costs are actually reduced through experience.

8. Mid-Term (1992-1995) Coal-To-Methanol

In the mid-term period during the mid 1990s, there will be improve-
ments in production technology which may lower methanol production costs. For
example, the Texaco Coal Gasification Process (TCGP) process will have been
demonstrated in the Coolwater project and will be ready for use in methanol
production. The impact of this development is shown in Table 4-41, where the
near-term coal-to-methanol options discussed: in Section D.3 are compared with
the TCGP process at plant scales of 5000 tpd and 10,000 tpd.

As demonstrated by ehe figures in Table 4-41, there are potential savings
in conversion costs through increases in both efficiency and production scale.
The TCGP process may be capable of reducing conversion costs slightly over 10
percent at comparable scales and another 10 percent in larger plants, reducing
conversion costs to $0.74/gala Of course, to really take advantage of mine-
mouth conveYo'on, the product must be shipped by pipeline to West Coast mar-
kets. For e.,cample, if total methanol output in the mid 1990s were at least
15,000 tons-per-day, the transport cost in a 14-inch pipeline would. be-approxi-
mately $0.07/gal, which would reduce delivered cost of methanol to California
to $0.96/gal, as compared to the 10,000 tpd plant shown in Table 4-41.

The prospects for sufficient demand f-r inethunol to induce large-scale
coal-based plants during the early 1990s is very remote. Cost reductions of
the type _shown_in Table 4-41 are not sufficient to open the market up to the
large mine-mouth conversion/pipeline transport which would make methanol a
widely used fuel. The only single factor which would significantly alter this

* As an example, if the allowed equity return were 16 percent for SO percent
of the project capital requirements and debt were obtained at 12 percent for
50 percent of the capital requirements, then the nominal after-tax rate-of-return rate-of-
return k would be 11 percent with a 50 percent tax rate, [k = (.16) (.5) +

(.12) (.5) (.5))7•
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Table 4-41. IMPACT OF MID-TERM TECHNOLOGY ON COAL-TO-

METHANOL PRODUCTION COSTS* (1992 in 1961 4)

PRODUCTION TECHNOLOGY

LURGI WINKLER TCGP TCGP
COST CATACORY 5000 tpd 5000 tpd 5000 tpd 10,,000 tpd

FEEDSTOCK COSTS** $0.33 $0.16 $0.15 $0.15
CONVERSION COST 0.99 1.97 0.85 0.74
PRODUCT TRANSPORT COSTS*** 0.02 0.05 0.10 0.10

MINIMUM ACCEPTABLE PRICE $1.34 $1.18 $1._10 $0.99

* Reference case assumptions are used in financing: 	 20 percent return
after-taxes on 100 percent equity capital.

** Feedstock costs represent $2.07/10 6Btu delivered
lurgi case, $1.25/10 6Btu at Cook Inlet for Winkler

to California
and 41.10

for the
/106Btu

at the mine-mouth for TCGP systems.

** Transport costs are for local rail transport for lurgi, tanker transport
for Winkler, and unit train from San Juan to 1,A for TCGP.

conclusion is if coal-to-methanol gasification and methanol synthesis becomes.
a much less risky investment, inflation subsides to a low stable rate and the
cost of acquiring capital decreases. In such a-case, highly capital-intensive
systems like synfuel production improve significantly. In the example used
above, for instance, if the combined effect; of the above factdrs was to make a
15 percent nominal after-tax return adequate to attract capital, the plant-
gate production costs for the 5000 tpd TCGP plant and 10,000 tpd TCGP in 1992
would fall to $0.73/gal and $0.65/ga1, respectively. In terms of delivered
minimum required prices to California markets, the respective values could be
as low as $0.80/gal and $0.72/gal for these types of plants if transported
through a high volume pipeline (e.g.,, 14-inch diameter). Thus, coal-to-
methanol plants can ultimately be a competitive supply option but not until:	

t

(1) Risks are reduced through successful demonstrations;

(2) Market and technical risks are sufficiently low that these highly
capital-intensive plants are competiting for capital against
options with risk adjusted opportunity costs nearer 15 percent
after-taxes; and

(3) Demand has risen suffiently that less expensive supply options	 E

(remote natural gas for fuel markets and market gas in existing
plants for chemical markets) become inelastic in supply.

,t
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The prospects for these criteria being met under the baseline energy
price forecast before the mid to late 1990s are very unlikely for non-
subsidized ventures, unless some firms are willing to accept returns of less
than 15 percent after-taxes for these risky ventures. At this time there does
not appear to be a willingness to do so.

9.	 Methanol Transition Supply Summary

From a transition period perspective, the most interesting
1

characteristic of the near-term supply is what type of producer is a marginal
production source.	 As was mentioned earlier, by 1985 most existing U.S.
producers will be on market gas which will be approximately $4.50/10 6Btu in
1981 dollars.	 It is highly likely that this type of capacity will be the !.
marginal production source for the U.S. chemical market. 	 Some producers will
have a comparative advantage and do better in terms of their returns from
source s Canad ian 	 gas.marginal suply
atthes plant
	

ntheTran 	 top	 8	 8 
$0.71/gal in 1981 dollars by 1987, which is composes oaf $0.54/gal in feedstock xk
cost and the rest in operating cost and returns da; working capital investments.
At market prices below this level, these producers would be better off shut-
ting down entirely if they cannot cover opE ,Viting costs.	 Transport costs, the
import duty of 18 percent, and the moderations in oil and natural gas prices
are the keys to this scenario.	 Obviously, if 'oil and gas prices should
accelerate rapidly in response to some exogenous change in the oil market, the
domestic U.S. industry will be priced out of the market more rapidly by
foreign producers.	 Figure 4-20 shows the relationship of the different supply
options in the transition period. Y

A key implication of the deregulation of natural gas in this country is
that very inexpensive methanol with a large excess supply for fuel markets is
not likely.	 The reason is that the bulk of the U.S. producers operating on
market gas have a threshold of obtaining $0.67/gal at the plant. gate or they
are better off closing down. 	 Thus, there is a significant methanol capacity
which leaves the market at lower prices. 	 Other competitors from foreign
sources must have plant-gate costs of ,$0.50' /gal to compete, given transport
costs and import duties which require remote natural gas at $1.00//106Btu or
less, acceptance of a 15 percent return after taxes, and transport costs of
$0.10/gal to the Gulf.	 There will not be too many foreign producers meeting
these criteria.	 Thus, foreign producers who can land methanol on the West
Coast for $0.50/gal to $0.55/gal in 1987 dollars will be better off selling
into fuel markets than trying to penetrate the chemical market. 	 Domestic
Alaskan remote gas plants would have to be offered at least $0.63/gal to
$0.65/gal to divert their output from competing in the chemical market, since

`	 they would not be subject to the duty.	 Thus, market forces will prevent large
quantities of very inexpensive methanol (under $0.55/gal),from flooding the
fuel market.	 Hopes that the increase in worldwide capacity will drive down
methanol prices to verylow levels are probably optimistic if one is expecting
those low prices to stimulate new fuel uses.

The implications of Figure 4-20 are that for West Coast fuel uses, the
remote natural gas option is the least expensive supply source. 	 Lower
feedstock costs ($1.00/106Btu) and transport costs ($0.05/gal) for the Cook
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Figure 4 -20. DELIVERED COSTS OF MARGINAL METHANOL PRODUCERS (1981)

Inlet case give it lower delivered, product cost than Indonesian methanol 	 i
(where $1.50/106Btu gas and 0.14/gal transport costs were assumed). The
elasticity of supply from these sources is uncertain after two to three plants 	 x
are constructed, but even that quantity (600 to 900 million gallons-per-year)
is quite sufficient to supply California's near-term (up to 1992) demands under
realistic market growth assumptions. Further studies on methanol should focus
on this issue of characterizing the elasticity of methanol supply from remote
natural gas. The transition will be affected by how rapidly marginal produc-
tion costs rise as more capacity is added. For example, although the least ex-
pensive option is Cook Inlet at a minimum of $0.56/gal, the costs rise rapidly
as feedstock escalates or longer transport distances are required (e.g., from
Indonesia). The impact of these factors is illustrated in Table 4-42

The precise dynamics of evaluating the remote natural gas supply
industry are difficult to predict, but they will tend to exploit the most
efficient resources first and then add more expensive options as production
expands. There are a number of different characteristics of remote natural
gas which would affect its value. The lowest opportunity cost of remote

s
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Table 4-42. SENSITIVITY OF 1987 DELIVERED M&GINAL PRODUCTION
PRODUCTION COST TO REMOTE NATURAL CAS COST (1981$/gal)

PLANT SITE

FEEDSTOCK COST ($/106Btu

1.00 1.50 2.00 2.50 3.00

Cook Inlet

Indonesia

0.56

0.65

0.61

0.70

0.67

0.76

0.72

0.81

0.78

0.87

natural gas would be associated gas which is being flared. Associated gas
which is being reinjected has a value in enhancing oil recovery from that of
coal to that of oil, depending on the alternatives available. For non-
associated gas the floor price which would be required for opening up a new
field is considerably higher. Estimates from two industry sources* active in
natural gas development are that 41.75 to $2.00/106Btu would be the minimum
gas acquisition cost in this latter case. Obviously, the opportunity cost of
remote gas could be higher than its acquisition cost in the field if there
were higher value uses, such as conversion to LNG or ammonia. Thus, the
acquisition cost of gas for methanol conversion is highly site-specific,
depending on the opportunity cost of gas in each gas field. This discussion
of gas cost is important because some 'projects can probably be established for
gas acquisition costs from $1.00 to $1.50/10 6Btu based on low opportunity
cost associated gas. Expansion beyond these quantities, however, will necessi-
tate more expensive gas ($1.75 to $2.00/10 6Btu and up) for development of
non-associated gas fields. Thus, we would anticipate that Cook Inlet is the
initial site and that two plants could obtain natural gas at a delivered cost
to the plant of about $1.00 to $1.50/10 6Btu. Beyond this level of produc-
tion, however, the next lowest cost source of gas may be from Indonesia at a
collected feedstock cost of $1.50/10 6Btu, which results in a delivered
methanol cost to California of $0.70/10 6Btu. Thus, simply because there is
a projected source of methanol at $0.56/gal delivered does not mean it is
available in very large quantities at this price level. The marginal,
delivered methanol price from remote natural gas could rise to the range of
$0.70 to $0.75/gal before one billion gallons a year of production is achieved.

The potential for coal-based methanol to become viable is dependent upon
the development of new technology and the actions of the SFC. In.the near-
term, the lowest cost coal option for delivered methanol. to the West Coast is
from Alaskan coal or western mine-mouth coal. As an unsubsidized venture, the
cost of methanol would be too high to compete at approximately $1.10/gal to
$1.35/gal W; vexed, but with SFC support, this cost could be reduced to about
$0.80/gal in 1.987. Although this cost is st.tll not competitive with methanol
from early remote natural gas plants at our assumed gas costs, coal -to-methanol

F

* Based on information provided through discussions with the technical staff
at Chevron and Alberta Gas.
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could find a market in the mid-term, if methanol demand expands in fuel uses;.
After a few remote gas plants are built in the most favorable locations taking
advantage of existing infrastructure to lower collection costs, the cost of
new sources will start to rise. For each increase in feedstock cost of
$0.50/106Btu the methanol product cost rises about $0.05/gal, thus the
marginal cost of remote gas-to-methanol production could be pushed up to over
$0.80/gal from Indonesia if feedstock is $2.50/10 6Btu or more. Thus, a
mid-term role for coal-to-methanol depends on two factors: SFC support and
sufficient methanol demand to drive up the marginal cost from remote natural
gas sources. As was suggested earlier, this pressure on remote gas prices is
not likely to develop until at least three or more plants are in place, which
could take ten to twelve years. The ether factor vrhich will tend to moderate
remote gas price increases is the moderation in world oil prices will tend to
reduce the value of LNG and hence the amount LNG producers can offer for
remote gas resources.

In the longer term, coal-to-methanol production costs can be reduced as
the Texaco Coal Gasification Process technology becomes commercial and is
implemented in large (5000 tpd) methanol production processes. The higher
efficiency of this system versus the Winkler technology could reduce costs
about $0,10/gal at the plant gate. Significant economies, however, depend
upon mine-mouth plant location with pipeline transport. Thus, in the year
2000 timeframe in Figure 4-19, the lower bound on the coal production cost
region represents this case, where large TCGP/ICI plants (5000 to 10,000 tpd)
are located near the :nine-mouth and product is transported by pipeline to
central distribution centers in California. This delivered cost could be in
the range of $0.95 to $1.00/gal in 1981 dollars. An interesting coincidence
is that the subsidized cost of methanol production from Alaskan coal in the
near-term is reasonably consisteztt with the long-term lower bound on

4

coal-to-methanol (adjusted for real escalation) delivered to California.
Thus, if such a plant were supported by the SFC, it would not create an
unrealistic market which could not be sustained by private industry in the
Long-run.. The difficulty will be to find near-term markets, given methanol
from lower cost, non-market natural gas producers and the threat of entry from
barge-mounted remote gas producers. A final step in the long-run supply of
methanol would be when the risks, both technical and market, are reduced.

t,

sufficiently to permit the fuel supply industry to accept a rate-of-return
closer to our 15 percent return-to-equity case. This return assumption with
pipeline transport and mine-mouth coal costs would combine to make methanol 	 r
potentially available to California users at about $0.73/gal in 1981 dollars.
It must be remembered, however, that this is a long-run _ possibility which is
dependent upon the successful resolution of some very real technical and
market risks which by necessity will take the rest of this century to resolve.

,Y
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F.	 POLICY OPTIONS FOR METHANOL PRODUCTION

As our discussion of the nearer-term production options has indicated,
the least expensive major methanol sources reach California by sea. Longer-
term options will probably utilize pipeline transport as part of the most
efficient long-term system. Thus, the first policy premise for methanol
transitions is to facilitate methanol transport into the state.

Establish requirements for port facilities in California and
address environmental and safety concerns. Priority locations
are: (1) Long Beach, (2) Oakland, (3) power plant sites with
terminal facilities (Ormond Beach and !Mandalay).

The problems of moving and storing methanol in California ports do not
appear serious, but there has to be a clear policy by all state agencies that
firms will not face long delays which are caused by ignorance of this fuel and
its properties rather than by any real problems. The same concern ultimately

j

	

	 applies to pipelines entering the state from Western coal fields, but the lead
times are much longer. The key point is that the critical path for methanol
use in California does not depend on large-scale methanol production within
the state in either she near-term or long-term. There will be some methanol
produced from bioenergy sources'in the state for localized consumption at
non-grid-connected peaking turbines and possibly supply vehicle fleets in the
transition period. The crucial supply options for large-scale use, however,
are remote natura l gas in Alaska's south slope, Canada, Mexico, Indonesia for
the near-term and coal in Alaska or Western U.S. coal fields in the longer
term. Inexpensive transportation is crucial to utilization of these resources,
Aich can only be accomplished through tankers and pipelines. Both of these

}

	

	 transport options have similar costs for methanol delivery to California;
about $0.05/gal for tanker from Cook Inlet and $0.04/gal to $0.07/gal for
pipelined methanol from Western coal fields depending on pipeline size and
coal field distance. hail transport over comparable distances from Western
coal would cost $0.10/gal or a difference of about $0.05/gal or $0.80/10°Btu.
A transportation savings of that magnitude is important in accelerating the
cost-effective use of methanol in the state.

Another consideraton on the production side of the market is for the
State to facilitate proposals made to the Synthetic Fuels Corporation for
methanol production based on Western coal, Alaskan coal, or indigenous
California resources (e.g., petroleum coke). This assistance could include;
expedited siting procedures for petroleum cokeor bioenergy plants, assistance
in obtaining, needed, permits for port facilities, and market information on
potential users within the state. This help should not be confined to produc-
tion sources in California because methanol production within the state is not
critical to the transition path. It is more important to support infrastruc-
ture development on facilities to import methanol and transport it efficiently
between various use centers.

j

Establish a liaison within the Synthetic. Fuels Department of
the CEC to assist applicants to the Synthetic Fuels Corporation by
providing detailed California methanol market information and help
in the permit application process (in the latter case for storage
and transport primarily).

err
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As one might expect, since production within the state is not viewed as
critical to a methanol transition, there is relatively little the State of
California can do on the production of methanol per se. The policies above,
however, are important as part of the methanol delivery system. Notably
absent from the discussion above is the recommendation that the California PVC
encourage utilities within the state to co-produce methanol as part of a
combined cycle plant operated on medium Btu gas. Since under mostreasonable
expectations for the future we do not anticipate synthetic gas to be
competitive with natural gas or direct use of coal in electricity production,
there is really tto point in facilitating such an option.* Production of
methanol as a :fuel is a risky venture at this point in time, both technically
and economically, for which utilities simply cannot be compensated under any
foreseeable circumstances. Thus, we see little potential for utilities in the
production of methanol in the near-term transitional phase. The relatively
lower financing costs of utilities, compared to unregulated fuel production
corporations, make capital-intensive projects like methanol and other synfuel
plants look so much more viable under utility financing. It is important to
realize, however, that these lower-financing-costs are based upon lower risk
investments technically, and an absence of market competition. In the case of
methanol production, utility production in the early phases of transitions
merely exposes stockholders and customers to risk for which neither is
compensated.

fr	 f

j

{

4

* one possible longer terry exception would be that if the once-through
methanol combined-cycle coal gasification concept is successfully-commer
cialized, there could be benefits to co-producing, but this concept requlises
significant development and thus is not a factor in )`he nearer term.
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G.	 CONCLUSIONS

In this chapter, an examination has been made of the production costs of

alternative production technologies for methanol and other synfuels. Since
extensive uncertainties exist in most of these processes with regard to their
cost, in.commercial-scale operations, caution must be exercised in attaching
too much significance to small cost differences. There are some instances,
however, where much of the uncertainty is not independent and consequently
reasonably firm conclusions can be drawn. Thus, the conclusions which follow
appear to be reasonable interpretations and inferences of the data as it

appears at the time of this work.

1. M-Gas is Non-Viable

Methanol production costs per 106 Btu from coal should be 17 to
19 percent less expensive than M-gas, resulting from a 10 percent increase in
capital costs, and an 8 percent efficiency loss in further processing. This
extra production cost is compounded in end-use efficiency loss of at least 15
percent in the fuel factor required for neat methanol vehicles versus gaso-
line, making the overall extra cost per mile traveled at least 30 percent and
probably more. Thus, M-gas production is not an important near-term or
long-term factor in the methanol transition, since M-gas cannot compete in the
gasoline market.

2. Remote Natural Gas Dominates Coal

Methanol production in the near-term is dominated by remote natural
gas as a feedstock. The processing requirements of coal-to-methanol imply
approximately $3.00/annual ;gallon of capacity, compared to only $1.50/annual.
gallon of capacity for remote natural gas. Given this two-to-one advantage,
one only considers coal if thefeedstock cost offsets this major capital
advantage. Our conclusion is that substantial remote gas deposits exist which
could be obtained at $2.00/10 6Btu or less, which makes coal-to-methanol
non-viable as an unsubsidized venture through 1995.

3. Existing U.S. Chemical Methanol Industry Appears Viable

r'	 The moderation in the expectation of natural gas prices for 1985,x

	

	
given lower oil price forecasts, has made the existing production capacity
viable in the mid-term. Using, market gas at4.50/10 6Btu to 4.75/
in 1985 to 1987 (in 1981 $) existing producers will be able to compete in
chemical markets with marginal production costs of $0.67/gal to $0.70/gal at
the plant gate. Although remote gas from 'foreign sites will be less expensive 	 {
at the plant gate, the combination of an 18 percent duty and transport costs	 r

of $0.10/gal from Pacific rim producers will keep most foreign competition out 	 E

of the market. The U.S. industry will rely on its sunk capital to compete-- 	 j
new plants would not be viable based on market gas.

z
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4. Methanol Is a More Valuable Fuel than LNG

If remote natural gas is the preferred feedstock for methanol in
California, a concern is whether the resource would be used for LNG conversion
instead of methanol. There is no doubt that strictly as an energy carrier in
large gas deposits (i.e., over 300 million SCFD', LNG is less expensive to
produce and ship under 5000 miles. At longer distances, the cost of trans-
portation in cryogenic tankers becomes more of a factor. Some have suggested
that even at distances 5000 to 10 , 000 miles the added shipping cost of LNG
does not offset its significant production advantage. The key point that is
often missed in these comparisons is that a million Btus of methanol and LNG
are not of equal value in either stationary or transportation applications.
In transportation on a Btu basis, methanol will be more valuable than gasoline
because of the efficiency gain in neat methanol vehicles, while as an octane
enhancer it has even a greater value. Thus, when value is considered,
methanol will successfully compete for use of remote natural gas with LNG. In
other words, methanol producers will be able to offer remote gas owners a
small premium over potential LNG producers and still have a viable product in
many circumstances,

5. Methanol Production within Califo rnia is Not Essential.

Given the significant cost advantage of remote natural gas over
coal and petroleum coke, these resources are not important to the near-term
transition. Other resources from bioenergy may compete in specialized
applications (e.g., non-grid-connected peaking units) especially considering a
potential $0.20 /gal incentive in neat methanol uses and up to $0.40/gal in
10.1 gasoline blends, which come from tax advantages. Bioenergy, however, is
not economic in large-scale uses, even for such things as dual-fueling a large
boiler. Thus, both indigenous feedstocks and transporting feedstocks into
California for processing are not crucial to a successful methanol transition.

6. Port Facil ities and Pipelines are Key Factors

The key feedstocks for synthetic fuels for California are remote
natural gas in the short -run and coal or shale oil in the long-run. In all
these cases, processing will be done much more efficiently near the resource
site. Thus, California needs to do àll_it can to facilitate entry points for
products into the state. In the near -term, port facilities in Long Beach, San
Francisco Bay and coastal power plants are important. In the long-run,
pipelines from Western coal fields will be crucial links in efficient
systems. It is clearly in California's interest to promote transportation
competition between railroads and pipelines by supporting legislation which'
increases the state ' s transport options.

7. Methanol Prices will Not Fall Significantly in Mid-1980s

There are a number of methanol production facilities under con-
struction throughout the world which come-on-line in the early to mid 1980s.
In spite of this added capacity, the market price of chemical methanol in the
next 5 vears will zvdbabl y remain over 80.70 /¢ai in '1981 dollars. The
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deregulation of natural gas and the termination of "old" gas contracts by 1985
will leave the existing industry virtually all on market gas by 1985. The
variable costs of production by such producers will be over $0.64/gal by 1985
if natural gas is $4.50/10 6Btu or more. Thus, any producer who cannot earn
his variable costs will shut down. Thus, although there will be some infra-
marginal producers earning larger returns (e.g., Canadian suppliers with
below-market gas), the 'marginal U.S. producers will not sell below $0.64/gal,
keeping sales in chemical markets at this level or higher when transport and
some return is added. Some foreign producers will sell to West Coast fuel
markets for a minimum of $0453/gal. At prices lower than this, they can
absorb the transport cost and import duty and compete for the chemical market
at the Gulf. As a result, expectations of very inexpensive methanol (i.e.,
below $0.53/gal) resulting from excess capacity are unwarranted.

8. SFC Support of Coal-To-Methanol Plants

One of the implications of the Synthetic Fuel Corporation's
potential support for coal-to-methanol plants may be to displace part of the
existing U.S. chemical methanol production industry. 	 Our estimates indicate
that a coal-to-methanol plant, in Alaska's Cook Inlet fir example, with SFC
support could deliver methanol to California for about $0.81/gal b y 1987 in
1981 dollars.	 The additional cost of transport from California to the
chemical markets located primarily in the Gulf Coast would add enough by
either t-ain or tanker to bring the delivered cost to around $0.90/gal. 	 An
estimate of the variable costs alone of producing methanol from market gas in
existing plants is $0.67/gal, ignoring capital amortisation. 	 This margin is
probably sufficient for V.-se producers to continue ',_ry make debt repayment and
interest charges on non.-fully amortized plants ^a;,.,pa ;^d to the Alaskan coal
case.	 Other coal-to-methanol projects, however, :nearer to chemical markets

1 and those with other incentives (relating to bioikass feedstocks) may be able
to undersellexisting producers sufficiently to force them to sell at below
full cost recovery.	 Thus, the SFC should carefully examine applications for
coal-to-methanol projects for this potential impact on U.S. industry. 	 The
intent of the Synthetic Fuels Program is to make the U.S. less dependent on
foreign oil, not to subsidize some U.S. producers of chemicals into driving
other U.S. producers out of business.

E-
9.	 Methanol Must be Compared on a Systems Basis

The comparison of methanol to other synfuels production costs alone
has limitations, given both uncertainties in estimates and the end-to-end sys-
tem nature of the problem. 	 Thus, although we have found that shale oil is
potentially less expensive than methanol on a Btu basis, methanol appears less
expensive on a per mile basis as a transportation fuel. 	 All these systems must
be pursued further ^o resolve key uncertainties in technology and conversion
costs.	 More important, however, is the potential end-use efficiency gain of
methanol in optimized passenger cars which can offset modest fuel cost penal-
ties on a Btu basis. 	 In addition, methanol has certain other advantages in
its clean burning characteristics.	 Thus, on a production cost basis, choices
between other synfuels and methanol are inconclusive and final conclusions are
deferred until the chapter on policy, where all these factors can be weighed. ;.

a.
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CHAPTER FIVE

TRANSPORT, STORAGE, AND DISTRIBUTION

A. INTRODUCTION

An effective and efficient transportation system is essential to assure
the success of meeting the future methan^'f^ fuel needs of California. While
methanol production capabilities must be greatly expanded to meet the future
demands of consumers, the development of adequate transportation capabilities
is equally important to ensure that the output may be moved to the user. Sce-
narios forecasting methanol production expectations and changes in the current
fuel mix consumed in California also entail a need to expand and, in some
cases, to modify the state's transportation system capabilities accordingly.
Any analysis of energy delivery systems must include consideration of the
transportation subsystems.

B. POSSIBLE SCENARIOS

The relationship of the methanol feedstock resource base to the proces-
sing plants or refineries and, in turn to the utilization sites, is a complex.
one, and it is obviously desirable to optimize the location of each of these
components to the greatest extent possible. This will assist to maximize the
efficiency of the existing transportation system and to minimize the need for
new construction.

Certain geographical constraints exist within the framework in which the
transportation system must function. The 'location of the feedstock resource
base is fixed, and the existing demand regions within California have require-
ments which must be satisfied. For situations where the resource base and the
demand region are located at a significant distance from each other, the trans-
portation system plays a greater role, and it is critical that this role be
coordinated with the fuel production function. For instance, the question
arises whether the methanol production-plant.should be located close to the
consumer rather than to the producer, therefore mandating the movement of
large quantities of feedstock materials instead of smaller amounts of _methanol.
The options are further complicated by the variety of feedstock materials and
their differing forms; i.e., liquid, solid, or gas, that art considered to be
candidates for the production of methanol for California.

A number of resources exist that may be considered candidates for the
production of methanol. Among these possibilities are natural gas, coal,
urban waste, biomass, residual fuel, heavy oil, petroleum coke, tar sands,
and oil shale. The sites where these potential methanol feedstocks are
located are also a variable for consideration. The relatively low-grade and
limited: quantity feedstocks should only be considered if they are available
within California. Both the western United States and Alaska have a sizable
resource base of coal, and Alaska also has a substantial quantity of natural
gas that shows promise. Furthermore, another possibility is the foreign
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natural gas that is under-utilized at the present time. Table 5-1 presents
the methanol feedstocks and locations which will be consW eyed.

The various transport modes that are candidates for the conveyance of
either the fedstock or the methanol itself are haulage via rail, pipeline,
truck, water or some combination thereof. These transport modes and their
compatibility with possible forms of freight are shown in Table 5-2. Further,
Table 5-3 illustrates the compatibility of these, transport modes with the
various feedstocks themselves.

The importance of considering the relationship of Lne location of the
production plant to the location of the feedstock base should not be over-
looked, since the most compatible type of transport may have distance con-
straints that impose limitations upon the system. Also, the locational
relationship of the methanol production plant to the utilization or demand
region is Likewise significant. For instance, one of the factors affecting
the economies of power plant siting is the cost of delivering the power to the
load center as compared to the cost of delivering fuel to the power plant. If
a number of suitable sites are available between the fuel source location and
the load center, the utility may choose remote power plant siting with power
transmission, replacing fuel transportation.

Another factor is the trad(-,, off to be considered between the two most
viable methanol utilization candidates. The use of methanol as an automotive
fuel will require a vast, dispersed distribution infrastructure. The utility

Table 5-1. LOCATION OF POTENTIAL METHANOL FEEDSTOCKS

POTENTIAL

LOCATION

FEEDSTOCK CALIFORNIA WESTERN U.S. ALASKA FOREIGN

Natural Gas X X

Coal X X X

Urban Waste X

Biomass X

Residual Fuel X

Heavy Oil X

Petroleum Coke X

T.ar Sands X X

Oil Shale X

X denotes potential
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COMMODITY
TRANSPORTATION MODE

CONVEYED RAIL PIPELINE TRUCK SHIP

Methanol x x x x

Natural Gas x x

Coal x x x x

Urban Waste x x

Biomass x x

Residual Fuel x x x x

Heavy Oil x x x x

Petroleum Coke x x

Tar Sands x x

Oil Shale x x

X denotes potential

Table 5-2. TRANSPORT RODE CAV:B'ALITIES

TRANSPORT
MODE

COMMODITY TRANSPORTED

SOLID	 LXQVID	 GAS

Rail x x

Pipeline x x

Truck x

Ship x x x

X denotes potential

Table 5-3. TRANSPORT MODES-FOR POTENTIAL METHANOL FEEDSTOCKS
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power plant demand area would, however, provide a relatively concentrated
demand region. Each of these utilization options has favorable aspects which
must be analyzed and the transportation considerations are but a single factor.

It can be seen that a large variety of resource base-methanol production-
utilization scenarios are possible. In order to assist in visualizing the
numerous options, Figure 5-'1 provides a simple schematic which outlines the
choices.

C.	 TRANSPORTATION TECHNOLOGY

An awareness of their characteristics is essential to understanding the
capabilities of the major transportation modes to satisfy the needs of con-
veying methanol and its potential feedstocks. The material that follows
attempts to provide a preliminary framework for that understanding.

1. Rail

In the past, railroads have handled the majority of the coal trans-
port requirements for the country, and it is anticipated by most that the
railroads will continue to be the principal mover of coal in the foreseeable
future as well. This is considered significant, since coal has been identi-
fied as one of the most promising feedstocks for methanol production. This
coal traffic is typically handled by unit trains which are designed to take
advanur &T 4J scale economies and are dedicated for service between two points
w th a ktdY cient volume to achieve cost savings. The cars are designed for
ailtout:.,red loading and unloading, and the train is ,operated to avoid switching
and deiays in freight yards. A typical unit train consists of six 3000
horsepower locomotives and 100 hopper cars with a capacity of 100 tons each.
A methanol production facility with the capability of producing 5000 tons/day
or approximately 1.5 million gallons/day of methanol would require about one
unit train shipment of coal per day from the Western coal fields in order to 	 ry;
satisfy its feedstock requirements. A similar approach consisting of a
dedicated quantity of rail tank cars can also be used for achieving the
previously mentioned advantages when conveying a liquid commodity such as
methanol.

Any rail transportation into California must confront the constraint of 	 }
available traffic capacity of the existing corridors which traverse the
natural transportation barriers surrounding California. All rail traffic in
or out of California must pass through one of the seven key rail lines. The
total capacity of these seven links is 44,000 trains/year, and their current
utilization is about 21,000 trains/ycar`(Ref. 1 & 2). Consequently, a signi-
ficant increase of rail traffic: could be accommodated in principle within the
present system. In p<actice, public acceptance of such increases may not be
so easy to obtain due to a variety of environmental and nuisance problems. 	 t

California's rail system has a cumulative mileage of about 7,300 miles and is
shown in Figure 5-2.

The potential upgrading and increased maintenance of existing track
j	 because of the heavier rail loadings from unit train traffic is not consideredlr
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Feedstock	 Methanol	 r
Feedstock	 Material	 Production	 Utilization Sector
Material	 Location	 Facility Location	 Location

Natural Gas	 Utility-Calif.
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i

Coal ^.

Urban Wast

Alaska	 Alask

B iomas
Utility-Western U.S.

Residual Fus
z

estern U.S.	 Western U.S.

Heavy Oil

California	 aliforni
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Petroleum Coke
Automotive-Calif
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Figure 5-1. POSSIBLE METHANOL FEEDSTOCK - PRO -
DUCTION - UTILIZATION SCENARIOS
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a problem by the railroads. Further, the industry's production capacity for
hopper cars and locomotives is sufficient for the additional equipment
requirements that would be necessary to handle the increased coal traffic
(Ref. No. 1). Consequently, within the timeframe"of the next 20 years, the
rail mode of transportation in California must certainly be considered as a
prime contender for the conveyance of either methanol or its feedstocks,
particularly coal.

2.	 Pipeline

The pipeline mode of conveyance is quite versatile and can quite
easily accommodate either liquid or gaseous commodities as well as conveying
solids via a slurry. Thus, it has potential for transporting either the
feedstock to the production plant or the methanol itself. A substantial
pipeline infrastructure exists within California, and this is illustrated in
Figure 5-3

Major developments in pipeline transmission in the U.S. in recent years
have been significant in both the number and nature of such innovations.
First, a trend toward greater pipe size has occurred, A number of other
developments have also taken place, such as the introduction of the use of
high tensile strength steel. This development has reduced the wall thickness
of the pipe and lowered the number of tons of steel required per mile for
pipe, thus reducing the investment required.

The automation of pump stations has decreased the personnel needed for
the pipeline system operation. It is now common for pump stations to have no
operating personnel at the station with control coming from a center hundreds
of miles away. Many instruments have been developed for use in conjunction
with pipeline transmission and distribution systems, permitting highly auto-
matic control system design and operation. Improvements have also been made
in corrosion prevention on pipelines, including the use of external and
internal coatings and the use of cathodic protection to prevent corrosion.

A significant development is the closed-system oil pipeline. With older
lines, it was necessary to remove the oil or product from the line temporarily
at intermediate pumping stations'and to store it in tanks. Now intermediate
storage can be eliminated, and the product removed only at the destination.
Furthermore, improved methods of communication and control have made it possi-
ble to deliver a variety of products, slugwise, through the same pipes with
little co-mingling or contamination of products. While some pump seals and
valve materials may have to be changed, the problem of material compatibility
of the existing pipeline itself with methanol appears to be minimal according
to someinvestigators. This concept of utilizing the existing pipeline infra-
structure may be quite attractive, however, it should be noted that corrosion
and material compatibility problems have not been uniformly observed by all
investigators. Materials and techniques for pipeline insulation have also
been improved. Polyurethane foam is one of the best insulators for pipelines.
It is reported that the Trans-Alaska Pipeline - is using this material to main-
tain a fairly uniform temperature and prevent the oil from becoming solidified
by excessive cooling. Technology in welding has been greatly improved, so
that stronger welds may be obtained in less time than it used to take.
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PIPELINES AND REFINERIES

SOURCE: Reference
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a. Liquid Pipelines. Obviously, the greatest utilization of
pipelines for the conveyance of liquid, products is the system for transporting
oil and its refined products. In the United States in 1977, about 78,000
miles of pipeline were used to carry crude oil, and approximately 81,000 miles
carried finished products (Ref. 5). As previously stated, the use of this
existing infrastructure could be beneficial in assisting in the transport and
distribution of methanol and providing for a smoother transition than would
otherwise be possible. However, as illustrated in Figure 5 -3, there is a lack
of existing pipelines from the bordering western states into California as
well as within California.

As is pointed out in the methanol production section of this report, it
is not realistic, particularly in the immediate future, to expect the methanol
production facilities to support the construction or use of a dedicated pipe-
line. Since pipelines which cross state border--s are classified as common car-
riers, they must carry products of any type and from any company. The use of
batching methanol in petroleum products pipelines may be an attractivenear-
term transport option if material compatibility is not a serious problem.
This calls for the use of inflatible "batching,spheres" or pigs between dif-
ferent shipments. Radioactive isotopes are often used to signal the end of
each successive shipmen-t . The "common carrier" designation allows the
pipelines to exercise tree federal power of eminent domain. Without this
classification, right-of-way access for pipelines across easements owned by
railroads may be very difficult to obtain.

Recent oil pipeline innovations include "Teflon" lining to reduce
friction, polypropylene coatings to prevent corrosion, and a growing use of
all-plastic pipe for small gathering lines.

Automation helps reduce pipeline transport costs. Pumping stations run
unattended, valves are operated by remote control; computers handle dispatch-
ing and accounting, and monitor conditions throughout the system.

b. Gas Pipelines. Even though it is unlikely that large domestic
supplies of natural gas would be used as a feedstock for the manufacture of
methanol, it is possible that remote, relatively small pockets of domestic
natural gas could be utilized. Furthermore, a possibility exists for the
coastal gasification of liquefied natural gas(LNG) that has been conveyed by
tanker from an Alaskan or foreign field. Therefore, a brief synopsis of
natural gas pipeline transport is in order..

Typically, gas is withdrawn from the ground through a pipe, called a
casing, that extends to the bottom of the well. Then it is gathered by a
piping system from various wells in a given area and delivered to some central
point.. From there it is transported over long distances by transmission com-
panies and either placed in underground storage near the consuming areas or
delivered to "city gates," where it is supplied to distribution companies for
further transport. Generally speaking, compressors are used to force the gas
through pipelines, and booster stations are required every 40 to 100 miles.
The gas is transported under a pressure of about 800 to 1000 psi, i.e., 50 to
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70 times atmospheric pressure, in these long-distance systems. In the U.S.,
about 1 million miles of buried pipeline, some of 42-inch diameter, linked our
gas fields to compressor stations and, in turn, to consumers in 1978 (Ref. 5).

Since the overall demand for gas is usually low in summer and high in
winter due to large domestic use, many transmission companies have developed
underground storage close to consuming areas. The gas is injected into such
storage pools in the summer months and withdrawn in winter, in order to pro-
vide a basis for year-round pipeline operation at high levels.

By the application of 1000 psi, approximately 68 cubic feet of natural
gas is compressed into one cubic foot. Whenever the gas has insufficient
pressure for its required movement, a compressor station must be used. The
following types of compressor stations are in general use:

(1) Field or gathering stations gather gas from wells in which pressure
is not sufficient to produce a desired rate of flow into a
transmission or distribution system. Such stations may handle
suction pressures from below atmospheric pressure to 750 psi, and
volumes from a few thousand to many million cubic feet per day.

(2) Relay or mainline stations boost pressures in transmission lines
and are generally of large volume and operate with low compression
ratios. Their pressure range is usually between 200 and 1000 psi.

(3) Storage field stations compress trunk line gas for injection into
storage wells and may produce discharge pressures of up to 4000 psi
typically at high compression ratios.

(4) Distribution plant stations ordinarily pump a fluid iro,m a primary
supply to medium or high-pressure distribution lines.

C.	 Slurry Pipeline. A third type of pipeline is one that is
designed to convey a solid commodity with a liquid carrier. Such a pipeline
may be considered for transporting either the coal; to be used for the methanol
feedstock, or possibly a combination of coal and methanol. Like unit trains,
slurry pipelines can be well suited to satisfy the transportation requirements
of Western coal. It has been found that in many cases slurry pipelines can
transport coal for about the same cost as the railroads. Furthermore, the
slurry pipeline can realize a significant cost advantage over the rail system
unit trains for the movement of quantities of coal greater than 6 million
tons/year over distances greater than 1000 miles (Ref. 6).

A coal slurry mode of transportation, while not exactly a common method,
is certainly far from being a new idea. There is one coal slurry pipeline.
operating in the U.S. and several others in various stages of planning and
design. There are currently five coal slurry pipelines which are being

f	 1	 h	 1'	 ld hplanned for the transporting o Western_coa	 T ese pipe roes wou	 ave a	 sE
total capacity of 88 million tons year and would cover a total distance of
4700 miles. The typical coal slurry pipeline would convey a size of coal
which would range from a .0937 to a .0017 inch diameter particle size. The
coal would be combined with the transport liquidzto form a slurry with a
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nominal 50% solids content by weight density , Some laboratory investigators
contend a 70/30 coal/water mixture by weight may be possible but this has not
been adequately demonstrated with existing technology.

Transport Liquid - Water. All the previously mentioned coal
slurry pipelines have one common denominator. This is the use of water as the
fluid provided as a transport media for the solid particles of coal (approxi-
mately 50% by weight) in the olurry. Consequently, the issue which appears to
create the most concern at this time is the use of water by the proposed
coal/water slurry pipelines. The Western coal fields are located in semi-arid
regions, and water is a highly valued commodity for agricultural, municipal,
and industrial uses. Ironically, even though the mining of the coal itself
requires very little water, most of the associated industrial uses of the coal
such as power plants, coal/water slurry pipelines, liquefaction plants, etc,.,
do require a significant quantity of water. Since the traditional coal/water
slurries operate on a 50 percent by weight mixture of coal and water, they
would remove a ton of water from the area for every ton of coal which was
conveyed in the slurry pipelines.

One proposed approach by some of the coal/water slurry proponents is to
obtain water from the large, natural underground water _reservoirs known as
aquifers, which may be located in the vicinity of the Western coal fields.
opponents of this concept have expressed concern that even though an aquifer
may contain a sufficient quantity of water, the continual removal of water
from it could result in unpredictable geological activity or affect the
surrounding watertable. While some contend that the aquifers are rapidly
being depleted, most observA-ts agree that water supply should not be an
obstacle.

However, aside from the water issue and the political problems related
to the power of eminent domain needed to assemble the necessary pipeline
right-of-wag, it is a viable option whose technology has been proven.

Transport Liquid - Methanol. There has recently been a
considerable amount of interest shown toward the concep.t._of utilizing a
coal-combustible liquid mixture as a boiler fuel. The:U.S. Department of
Energy is currently supporting extensive activity in this area. This idea is
not a new concept, but rather one that has received renewed interest.

By utilizing,a coal-derived liquid such as methanol as the transport
media for a coal/combustible liquid slurry, there are several advantages to be
obtained over the more conventional coal/water slurry. Some of the more
pronounced incentives are listed as follows:

(1) The coal/methanol slurry would provide a fuel of a higher calorific
value than could be obtained from a coal/water slurry:

(2) For a given required firing rate at the electrical generating
station, a lesser quantity of coal/methanol slurry would be
required than of the 	 slurry. This would result in a
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smaller diameter pipeline, as well as smaller capacity pumps and
drivers.

(3) It would avoid the controversy of removing the water resources from
the pipeline originating site, since the methanol would be used as
the transport media.

(4) A coal/methanol slurry could be more adaptable (require fewer
modifications) to existing, in service, oil-burning boilers than
would be coal alone. This is based upon the testing currently
being conducted with coal-oil mixtures by the New England Power
Service Company and Florida Power and Light. Therefore, acceptance
and conversion by the utility industry would be greatly enhanced.

(5) The use of a coal/methanol slurry would result in a higher boiler
efficiency but not necessarily a lower cost than a coal/water
slurry. This is due to the elimination of the high-moisture
content of coal after being transported via a water slurry.

However, it is possible that the economic value of the methanol and the
federally mandated fuel-use factors might prohibit its use in such a manner.
It could very well be more prudent to separate the coal and methanol at the
terminus of the slurry pipeline. Such a synergistic relationship should be
investigated further in evaluating the various market potentials as well as
further defining the safety, environmental, and technical aspects of such a
concept.

3.	 Truck

Probably the most versatile and the most widely dispersed network
(covering about 171,000 miles in California, Ref. 7) of the various trans-
portation modes is conveyance by truck. However, the use of trucks via the
highway system is commonly restricted to short hauls andas a method of
transfer. They are not economically competitive for large volumes and long
distances. For instance, as opposed to the average haul of 300 miles by
railroad, and 480 miles by barge, the average highway shipment of coal by
truck is only 50 to 75 miles (Ref. 8).

The trucks used for the highway transport of bulk solid materials such
as coal have a capacity range of 15 to 25 tons :each. The typical tank truck
used to convey liquid products has a capacity of about 9,200 gallons. The
standard diesel tractor is used to pull one and sometimes two trailers,
depending on weight limitations._ A significant quantity of coal movement	 N#

also takes place on private roads using vehicles too large for public
highways. Some of these vehicles can carry up to 150 tons of coal.	 {

As previously stated, truck transport would usually not be considered as
a primary means of conveyance for large quantities of solid or liquid feed-
stocks such as coal or oil between concentrated supply and utilization areas.
Rather, it would more likely be employed to supplement another mode of trans-
port such as rail or pipeline. However, the use of trucks may be particularly
suited for the type of short hauls expected to be necessary to satisfy the
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various regional characteristics anticipated for the delivery of feedstocks
such as biomass or urban waste. Such methanol production plants would be
expected to be significantly smaller atd rely upon a rather widely scattered
feedstock supply area as compared to a coal-to-methanol plant.

Truck transport is also necessary for satisfying distribution require-
ments to numerous service stations scattered throughout California, if
methanol is to be used in either the neat or blended form as an automotive
fuel. A typical service station pumps about 75,000 gallons of gasoline per
month. Therefore, a monthly tank truck shipment of 9,200 gallons (average
capacity per truck) could supply sufficient methanol for a 126 blend with
gasoline, however, on-site storage would be needed for the methanol, which
would add to the cost.

If methanol is intended as a fuel- for electrical generating station gas
turbines or boilers, then delivery by tank truck is one of the possible means
of transportation. The distribution of such potential electrical generating
units within California is illustrated in Figure 5-4.

4.	 Ship

The waterway system currently provides the most economic means for
freight transport in the United States. Unfortunately, this system has some
significant limitations regarding its ability to serve California as a viable
option for the transport of either fuel methanol or its feedstocks. The
transportation of both crude oil and petroleum products via water for
California in 1974 is shorn in Figures 5-5 and 5 -6, respectively.

a.	 Barge. The equipment required for the shipment of freight,
either solid or liquid, by barge includes the tugs, or self-propelled vessels
that push the "tow", which is composed ofseveral barges of either the dry
cargo or tank type. A typical tow of tank barges consists of four barges and
the towboat. A tow composed of dry cargo barges has, however, been known to
consist of as many as 36 barges, with a 1,500 ton capacity.

Modern steel barges are of numerous designs to handle differing commod
-	 ities. Their bows and sterns are usually formed to fit into a neat tow that

a

	

	 presents an unbroken, low-friction surface to the water. The average speed of
a tow is five miles per hour upbound; ten miles per hour downbound. A tow
typically requires twelve hours to load and twelve hours to unload. A double-
skinned tank barge 35 feet x 195 feet x 12 feet, known as a "jumbo," costs
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	 approximately $350,000, a "jumbo" open barge about $160,000 and a 5000 horse-
power towboat costs approximately 2.6 million 1975$ (or approximately 4.0
million 1951$, Ref. 9). In 1978, there were approximately 4,380 towboats and
tugs, 24,037 dry cargo barges, and 3,946 tank barges in the U.S. (Ref. 5).

However, it appears that this means of conveyance will be of little, if
any, importance for the purpose of conveying methanol or its feedstocks in
California. The only possible use would be in the San Francisco to Sacramento	 6
Delta area, where relatively small production plants utilizing biomass feed-
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stocks may be considered. This does not seem likely, and the above informa-
tion is presented primarily for completeness.

b. Tanker. Ocean-going vessels can be used to transport either
liquid or solid freight. Consequently, their use may be considered for the
conveyance of (1) coal from Alaska, (2) liquefied natural gas from Alaska or
international sources, or (3) the methanol itself to California, if the pro-
duction facility is located out of state. The off-loading of fluid fuels for
California could utilize deep water single-point-mooring facilities. This
would greatly facilitate the unloading problem and would allow sites not
located near a harbor to be utilized. However, since the utilization of
methanol even in applications such as centrally located utility power plants
would not likely be sited in such a simple manner, it is quite probable that a
means of trans-shipment would also be required.

Currently, 26,000 DWT (dead weight tons), 35,000 DWT, and 60,000 DWT
tankers carry the majority of the coastal domestic petroleum tonnage. Gaso-
line is the major shipped good, with crude petroleum and other unfinished oils
following in order of magnitude. The average tanker speed is 16.5 knots, and
they require 24 to 36 hours to load and unload.

Since the cost per ton of operating an ocean-going tanker falls drama-
tically as its capacity increases, today's major fleets have seen an emphasis
toward a greater number of vessels with larger payloads. These tankers are
used primarily for the import of foreign crude oil, and they can range from
170,-000 to 380,000 DWT. One majordisadvantage of these super-efficient,
mammoth-sized crafts is the substantial cost of the new facilities needed to
handle them. They can approach few existing harbors due to their great draft.

Paralleling development of the crude oil supertanker has been that of
the natural gas carrier. Sea transportation of liquefied natural gas (LNG)
became a commerc.al reality in the 1950s, and this option must be considered
for transporting under-utilized, .remote natural gas as a potential feedstock
for the production of methanol in California. Approximately 35,000 cubic feet
of natural gas can be reduced to one barrel of LNG at minus 258 0F, and
125,000 cubic meter LNG ;tankers are not uncommon. In tho early 1970s, several
investigators believed that it would be more economically advantageous to
convert Persian Gulf natural gas to methanol for transport to the United
States rather than liquefying it and using cryogenic LNG tankers. Even though
the production of methanol for natural gas is less efficient, more expensive,
and yields a product with a lower calorific value than LNG production,; it was
contended that the use of conventional tankers for methanol over long trans-
port distances wouldprovide a lower overail cost alternative. However, these
estimates were based upon a cost of $.10 per million Btus for natural gas and

'	 the unproven assumption that existing, conventional oil tankers could be
utilized for methanol transport. The breakeven distance after which methanol
was perceived as the more economical choice, based upon these conditions,
ranged from 4000 to 7000 nautical miles one-way. It was also acknowledged
that escalation of gas prices would extend the distances for which LNG is more
economic. Since the cost for natural gas has increased significantly from
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is unlikely that the use of remote natural gas on a feedstock for overseas
methanol production is feasible for anything other than relatively small
resources that cannot support LNG production facilities. In this instance, a
barge or tanker mounted methanol plant could be moved from one site to another
might be promising, It should also be noted that the siting of LNG offloading
facilities in California has been a subject of political controversy and this
issue must be resolved.

Regarding the transport of Alaskan coal to California for use as a feed-
stock, off-loading :terminals with connections to existing major rail lines
could be developed in conjunction with any of the developed port facilities in
the state: Humboldt Bay, San Francisco Bay, the ports of Stockton and Sacra-
mento, Moss Landing, Port Hueneme, and the Los Angeles, Long Beach, and San
Diego harbors. However, to approach economic competitiveness with inland
(Western) coal, it must be shipped in bulk carriers with capacities of 100,000
DWT or greater. The ports of Los Angeles and Long Beach have initiated
programs -o expand their coal terminal capabilities to handle 60 million tons
annually by 1990. Additional dredging for the Los Angeles port to 65 feet has
been proposed and approach channels for Long Beach already are more than 60
feet deep. Very large oil tankers which could be used for methanol can be
loaded at Richmond in San Francisco Bay through the use of lighters; 100,000
DWT vessels must be partially unloaded before they can proceed to the Richmond
oil unloading- terminal. Typically, 100,000 DWT vessels have a draft of about
50 feet. Most ports in California have water depths sufficient for docking
16,500 DWT bulk ,carriers with a draft of about 31 feet, but not much more.
The ports of Stockton and Sacramento are included in this category. The
remaining developed ports at Crescent City, Fort Bragg, Bodega Bay, and Morro
Bay have relatively shallow channels and do not have access to a major rail
lane ('Ref. 10).

D.	 TRANSPORT COMPARISONS

Unfortunately, it is not possible to decide which transportation alter-
native is more advantageous without mt - ing a detailed analysis of the specific
route, form of feedstock or fuel, and quantity of material to be conveyed.
The reason for this is that these alternatives are very site-sensitive. Each
mode differs in terms of the magnitude of its contribution to energy demand,
its energy efficiency, the types of fuels it consumes, and the types of trans-
portation neede it fulfills. However, some general, guidelines can be provided
and comparisorts can be made between the various transport possibilities. This

information is provided in the following_ material.

F

1.	 Cosh

Even though the estimation of true economic costs of transporting
energy` materials by the existing modes is complicated by several factors, it
is an undisputed fact that the cost of transportation can frequently account
for more than 25% of the total delivered fuel price, and as much as 75% of the	 r

delivered price in some instances. 	
3

s

i
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Since we must note the potential need for transporting both the feed-
stock material as well as the methanol itself, it is necessary to consider the
conveyance of both solid and liquid freight. Therefore, information is pre-
sented that relates to both coal as well as crude oil and refined products.

In 1977, the annual coal, usage in the United States was approximately
701 million tans (Ref. 5). This coal was transported by rail, water, truck,
and slurry pipeline. The various methods of conveyance and their rankings by
percent of total coal carried during 1977, as well as the comparative approxi-
mate model costs per ton-mile, are presented in Table 5-4.

In 1977, approximately 643 million tons of crude oil and 1,439 million
tons of refined petroleum products were transported in the United States
(Ref. 5). This material was hauled by rail, water, truck, and pipeline.
The various methods of conveyance and their rankings by percent of material
carried during 1977 as well as the comparative approximate model costs per
100 barrel miles are presented in Table 5 -5.

The waterway system is currently the most economic means of transport
available for most commodities. However, this system does not serve the
Western region to an extent that it can be considered a viable option. for
California, with the possible exception of those scenarios taking advantage of
Alaskan or foreign feedstocks. The trucking industry is not-cost-competitive
with either the railroads or pipelines for the type of high-volume, long-dis-
tance traffic which will result in many situations. The use of trucks via the
highway system, even though commonly restricted to short hauls and as a method
of transfer, will undoubtedly play an indispensable role for distributing
methanol used in the automotive demand market.

w
It should also be mentioned that while costs vary considerably, electric

transmission is generally competitive with rail or pipeline for distances of.
up to 500-600 miles. Beyond that point, rail and pipeline costs increase at a

r	 slower rate than electric transmission costs.

4 Federal policies can obviously have a substantial effect on relative 	
x

pricing advantages through differing tax advantages and subsidies. Further-
more, the figures presented previously do not include an element of public
subsidy for barges and trucks in the form of government highway and waterway
expenditures.

i
2.	 Energy Intensity

While the choice of the transport subsystem(s) to be used will
likely be chosen by economic factors, one of the prime economic drivers is the
energy intensity of the conveyance itself. This is assuming, of course, that
equipment for hauling the material exists and operating costs are, therefore,
the most significant variable. In order to provide some insight into this
area, Table 5-6 lists the amount of energy necessary to transport one ton of
freight one mile by various means of conveyance.

t	 fi<

x
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Table 5-4. 1971 U.S. COAL TRANSPORTATION

TRANSPORTATION	 '	 'PERCENT OF TOTAL	 AVERAGE COST PER
MODE	 1COAL TRANSPORTED	 'TON-MILE

Rail	 59.1	 $ .017

Truck	 18.0	 $ .084

Water	 22.3'	 $ .007

Slurry Pipeline 	 0.6	 .017

Source:	 Ref. 5

4 Table 5-5. 1977 U.S. CRUDE OIL AND REFINED PETROLEUM TRANSPORTATION

TRANSPORTATION	 PERCENT OF CRUDE	 PERTROLEUN =RODUCT	 COST PER
PERCENT OF REFINED 	 AVERAGE ('81$)

MODE	 OIL TRANSPORTED 	 TRANSKRTED	 100 bbl-miles

Pipeline	 72.5	 36.6	 $ .09

Truck	 14.0	 36.5	 $ .92

Water	 13.2	 25.1

Tanker	 $ .05

Barge	 $ .15

Rail	 0.3	 1.8	 $ .54

Source:	 Ref. 5

j
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Table 5-6. ENERGY INTENSITY BY TRANSPORTATION MODE

f ^-

TRANSPORT MODE ENERGY INTENSITY*
(Btu/ton-mile)

Truck 2,500

Rail 680

Air 12,030

Marine

Coastal 380

Ocean 590

Pipeline

Natural Gas 29000

Crude Oil 300

Petroleum 400

Coal-Water Slurry 4,200

x The quantity of energy necessary to convey one ton of
freight a mile.

Source:	 Refs. 12 & 14

x

E.	 STORAGE AND DISTRIBUTION
s'

I
{ The technology to be used for distributing methanol is adequately
f covered in Section C by the presentation of the various transport options.

However, some pertinent issues relating to the . storage and distribution of
methanol merit being addressed separateiy.

1.	 Utility Applications
k

Design of a fuel system for utility central stations can be divided
into two segments.	 The firs includes equipment needed to transfer fuel from
the transport vehicle to a storage tank or the day tank; the second, the
equipment to pump it from stcrage, or from the day tank, to the burners.

Additional expense would be required for storage and a distribution'
` system for methanol firing.	 It has been estimated by the U.S. Office of

Technology Assessment that , the distribution system could require, storage tanks
R

and pumps costing about $700 per barrel per day of throughput. 	 Because of the
solvent nature of methanol, independent storage, piping, pumps,, etc., would
have to be provided to segregate methanol from any conventional fuel oil
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system. Problems might occur from dislocation of deposited hydrocarbons and
dirt if a common oil-methanol system is used. Furthermore, the low viscosity
and low heating value of methanol would, in most cases, dictate separate
burner orifices and a separate feed pump of twice the usual size. Tighter
standards on valve packing, etc., will be required to prevent leaks of this
low-viscosity fuel.

Sizing of the storage tank or tanks is not as easy as it seems. Storage
capacity, including a safe-inventory margin, depends primarily on the rate of
fuel consumption, method of delivery, and the distance from the supply depot
to the plant. Several other factors such as delivery delays, strikes, fuel.
shortages, etc., must also be considered. In general, industry practice hzld
been to inventory a 60- to 90-day supply of fuel in the storage tanks.
Unstable market conditions would dictate even greater storage capacity to
ensure continuous plant operation.

As previously mentioned, the type of delivery carrier depends on the
rage of consumption and the location of the consumer, as well as the issue of
concentrated versus dispersed utilizaticn, i.e., automotive or utility appli-
cations. For example, if the user is large, and it can accommodate barge or
tanker delivery, water transport should be considered seriously--delivery
costs are lowest for this method. If the rate of consumption is low, truck
delivery is more practical than shipment via rail, pipeline, or water. When
receipt is by truck, the storage tank should be large enough to take advantage
of bulk prices, or full truckloads, normally 5000 to 10,000 gallons, since
prices are higher for partial loads.

Tank location is another important factor to consider. It should be
close to both the unloading area and to the point of use to minimize pipeline
installation and operating costs. These objectives, however, are often
difficult to achieve for large tanks. For example, sufficient space must be
available for safety dikes, in case of spills from storage tanks, and tanks
must be built away from buildings, hazardous equipment and materials, and
power Lines. Twenty-thousand (and in some cases up to 60,000) gallon tanks
are usually buried and present no space problems.

The safety dikes around storage tanks, particularly the common earthen
type, require considerable area. For a one million gallon tank, a square dike
would have to be about 6 feet high, 21 feet wide at the case, 3 feet wide at
the top, and 180 feet long on each side. Where space is limited, concrete
dikes can be used, or a steel shell can be erected around the storage tank.
These alternatives, however, are expensive.

The high volatility of methanol (similar to gasoline) would necessitate
the use of either closed floating-roof or conservation-type storage tanks to
reduce evaporation losses and pollution as well as rainwater contamination.
Above-ground steel tanks with fixed or floating roofs should be designed in 	 x
accordance with American Petroleum Institute (API) standards. Tank cleanli-
ness and water contamination are significant concerns regarding methanol
storage, and the elimination of water is frequently difficult to ensure since
tank bottoms can settle and flex under varying Load conditions. If water	 4
contaminates methanol, it is virtually impossible to remove. However, in neat
applications, water is not as great a concern as with blended applications. 	 q
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The question of tank cost and fuel vaporization losses are dealt with in the
stationary utilization portion of this report. Small underground tanks
generally are fabricated of steel, but fiberglass tanks in sizes up to 20,000
gallon capacity are available. Obviously, fiberglass tanks are suitable for
low viscosity fuels such as methanol that do not require heating, and then
only where material compatibility of methanol with the particular composition
of fiberglass used is assured.

When there is a considerable distance between the storage tank and the
point of use, it is sometimes practical for the utilities to install a day
tank near the boiler. Among its advantages is the elimination of long burner
return lines back to the storage tank. The day tank, which can be either
above or below ground is filled from the main storage tank or directly from
the transport vehicle; fuel is pumpod from it to the burners. However, with
the low viscosity properties of methanol, the use of day tanks should not be
considered a necessity.

Pipelines may be above or below ground, depending on the terrain and
site congestion. Above-ground lines (1) are easier to install, (2) provide a
visual observation of its condition, and (3) are easy to maintain. They can
be at ground level, supported by piers, or suspended. Overhead lines,
however, are far more costly.

Underground pipelines generally are buried in the soil. But in some
cases, such as when line inspection and maintenance or valving make it
necessary, they are placed in a culvert or trench with other lines.

Cathodic protection of buried piping is a big help in preventing external
corrosion. Coatings can protect where they are unbroken, but damage to the
coating leaves bare metal susceptible to pitting. Cathodic protection can
come from graphite or magnesium anodes that direct current to base metal,
making that metal a cathodic area and preventing it from corroding. Magnesium
anodes (giving galvanic protection) need no external source of current, but
are slowly consumed while they protect. A wire connects each anode to the
pipe. Graphite anodes (electrolytic protection) are not consumed, but they
must be energized by an external source of current, rectified to DC.

2.	 Automotive Applications

The aspects of storing and distributing methanol to be used for the
needs of the automotive market will undoubtedly be handled in a manner very
much like that currently done for gasoline. 	 Much of the technology described

t previously relating to utility applications will also be applicable to the
automotive area as well.

The local distribution to the widely dispersed service stations located
throughout the state will likely be satisfied by standard tank trucks with a
9,200 gallon capacity.	 If methanol i,s used as a neat fuel, separate storage
tanks and pumps will be required at the service station.

Because of the lower specific energy (Btu/gallon) of methanol, approxi-
mately twice the volume and mass will be necessary to store the same amount of

5--23

F.



- 7,1 .- ^ 	 - I	 ;_ -.1- 1 - - I	 I I

energy as a petroleum fuel. The typical gasoline service station storage tank
has a 10,000 gallon capacity with three tanks at one location being typical.
Since the cost of storage tanks has a direct correlation to the surface area
of the tank and., consequently, the tank volume to the 2/3 power, methanol
storage tanks for an equivalent energy content will cost about 1.6 times as
much as those for petroleum. The consumption of twice as much fuel would
mandate that the station pump operation, tank truck deliveries, etc., would
all be double what they would be for an energy equivalent quantity of gasoline.

F.	 HAZARDS AND PROBLEMS

Since methanol is a volatile, strongly polar alcohol, difficulties of
many types may be encountered during its transportation and storage. The
hazards can be of a nature to affect the environment, the health of those
exposed to the methanol, the materials it contacts, or cause contamination of
the methanol itself. These areas are briefly addressed, not in an attempt to
provide a comprehensive description, but rather to highlight anticipated
concerns.

1. Health

Methanol is a toxic substance and comes under the regulation of the
Federal Hazardous Substances Act. 	 Serious consequences to an individual can
result if adequate means for prevention and protection from the potential
dangers are not taken. 	 The effects of methanol exposure can be immediate as
well as of a long-range accumulative nature.	 Exposure time as well as the
individual's personal tolerance influence the severity of the symptoms.

Methanol damages the central nervous system and has the most obvious
effect on the optic nerve. 	 This can cause a strong sensitivity to light and
temporary or permanent blindness.	 Muscular effects can result in addition to
progressive degenerative damage to the heart, liver, kidneys, and other
organs.	 Methanol is released very slowly from the body and many of the
effects are thought to result from the formaldehyde or formic acid which are
considerably more toxic than the methanol.

Exposure to methanol can result from ingestion, inhalation, dermal
contact, or exposure to the eyes.	 Direct ingestion of methanol causes the
most rapid response, but high concentrations of methanol vapors can also
result in acute poisoning after brief exposures.	 Methanol can be absorbed
through the skin and cause all of the toxic and lethal effects that result
from the other types of contact. 	 Regarding contact with the eyes, the visual
symptoms may sometimes clear up but later return to cause blindness.

2.	 Environmental :^J

Primary environmental considerations are the air pollution result-
ing from combustion of methanol, fugitive emissions from methanol storage and
handling, and the potential problems of large-scale spills. 	 The issue of
pollutants from methanol combustion is dealt with in the utilization sections
of this report.
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The photochemical reactivity of methanol is low in comparison to the
evaporated constraints of most petroleum based fuels ( see Chapter 6). There-
fore, fugitive emissionst from methanol storage and handling contribute to
urban air quality degradation to a lesser extent than petroleum products.

Fugitive emissions can be expected during the various phases of loading,
unloading, and storage of the methanol from the storage tanks at the bulk
station, during _ loading and transit, and at the utilization tank. As stated
in the Fuel [Utilization--Stationary Applications section of this report,
"Since methanol has a significantly higher vapor pressue than distillate fuel
oils ( 96mm Hg vs. 0.1 mm Hg at 68 0F), vaporization losses to the atmosphere
could be significant if proper precautions are not ,taken. During the SCE
test, it was estimated that 8-10 gai per day of methanol were lost due to
evaporation. The loss was blamed on a faulty -sealing between the floating
roof and the walls of the floating roof methanol storage tank. Examination of
the interior of the tank at the end of the test showed that almost 3 - inches of
area between the floating roof assembly and the tank wall around the circum-
ference of the tank were exposed to the atmosphere. The loss of 8-10 gal per
day represents about a 0.05% loss of total methanol ."_ However, in comparison
to gasoline, methanol has a lower vapor pressure, therefore fugitive emissions
would be expected to be less. Furthermore, in a survey done by Badger Plants,
it was found that the expected emissions from methanol storage and handling at
a ton/day plant were estimated at 60 lb /hr. as methanol.

3.	 Physical

Obviously, the most serious physical hazard is that of explosion or
combustion of the methanol. A mixture of 6% to 36 % methanol by volume in air
is flammable at standard temperature and pressue. Furthermore, air at ambient
conditions ( 680F) that is saturated with methanol vapor contains 13 percent
methanol and is therefore explosive. By comparison, air saturated with
gasoline is too rich to explode.

Also of significant concern is the question of material compatibility
with methanol. Noticeable corrosion has been reported by many concerning
methanol in contact with terneplated ( lead and tin plated) automotive fuel
tanks. The reactive polar hydroxyl group present in methanol differs signi-
ficantly from petroleum hydrocarbons in its corrosive effects on metals. This
factor is seriously compounded if water and salts are also dissolved in the
fuel. Severe corrosion has been experienced with zinc, lead, and magnesium in	 it

	

	
contact with methanol. Aluminum and copper are also more susceptible to
corrosion by methanol than by hydrocarbons. All of the previously mentioned
materials should be coated or lined with inert or resistant coatings. However,
dry methanol could be stored in conventional steel tanks without excessive
difficulty. Even here, though, the possibility of galvanic attack should be
thoroughly investigated prior to using rust-preventative paints and coatings.

Methanol acts as a strong solvent. Consequently, many plastics and 	 i
rubbers that are commonly used as gaskets or floats in conventional petroleum
distillate fuel systems can experience swelling or softening. Polyamides and
methacrylate are thus affected and "viton" floats can experience swell up to
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50 percent. However, polyethylene and polyacetol seals do appear to be
compatible with methanol usage.

G.	 NEAR-TERM SUPPLY CONCLUSIONS

It has been estimated that a realistic near-term methanol transition in
California would probably result in the consumption of 10,000 to 100,000
barrels of methanol per month. This limited usage would not be sufficient to
justify the construction or use of a dedicated pipeline for the transport of
the methanol, even if all the usage was centrally located and not dispersed.
Even a relatively small 8-inch diameter pipeline would carry about 40,000
barrels per day. Rather than using a dedicated pipeline, another option would
be to transport batches of methanol in existing petroleum pipelines:. This is
a concept that requires further study to ascertain that the issues of water
pick-up, color degradation,_ material compatibility, and absorption of normal
pipeline residues do not create insurmountable difficulties. It should also
be noted that there is a rather limited existing pipeline network into
California as compared with other portions of the country. Furthermore, the
conveyance of sufficient methanol to satisfy the high end of this demand range
(,100,000 barrels per month) would probably not be handled via ship. As
illustrated in Table 5 -7, a 105,000 DWT tanker could deliver 768,000 barrels
of methanol and it is unlikely that a 7-1/2 month supply of fuel would be
desirable.

By perusing Table 5-8, it appears obvious that the most likely canii-
dates for the near-term transport of methanol in California are track, rail,
and barge. The truck method of transport is viable only for the low end of
the demand range (10,000 barrels per month), where about 1.5 truck deliveries
per day could satisfy this requirement. However, as previously discussed,
this is probably not a cost-effective approach and would most likely be
utilized only for handling dispersed distribution. Probably, the 10,000
barrel per month methanol demand would not be efficiently and economically
satisfied by either 14 rail tank cars or one barge delivery per month. The
choice of transport mode would first be decided by utilization site: that is,
does it have access to barge delivery or is rail delivery more convenient? If
both, options are available, then individual transport price negotiations with
the potential carriers would'be the deciding factor. Based upon past,experi-
ence, barge delivery would probably be more economic if it is an available
option.

For the high-end of the near-term demand range (100,000 barrels per
month), the quantities of methanol required would be so great as to preclude
the use of truck delivery for anything other than limited dispersed distri-
bution requirements. Again, rail and barge conveyance are the most likely
contenders. In this case, LA unit trains of 100 tank cars each or 1.7 tows
of 4 barges each would be required to transport 100,000 barrels of methanol
per month. The same considerations previously described would decide which of
these options is more favorable.

4	
s^

In conclusion, corrosion, water free distribution, flammability, and
careful handling procedures in light of methanol's toxicity are the main
difficulties to be overcome.	 v

a
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TRANSPORT MODE

NUMBER OF DELIVERIES PER MONTH

10,000 1000000
barrels/month barrels/month

TRUCK 45.5 455

RAIL TANK CAR 14.1 141

;RAIL TANK TRAIN (100 tank cars) .14 1.4

BARGE 1.1 11

TOW (4 barges) .27 2.7

-SHIP (105,000 DWT) .013 .13`

PIPELINE (8 inch diameter) .008 .08

f^

i

I

Table 5-7. METHANOL DELIVERY CAPACITY OF VARIOUS TRANSPORT MODES

TRANSPORT MODE CARGO CAPACITY
(barrels)

TRUCK 220

RAIL TANK CAR 710

BARGE 9,400

SHIP (105,000 DWT) 768,000

PIPELINE (8 inch diameter) 40,200 per day

Table 5-8. QUANTITY OF METHANOL DELIVERIES REQUIRED BY
VARIOUS TRANSPORT MODES FOR NEAR-TERM USAGE
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H.	 TRANSITIONAL FACTORS FOR TRANSPORT AND DISTRIBUTION TO CALIFORNIA

SUBMARKETS

The transition from the use of conventional petroleum-based fuels in
California submarkets to methanol -based fuels may pose economic, technical,
and institutional difficulties to both the suppliers and the users of the
methanol fuel. This section will examine some of the transport, distribution,
and storage aspects from a California -spec ific, submarket-specific perspec-
tive.	 The three California submarkets chosen for this analysis are: 	 methanol,/
gasoline blends, neat methanol fuel for automobiles, and electrical utilities.
In the transitional phase to methanol utilization, the only meaningful source
of supply for California (as described in Chapter 4) is remote natural
gas-based methanol plants, most likely from coastal Alaska. 	 As previously
discussed in this chapter, the supply of methanol to California from such
locations does not produce insurmountable problems.	 However, the distribution
and transportation of methanol and/or methanol -gai;.olive blends within the
State of California to the specific submarket users may face significant
barriers.	 For example: water commonly found in petroleum product distribution
systems may cause gasoline blends transported or stored in those systems to
absorb water and phase-separate, most likely in a customer ' s automobile
gasoline tank.	 Another example of potential transitional problems for the
methanol use in automobiles is the methanol incompatibility of fiberglass
service station storage tanks.

1.	 Transport and Distribution of Methanol Gasoline Blends in California
3

Methanol and a cosolvent can be blended with gasoline for octane r

number enhancement or, if methanol and the cosolvent is less expensive than
gasoline, as a volumetric enhancer.	 Two properties of methanol /cosolvent
gasoline blends can impact its storage and distribution in California: 	 (l)

t When mixed with gasoline, methanol causes the vapor pressure to increase (the
apparent volumetric blending RVP increases as the concentration decreases)
and, if there exists too much water and/or too low a temperature, the blended
product can phase-separate into a gasoline phase and a methanol-water phase.

If a methanol-containing gasoline with a 9 pound RVP is comingled with
another gasoline, also at 9 pounds RVP, the result of the blended gasoline
could exceed the RVP limit set by California Air Quality law. 	 Such a gasoline
could not be legally sold in California and action would haveto be taken to
reduce the vapor pressure. 	 In addition, a condition on the waiver which was
granted a recent waiver application under Section 211F of the Clean Air Act
states that reasonable precautions (be _taken) to ensure that the finished
unleaded gasoline is not used as a base gasoline to which other oxinates are
added.	 Furthermore, pipeline operators may not view a methanol-containing
blend as a fungible product and other petroleum companies may not view such
gasolines as appropriate for entry into exchanges. 	 The clear implication of

}
these factors is that methanol containing gasoline blends must be both ,E

segregated and identified.	 Such factors may also;Limit or preclude the use of
petroleum product pipelines for the transportation of methanol containing is

` blends unless such pipeline is owned or operated by the producer of the
methanol-containing fuel. 	 Discussions with one california petroleum pipeline

F

company revealed that they would accept methanol gasoline blends for shipmen t
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in their system, however, product specifications could not be guaranteed.
Sufficient water was believed to be present to make phase separation during
shipment very likely. Conversly, ARCO has successfully expressed test batches
in their pipeline from Philadelphia to Pittsburg.

The methanol-gasoline blend can phase-separate in the presence of water.
The temperature at which such phase separation can occur is determined by the
relative proportions of water methanol and cosolvent, in addition to the
characteristics of the gasoline. The addition of a cosolvent significantly
improves the water tolerance of methanol-gasoline blends. Figure 5-7 taken
from the ARCO. waiver application shows this relationship. teaching from the
refinery to the fuel tank on the vehicle, the transportation/distribution/
storage system for methanol-blended gasoline in California must be such that
the gasoline-methanol blend is never exposed to or collects water in excess of
the cosolvent's ability to maintain the water in solution.

Because the available cosolvents are either of limited supply, such as

gasoline-grade tertiary butylalcohol, or expensive, such as propanols, a
refiner or distributor would wish to blend the minimum amount of cosolvent

O 1.0V% Methanol
O 2.75V% Methanol
0 4.5V% Methanol
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consistent with vapor pressure and relater tolerance requirements. Such a
minimization involves the consideration of four basic factors:

(1) The expected amount of water present.

(2) The minimum temperature that blended gasoline is expected to be
subject to.

(3) The composition of the gasoline used for blending.

(4) The amount and proportions of methanol and cosolvent used.

Before the methanol reaches the point of being blended with gasoline, it
can potentially absorb water from several sources, includ;xng atmospheric
absorption if exposed to air, water bottoms present in tankers, and watei
intrusion if it is being shipped on a single-hull vessel. Water can enter the
gasoline system through many sources, but usually settles out as water bottoms
in storage tanks at the refinery or at the service station underground tank.
Union Oil, in a study for the U.S. Department of Energy (Ref. 23), performed
measurements on their systems to provide a statistical distribution of the
size of water bottoms present in both the storage tanks and service station
tanks. These data are presented in Figure 5-8. As can be seen from the
figure, gasoline storage tanks have significantly greater water bottoms than
service station storage tanks.

To ensure that the blended gasoline will not separate in a customer's
gas tank, the amount of water initially present in the transport storage and
distribution system has to be reduced to an acceptable level, and the water
entering the system has to be reduced to an acceptable rate. If the initial
de-watering of the system is not wholly successful, the initial batch of
methanol-gasoline blend can phase-separate. The gasoline-phase ^an most
likely be returned to the gasoline pool for reblending. However, the methanol
water phase (containing some gasoline components) poses a more significant
problem. If such a separated phase is classified as a hazardous or toxic
waste, the disposal options are severely limited in California due to the lack
of licensed liquid waste disposal sites. Therefore, the options to the
refiner are either to store it at a refinery site or to incinerate it as a
recycled fuel.

?rt	 If the system has been successfully de-watered or is originally
sufficiently dry, the second area of concern is the rate at which new water
can enter into the system.	 Under the assumption that rain water falling upon
gasoline storage tanks is the dominant point of entry of water into the
system, Union Ail (Ref. 23), has calculated the rate at which rain water can
enter the gasoline stored in a single-seal, uncovered floating-roof product
storage tank.	 The use of this rate to calculate phase-separation potential j
for methanol gasoline blends is subject to some significant caveats: 	 (1) rain
water flowing down the sides of a storage tank may not be thedominant source
of water entry into the system, and (2) the water drain systems used on such
hanks are not always effective and could present a much higher source of water 'M
intrusion than rain water flowing down the sides of the tanks.	 (Presumably,

k

such drain systems would be subject to more frequent maintenance and
inspection with a methanol-blended gasoline present.)

s
iz
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	 There are a few tanks in California that are covered. If these tanks
were chosen for storage of methanol gasoline blends, the water entry rate
would be significantly lower than that calculated. Also, double-sealed
floating roofs used to meet stationary source requirements would significantly
reduce the water intrusion. Another possibility is that the methanol and
cosolvents can be 'blended upon leaving the product storage tanks rather than
upon entry.

Under the assumption that gasoline is stored for approximately 5 weeks
in the product storage tanks, the Union Oil estimate of rain water entry rate
can be combined with the NOAH 30-year average rainfall data to calculate the	 a
amount of water which would enter the gasoline. Figure 5 -9 shows the percent
concentration of water as a function of month-of-the-year for both the Los	 }
Angeles area and the San Francisco Bay area.I
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Likewise, the phase-separation data of methanol/TBA/gasoline blends from
the ARCO Waiver Application can be combined with monthly low temperature data
to estimate the water tolerance of such blends. The low temperature estimator
to use for these two regions is problematic. A vehicle can be fv- sled in
either area and driven to high-altitude mountain conditions in the middle of
winter. Additionally, the lowest temperature recorded in any given month
varies appreciably year-to-year.' The estimator chosen for the Los Angeles
area was the 12-year low temperature at the Burbank Airport, which would
represent the low temperature in the San Fernando Valley area. For the San
Francisco region, the low temperature over a 30-year period in the San Raphael
area was chosen. Assuming a 4.5% methanol, 4.5% TBA blend, the water tolerance
is shown in Figure 5-9 by the upper line. Given the sizable set of assump-
tions and caveats, it appears that the phase separation should not be a
problem in either area at this concentration. The lower line shows the water
tolerance of a 4.5% methanol to 2.5% ` TBA blend. Under these assumptions, its
reduced water tolerance shows it to be marginal for the San Francisco Bay area
and still acceptable in the Los Angeles area. It should be noted that the
9-pound RVP restriction which negatively impacts the methanol -blending
economics occurs in both areas during the driest and warmest part of the year,
which--fropi the standpoint of phase separation- -would be the most attractive
period of time.

In summary, it appears that reducedcosolvent below that currently
allowed by waiver applications is a possibility at least in some portions of
California and for some periods of the year from the standpoint of phase
separation. The shipment of methanol within California by means other than
pipelines is most likely a requirement. The warmer, dryer southern part of
the state is probably ,a more attractive location for initial marketing than
the ccoler, wetter north. The cost advantage of the methanol -gasoline blends
combined with their projected volume must be sufficient to overcome both the
front-end cost of de-watering the transport and storage system and, also, the
risk associated with a phase-separated batch.

2. Distributional Aspects of Transitions to Neat Methanol Automotive
Fuel

Most of the considerations previously applied to the transport of
neat methanol into California also apply for the transport of methanol within
the State of California during the transitional phase. To briefly recap,
train tankcars, trucks, barges, and small tankers can and, in many cases ,
currently do ship methanol, and these means could be readily used at any time
to ship methanol within the State of California ( although some materials
modifications may be required). The steel tanks and steel pipes used at
refinery and blending operations are, in principle, compatible with neat
methanol and could be used without insurmountable pr ,"51ems. However, there
are two areas that could cause barriers during the transition to neat-methanol
fuel. These are. (1) the pipeline shipment of neat, methanol batches; and (2)
the storage of neat methanol at service station underground tanks.

Unlike other parts of the United States, much of the population of
California is not dependent upon petroleum product pipelines for gasoline.
Much of the population and VMTs are close to ports and refineries. During
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the transitional period, by definition, methanol demand will be relatively
modest and, hence, if any methanol was shipped by pipeline within the state,
one would expect such batches to be relatively small and relatively infre -
quent. In such a situation, it would be very difficult to maintain adequate
product specifications on the output side of the pipeline system, since the
methanol would tend to pick up most of the water, sludge, gum, and surface
deposits in the pipeline. This is not to imply that such shipments of
methanol are not possible; in fact, the Williams Pipeline Company has run
experimental tests sending a batch of approximately 5000 barrels of ethanol
from Kansas City to Des Moines. To quote from the conclusion of the Williams
test (Ref. 24)

"In summary, our experimental pipeline test indicates that fuel-grade
ethanol can be successfully transported in a multi-products pipeline
system under controlled conditions. The greater the frequency of the
batches through any given line segment, the fewer the quality problems
that we would expect to experience."

Currently, almost all service station storage tanks installed in the State
of California are fiberglass. The principal reason for this is the relatively
short life or uncertainty of the lifetime of steel storage tanks. In Calif-
ornia, the stee l tanks last roughly 5 to 10 years, whereas a fiberglass tank
can have an expected life of 20 years or greater. The fiberglass tanks are
somewhat more expensive to install. For exam ple, at a two-island, three-fuel
grade service station, the 1981 dollar cost to replace three 10,000 gallon
underground tanks and the lines to the two islands is approximately $60,000
for fiberglass and $45,000 for steel. To replace one tank with a steel tank
and, in addition, to put steel lines to both islands costs approximately
$20,000. In the period of time in which methanol could become economically
viable transportation fuel in California (roughly the early to mid-90s) almost
all the service station storage' tanks will be incompatible with methanol fuel..

For methanol vehicles to be successfully introduced, some initial fuel
supply infrastructure would have to_be in place. The magnitude of that
initial infrastructure is of importance to transitions to neat methanol fuel
because it represents the "up-front," initial cost or investment necessary by
energy companies to establish that infrastructure. As  very approximate-
benchmark, the diesel fuel retail availability before the marked growth in
both diesel car sales and methanol retail availability can be used as an

t

	

	 estimator for the required retail methanol availability. Such a number should
be used with 'caution 'because the analogy between diesel and methanol is far
from perfect. For example, 1992 methanol cars would not'be expected to have
the same attributes as 1972 Mercedes or Peugeots. Additionally, the location
of the methanol service stations would probably not be the same as the diesel
service stations.

For the period of time from 1976 to 1992, Figure 5-10 shows the percent of
retail outlets carrying diesel fuel, the percent of new car sales which were
diesel cars, and the estimated percent of vehicle population which was
diesel. The data for the growth in retail diesel availability in LA County
was obtained by sampling the fuel pump inspection certificates of the LA k

County Department of Weights and Measures. The sales of diesel automobiles in	 i

^	 z
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LA County alone was not readily obtainable. Hence, statewide sales of diesel
cars were used as a surrogate. The 'line labeled "Hammond-Mercedes-Benz" is an
estimate of the growth in diesel outlets from the Mercedes Benz diesel
directory (Ref. 25.). It is not possible to estimate the absolute number of
retail outlets from the directory, but only relative growth year-to-year.
There is a significant difference between the apparent growth represented by
the Hammond-Mercedes-Benz data and the County Department of Weights and
Measures data. It is believed that the County Department of Weights and

ar
Measures data is more accurate because they inspected each retail fuel pump in
the county.

Prior to the growth beginning in 1977 to 1978, approximately 1 to 1-1/2
percent of the retail outlets in LA County carried diesel fuel. (Note: There
is some uncertainty in the earlier data due to change in record-keeping pro-
cedures.) This level of fuel availability was sufficient for both Mercedes
Benz and Peugeot to sell diesel automobiles. In LA County there are roughly
4,500 retail motor fuel outlets, which implies 45 to 70 methanol stations
would provide methanol availability equivalent to historical diesel availa-
bility. For the state as a whole, there are roughly 15,000 service station,,
which would imply that 150 to 220 service stations statewidewould provide
sufficient methanol availability. A further implication is that the level of
availability could be provided by one major oil company with 2000 to 3000
service stations by converting 7-1/2 percent of its stations. Since fiber-
glass tanks have a lifetime of approximately 20 years, approximately 5 percent
of such tanks would be replaced anyway. 'Hence, if the required fuel availa-
bility density is as low as implied by the diesel data, no early action or
inordinate costs would be necessary for adequate retail availability to be
provided. Furthermore, replacing 5 percent of the fiberglass gasoline tanks
with steel tanks would increase methanol availability faster than the expected
growth in methanol vehicles.
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CHAPTER SIX

AYR-QUALITY IMPACT OF METHANOL USE IN VEHICLES

A. INTRODUCTION

The South Coast Air Basin of southern California has one of the most
persistently severe photochemical air pollution problems in the world. The
problem is both pervasive and difficult to control. There is a great need for
control measures that can reduce the amount of reactive emissions released
into the atmosphere. One .potential long-term control strategy is the use of
methanol as an alternative fuel. In this chapter we describe the likely air
quality impacts resulting from the large-scale use of methanol as an
automotive fuel in southern California.

The other purpose of the work described in this chapter was to perform a	 i
screening analysis and consider whether the use of methanol could cause new
problems of air pollution. For example, there was some concern that the
ambient concentration of formaldehyde could increase dramatically over current
levels. The analysis described in this chapter indicates that the formaldehyde
concentration would not increase significantly.

s
There are several reasons for selecting the South Coast Air Basin.

Almost 10 million people, half the population of California, live within the
counties of Los Angeles, Orange, Riverside, and San Bernardino that make up
the Basin. In addition, the availability of extensive compilations of
emissions and meteorological information enables the application of rigorous
analytical procedures. For example, past and future estimates of pollutant
emissions are summarized in the Air Quality Management Plan (AQMP) issued by
the South Coast Air Quality Management District (SCAQMD). While our attention
in this chapter is focused on applicationa within the Basin, the procedures
introduced can easily be applied elsewhere.

The chapter is structured in the following manner. We begin with a
brief discussion of the atmospheric chemistry of methanol and formaldehyde.
The next section includes a discussion of a mathematical model that describes
the formation and transport-of photochemical air pollution. When combined
with emissions and meteorological data, this model is used to predict the
Likely ambient air quality impacts of different levels of methanol usage in
the year 2000. Those calculations enabled us to estimate concentrations of
such air pollutants as ozone, formaldehyde, peroxyacetyl nitrates, and oxides 	 xF
of nitrogen. The environmental impacts of these and other pollutants, are
briefly summarized in the final section.

B. ATMOSPHERIC REACTIONS OF HYDROCARBONS

1.	 Introduction

Photochemical smog is a product of the reactions that occur between
oxides of nitrogen (NOx) and reactive organic compounds (ROC) in the atmos-
phere, in the presence of sunlight. The ROC are commonly referred to as

r-
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hydrocarbons, even though many ROC species contain atoms other than carbon and
hydrogen.	 Reactive orgaide compounds enter the atmosphere via unburned or
incompletely combusted gasoline from automobile exhaust, vapor losses in the
filling of gasoline storage tanks, organic products from chemical manufactur-
ing plants, and organic solvents from processes such as dry cleaning. 	 Most of
the nitrogen oxides cane from combustion processes.

A description of the overall chemistry of the atmosphere is given in
Ref. 25.	 Here we give only a short, and necessarily simplified, account of
that chemistry.	 Our primary concern is with the atmospheric chemistry of
methanol and that of its by-product, formaldehyde.	 Both of these compounds,
if emitted into the atmosphere, could contribute to the formation of photo-
chemical oxidants.	 There are several potential sources of these species.	 For
example, the exhaust emissions from methanol-fueled vehicles would contain
both methanol and formaldehyde.	 Another source of methanol and its additives
would be from fuel evaporation during storage, marketing and transfer.

The most important reactions between ozone and oxides of nitrogen are 1
the following:

NO	 + light --► NO + 0	 (1)

0+0 2 +M —i O 3 +M	 (2) .

NO + 03 —► NO2 + 02	(3)

In the presence of hydrocarbons, here represented as RH, OH can cause the
following reactions:

RH + OH 0- R6 + H2O	 (4)

R• + 02 —^► R02	 (5)

R02 + NO	 No 
	

+ ROO	
_	

(b)

Reaction (6) shifts the equilibrium between reactions (1),	 (2), and (3).
R02 consumes NO in the atmosphere and thus less NO remaios to react with
03 .	 As a result, 03 accumulates in the atmosphere.- This fact explains
why the severity of photochemical smog is traditionally measured by the
ozone concentration in the atmosphere. 	 In Los Angeles, the current smog alert
levels (hourly averages), using ozone as an indicator for photochemical
activity are as follows:

r first stage alert 	 0.20 part per million (ppm) ozone,
second stage alert	 . 0.35 ppm ozone,
third stage alert	 0.50 ppm ozone.

A

2.	 Atmospheric Reactions of Formaldehyde
!x

^.

The incomplete combustion of methanol produces formaldehyde as the
main intermediate products

r	 ^
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CH OH + 1O f—ooHCHO + H2o 	(7)

where CH30H is methanol and HCHO is formaldehyde, Gaseous formaldehyde under-
goes two primary reactions in the atmosphere:

U) Photolysis. HCHO + light--rHCO + H*

HCO' + 02 _0r Ho , + Co

H + 02 —0- HO;

(ii) Reaction with OH.

HCHO + OH- *-H02 + CO + H2O

The HO  radical is important because of its ability to convert NO to NO2:

NO + HO;---►NO2 + OH"

Formaldehyde, acetaldehyde (CH3CHO), and higher aldehydes also occur
j from photochemical oxidation of hydrocarbons. The atmospheric chemistry of

acetaldehyde is very similar to that of formaldehyde and involves photolysis
and reactions with OH.

The rates of reaction of various hydrocarbon compounds with the hydroxyl
radical are shown in Table 6-1. In that table, we can see that aldehydes
react roughly as rapidly ks olefins. Aldehydes, however, also undergo rapid
photolysis to yield reactive radicals and other, fragments.

A modeling study of the influence of aldehydes on the formation of smog
was carried out by Dodge and Whitten (Ref. 1). 	 They used over fifty steps	 o
model the reactions and estimated photodissociation rate constants. 	 They
found that the addition of 0.5 ppm of aldehydes to a hydrocarbon/NOx system
greatly increased the formation of ozone. 	 The effect was more pronounced for
the less reactive n-butane/NOx system than for the propylene/NOx system. 	 Even

-	 in the latter, more reactive system, the increased reactivity was readily
observable.	 Thus, because aldehydes can generate free radicals in photolytic
reactions, they can markedly accelerate the formation of smog.	 In passing it
should be noted that the typical levels of formaldehyde observed in the -:
atmosphere are considerably lower than the 0.5 ppm concentration used in the
above smog chamber experiments.

3.	 Atmospheric Reactions of Methanol
i

The reactivity of methanol is quite low. 	 For example, the rate
G

constant for the reaction of methanol with OH is less than one-half the rate
constant for the reaction of butane with OH (see Table 6-1). 	 Nevertheless,
methanol could contribute to smog formation at sufficiently high concentra-
tions.	 We would like to know then if unburned methanol from methanol-fueled
automobiles could increase the production of photochemical oxidants. 	 The

G.
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Table 6-1. PHOTOCHEMICAL REACTIVITY OF ORGANIC COMPOUNDS:
RATE CONSTANTS FOR REACTION WITH HYDROXYL RADICAL

0

COMPOUND k x 10-4 (ppm- lmin 1)

Ethylene 0.45

1,2,4 Trimethyl Benzene 4.9

m-Xylene 3.4

Toluene 1.7

Benzene 0.56

Trans-2-Butene 10.5

Propene 2.1

Propionaldehyde 2.2

Acetaldehyde 2.2

Formaldehyde 2.1

n-Butane 0.35

Propane 0.25

Ethane 0.045

Acetylene 0.022

Carbon Monoxide 0.021

Methanol 0.148

Methane 0.0012

k is the rate constant,(ppm l min-1) for the
reaction between the compound and the hydroxyl
(OH) radical.

SOURCE:	 (Ref. 26).

^R	 f

air quality model (Ref. 2),was modified to account for methanol's reactions
with OH and 02. This section briefly discusses the chemistry of methanol on
which the modifications were based.

i
The major photochemical reaction of methanol involves abstraction of a

hydrogen atom by a hydroxyl radical (Ref. 3)
5

CH3OH + OH--►CHZOH + H2O	 (8)

CH2OH is called the hydroxy-methyl radical. According to Atkinson et al.
(Ref. 4), such an a-alkoxy radical, ROH, can undergo four main reactions:
reaction with 02 , 'reaction with NO and NO2, decomposition, and isomer`iza-	

=y

tion. The latter two are applicable only to larger a alkoxy radicals and
y
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not to the hydroxy-methyl radical. The,more important of the first two reac-
tions„ according to Ref. 5, is the reaction with 0 2 to form formaldehyde:

	

CH2OH + 02 —►HCHO + HO;	 (9)

The reactions involving NOx are:

	

CH2OH + NO--*-CH3ONO	 (10)

	

CH2OH + NO2--►CH3 ONO	2	 (11)

These two reactions, however, are insignificant compared to reaction (9).
'For example, Carter et al. (Ref. 3) reported smog chamber data for typical
photochemical reactions of ethanol. They reported that the product yield of
formaldehyde was as much as 100 times more than methyl nitrate (CH30NO2).
Further, Ito et a1. (Ref. 6) found that CH30NO2 would not be stable under
solar radition. The lifetime of CH30NO2 was estimated by Taylor, et al.
(Ref. 7) to be approximately 2 minutes. In considering the relative import-
ance of reactions (8) and (9) compared to (10) and (11), we should compare
both the rate constants and the likely ambient concentrations of the reacting
species. The reaction constant for reaction (8) is about 1.00 x 10-12
cm3/molecule-sec (Ref. 8) and that for reaction (9) is 6.38 x 10 -16
cm3/molecule-sec. The ambient concentration of 02 in the atmosphere is
approximately 1018 .molecules /cm3 and that of OH is about 10 7 molecules/
cm3 . For reactions (10) and (11), no rate constants were available. The
concentration of NO in the atmosphere, however, is about 1012 molecules/
cm3 . Thus, reactions (10) and (11) would not be significant in comparison
with (9), unless their rate constants were about 10 6 times higher than the
rate constant for reaction (9), which is unlikely.

Equations (8) and (9) were thus chosen to be included to account for the
dominant features of methanol chemistry.

The point should be made that olefins and aromatics as well as methanol
form formaldehyde and reactive radicals. For example, ethylene reacts as
follows (Ref. 10):

CH2=CH2 + OH* + 02--►CH202CH2OH

CH2O2CH2OH + NO---►CH2OCH2OH + NO2

CH2OCH2OH--rHCHO + CH2OH
	 x

The rate constants for these reactions are significantly larger than the
rate constant for a sequence with methanol. The photochemical reactivity of
methanol is comparable to thereactivities of low-molecular-weight alkanes,
which are among the less reactive hydr'ocar'bons.

Therefore, the atmospheric impact of methanol, though not negligible, is
likely to be less serious than that of ethylene, higher alkanes, or aromatics.

6-5
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The photochemical reactivity of organic compounds may often 6c assessed
from the results of smog-chamber experiments. Experimental studies of the
atmospheric chemistry of methanol and formaldehyde were reported by Bechtold
and Pullman (Ref. 22), who compared mixtures of reactive organic gases whose
compositions were representative of exhaust from a methanol-fueled vehicle and
exhaust from a gasoline-fueled vehicle. The simulated exhaust from the
gasoline-fueled vehicle was diluted by a factor of about three in order to
obtain the same concentration of NOx as for the methanol-derived exhaust.
In one set of comparable data, when the concentration of NOx was 0.40 ppm,
and the ratio between the mass concentrations of organic species in the
methanol-derived exhaust to that in the gasoline-derived exhaust was 3.8, the
maximum concentrations of ozone in the methanol case and the gasoline case
were 1.50 and 1.04 respectively. Clearly, methanol exhaust would produce a
much lower concentration of ozone than gasoline exhaust of equal concentration.
Obviously, this is only an order-of-magnitude estimate. Another interesting
result from the smog-chamber experiments was that the diluted, gasoline-
derived exhaust produced a higher concentration of formaldehyde than did the
undiluted exhaust from the methanol-fueled vehicle. More smog-chamber
experiments need to be conducted in order to confirm the results of Bechtold
and Pullman.



C.	 AIR-QUALITY MODELING CALCULATIONS FOR SOUTH COAST AIR 'BAS:IN

1. Description of Air Quality Model

Over the last twenty years, research workers have made efforts to
understand the chemical and physical processes which lead to the formation of
photochemical smog. Some of the information obtained from that work has been
applied to the development of models which simulate air quality in the basin.
One such model was developed at Caltech by McRae and Seinfeld (Ref 2, 11, 17).
The air-quality model calculates the amounts of secondary atmospheric pollut-
ants such as ozone and peroxyacyl nitrates (PAN), given the emissions of
reactive organic compounds (ROC) and oxides of nitrogen (NOx) that enter the
atmosphere from various sources such as automobiles„ stationary power plants,
solvents, petroleum production, marketing, and refining operations. Ozone is
widely accepted as a good index of all the complex reactions which take place
among reactive organic compounds and oxides of nitrogen in :the polluted
atmosphere. The reactive organic compounds are divided into six classes
according to reactivity. For our analysis, the model was also modified in
order to treat methanol as a specific pollutant. The methanol chemistry was
included in the model for completeness even though the results of subsequent
modeling calculations did indicate that methanol contributed relatively little
to the formation of ozone. The model is described in detail by McRae et al.
(Ref. 11), and the essence of their formulation is summarized below.

Modeling of urban air pollution involves a description of the formation
and transport of chemically reactive species in the atmosphere. Most models
make use of the ensemble-averaged atmospheric diffusion equation (Ref. 12).
The area covered by a model is called an airshed, which in our case is the
South Coast Air Basin (see Figure 6-06 This airshed must be divided into
grid cells where each cell. has horizontal and vertical dimensions on the order
of several kilometers and tens of meters, respectively. The diffusion
equation is averaged over grid cells and the input parameters, such as wind
velocities and eddy diffusivities. The equation is also averaged over a
certain time interval which equals the time step for the numerical solution.
Then it is assumed that the volume-average reaction rate is the same as the 	 r
reaction rate based on the volume-average cell concentrations. The form of
the diffusion equation which is the basis for mostairshed models is:

ac.
at + 0 (ucl) 

__p	 (K 0 c i ) + R (c l , .... cp) i = 1,2, ... p

where ci is the concentration of species i, u is the mass average velocity,
K is the eddy diffusivity, and Ri is the rate of ' reaction of species i.

The vertical extent, or the depth of the airshed, is a parameter that
has a major influence on the choice of the boundary conditions and the _imple-
mentation of the computational procedures. In most earlier studies the ver-
tical extent was chosen to be the base of an elevated inversion layer. This 	 4
selection could cause difficulties in establishing the appropriate upper-level
boundary conditions at night when the airshed is not ventilated and any 'ozonef
trapped aloft could not be fumigated to the ground the next day. To alleviate 	 '.
this problem, computational cells above the mixed layer are included so that
atmospheric conditions are simulated throughout the night. In this way

6-7
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entrainment and boundary-layer growth can be modeled by variations in the
vertical profile for the eddy diffusivity.

The initial and boundary conditions must be specified to complete the
mathematical formulation of the model. The boundary conditions are statements
of mass continuity across the bounding surfaces of the airshed,and-are
described by Reynolds et al. (Ref. 13).

Under certain circumsta-icea, less complex forms of the governing
equation are desirable. I'n particular, the air-quality impact may only be
needed for a specific location A trajectory model, which follows a parcel
of air traversing the airshed, is often used in these circumstances. The most
common representation of a trajectory model, as shown by Eschenroeder and
Martxnez, and by Lloyd, et al. (Refs. 14, 15), can be expressed in the form

s
az	 az	 Kzz 2z	 + R(cJ,	 f..

where Kz Z is the vertical eddy diffusivity. A Lagrangian analysis is then
used where the coordinate system-is adjusted for the horizontal wind field.
A change of variables, from the fixed system to the moving coordinate system,
is employed. This computational method is in general faster than the fixed or
Eulerian grid approach.

Certain assumptions are useful in simplifying the Lagrangian form of
the diffusion equation. The vertical bulk transport is assumed to be small
in comparison to the turbulent diffusion, the loss or gain of material from
horizontal diffusion is considered to be negligible, and the wind-shear
effects are neglected.

We can therefore see that the model used in this study is a comprehen-
sive mathematical system for describing urban air pollution. In order for the 	 +'
model to give the concentrations of chemically reactive species, three major
input components are required: (1) a meteorological description, such as wind
speed and trajectories and vertical temperature variation; (2) a source des-
cription of the temporal and spatial distribution of emissions for all signi-
ficant pollutant sources; and (3) a kinetic mechanism describing rates of
atmospheric_ chemical reactions as a function of concentrations of various
species present.

The meteorological description must account for the interactions among
the various components. For example, temperature variations affect the inver-
sion height which in turn influences the transport of chemical species in the
atmosphere.- The emissions data must be accurate and detailed and specify
emissions from diverse sources. They must also be well structured so that
emissions from one source can be varied without altering the remainder of the
emissions. t

A complicated problem involves simulation of the chemical reactions of
the atmosphere. The chemical interactions can be described by the 52-step
reaction mechanism, proposed by Falls and Seinfeld_(Ref. 16), McRae et al.

y	 (Ref. 11), and McRae and Seinfeld (Ref. 17), and shown in Table 6-2. This
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Table 6-2. CHEMICAL MECHANISM USED IN AIR -QUALITY MODEL

Photolysis of NO2 and basic NO -NO2703 photolytic cycle

NO2	+ by 	o- NO + 0(3P)

0( 3P) + 02	+ (M)	 ? -03 + {M)

03 	+ NO	 -3 o► NO 2 + 02

NO2 	+ 0( 3P)	 --40-NO + 02 i

NO	 + 0(3P)	 -5► NO2

Chemistry of NO3 (nitrogen trioxide)

NO2 	+ 0 ( 3P)	 --6-b--NO3

L
03	+ NO2	

7
	 NO3 + 02

'. NO3	 + NO	 8 r 2NO2
e
} Nitrous acid and peroxy nitrous acid chemistry

3 	
I

NO	 + OR	 9H ONO

t
(

Photolysis of HONG

HONO + by	
lU^ OH + NO

Nitrous acid chemistry

r
HO 	

+ NO2 	1o HONO + 02

'
HONO + OH	

12 + H2O
E

'F

NO2	 + H02	1- 3► H02NO2

r

A

H02NO2 14
0 H02

+ NO ;t

x 6-10'

k	 ,
OWNS

,
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Table 6-2 CHEMICAL MECHANISM USED IN AIR-QUALITY MODEL ( Continued)

Conversion of NO to NO2

HO 	 + NO 15 0.- No t + OH

RO2 	+ NO2 1
6 ► NO 2 + RO

RCO 3 + NO 17 P- NO 2 + RO2 + CO2

Nitric acid ( HONO2) formation

NO 2 	+ OH l► HONO2

Hydroperoxyl radical formation

CO	 + OH 1 ̂  HO + Cc 

Photolysis of ozone

03	
+ by 20{.0(3P) + 02

Photolysis of formaldehyde

' HCHO + by	 ?i. 2HO 2 + CO

HCHO + by	
22

	 H2 + CO

Formaldehyde chemistry

HCHO + OH	 ...
23
	 H0 2 + H2O + CO

Photolysis of higher aldehydes

RCHO + by	
24-0 ROZ + H0 2 + CO	 s

Higher aldehyde chemistry

RCHO + OH	 ?	 RCO3

Olefin chemistry (OLE) t

CH '+ OH	 ?	 R02 4	 2

CzH4 + 0	 ? i RO + Hot	 }.

OLE	 + OH	 2^8i► R02

i

j

{
J
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Table 6-2. CHEMICAL MECHANISM USED IN AIR-QUALITY MODEL (Continued)

OLE + 0	 29 R02	+ RCO3

OLE + 03	 3-0► (a l) RCHO + ( a 2) HCHO +

(a3 ) HO  + (a4) RO2 +

(a5) OR + (a6) RO

Alkane chemistry (ALK)

ALK + OR
31 	 R02

ALK	 + 0 3.2.0. R02 	+ OR

Aromatic chemistry (ARO)

ARO + OR 33► R02	+ RCHO

Alkoxyl radical chemistry

'S*	 RO 34
	 HO + (1-b 1 ) RO2 +

:a

(b2) HCHO + (b 3 ) RCHO

Photolysis and chemistry of RONO

RONO + h v 3- 5► NO	 + RO
r

RO	 + NO
36R

 ONO

^.

RO	 + NO2
37i

 RONO2

RO	 + NO2
38	

RCHO	 + HONG

Peroxy nitrate chemistry {

NO2	+ R02 3 b R02NO2

NO 2 	R02 4_^ RCHO	 + HONO2
.

RO NO 	 41► N0	 +2 2 R02

:..j	 ..

Peroxyacyl nitrate ( PAN) chemistry !

RCO3 + NO2 4 i PAN <

PAN
43

RCO3	 + NO, r	 ^^

6-12- 	 _
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Table 6-2. CHEMICAL MECHA14ISH USED IN AIR-QUALITY MODEL (Continued)

Dinitrogen pentoxide (N205) chemistry

NO2 + NO3 4 N205

N205 
45 

NO2	+ NO3

H2O + N 205	 0. 2 HONO2

Ozone removal steps

03 + OR	 .^ H0 2 	+ 02

03 + HO 	 4 V OR	 + 202

Ozone wall loss term for smog chamber experiments

0 43 	 wall loss

Hydrogen peroxide production and photolysis

HO  + HO 	
5 0 H2O 2	 + 02

r

H2 0 2
+ by	S a 20H

Recombination Reaction for peroxalkyl radicals

RO2 + RO2
	

52 2R0

Methanol chemistry

CH3OR + OR	
5. CH

2OR + H2O

CH2OH + 02 54► HCHO + H02

t

Equations l through 52 were taken from Reference 11.

so-called lumped mechanism groups organic species according to their struc-
tures and reactivities.

In the lumped mechanism, distinct organic entities must be abandoned in
favor of lumped species. Organic species are divided into seven classes: 	 j
ethylene, higher olefins, formaldehyde, higher aldehydes, aromatics, alkanes,
and methanol. Ethylene is distinguished from higher olefins because of its

u

r,
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relatively low reactivity with OH and its significant ambient concentration.
Formaldehyde is separated from higher aldehydes because it photolyses to H02,
which is substantially different from the R02 formed in the photolysis of
higher aldehydes. Further, formaldehyde does not lead to PAN formation. We
might emphasize that our model is the first of its kind to account for
methanol as a separate entity.

Table 6-2 shows that the mechanism used in the model takes into account
numerous chemically reactive species whose reactions are closely interrelated.

I	 For instance, n-butane, a constituent in gasoline, can react with OH and 0 to
form peroxyalkl (R02) radicals and aldehydes. The presence of the R02
radical upsets the equilibria among OH and other alcanes, olefins, etc. R02
also reacts with NOx to form more radicals. The 52 reactions therefore had
to be carefully selected to be representative of atmospheric reactions.
Further information on the mechanism appears in Falls and Seinfeld (Ref. 16).

Detailed discussions of other aspects of the model such as rate con-
stants for photolysis, turbulent -diffusion coefficients, data for surface
removal processes, treatment of point-source emissions, and numerical solu-
tion of the atmospheric diffusion equation, are again described in the paper
by McRae, et al. (Ref. 11).

2.	 Validation of the Air-Quality Model

The evaluation of model performance is explained in detail by McRae
and Seinfeld (Ref. 17). A summary is given here.

Three steps are needed to evaluate the performance of a model. They are
{1) a basic assessment of model validity, ( 2) analysis of the sensitivities of
the predictions to uncertainties in model components, and (3) comparison of
predictions and observations for past events.

The validity of a model is measured by its correctness relative to basic
physics and chemistry as well as to the accuracy of numerical results, e.g.,
adherence to necessary conditions such as conservation of mass. 	 In this
respect, our model uses the latest , relevant data and accepted theory. 	 In
simulation of urban air pollution, each individual component of the model -
has: been tested to ensure that the model is valid and practical.

Sensitivity analyses of various atmospheric models have been made
(Refs. 18, 19, 20, 21) to show how much of the overall uncertainty of a
model ' s output is associated with the individual uncertainty in each input.
These analyses show the variables to which the models are most sensitive, and
will not be discussed.	 Note should be made, however, that the analyses allow ,f
understanding of the causes of discrepancies between predictions and observa-
tion.	 The model was tested in its trajectory formulation.

,f

In the testing	 f the	 resent modelg	 p	 , predictions were compared with
observations for the region known as the South Coast Air Basin and shown in
Figure 6-1.	 This basin provides an ideal site for evaluation of the perform-
ance of an urban model because it not only has the most persistently severe
photochemical air pollution in the United States,- but also displays much
variability in meteorology and in densities of emission. 	 The time period

if
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chosen to check the model was the week of 23-28 June, 1974, when a severe
air-pollution episode was encountered. The high ozone levels provided a good
test of the model's ability to simulate such episodes. Moreover, detailed
emissions inventories are available for that year. Available emissions for
130 different source categories were spatially distributed over the region
shown in Figure 6-1 (see p. 6-8). Further details of the emission inventory
appear in McRae, et al. (Ref. 2). That inventory is different, both in the
amounts of emissions and in their composition, from the year 2000 inventory
described later in this chapter.

The model was applied to simulate the 2-day period of June 26 -27, 1974,
and also June 28, 1974, in the Basin. Out of 15 species of pollutants, NO2
and 03 provide the most rigid test of a model to simulate photochemical air
pollution. Solid lines in Figure 6-2 show predicted conditions, and the dots
are the observed concentrations of NO 2 and 03 in the period cited. The
predictions are consistent with the observations. Early-morning-peaks are due
to emissions from heavy traffic. Peak concentrations for NO 2 are delayed a
few hours, and that result is consistent with the time required to oxidize
NO. More importantly, the model satisfactorily describes the observed trends
of concentration on the second day. This fact is especially encouraging for
control purposes. By running the model for a period longer than the
characteristic ventilation of the airshed, minimization of the influence of
uncertainties in specification of the intial conditions is possible.

In summary, we have shown that the essential trends of the prediction
and observations are in good agreement. Further, our model utilizes the
latest relevant data and state-of-the-art knowledge of air pollution. We
therefore conclude that the model provides a valid representation of
atmospheric dynamics.

As described above, the air-quality model was validated before it was
modified to includethe chemistry of methanol. After modifying the model for
methanol, we would have wished to repeat the validation runs with the modified
model. We could not validate the modified model using historical data for the
obvious reason that methanol has never been a major part of the atmosphere in
Los Angeles. In addition, no suitable smog-chamber data were available for
comparison with the predictions of the modified model. In the only published
smog-chamber experiments with gas mixtures containing methanol (Ref. 22), not
enough information was provided to enable us to simulate the experiments using
the modified McRae-Seinfeld model. Nevertheless, we feel confident that
equations 53 and 54 correctly represent the chemistry of methanol and that the
modified model is correct.

3	 Emission Inventory Data for the Air-Quality Model

a.	 Summary. Calculations were based on projected emissions for
the year 2000. At that future date the potential benefits of existing
emissions regulations would have been realized. The year 2000 is a feasible
date by which methanol could be expected to become an important fuel in
California. Inputs to the air-quality model were prepared for a base case and
for a range of values for the percent of substitution of methanol for 	 8	 3j
gasoline. We did not explicitly consider the possible effect on photochemical
smog of the use of methanol in stationary Sources. We assumed only that
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current regulations would remain in force and that operators of industrial
boilers and electric utility companies would limit emissions of oxides of
nitrogen by the most economical means, which could include the use of
methanol.	 Other pollutants like sulfur oxides and particulates would also be
reduced if methanol were substituted for fuel oil or coal.	 These pollutants
are mentioned elsewhere in this report.

b.	 Base-Case Inventories.	 Two base-case inventories for the year
2000 were considered.	 The first set of figures was taken directly from the
projections made by the South Coast Air Quality Management District (SCAQMD)
and published in the Air Quality Management Plan, 1982 Revision (AQMP). 	 The
second 'base-case inventory was obtained using our own (CHAP) calculations of
emissions for highway motor vehicles and the SCAQMD projections for all other
sources.	 The purpose of the CMAP inventory was simply to provide a means of
checking the SCAQMD figures.

Highway-vehicle emissions for the CHAP base case were estimated by the
procedure described below. 	 The method of calculation was originally developed
by the California Air Resources Board (CARE).; 	 In order to simplify the
calculation, we assumed that vehicle emission standards for future years would
remain at their 1981 levels. 	 We calculated emission factors for a fleet of
vehicles having the emission characteristics of 1981 model -year vehicles.	 We
used the year 2000 vehicle population as projected by the Southern California
Association of Governments. 	 The SCAQMD's projections of emissions from motor
vehicles in 2000, which were published in the AQMP, Caere about 20 percent
lower than our (CMAP) estimates, which are based on the assumption that
emission standards would not be relaxed or tightened between now and the year
2000.	 Clearly the difference ,was at least partly due to the fact that the
SCAQMD projections include the impact of motor-vehicle-pollution-control
regulations approved for implementation in future years beyond 1981; 	 Some of
those regulations have already been shelved and may not now be implemented.
Another possible reason for the difference was that the emission factors we
used, unlike those used in making the SCAQMD projections, were not adjusted
for vehi.cle._speed or for variations in the driving cycles of vehicles.

SCAQMD Inventory.	 Projections of emissions in the year 2000,
taken from the Air Quality Management Plan, 1982 Revision, are shown in Tables

`- 6-3 and 6-4 together with the emission inventories for 1974 and 1979. 	 A
comparison of the historical data and the projected data shows that the
relative contributions from 'different sources have been changing.	 Further-
more, the total tonnage of emissions of pollutants does not appear to decrease

' dramatically from year to year, despite progressively stricter pollutions
standards.	 There are three probable reasons for this .trend:

(1)	 The most important reason is that emissions increase
because of economic growth. 	 Additional pollution is
generated, for example, by the increased vehicle traffic,
the higher rate of electric power generation, and higher
levels of production from industry.-

r



HISTORICAL DATA PROJECTED EMISSIONS
1974 1 1979 1987	 2000

STATIONARY SOURCES 1982 1982
4QMP AQMP

Revision Revision

Oil and Gas Production 61 11 7 2

Petroleum Refinery 115 72 71 71

Petroleum Storage, Marketing - - - -
and Transfer

Organic Solvent Usage 2 1 1 1

Metallurgical & Mineral Operations 60 9 8 7

Misc. Industrial Sources 10 t 1 1

Fuel Combustion-Power .Plants 194 136 61 48'

Industrial, Commercial and other 96 166 186 206
Boilers

Agricultural Sources - - - -

Miscellaneous Sources - 10 23 27

TOTAL STATIONARY SOURCES 548 406 358 363

Abbreviations:- AQMP - Air Quality Management Plan

The figures in Table 6-3 were obtained from the South Coast Air Quality
Management District.

9I

(2) Some of the pollution-abatement regulations apply only to new auto-
mobiles and new equipment. The results of such regulations will
not be observable until most of the older stock of polluting equip-
ment has been retired from service.

(3) The inventories of pollutants for the later years are more accurate
and include sources of pollution which had been underestimated or
not included in the emission inventories of earlier years.
Officials of the South Coast Air Quality Management District
(SCAQMD) informed us that the quality of the emission-inventory
data has improved significantly in recent years.

Table 6-3. INVENTORY OF EMISSIONS OF NITROGEN OXIDES
IN THE SOUTH COAST AIR BASIN (Tons/Day)



Table 6-3. INVENTORY OF EMISSIONS OF NITROGEN OXIDES
IN THE SOUTH COAST AIR BASIN (Tons/Day)

( Conti wed )

i

I

I`

HISTORICAL DATA
197,4	 1979

PROJECTED EMISSIONS
1987	 2000

MOBILE SOURCES 1982 1982
AQMP AQM;P

Revision Revision

On-Road Vehicles

Light-Duty Passenger Autoa 412 235 192

Medium & Light-Duty Trucks 106 72 62

Heavy-Duty Gasoline Trucks 39 33 30

Heavy-Duty Diesel Trucks 165 141 128

Motorcycles 1 2 2

SUBTOTAL, ON-ROAD VEHICLES 776 723 482 413

Other Mobile Sources

Railroad Trains 31 21 27 30

Marine Craft 13 13 14 16

Aircraft 25 13 15 23

Off-Road Vehicles 8 7 8 10

Mobile Equipment 54 60 56 64'

SUBTOTAL, OTHER MOBILE SOURCES 131 114 135 143

TOTAL, MOBILE SOURCES 907 837 602 556

TOTAL EMISSIONS 1455 1243 960 919

Abbreviations-- AQMP - Air Quality Management Plan

The figures in Table 6-3 were obtained from the South Coast Air Quality
Management District.



Another feature of Table. 6-3 and Table 6-4 is that the relative contri-
butions of different sources of emissions in the year 2000 are expected to be
different from what they were in 1974. This fact has very important
implications for the development of strategies for the control of pollution in
future years. For example, power plants contributed 13.3% to total emissions
of NOx in 1974 while industrial, commercial and other boilers contributed
6.6%. In the year 2000 power plants are expected to account for 5.3% of total
emissions of NOx while boilers are expected to be 22.4% of the total. The
contribution of on-road motor vehicles to overall emissions of reactive
hydrocarbons (RHC), which was 65.0% in 1974 is expected to fall to 33.9% in
the year 2000. Over the same period, RHC emissions due to solvent usage are
projected to grow from 8.9% of the total in 1974 to 35.2% of the total in the

Table 6-4. INVENTORY OF EMISSIONS OF REACTIVE ORGANIC COMPOUNDS
IN THE SOUTH COAST AIR BASIN (Tons/Day)

HISTORICAL DATA PROJECTED EMISSIONS
1974 1979 1987 2000

STATIONARY SOURCES 1982 1982
AQMP AQMP

Revision Revision

Oil and Gas Froduction 78 46 38 28

Petroleum Refinery 70 53 47 53

Petroleum Storage, Marketing 71 106 73 71
and Transfer

Organic Solvent Usage 121 339 264 - 309

Metallurgical & Mineral Operations 7 3 3 3

Misc. Industrial Sources 3 20 21 25

Fuel Combustion-Power Plants 6 8 5 5

Industrial, Commercial and other 4 9 10 11
Boilers

Agricultural Sources 18 14 15 15

Miscellaneous Sources 9 83 34 41

TOTAL STATIONARY SOURCES 387 681 509 561

Abbreviations:	 AQMP - Air Quality Management Plan

The figures in Table 6-4 were obtained from the South Coast ;Aix Quality
Management District.
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Table 6-4. INVENTORY OF EMISSIONS OF REACTIVE ORGANIC
COMPOUNDS IN THE SOUTH COAST AIR BASIN (Tons/Day)

(Continued)

HISTORICAL DATA PROJECTED EMISSIONS
'1974	 1979 1987	 2000

MOBILE SOURCES 1982 1482
AQMP AQMP

Revision Revision

On-Road Vehicles

Light-Duty Passenger Autos 563 282 279

Medium & Light-Duty Trucks 139 76 61

Heavy-Duty Gasoline Trucks 23 13 9

Heavy-Duty Diesel Trucks 14 14 14

Motorcycles 12 7 7

SUBTOTAL, ON-ROAD VEHICLES 884 751 392 370

Other Mobile Sources

Railroad Trains 8 6 7 8

Marine Craft 1 2 2 2

Aircraft 56 17 21 32

Off-Road Vehicles 19 20 24 28

Mobile Equipment 4 57 69 88

SUBTOTAL, OTHER MOBILE SOURCES 88 102 123 158

TOTAL, MOBILE SOURCES 972 853 515 527

TOTAL EMISSIONS 1359 1534 1024 1088

Abbreviations:	 AQMP - Air Quality Management Plan

The figures in Table 6-4 were obtained from the South Coast. Air Quality
Management District.



year 2000. SCAQMD personnel informed us that there has been a trend toward
reducing the aromatic content of solvents since 1974. There have also been
changes in the reactivity of the hydrocarbons emitted from motor vehicles
since the advent of the exhaust catalytic converter.

In developing the emission forecast for the year 2000, the SCAQMD made
use of predicted r?4t,,q:s of economic and population growth given in the Southern
California Association of Government's 1978 projection for different sources
of pollutants. These estimates were based on historical inventory data and
expected rates of growth of pollution. The forecast, which applies to the
South Coast Air Basin, is described more fully in Reference 35. It is a
projection of future growth in population, housing, land use, and employment
and output in different sectors -f the economy. In the 1979 AQMP, the
inventory for 1976 was used to predict system-wide emissions for 1982, 1987,
and 2000. The AQMP was revised in June of 1982 and the more accurate 1979
inventory was used to predict future emissions., The basis for the projections
of future emissions was described in the 1979 AQMF. We used the "baseline"
projection, which referred to expected future emissions based on regulations
currently in force and those already approved for implementation. In the
baseline projection, future emissions were estimated from projected levels of
activity of important sources of pollution and corresponding efficiencies for
the control of pollution from those sources.

For a given source s and pollutant p, a pollution control factor Rsp
was defined as:

100-C
R	 SP	 (1)
sp 100 - C o

sp

where

Cspo is the pollution-control efficiency in the base year,
Csp is the pollution-control efficiency in the future year, and
the subscripts s and p refer to source s and pollutant p, respec-
tively. The superscript 0 refers to the base year data.

The expected level of emission for the future year, Esp , was then
given by

	

A so]
E s p = Rspx E O spx	 	 (2)

A
s

As is a measure of the level of activity of the source s, such as the amount
of electricity generated or number of vehicle-miles driven, in the future year.
A full description of AQMP procedures is given in Reference 33.

CHAP Inventory. The only difference between the CMAP inven-
tory and the SCAQMD inventory was in the projected emissions from highway
vehicles in the year 2000. Our calculations were made under, the assumption
that emission regulations for highway vehicles would not be changed from the

K



1951 standards. Reference 36 describes the procedures used to estimate future
emissions from six classes of highway motor vehicles.

Light-Duty Passenger Vehicles (LDP)

Light-Duty Trucks (LDT)

M t "ium-Duty Trucks (MDT)

Heavy-Duty Gasoline.Trucks (HDGT)

Heavy-Juty Diesel Trucks (HDDT)

Motorcycles (MCY)

Using those procedures developed by the CARB, we were able to calculate
population-avaraged "composite" emissions for each vehicle class. We used the
year-2000 vehicle population as projected by the Southern California Associ-
ation of Governments to estimate the projected mass emissions in ton/day.

Composite emissions for each class of highway vehicle were calculated
using three important sets of data, all of which were obtained from Ref. 36.
These were

(1) Exhaust emission factors:

These factors are defined in accord with a linear plot of exhaust
emissions, measured according to the_CVS-75 Federal Test Procedure
(Ref. 36), versus the odometer reading for the test vehicle. The
slope of the graph is referred to as the "deterioration rate," and
the intercept on the ordinate axis is called the "emission factor."
Figures for 1981-model-year vehicles are given in Table 6-5. These
figures are baard on vehicle certification emissions data modified.
to reflect expected emission rates from actual highway vehicles.
The EPA and the CARB have carried out surveillance tests of emis-
sions from vehicles owned by the general public. The procedure
used by the CARB to assess emissions from owner-operated road
vehicles is described in Reference 34. The results of these tests
are used to predict the deterioration rate for a given class and
model of vehicle.

(2) Figures showing mean odometer reading as a function of age for
different classes of vehicles:

They are given in Table 6-6.

(3) The vehicle-age distribution for each class of vehicles:

The figures shown in Table 6-7 are based on the results of vehicles
surveys carried out in the state of California. For a given class,
the fraction of vehicles aged n years was designated as fn,
and n ranged from 0 to 25

.I
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Table 6-5. EMISSION FACTORS FOR 1981 MODEL-YEAR VEHICLES (g/mile)

VEHICLE TYPE

LDP LDT MDT HDGT HDDT MCYPOLLUTANT

Oxides of Nitrogen 0.56 1.01 1.14 5.67 13.74 0.76
(NOX)

Reactive Organic ICompounds 0.33 0.38 0.40 3.25 3.49 2.7
(ROC) I

Figures were obtained from the California Air Resources Board, see Ref.
36.	 Emission Factors are defined as the intercept on the ordinate scale
of a linear plot of emissions (gimile) as a func_.on of vehicle odometer
reading (miles).

Abbreviations:
LDP:	 Light-Duty Passenger Vehicle LDT:	 Light-Duty Truck
MDT:	 Medium-Duty Truck HDGT:	 Heavy-Duty Gasoline Truck
HDDT:	 Heavy-Duty Diesel Truck MCY:	 Motorcycle

From the data in Tables 6-5, 6-6, 6-7, and 6-8, we were able to calculate the
exhaust emissions of hydrocarbons NO and NOX as a function of vehicle age
for each class of vehicle (see Table 6-9).

Let the exhaust emissions of NOX and HC from a vehicle aged n years be
aln g/mile and a2n g/mile respectively. Then the composite emissions of
NOX and HC are given by

n=2 51 a Inxfn a1
N=0

and
n=251	 a x  = a
n=0	

2n n	
2

The results of the caiculations are shown in Table 6-10. The data which were
used to estimate highway-vehicle emissions were all subject to some degree of
error. Notably, the plot of emissions versus vehicle mileage shows a consider-
able degree of scatter, and thus the figures of "composite" emissions are
subject to errors which are difficult to quantify.

Evaporative emissions for gasoline-fueled vehicles were calculated using
a

data obtained from Reference 36 for diurnal emissions and hot soak emissions,
and for the number of trips per day. Evaporative emissions were assumed to
remain unchanged over the life of the vehicle.
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Table 6-6. DETERIORATION RATES FOR 1981 MODEL-YEAR VEHICLES
(g/mile per 10,000 miles)

VEHICLE TYPE

POLLUTANT LDP LDT MDT HDZT	 HDDT MCY

Oxides of Nitrogen 0.10 0.12 0.12 0.09 0.12 0.00
(NOx)

Reactive Organic
Compounds 0,.20 0.20 0.20 0.14 0.04 1.64

(ROC)

Figures were obtained from the California Air Resources Board, see Ref.
36.	 "Deterioration Rate" is defined by the CARB as the slope of a
linear plot of emissions (g/mile) as a function of vehicle odometer
reading (miles). 	 Thus it is a rate of increase of emissions with
vehicle miles traveled.

Abbreviations:
LDP:	 Light-Duty Passenger Vehicle LDT: Light-Duty Truck
MDT:	 Medium-Duty Truck HDGT: Heavy-Duty Gasoline Truck
HDDT:	 Heavy-Duty Diesel Truck MCY: Motorcycle

The projected numbers of vehicles in the Basin in the year 2000 were
obtained from the Southern California Assoication of Governments. The SCAQMD
also based its projected emission inventory for the year 2000 on those figures.
The projected population of light-duty cars, Eight-duty trucks, and medium-
duty trucks would include diesel-fueled vehicles as well as gasoline-fueled
vehicles. The Southern California Association of Governments did not make an
estimate of the percentage of ouch vehicles that would be diesel-fueled in the
year 2000. We estimated that, in the year 2000, 15 percent of all vehicles in
the three categories above would be diesel-fueled. Diesel-fueled vehicles
were assumed to prodi<ce the same mass of exhaust emissions of NO x and ROC as
the corresponding gasoline-fueled vehicles. The composition of exhaust from
each vehicle type would. be different. The diesel-fueled vehicles produce
relatively higher emissions of aldehydes, sulfur oxides, and solid particu-
lates. Unlike gasoline-fueled vehicles, however, diesel-fueled vehicles
produce almost no evaporative emissions because the fuel system for diesel-
fueled vehicles is closed. The calculation of the mass of evaporative
emissions is shown in Table 6-11.

Composition of Reactive Organic Emissions. Emissions of
reactive organic compounds from-different sources consist, of different species,
all of which have different photochemical reaceivities. The Air Quality
trajectory model which we used distinguished among seven classes of organic 	 4



VEHICLE TYPES
VEHICLE AGE

(Years) LDP, LDT, and MDT HDGT and HDDT MOTORCYCLES

0 3,000 0 0
1 13,000 19,700 2,271
2 27,200 39,400 4,542
3 38,700 57,400 6,813
4 48,500 75,400 9,084
5 56,800 90,500 11,355
6 64,800 106,000 13,626
7 71,200 117,000 15,897
8 76,300 129,000 18,168
9 80,800 139,000 20,439

10 184,500 149,000 22,710
11 87,800 156,000 24,981
12 90,500 163,000 27,252
13 9.3,000 171,000 29,523
14 95,400 178,000 31,794
15 97,700 185,000 31,794
16 100,000 193,000 31,794
17 100,000 200,000 31,794
18 100,000 208,000 31,794
19 100,000 215,000 31,794
20 100,000 222,000 31,794
21 100,000 222,000 31,794
22 100,000 222,000 31,794
23 100,000 222,000 31,794
24 100,000 222,000 31,794
25 100,000 222,000 31,794

The figures in Table 6-7 were taken from Ref. 36 which was published
by the California Air Resources Board.	 They are only intended to
be used to calculate emissions as a function of vehicle age. 	 Some
older vehicles are shown as having constant odometer mileage, in.
order to show that vehicle emissions reach an asymptotic value.

Abbreviations:
LDT:	 Light-Duty Passenger Vehicles 	 LDT:	 Light-Duty Truck
MDT:	 Medium Duty Truct	 HDGT_;	 Heavy-Duty Gasoline Truck
HDDT:	 Heavy-Duty Truck

Table 6-7. ODOMETER MILEAGE AS A FUNCTION OF VEHICLE AGE



VEHICLE LIGHT-DUTY HEAVY-DUTY HEAVY-DUTY
AGE PASSENGER LIGHT-DUTY MEDIUM-DUTY GASOLINE DIESEL MOTOR-
(years) CARS TRUCKS TRUCKS TRUCKS TRUCKS CYCLES

0 0.0038 0.003; 0.0039 0 0 0
1 0.0647 0.0654 0.0654 0.0567 0.0504 0.14
2 0.0986 0.1082 0.0182 0.0875 0.084 0.14
3 0.097 0.095 0.095 0.079 0.075 0.14
4 0.0945 0.0835 0.0835 0.0726 0.069 0.13
5 0.092 0.0745 0.0745 0.0676 0.0663 0.12

6 0.0875 0.068 0.068 0.0635 0.065 0.1
7 0.082 0.0625 0.0625 0.0592 0.064 0.06
8 0.0745 0.057 0.057 0.0549 0.0605 0.05
9 0.0665 0.0515 0.0515 0.0506 0.055 0.04

10 0.0565 0.046 0.046 0.0463 0.0495 0.03
11 0.046 0.0405 0.0405 0.042 0.044 0.02
12 0.0345 0.035 0.035 0.0377 0.0385 0.015
13 0.0255 0.0295 0.0295 0.0334 0.033 0.01
14 0.0185 0.025 0.025 0.0298 0.0295 0.005
15 0.014 0.0225 0.0225 0.0278 0.0276 0
16 0.0105 0.02 0.02 0.0258 0.0259 0
17 0.0079 0.0175 0.0175 0.0238 0.0242 0
18 0.006 0.015 0.015 0.0218 0.0225 0
19 0.004 0.0129 0.0129 0.0198 0.0208 0
20 0.003 0.0111 0.0111 0.0167 0.0191 0
21 0.0031 0.0111 0.0111 0.0167 0.0174 0
22 0.003 0.0111 0.0111 0.0167 0.0157 0
23 0.003 0.0111 0.0111 0.0167 0.0145 0
24 0.003 0.0111 0.0111 0.0167 0.0143 0
25 0.003 0.0111 0.0111 0.0167 0.0143 0

The figures in Table 6-8 were taken from Ref. 36, which was pub-
lished by the California Air Resources Board.

ORIGINAL PAGE 13

OF POOR QUALM

Table 6-8. AGE DIS`2RIBUTION OF VEHICLES

FRACTION OF VEHICLE POPULATION AS FUNCTION OF VEHICLE
AGE AT BEGINNING OF CALENDAR YEAR
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Table 6-9. COMPOSITE EXHAUST EMISSIONS FOR MOTOR VEHICLES,
BASED ON DATA OF TABLES 6-5, 6-6, 6-7, and 6-8.

POPULATION-AVERAGED EXHAUST EMISSIONS ( /mile)

POLLUTANT	 LDP	 LDT MDT HDGT HDDT	 MCY

NOx	 1.175 1.78 1.91 6.795 15.26 0.76

HC	 1.56 1.665 1.685 5.00 4.00 4.43

The above figures were used to calculate projected vehicle emissions
for the year 2000.

Abbreviations:
LDP:	 Light-Duty Passenger Vehicle LDT: Light-Duty Truck
MDT:	 Medium-Duty Truck HDGT: Heavy-Duty Gasoline Truck
HDDT:	 Heavy-Duty 'Diesel Truck MCY: Motorcycle

compounds - formaldehyde, higher aldehydes, methanol, ethylene, higher
olefins, alkanes (excluding methane), and aromatics.

The composition of stationary-source emissions in 2000 was assumed to be
the same as it had been in 1974. The composition data are normally compiled
by the California Air Resources Board (CARB). More recent data from the 1979
inventory were not available from the GARB. The only exception was for
emissions due to solvent usage, whose composition in the year 2000 we
estimated on the basis of the best available information.

The composition of vehicle exhaust and evaporative reactive organic
emissions which we assumed in our calculations is given in Tables 6-12 and
6-13. The figures for gasoline-fueled vehicles equipped with three-way
catalysts were based on the data given in Reference 27, which were the best
figures that were available. The instruments used by the authors of Reference
27 were probably not sufficiently sensitive to the presence of aldehydes.
Apparently the concentration of aldehydes in the exhaust from gasoline-fueled
vehicles equipped with three-way catalytic converters is fairly low. Data
reported by Cadle, Nebel, and Williams at the General Motors Research
Laboratories would appear to support that view (SAE Paper No. 790694). They
measured the mass of aldehydes in the exhaust of five gasoline-fueled vehicles
which were equipped with three-way catalysts. The average value of aldehyde
emissions was 5 milligrams per mile (mg/mile), and the maximum value was 7



Table 6-10. EXHAUST EMISSIONS FROM MOTOR VEHICLES IN YEAR 2000
CALCULATION FOR CMAP INVENTORY

PROJECTED
POPULATION MEAN ANNUAL
IN YEAR MILEAGE EMISSIONS
2000 FROM FROM N  ROC

VEHICLE TYPE REF. 43 REF. 43 ( g/mile) (t/day) (g/,mile)	 (r/day)

LDP
Gasoline-Fueled 5,703,500 10 , 750 1.175 21 .7,4 1.56 288.7
Diesel-Fueled 1,006,500 10,750 1.175 38.4 R.56 50.9

LDT
Gasoline-Fueled 773 , 500 10,800 1.78 44.9 1.665 42.0
Diesel-Fueled 136,500 10,800 1.78 7.9 1.665 7.4

MDT
Gasoline-Fueled 391,000 10,720 1.91 24.2 1.685 21.3
Diesel-Fueled 69,000 10,720 1.91 4.3 1.685 3.8

HDT
Gasoline-Fueled 131 ,000 33,100 6 .80 35 . 2 5.0 25.9
Diesel-Fueled 61,000 52,690 15.26 148.0 4.00 38.8

MCY 410,000 2,140 0.76 2.0 4.43 1	 11.7

l

EXHAUST EMISSIONS OF GASOLINE-FUELED VEHICLES 323.7 389.6

EXHAUST EMISSIONS OF DIESEL-FUELED VEHICLES 198.6 100.9

TOTAL 522.3 490.5

Abreviations
LDP:	 Light-Duty Passenger Vehicle 	 LDT',	 Light-Duty Truck
MDT:	 Medium-Duty Truck	 HDT:	 Heavy-Duty Truck
ROC:	 Reactive Organic Compounds 	 CMAP:	 California Methanol

Assessment Project.

Z,

a3

C. Methanol-Case Inventories. The substitution of methanol for
petroleum-derived fuels was considered under five different sets of assump-
tions, which we designated as Cases A through E. Thus it was possible to note
the practical implications of different policies or changes in technology. The
Case E inventory was not usedfor any air-quality modeling calculations, it was
only used to examine the possible effect of methanol substitution on emissions 	 a
of sulfur oxides.

rx	
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Table 6-11. EVAPORATIVE EMISSIONS FROM MOTOR VEHICLES

PROJECTED NUMBER OF NUMBER OF TRIPS
VEHICLE GASOLINE-FUELED DUIRNAL HOT SOAK PER DAY EMISSIONS
TYPE VEHICLES (g/day) (g/trip) Data from Ref. 48 (t/day ROC)

LDP 5,703,500 1.0 1.0 3.94 31.0

LDT 1,006,500 1.0 1.0 3.94 5.5

MDT 391,000
`	

1.0 1.0 3.94 211

HDGT 131,000	 l 0.25 1.75 9.5 2.4

MCY 410,000 11.3 4.8 0.57 1	 6.3

TOTAL EVAPORATIVE EMISSIONS 47.3

Explanatory Notes for Table 6-11;

- ;Diurnal evaporative emissions are continuous emissions from the vehicle,
which occur regardless of whether the vehicle is driven.

- Hot-Soak emissions occur when +_4e vehicle engine stops running, and thus`
depend on the number of trips traveled by the vehicle.

Abbreviations
LDP:	 Light-Duty Passenger Vehicle 	 LDT: Light-Duty Truck
MDT:	 Medium-Duty Truck HDGT,: Heavy-Duty Gasoline Truck
HDDT:	 Heavy-Duty Diesel Truck MCY: Motorcycle

The emission inventories for Cases A through D differed from the
Base-Case inventory data with respect to four main sources:

-	 Exhaust emissions from spark-ignited-engine vehicles.
-	 Evaporative Emissions from spark-ignited-engine vehicles.
-	 Emissions from petroleum refineries.
-	 Emissions due to storage and transfer of fuel.

` The procedures by which those emissions were estimated will be described later.
Emissions from all other source;, were assumed to be unaffected by the substitu-
tion of methanol for petroleum-based motor fuels.	 In all cases, we assumed

' that methanol would not be used in diesel vehicles.	 We made that stipulation
partly to simplify the emission-inventory calculations, and partly because the
analysis in Chapter 8 of this report has indicated that the cost of methanol

+ fuel would not become competitive with diesel fuel for a long time to come.	 A	 1

rough calculation showed that the overall results of our modeling calculations	 f
` were not particularly sensitive to the assumption that methanol would not be

used in diesel vehicles.

i
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Table 6-12. COMPOSITION OF EXHAUST, REACTIVE ORGANIC EMISSIONS
FROM CATALYST-EQUIPPED VEHICLES (Percentages by Weight)

TYPE OF FUEL

GASOLINE
REACTIVE REGULAR UNLEADED PREMIUM UNLEADED
ORGANIC WINTER GASOLINE SUMMER GASOLINE
CLASS RVP=12.3 RVP=9.8 AVERAGE METHANOL

Formaldehyde - - - 21.2
Higher Aldehydes - - - -
Aromatics 20.2 40.8 30.5 -
Ethylene 8.8 5.2 7.0 -
Higher Olefins 12.5 9.7 11.1 -
Alkanes 58.7 44.3 51.5 6.1
Methanol - - - 72.7

Reactive Organic Emissions include all organic compounds except methane and
acetylene.

Table 6-13. COMPOSITION OF EVAPORATIVE EMISSIONS FROM
LIGHT-:;UTY VEHICLES (Percentages by Weight)

TYPE OF FUEL

GASOLINE
REGULAR UNLEADED PREMIUM UNLEADEDREACTIVE

ORGANIC WINTER GASOLINE SUMMER GASOLINE
CLASS RVP=12.3 RVP=9.8 AVERAGE METHANOL

Formaldehyde - - - -
Higher Aldehydes - - -
Aromatics 2.4 34.8 18.6 -
_Ethylene - - - -
Higher Olefins 7.1 8.1 7.6 -
Alkanes 90.4 57.3 73.75 77.8
Methanol - - - 22.2

Reactive Organic Emissions include all organic compounds except methane and
acetylene.



Case A. Substitution of methanol-fueled vehicles for all
gasoline-fueled vehicles on the assumption that total, life^ime-
average exhaust emissions for methanol-fueled vehicles and
gasoline-fueled vehicles are'equal. Calculation based on
SCAQMD-projected emission inventory for the year 2000.

The assumption of 100 percent substitution was intended only to establish
limits, and not to suggest that such substitution was possible or desirable.
This case represented the basic calculation, in which we assumed that both
gasoline-fueled vehicles and methanol-fueled vehicles, designed to satisfy
mandated emissions standards for new vehicles, would have the same average
lifetime emissions. That very conservative assumption was made because there
was not yet sufficient. information to allow accurate prediction of emissions
from commercial methanol-fueled vehicles in future years. Currently, the
California Energy Commission (CEC) is financing fleet tests of methanol-fueled
vehicles built by the Ford Motor Company and by Volkswagen of America. The CEC
fleet program is intended to provide information on, among other things, the
relationship between emissions and age for catalyst-equipped, methanol-fueled
vehicles. That information is not yet available.

Case B. Substitution of methanol-fueled vehicles for gasoline-
fueled vehicles on the assumption that total, lifetime-average
exhaust emissions of reactive organic gases for methanol-fueled
vehicles and gasoline-fueled vehicles are equal, but that the
methanol-fueled vehicles have lower emissions of oxides of nitrogen
(NOx) than the gasoline-fueled vehicles. Calculation based on
SCAQMD-projected emission inventory for the year 2000.

Several modeling calculations were made under Case B. We made one
series of calculations for different values from 0 percent to 100 percent for
percentage substitution of mett;,anol-fueled vehicles for gasoline-fueled
vehicles, assuming that NOX enmiissions from methanol-fueled vehicles were 50
percent lower than the corresponding emissions from gasoline-fueled vehicles.
We also made another series of modeling calculations in which NOx emissions
from methanol-fueled vehicles ratiged from 33 percent to 100 percent of
corresponding gasoline-vehicle emissions.

These calculations were made in recognition of the well-known fact that	 i

methanol-fueled-engines produce inherently lower emissions of NOX than
gasoline-fueled engines. More information about emissions from methanol-fueled
engines is available in Chapter _8 of this report. In general, however,
reductions in emissions from motor vehicles burning the same fuel are achieved
at the expense of fuel economy. Under the prevailing system of regulations,
there are no incentives to promote the lowering of emissions below the
prescribed levels. Thus the calculations based on lower emissions of NOX
were intended to show what could happen, and not what would necessarily happen.

Case C. Substitution of methanol-fueled vehicles for all gasoline
fueled vehicles on the assumption that total, lifetime-average
exhaust emissions ofnitrogen oxides and of reactive organic gasesi
for methanol-fueled vehicles are 50 percent lower than corresponding

;s

F



emissions from gasoline -fueled v=ehicles. Calculation based on
SCAQMD-projected emission inventory for the year 2000.

The assumption of lower overall emissions for methanol-fueled vehicles
can be justified on several grounds. First, more effective catalysts can be
developed for methanol-fueled-vehicle exhaust because methanol and formalde-
hyde are moreeasily oxidized by exhaust catalysts than are the rc,a tive
organic compounds in gasoline exhaust, such as aromatics and alkanes. Second,
there is good reason to expect that exhaust catalysts for methanol -fueled
exhaust would give longer useful service because of the lower temperature of
the engine exhaust and lower heat of reaction of the oxidation reaction of the
unburned fuel in the exhaust catalyst. Matsumoto, et al. (Ref 42), in a
failure analysis of the catalytic emission -control system of a four-cylinder,
2_.2-liter Toyota, had concluded that the most probable cause of damage to the
catalyst was overheating. Lastly, unpublished data obtained by researchers at
the Solar Energy Research Institute suggest that vehicles utilizing the
emerging technology based on the catalytic dissociation of methanol to give
hydrogen and carbon monoxide would produce lower emissions of the reactive
organic compounds and oxides of nitrogen than conventional vehicles.

Case D. Substitution of methanol-fueled vehicles for all
gasoline-fueled vehicles on the assumption that total, lifetime-
average exhaust emissions for methanol -fueled vehicles and
gasoline-fueled vehicles are equal. Calculation based on
CMAP-projected emission inventory for the year 2000.

This case was very similar to Case A, except that we used our (CMAP)
emission inventory for Case D.

Case E. Substitution of methanol-fueled vehicles for all gasoline-
fueled vehicles on the assumption that total, lifetime -average
exhaust emissions for methanol -fueled vehicles and gasoline-fueled
vehicles are equal, and substitution of methanol for petroleum
derived fuels in utility boilers, industrial boilers, and other
boilers. Calculation based on SCAQMD-projected emission inventory
for the year 2000.

This case was only examined for the likely changes in the concentrations
of sulfur dioxide, sulfates, and particulates. The possible impact of

s	 -methanol on those pollutants is described elsewhere in this chapter. No air-
quality modeling calculations were performed using the CaseE inventory.

Method of Estimation of Methanol-Case Emissions. The mass of
exhaust emissions from methanol-fueled vehicles was estimated as described for
each of Cases A to D-above.. The composition of exhaust emissions from
methanol-fueled vehicles is given in Table 6-12 and is based on the results
reported in references 39 and 40Tvhich were published by the California Air
Resources Board. The data were ',.Alien for Ford Escort vehicles fueled with
methanol containing 5.5 percent by weight of -isopentane. The response of	 i
methanol in the standard flame ionization detector (FID) was allowed for. The

i{ R.
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figure for methanol in Table 6-12 is based on the actual molecular weight of
methanol, which includes the weight of the oxygen atom. The figure used for
the percentage of formaldehyde in methanol-fueled vehicle exhaust was actually
a very conservative estimate based on the CEC fleet-test data. Formaldehyde
emissions as low as 0.02 g/mile, corresponding to 6.1 percent in Table 6-12,
have been recorded for the CEC fleet vehicles.

The mass of evaporative emissions from methanol-fueled vehicles was
always assumed to be equal to the mass of evaporative emissions from gasoline-
Fueled vehicles. The composition of those emissions was estimated using the
calculation described below.

The substitution of methanol for petroleum-based motor fuels would also
effect emissions from refineries. We assumed that a l percent reduction in
the consumption of gasoline in the South Coast Air Basin would result in a 0.4
percent reduction in basin-wide refinery throughput and emissions. This
assumption was made after consulting with personnel from a petroleum company.

Evaporative emissions from petroleum storage', marketing, and transfer
would also be affected by the substitution of methanol for gasoline. The
emissions due to storage, marketing, and transfer of methanol were estimated
from corresponding data of gasoline emissions. We estimated that gasoline-
related evaporative emissions accounted for about 75 percent of all basin-
wide evaporative emissions due to the storage, marketing, and transfer of
petroleum products and, therefore, that petroleum-related evaporative emis-
sions from stationary sources would be reduced by 0.75% for every 1% reduction
in the use of gasoline. Emissions from all other stationary sources were
assumed to be unaffected by the substitution of methanol for petroleum-based
motor fuels. We estimated the evaporative losses of methanol by using the
ratio of the vapor pressures of methanol fuel and gasoline at 68 0F and
multiplying by a factor of 1.Q. The multiplying factor was based on the
assumption that each gall.-°;n of gasoline would be replaced by about 1.8 gallons
of methanol fuel. For the purpose of calculating vapor pressure, methanol
fuel was defined as 94.5 percent methanol and 5.5 percent isopentane by weight:
the composition of the fuel used in the California Energy Commission's test-
fleet vehicles. The isopentane is ;used as a cold-start aid. _ Clearly,
isopentane is not the only organic compound which could be used as a cold
start aid with methanol. Whatever cold start aid is used, however, is likely
to have similar photochemical reactivity to that of isopentane and, in any
case, the total amount of cold-start aid would be relatively small. Therefore
the accuracy of the modeling results is not sensitive to our choice of cold
start aid.

Methanol-fuel (methanol plus isopentane) evaporative emissions were
estimated by the following formula.

lb moles methanol fuel evaporation

(vap. press. methanol fuel)= {:lb soles gasoline evaporation) ,x 	 -	 x 1.8
'(vap. press. gasoline

i
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where the lb moles of gasoline evaporation were taken from the data for the
base case, and the vapor pressures of gasoline and methanol fuel were calcu-
lated at the temperature of 680F:

The vapor pressure and composition of methanol fuel at 68OF were not
available from direct measurement, and so we used an approximation based on
the known vapor pressure of methanol at 100 0F. The vapor pressure of a
liquid fuel at 100OF is known as the Reid Vapor Pressure (RVP). The RVP of
methanol-fuel was quoted by Volkswagen of America to be 10.0 psia. The
composition of liquid methanol-fuel is 94.5% methanol and 5.5% isopentane by
weight. This composition corresponds to 97.48 mole-percent methanol and 2.52
mole-percent isopentane. At 100 OF the vapor pressure (VP) of pure methanol
is 4.60 Asia. At 68 °F it is 1.92 Asia. Liquid methanol fuel is a non-ideal
mixture in that it has a vapor pressure which is higher than that expected
from Raoult's Law. For non-ideal solutions we define activity coefficients,
Yi, for the ith solute, and Y o , for the solvent such that the partial
pressure of the solvent, P0, is related to the vapor pressure of the pure.
solvent, po, by the equation	 i

p  = x  x Yo x po°	 (1)

and the partial pressure of the solute is given.: by	 

p i = xi x.Yi xKi 	(2)

where Ki is the Henry's Law constant for a very dilute (and thus nearly
ideal) solution of i in the solvent and the x's are molar concentrations. In
this case methanol is the solvent (subscript o) and isopentane is the solute
(subscript l).

Y
With xo %1.0, we may assume that Yo d,;,,-1 1-0.	 Then at 100°F

Po _ xo x 
P 0 

= 4.48

which gives:

r pl=P-po=5.52 psis

where P is the total pressure.	 From equation (2) we calculate that YlKl = 219.
It is fair to assume that the activity coefficient of isopentane in dilute
solution with methanol does not change appreciably between 68 0F and 1000F.
On the other hand KI does decrease exponentially with temperature. To a good	 f

approximation, the value of K 1 at temperature T 2 can be calculated from the
value at temperature T1 using the relation f

K1T
exp	 — s

KIT	
R	

T1	
T2

r r

s;
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where

L is the latent heat of vaporization and R is the universal gas constant.
The value of L for isopentane is 27,09.3 kilojoules per kilogram mole.
R is 8.3143 kilojoules per kilogram mole per degree Kelvin.

Thus the value of YiKi at 68oF was estimated at 116. The partial pressure
of methanol at 68oF was calculated from the vapor pressure of pure methanol
at that temperature using equation (1). The results of the calculations were:

p0 - 1.87 Asia,	 pl - 2.42 psia,	 P = 4.79 psia = Total pressure

Thus the composition of the vapor in equilibrium with methanol fuel at 680F
was found to be

methanol - 39.0 mole percent and isopentane - 61.0 mole percent or
methanol - 22.2 weight percent and isopentane _ 17 7.8 weight percent

At 68oF the vapor pressure of winter gasoline (RVF = 11 psis) F is
about 5.4 psia and the vapor pressure of summer gasoline is about 6.6 psis.
These figures were provided by the ARCO Technical Center. In our calculations
we used the average of the two values, i.e., 6.0 psia. Then we obtained

lb moles of emissions from methanol fuel

_ (lb moles of gasoline emissions) x 1.8 x 0.798

The mean molecular weight of methanol fuel vapor, based on the molar-composi-
tion at 680F, was 56.4. The mean molecular weight of gasoline vapor at the
same temperature was estimated as 58.5 using data from Reference 42. Thus we
were able to estimate the tonnage and composition of the emissions of reactive
hydrocarbons of methanol_-fuel as a result of storage-tank evaporation and
marketing.

d. Results of Emission-Inventory Calculations. The results of
the principal emission-inventory calculations are summarized in Tables 6-14
through 6-18. The figures in Table 6-18 were input into the air-quality model.

e. Sensitivity Calculations

Sensitivity of Results to Projected Massof Highway-Vehicle
Emissions. We performed modeling calculations in which we considered what
would happen if highway-vehicle emissions in the year 2000 were in fact 25 or
50 percent higher than predicted by the SCAQMD.

Maximum Effect of Gasoline-Fueled-Vehicle Emissions on Ozone
Levels. We set,all exhaust and evaporative emissions from-gasoline-fueled
vehicles equal to zero in order to establish the maximum reduction in peak
ozone concentration which could be achieved by any strategy to limit emissions
from gasoline-fueled vehicles in the year 2000.
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Table 6-14. PROJECTED EMISSIONS OF OXIDES OF NITROGEN FROM
MOTOR VEHICLES ,IN YEAR 2000 (tons/day)

MAP 'PROJECTIONS SCA MD PROJECTIONS
BASE' METHANOL BASE METHANOL METHANOL METHANOL

SOURCE OF EMISSIONS CASE CASE D CASE 'CASE A CASE B CASE C

EXHAUST EMISSIONS

Gasoline-Fueled Vehicles

217 - 163 - - -LDP

LDT and MDT 69 - 53 - - -

HDT 35 - 30 - - -

MCY 2 - 2 -

Diesel-Fueled Vehicles

38 38 29 29 29 29LDP

LDT and MDT 12 12 9 9 9 9

HDT
I

148 148 128 128 128 128

Methanol-Fueled Vehicles

- 217 - 163 82 82LDP

LDT and MDT - 69 - 53 27 27

HDT - 35 - 30 15 15

MCY - 2 - 2 1 1

TOTAL 521_ 521 414 414 291 291

Abbreviations:
SCAQMD - South Coast Air Quality klanagement District.
CMAP - California Methanol Assessment Project (this project).

{

Photochemical Reactivity of Methanol. In order to estimate
the effect of methanol on the chemistry of the environment, we arbitrarily set
the mass of emissions of methanol in "Methanol Inventory Case A" equal to
zero. The resulting inventory data were used to perform a modeling calcula-
tion, whose results were then compared with those obtamled using the "Methanol
Inventory Case A.n

u,u	 ,

r
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CMAP PROJECTIONS SCAQKD PROJECTIONS
BASE METHANOL BASE METHANOL METHANOL METHANOL

SOURCE OF EMISSIONS CASE CASE D CASE CASE A CASE B CASE C

EXHAUST EMISSIONS
Gasoline-Fueled Vehicles

289 - 217 - - -LDP

LDT and MDT 63 - 47 - - -

HDT 26 - 8 - - -

MCY 12 - 5 - - -

Diesel-Fueled Vehicles

51 51 38 38 38 38LDP

LDT and MDT 11 11 8 8 8 8

HUT 39 39 14 14 14 14

Methanol-Fueled Vehicles

- 289 - 217 217 109LDP

LDT and MDT - 63 - 47 47 24

HDT - 26 - 8 8 4

MCY - 12 - 5 5 3

EVAP. EMISSIONS

Gasoline-Fueled 47 - 32 - - -

Methanol-Fueled - 47 - 32 32 32

TOTAL 538 538 369 369 369 232

Abbreviations:

SCAQMD - South Coast Air Quality Management District.
CMAP - California Methanol Assessment Project (this project)'.

-1.1

Table 6-15. PROJECTED EMISSIONS OF REACTIVE ORGANIC COMPOUNDS
FROM MOTOR VEHICLES IN YEAR 2000 (Tons/Day)



Table 6-16. PROJECTED PETROLEUM-RELATED STATIONARY-SOURCE EMISSIONS
IN THE YEAR 2000, REACTIVE ORGANIC COMPOUNDS (Tons/Day)

CMAP SCAQMD

BASE METHANOL BASE	 METHANOL METHANOL
SOURCE OF EMISSIONS CASE CASE D CASE	 CASES A & B CASE C

Petroleum Production 45 45 45 45 45
Petroleum Refinery 53 32 53 32 32
Fuel Marketing, Storage, Transfer

Petroleum-Related 71 18 71 18 18
Methanol-Related - 77 - 77 77

TOTAL 169 172 169 172 172

Table 6-17. PROJECTED .PETROLEUM-RELATED STATIONARY-SOURCE EMISSIONS
IN THE YEAR 2000, OXIDES OF NITROGEN (Tons/Day)

CMAP SCAQMD

BASE METHANOL BASE METHANOL METHANOL
SOURCE OF EMISSIONS CASE CASE D CASE CASES A & B CASE C

Petroleum Production 2 2 2 2 2
Petroleum Refinery 71 43 71 43 43
Fuel Marketing & Storage - - - -

TOTAL 73 45 73 45 45

Explanatory Notes for Tables 6-14 and 6-18: Methanol Cases A, B, C, and D all
refer to 100% substitution of methanol for petroleum-based fuel. Data for
other levels of substitution are given by simple linear interpolation between
the base case and the methanol case.

CASE A: Substitution_ of methanol for gasoline on the assumption that total ex-l1
haust emissions for methanol-fueled vehicles and gasoline-fueled vehicles are
equal. Calculations based on SCAQMD inventory.

CASE _B: Substitution of methanol for gasoline on the assumption that hydrocar-I
bon exhaust emissions for methanol-fueled vehicles and gasoline-fueled vehicles
are equal, no NOX exhaust emissions for methanol-fueled vehicles are 50%
lower than emissions from gasoline-fueled vehicles. Calculations based on
SCAQMD inventory.



Table 6-18. TOTAL EMISSIONS BY REACTIVITY CLASS, FOR DIFFERENT
BASE CASES AND METHANOL CASES (Tons/Day)

BASE CASES METHANOL CASES

SCA MD INVENTORY CMAP INVENTORY

CASE DCOMPOUNDS SCAQMD CMAP CASE A	 CASE B	 CASE C

Formaldehyde 16.6 17.3 74.7 74.7 32.8 64.0

Other Aldehydes 36.4 37.2 36.4 36.4 36.4 37.2

Aromatics 208.7 251.1 113.2 113.2 113.2 118.4

Ethylene 41.9 53.2 22.3 22.3 22.3 25.6

Olefins 80.0 101.6 41.9 41.9 41.9 49.8

Alkanes 704.8 797.1 576.9 576.9 568.5 618.4

Methanol 0 0 225.7 225.7 137.5 346.6

Oxides of Nitrogen 920 990 892 768 768 999

The base cases and methanol cases were defined in the text of this chapter.

4.	 Results of Modeling Calculations

a.	 Ozone Concentrations. We used the model to estimate the
expected changes in ambient concentrations of ozone, formaldehyde, PAN, and

`- nitrogen dioxide.	 Our calculations were made for the trajectory of an air`
parcel traversing the air basin and passing through Upland at 4:00 p.m. 	 Thes
meteorological conditions were those which existed on June 28, 1974. 	 On that
day, air quality was particularly poor, with a peak ozone concentration of
-0.38 part per million (ppm) at 3:00 p.m. in Azusa. 	 When the model was used
with the 1974 emissions as inputs, the indicated peak concentration of ozone
for the Upland trajectory of June 28, 1974 was 0.37 ppm. 	 The model had
previouslybeen validated for June 28 (see Ref. 63).

Figure 6-3 shows the peak ozone concentrations for four different
cases.	 The results indicate that substitution of methanol for gasoline as a .€

fuel for highway vehicles would result in substantial reductions in levels of +,

ozone and peroxyacyl nitrates (PAN). 	 The four peaks shown in Figure 6-3 are =1
as follows: it4

is

(1)	 Peak I shows the daily maximum ozone concentration for the base
case in which gasoline is used as the fuel for all the conven -Y
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Projection of Emissions for Year 2000 (Methanol, Case A).

3. Complete Substitution of Methanol for Gasoline, based on 'SCAQMD
Projection of Emissions for Year 2000, with Methanol Vehicles
Having 50% of NOx Emissions of Gasoline Vehicles (2ethanol Case B).

4. Complete Substitution of Methanol for Gasoline, Based on SCAQMD
Projection of Emissions for Year 2000, with Methanol Vehicles
Having 50% of NOX and HC Emissions of Gasoline Vehicles (Iethanol Case C).

Figure 6-3.	 PEAK OZONE,,CONCENTRATIONS FOR VARIOUS EMISSION LEVELS

c

w
6-41

t

i



tional, spark-ignited-engine vehicles in the South Coast Air Basin
in the year 2.000. The vehicle emissions for the year 2000 were
estimated by the South Coast Air Quality Management District
(SCAQMD) and published in the Revised 1982 Air Quality Management
Plan. The peak level of ozone was 0.333 ppm and the peak level of
PAN was 0.033 ppm.

(2) Peak 2 shows the ozone concentration for the Case A methanol
inventory in which we assumed complete substitution of methanol for
gasoline in the year 2000 with total emissions of reactive organic
compounds and of oxides of nitrogen from methanol-fueled vehicles
being equal to the corresponding emissions for gasoline-fueled
vehicles. Please note that this assumption is very conservative.
The SCAQMD's projections for gasoline-fueled-vehicle emissions in
the year 2000 were used in this modeling calculation. The peak
ozone concentration was 0.285 ppm, which is 14.4 percent lower than
the corresponding peak for the gasoline case shown in Peak 1. In
addition, the peak concentration of PAN was reduced by 21.5 percent.

(3) Peak 3 shows ozone concentration for the basic Case B methanol
inventory, assuming complete substitution of methanol for gasoline
for all conventional, spark-ignited-engine vehicles in the year
2000, with total exhaust emissions of reactive organic compounds
equal to the corresponding emissions for gasoline fueled vehicles
but emissions of NO X 50 percent lower than for gasoline fueled
vehicles. The SCAQMD's projections For gasoline-fueled- vehicle
emissions in the year 2000 were used in this modeling calaculation.
The peak ozone concentration was 0.275 ppm, 17.4 percent lower than
the base case represented by Peak 1. The difference between Peak 2
and Peak 3 is a measure of the sensitivity of peak ozone concentra-
tion to total emissions of NOX. Peak 3, which allowed for 50
I)ercent lower emissions of NOX for methanol-fueled vehicles,
represented a decrease of 8.5 percent in total NO X emissions
compared with Peak 2. The corresponding difference in peak ozones
between Peak 2 and Peak 3 was equal to 3.5 percent of the peak
value for Peak 2.

In the Case B methanol inventory, calculations were also-made for
20, 50 and 100 percent substitution of methanol for gasoline. The
relationship between peak ozone concentration and percentage of	 •;

fuel substitution is shown in Figure6-4. The reduction in peak
ozone concentration relative to the base case was 6.6 percent for
20 percent methanol substitution and 9.9 percent for 50 percent
methan-ol substitution.

(4) Peak 4 in Figure 6-3 was obtained for the methanol inventory Case
C, which is complete substitution of methanol for gasoline,
assuming that total exhauat emissions of both NO X and reactive
organic compounds are 50 percent lower than the corresponding
emissions for gasoline-fueled vehicles. The SCAQMD's projections
for gasoline-fueled-vehicle emissions in the near 2000 were used in
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Figure 6-5 sholes -,ozone concentration as a function of time for the base
case and the methanW*<' ase;; where the mass of methanol-case vehicle emissions
of NOX and reactive organic compounds were assumed to be equal to the
gasoline-case emissions. The curves shown correspond to the CHAP base case
and the CNAP methanol case, which is methanol Case D. The peak ozone levels
for the gasoline case and the methanol case were 0.344 ppm and 0.300 ppm
respectively.

When we set the mass of methanol emissions in Case A equal to zero, the
resulting peak ozone concentration was 16.4 percent Tower taan that of the
AQNP base case. By comparison, the peak ozone concentration corresponding to
the Case A inventory was 14.4 percent lower than that for the AQNP base case.
Thus we found, as we had expected, that the reactivity of methanol was
relatively low.

Finally, we set all exhaustand evaporative emissions from gasoline-
fueled vehicles equal to zero in order to establish the maximum reduction in
peak ozone concentration which could be achieved by any strategy to limit
emissions from gasoline -fueled vehicles in the year 2000. By comparison with
the base case, the reduction in peak ozone concentration was 25 percent.

The results of the modeling calculations clearly suggest that methanol
could play an important role in reducing photochemical smog in Los Angeles..
The potential impact of methanol as a vehicle fuel is limited by the expected
emissions from motor vehicles. The percentage contribution of highway motor
vehicles to total emissions of NO X and reactive organic compounds in 1974
was 53.3 percent and 65.0 percent, respectively. By the year 2000 total com-
bined emissions from gasoline-fueled and diesel-fueled highway vehicles are
expected to contribute 44.9 percent and 34 percent respectively to total
emissions of Nox and reactive organic compounds.

We investigated the effect of methanol-vehicle NO X emissions on ozone
concentration. The results are shown in Figure 6-6, where the percent
reduction in leak ozone concentration is plotted against the assumed average
mass of NOX emissions from methanol -fueled vehicles, expressed as a fraction
of the projected gasoline-vehicle emissions.

Figure 6-7 shows the results of the calculations to investigate the
possible effect on peak ozone level of possible errors in the estimation of
motor-vehicle emissions for the year 2000. Note that, while the absolute
values of peak ozone concentrations do change, the percentage reduction in
peak ozone as a result ofmethanol substitution is not particularly sensitive
to changes in the mass of highway emissions.

b. Formaldehyde Concentrations. The air-quality model was used
to predict hourly average concentrations of formaldehyde over each 5-kilo-
meter square grid of the Basin. The peak hourly concentration of formaldehyde
for a typical smoggy day was 0.0355 ppm for the base case and 0.0535 ppm for
the methanol case. These concentrations are not high enough to justify
general concern.

There is concern about potentially high concentrations of formaldehyde
in restricted areas. Vehicles starting up from cold produce unusually high
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levels of emissions of CO and organic compounds. The likely iWaxmumconcentra-
tion of formaldehyde in restricted spaces in which methanol-fuelied vehicles
might be operated, such as garages, can be roughly estimated using measured
concentrations of CO in similarly restricted areas, such as those reported 'by
Myronuk (Ref. SO). The calculation shows that if -e maximum ambient concentra-
tion of formaldehyde wo ►:ld be about l ppm. The concentration of formaldehyde
would be somewhat lower in the daylight hours because formaldehyde decomposes
rapidly in the presence of sunlight. More sophisticated modeling procedures
could be used in order to obtain a more accurate estimate. Recently, calcula-
tions of pollutarst dispersion near roads have been described by Chock at
General Motors:
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	 IMPACT OF'METRANOL USAGE ON CONCENTRATIONS OF SULFUR COMPOUNDS AND
PARTICULATES

1. Summary

In this section we describe how we estimated the likely changes in
the ambient concentrations of sulfur compounds in the year 2000. Because of
the very high level of uncertainty in the projected inventory of emissions for
total suspended particulates, we did not use that projected inventory for any
calculations.

The suspended particulates include sand, dust, non-volatile carbon
(soot), sulfates, inorganic nitrates, organic nitrates, and condensible
organic substances. Thus the term "total suspended particulates" (TSP) is a
blanket description for a variety of chemical species in a range of particle
sizes, and tells little about the impacts which those different kinds of
particulates would have on the environemnt. For that reason, we did not use
emission inventories for TSP in assessing the possible impact of methanol.
Instead, we made a qualitative evaluation based on some published work.

According to Cass, Boone, and Macias (Rtf A. 46) on-road and off-road
diesel engines accounted for 61.0 percent of all iinw' non-volatile carbon
emissions in the South Coast Air Basin in 1,1£30y while gasoline-fueled vehicles
accounted for 10.2 percent. Methanol -fuels4- engines ,, on the other hand,
produce very little particulate matter. The Southern California Edison
Company performed combustion tests using methanol in boilers and turbines,
from which they confirmed that methanol was an extremely clean-burning fuel. 	 r
Pefley and his associates at the University of Santa Clara have made a similar
observation from their work with methanol -fueled, spark-ignited engines. Thus
if methanol were to be substituted for gasoline there would be a reduction in
total emissions of non-volatile carbon. A much larger reduction in such
emissions would occur if methanol were to be substituted ror diesel fuel as
well as gasoline.

i

We estimated the expected ambient concentrations of SO X and sulfates
relative to their ambient concentrations for 1979 using the "linear roll-back"
approximation. That approximation assumes that the change in ambient
concentrations between 1979 and the year 2000 is directly proportional to the
change in the total emissions of the corresponding primary pollutants over the
same period. No more sophisticatedmethods of calculation are available for
the sulfur compounds.

Emissions of-sulfur - oxides were projected for the year 2000 for three
cases which were described earlier in this chapter:

(1) SCAQMD Base Case
(2') Methanol Case A
(3) Methanol Case E

The methanol Case D was similar to Case A except that for Case D all

f

	

	 utility boilers and industrial and other boilers were also assumed to be
converted to methanol fuel.
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2. Emission Inventory for Sulfur

Figures.: for the projected inventory of sulfur emissions in the year
2000 were taken directly from the Revised 1982 Air Quality Management Plan
(Ref. 44). Emissions of sulfur oxides for methanol cases A and D are shown in
Table 6-19.

3. Results of Calculations

Table 6-20 shows the approximate changes which would be expected in
the concentrations of sulfur compounds if methanol was substituted for oil-
based fuels.

Table 6-19. INVENTORY OF EMISSIONS OF SULFUR OXIDES
IN THE YEAR 2000 (Tons/Day)

SOURCE
BASE
CASE

METHANOL
CASE

i	 A

METHANOL
CASE
E

STATIONARY SOURCES

Oil and Gas Production - - -

Petroleum Refinery 26 16 16

Petroleum Storage, Marketing & Transfer -- -

Organic Solvent Usage - - -

Metallurgical and Mineral Operations It 11 11

Misc. Industrial Sources 2 2 2

Fuel Combustion-Power Plants 51 51 -

Industrial, Commercial & Other Bailers 27 27 -

Agricultural Sources 2 2 2

Miscellaneous Sources - - -

TOTAL STATIONARY SOURCES 11 9 109 21

t
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METHANOL METHANOL
BASE CASE CASE

SOURCE CASE A E

Mt^"a LE SOURCES

Oa-Road Vehicles

Light-Duty Passenger Auto 12 - -

Medium & Light-Dirty Trucks 6 - -

Heavy-Duty Gasoline Trucks 3 -

Heavy-Duty Diesel Trucks 15 15 15

Motor Cycles - - -

SUBTOTAL ON-ROAD VEHICLES 36 15 15

Other Mobile Sources

Railroad Trains 4 4 4

Marine Craft, 22 22 22
Aircraft 2 2 2
Off-Road Vehicles 1 1 1

Mobile Equipment 5 5 5

SUBTOTAL OTHER MOBILE SOURCES 34 34 34

TOTAL MOBILE 'SOURCES 70 49 49

TOTAL STATIONARY SOURCES 119 109 21

TOTAL EMISSIONS 189 158 70

Explanatory Notes for Tables 6-19 and 6-20:
Base Cases	 Projected emissions for the year 2000, as published by
SCAQMDIN THE Air Quality Management Plan, 1982 revision.

Methanol Case A:	 Projected emissions for the year 2000 calculated as
for the base case except that all gasoline-fueled vehicles assumed to be
converted to methanol fuel.

Methanol . "ase E:	 Similar to Case A except that all utility boilers and
industrial read other boilers also assumed to be converted to methanol
fuel.

n

Table 6-19. INVENTORY OF EMISSIONS ' OF SULFUR OXIDES
IN THE YEAR 2000 ( Tons/Day) ( Continued)



Table 6-20. EFFECT OF METHANOL SUBSTITUTION ON AMBIENT CONCENTRATIONS OF
SULFUR COMPOUNDS AND PARTICULATES IN THE SOUTH COAST AIR BASIN

APPROXIMATE CONCENTRATIONS

Year 2000

BASE METHANOL METHANOL
1979 CASE CASE A CASE E

Sulfur Dioxide - Annual Arithmetic Mean 	 OIL
3
) 7.9 13.0 10.9 4.8

M 1

Sulfates - Max. 24-hr average O3 26.6 18,2 15.2 6.7
m

Total Suspended Particulates - Annual

Arithmetic Mean ( JA-)3 110 125
m	 I -	 I I I I

to



POLLUTANT CHANGE PHYSICAL IMPACTS

OZONE Reduction -Reduced acute respiratory illness
-Reduced damage to paints, elastomers,

rubber
-Reduced damage to crops

SULFATE Small reduction -Reduced mortality
-Reduced acidity of rain
-Improved visibility

FORMALDEHYDE Small increase -Possible. odor
-Eye irritation if local concn. high
-No known health effects at ]ow concn.

NITROGEN DIOXIDE Small reduction -Reduced acidity of rain
-Possible reduction in respiratory

illness

PEROXY ACYL = "Significant -Reduced eye irritation
NITRATES reduction

TOTAL SUSPENDED Reduction Improved visibility.
PARTICULATES

f
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E.	 SUMMARY AND DISCUSSION

1. Physical Effects of Air Pollutants - A Qualitative Discussion

If methanol were to be substituted for petroleum-derived fuels,
what would be the changes in the physical impacts of pollutants?

In this section we present a brief description of the rhysical impacts
of different pollutants in order to give the reader a very general overview of
the effects of air pollution. Table 6-21 shows the expected physical effects
in the atmosphere of large-scale Substitution of methanol for petroleum-derived
fuels. That table is only qualitative. The references on which the physical
impacts mentioned in Table 6-21 are based are summarized in Table 6-22.

Ozone causes damage to crops and to rubbers, elasomers and paints. It
can also induce respiratory illness. Much of the available evidence suggests
that the health effects of ozone tend to be acute rather than chronic. At
concentrations below 0.15 ppm, ozone is considered to be harmless to most
people. Higher concentrations of ozone can induce severe irritation of the
respiratory tract and eyes, causing severe discomfort especially if the person

Table 6-21. MAXIMUM CHANGES IN AIR QUALITY DUE TO USE OF METHANOL IN SPARK-
IGNITED MOTOR VEHICLES IN SOUTH COAST AIR BASIN IN THE YEAR 2000

It



Table 6-22. REFERENCES FOR PHYSICAL IMPACTS OF AIR POLLUTANTS

POLLUTANT PHYSICAL IMPACT REFERENCES

OZONE -Acute respiratory illness 52
-Damage to paints, elastomers, rubber 54
-Damage to crops 53, 56

SULFATE -Human mortality 50, 51
i -Acidity of rain 61
-Reduced visibility 45, 48, 49

SULFUR DIOXIDE -Metallic corrosion 54
-Respiratory illness 52

FORMALDEHYDE -Cancer in animals, at very high concna. 58, 59
-Eye irritation

NITROGEN DIOXIDE -Acidity of rain 61
-Possible respiratory illness 52, 56

TOTAL SUSPENDED -Reduced visibility 45, 46, 47
PARTICULATES

concerned is taking part in physical excercise.	 Among pollutants, ozone is
the leading cause of damage to agricultural crops in the South Coast Air
Basin.	 In 1971, Millecan (Ref. 53) estimated that ozone was responsible for
about 50 percent of all air-pollution-related damage to crops in the Basin.
The effects of any pollutant on vegetation depend on the damage to crops as 	 I

well as the ,zoncentration of pollutant. 	 In general, acute exposure and
chronic exposure produce different effects. 	 Larsen and Heck (Ref. 56) studied
the effects of ozone (03) and sulfur dioxide (S02) on vegetables and trees
and produced correlations between percentage of leaf injury for fifteen
different agricultural c;:ops and concentration and duration of exposure to

" 03.	 The relationship between agricultural yield and leaf injury, however,
is less well-documented. 	 Millecan (Ref. 53) produced some figures which he
used to predict the relationship between the percentage damage to leaves and-
the loss in crop yield.	 Ozone is also responsible for much of the damage to

_paints, rubbers, and elastomers (Ref. 54).
F

Formaldehyde has an irritating odor and is a suspected carcinogen. 	 Much
of the published information about the effects of formaldehyde was obtained at
high concentrations.	 Very low-level, long-term exposures have not been well µ
studied.	 In recent years, investigators have discovered that continuous
exposure to high concentrations of formaldehyde causes cancer in laboratory

` animals.	 There is no consensus on whether laboratory data based on the
?=' chronic exposure of animals to very high pollutant concentrations are directly

applicable to -short-term, low-level exposure in man (Ref. 61). 	 For example,
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no evidence has been obtained indicating that people who work in chemical
plants where formaldehyde is manufactured or processed have a higher incidence
of nasal or respiratory cancer than the rest of the population.

Total suspended particulates cause loss of visibility by two main
processes - light absorption and light scattering. Carbonaceous particulates
derived from soot are a major cause of light absorption in Los Angeles and
other cities (Ref. 46). Dust particles also absorb light to some degree.
Conklin, et al. (Ref 45), analyzed wintertime air samples from the Los Angeles
area and found that light absorption by elemental carbon could account for
about 17 percent of the total loss of visibility in downtown Los Angeles.
Unfortunately, we had insufficient data to allow us to make firm quantitative
predictions about any possible improvements.

Light-scattering by particles of diameter less than 2.5 micrometers ( m)
is a major cause of loss of visibility in polluted areas. Such small
particles arise from gas-to-particle conversion reactions in the atmosphere.
The predominant species in that size .range are sulfates such as ammonium
sulfate, sulfuric acid, and inorganic nitrates such as sodium nitrate,
ammonium nitrate, and nitric acid. Because the particle diameter of sulfates
is comparable to the wave length of visible light, those particles give rise
to the most effective scattering of light from the sun and thus contribute
significantly to poor visibility. Studies have indicated that sulfates in the
Los Angeles atmosphere may be responsible for as much as 50 percent of the
light-scattering in downtown Los Angeles (Ref. 47).

I

The sulfate particles in the atmosphere are generally smaller than 2.5
microns in diameter and are therefore also small enough to penetrate the human
lung, where they are absorbed in the mucous lining of the lungs, causing
damage to the delicate tissues of the respiratory system. Further, sulfates
are one of the major causes of acid rain in areas like the north-eastern
United States. Sulfates have been associated with loss of visibility in
cities (Ref. 48,49). Cass (Ref 45) calculated that a 75 percent reduction in
sulfate levels in Los Angeles would reduce the number of days on which
visibility was less than3 miles by about two-thirds, and reduce the number of
days with visibility below 10 miles by about 10 percent. Sulfates are
responsible for the more serious health effects of air pollution. Mendelsohn
and Orcutt (Ref 51) estimated that sulfates in the atmosphere were responsible
for teas Gf :t aousands of deaths -every year.

Sulfur dioxide causes illness and is the major cause of the corrosion of
metallic_ objects in the atmosphere. Sulfur dioxide in the atmosphere has also
been correlated with ill-health by Durham (Ref. 52), who studied the frequency
of illness among university students in California and found that the
pollutants most significantly correlated with respiratory illness were the
oxidants, sulfur dioxide, and nitrogen dioxide. The most pollution-related
illnesses were pharyngitis, bronchitis, tonsilitis, colds, and sore throat.

Nitrogen dioxide (NO2) produces a;yellowish haze in the sky and thus
affects vi-:i ility. In addition, NO2 can also react with vapor to form
nitric-acid vapor which may affect human health. More importantly, NO2 is a
precursor of acid rain whose effects on plants and aquatic animals are only
now becoming fully appreicated. Laboratory studies of animals exposed to

j
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NO2 have shown an increase in emphysema and cardiovascular disease (Ref. 55)
and an increased susceptibility to viral infection. In the work of Durham
(Ref. 52) mentioned above, NO2 was associated with respiratory illness.

We have not attempted to quantify the economic value of the likely
air-quality benefits methanol as a fuel in the South Coast Air Basin. We have
simply assumed that the use of methanol will be determined by the free 'market,
depending on the price and the utilization of efficiency of the fuel. Later,
we shall briefly discuss possible mechanisms by which the use of cleaner fuels
could be encouraged.

2.	 General Discussion

Most of the results of modeling calculations:described in Section C
are straight-forward. Some of them, however, require further comment.

The approximate linear relationship between the degree of methanol,
substitution and the peak concentration of ozone implies that the atmospheric
reactions of methanol and those of the reactive components and by-products of
gasoline-are not significantly coupled. That observation is entirely consis-
tent with the fact indicated elsewhere that methanol is significantly less
reactive than the other reactive compou&ds in the atmosphere.

The reduction in peak ozone concentration with decreased NOx emissions
in the methanol case appears superficially to be at variance with the results
of a recent study made by System Applications, Inc. (SAI) of San Rafael, Calif-
ornia, on behalf of the Western Oil and Gas Association (WOGA) (see Ref. 62).
Actually, the SAI/WOGA study was based on different premises from those used
in the calculations described in this chapter. 	 The results we show in Figure
6-6 refer to the case where methanol was substituted for gasoline, which was
not one of the cases considered by the SAI/WOGA study.	 The SAI/WOGA studyr
used a different emission inventory from that which we used.	 They used a
projected 1987 inventory and applied to it the emission reductions expected
from implementaton of some provisions of the Air Quality Management Plan
(AQMP) for the South Coast Air Basin.	 There mayalso be other differences in
the data used in the modeling calculations.	 Thus, the funding does not
necessarily contradict the results of the SAI/WOGA-study. 	 It refers to a 
methanol -case and not to a gasoline case.

The likely impact of methanol fueling on the atmospheric environment in
the Los Angeles basin in the year 2000 is summarized in Table 6-21 (see p.
6-54).	 The major conclusion to be drawn from the information in Table 6-21 is

' that the use of methanol as a liquid fuel would help to improve the air
quality within the South Coast Air Basin. 	 In particular, there would be a

' reduction in the concentration of ozone in the Basin mainly because methanol
has a lower photochemical reactivity than fuels derived from petroleum.

Methanol could form part of an effective, long-term strategy for the
1

control of photochemical smog in Los Angeles, when used in conjunction with
4 other emission-control strategies. 	 An economic analysis based on the -

estimated price of methanol and the projected price of gasoline (described
elsewhere in this report) indicated thatunder the most favorable circum-
stances, methanol-fueled vehicles could account for about 5-10 percent of all
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gasoline-fueled vehicles in the Basin in the year 2000.	 Thus, methanol is not
expected to be an effective strategy for reducing pollution in the Basin in ;
the short term; its potential contribution to air-quality improvement is a
Long-term one.

Methanol also has the potential to produce lower NOx emissions from
both mobile and stationary sources. 	 In the case of vehicle emissions, that
potential is unlikely to be realized under,crrrent regulations because, in
general, reductions in emissions, from motor vehicles are achieved at the
expense of fuel economy. 	 The emission of NOx from methanol-fueled vehicles
illustrates this complex relationship between emission levels and fuel
efficiency.	 When the emissions of NOx for the methanol -fueled 1981 Ford
Escorts used in the 'Los Angeles County fleet test were reduced from 1.0 g/mile
to 0.25 g/mile, the fuel consumption increased by 26 percent.

Under the existing regulations, there are no monetary incentives for
industries or individuals to reduce emissions below the levels required by
law.	 If the use of cleaner-burning fuels is to be encouraged, then the cur-
rent regulations must be reformed in order to provide , such incentives. 	 One
scheme , which has been suggested ( Refs. 28, 29) is the system of marketable
emission permits.	 Such " a system could operate in the following way.	 Every 5
years or so the regulatory authorities would determine the total tonnage of
allowed emissions, and divide that total among major sources of pollution such ^-

+	 as industries, utilities, petroleum refiners, and manufacturers of vehicles
( representing vehicle owners).	 Each of the polluting _ agencies would be free
to limit total emissions by any means at its disposal. 	 Any agency which

_	 reduced emissions below its allotted amount would be free to sell the unused
emission permi ts in an open market or to offset the unused p omits against
f»*_ure emissions. And, for exam-le,some industry might pvzchase emission
permits rather than spend large sums of money on retro fit-ti-og old plants. 	 In
a perfect market the going price rf a permit would be i^^;;al to the marginal
cost of abatement for the relevant pollutant. 	 Thus the system of marketable
emission permits would encourage innovation while maintaining flexibility
within the economy.	 The system would affect the viability of methanol-fueled
vehicles in the following way.	 The manufacturer of a clean-burning methanol-
fueled vehicle would be free to sell any unused emission permits and pass the
savings on to the buyers of methanol-fueled vehicles in the form of cash
rebates.	 Alternatively„ the lower emissions from methanol-STueled vehicles
could be offset against higher emissions from other _types oi' vehicles produced

.- 	 by the same manufacturer, thus producing a net saving which could be passed on
to customers.	 The above comments are equally applicable to other clean fuels
such as hydrogen, methane, and propane and also to electrically-powered
vehicles.

a ,^

3.	 Suggestions for Further Work

The work described in this chapter is only an initial investiga-
tion. 	 The accuracy of the data used in the modeling calculations could
possibly be improved.	 We believe, however, that our overall conclusions are
substantially correct.
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The air-quality modeling studies described in this report should be
extended to consider the effect on air quality of using methanol-gasoline
blends.

The emerging technology for the catalytic dissociation of methanol using
exhaust heat from the vehicle's engine has the potential for significant
reductions in motor vehicle emissions. Hard data of emissions from dissoci-
ated methanol vehicles must be obtained so that the likely impact of such
vehicles on the environment may be evaluated.

There is an important need for a systematic series of smog-chamber
experiments with gaseous mixtures containing methanol. The results of such
experiments would help in confirming the results obtained in our modeling
calculations.

Lastly, the effect of regulatory policies on the value of fuels needs to
be investigated more carefully. There is also a need to estimate the value of
the possible indirect economic benefits of a cleaner environment in an area
such as Los Angeles.



c

F.	 CONCLUSIONS

The conclusions drawn from the air-quality modeling calculations and
from the semi-quantitative analysis applied to projected emissions of sulfur
are summarized below. 	 The comments apply to the complete substitution of
methanol for gasoline in the South Coast Air Basin, based on projected
emissions for the year 2000.

(1)	 The complete substitution of methanol-fueled vehicles for gasoline-
fueled vehicles would lead to a reduction of 14.4 to 20.0 percent
in the peak, hourly-average concentration of ozone.

(2)	 The peak ozone concentration decreases approximately linearly with
methanol substitution.

(3)	 The photochemical reactivity of methanol is relatively low. 	 Thus
wh:2a the mash of emissions of methanol in "Methanol Case A ll was
arbitrarily set to zero, the peak ozone concentration was reduced
by only 2.3 percent.

(4)	 With the use of methanol fuels the peak ozone concentration is
reduced as emissions of NOx are reduced.	 The ozone
concentration, however, is a lot less sensitive to emissions of
NOx than to reactive organic emissions.

(5)	 The maximum reduction in ozone concentration achievable by
elimination of gasoline-fueled-vehicle emissions is 25 percent.

k
T	

(6)	 With methanol substitution, the ambient concentration. of
formaldehyde would not increase significantly.

(7)	 The concentration of-sulfur-derived pollutants would not be
significantly affected by methanol substitution. 	 If methanol were

'	 to be used in utility boilers and in industrial and commercial
boilers, then there would be a large reduction in the concentration
of sulfur-derived-pollutants.

(8)	 Tot4l suspended particulates in general would not be greatly r

affected by methanol. substitution. 	 The concentration of fine,
non-vehicle carbonaceous' particulates, however, would be reduced
slightly if methanol were substituted for gasoline. 	 If methanol
was also to be substituted for diesel fuel, the reduction in the

'.	 concentration of non-vehicle carbonaceous particulates would be
much larger. :f

The work described in this chapter began as a screening analysis to
establish whether the large-scale use of methanol would have a detrimental

I

effect on air quality in California.	 The analysis shows that, far from
causing harm, methanol would have a very beneficial impact on air quality
within the South Coast Air Basin.	 The potential atmospheric impact of
methanol deserves to be investigated further.
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CHAPTER SEVEN

CHEMICAL METHANOL PRODUCTION AND USE

A.	 INTRODUCTION

Methanol, one of the major organic chemicals, can be derived from almost
any carbon source. In the past, natural methanol was extracted from wood, and
synthetic methanol was made from coal and later from oil; today most of U.S.
methanol production is based on natural gas.

The largest current use of methanol is in the production of formaldehyde
which, in turn, is being used in the production of plywood and particle board
for housing construction. Other end uses of methanol include acrylic sheet
production, polyester fibers, and acetic acid-based products. Current U.S.
methanol capacity is around 1.3 billion gallons per year, produced by eleven
companies.

Current production technology is based on reforming of natural gas in a
typical plant, producing 1,000 to 2,000 tons of methanol per day. The major
components of the production cost are the cost of raw material -- around 60 to
70 percent of cost at current prices -- and the cost of capital, around 20
percent.

B.	 CONVENTIONAL METHANOL PRODUCTION TECHNOLOGY

At the turn of the last century, methanol was exclusively produced by
extracting it from pyroligneous liquor (obtained during the destructive
distillation of wood). In 1926, synthetic methanol from Germany entered the
U.S. market at two-thirds of the price of natural methanol. The average cost
in New York in 1926 was $0.48/gal for natural methanol. Facing this threat,
the wood distillers managed to have the tariff increased to $0.18 and to have
legislation passed to the effect that only natural gas could be used as
denaturant, which guaranteed them a third of the market at that time. In
1926, the production of synthetic methanol began in the U.S., and production
has grown steadily since. Increasing production capacity and competition
eventually brought the price down to around $0.30 per gallon, and then
stabilized. Early plants were designed in conjunction with other plants to
make use of carbon-dioxide or hydrogen by-products

Interestingly enough, synthesis gas was originally made from coal. A
major process for the gasification of coal is the Winkler process, discovered
in Germany in 1922. Later, however, the feedstock was shifted to oil and then

'.,	 to natural gas as large petroleum discoveries were made and the cost of these
carbon sources dropped, Natural gas was particularly appealing because of its
low-sulfur content and federally regulated low prices. By the 1960s, syn-
thetic methanol in the U.S, was almost entirely manufactured from natural gas
by a high-pressure process similar to that of ,ammonia.

In this process, pressurized synthesis gas is usually made by the
reforming of natural gas and consists of a mixture of carbon monoxide, carbon
dixoide, and hydrogen. Since natural gas contains more than the ideal amount

}
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of hydrogen, carbon dixoide is usually added to balance the excess hydrogen.
As a result, methanol producers usually located their plants close to ammonia
plants, since large amounts of carbon dioxide are removed from the synthesis
gases used to produce ammonia. In a typical process, the above mentioned
synthesis gas is desulfurized, cooled, compressed, mixed with recycled gas,
and passed to the methanol converter. Zinc chromium oxide catalysts are used
in the conversion of synthesis gas to methanol. The methanol-containing gases
formed are cooled, condensed, and purified.

In 1967, Imperical Chemical Industries introduced a low pressure syn-
thesin process, based on their newly developed copper-based catalysts, which
are much more reactive than the zinc-chromium-based catalysts. The lower
pressures and temperatures this allows lower the cost of production substan-
tially. The price of methanol, in fact, dropped from $0.23/gal in 1971 to
around $0.10/gal in 1972-1973 (see Table 7-1).

Another available technology is the partial oxidation of heavy feed-
stocks such as fuel oil. The main advantages of this process are a higher 	 ?.
on-stream factor, lower catalyst requirements, but especially feedstock

Table 7-1. HISTORICAL U.S. METHANOL PRODUCTION AND PRICES

YEAR
ANNUAL PRODUCTION

(106 gals)
PRICE*

U per gallon)

1965 432 27
1967 517 26.7
1968 575 25
1969 633 25.4
1970 743 26.7
1971 755 22.8
1972 897 10.7
1973 1064 12.5
1974 1036 20.9
1975 780 39
1976 940 39
1977 973 39
1978 1006 43.1
1979 1100 44
1980 1070 62
1981 1260 75
1982** _	 1260._ 70-75

*Wholesale Price in current year dollars
**First quarter

SOURCE:	 Chemical & Engineering News 1/22/79, 1/28/80,-
1/26/82, 3/29/82.	 Predicasts Inc.'s basebook
U.S. Department of Commerce. DRI
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flexibility. In fact, the new plant being built by DuPont at Deer Park, Texas
will be based on synthesis gas from petroleum residuum feeds. The disadvan
tages of the partial oxidation method are that the capital cost of the plant
is 70 percent higher than that of the equivalent steam reforming plant (Chem
Systems, Inc., 1976), because an air separation plant is usually required to
supply oxygen.

C. PAST AND PRESENT 'TRENDS IN THE METHANOL MARKET

Since 1965 synthetic methanol production grew at an average annual rate
of around 7.4 percent. In 1931, 1,260 million, gallons of methanol were pro-
duced in the U.S. from a capacity of 1,770 million gallons (Ref. 3). A signi-
ficant portion of the methanol that is produced is consumed by the producers
themselves as an input in the production of other chemicals. Table 7-1
prresents a time series of synthetic methanol production and price figures
from 1965 to the present.

D. CURRENT METHANOL DEMAND

The main current use of methanol is a feedstock for the production of
resins, glues, and plastics. Figure 7-1 shows the major uses of methanol in
1979.

ORIGNAL PAIGE 1.!
OF POOR QUALITY

i

SOURCE: Chemical Engineering_, July 1980 (Ref. 7).-

Figure 7-1. U.S. METHANOL DEMAND,1979'
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The largest single use of formaldehyde is in the production of resins.
In a typical year, ureau formaldehyde resins take about 25 percent of formal -

dehyde output and phenol formaldehyde resins nearly as much. Housing is the
biggest single user of those materials. Consequently, methanol production
depends very stronglyon the cyclical movements in the housing market. It
should be noted that, in general, modernization and expansion of existing
houses takes a higher proportion of plywood and particle board than does new
construction. Therefore, when fewer new houses are built and instead there is
more modernization and expansion $ methanol demand will continue to be strong.
The demand for formaldehyde in mobile homes and other semipermanent living
quarters is not counted in housing starts. These uses might show a moderately
strong demand for plywood and particle boavd if demand in a recession shifts
toward these lower cost living quarters.

Methanol used for the production of formaldehyde constituted 30 percent
of methanol production in 1981. This percentage has dropped from 41 percent
in 1980. This may be due to the fact that the housing market, which uses
products from formaldehyde, has declined.

The second largest chemicalderivative market for methanol is methyl
methacrylate (MMA). The largest end use of this chemical is acrylic sheet
production; other end uses are surface-coating resins and molding and extru -

sion powders. Dimethyl terephthalate (DMT) is used in the manufacture of
polyester fibers. Except for minor quantities used in the preparation of
herbicides and resins for adhesives, printing .inks and specialty coatings,
the remainder is used to make polyster films and thermoplastic polyester
engineering plastics. The other major current use of methanol is acetic
acid. The largest end uses for acetic acid are vinyl acetate monomer, which
accounted for 44 percent of acetic acid consumption in 1978 and acetic
anhydride, which accounted for 28 percent. In 1978, about 17 percent of
acetic acid supply was based on methanol, a percentage which, as will be
argued below, is expected to grow substantially.

During the 1979-82 period, exports averaged 70 million gallons and
imports were approximately 40 million gallons per year.

E.	 PROJECTIONS OF FUTURE METHANOL DEMAND

DuPont Company of the U.S. predicts a 9 percent per year average
increase in methanol demand over the next several ,years (Ref. 2). Data
Resources Incorporated (DRI) projects 1.5 billion gallons of methanol in 1985,
aad 1.8 billion gallons in 1990, an average annual rate of growth of 3.7 per-
cet^t. In Figure 7-2, formaldehyde percentage of the total 1990 methanol
markeC is projected to be 28 percent, while that going into gasoline blending
is 14.1 percent. The total production of methanol in that year is estimated
to be 8.1 million metric-tons.

F	 UNITED STATES METHANOL SUPPLY

In 1981, there were eleven ` companies producing methanol in the U.S. 	 9I

Total methanol capacity amounts to 1770 million gallons per year. Methanol
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SOURCE: Chemical Engineering, July 1980 (Ref. 7),

Figure 7-2. U.S. METHANOL DEHANDtl990

producers and their annual capacity and market share are listed in Table 7-2.
As one can see, by the end of this year, around 70 percent of methanol capa-
city will be concentrated in the hands of the three largest producers:
DuPont, Celanese, and Borden, Inc.

G.	 WORLD METHANOL SUPPLY

World methanol production currently stands at 3.52 billion gallons and
production level is expected to reach 5.98 billion gallons in 1987 (Table 7-3).
This is an annual rate of growth of 11.2 percent. Forecasters disagree on
methanol supply/demand. Chem Systems, Inc., (New York) predicts a worldwide
shortage by 1990, while British Sulphur Corp (London) observes there would be
a glut by 1985 (15). Table 7-4 presents the world methanol production capa-
city (not including the United States) through 1987.
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Table 7-2. U.S. METHANOL PRODUCTION CAPACITY 
Of POOR QUALITY

(Million Gallons/YLar)"
(Ref. 1,2,3,4)

PRODUCER 1980 1981 1982 1983 1984 1985 1986 1987 1988

AIR PRODUCTS
Pensacola, LA 50 50 60 60 60 60 60 60 60

ALLEMANIA CHEM.
Plaquemine, LA 100 130 130 130 130 130 130 130 130

ARCO CHEM.
Gulf Coast --- --- --- 200 200 200 200 200 200

BORDEN, INC.
Geisman, LA 160 180 180 180 180 180 180 180 180

CELANESE CORP
Bishop, TX
Clear Lake, TX 375 385 385 385 385 385 385 385 385

DUPONT
Beaumont, TX
Dear Park, TX 340 450 450 450 450 450 450 450 450

EASTMAN CHEM. --- --- --- --- 50 50 50 50 50

GEORGIA PACFFI
Plaquemine, LA 120 125 125 125 125 125 125 125 125

GETTY OIL. --- --- --- 100 100 100 100 100 100

MONSANTO
Texas City, TX 100 100 100 100 100 100 100 100 100

TENNECO, INC.
Houston, TX 80 82 130 130 130 130 130 130 130

Total U.S. 1,325 1,502 1,560 1,860 1,910 1,910 1,910 1,910 1,910

Other Free World 2,280 2,280 2,740 2,885 3,545 4,415 5,085 5,415 5,585

TOTAL 3,605 3,782 4,300 4,745 5,455 6,325 6,995 7,325 71495

SOURCES; Conoco "The Production, Economics, and Marketing of Methanol,"
presentation to General Motors Corp., March 1982; Stanford,
Connecticut,_ "Energy Modeling Forecast, "EMF Report No. 6, Feb.
1982.
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Table 7-3. FREE WORLD METHANOL BALANCE 1981-1987 (million/gallons/year)

1981 1982 1983 1984 1985 19.86 1987

Existing Production3.11 3.11 3.22 3.22 3.22 3.22 3.22
Published New Capacit	 - 0.3 0.7 1.2_ 1.86 2.43 2.756
(cumulative) includ-
ing Gasoline

Effective Production 	 3.22 3.52 3.92 4.42 5.08 5.64 5.98
Comecon Imports	 .03 .07 .13 .01 .17	 ! .17 .17
Production 6 Imports	 3.25 3.59 4.02 4.55 5.25 5.71 6.15
Consumption	 2.91 3.47 3.74	 ' 3.97 4.17 4.3 4.47
Balance	 0.34 0.12 0.28 0.58 1.08 1.51 1.68

LIST OF NEW CAPAC''ITY

YEAR COUNTRY COMPANY CAPACITY

( 103gPy)

CUMULATIVE
CAPACITY

(106 8Py)

CUMULATIVE
PRODUCTIONa

(106 g)
1982 CANADA ALBERTA 130

OCELOT 130 0.5 (.3)
CELANESE 200

1983 USA ARCO 190
GETTY 100

TAIWAN CPDC 35 0.9 (.4).7
TRINIDAD NEC 110

1984 SARABIA SABIC/JAPAN 220
LIBYA NMC 110
N. ZEALAND PETRALGAS 130 1.6 (.5)1.2
INDONESIA PERTAMINA 200

1985 UK ICI 270
SARABIA SABIC/CELANESE 220
MEXICO PEMEX 270 2.5 ( .7)1.9
BAHRAIN GPIC 110

1986 MALAYSIA PETRONAS 110
MALAYSIA (BORDEN) 110''
HOLLAND METHANOR 140
ARGENTINA HUARPES 200 3.1 (.6)2.5
BANGLADESH BEXIMCO 110

1987 GERMANY SHELL 130 3.5 (.3)2.8
N. ZEALAND NZ/MOBIL 200

1988. USA' TVA 330' 4.0 (.5)3.3
NGRWAY DYNO 170 -

SOURCE:	 Conoco, Stanford, Connecticut.

aCumulative production is less than the capacity would imply because plants
being opened during the year and operating at less than full capacity.	 The
numbers in parenthesis are esL' mates of actual output from the new capacity.
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COUNTRY 1980' 1981 1982 1983 1984 1985 1986 1987

Argentina 200

Bahrain 110

Bangladesh 110

Canada 400
China 35

Germany 130

Indonesia 200 130

Japan 200

Libya 110

Malaysia 220

Mexico 270
Netherlands 140

New Zealand 130 200

Norway

Saudi Arabia 220

Taiwan 35

Trinidad 110

UK 270

USSR 100 270

Yugoslavia 135

TOTAL 100 35 _ 595 415 660 850 800 330

CUMULATIVE
TOTAL 100 135 730 1145 1805 2745 3445 3775

R.	 1

OR1G1N L PAS N
OF POOR QUALffY

Table 7-4. FOREIGN METHANOL PRODUCTION - NEW CAPACITY
(million/gale/yr)

(Ref. 1,2)
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CHAPTER EIGHT

METHANOL UTILIZATION IN VEHICLES

The dominating potential use for methanol is as a fuel for the millions
of automobiles and trucks which will be on the road in the year 2000. 	 Between
the present time and the year 2000, transitional markets may develop which can
enable successful introduction of both methanol fuel and methanol automobiles
into the private marketplace. 	 Therefore, in addition to the examination of
neat methanol as a fuel for private automobiles, several other transportation
submarkets have been examined.	 These markets include:	 methanol as an-octane-
blending agent for gasoline; the medium- and heavy-duty truck and bus market;
and the near-term light-duty commercial and public fleet vehicle market. 	 The
following paragraphs present a short description of the contents of Chapter 8.

Methanol use for gasoline blending is examined in Section A from the
perspective of both methanol and a co-solvent as a direct blending agent, and
methanol as a feedstock to MTBE production.	 The technical issues of methanol-
blending use in automobiles are reviewed.	 These issues include:	 driveablity,
emissions, material,, compatibility and corrosion.	 The economic potential for
methanol blends is examined through use of a simple parametric octane number
barrel cost model, and a co-solvent limited demand curve is estimated.

Section B presents an examination of the potential for neat methanol
fuel, in private passenger vehicles. 	 In a manner similar to 'methanol and
gasoline blends, the technical aspects of neat methanol fuel as used in
vehicles are reviewed.	 The economic viability of methanol fuel for private

K	

passenger vehicles is examined from the perspective of a changing gasoline
T	 vehicle baseline challenged by an improving methanol vehicle technology. 	 The

implications of dissociated methanol technology are also examined.
r

Engine and tailpipe emissions are separately discussed.in each of the
subsections of Chapter 8.	 In addition, an overview of methanol, engine
emissions is presented in Section C.	 The implications of the emissions from
methanol vehicles on urban air quality have been presented in Chapter6.

Medium- and heavy-duty applications, such as trucks and buses, are
examined in Section D.	 Three representative technologies, the Texaco TCCS
engine, the Mercedes-Benz; fully vaporized ineehanol engine, end the M.A.N.
direct-injected stratified charge engine are discussed in more detail. 	 The
potential economic viability of methanol fuel versus diesel fuel is presented
from the perspective of(three possible pecroleuin price scenarios.-

One often mentioned near-term market is light-duty commercial and public
fleet vehicles.	 Section E examines this potential market and provides rough
estimates of the market potential and the implications on near-term methanol
fuel sales.

z



A.	 METHANOL 'JASOLINE BLENDS

A potentially significant demand for methanol is as an octane-enhancing
blending agent for unleaded gasoline. Currently, methanol is used directly in
gasoline or as a feedstock for MTBE in Europe and in the U. S. Petroleum
Allocation District III -- Gulf States PAD III. A five percent blend of
methanol in the unleaded gasoline pool could increase West Coast methanol
demand by 4,000 ton per day.

The use of methanol by the refinery or blending sectors within Calif-
ornia could impact transitions to broader use of methanol fuel due to three
factors:

(1) Methanol use in gasoline blending may provide an elastic buffer for
supply discontinuities resulting from large methanol production
facilities coming on-stream.

(2) Significant use of methanol in gasoline blending would encourage
the development of bulk-handling and transport facilities for
methanol in areas adjacent to ports and refineries.

(3) Blending use would establish methanol as a standard product within
the California energy industry.

Methanol (as well as other alcohols) can be blended with gasoline in
various proportions or used as a neat fuel in spark-ign.itel engines. Blending
is best and most easily done at the refinery using the appropriate additives
and petroleum fractions. In principle,, any combination of alcohol and
gasoline could be delivered to the vehicle fuel tank using a variable blending
pump at the retail service station; however, fuel vapor pressure control
limits this approach. Fuel blending can also be accomplished onboard the
vehicle by tt3e of a dual fuel tank system.

It is also known that methanol cannot be blended in any proportion
greater than about 10 percent without making appropriate 'modifications to
present cars. Some material incmpatibility problems may appear with 'even
lower: concentration blends in cars not designed for alcohols. The amount of
methanol that could be added to the fuel tank as a blend with gasoline,_
ignoring such problems as phase separation, vapor lock and corrosion, would be
limited largely by decreased driveability due to the leaning of the carbureted
air/fuel mixture.

1
	

Methanol/Gasoline Blends in Vehicles

The use of methanol'as a blending component provides an opportunity
for the early introduction of the fuel into the transportation market and may
contribute to demand suf€icienty to justify initial remote natural gas-based
production of methanol. Use ofmethanol as a blending agent both increases
octane number and displaces petroleums. While there may be economic and
transitional reasons for blending methanol into gasoline, several technical
problems are associated with the use of blends in automobiles. i



The performance of vehicles using methanol/gasoline blends is discussed
in the following material. The performance factors Considered include drive-
ability, material coppatability, fuel consumption, and emission characteris-
tics.

a.	 Driveability. Fuel volatility, lean combustion, and phase
separation can directly affect the drivability of a vehicle fueled with a
methanol blend.

Fuel Volatility. Methanol has a definite effect on the
volatility of methanol gasoline blends. Methanol is a polar liquid and
gasoline is nonpolar. The use of small amounts of polar methanol in nonpolar
gasoline results in a large increase in fuel vapor pressure. The effect of
methanol on the Reid Vapor Pressure (RVP) of the blend is shown in Figure 8-1
(Ref. 1). The addition of only 2 percent methanol increases the RVP 3 psi,
even though the volatility of pure methanol is less than that of the base
gasoline. Excessive vapor pressure can produce vapor lock problems (engine
stalling), hesitation and poor vehicle acceleration. The use of higher
alcohols as co-solvents in gasoline/methanol blends tends to reduce the vapor-
pressure increase due to the higher molecular weights.

The vapor-locking tendency of a fuel is related to its front-end
volatility, or fraction distilled below about 158OF and RVP. The addition
of methanol increases the vapor-lock tendency of gasoline. Increased
front-end volatility also tends to increase.evaporative emissions.. Methanol.
has a significant effect on the distillation characteristics of the blend.
Figure 8-2 (Ref. 2) presents a distillation curve for a typical gasoline fuel
before and after the addition of various concentrations of methanol. The
blends vaporize more rapidly at temperatures less than the 149 0F boiling
point of methanol. At higher temperatures, approaching 200 0F, the
difference in vaporization between gasoline and hlends containing about 15
percent (or less) methanol becomes much less pronounced.

Such volatility characteristics are typical of blends obtained by the
addition of methanol to finished gasoline after the normal refinery process.
Blends .initially produced at the refinery can be adjusted for front-end
volatility by decreasing some fraction of the lighter hydrocar l ons, such as
butane and pentane. The displacement of low-cost butane with methanol could
produce a higher cost alternative fuel. A substitution of the lighter
hvdrocarbons could also create a surplus of butanes in the marketplace.
However, the value of methanol for increasing the octane number of the blend
may more- than compensate.

In addition to vapor lock-free operation, good driveability includes
quick starting, stall-free engine warm-up and reliable engine-idle condi-
tions. Several investigations have found that warm-up driveability for

+f

y
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methanol gasoline blend is not as _good as gasoline. Increasing methanol
concentration decreases the warm-up drivability. Fuel injection cars appear
to be affected less than carbureted cars. The warm -up driveability effects of
blends apparently result from the high heat of vaporization of methanol. This
contributes to the incomplete.vaporization of the fuel in the engine intake

1
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Figure 8-1. EFFECT OF METHANOL ON GASOLINE VAPOR PRESSURE (Ref. 1).
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system, causing poor cylinder -to-cylinder distribution.	 Once the vehicle has
been warmed up, dr iveability due to poor volatility does not appear to be a
problem with blends.

Lean Combustion. 	 Because of the methanol stoichiometry,
substitution of a methanol blend for gasoline without adjustment of the
carburetor results in a leaner air/fuel mixture. 	 This additional "Leaning"
can have a pronounced effect upon driveability, particularly with newer
automobiles which are already factory calibrated to be operated lean or
stoichiometric.	 Present environmental regulations prohibit carburetor
adjustments.	 Although such adjustments could improve driveability using
blends, an 'over-rich" condition would result if the vehicle were operated on
straight gasoline.	 However, recently commercialized feedback controlled
carburetor and fuel injection systems should be able to compensate to some
degree for the leaning effect of methanol.

l	 If lean operation impairs driveability, it is due to the susceptibility
to misfiring in the leanest cylinders.	 In addition, the leaning effect with
blends may be aggravated by preferential evaporation of the low -boiling
methanol.	 Hence the vapors entering certain engine cylinders are leaner than
the avc-rage mixture.

Phase Separation.	 The presence of small amounts of water can
cause methanol /gasoline blends to separate into gasoline and water /alcohol
phases.	 The obvious chemical differences between the two separated phases can
cause severe driveability problems.	 The severity of phase separation depends
upon the ambient temperature and the solubilityof methanol in the base
gasoline.	 Methanol is least soluble in paraffins and napthenes and more
soluble in aromatics and olefins. 	 At lower temperatures, the solubility of
methanol in gasoline is decreased.	 The solubility can be increased, however,

F	 by the addition of higher alcohols which act as co-solvents and, also, tend to
solubilize small quantities of water in the blend.	 Additives found effective
in methanol/gasoline blends ( at relatively high concentrationri) are the
branched alcohols such as isopropanol and tertiary butyl alcohol. 	 The problem
of using solubilizing additives is basically economic. 	 Existing commercial
methanol blends use higher alcohols to control phase separation.- Separation
can still occur if there is sufficient water present and/or the temperature is f
low, even with co-solvents in the blend.

Water is usually present in gasoline storage tanks.	 It can enter the E	 ,
storage and transport system from rain sources, other pipeline products,
marine operations or absorbtion from the air. 	 If phase separation occurred
within the distribution system, methanol would be lost from the blend and the r
operation of distribution facilities disrupted.	 In addition, the separated ?	 j
aqueous phase would be difficult to dispose of, and corrosion of some equip-'
went would probably be accelerated.	 Therefore, transport and storage
operators must know that the gasoline contains methanol and the de-watering/
cleaning procedure for the systems must be followed. Frequent hatching of
methanol blends through the system would tend to remove any water in the

.,	 system.	 Therefore, if methanol blends were in common use, the water
P	 absorbtion problem would be minimal,

8-5 t	 a^

it



Blending Octane Number. The high octane quality of methanol
makes it an attractive blending component for gasoline. As measured by the
ASTM Research octane method, methanol has been reported to rate between 106 to
115 octane numbers (ON). The ASTM Motor method for measuring octane numbers
yields ONs in the range of 88 to 92. The difference between the Research and
Motor octane ratings is defined as the fuel "sensitivity". The road
anti-knock quality of a commercial grade fuel measured in actual driving
depends upon both of the laboratory measurable ON ratings.

The use of methanol as a high ON blending component increases the
blended fuel's sensitivity. 	 The tendency for road knock may be higher than
the ON indicates, depending upon the hydrocarbon composition of the base
gasoline.	 Methanol blends, because of their higher sensitivity, might need to
be marketed with a higher octane number than that required of gasoline to
achieve the same road anti-knock performance to give equivalent car
performance.

b.	 Material Compatibility.	 The long-term compatibility of
f	

•:

methanol with existing automotive fuel system components is not adequately
known by automobile manufacturers.	 The present systems have been developed to
be corrosion-resistant and otherwise compatible with petroleum distillates.
To a great extent, the material compatibility problems are concentration
dependent:	 4.5 percent methanol causes little or no problems as documented in
a recent EPA waiver application, whereas 10 to 15 percent blends have shown
severe problems.

Metal Corrosion.	 There is limited evidence of the corro-
sivity of methanol in blends (or as a neat fuel) to metals presently used in
most vehicle fuel systems.	 Metals known to have sustained corrosion damage
include copper, zinc, _.aluminum, steel and magnesium (Ref- 3).	 Terne metal
coatings, an alloy of tin and lead commonly used insi.e gas tanks, suffer
rapid deterioration upon contact with methanol.

The severity of the corrosion problem is influenced to a large degree by
the amount of water in the fuel.	 The separated aqueous phase of a methanol/
gasoline blend has been observed t.o be especially corrosive. 	 Work is in
progress to develop special inhibitors to minimize the corrosive behavior of
methanol.	 Corrosion and compatibility problems are also influenced by
temperature, fuel and other factors, and thus have not been universally
observed by all investigators.

Compatibility With Other Materials. 	 In addition to corrosion
of metals, methanol can be incompatible with many non-metallic fuel system
materials.	 The solvent characteristics of methanol have caused swelling of
Viton parts in carburetors, hardening and cracking of buna-N coated fuel pump
diaphragms, stiffening of neoprene-coated diaphragms, shrinking of cork_
gaskets,, disintegration of polyurethane, hardening of vinyl fuel hoses, and
softening of polyester-laminated fiberglass (Ref. 4)-. 	 These problems are i	 z'
reported to be more severe with neat methanol as compared with blends, and can
be avoided by selecting suitable materials for fuel systems.

f	 ^J
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Lubricant Compatibility. The long-term compatibility of
methanol with existing automotive lubricants has not been established. Some
reports of increased ring and cylinder wear may be due to: (1) the removal of
the cylinder wall oil film by the alcohol and (2) the prolonged engine warm-up
time. Gasoline fuel under similar conditions causes oil dilution, but
unburned methanol is insolub '1^3 in most oils. Some detergent additi. ,ves have
shown evidence of a separation in the presence of methanol /oil emulsions.
Work is currently in progress to develop tube oil additive packages compatible
with methanol fuels. Recent California tests indicate that a conservative
policy of frequent oil changes minimizes lubricity problems.

C. Fuel Consum Lion. Due to the lower energy content of methanol
(56,000 vs 115,400 Btu /gal for gasoline), a blended fuel coild be expected to
yield _h`igher fuel consumption on a miles per gallon (MPG) basis. To a first
approximation, the volumetric fuel consumption of any fuel (at a given equi-
valence ratio) is proportional to the fuel, energy content. The equivalence
ratio is defined as the actual fuel-air ratio divided by the stoichiometric
fuel-air ratio required for complete combustion. However, the potential for 	 MGR.

improved engine thermal efficiency due to lean combustion, reduced flame
temperatures, together with the increased ON of methanol which may permit
higher compression ratios, makes the prediction offuel consumption using
blends uncertain.

The addition of methanol to gasoline reduces the fuel energy content
and, if carburetion is not adjusted for the change, results in a leaner
air/fuel mixture supplied to the engine. Feedback/oxygen sensor carburetion
or fuel injection should automatically adjust for this if the change is not
too great, In older cars with relatively rich carburetion, the leaning effect
of a blend may improve thermal efficiency and compensate for the loss in
energy content, so that net increases in fuel economy are possible. However,
because some late model cars either run lean or stoichiometric, further
leaning by a, blend may not 11elp fuel economy. For this situation, volumetric
fuel economy could be less with blends because of the lower energy content. 	 a

As a practical matter, with blends of more than about 10 percent methanol,
carburetion should be adjusted in order to maintain exhaust emission control
and acceptable driveability. Carburetor adjustments, on the other hand, are
not presently allowed under existing environmental regulations. t

d. Exhaust Emission. Leaner operation of an engine will tend to
reduce carbon monoxide (CO), reduce hydrocarbons (HC), and may increase or

Y

-decrease oxides of nitrogen (NOx), depending upon the factory carburetor
setting. Substantial decreases in CO emissions have been observed with
methanol/gasoline blends, while unburned fuel emissions (including unburned
methanol) have been either increased or decreased. Methanol from the exhaust
has been determined tc exhibit low photochemical reactivity. Uncontrolled
nitrogen oxide emissions are high when operating the engine in the lean side
near stoichiometric combustion.	 Therefore, if the vehicle is originally

r

adjusted to operate stoichiome^,;,.ric or slightly lean on gasoline and not
modified when a methanol blend is substituted, the leaning effect of the blend
may reduce the NOx emission.	 If the vehicle originally operated fuel rich,
however, this same leaning effect should increase the NOX emissions.
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When methanol blends are used, the possibility of increased emission of
formaldehyde in the exhaust exists. Formaldehyde is the lowest molecular
weight aldehyde, and a known eye irritant. Aldehydes are photochemically very
reactive and could, therefore, contribute significantly to smog formation.
Increased aldehyde emissions have been reported by several investigators with
methanol blends. In the case of lean mixtures, as normally encountered when
methanol blends are used in unmodified vehicles, the formaldehyde might be
converted to CO2 and H2O by an oxidation catalyst before reaching the
tailpipe. A recently completed study (Ref. 4) concluded that the photo-
chemical reactivity of exhaust emissions was unchanged when blends of up
: 15 percent methanol were substituted for gasoline.

e.	 Vehicle. Research Tests. Vehicle testing of methanol and other
alcohols blended with gasoline has been performed by U.S. DOE at Bartlesville
and by contractors such as University of Santa Clara and Southwest Research
Institute. Testing has also been performed by the California Energy Commia-
Sion, and oil companies such as Union Oil under contract to DOE or ARCO in
support of its waiver application. The Generai Motors vehicle research test
will be taken as representive of these tests. It will be supplemented by the
data from DOE/Bartlesville in the area of emissions and by the Union Oil data
in the area of aldehyde emissions. The results of the ARCO tests will be
found in a following section on Clean Air Act Section 211(f) waivered fuels.

A comprehensive experimental program was conducted by ,Brinkman, et al.
(Ref. 5), of General Motors. Two different production vehicles were evaluated
using several different unleaded gasolines and gasoline blends containing both
methanol and ethanol at 10 percent and 25 percent concentrations. Comparative
evaluations were made to determine the effect of fuel-type on emissions, fuel
economy, driveability, performance, and road octane requirements. Carburetor
modifications were made to determine the effect of equivalence ratio on
performance.

Emissions. The GM study found that the response of vehicle
exhaust emissions to alcohcl addition depends upon the original calibration of
the fuel induction system. Changes in emissions caused by adding 10 percent
alcohol in a vehicle equipped with a stock carburetor are shown in Figure
8-3. The observed effect of reduced emissions can be attributed to leaning of
the intake charge (Ref. 6)

Tests by GM were also run using three different carburetors to provide a
range of air-fuel ratios not achievable with the production carburetor. The
results of these tests are summarized as follows. For cars operating rich on
gasoline, the addition of methanol causes a decrease in exhaust hydrocarbons
and carbon monoxide and an increase in nitrogen oxides. For cars originally
carbureted lean, carbon monoxide emissions were reduced further; hydrocarbons
and nitrogen oxides changes were dependent: upon the actual level of
equivalence ratio operation.

r

r
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The Bartlesville Research Center of DOE (Ref. 7) has tested the effects
of methanol blends on ten 1974 and 1975 automobiles. Four of the vehicles dial
not have exhaust catalysts. The emissions averaged across the ten vehicles
are shown in Table 8-1. These data show HC increasing 4 to 50 percent, NOx
remaining within 10 percent of reference fuel value, and CO decreasing (with
the exception of 5 percent methanol at 100 0F). However, 1974/1975 federal
emissions certified vehicles are not the same as California vehicles of the
1980s; no co-solvent was used, no adjustment was made to the volatility of the
gasoline when methanol was added; and the methanol concentrations are higher
than methanol blended gasolines customarily sold in the United :States.

Aldehyde emissions were specifically examined in the Union Oil study
(Ref. 3). The results are summarized in Table 8-2 (see also aldehyde row on
Table 8-1). "Modified carburetor" refers to the re ,jetting required by the
leaning effect of the high alcohol content of the test fuels. This table
shows that high alcohol concentrations cause significant increases in aldehydes
but also shows that the catalyst iseffective in removing them.

Table 8-1. AVERAGE EXHAUST EMISSIONS AND ENERGY CONSUMPTION OF TEST VEHICLES
A THROUGH J OPERATING ON COMMERCIAL GASOLINE BASE FUEL AND METHANOL
BLENDS AT 20 0 , 750, AND 100OF AMBIENT TEMPERATURES

AMBIENT TEMPERATURE, of

20 75 100

INDOLENE 5% 10% INDOLENE 5% 10% INDOLENE 5% 10%
CLEAR McOH McOH CLEAR McOH McOH CLEAR McOH McOH

EMISSIONS
(g/mile)

CO 40.3 35.7 29.2 13.5 10.1 8.2 13.2 18.3 13.2
HC 2.5 2.6 2.8 1.1 1-.3 1.5 1.2 1.6 1.8
NOX 1-.9 2.1 2.0 2.1 2.0 1.9 2.0 1.8 1.8
Aldehydes _ -0.-11 0.13 0.16 0.10 0.11 0.12 0.09 0.10 0.12
Methanol 0.01 0.08 0.15 0.02 0.07 0.13 0.02 0.08 0.14

FUEL ECONOMY
,(miles/105Btu)

EPA CVS cycle 9.3 9.1 8.9 10.0 9.7 9.7 10.4 10.0' 10.0
EPA Hwy. cycle 15.8 15.3 14.8 15.9 15.2 14.8 16.0 15.9 15.7

SOURCE:	 Allsup, J. R., "Experimental Results Using Methanol/Gasoline Blends
as Automotive Engine Fuel, Bartleaville Energy Research Center,
Report RI-76-15, January 1977.
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Table 8-2. EXHAUST ALDEHYDE DETERMINATIONS

ALDEHYDE CONTENT, a ppm BY VOLUME

BEFORE CATALYST AFTER CATALYSTCAR AND
CARBURETOR FUELb IDLE 156 km hr 35 mph IDLE 56 k	 hr	 35 mph)

VOLVO, FUEL CD-3 23 28 1 2
INJECTION CD-4 -- -- -- 2

CD-5 27 33 1 2
CD-6 -- -- -- 2

CHEVELE, C6-3 Run 1 22 10 11 7
STANDARD Run 2 25 31 2 8
CARBURETOR Run 3 19c 16 13c 10

Avg. 22 19 —7 6

CD-5, Run 1 41 79 14 11
Run 2 35c 72 30c 10
Avg. 38 76 14 11

CHEVELLE, CD-4 32 20 12 2
MODIFIED CD-5 14 9 10 6
CARBURETOR CD-6 Run 1 - 31 -- 21

Run 2 38 12 2 2
Run 3 52c 20 6c 2
Avg. 45 21 2 7

a	 Aldehyde content determined by 3-methyl72-benzothiazolone hydrazone (MBTH)
method

b	 Fuel CD-3 = low RVP base fuel (51 kPa, 7.5 lb); Fuel CD-4 = 15.6 vol %
methanol in base fuel; Fuel CD-5 18.0 vol % methanol with 25% C2-C4
alcohols in base fuel; Fuel CD-6 _ 18.1 vol % C3-C 7 alcohols in base
fuel.

c	 Sample taken after protracted idling (about 15 minutes) for preceding run.
After-catalyst value omitted from average because of presumed catalyst
cooling.

SOURCE:	 Keller, Nakaguchi, Ware, Methanol Fuel Modification For Highway
Vehicle Use, Final Report for U.S. Department of Energy, July
1978.

f

_	 r

Fuel Economy. Fuel economy data were obtained by GM with the
stock carburetor at several steady-state road-load points. The volume-based
data are shown in Figure 8-4 for the threedifferent fuel types. At low
speeds, the results are nearly identical. At higher road speeds, the blended
fuels exhibited poorer fuel economy. Figure 8-5 shows the same data plotted
on an energy basis. Since the test results did not converge to a single

"	 8-10
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value, the conclusion was made that the results were additionally affected by
stoichiometry., 'The amount of the decrease in the volume-based fuel economy
depended upon ( in addition to differences in fuel heat value) the leaning of
the intake charge. It should be noted that in Figures 8-3, 8-4 and 8-5 the
analysis was do-ne with stock carburetors.

j

	

	 Driveability. Subjective driveability tests were conducted on
both the road and chassis dynamometer. During these tests, engine starting
characteristics were noted. In addition, various malfunctions such as
hesitation, stumble, surge, etc., were rated by the driver. The combined
ratings were assigned "demerits" which were then adjusted by weighting factors
according to the considered importance of the specific deficiency.

The driveability results are shown in Figure 8-6 as a function of oper-
ating equivalence ratio. The effect of fuel type upon driveability is seen to
be very important at equivalence ratios less than about 0.9. Thus, use of
methanol blends in a vehicle factory calibrated for lean operationwould cause
severe driveability problems.

The effect of ambient temperature on driveability was also evaluated by
r	 GM for both the base gasoline and a 10 percent methanol blend. These results

8-12 i
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Figure 8-6. EFFECTS OF ALCOHOL AND CARBURETION
ON ROAD DRIVEABILITY ( Ref. S)

are given in Figure 8-7. As shown, vehicle driveability suffers with
decreasing ambient temperature for both fuels. Because of the leaning effect
with methanol, however,, driveability deteriorates more rapidly.

Performance. The wide-open-throttle response of the engine
varied directly with the operating equivalence ratio irrespective of fuel
composition. As noted previously, alcohol addition to gasoline can either
improve or deteriorate engine performance depending upon the factory calibra-
tion of the carburetor. This is primarily a function of the auto's age, since

`.	 few if any newer cars are set rich. Consequently, a typical fleet or
automobile, population must be specified before generalizations regarding the
expected performance effects can be made.

Octane Number. The effect of the Research and Motor ONs on 	 ?4
the road antiknock quality is shown in Figure 8-8 for a range of methanol
blends. Although a definite trend was indicated for various engine speeds,

}	 the data show that the road octane ratings of blends could probably not be
predicted on the basis of the two standard ASTM methods if the mixture ratios
were not recalibrated =` for methanol blends.

#	 8-13
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f.	 EPA.Waiver-Approved Methanol Gasoline Blends. Section 211(F)
of the Clean Air Act requires that fuels used in an emission-certified vehicle
be substantially similar to fuels in use in 1974. A waiver must b-A granted
before a fuel which does not need this condition can be entered ,ato commerce.
Fuels containing more than a very small amount of methanol do not meet this
condition. Therefore, before they can be used in vehicles, methanol gasoline
blends must bA.x granted a waiver by EPA. Several waivers have been submitted
and approved for methanol-containing gasoline blends including: Sun Oil for a
2.75 percent TBA, 2 . 75 percent methanol; Anafuels (now American Methyl) for a
blend of methanol, higher alcohols, and a proprietary corrosion inhibitor; and
ARCO for 3.5 percent by weight oxygen and at least a one-to-one ratio of
tertiary butyl alcohol to methanol. ( 'This permits among other combinations
4.75 percent methanol and 4 . 75 percent TBA.) Additionally, a waiver
application has been submitted by DuPont for 3 percent methanol without a
co-solvent.

Rather than review the data contained in all the various waiver
applications, only the data contained in the most recent ARCO waiver will be
reviewed. The data contained in the waiver application is quite extensive
and, for the most part, parametric in the amounts of both methanol and TBA.
In regard to the other waivers and waiver applications, the Sun Oil waiver has
been essentially subsumed by the ARCO waiver; the DuPont waiver application
has yet to be approved by EPA and may be subject to amendments or modifica-
tions; and the Anafuel ' s blend still has independent vehicle testing pending.
Exhaust emissions, evaporating emissions, and driveability data and test
results on methanol TBA blends will be briefly reviewed and abstracted from
the waiver application.

Eleven test vehicles were tested by ARCO using the 1978 federal test
procedures for exhaust emissions with a back-to-back testing of the test fuels
and a base fuel. The results of a paired difference test for the exhaust
emissions comparisons are presented in Table 8-3.

Table 8-3. PAIRED DIFFERENCE TEST - ALL VEHICLES COMBINED

FUEL EMISSIONS 90% CONFIDENCE INTERVAL INTERPRETATION

5V% McOH /5V% GTBA HC -0.14 to -0.36 HC decreases
CO -3.33 to- -12.31 CO decreases
NOX 0 .04 to - -0.32 NOX unchanged

16V% GTBA -HC -0.11 to -0.37 HC decreases
CO -3.60 to =12.12 CO decreases
NOX -0.03 to -0.33 NOX decreases

Gasohol HC -0.14 to -0 .42 HC decreases
Co -4.31 to -12.93 CO decreases

NOX 0.0$ to -0.21 NOX unchanged

SOURCE.;	 Atlantic Rehf field Company, Clean Air Act Section 211(f) Waiver
Application (April 17, 1981).
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The figures in the third column represent the 90 percent confidence
level for the difference between base and test fuel measured in grams per
mile, and determined by standard statisl' • ical techniques.

By testing vehicles with oxyginated fuels that cover a range of oxygen
contents, the parametric changes in tailpipe emissions versus oxygen content
for an oxidation catalyzed vehicle were estimated. These results are
presented in Figure 8-9.

As can be seen from this figure, as the oxygen content of the fuel
increases, the tailpipe emissions of carbon monoxide and hydrocarbons
decrease, whereas the levels of NOx increase slightly.

For fuels containing only hydrocarbons without oxyginates, the total
evaporative emission is strongly correlated to the front-end volatility index
of the fuel. Figure 8-10 shows an example of this relationship, originally
taken from California Air Resources Board data. The important implication of
this relationship is that vehicle evaporative emissions can be regulated by
regulating the front-end volatility index of the fuel. (It should be noted
that fuel volatility is not the only means that is used to control vehicle.
evaporative emissions.) To support its waiver application, ARCO demonstrated
that such a relationship also holds for fuels containing oxyginates. Figure
8-11 shows the similar relationship to the above for fuels containing
oxyginates. The oxygenated fuels contain 4.5 percent methanol by volume and
4.5 percent GTBA by volume. Based upon these and other data presented in the
application, ARCO concluded that... "extending the finished fuel oxygen limit
to 3.5 percent b weight... will not result in emission standards violations
as long as volatility limits are maintained." In the approval of the waiver
application, the Administrator of EPA concluded that ... "the subject additive
will not cause or contribute to the failure of vehicles to meet evaporative
emission standards provided the final fuel is blended to meet the ASTM
volatility specifications appropriate for the area and time of year as
provided in this waiver."

The driveability of vehicles using methanol-TBA blends was tested by
several means. In one set of tests, driveability (measured by standard CRC
procedures) was measured for several vehicles and several different tempera-
tures parametric in the volumetric concentration of methanol and TBA. Figures
8-12 and 8-13 show the results :of.such tests with a 1974 California Pinto. As
can be seen from the figures, that although total weighted demerits did
increase as the concentration of the alcohols increased, driveability remaineds	 _
in the good range with the exception of low volatility fuel and cool tempera-
tures. (Such tests are strongly dependent upon the vehicle, and other vehicles
tested by ARCO yielded different driveability results.)- In another 'test of
driveability, 150 cars owned and driven by employees of the ARCO Petroleum
Products Harvey Technical Center were used to compare the driveability of
conventional gasoline, a gasoline blend containing 4.5 percent methanol and
4.5 percent GTBA, and commercially available gasohol,. The results of the
comparisons between the three fuels are presented in Table 8-4.

The only area in which the driveability of the methanol blend was
noticeably worse than the base gasoline fuel was in cold engine_performance. -
It was argued in`the waiver application that the cold engine performance of
the methanol blend was equivalent to that of gasohol and, further, that

gasohol was a-consumer-acceptable fuel.
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Table 8-4. FLEET TEST DRIVEAAILITY RESULTS

BASE
4.5V% McOH
4 .5V% GTBA GASOHOL

% Trouble-Free Performance (a) 911 90 92
Cold Engine

% Trouble-Free Performance (b) 99 99 99
Hot Engine

% After Run-Free Performance (c) 99 99 100

% Knock-Free Performance(c) 99 99 100

(a)Maximum number of problems per start allowed by program = 3

X Trouble-Free Performance
Problems

X00 -	
(Starts	

100

(b)Maximum number of problems per driving period allowed by program - 3

% Trouble-Free Performance - 100 -	
Problems	

100
3	 Driving Periods

(c)Maximum number of problems per driving period allowed by program - 1

Problem-Free Performance a 100 -	
Problems

Driving Periods	
100

2. Potential Demand for Methanol by California Refiners and Gasoline
Blenders Y

S

	

	 Methanol can enter the refinery -blending sectors by two possible
paths. The first path is the direct use of methanol (with a suitable co-sol-
vent such as tertiary butyl alcohol) as an octane enhancer. There currently
exist EPA waivers permitting up to 4 . 5 percent methanol in conjunction with
4.5 percent TBA to be used in gasoline. This blending agent is currently
being sold in PAD III by ARCO under the trade name Oxinol. Due to phase	

t	
}

separation and vapor pressure, it is unlikely that methanol would be used
without a co-solvent in PAD V (western district including California) or
elsewhere. The second possible path for methanol is as a feedstock to the
production of methyl tertiary butyl ether (MTBE) which is also used as a 	

k

octane-blending agent. Neither use would contribute to the development or
establishment of a ^!Atail methanol fuel infrastructure. However, these uses
:ould expand or establish bulk methanol handling and transport facilities.
These uses may also contribute to providing an elastic buffer for the discon-
tinuous, large increases in supply which could occur as new methanol-producing
facilities come on-stream. Either of these potential methanol options must

8-21
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compete within PAD V with existing octane barrel costs, within complex inte-
grated refineries, and/or with existing accepted octane-blending agents (MTBE,
toluene, benzene, etc.) for the smaller refiners or with the blending-jobber
sector.

The purpose of this brief analysis is to estimate the magnitude of
potential demand for methanol in these markets. An estimate of the magnitude
of potential demand for methanol will then permit an evaluation of whether or
not the markets are large enough to perform the above-mentioned functions of
establishing methanol handling and transport facilities and buffering
discontinuities in methanol supply.

a.	 Potential MTBE Use by California Refineries. MTBE is an oc-
tane-blending agent for unleaded gas--)lines. MTBE has been used as a gasoline-
blending component in Europe since the mid-70s, and in the United States since
1979. The maximum allowable concentration by volume of MTBE in gasoline is
limited by EPA regulations to 11 percent. When it is used in blending un-
leaded gasoline, its concentrations are roughly 4 to 7 percent. MTBE is pro-
duced by reacting one part isobutylene with 0.57 parts methanol by weight.
Representative MTBE Production processes are schematically shown in Figure
8-14.

MTBE PROCESS:)
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Current production capacity for MTBE in the U.S. is 28,000 barrels per
day (Ref. 8). This capacity is expected to increase to 35,000 to 42,000
barrels per day (Ref. 8). The limitation on production capacity of MTBE is
due to the availability of isobutylene. There exist two.spurces of isobute-
lene: the C4 raffinate stream in an ethylene plant, and the C4 by-product
stream from a fluidic catalytic cracking unit in a refinery.

Ethylene manufacturing plants are the principal source of isobutylene
for MTBE production. A by-product ofethylene manufacture is the C4 raf-
finate, which, after butadiene removal, contains approximately 50 percent
isobutelene. Because of the volume and the concentration of isobutalene, this
is the most attractive source from a standpoint of manufacturing economics.
The potential from ethylene plants for MTBE production has ',been estimated at
65,000 barrels (Ref. 3) per day. Actual capacity has grown from essentially 0
in 1970 to 28,000 (Ref. 4) barrels per day in 1982, and is expected to grow to
between 35,000 and 42,000 (Ref. 5) barrels per day. This implies that for
ethylene plants a significant fraction (60 percent) of the potential capacity
is, in fact, expected to be realized.

The only other significant source of isobutalane is in the C4 olefin
stream from a fluidic, catalytic cracking unit found in large, complex
refineries. The potential production of MTBE in the U.S. from catalytic
cracking units is 220,000 barrels per day (Ref. 6), which is approximately
three-and-one-ha ','4 times the potential from.ethylene plants. Unlike ethylene
plants, that potential is much more difficult to-reach. This is due to
several factors:

(1) The production economics are not as favorable as with ethylene
plants. The concentration of isobutylene is roughly 10-15 percent
of the C4 stream for the FCCU, whereas it is approximately 50
percent of the raffinate after butadiene extraction in the ethylene
plant.

(2) Only a small number of refineries have FCCUs large enough to
produce volumes equivalent to that produced by ethylene plants.
For example, the potential production capability of the largest
FCCU in California, the 60,000 barrel per day unit at the Mobil
Torrance Refinery, could potentially produce approximately 900
barrels per day of MTBE. The smallest commercial MTBE facility in
operation now produces 1,100 barrels per day of MTBE.

(3) If a refiner installs MTBE facilities, he is diverting the iso-
butylene from alkylation. A refinery with sufficient FCCU
capacity to consider MTBE production already has in place
existing alkylation units.

Whether or not MTBE will be produced in a refinery can only be properly judged
on a refinery-specific analysis. However, one would not expect as rapid
capacity growth as has been seen in ethylene plants.

Current U.S. production of MTBE is concentrated about the petrochemical
industry in the Gulf states. The location and sizes of existing or under-
nnnatruetinn plants are nresented in Table 8-5. The Gulf States (PAD 111)

t
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Table 8-5. U.S. PRODUCERS OF METHYL TERTIARY-BUTYL ETHER,
Their Plant Locations and Estimated Capacity
(January 1, 1980-January 1, 1985, Ref. 11)

ANNUAL CAPACITY
1981 1983

PRODUCER PLANT LOCATION 1980 1981 1982 1985
--Thousand Short Tons--

ATLANTIC RICHFIELD Channelview, TX 200 200 200 200
CHAMPLIN PETROLEUM Corpus!Christi, TX 70
THE CHARTER COMPANY Houston, TX 60 60 60
EXXON COMPANY USA Baytown, TX 220 220
GOOD HOPE REFINERIES Good Hope, LA 120 120 120 120
PHILLIPS PETROLEUM Sweny, TX 200 200
TENNECO, INC. Houston., TX 280 280 280 280
TEXACO, INC. Port Neches, TX 270 270

TOTAL 600 600 1350 1420

gasoline production is estimated for 1990 to be approximately 15 0 million
barrels (Ref. 15). If 35 percent is premium unleaded-grade gasoline and MTBE
was blended 4-7 percent in the unleaded grades of ,gasoline, it would more than
exhaust expected MTBE production capacity. Hence, it is unlikely that
significant amounto of MTBE would be exported outside of PAD III.

Due to the absence of ethylene plants within California, the near-term
potential for methanol being used in MTBE production is limited. ATBE could
potentially be produced from the larger fluidic cracking units in the larger
refineries in the State of California. Table 8-6 presents the eight largest
FCCUs in the state.

If MTBE facilities were installed within each of these refineries using
the Gulf process (Ref. 14) for MTBE production, this would imply roughly 7.2
thousand barrels per day of MTBE production. This would require roughly 2.6
thousand barrels per day of methanol, or roughly 314 tons of methanol a day.
If the utilization factor on these facilities was roughly 70 percent, this
would reduce to an ,actual average consumption of 220 tons per day.

Relative to the volumes customarily associated with the refining sector
within the State of California, methanol can be seen as potentially a very
small feedstock into the production of gasoline. The potential methanol
demand for MTBE is too small to cause the development of any significant
supply and transport infrastructure. Furthermore, methanol demand from MTBE
of the amount stated above is far too small to act as a buffer on methanol
production from new methanol facilities.



Table 8-6. CALIFORNIA FLUIDIZED CATALYTIC CRACKING UNITS (Ref. 13)

REFINERY CAPACITY (MBPO)

MOBIL/Torrance 60
ARCO/Carson 56
CHEVRON/Richmond 55
TOSCO/Avon 47
CHEVRON/E1 Segundo 47
EXXON/Bevicia 46
SHELL/Martinez 46
UNION/L.A. 46

402

b.	 Potential Demand by California Refiners and Blenders for
Methanol/TBA. To mitigate some of the undesirable properties of methanol used
in gasoline blends, high molecular weight alcohols have been used. These high
molecular weight alcohols both reduce the vapor pressure and significantly
increase the water tolerance of the resulting blended gasoline. In addition,
current EPA waivers permit methanol to be used only with such co-solvents.
The most commonly used co-solvent is gasoline-grade tertiary butyl alcohol.
While, in principle, many high molecular-weight alcohols could be used as
co-solvents, TBA is the only one for which the price permits the resulting
octane blending agent to be economically competitive. The waiver application
granted to ARCO for its oxynol octane-blending agent specifically allows for
maximum ratio by volume of one methanol to one gasoline-grade TBA (Ref. 16,17).

As MTBE utilization is constrainted by isobutylene availability. The
use of methanol with a co-solvent is constrainted by the availability of TBA.
TBA, like MTBE, is made exclusively in PAD III, and currently neither TBA nor
oxinol is shipped to PAD V. TBA is made exclusively by ARCO with a production
capacity of 25,000 B/D (3.8x10 8 gallon per year)(Ref. 18). At the waiver
limitation of approximately 9 percent by volume of oxynol into unleaded
gasoline, this limitation on TBA production capacity would allow for 8 x 109
gallon per year (30 percent of all PAD III unleaded) of unleaded PAD III
gasoline production to be oxynol blended. In the perspective of California
unleaded gasoline production, if the capacity limit production of TBA were
shipped to California, this would allow for its blending in almost all (Ref.
12) of the PAD _V unleaded gasoline production (Ref. 19, 20).

M - "I
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C.	 Toluene. MTBE, and Methanol Octane Barrel Costs Tradeoffs.
One means for evaluating the economic viability of methanol containing
blending agents is by calculating the octane number barrel costs, thereby
comparing it to other commonly used blending agents. Octane number barrel
costs will be defined as the cost in cents to raise the octane level of a
barrel of gasoline one octane number, while preserving all other gasoline
<specifications. Three octane blending agents were chosen for comparison.
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BLENDING OCTANE NUMBER AND MOLAR
WEIGHT OF SELECTED BLENDING AGENTS

!Table 8-7.

BLENDING OCTANE MOLAR
NUMBER (R + M)/2 WEIGHT

TOLUENE 103.5 92.0
MTBE 109.0 88.0
METHANOL 119.5 32.0
ETHANOL 117.5 52.0
OXINOL 105.5 53.1

Ji
}

5.

ARCO oxinol agent (one to one mixture of 4.5 percent methanol and a tertiary
butyl alcohol), methol tertiay butyl ether ( MTBE), and toluene.

The economics of utilizing these blending agents for octane enhancement
is affected by factors including: blending octane number, blending Reid vapor
pressure; molecular weight, and cost. Table 8- 7 presents the assumptions on
blending octane number (used herein as Motor plus Research over two) and
molecular weight. Density differences were ignored. It was assumed that
octane numbers blend by Volumetric proportions and vapor pressure blends by
molar fraction proportions. Figure 8-15 presents the assumed blending Reid
vapor pressure (in po !inds per square inch) as a function of the blending agent
concentration in the finished gasoline. It was assumed that vapor pressure
reduction through the addition of-high-molecular weight co-solvents to
methanol was a-result of the increase in molecular weight in the blending
agent. Hence, the given curve is appropriate for both methanol and methanol
with co-solvents when adjustment is made for increasing molecular weight.

The procedure used to calculate the octane number of barrel costs was as
follows: an 87 [(R+M)/2] octane number gasoline with a RVP of 10 psi contain-
ing 5 percent butane was assumed. An octane-blending agent was added suffi-
cient to raise the octane one octane number and butane was adjusted to maintain
the one octane number increase and the 10 psi RVP. A similar calculation was
performed for a 91 octane number premium grade unleaded. The cost of the 87
octane gasoline was assumed to be $l; the cost of the 91 octane number gasoline
was assumed to'be-$1.05; the price of butane was assumed to be $0.60/gallon.
The difference in cost between a barrel of the original gasoline and a barrel
of the final gasoline was defined as the octane number barrel cost.

Figures 8-16 and ',8-17_present the results of these octane number barrel
cost calculations. The vertical axis is the octane number of barrel cost in
cents per octane number barrel; and the horizontal axis is the cost of the
octane blending agent in cents per gallon. A difference of prices between PAD
III and PAD V was assumed to be in the range of.$0.12 to $0.14 per gallon for
all of the octane blending agents (in some cases, PAD III may not be the least
cost choice and the difference may be less). Both Figures 8-16 and 8-17 show
a slight octane barrel cost advantage for MTBE over toulene with the difference
being most pronounced for the premium grade blending. Al o in both-cases, it

r

a	 ^



u
Z

n

A
W
R
Z

C

µ 0R04AL 
PAGE !S

OF pOOR 4igiv

BLENDING REID VAPOR PRESSURE

OF OCTANE BLENDING AGENTS

ETHANOL

1	 MTBE

TOLUENE

U

0	 5	 10	 15	 20	 25

VOLUME_ CONCENTRATIONOF BLENDING AGENT

i
Figure 8-15. BLENDING REID VAPOR PRESSURE OF OCTANE BLENDING AGENTS

x

t

u	

8.`27

^e



90 PAD	 IV
TOWENE

_ OCTANE NUMBER COSTS	 COSTS
80 FOR	 RANGE1

L
PREMIUM GRADE

w UNLEADED	 o	 c'

a 70 `I'
E

t

m 60
U
Q

.4Q

CL
50.

z PAD II
c ^, OULEN

COST
40

o
~	

PAD	 V
MTBE COST

W RANGE
m 30 -
Z ^z.
W
Z

20
Q

i

10 PAD	 II1
MTBE COST

a

0
80 90	 100	 110	 120	 130	 140	 150

OCTANE BLENDING AGENT COST
(Cents Per Gallon)

Figure 8-16.	 OCTANE BLENDING AGENT COST
(cents per gallon)

8-28

Aft



a
i
i
bm
L.

E
Z
wcm
4JU
0

i
a^

H
4J

90

80

70

60

50

ORlt NAL PAGE IS
OF POOR QuAU1Y

OCTANE NUMBER COSTS
FOR

REGULAR UNLEADED

/PAD Vr "
TOULENE
PRICE
RANGE

1

Z• <v

' ^V

ti

o•

v
e^

Q
s"^Q PAD III 

c

r.

TOULENE
PRICE

40	
^Q RANGE

	

•,	 PAD V
m	

.30	

tiz
	 MTBE PRICE

S C.11

u
20

CD..

ys	 PAD III
10	

MTBE PRRICE
RANGE

0 +-
i4

'.	 80	 90	 100,	 110	 120	 130	 140	 150

OCTANE BLENDING AGENT COST

(Cents Per Gallon)

d

Figure 8-17. COST OF OCTANE BLENDING AGENT

1S

r	 8-29

w



shows oxinol at $l per gallon and at waiver limit blending to be slightly less
expensive than MTBE in PAD ILI These relationships also show a higher evalu-
ation for oxinol in premium-grade blending than in regular-grade blendi ►4,
which under a TBA production constraint is consistent with current use of
oxinol. The portions of the curves labeled "PAD V costs" result from an
assumption of 12 to 14 cents per gallon shipping costs from PAD III to PAD V.
Due to the steepness of these curves, the additional cost of shipping pro-
foundly affects the octane number of barrel cost for these blending agents.
For example, premium-grade blending toluene in PAD III is approximately $0.35
an octane number barrel, whereas under these calculations in PAD V, it is
approximately $0.85 per octane number barrel. This is also consistent with
the observation that few, if any, of the complex integrated refineries within
PAD V use PAD III-produced octane blending agents in their gasolines.

Figure 8-18 presents the results of these octane number barrel costs for
PAD V, presented parametrically in terms of West Coast methanol price. 	 The
oxinol curve assumes that the tertiary butyl alcohol costs $1.10 in PAD III
and has an effective cost of $1.25 in California.	 The curve labeled PAD V
MTBE assumes that MTBE could be produced in PAD V with the same production
economics as from PAD III ethylene plants.	 From these results, the following
inferencesinferences can be made.	 At approximately $1.05 per gallon methanol, oxinol
becomes competitive with MTBE imported from PAD III. 	 In all cases, oxinol is
a more economic way to enhance octane than PAD V-produced MTBE. 	 At approxi-
mately $0.62 per gallon and $0.72 per gallon, oxinol becomes price competitive
as a volume enhancer for regular- and premium-grade gasolines, respectively.
If the octane number barrel cost for complex integrated refineries in
California is between $0.20 and $0.40 per octane number barrel, this implies
that oxinol would be competitive in this market at West Coast methanol prices
between $0.80 to $0.95 per gallon.	 It should be noted that octane number
barrel costs vary between refineries and a preferred blending agent for one
may not be for another.	 This simplied analysis cannot capture such
distinctions.

d.	 Methanol Demand.	 Table 8-8 shows the expected 1985 production
of gasoline in California. 	 This is from recent work of both Bonner and Moore
and Booz and Allen for the California Energy Commission (Ref. 19, 20). 	 Inte-
grating this gasoline production information with the results of the previous
analysis, a very approximate price-demand relationship for methanol in Calif.
ornia can be derived. 	 Fifty cents an octane number barrel is approximately
the cost for upgrading regular gasoline with premium-grade or by increasing
octane through the use of PAD III imported 'MTBE.	 If we assume that $0.50 is
the approximate octane barrel cost for the smaller topper and hydro-skimming
refineries in California, methanol would become economical in the submarket at
approximately $1.05 per gallon. 	 If we assume a octane number barrel cost of
$0.20 for premium unleaded gasoline produced by complex integrated refineries

j within California, this would imply methanol viability at approximately $0.95
per gallon.	 In a similar fashion, it would become economical at approximately
$0.85 for regular unleaded octane blending.	 At approxtmately $0.70 per gallon,
methanol would become competitive for volume blending in the premium grades of	 '

line-and, likewise, at about $0.60 per gallon in the regular grades ofgasolineg
gasoline for the complex integrated refineries. 	 These relationships ares
graphically summarized in Figure 8-19.	 This figure shows approximately 4
percent of the California gasoline becoming candidates for methanol blending
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Table 8-8. CALIFORNIA GASOLINE PRODUCTION FORECASTS

MBPD BY TYPE OF REFINERY

COMPLEX HYDRO-SKIMMERS TOPPERS
MGULAR PREMIUM REGULAR PREMIUM REGULAR PREMIUM

YEAR UNLEADED UNLEADED LEADED UNLEADED UNLEADED LEADED UNLEADED UNLEADED LEADED

1978 209.1 0 527.2 1044 0' -	 31.9 0 0 4.4
1985 159.5 382.5 191.8 25.5 4.5 9.1 0 0 4.1
1992 194.5 382.4 61.6 22.6 7.5 3.9 0 0 3.5
2000 175.7 353.5 57.4 18.5 9.3 3.4 0 0 3.2

at approximately $1,.05 per gallon for methanol. 	 In the complex integrated	 #
refineries, the demand is bounded between octane blending and volume blending
with a. major increase in demand somewhere in the $0.80 per gallon range. 	 Up
to approximately 4000 tons of methanol a day could potentially be ccnaumed by
the California refiners and blenders at a methanol price of approximately

. $0.70 per gallon.	 Such use, however, is completely dependent upon the
availability in PAD V of a economical co-solvent for the methanol. 	 The only
inexpensi-ve co-solvent currently available in the U.S. is ARCO's tertiar,,r
butyl alcohol.	 The U.S. TBA production capacity limit is shown by the
vertical line in Figure 8-19, equivalent to waiver limit blending of 72
percent of California gasoline production. 	 This implies that the demand for
methanol by California refineries is not strongly dependent upon methanol
prices because a large potential demand exists at prices greater than existing
market prices.	 But, rather, it is dependent upon decisions to ship tertiary.
butyl alcohol from its point of production in PAD III to the California

d
refinery market.

e.	 Gasoline Vapor Pressure Limits and Methanol Blends.	 To reduce
evaporative hydrocarbon emissions into the atmosphere, the vapor pressure of
gasoline is limited to 9 pounds Reid Vapor Pressure during the warmer months
of the year.	 The portion of the year to which this limitation applies varies
by Air Quality Districts. 	 For example, in the South Coast district, it is

4 between April l to October 30; whereas in the Bay Area it is from May 1 to
October 30.	 If a methanol gasoline blend is used during this portion of the
year, it must be blended with a gasoline of low-vapor pressure and/or a high
proportion of heavy, alcohol co-solvent must be used with the methanol. 	 To
reduce the vapor pressure of the base gasoline sufficiently so as not to
exceed the 9 pound limit after the methanol is blended requires a signifi-
cant reduction in the most volatile components (principally butane) of the
base gasoline.	 Since butane on a per-gallon basis is less expensive than 	

if

gasoline, its reduction will have a negative impact on the economic viability	 1`.•
of the methanol blend. 	 This limitation may also rule out terminal blending of
the methanol and force such blending to be done at the refinery where a
specially-tailored, low-volatility gasoline may be available.

a-
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Figure 8-20 presents octane number barrel (ONB) costs for a methanol
blending agent as a function of the RVP o_f the finished gasoline. As can be

N
seen, as the RVP is reduced, the cost to increase octane becomes greater.
This result is for a specific case described as follows:

o	 Original gasoline: Cost - $1.00/gal for all'RVPs
Butane content - 5% for all RVPs

Octane number (RZN) - 87
47

o	 Octane increasing agent: 50% methanol, 50% TBA
at $1.00 per gallon

o	 Finished gasoline: Same RVP as original gasoline.
Octane number - 88

1
hNB	 f 1	 RVP	 '11 1	 the value of methanol AndThe hig er 0 costs o owe&	 a wa	 owes

methanol/TBA. In the previous 10-1b RVP example, the methanol breakeven price
for volume blending was $.60 to $.70 per gallon (octane blending price of x.85
to $.93). A limit of 9 lbs RVP would reduce the value by $.03 to $ 1 04 per
gallon.

It should be noted that the results shown in Figure 8-20 are only very
approximate, and a detailed refinery cost linear programming analysis should
be performed at a refinery-specific level to determine more accurate values.

t

r

F

fi

8-34





METHANOL GASOLINE

CHEMICAL FORMULA CH30H - Mixture of C4-C12
hydrocarbons

Molecular Weight 32.04 100-105 (Avg.)
Composition, wt X

Carbon 37.5 85-8
Hydrogen 12.6 12-15
Oxygen 49.9 0

Specific Gravity (60 0F) 0.796 0.72 - 0.78
Density, g/cm3 (lb/gal) 0.794 (6.63) 0.695-0.779 (5.8-6.5)
Boiling Temperature 0C (0F) 65 (149) 27 - 225 (80 - 437)
Flash Point, OC ( OF) 11 (52) -43 (-45)
Auto Ignition Temperature, OC ( 0F) 464 (867) 257 (495)
Flamability Limits, vol y=

Lower 6.7 i.4
Higher 36 7.6`

Heating Value, Lower kJ/kg (Btullb) 19,930 (8,570) 43,960 (18,900)
Latent Heat of Vaporization,

kJ/kg (Btu/lb) 1,177 (506) 349 ( 150)
Vapor Pressure, kPa at 380C

(psis at 1000F) 31.9 (4.6) 38 - 103 (7 - 15)
Stoichiometric A/V 6.4 14.2 - 14.8
Water Solubility Infinite Insoluable

s

.;,T

B.	 NEAT METHANOL AS A FUEL

Methanol is a slightly heavier liquid (about 2 percent greater density)
than gasoline,- Met -konol boils at 1490F, while components of gasoline boil
at temperatures ranging from about 800 to 4000F. The lower heating value
of methanol is less than 'one-half that of gasoline. The latent heat of
vaporization, on the other hand, is over three times as great. The vapor
pressure of methanol is less than that of gasoline and the stoichiometric
air-fuel ratio is also considerably less (6.4 vs 14.5). Whereas water is
basically insoluble in gasoline, it is infinitely soluble in methanol. The
comparative properties of methanol and gasoline is given in Table 8-9.

The phase separation problem associated with blends is eliminated with
the use of neat methanol as a transportation fuel. Neat fuel does require an
engine and fuel system designed or modified for such operation. Problems
which must be addressed relative to the use of pure alcohol include material
compatibility, aldehyde exhaust emissions, Cold starting, and potential
abnormal engine wear.

Table 8-9. PROPERTIES OF METHANOL AND GASOLINE (Ref. 21)

aft



The effects of pure methanol upon vehicle performance are discussed in
the following material. The parameters considered include driveabilityo
power, and fuel consumption. Specific vehicle modifications will be discussed
when appropriate to achieving certain objectives using .nethanol.

1. Driveability

Driveability problems caused by the vaporization characteristics of
methanol may be a concern. Proper design of vehicles for methanol to:a_void
these problems should be possible.

a.	 Gold Startability. The low vapor pressure of neat methanol at
ambient_ temperature (2 psi as compared to at least 6.5 psi RVP for gasoline)
causes vaporization problems during cold starts. Even under choked carburetor
conditions, a flammable mixture may not be attainable that would enable a cold
engine to start below about 400F. By contrast, the lower boiling gasoline
components provide sufficient volatility to ignite gasoline at very low
temperatures, (-220F or less). Reports indicate that volatile materials
such as isopentane and di-methyl ether can be added to reduce the cold-start
problems. The cost and availability of these light hydrocarbons must, of
course, be considered. The approach of adjusting fuel volatility is not new.
Winter gasol:ines, for example, contain more volatile hydrocarbons than do
summer-gasolines, to allow proper starting under winter conditions. Gasoline
volatility is tailored for climate, location and regulation requirements.

Other methods of enhancing cold starting with alcohol fuels have been
successfully demonstrated. These include electric heating of the intake
manifold to accelerate fuel vaporization, and the use of dual (auxiliary) fuel
systems such as gasoline or propane. The latter systems utilize a "cold
start" system to supply an onboard volatile fuel component to the engine
intake air during choke operation. Once the car has started and is warmed-up,
fuel delivery from the auxiliary system is terminated.

The auxiliary heating method uses an electrical resistance heater
operated with power from the car's battery to vaporize the fuel. This
technique, however, draws heavily on the battery at the same time the starting
motor is drawing maximum current. After the engine has started, heat must
continue to be applied during early warm-up until exhaust heat can maintain
the fuel vaporizing task. The ultimate solution to the cold-startability of
neat methanol, overall ambient temperature ranges, may be a combination of
fuel volatility control and some auxiliary electric manifold heating technique.

An advantage of methanol, however, is that once the vehicle has reached
the warmed-up condition, it can be operated at much leaner equivalence ratios
than gasoline for the same level of driveability. This characteristic of
methanol will be discussed in the next section. However, it may not be
compatible with three-way catalyst operation if the feedback system requires a
near stoichiometric mixture.



characteristically give lower emission .levels for hydrocarbons and CO, hence
the use of neat methanol offers an advantage. According to Ingamells (Ref.
22), at 14 percent lean, methanol showed better driveability, improved thermal
efficiency, and much lower carbon monoxide and nitrogen oxide levels compared
to gasoline running only 5 percent lean..

The leaner operation results in higher engine thermal efficiencies and,
therefore, the number of miles traveled per Btu can be greater than for
gasoline. It is possible to operate at a higher energy efficiency with
methanol because of its lower lean misfire limit, and higher compression
ratios.

2. Fuel Consumption

The volumetric energy content (Btu/gallon) of methanol is approxi-
mately one-half that of gasoline. However, the higher ON of methanol permits

efficiency for a methanol-fueled engine. Compressionr gains in thermal
	 ithe use of higher compression ratio engines which allow

'on ratios in the range 11:1
to 14:1 appear feasible. For example, the CEC Fleet Two vehicle used 12.5:1
compression ratios. This could result in significant thermal efficiency
improvements. Previously mentioned CEC tests on a Fleet Two vehicle imply up
to a 14 percent improvement. Methanol fuel economy (miles/gallon), therefore,
could be as much as 40 pe.-cent poorer than that obtained with gasoline despite
the combined effects of higher compression ratio and leaner equivalence ratio
operation. This means for a liquid methanol-powered car the fuel tank would
have to contain approximately 67 percent more fuel than one for gasoline to
drive a fully-optimized vehicle the same distance. If exhaust heat were used
to vaporize or dissociate liquid methanol, the fuel tank would have to contain
about 50 percent more fuel than for gasoline.

Depending upon vehicle design, a larger fuel tank could require some
sacrifice in trunk space_.. Carrying a greater number of gallons would also
increase the weight of the car, thereby causing a slight loss in vehicle fuel
economy. Since methanol engines produce greater specific power compared to
gasoline engines, future methanol engines can probably be downsized. This
reduction in engine weight could counter the increase due to carrying a
greater weight of fuel. Thus, although the car weight may not increase,
internal volume would be sacrificed to the larger fuel tank.

3. Power Output	 -

When burned in an internal combustion engine, more power can be
obtained with methanol because its higher latent heat of vaporization cools

Airthe air entering the engine much more than does gasoline, and this increases
the engine's volumetric efficiency. Higher specific power can also result
from the "fast burn" characteristics of methanol. The gain in power output
from an engine using methanol, aside from other gains due to increased com-
pression ratio, is as much as 10 percent if very rich fuel mixtures are used.
F=)r this reason, methanol has been used for many years in automobile racing.	 ;.
The gains in power due to this effect are smaller (6 y to 8%) when used in 	 fi

passenger cars operating with normal mixtures.



Figure 8-21 presents brake horsepower comparisons of both methanol and
ethanol fuels with indolene as a function of air-fuel mixture equivalence
ratio. Comparative engine thermal efficiency results for these same fuels are
given in Figure 8-22. As shown, methanol provides the greatest gains in both
thermal efficiency and brake horsepower. These improvements could probably be
increased even further by increases in engine compression ratio and/or by
turbocharging.

4. Abnormal Combustion Phenomena

Although the ASTM octane ratings of methanol are high, combustion
preignition problems at high engine-power ranges may limit comprssion ratios.
Engine operation above some threshold limit has been observed (Ref. 23) to
cause rough running, combustion noise, and even hardware failure. A probable
source of preignition has been identified as a hot spark plug. Further
research has been identified to better understand this combustion-related
problem.

5. Typical Results with Neat Methanol

Additional research efforts have also been reported by Brinkman
(Ref. 26) of General Motors concerning the use of neat methanol in two
vehicles. The basic difference between the two V-8 powered cars was the
engine induction system. One vehicle was equipped with a stock carburetor
while the other had electronic fuel injection (EFI). The carbureted car had
increased intake mixture heating and was tested with various intake manifolds.
The objectives of this research study were to evaluate vehicle driveability,
determine exhaust emissions and fuel economy, and to access the effect of
equivalence ratio and spark timing on these parameters.

a. Driveability: Although eight different combinations of intake
j	 manifolds, intake air heating and exhaust gas heating were evaluated with the
j	 carbureted car, no single induction system was found to give adequate drive-

ability with neat methanol. This fact is illustrated by Figure 8-23 which
compares the cold-start driveability of both fuels. Driveability of the EFI
car with methanol was good; it was even better than the carbureted car using
gasoline. The EFI car was used for the other tests, since this was the only
configuration with acceptable driveability using neat methanol.

b. Exhaust Emissions. Emissions data for the methanol-fueled EFI
car were obtained using the production spark timing and a 0.96 equivalence
ratio. The comparative test results are shown in Figure 8-24, measured on
both sides of an oxidation exhaust catalyst. Methanol exhibited lower NOx
emissions, probably due to its lower combustion temperature. Both the engine
and tailpipe emissions of CO were similar, since the vehicles were operated
near the same equivalence ratio. The unburned fuel in the exhaust was 3.5
times greater with methanol. Less than 2 percent of the total tailpipe 	 a
emissions, however, were hydrocarbons. The remaining unburned fuel emissions
were a mixture of methanol and aldehydes.	

r
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`	 Figure 8=21. COMPARISON OF BRAKE HORSEPOWER FOR SEVERAL
ENGINE INDUCTION SYSTEMS (Ref. 5).
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c. Fuel Economy. The fuel economy results are presented in
Figure 8-25, both on a volumetric and energy basis. As expected, the
volume-based economy (miles/gallon) of methanol was about one -half that of
gasoline. On an energy basis (miles/106 Btu), however, the methanol fuel
economy was better than that obtained using gasoline. This improvement can
be explained on the basis of reduced heat lose to the coolant, increased
volumetric efficiency and engine operation closer to the best -power spark
advance when using te.athanol as the fuel.

d. Effect of Spark Advance and Equivalence Ratio. Additional
tests were run on methanol with the EFI car to determine the tradeoffs in
emissions, driveability, and fuel economy by varying both the spark advance
and operating equivalence ratio. The results of Figure 8 -26 show that the
methanol fuel mixture can be leaned to 0.83 equivalence (with best-power spark
timing) before driveability is considered as unacceptable. The emission
levels are given in Figure 8-27; Figure 8-28 shows the fuel economy results
for methanol in the EFI-equipped car. The maximum economy is seen to occur
near the 0.83 equivalence ratio operating range. 	 i

No single value of equivalence ratio and spark timing was found to
simultaneously provide the best driveability and lowest emissions and fuel
consumption. Considering the 1977 EPA emission standards, an equivalence
ratio of 0.83 and best-power spark advance was considered as acceptable. This
operating point also corresponds to best fuel economy.

With retarded spark timing, a NOx level of 0.4 g/mile was achieved
at this same equivalence ratio. The effect of spark retard on emissions,
driveability; and fuel economy is shown in Figure 8-29.

6. California Fleet Test Experience with Neat Methanol Vehicles

Although not common, neat methanol vehicles are not unknown to
California. In addition to a small number of methanol conversions owned by
individuals, both the California Energy Commission and the Bank of America are
involved in major fleet tests. The Bank ofAmerica.has converted a number of
late-model General Motors.cars, to operate on neat methanol. The results
reported to date appear favorable, however, good documentation on the Bank of
America fleet tests is not yet available in the open literature. The Calif-
ornia Energy Commission has been conducting a multi-phase, well documented
fleet-test program (Ref. 10). The CEC fleet-test program is composed of three
different fleets: Fleet One was composed of 12 vehicles, four using gasoline
as controls, four using methanol, and ;four using ethanol; Fleet Two is
composed.of 50 1981 VW Rabbits of which 39 were designed and manufactured by
VW to operate on methanol or ethanol, and the remaining 11 are gasoline-
control vehicles; Fleet Three is composed of 55 1981 Ford Escort stationwagons.
Unlike fleets one and two, which also tested ethanol, fleet three is focused
on only neat methanol.	 is

In Fleet One there are four neat methanol vehicles - two with
high-compression engines and two with standard-compression engines. The
exhuast and evaporative emissions from the Fleet One vehicles are shown in
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EMISSIONS

Grams/Mile EVAPORATIVE HC
(Grams/Test)*HC CO mox

1980 CA STD 0.40 9.0 1.00 2-.0
METHANOL PINTO 0.16 2.0 0.72 1.3
GASOLINE PINTO** 0.40 6.5 0.75 0.7

*SHED Test
**1980 California Pinto Certification Vehicle

SOURCE:	 "Senate Bill 620: Alcohol Fleet Test :Program," California Energy
Commission Staff Report, December 1981 (P500-82-003)

VEHICLE CITY DRIVING CYCLE ON-ROAD (Average)

Gasoline 16.8 20.6

Low Compression_ Ethanol 18.2 19.8

Low Compression Methanol 18.1 18.6

High Compression Ethanol 19.5 21.0

High Compression Methanol 19.0 22.4

SOURCE:	 "Senate Bill 620:	 Alcohol Fleet Test Program," California Energy
Commission Staff Report, December 1981 (P500-82-003)

t

Table 8-10, and the fuel efficiency is presented in Table 8-1:1. Fleet One
demonstrated that, if required, it is feasible to convert existing vehicles to
neat methanol (or ethanol) and at the same time maintain emission standards
(in this case the 1980 California standard).

Table 8-10. EXHAUST AND EVAPORATIVE EMISSIONS TEST
RESULTS FOR FLEET ONE PINTOS

S
i

w
Table 8-11, CITY DRIVING CYCLE AND PRELIMINARY ON-ROAD

FUEL ECONOMY RESULTS FOR FLEET ONE PINTOS
4	 (Miles per gallon/gasoline equivalent)



Fleet Two consists of 50 VW Rabbits of which 19 were designed and
manufactured by VW for methanol and 20 for ethanol. Table 8-12 shows the
performance and driveability test results for the methanol and ethanol Rabbits
in comparison to a 1980 gasoline model. Although the results of Fleet Two's
fuel economy test are not yet published, the methanol-prototype test results
have been published. These are presented in Table 8-13. The methanol Rabbit
showed approximately 6X fuel efficiency advantage over the gasoline vehicle,
although it was estimated to have 20Z more power. As was the case with fuel
economy, only the prototypes were available for exhaust and evaporative
emission tests. The preliminary test results on the prototype are shown in
Table 8-14.

Fleet Two demonstrated the feasibility of producing methanol (or
ethanol) vehicles on a domestic assembly 'line. Fleet Two aleo has
demonstrated that the California emission standards can be met with methanol
vehicles while equaling or surpassing gasoline energy efficiency, performance,
and driveability.	 t

Fleet Three consists of 40 Ford Motor Company-designed neat methanol
Escorts and 15 gasoline-control vehicles. The Fleet Three vehicles will be
incorporated into the everyday service of LA County Fleet. The preliminary
resulta for fuel economy and emissions are shown in Tables 8-15 and 8-16. In
addition to confirming the results of Fleet Two, Fleet Three will demonstrate
the practicality of integrating methanol vehicles into the day-to-day
operations of large government fleets. A new report by the California Energy

j	 Commission should become available in early 1983, updating the results of the 	 t
(	 Fleet Three test program.

I

7. Methanol Automobiles Versus Conventional Gasoline Baseline	 1
Automobiles

It is commonly believed that the systemic problem for the potential
use of methanol in automobiles is the establishment of a retail methanol
distribution system. Underlying this belief is the assumption that if such a
retail distribution system existed, methanol fueled vehicles would at least be
over-the-road cost competitive with gasoline fueled vehicles. A further
belief is that these vehicles could possibly market dominate the gasoline
vehicles due to future security of supply of imported petroleum versus
domestic coal. Since these assumptions are based upon presumed future
conditions, they can neither be fully verified nor refuted. The assumptions
can, however, be examined in more detail to determine if their bases appear
reasonable. A brief quantitative analysis was performed to examine the
viability of methanol fueled vehicles under the assumption of the existence of
a retail distribution sy° tem. An evolving conventional gasoline fueled
vehicle baseline was assumed. This moving baseline spans 1982 to 1997. Based
upon existing data for methanol cars, a methanol fuel competitor was developed
and compared to this baseline. These comparisons were made for over-the-road
energy efficiency and user fuel cost.

t
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*Engine is new; _idle will improve
with mileage.

SOURCE: "Senate Bill 620: Alcohol Fleet
Test Program" California Energy Commission
Staff Report, December 1981 (P500-82-003)
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Table 8-12. VEHICLE DRIVEABILITY AND PERFORMANCE DATA

1.6L
METHANOL +5.5%

ISOPENTANE

DRIVEABILITY

Crowds (0 - 50 MPH with
constant intake vacumn) 8

Road!Loads (25 - 60 mph) 8

Wide open throttle
acceleration (0 - 60 mph) 7

Part Throttles Acceleration
(0 - 50 mph) 8

Warm: Idle Quality (in gear) 6

Tips Ins (0 - 30 mph)
Opening throttle to 1/4
to 1/2 throttle 7

PERFORMANCE
Accels. Sec. (0 - 40 mph) 7.2

Accels. Sec. (0 - 60 mph) 15.0

REFERENCE INFORMATION

Vehicle Weight (lb) 1285
Temperature OF 39
Humidity % 89
Barometer in. Hg. 29.86

1.6L	 1.6L
1980 PRODUCTION

ETHANOL GASOLINE MODEL

8	 7

8	 8

7	 1	 7

8	 7

4.5*	 6

7	 1	 7

7.4 7.5

15.6 16.1

1286 2163
79 41
69 55
29.69 30.10



EMISSIONS
Grams/Mile EVAPORATIVE HC

(Grams/Test)*HC CO NOX

1982 STD PROGRAM GOAL 0.40 7.0 0.70 2.0
1982 CA OPT PROGRAM GOAL - - 0.40 -

HIGH 0.17 1.2 0.39 -

METHANOL
PROTOTYPE MEAN 0.12 0.7 0.31 1.5
RABBIT .

LOW 0.09 0.5 0.18 -

GASOLINE RABBIT** 0.15 1.7 0.30 1.4

*SHED Test
**1981 California Gasoline Rabbit''

SOURCE: -"Senate Bill 620: 	 Alcohol Fleet, Test Program," California Energy
Commission Staff Report, December 1981 (P500-82-003)

3
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Table 8-13. PROTOTYPE VOLKSWAGEN OF AMERICA RABBIT FUEL ECONOMY RESULTS
(Miles per gallon/gasoline equivalent)

1985 CORPORATE
AVERAGE FUEL

ECONOMY
(Program Goal)

METHANOL--
RABBIT

(low mileage
`,	 testing)

ETHANOL
RABBIT

,(low mileage
testing)

GASOLINE
(1981 Calif.
certification

City Driving Cycle - 26 24.6 24.4

Highway Driving Cycle - 3.4 29.9 32.1

Combined City and
Highway Driving 27.5 29.1 26.7 27.4
Cycle

SOURCE:	 "Senate Bill 620: 	 Alcohol Fleet.Test Program," California Energy
Commission Staff Report, December 1981 (P500-82-003)

Table 8-14. VWoA PROTOTYPE RABBIT EMISSION TEST RESULTS COMPARED
WITH THE PROGRAM GOALS AND GASOLINE RABBIT TEST RESULTS



Table 8-15. METHANOL PROTOTYPE AND GASOLINE FORD
ESCORT FUEL ECONOMY RESULTS
(Miles per gallon /gasoline equivalent

11985
CORPORATE AVERAGE
FUEL ECONOMY

METHANOL
PROTOTYPE ESCORT

GASOLINE
CERTIFICATION

City Driving Cycle - 24.11 24.4

Highway Driving Cycle - 37.2' 34.3

On-Road (Average) - 30.0* 28,1**

Combined City and 27.5 28.6 28.0
Highway Driving Cycle

*Three production vehicles.
**Control vehicles

SOURCE:	 "Senate Bill 620:	 Alcohol Fleet Test Program," California Energy
Commission Staff Report, December 1981 (P500-82-003)

1

Table 8-16. EXHAUST AND EVAPORATIVE EMISSION TEST
RESULTS FOR FLEET THREE PROTOTYPE VEHICLE

EMISSIONS

Grams/Mile EVAPORATIVE HC
(Grams/Test)*HC CO NOX

1982 CA STD PROGRAM GOAL 0.40 7.0 0.40 2.0

1982 OPT. CA STD - - 0.70 -

METHANOL ESCORT 0.16 3.82 0.33 **

GASOLINE ESCORT*** 0.22 5.5 0.60 1.5

*SHED Test
**Not yet. tested.

***1981 California Gasoline Escort

SOURCE:	 "Senate Bill 620: Alcohol Fleet Teat Program," California Energy
Commission Staff Report, December 1981 (P500-82-003)
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a. The 1982 1997 Conventional Gasoline Baseline. For methanol
to be viable as a transportation fuel, methanol car sales must be, for a large
part, within the "middle:of -the market." It is assumed that a five passenger
sedan will continue to be representative of the middle of the market through
1997. On the supply side of a methanol fuel system, to justify one large
coal-based plant on neat methanol fuel solely on the existence of neat
methanol automotive fuel would require the existence of approximately 300,000
methanol fueled automobiles. Downstream, at the point of retail sales, to
justify investments in new tanks and pumps, roughly 10 to maybe 15 percent of
a retail outlet's sales volume would have to be in methanol. At long run
equilibrium this would imply 10 to 15 percent of new car sales :would have to
be methanol fueled vehicles. It would be difficult to establish such sales
volumes through specialty cars alone. Therefore, comparisons of future
methanol fueled vehicles to conventional gasoline fueled vehicles will be made
for a presumed middle-of-the-market car. A smaller mid-sized five passenger
sedan, which in 1982 was approximately 2,450 pounds curb weight and had a city
fuel efficiency of approximately 26 mpg was chosen as the benchmark vehicle.
This vehicle will then be projected through 1997. While not a specific 1982
vehicle, this benchmark can be viewed as being similar to current'GMX bodies
such as a Citation or an 1982 Chrysler K-series car such as the Aries.

The vehicles being sold 15 to 20 years in the future will be the result
of complex workings of markets, prices, technology developments, and other
factors. This analysis does not presume to make a detailed forecast of these
factors and any statement about such future conditions can be viewed as an
assumption at best. The presumed changes will be divided into three cate-
gories: 1) overall vehicle weight reduction, 2) non-engine related vehicle
changes, and 3) changes in conventional engine technology. Some of these
changes in the baseline gasoline vehicle can directly affect the energy
efficiency difference between the gasoline vehicle and the methanol vehicle.
Some of the assumed future changes in the baseline vehicle would also include
the over-the-road efficiency of the methanol vehicle. These changes include

'	 vehicle weight reduction, drive line efficiency improvements, aerodynamicr
improvements, etc. Some of the engine improvements would also improve the
efficiency of the methanol vehicle, such as more accurate computer control of
the ignition and fuel system. Since a methanol fueled vehicle derives its
efficiency advantage over a gasoline vehicle from three basic areas: in-
creased compression ratio, leaner .misfire limit permitting leaner average
part-load operations, and higher heat evaporation, changes to the conven-
tional vehicle in these areas would reduce the efficiency advantage of the 	 ,!
methanol vehicle. For example, if the compression ratio of future gasoline
fueled vehicles is higher, the efficiency advantage of the higher compression
ratio methanol vehicle would be somewhat eroded. On the other hand, effi-
ciency gained through reduced accessory loads would be as applicable to the
methanol vehicle as to the baseline vehicle and hence the efficiency advantage
of the methanol fueled vehicle would not be eroded. For estimating the future
efficiency advantages for methanol 'fueled vehicles, the type of changes that
occur to the conventional baseline is as important as the effect of the	 A

changes on the baseline fuel efficiency.
t

x	 a

8-52



Reasonably smooth evolutionary change has been assumed. In fact, many
technical changes are steplike. For example, basic chassis weight may stay
almost constant for several years, then decrease significantly upon the
introduction of a new design. Likewise, if efficiency is improved by using a
leaner part-load mixture, the change from near stoichiometric three-way to
lean burn/fast burn is stepwise, not evolutionary. Because the timing of such
changes and how pervasive the changes may be are not well known, the assumed
changes have been "smoothed out" over the period 1982 to 1997.

Modest decrea es in vehicle 	 beet
 the

 weights between 1982 and 1907 have bet
assumed.	 weightight reduction of the baseline vehicles,, a 6 percent total
vehicle curb weight reduction in ten years will be assumed. Thi8 results in
the baseline vehicle curb weight decreasing from 2450 pounds in 1982 to
approximately 2300 pounds in 1997. It should be noted that in the three years
between 1978 and 1981 the average curb weight for mid-sized vehicles sold in
the United States decreased by 9 percent (Ref. 37). To the extent that past
developments are a guide to future events, the assumed future weight reduction
could be overly conservative.

To express changes other than vehicle weight reduction the product of
mpg and inertial weight.will be used. For the baseline 1982 vehicle this
product was approximately 31 inertial ton miles per gallon. The assumed
changes in the mpg inertial weight product are given in Table 8-17.

Between 1982 and 1987, this assumption implies a change of approximately
2-1/2 percent, per year for the fuel economy of our baseline vehicle independent
of weight reduction. In terms of past history, between 1978 and 1979, 3
percent of the corporate average fuel economy for General Motors cars was
attributable to technological changes within a vehicle class other than weight
reduction (Ref. 37). The same factor for 1979 to 1980 was 3 percent, and
between 1980 and 1981 was 7 percent. For the period of 1981 to 1986, Dowdy
(Conventional Engine Technology, Vol. III, Comparisons and Future Potentials,
Ref. 38) projected a 10 percent improvement for uniform charge three-way
catalyzed eng,ine technology, a 15 percent improvement for lean or fast burn
technology, and a 21 percent improvement if there was a shift from 1981
uniform charge engines to lean burn/fast burn engines by 1986 as shown in
Figure 8-30. Heywood (Automotive Engines and Fuels: A Review of Future
Options (Ref. 39) is considerably more optimistic prc-jecting up to a 50
percent improvement over the next ten years.

Table 8-17. BASELINE-PERCENT'-IMPROVEMENT RELATIVE TO 1982

VEHICLE, DRIVE,
YEAR mpg X IW AND ENGINE ENGINE ONLY

1982 31.0 -

1987 35.0 12.5 10
1992 37.4 20.5 16
1997 40.1 29.5 25

R.
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60	 BASED ON 1980 CALIFORNIA EMISSIONS STANDARDS 
6•	

+50%
0.39 g/mi HC. 3.4 g/mi CO. 1.0 g/mi NOx

HP/IW (TON) n 57.5	 +40X
5* 6

150	 5t	 +30%
•

3	 +20%
5

1	 +10%

4.0	 3

1	 11	
112
	 1 980 BASELI N E

IW (TON) x'MPG	 2	 4	 -10%

COMPOSITE	
30	 4	 -20%

(BASED ON
EQUIVALENT
GASOLINE)	 (1) UNIFORM CHARGE OTTO WITH

20	
THREE-WAY CATALYST

(2) STRATIFIED CHARGE OTTO
(3) LEAN BURN (FAST BURN)

UNIFORM CHARGE OTTO

(4) ROTARY

10	
(5*) PRECHAMBER DIESEL (2 g/mi NOx)

(5) PRECHAMBER DIESEL	 «
(6*) DIRECT INJECTION DIESEL

(2 g/mi NO )
(6) DIRECT INJ CTION DIESEL

J ^«- 198LI TECHNOLOGY -1-1986--1986 TECHNOLOGY	 ►^

Figure 8-30. FUEL ECONOMY EXPECTATION FOR 1986

For the 1987 vehicle the 10 percent assumption in engine brake efficiency 	 j
improvement is a result of three factors: 1) a compression ratio increase
from 9:'1 to 10:1 resulting in a 2 to 3 percent efficiency improvement, 2)	 j
slightly leaner part load operations, such that the average equivalancy ratio
is reduced by approximately 0.04 to 0.05 which results in approximately a 2 to
3 percent improvement, and 3) a 4 to 6 percent improvement resulting from all
other engine changes such as accessory load reduction, fuel ignition computed
control, etc.

For the 1992 baseline the brake thermal efficiency of the engine was
presumed to have been improved over the 1982 engine by approximately 16
percent.	 The 16 percent improvement is decomposedinto approximately 4
percent from the compression ratio being increased to approximately 11:1,
approximately 4 percent from the average equivalency ratio for the engine
being reduced by about '0.06 and 8 percent from all other effects.

For the 1997 conventional baseline an efficiency improvement of 25
percent in brake thermal efficiency over the 1982 baseline was assumed. 	 This

w
.:
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a

efficiency improvement is probably more consistent with the direct injected
stratified charge gasoline technology than it is with a continued evolution of
the baseline engine. Relative to the 1982 baseline approximately 6 percent of
the improvement is attributable to an assumed 12.5:1 compression ratio, 9
percent from mixture leaning and 10 percent from all other effects.

The weight independent technology improvements relative to the 1982
baseline are summarized in Table 8-18. Two implicit assumptions about the
evolution of the conventional vehicle baseline have also been made. The first
is that fuel efficiency has not been gained by significantly decreasing the
horsepower to weight ratio of the vehicle. The 1982 vehicle has a horsepower
to curb weight ratio of approximately 0.030 horsepower per curb weight pound.
The second implicit assumption is that the fuel tank range for the vehicle
does not change appreciably. For the 1982 vehicle this was approximately 300',
to 350 miles (city driving). While the assumed range does not directly affect
the baseline (apart from a very slight contribution to total vehicle weight
reduction as mpg increases) it will have a small impact on the methanol
vehicle due to gasoline methanol fuel factor being approximately 1.7 to 1.8
combined with a slightly greater density (pounds per gallon) for methanol fuel.

The results of these assumptions are summarized in Table 8-19. Under
the above assumptions the fuel economy for the baseline vehicle evolves from
26 mpg in 1982 to 40.2 by 1997. Vehicle curb weight decreases from 2450
pounds in 1982 to 2300 pounds in 1997. As explained above, the assumed'
improvement in the conventional baseline is more conservative than other
recent projections. However, under the baseline gasoline price scenario it
does result in a significant decrease in over-the-road fuel expenses until
approximately 1990. The real over-the-road fuel expenses do not again rise to
the 1982 level until approximately 1997. The over-the-road fuel expenses
which are the combination of the fuel price forecast and the above technology
assumptions are presented in Figure 8-31.

b. Methanol Vehicles. For each point on the conventional vehicle
baseline, a methanol fuel competitor was defined beginning with a 1982 bench-
mark methanol vehicle.

Although the data from no single source will exactly duplicate the 1982
benchmark methanol vehicle, the assumptions characterizing this vehicle are
not inconsistent with current research data and test results such as; Volks-
wagen (for example, Ref. 6), General Motors (Ref. 26) and State of California
(Ref. 10). Additionally, two recent assessments (Refs. 40, 41) reached a
similar characterization.

The methanol vehicle technology was presumed to experience improvements
similar to that for the gasoline baseline. Hence, the fuel efficiency of both
the conventional gasoline vehicle and the methanol vehicle are assumed to be
improving between 1982 and 1997, but not at the same rate or by the same
means. The result of this _probable improvement will be a modest change in the
energy efficiency advantage of the methanol fueled vehicle.

G
As has been discussed in previous sections, methanol fueled vehicles

would be expected to have somewhat higher energy efficiency than gasoline
r	 fueled vehicles and test results have for the most part confirmed that
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Table 8-18. CHANGES FROM 1982 BASELINE FOR
CONVENTIONAL GASOLINE TECHNOLOGY

1987
	

12.5% improvement over 1982 baseline (mpg x inertial weight)

1.OX in non-weight vehicle changes

1.5% in market shift towards manual transmission (and/or
technical improvement to driveline efficiency)

10% in engine brake efficiency:

2-3X from CR 9:1 to 10:1

2-3X from lean burn-fast burn, 0 O sk,, 0.04 to 0,05

6-4% all other engine improvements

1992
	

20.5% improvement over 1982 baseline (mpg x inertial weight)

2.0% in non-weight vehicle changes

2.5% drive train

16% in engine brake efficiency

4% from CR 9:1 to 11:1

4% leaning Q(i=::0.06

8% all other engine improvements
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Table 8 -19 CONVENTIONAL GASOLINE BASELINE

FUEL EFFICIENCY
FUEL COSTS (1981 07, le)

BASELINE PRIM HED-HIGH PRICE
YEAR CURB WEIGHT (mpg City) SCENARIO SCENARIO

1982 2450 26.0 4.70 4.70

1987 2400 33.5 3.79 4.23

1992 2350 36.6 4.46 5.79

1997 2300 40.2 4.70 6.17

a

7.0

co
0% HIGH GASOLINE PRICE

6.0
^'r---

5.0.
BASELINE
GASOLINE PRICE

W
4.0 LOW GASOLINE PRICE

0 3.0
J
W
W

2.0
{

1982 1987	 1992	 1997

E Figure 8-31. BASELINE VEHICLE VARIABLE FUEL COSTS
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expectation. This efficiency advantage can be conceived as being derived from
three effects:

(1) A higher effective octane number than gasoline permitting higher
and hence more efficient engine compression ratios.

(2) A leaner misfire limit permitting leaner part load operations than
gasoline.

(3) An effect related to the higher heat of ' vaporizaton of methanol
which reduces the heat transfer to the coolant and/or increases the
volumetric efficiency of the engine.

The actual efficiency advantage of a methanol vehicle cannot be exactly speci-
fied since it is design dependent. However, based upon published results of
engine and vehicle research and testing, a range for the efficiency
improvement can be estimated.

In principle, an increase in the compression ratio of an engine will
increase its indicated thermal efficiency. Based on a fuel air cycle anal-
ysis, the increase in indicated efficiency can be readily calculated. How-
ever, increasing the compression ratio on a real engine may not produce as
large an increase in brake thermal efficiency. The brake efficiency increase
will be less, due principally to mechanic / frictional loss increases due to ;the
higher mean effective pressure. Table 8-20 presents the assumptions on dour
pression ratio increase and the increase in :brake efficiency for the methanol
and gasoline baseline. The gasoline baseline slowly evolves from 9:1 to
between 11:1 and 13:1 by 1997. This results in approximately a 4 to 7 percent
increase in efficiency. The 1982 methanol vehicle is assumed to have a
compression ratio of approximately 12:1 and to evolve to approximately 14:1 by

Table 8-20. COMPRESSION RATIO ASSUMPTIONS

GASOLINE METHANOL
% EFFICIENCY ADVAN-
TAGE OF METHANOL

,

% IMPROVEMENT$ OVER . % IMPROVEMENTS OVER VEHICLE IN GIVEN
1982 IN BRAXE 1982 GASOLINE BRAKE YEAR DUE TO CR

YEAR CR THERMAL EFFICIENCY CR THERMAL EFFICIENCY DIFFERENCES

1982 9:1 - 12:1 5 5

1987 10:1 2 12:1- 5- 8 3- 6

14:1

1992	 ;ll:l 4 13:1- 7-g 3==4

199' 11;1; : 4- 7 14:1 8 1- 4
13:1

r
r^



M7. This results in an approximately 3% increase in the methanol engine's
titfficiency, and thus in a slow erosion of the advantage due to compression
.patio increase of the methanol vehicle compared to the gasoline vehicle.

An increase in the compression ratio of an engine can promote an increase
in the Nox emissions. Some actions taken to reduce this increase in NOx
can significantly erode the efficiency gained by increasing the compression
ratio. It has been assumed that if the baseline gasoline vehicle compression
ratio increase can be effected while maintaining emission standards, then the
methanol engine can also meet such standards at the higher compression
ratios.

If the fuel air ratio can be reduced while maintaining acceptable combus-
tion,, the thermal efficiency of an engine can be increased. For both gasoline
and methanol, if the part load lean limit is decreased by approximately 5
percent the thermal efficiency will be improved by approximately 3 percent.
Howevery beyond approximately 15% lean, over-the-road fuel efficiency for
methanol vehicles has found not to increase significantly and in some cases to
decrease. This effect has been reported both by hefley and by Brinkman (Ref.
24,42). If the 1982 baseline conventional vehicle is operating with a part
load equivalency ratio in the range of 0.96 to 1.0, this implies a methanol
vehicle operating at a part load equivalency ratio of about 0.85 would be
approximately 5 - 7X more efficient.

When methanol is burned in an engine. rather thkn gasoline with no change
of compression ratio or equivalency ratio, a thermal efficiency improvement of
approximately 6 - 8% has been observed. This increase in efficiency has been
attributed to various factors but is probably related to theincreased heat of
vaporization of methanol in comparison to gasoline.

Table 8-21 presents the possible improvement in energy efficiency for
the methanol vehicle in comparison to the moving gasoline baseline for 198? -
1997. These results indicaL ,?t that if methanol cars were produced in 1982,
they would have approximately an 5% efficiency advantage over gasoline
vehicles. However, under the assumptions of improvements in the conventional
gasoline powered vehicles, this advantage is Alowly reduced to approximately
10% by 1997.

The ratio of gallons of methanol to gallons of gasoline that the same
vehicle would consume in travelling the same distance is the fuel factor. The
fuel factor is defined as:

hgasoline '?gasoline

hmethanol • 17 methanol.

where, h is the volumetric energy content of the fuel and is the brake
thermal efficiency of the engine. In terms of the previously discussed brake
efficiency improvement of a methanol engine versus: a,,gasoline engine, the fuel
factor can be expressed as follows;

fuel factor _	 2.04
1 + fractional improvement in thermal efficiency
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Table 8-21. METHANOL EFFICIENCY COMPARED TO GASOLINE BASELINE

IMPROVEMENTS IN EFFICIENCY
VER MOVING BASELINE GASOLINE

VEHICLE DUE TO:
METHANOL-GASOLINEINCREASED LEANER METHANOL

COMPRESSION AVERAGE HEAT OF RANGE OF BEST FUEL FACTOR
YEAR RATION MIXTURE VAPORIZATION IMPROVEMENT GUESS RANGE BEST GUES S

198 4 - 6% 5 - 7%	 6 - 8% 15 - 21% (18.0)% 1.77-1.69 (1.73)

198 3 - 6% 2 - 4%	 6 - 8% 11 - 18% (14.5A '1.84-1.73 (1.78)

199 3 - 4% 1 - 2%	 6 - 8% 10 - 14% (12.0)% 11.85-1.79 (1.82)

199 1 - 4% --about	 (6 - 9X)-- 7 - 13% (10,.0)X 1.91-1.80 (1.86)

For example, a 20X improvement in brake thermal efficiency would result in a
fuel factor for methanol versus gasoline of 1.70. If a gasoline vehicle used
one gallon of gasoline in traveling 26 miles, the methanol vehicle would use
1.7 gallons of methanol to "travel the same 26 miles. Graphically the relation--
ship between the methanol-to-gasoline fuel factor and the thermal efficiency
improvement of methanol versus gasoline is presented in Figure 8-32.

Figure 8-33 presents the methanol gasoline fuel factor based upon the
assumed improvements in both the baseline and the methanol vehicles. The
curve labeled "Best Guess" represents the fuel factor for the "best guess" on
the evolving improvement in methanol versus gasoline. The gray area about the
line is the possible range for the fuel factor based upon the range for thermal
efficiency improvement. For the 'best guess case the fuel factor changes from
1.73 in 1982 to 1.86 in 1997. It is possible that technological improvements
such as lean burn/fast burn combustion are more easily implemented with
methanol than gasoline (due,to methanol's ability to sustain leaner
combustion). Methanol engine technology is clearly less mature than gasoline
technology and, therefore, there may exist many improvements specific to
methanol that are not currently apparent. Hence, the possibility that
methanol ' s efficiency advantage may not erode, but will maintain the 15
percent to 21 :percent advantage it currently has. This is shown in Figure
8-33 as line labeled "No Change."

When combined with the methanol price forecasts, an estimate of the
over-the-road fuel cost in cents per mile for the methanol vehicles can be
made. Under the assumption that excise taxes would be proportional to the Btu
content, hence approximately half as much on a per gallon basis as gasoline
and that all other costs would be equivalent on a cents per gallon basis as
gasoline, Table 8-22a and Figure 8 -34a present the over-the -road fuel cost"no
change" estimates for the methanol vehicles. Table 8-22b and Figure 8-34b
show the same results for the "no change" case in which the methanol fuel
f4-c for does not er&de over time. As can be seen by comparing Figures 8-34a
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EFFICIENCY
COSTS IN CENTS/MILEGASOLINE
REMOTE 5,000 T/D 10,000 T/DBASELINE METHANOL

(mpg of (mpg of NAT,RAL GAS COAL COAL

YEAR Gasoline) Methanol) GASOLINE METHANOL METHANOL METHANOL

1982 26.0 15.0 4.70 5.97 - -
(14.7-15.4)

1987 33.5 t8.8 3.79 4.34 6.89 -
(18.2-19.4)

1992 36.6 20.1 4.46 4.21 6.69 6.24
(39.8-20.4)

1997 40.2 21.6 4.70 4.07 - 6.10
(21.0-22.3)

ORUNAL PAGE Is
OF POOR QUALITY

Table 8-22a. OVER-THE-ROAD FUEL COSTS, GASOLINE
VERSUS METHANOL ("No Change" Case)

EFFICIENCY
COSTS IN CENTS/MILEGASOLINE

BASELINE METHANOL REMOTE 5,000 T/D 10,000 T/D
(mpg of (mpg of NATURAL GAS COAL COAL

YEAR Gasoline) Methanol) GASOLINE METHANOL METHANOL METHANOL

1982 26.0 15.0 4.70 5.97 - -
(14.7-15.4)

1987 33.5 19.3 3.79 4.22 6.71 -

1992 36.6 21.1 4.46 4.01 6.37 5.94

1997 40.2 23.2 4.70 3.80 - 5.68

Table 8-22b. OVER-THE-ROAD FUEL COSTS, GASOLINE
VERSUS METHANOL ( "Best Guess" Case)
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Table 8-23. RETAIL METHANOL PRICES AT THE PUMP

REMOTE NATURAL GAS
YEAR	 PLANT GATE	 RETAIL

5,000 T/D WESTERN COAL 10,000 T/D WESTERN COAL
PLANT GATE RETAIL PLANT GATE RETAIL

1982 90.0 - - - -
1987	 61.0 81.7 196.0 129.5 - -
1992	 63.0 84.6 100.0 134.5 89.0 125.4
1997	 65.0 87.8 - - 94.0 131.8

and 8-34b, the differences between the "best guess" assumption and the "no
change" assumption have little impact on the results. The retail prices upon
which this is based are presented in Table 8-23. There are two methanol
cases, one for a large coal plant, and the other for methanol produced front
remote natural gas. A transport cost to the Southern California metropolitan
area of 100 per gallon for the coal case and 4j per gallon for the remote
natural gas case were assumed. If the methanol is produced from western coal,
methanol cars would become competitive with gasoline cars in approximatk*_Iy the
year 2000 if the gasoline price followed the medium high scenario rather than
the baseline scenario. If gasoline prices follow baseline scenarios, the coal
produced methanol would not be competitive for use in automobiles, until
considerably past the year 2000.

It should be recognized that this analysis assumes that "over-the-road"
costs are an adequate surrogate for marketplace competitiveness. In fact,
methanol vehicles would have different attributes than gasoline vehicles. It
is likely that methanol vehicles could be offered with higher power than their
gasoline counterparts as shown by CEC Fleet Two tests. Methanol may be viewed
as A more secure fuel by some buyers. To properly evaluate all factors
associated with methanol vehicle market viability requires a careful and
detailed market survey. It is not clear that potential buyers are
sufficiently knowledgeable of methanol vehicles to permit reliable survey
results at this time.

As is the case with gasoline-fueled automobiles, methanol-fueled .
automobiles can be designed and marketed with a wide range of attributes so as
to be attractive to various sectors of the market. It should be noted that
the benchmark vehicle may not be the one chosen for initial introduction..- One
specific attribute which may assist the initial introduction of methanol-fueled
automobiles is performance. Methanol-fueled engines can be designed to
provide higher power than the gasoline-fueled engines. For example, in the
1981 fleet report the California Energy Commission indicated that up to 20%

F

	

	
more power was possible. A detailed market survey and analysis would be
required to identify the most attractive match of vehicle attributes and

t

	

	 market sector for initial methanol-fueled vehicle sales. This is clearly
outside the scope of an assessment; however, some indication can be provided
on the value of performance and the size of the performance market.
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One viewpoint is provided by the comparison of two vehicles which are
,essentially identical except for performance. Two examples of such vehicle
comparisons.:are the SAAB 900 versus the SAAB 900 Turbo and, the Audi 5000
versus the Audi 5000 Turbo. The SAAB 900 Turbo provided about 20% more power
and cost about $3400 more in comparison to the SAAB 900. The 1981 sales of
the 900 Turbo were 7371 vehicles nationally, which was 52% of the 900 series
sales. The Audi 5000 Turbo provides about 30% more power and costs about
$4200 more than the Audi 5000. The 1981 sales of the 5000 Turbo were 5576
vehicles nationally, which was about 19% of the 5000 series sales.

Table 8-24 presents the sale of five domestic performance automobiles.
Nationwide 1981 sales were about 175,000 vehicles (about 3% of domestic
production about 2% total sales). To the extent that California sales of
these specific models reflect California sales across 'a division (e.g.,
Pontiac), such as national sales volume would imply about 11,000 of these
vehicles sold in California. The performance option for the Chevrolet Camaro
cost about $2000 above the 4 cyclinder and $450 above the V6 option. The
Mustang and Capri V8 cost $1300 and.$650.over the respective L4 option.

c. Possible Magnitude of Methanol Demand from Private Passenger
Cars. If methanol vehicles do become competitive, a demand for methanol fuel
will develop and gasoline demand will be somewhat decreased. The rate and
size of the potential growth of fuel methanol will place demands upon the
retail infrastructure, and the supply/production capacity. To provide a very
approximate estimate of the demand for methanol, several market penetration
rates for methanol vehicles were assumed, and the results of the assumed
penetration rates in terms of fuel demand have been calculated.

A simplified version of the U.S. Department of Energy's light duty
vehicle model was used to perform these calculations. The light duty vehicle
model is essentially a fleet replacement model. The basic data and algorithms
were maintained,, but simplified and adapted for a JPL microcomputer. The
results of this calculation should be viewed as indicative rather than
conclusive because:

(1) The methanol vehicle market penetration rates were assumed, not
calculated.

Table 8-24. HIGH PERFORMANCE DOMESTIC SALES IN 1981

ESTIMATED

X;SALES OF V8 NATIONAL SALES CALIFORNIA SALE
OPTION V8 'OPTION OF V8 OPTION

Chevrolet Corvette 100 45,:631 2900
Ghevrolet Camaro V8 58.8 74,1169 4750
Pontiac Firebird V8 66.9 47,459 2450
Ford Mustang V8 3.3 6,025 500
Mercury Capri V8 3.1 1,827 140
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(2) The original database for the light duty vehicle model was not
recalculated or adjusted for current or future expected market
conditions.

Figure 8-35 shows three possible introduction.rates for methanol
vehicles. These rates are simply assumptions and are not forecasts. The
actual rate of introduction would be ,determined by the realities of the
competitive marketplace both in vehicles and in fuels. The moderate growth
rate is similar to the growth rate of diesel vehicle sales. Too much reliance
should not be placed upon the diesel vehicle sales analog because the
attributes of a methanol car will surely be different from that of a diesel
car and the market conditions of the early to middle 90's will be different
from the market conitions of the late 70's. The high-growth rate introduction
assumes that methanol cars are not introduced until there is a marked
advantage in over-the-road costs and then within a space of 7 to 8 years
methanol car sales grow to 252 of the market. While this is not a maximum
upper bound _on methanol vehicle sales, there ;are many factors that inhibit a
rapid and complete substitution, such as retooling capacity, amortization of
in-place production facilities, and competitive pricing policies of both
vehicles and fuel. Likewise.,. the slow growth rate depicted in Figure 8-35 is
not the lowest market penetration that could be envisioned. However, it
should be recognized that scale economies for major manufacturers would cause
production volumes lower than this to be unattractive.

Figure 8.-36 presents the effect that the assumed methanol vehicle sales
would ultimately have in the composition of the total vehicle fleet. As can
be seen, even with an early and vigorous introduction of methanol vehicles,
most of the vehicles on the road in the year 2000 would still be fueled by
conventional fuels.

Figure 8-37 presents the impact of the increasing number of methanol
vehi6mas 4pon the sale of gasoline. (It was presumed that the methanol
vei,it,,tc ,; wo z).d compete principally with the gasoline vehicles. If methanol
ve.hiptt,s Faire to compete equally with diesel and gasoline vehicles, the same
reldtje, T,tah.p would hold, but then should be viewed as reduction in motor fuel
for *!AghL duty vehicles.) The increasing demand for methanol motor fuel would
require expansion of methanol production capacity. Also depicted in Figure
8-37 is the number of remote natural gas plants that would be necessary to
supply the West Coast. The methanol plants referred to in Figure 8-37 are the

= rt

	

	 modest size, 2 to 2-1/2 thousand tons a day remote natural gas plants
described in Chapter 4.

8.--- Advanced Technologies for Methanol Automobiles 	
Y

Two classes of advanced technologies appear to be appropriate for
light-duty methanol applications at this time: direct injected stratified
charge (DISC) engines and catalytic dissociation of methanol tohydrogen and
carbon monoxide.	 4

DISC technology appears to be more mature than dissociation. However,
f	 DISC work to date has not shown significant energy efficiency differences

between methanol and gasoline. '(It is conceivable that DISC technology is
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more easily implemented with methanol than gasoline and, therefore, the proper
comparison would be DISC methanol versus conventional gasoline technology.)
Because dissociated methanol shows promise of significant efficiency
improvement over more conventional technology, it will be discussed at greater
length.

The PROCO, M.A.N. FM and TEXACO TCCS have been tested with neat
methanol. A 5.0-liter PROCO was tested by Ford iw 1979-80 (clef. 26). The
results showed that the engine performed at least as well as methanol as a
gasoline. However, there was no significant difference in energy efficiency
between gasoline and methanol operations. The M.A.N.-FM engine has been
operated on methanol in a medium duty applications (Ref. 53) (see Section D of
this chapter) and can be downsized to light-duty (Ref 30). The TCCS (Ref.
27,28, 30) has been operated on methanol (see Section D) and has been built to
a military 1/4 ton vehicle size, hence, it may have light-duty methanol
potential.

One possible means for using methanol in a spark-ignition engine with
significant improvements in efficiency can be achieved by the decomposition of
the methanol into hydrogen and carbon monoxide. The improvements in
efficiency result from three factors:

(1) The, engine ,exhaust heat can be utilized to facilitate the endo-
thermic reaction which provides an approximate 20% (5% vaporiza-
tion, 15% dissociation) .increase in the heat content of the
dissociated products compared to liquid methanol.

(2) Because the dissociated gases have anti -knock properties, the
.	 compression, ratio of the engine can be significantly increased

relative to gasoline.
L

4

(3) The dissociated gases have a lean limit misfire point significantly
below that of gasoline, thereby permitting an equivalence ratio of
0.5 and below. Liquid methanol limit is about 0.7, gasoline limit
is about 0.83 - 0.80.'

A conceptual diagram of a dissociated methanol fuel system is shown in
Figure 8-38. Methanol is heated with engine coolant in a heat exchanger to
produce vaporized methanol. The methanol ►apor is then passed through a
catalyst bed heated by exhaust gas where it is endothermically dissociated to
produce H2 and CO. A forecooler (using engine coolant) is used to reduce
the gas temperature, hence raising the density of the gas. It is then mixed
with air via a gas (propane-type) carburetor. The engine is operated lean
(0<0.5) and at compression ratio of about 12:1 to 14:1. Power for wide openr	
throttle operation is provided by liquid methanol via a methanol carburetor.

Houseman and Purohit (Ref. 32) have calculated thermal efficiency
improvements expected from a decomposed methanol fueled engine. They found
a maximum expected efficiency improvement of 38% and a practically realizable
improvement over a driving cycle o f 30%. It should be noted that this effi-
ciency improvement was in reference to a 8.2 compression ratio normally
aspirated stoichiometric gasoline engine. The decomposed methanol-fueled
engine was assumed to have a 12.1 compression ratio and to be turbocharged az
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Figure 8-38.	 CONCEPTUAL FLOWSHEET ( Ref. 31)

two atmospheres. 	 Their calculations assumed a 12 percent increase in effi-
ciency due to changing the compression ratio and further assumed that turbo-
charging and methanol decomposition were simultaneously possible.

Finegold,. et al. (Ref. 31), at SERI, have tested a methanol decomposi-
tion system on an engine dynamometer.	 They found an approximate 40% - 50
increase in brake thermal efficiency.	 The efficiency improvement was relative

F to a General Motors 2.5 liter Citation engine.	 This engine operates near
stoichiometric and has a compression ratio of 8.3 to 1. 	 Significant modifica-
tions were made on this engine for the dissociation test. 	 The pistons were
changed and the compression ratio was raised to 14 to 1. 	 The EGR and air
injection systems were removed; the original carburetor was replaced by 'a
gaseous prop. .ic- car ureter and the ignition was modified with a closed-?oop
feedback, anti-Knock system.	 For the test, throttle-setting and equivalence
ratio were adjusted at each RPM /torque point to achieve maximum fuel
efficiency..

Following the engine dynamometer test, vehicle chassis dynamometer tests
were performed.	 The first series of these tests found a 37-42 percent effi-
ciency improvement at constant speeds ranging Between approximately 40 and 55
mph.	 A second series of tests found efficiency improvements between 34-26
percent, also at similar constant velocities. 	 These results are tentative and
at this time (July 82) a report has not been published.	 Results similar to
the SERI findings have been reported by other researchers ( Ref. 35, 36).

One analysis (Ref. 33) has been made of the implications of the current
c engine data on the dissociated methanol-fueled vehicles for city-cycle

driving.	 Two dissociated methanol vehicle"paper designs" based upon the
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previously described engines were c"pared to current gasoline engines. As an
approximation to a full-driving cycle Anablysis, the panel on Hydrogem Auto.-
motive Engine Performance of the Fourth W9jrld Hydrogen Energy Conference
utilized a weighted sum of three points on the braise- specific fuel consumption
map to approximate city driving (Ref. 34). The results of this approximate
calculation showed an efficiency improvement of between 21 and 43 percent for
the dissociated methanol fuel vehicle. It should be noted that the higher
efficiency improvement was for an engine that was significantly down sized and
used liquid methanol to achieve higher power outputs when needed.

The research work to date implies an efficiency improvement of approx-
imately 30-40 percent for the decomposed methanol engine over conventional
current gasoline-fueled engines.. However, future possible technical changes
in the conventional gasoline engine including higher compression ratios and
leaner operations could erode this apparent advantage. Of this 30 - 40% gain,
about half could be realized without dissociation by using liquid methanol.

If dissociated methanol is compared to the gasoline base in the same
manner as liquid methanol efficiency, improvements of 28 percent to 30 percent
result, as shown in Table 8-25.

Over-the-road cost comparisons analogous to Figure 8-34 are shown in
Table 8-26 and Figure 8-39. It should be noted that dissociated methanol
technology is unlikely to achieve a commercial/producible level of maturity
before the mid-nineties.

Table 8-25. DISSOCIATED METHANOL EFFICIENCY COMPARED TO GASOLINE BASELINE

EFFICIENCY IMPROVEMENTS DUE TO
TOTAL IMPACT

EXHAUST HEAT

RECOVERY EFFICIENCY FUEL FACTOR
INCLUDING COMPRESSION PUMPING BEST !BEST

YEAR VAPORIZATION RATIO LOSSES LEANING RANGE GUESS RANGE 'GUESS

1987 20% 3-6% 1-2% 4-5X 28-33% (30%) 1.59-1.531(1.56)

1992 20% 3-4X 1-2% 3-4% 27-30% (29X) 1.61-1.57 (1.59)

1997 20% 1-4% 1-2% 3-4% 25-30% (28%) 1.63-1.57 (1.60)

{
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Table 8-26. OVER-THE'-ROAD FUEL COST GASOLINE VERSUS
DISSOCIATED METHANOL (Cost in cents per Mile)

REMOTE NATURAL 5,000 T/D 10,000 T/D
YEAR GAS'OLTNE GAS METHANOL COAL METHANOL COAL METHANOL

1987 3.79 3.76 6.00 -
1992 4.46 3.63 5.86 5.32
1997 4.70 3.63 -- 5.30

7.0

V-4 NIGH

SMALL COAL METHANOL	
GASOLINE PRICE

6.0- --	 ,,Uj

LARGE COAL. ^ITHANOL

W
d 5.0

d

BASELINE GASOLINE PRICE

4.0
LOW GASOLINE PRICE

REMOTETNATURAL GAS^
3.0 METHANOL

J
W

2.0

r

1982 1987	 1992	 1997

G Figure 8-39. DISSOCIATED METHANOL VEHICLE VARIABLE FUEL COSTS
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C.	 EMISSIONS FROM METHANOL-FUELED VEHICLES

1.	 Introdection

The key facts relating to emissions from automobiles in general
will be briefly .reviewed. The emission characteristics of methanol-fueled
vehicles in particular will then be described.

Emissions from automobiles fall into the three categories: evapora-
tive, crankcase, and exh,,<ust. Crankcase emissions, which once accounted for
about 25 percent of all hydrocarbon HC) emissions, have now been virtually
eliminated through improved engine design (Ref. 43). Evaporative emissions
have also been significantly reduced in recent years. They account for 25 to
50 percent of all current vehicle 'HC emissions. Unregulated emissions include
sulfates, particulates, and aldehydes. The latter will be especially signi-
ficant with alcohol-fueled engines. Particulates are significant with diesel
engines. Sulfates arisefrom the sulfur contained in gasoline and diesel
fuel. The maximum allowed levels for the two fuels are 0.03 percent and 0.5
percent, respectively. (Note: a 0.05 percent sulfer limit for diesel has
been proposed for the South Coast Air Basin.) Methanol contains no sulfur.

The photochemical smog typical of Los Angeles is the end result of the
action of photochemical oxidants, notably the OH radical, on the hydrocarbons
in the atmosphere. The OH radical is a major by-product of the reactions of
NO, NO2 , and ozone, in the presence of water moleculesand solar radiation.
The various components of the hydrocarbon emissions differ in their tendency
to form ozone. Methanol is among the least reactive while formaldehyde is
moderatley reactive. The olefins and aromatics of gasoline are the mast
reactive.

The formation of exhaust-hydrocarbon emissions is most sensitive to the
fuel-air ratio, fuel volatilization, and the design of the engine cylinders.

In spark-ignited engines, nitric oxide is formed at the end of the com-
pression stroke and is "frozen" as the fuel-air %fixture cools down at the start
of the expansion stroke. The rate of formation.of NO is proportional to the
concentrations of nitrogen and oxygen 4tid iuctouge:s enponeritiestly with temper-
ature. Thus, for a fixed fuel-air xaty'5 and spark timing, the amount of NO
formed increases with compression ratio. Retarding the spark timing reduces
NO formation. The formation of NO is most influenced by the. fuel-air equiva-
lence ratio ( 0), as shown in Figure 8-40 q is the volumetric fuel-air ratio
at the given operating conditions divided by the stoichiometric volumetric
fuel-air ratio. At low equivalence ratios (i.e., fuel-lean conditions) the
combustion temperature 

'
is reduced, thus reducing NO formation. At fuel-rich

conditions, NO formation is inhibited by the reduced availability of oxygen.
Peak NO formation occurs at near-sto ;-chiometric conditions for a 4 value of
0.9. This generalizaton is true for all fuels. The use of exhaust-gas
recirculation to reduce NO emissions depends on the lowering of combustion
temperature and total oxygen concentration while maintaining the equivalence
ratio. Carbon monoxide formation is generally favored by fuel-rich conditions.

The effect of equivalence ratio on the formation of NO, CO, and HC
exhaust emissions underlies the importance of having equal distribution of
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Figure 8-40. VARIATION OF HC, CO, AND NO CONCENTRATION IN THE
EXHAUST OF A CONVENTIONAL SI ENGINE, WITH FUEL-AIR
EQUIVALENCE RATIO

fuel among the engine cylinders and thus controlling the equivalence ratio at
the desired level.

2.	 Exhaust Emissions from Neat-Methanol Engines

Much information is available on the emission characteristics of
methanol-powered engines. A number of important results have been reported at
international symposia on alcohol fuels ( Refs. 45, 46). Fundamental studies
on single-cylinder engines have been conducted by Brinkman and his associates
at General Motors ( Refs. 44, 49, 50). Computerized-modeling calculations and
vehicle tests have been carried out by Pefley ' s group at the University of
Santa Clara (Refs. 47, 48). Fuel tolerance tests using a range of methanol-
gasoline blends have been performed by engineers at the Ford Motor Company
(Ref. 51). Fleet tests have been made in the state of California.

The most important variables determining emissions from methanol -powered
engines are fuel-air equivalence ratio, fuel preparation and delivery, spark
timing, c^-rmpression ratio, and combustion -chamber design.

a. Organic Emissions. Single -cylinder-engine investigations were
made by Hilden and Parks ( Ref. 44). A fuel-injected ASTM-CFR engine was oper-
ated at 1200 rpm and a compression ratio of 8 at MBT (minimum advance for best
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tor+'{u p ) spark timing with clear Indolene (a standardized gasoline), methanol,
and a mi sure of 90 and 10 percent by volume of meths ►nol, and water. The
fursl-air mixture was processed using two methods. In the standard method th=at
incoming air was heisted to 52 00 and the fuel was at 30 0C,. In the improved
method the heatcd air was ;nixed with nebulized .Fuel and then passed over a
heat exchanger which raised the temperature to 6000. The equivalence ratio
was varied from stoichiometric to the lean limit which was 0.7 for Indolene
and 0.62 For methanol. Unburnral fuel (UBF) emissions were lowest at 4) 0.9
for all the fuels. The ranges of UBF values for methanol, were 4-5 micrograms

'

	

	 per joule or 4-5 x 10-9 kilograms per joule (kg/.l) wita standard fuel prepar-
ation and 1-2 x 10-9 kg/J with improved fuel prepaaratlon. For gasoline they
were 0.5-1-5 and 0.3-0.7 x 10-9 kg/S respectively. Aldehyde emissions for
methanol fell from 0.9-1.5 to 0,075-0.3 x 10-9 kg/J as a tesult of improved
fuel preparation. The aldehyde emissions From iodolere were relatively
insensitive to fuel preparation and were equal to about 5-10 percent of tile
methanol emissions. The methanot-water blend had about 20 percent higher UBF
levels that methanol, but aldehyde emissions were about equal,.

'.

	

	 Engine speed may also be a .factor in aldehyde emissions, Pischi.nger'and
Kramer (Ref. 45) reported that emissions at 4500 rpm were 54-76 percent lower
than at 2500 rpm.

Kamaaga, et al. (Ref. 46) , showed that Uff emissions were reduced by 60	 F

potrcent by heating the fuel-air mixture to 7700. As the compression ratio
(CR) was increased from 8 to 11 at stoichoimetric conditions, UBF rose by 20
percent. The addition of 1 percent aniline to the methanol :fuel caused a 54
percent reduction in exhaust aldehydes at CR - 11. It is probable that the
aniline reacted with Formaldehyde to form the corresponding i,m.ne. The	 r
presence of aniline reportedly did not affect NOx emissions levels. 	

k

Brinkman (Ref. 49) found that 1111E emissions increased with compression
ratify but were little affected by retarding the spark. timing. Values are
given in 'Table 8-27.

b.	 Oxides of Nitrogen. The lowering of NO x emissions for
methanol-fueled engines relative to gasoline-fueled engines is primarily due 	 z

to the reduction in combustion temperature. In the work of Hilden and Parks
(Ref. 44), using a standard ASTM-CFR, single-cylinder engine, it was shown
that NOX eanissiorts for methanol were about 50-60 percent of those for	 E

gasoline.

NOt, emissions for methanol increase with engine compression ratio.
This Pant represents a constraint upon the potential gains in efficiency
achievable by operating a methanol-powered engine at high compression ratios.
Brinkman (Ref. 49) carried out a systematic investigation at 1200 rpm with a
single-cylinder Removable Dome Head (Rh10 engine whose fuel-air mixture was
heated using a heat exchanger in the .feted line. The compression ratio was
varied from 8 to 18 and the equivalence ratio from 0.7 tc 1.1. The spark 	 ,>
timing was .first set at MIT and then retarded by 2, 5 and 10 degrees. ' For
each set of conditions the indicated power and efficiency were measured
along with emissions. Table 8 27 is a selection of the results.

z,$Y

r
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Table 8-27. EXHAUST EMISSIONS AS A FUNCTION OF
OPERATING VARIABLE FOR METHANOL ENGINE

NITROGEN OXIDES

NITROGEN OXIDES 	 x 109

COMPRESSION RATIO 8:1
MBT I	 -5b

12:1
MBT	 -50

18:1
MBT	 -50Spark Timing

0.7

0.9

1.1

0.5

3.0

1.2

0.3

2.3

1.0

0.9

4.2

1.35
1

0.5

2.5

1.2

1.6	 0.9

4.7	 3.0

1.45	 1.3

UNBURNED FUEL
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The results from single--cylinder engines are entirely consistent with
the predictions from thermokinetic combustion models such as those developed
by Pefley and his co-workers (Ref. 47)..

C.	 Carbon Monoxide Emissions. The results of single-engine
studies and fleet tests have consistently shown that Co emissions for neat
methanol and gasoline are comparable. In tests using a single-cylinder
engine, Hilden and Parks (Ref. 44) noted that CO emissions were minimum at
an equivale-Ac a ratio of 0.85 and were further reduced by 70 percent when the
incoming fuel-air mixture was heated to 600C.

Kamaga, et al. (Ref. 46), observed very little change in CO emissions
when the compression ratio was varied from 7 to 11. They did note that the
general relationship between equivalence ratio and Co emissions was the same
for methanol as for gasoline (see Figure 8-40).

i

3.	 Exhaust Emissions for Vehicles Fueled with Grisoline-Methanol Blends

Nearly all the data available was obtained with actual vehicles.
In most of the early work methanol was simply added to gasoline in the amount
of 5-25 percent without supplementary higher alcohols to promote miscibility.

	 t

The stoichiometric air-fuel ratio of methanol is 6.45 while that of gasoline
is 14.6. Hence if the vehicle is operated at its normal gasoline settir(,g the
mixture will be relatively fuel-lean. This phenomenon is sometimes called the
"leaning effect" of the methanol on the gasoline. In terms of the relation-
3hips between emissions and equivalence ratio shown in Figure 8-40, there
would be changes depending on the initial air-fuel ratio. Furthermore, in the
absence of heat exchange between the fuel intake and exhaust, fuel maldistri-
bution would be a potentially more serious problem for carbureted vehicles
because of the increased flow rate of fuel.

Fleet tests were carried out by researchers at the University of Santa
Clara (Ref. 48) on automobiles with an electronic fuel-injection system with
closed-loop feedback control, which is standard equipmentfor the Toyota Supra
and Cressida. The oxygen sensor and control system automatically compensated
for fuel-leaning effects over a range of methanol percentages. The vehicles
were equipped with the three-way catalyst system, whose operationwas very
sensitive to the air-fuel ratio. All the emissions met California standards.
NOx and UBF emissions increased with an increase in the percentage of

	
s

methanol while CO decreased. As expected, aldehyde emissions increased with
methanol content.

`	 Brinkman and Ga•llapoulos kKer. ^U) used 19/3 model vehicles with car -
bureted V-8 engines and found reductions of about 40 percent in CO and 10 	 sf
percent in NOx with a 10/90 methanol-gasoline blend as compared with
gasoline. When the carburetor was reset to operate at 6 percent rich, the 	 r`

t	 reductions were 10 percent for UBF, 20 percent for Co, and 10 percent for
NO 	 All the reductions were attributable in part to the leaning effect.

More recently (Ref. 52) the Atlantic Richfield Company (ARCO) presented
emissions data in connection with a waiver application for a fuel typically`
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containing 4.5 percent methanol and 4:5 percent fuel-grade tertiary-butyl
alcohol and 91 percent unleaded gasoline. The ARCO data indicated that, for
vehicles equipped with standard emission-control devices, there was no signi-
ficant difference in exhaust emissions between the alcohol blend and pure
gasoline. When the vehicles were operated continuously for 50,000 miles no
significant differences in emissions were observed. Three .automobile
manufacturers did express reservations about the longer-term impact of .the
blend on evaporative emissions and exhaust catalyst durability. The important
observation from all the available evidence is that exhaust emissions for
methanol-gasoline blends vary according to the air-fuel-ratio setting for the
vehicle.

J ^ty

L

^; h

1

°r	 8-79



I	
D.	 METN1'.NOL FUEL POTENTIAL IN MEDIUM- TO HEAVY-DUTY ENGINES

1.	 Background

Heavy and medium trucks and transit buses use approximately 0.30
quads of energy per year in the State of California (approximately 2.3 x 109
gallons of diesel fuel). This consumption is expected to approximately double
by the year 2000. if this energy use was methanol, it would imply roughly
40-50 thousand tons of methanol per day in 1980, and roughly 80-100 thousand
tons of methanol per day by the year 2000.

For analysis of possible transitions to methanol., this submarket is
important not only berause of its potential size. The logistics of the fuel
supply is simpler than that for private automobiles. On-site central refuel-
ing, combined with majoe interstate truck stops, can provide an adequate
supply infrastructure as it does with diesel .today. Methanol engines could
penetrate this market more rapidly than that of private passenger cars. With
the possible exception of transit vehicles, heavy-duty vehicle purchasers have
4 greater ability to specify the engine transmission system when purchasing
new vehicles than buyers of private passenger cars. While most transit
vehicles and medium- and heavy-duty trucks are longer lived than private cars,
the engines are subject to replacement or major overhaul more frequently. For
example, transit buses are subject. to major powerpack (engine and transmission)	 F

overhaul or replacement every 150 to 200 thousand miles. In normal operations,.
this would occur every two to four years ( Ref. 53). Some heavy-duty truck
applications are subject to more frequent overhaul than this. In principle,	 ;z

conversion to a methanol engine could take place at any major overhaul or
engine replacement.

However, for this potential to be realized, at least three requirements
must be met ^r

(1) Methanol engines appropriate for medium- and heavy-duty truck and
transit applications must exist in the domestic marketplace. 	 s

(2) A limited fuel-methanol supply infrastructure must be in place.

(3) Total costs for the methanol engine operation must be equivalent,
or less, than those for the diesel engine. 	 ;

A.potential buyer of a methanol engine, either for specification in a
new vehicle purchase or as a replacement for an existing engine, requires
sufficient "in-use" information on the methanol to be confident in the economy

	
j

and reliability. Without such information, a potential buyer cannot assess
	

1

whether the methanol engines will, in fact, meet their specific needs,, or will
produce bottomline costs lower than diesel.

2. Candidate Methanol Engine Technologies for Medium and Heavy-Duty
Applications

Most of the emerging technologies appropriate for medium- and
heavy-duty applications combine direct -in'4Action into thecombustion chamber 	 l

{
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COMPATIBLE FUELS_
Good Good Multi-

ENGINE FEATURES Octane Cetane Fuel

TEXACO TCSS 292 Redesign of TCSS for UPS- Yes Yes Yes
delivery trucks.

MAN	 FH Retrofitted diesel; spark plug Yes Yes Should
piston reshaped; hot wall com-
bustion chamber; SCR= 16-18,
exhaust catalyst.

FORD	 PROCO Aiming at ultra-lean combu.-n Yes No No
tion aad minimizing octane
requirement with high com-
pression ratios.

VOLVO Two injection systems; McOH & Yes in Yes L'td.
diesel; diesel pilot charge; conj.
ignition source (spark plug). w/diesel

DEUTZ Ignition source (spark plug). Yes in Yes L'td.
conj.
w/diesel

DAIMLER BENZ Vaporized McHO in converted Yes No No
diesel (open chamber); no ex-
haust catalyst CR-10.5

x4

F

with a stratification of the charge. The current exceptions to this is the
design by Daimler Benz which utilizes fully vaporized methanol in a uniform
charge Otto-cycle operation and the dual fuel design by Volvo. The various
technologies are summarized in Table 8-28.

As representative of the approaches to methanol engines, the M.A.N. FM,
the Daimler Benz, and the Texaco TCSF 292 will be described in more detail.

3. M.A.N. FM Engine*

Table 8-28. ENGINE TECHNOLOGIES APPROPRIATE FOR MEDIUM-
TO HEAVY-DUTY METHANOL APPLICATIONS

ji

i
ir`

The Acurex Corporation has recently completed an evaluation of methanol
fueled, heavy-.duty engines for the California Energy Commission. The
following sections on the M,,A.N. and Daimler Benz engines are excerpted from
Section 4 of that report with some additions as noted (Refs. 53 to 60).

4
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The M.A.N. FM multifuel combustion system is based on direct fuel
injection and spark assist. Figure 8-41 shows the combustion chamber design
of the D 2566 FMUH engine with spark plug, injector, and cupped piston. The
primary characteristics of the FM design are:

(1) Diesel-type compression ratio.

(2) Direct injection.

(3) Wall deposition, diffusion flame combustion.

(4) Conventional spark ignition system.

The "FM" combustion'pror.ess is governed by fuel stratification and
mixture formation. Fuel, injected directly on cupped piston walls, evaporates
and burns as a diffusion flame. Fuel is successively fed into the flames by
the air rotating in the combustion chamber. The greater part of the heat
necessary for fuel vaporization is supplied by flame radiation. The rate of
mixture formation and wall deposition controls the following combustion
characteristics:

(1) Ignition rate.

(2) Rate of pressure rise.

(3) Engine noise.

Fuels tested by M.A.N. include diesel, gasoline, methanol, and ethanol.
Performance data for three methanol engines (L 9204 FM, A 0836 FM, D 2566 FM)
are available from bench and bus demonstration programs. Due to Germany's
high dependence on imported petroleum, the German Federal Government funded
M.A.N. to operate small methanol-powered buses in Berlin.

The Auckland Regional Authority (ARA), New Zealand, is conducting a
methanol bus competition between M.A.N. and Mercedes-Benz. Program objectives
emphasize economics rather than emissions. Maintenance and operating costs
highlight the comparison. Even so, there is strong competition, since ARA
guarantees the sale of 400 buses to the victor. The program started July 29,
1981,_ and only preliminary information is available. In this program, the
M.A.N. engine is partly throttled for better idle performance -- to what
extent was not disclosed.

The performance and fuel consumption of the D 2566 FMUH engine on
methanol and diesel, as reported by M.A.N., is seen in Figure 8-42. Torque
was higher with methanol than diesel for all speeds with the maximum at 1000
rpm. Brake Specific Fuel'Consumption (BSFC) is also higher for methanol but
is consistent with the differences in energy densities. Figures 8-43, 8-44,
and $-45 shows the BSFC maps for both diesel and methanol. Figure 8-46 shows	 }:
the results of the Berlin city bus demonstration. Methanol consumption is
higher than diesel, but, when adjusted for energy content, methanol fuel
consumption is lower than diesel by 5.25 percent.

F
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Figure 8-41. CROSS SECTION M.A.N. DZ566 FMU METHANOL ENGINE
(Ref. 53)
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figure 8-42• FULL-LOAD CHARACTERISTICS OF THE M.A.N. D 2566 FMUH

METHANOL ENGINE COMPARED WITH DIESEL ENGINE D 2566 MUH
(Ref. 53)

The cupped piston design and high-compression ratio (CR = 16:1) are

claimed to eliminate engine wear and cold-start problems. Since injection is

made directly into the piston cup, fuel contacting the cylinder walls is
reduced. M.A.N. claims successful cold starts to -20 0C as a result of high

compression ratios and corresponding high in-cylinder gas temperatures (5000

to 6000C) and spark-assist.

The M.A.N. FM system capitalizes on high heat of methanol vaporization

to increase engine efficiency. Methanol vaporizati n, the result of fuel
sprayed on the hot piston surface, recovers part of the energy otherwise lost

to the envi ronment. Engine efficiency greater than 40 percent is claimed
throughout much of the speed range with performance peaking at 41 percent

(1,000 rpm, 6.25 bar mean effective pressure).

All emission species are equal to or below 1982 California standards for

the 13-mode federal driving cycle (Figure 8-37), with significant reductions

noted for CO and NO x . Emissions are reported with the use of an exhaust
catalyst which does not permit clear evaluation of baseline engine conditions.

As expected, no exhaust discoloration is seen with neat methanol (Figure 8-38),
while comparable diesel fuel experiments show exhaust discoloration between 1

and 3 Bosch Smoke units.

84 0
Nm.
800
780

760
a 740

720
0 700

680
660
640

620

8-84



ORIGINAL PA(je IS
OF POOR QUALITY

7

6
as

5

4

3

2

1

4

1500	 2000	 2500	 3000	 3500	 4000

Engine RPM

Figure 8-43. BRAKE THERMAL EFFICIENCY OF THE
H.A.N. •9204 FM DIESEL ENGINE (Ref. 53)

^Jl
8-85



t.

pRlaINAL PAGE
OF POOR QUALITY

ts

7

t	 ^,

6
oa

d
a

U
5

a
wa

v 4
awwW

3

2

1

3tft

is

f

f	
i

i

9

z7

i

1500	 2000	 2500	 3000	 3500	 4000
k

Engine RPM

y

nu

Y
f

Figure 8-44. BRAKE THERMAL EFFICIENCY OF THE
M.A.A. L9204 FM METHANOL ENGINE
(Ref. 53)

8-86	
_



9

8

r,N
7

WN

6N
a+

a^

u 5
awww

4

E	 3

2

ORIGINAL PAGE r3
!DF POOR QUALITY

i€

500	 1000 1200 1400 1600 1800 2000 2200	
f

Engine RPM
3

}

A

fi

Figure 8-45. BRAKE THERMAL EFFICIENCY OF THE
M.A.N. 2566 FMUH METHANOL ENGINE (Ref. 53)

k

k

k

8-87

.49 .40

ol 

.39

.36

.3

.34

.3'

.28' 6
.23



8(

L / 100 kn

6(

4(

2(

82

A	 A'	 B

vktGINAL MiE 1-
OF POOR (QUALITY

A Methanol

A' Methanol Converted 	 1
to Caloric Diesel
Equivalent

B niesel

i

Figure 8-46. FUEL CONSUMPTION OF M.A.N. CITY WITH
BUS D 2566 FMUH METHANOL ENGINE (Ref. 53)

4. r

o
N N

uy
0
cc

4

3	 —

2

1
o Exhaust Discoloration

U

--- Diesel

Methanol

.V

BUO 1000 12UU 14UO 1b00 1800 min 1 2200

Engine Speed

Figure 8-47. THIRTEEN-MODE CYCLE RESULTS OF THE
M.A.N. D 2566 FMUH METHANOL ENGINE
(Ref. 53)

3

8-88



i.

H

a

^o

ORIGINAL PAGE P3
OF POOR QUALITY

5

6

5

G	 3.9

3	 3.0

2
1.5

d
CO	 11C	 NOx	 HC + NOX

Optional 1982 California Et ssions Standards

figure 5-48. FULL-LOAD CHARACTERISTICS OF THE M.A.N. D 2$66
HMU11 COMPARED WIT H DIESEL ENGINE D 2566 MUN (Itaf . 53)

Since M.A.N. does not yet commercially produce methanol engines, no

R

r
hardware cost information is available. 	 From a technical observation, the
following components will add to the cost of the base--diesel engine:

(1) Addition of spark plugs in the cylinder heads.

{

(2) Addition of ignition source.
{

j	 (3) Redesign of the fuel injection pump and injectors to Avoid wear, and
I double output capacity. t

The M.A . N. ,process probably requires the minimal amount of component
x

redesign and hardware cost due to its similarity to conventional diesel.
operation.

The advantages of the Nr . A.N. combustio a system, as reported by M.A.N.,`	 are:
E

(1) High torque, efficiency, and performance,

(2) Multifuel capability if required.

(3) Good cold-start characteristics.`
u
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Figure 8-54. NEW ZEALAND'S PRELIMINARY RESULTS OF THE FUEL
CONSUMPTION OF THE MERCEDES-BENZ M-407 hG0 ENGINE (Ref, 53)
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s`

The Mercedez-Benz methanol engine combines different technologies to
produce an efficient power plant. 	 The result is a complex system of standard

g

and new equipment (such as the methanol vaporizer and cold start heaters) that
are not readily applied to other systems. 	 As a result, vehicle costs are i.
predicted to differ greatly from existing diesel or LPG hardware. 	 However,
since this engine is still in the demonstration phase, cost information is not
available. j

Mercedez-Benz reports the advantages of their engine system as follows:

(1)	 High torque, efficiency, and performance. f
wt

(2)	 Low emissions (without catalyst) f

(3)	 Incorporates energy recovery scheme,.

^s
t	 5.	 Texaco Controlled-Combustion System Engine (Ref. 61 - `66)

a.	 TCCS Concept.	 The Texaco Controlled-Combustion System (TCCS)
is a stratified charge combustion concept which controls the combustion by
coordinating fuel injection, spark ignition, and air swirl. 	 This results in a

8-97



lean fuel.-air mixture which appears to provide improved fuel economy, low
emissions, and Lack of knock.	 The TCCS engine has been under development by
Texaco since the 1940s.	 ,Although this engine has been developed for use on ;?
gasoline or "broad cut" fuel, it is possible to operate it with some
modifications on methanol.	 Texaco has performed methanol testing with this
engine.

In common with other direct injection stratified charge engines, the
Texaco TCCS engine achieves its improvement in fu J economy over conventional '.
throttled Otto-cycle engines through minimization of part-load intake manifold
pumping losses by controlling engine power through fuel charge as opposed to

¢rair throttling.	 The stratified, but lean, fuel air mixture is able to
tolerate higher compression ratios without preignition, and hence, provide
higher thermal efficiencies. 	 The TCCS engine uses a cupped piston design.
During the intake stroke, the swirling airflow is created within the piston
cup.	 The swirl velocity is then increased on compression as fuel is then
injected.	 The fuel air mixture is then ignited by a long duration spark.
This combustion sequence is presented in.Figure 8-57.

The TCCS concept has been implemented in a variety of engines and tested

i4

on a vardty of fuels.	 The best known of these applications is the L-1635 r
TCCS four-cylinder Amy "jeep" engine and the adaptation of the 292 cubic inch
General Motors engine. 	 Typical performance and fuel efficiencies for the
L-163S engine are presented in Tables 8-29 and 8-30. 	 Likewise, typical
performance for the UPS 292SC engine is presented in Figures 8-58 and 8-59,
and Table 8-31.

In both cases, the engines provide efficiencies commensurate with that
{4

of diesel engines; although they are able to provide such efficiencies on a
variety of fuels, including gasolines.

b.	 TCSS Operations on'Methanol.	 A recent test program has been

1

underway to examine the operation of the TCCS engine on methanol. 	 The engine
utilized has been the 163 cubic inch.White engine. 	 Figure 8-60 shows the fuel
efficiency of the 163 engine on both methanol and gasoline. 	 As can be seen,
at lower engine speeds, the methanol engine had a higher output. 	 Because of
the size of the injection pump used in this test, the high-end output with the x
methanol engine was somewhat reduced over what would have been expected.
Figure 8-61 shows the comparisoi: between the UPS 292 engine operating on
gasoline, and the L-163 engine operating on methanol. 	 As can be seen from
these figures, on an energy basis the brake specific fuel consumption the
methanol engine is very close to that of the UPS 292 engine running on u
gasoline.	 In other words, one would expect that a methanol version of the 292
engine would provide fuel efficiencies on a Btu basis commensurate to that of
a diesel engine of a similar size.

6.	 Conclusions

The M.A.N., Daimler Benz and Texaco engines operating on methanol,
show thermal efficiencies very close to that of Diesel engines of similar size.
For the M.A.N. engine, in some portions of its operating range, it has higher
efficiency than for the diesel, and, in some portions, somewhat worse effi-n

8-98
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Air swirl, created by the intake port
during the intake stroke, is inten-
sified in a cupped piston design during
the compression stroke. Combustion,
initiated by fuel injection and positive.
spark ignition, establishes a flame
front immediately downstream from the
injection nozzle_.

Spark continues; fuel is injected at a
controlled rate; air continues to be
supplied by the swirl to mix with fuel
The flame front is established and
cylinder pressure builds at a controll
rate.
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Spark is discontinued; fuel injection
continues to mix fuel with air supplied
by the swirl to teed the flame front.

Fuel injection is discontinued; flame.
front fades in intensity but combustion
continues until all fuel is consumed.	 I	 0_^
The result is a clean burn of fuel in	 oc
a lean mixture yielding low exhaust	 • .^
emissions.
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Figure 8-57. TCCS COMBUSTION- CONCEPT
(Ref. 53)	 3;
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Table 8-29. T!-163S TCCS VS. L-141 GASOLINE ACCELERATION COMPARISON
SWRI

WT 3600 LHS

VEHICLE SPEED
ACCELERATION TIME. SECONDS
L-141 L-163S TCCS

MPH (GASOLINE) (DIESEL FUEL)

0 - 30 7.9 7.0
0 - 40 12.4 12.5
0 - 50 22.5 21.5

FUEL ECONOMY COMPARISON
F.COMMY _ MPG

t

.4

d
?^	 r

Table 8-30. L-163S TCCS ENGINE/11-151 VEHICLE EXHAUST EMISSIONS
(1979 LIGHT DUTY TRUCK/FEDERAL TEST PROCEDURE)

2750 LB. INERTIA SETTING
DIESEL FUEL
EMISSION CONTROLS: EGR BUT NO CATALYST ^r

Y

b

iL

sF,f

VEHICLE SPEED
MPH

L-141
GASOLINE

L-1635 TCCS
GASOLINE DIESEL FUEL

20 24.1 33.1 36.2
30 21.3 29.2 31.9
40 18.6 25.2 27.7
50 16.0 21.2 23.5
IDLE 0.453 GAL/HR 0.179 GAL/HR 0.158 GAL/HR

MASS EMISSIONS-B /MI._ FUEL ECONOMY
(MPG)HC co NOx

TEXACO TESTS 1.5 13.2 1.3 25.3 (GRAY)
.5 run avg.

,SWRI TESTS 2.2 11.4 1.3 30.0(CBAL)
3 run avg.

EMISSION CONTROLS: CATALYST + EGR

TEXACO 1.0 1.4 1.4 26.6

SWRI 1.6 2.1 1.5 27.5

1979.LT.DTY TRUCK STDS. 1.7 18.0 2.3

8-100	 x.
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PART LOAD BRAKE PERFORMANCE
292 CID ENGINES AS INSTALLED CONFIGURATION

CORRECTED TO 65 0 F AND 29.00 IN. NO.
.11	 490 SPEED. 2000 RPM
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Figure 8-58a,
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ENGINE IDLE

UPS 292 SC GMC 292 PERCENT GAIN

.31 gal/hr 75 gal/hr 142.0

CITY DRIVING TO/FROM 9.4 mpg 7.2 mpg 30.6

DELIVERY AREA

ON AREA DELIVERY 8.7 mpg 6.3 mpg 38.1

TEST CYCLE

HIGHWAY DRIVING 10.3 mpg 8.6 mpg 19.8

ROLLING COUNTRY

F3lLL WAD BRAKE PERFORMANCE
291 CID IINSIKII AS INSTALLED CONFWAAMN go I.to
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Figure 8-59.	 UPS 292-SC TCSS ENGINE FULL LOAD PERFORMANCE (Ref. 53)
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Table 8-31. UPS-292 SC vs. GMC 292 FUEL ECONO.`ff COMPARISONS
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ciency, However, the differences are relatively small. The New Zealand
testing has shown approximately a 5 percent better energy efficiency with the
methanol version of the engine. However, for other use profiles, the relative
efficiencies between the diesel and the methanol versions may be different
than this specific case. The Daimler Benz engine also shows efficiencies
close to that of diesel, and, in some portions of its brake-specifies fuel

consumption map, a better efficiency than a diesel. However, New Zealand 	 i

testing has yet to demonstrate this advantage. In fact, the fuel efficiency
is 11 percent worse than the diesel. 	 F

To the extent this limited data permits generalization, it appears that
the energy efficiency of the methanol medium-duty engine is very close (plus'
or minus perhaps 5 percent) of that of a diesel engine. If fuel operating 	 z"
costs were the only criteria in the selection of an engine, we would not

8-103	
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E.	 FLEET SALES POTENTIAL FOR METHANOL VEHICLES

1,.	 Background

Fleet sales have been proposed as one way to begin a transition to
general sales of methanol-fueled vehicles. Presumably, the first sales will
be to a subset of fleet buyers with the following characteristics.

(1) Vehicles are commonly retained for a considerable period of time,
hence resale value is not of great concern.

(2) The vehicles are fueled on site or are fueled from a single
contract source.

(3) The ,!ehicle seldom, if ever, needs more than a 200 to 300 mile
range between refuelinss.

F

(4) Visibility/public relations, petroleum independence, or some other
attribute of a methanol fuel is of value to the fleet operator. 	 1

The growing methanol-fueled fleets will then, it is believed, generate a
growing retail distribution system which will in turn increase sales of
methanol vehicles.	 However, such an approach, depending only upon market
forces, may be ineffectual. 	 There may exist enough fleet operators who value
the attributes of methanol to generate a demand for methanol vehicles.	 The t'
demand may be sufficient to interest a vehicle manufacturer in the production.
of methanol vehicles.	 The resultant demand for methanol fuel, however, maybe
far too small to cause a fuel supplier to establish retail capability in

F

methanol. z"

2.	 Data Source

Since methanol vehicle market survey data for California or western
fleets do not exist (at least in the public literature), the following analysis
is based primarily on the fleet survey work done at Brookhaven National Laborer-
tory for the Department of Energy in 1978 to 1980 (Refs. 67 - 75). 	 Application, 1
of the BNL survey to California methanol fleet sales requires assumptions and
inferences which cause conclusions to be speculative. 	 Based upon the limited
amount of applicable data, the following analysis attempts to provide
information on:

(1)	 potential size of the fleet market for which methanol vehicles may
be appropriate.

(2)	 Characteristics of western_ vehicle fleets which limit or constrain
potential methanol vehicle sales.

(3)	 The most likely types of fleets for methanol fleet sales.

(4)	 The possible amount of fuel methanol such sales would generate.



7

3. Fleet Vehicles - Western Region

California-specific survey and statistical data on fleet
automobiles are not available. However, data are available on western
regional fleet vehicles. The western region is defined as California, Oregon,
Washington, Alaska, and Hawaii. If the stock of fleet automobiles is roughly
proportional to the stock of total automobiles, one would expect 96 percent of
western regional fleet vehicles to be in California, Oregon, and Washington,
with California alone having 73 percent of the western regional fleet
vehicles. In this analysis, a fleet will be taken to be 10 or more light duty
vehicles .* The most useful publicly available survey of light-duty fleets in
the U.S. was commissioned by the Department of Energy in 1978. Bobit
Publishing Company (publishers of Automotive Fleet) under the direction of
Brookhaven National Laboratory, surveyed the managers of light-duty vehicle
fleets in the U.S. The survey data was stratified into six sectors:

(1) Police, both state and local.

(2) Government, both state and local, non-police.

(3) Taxi.

(4) Rental fleets.

(5) Utilities.

(6) Businesses.

The sample was also stratified into nine geographic regions.

Assuming that thewestern regional sample reflects the same sampling
biases across sectors as the national sample, Table 8-32 presents an estimate
of the automobile in fleets in the western region for 1978.

The Bobit/BNL survey also gathered data on light trucks. The survey
questionnaires did not provide a quantitative definition of a light truck but
did refer to them as pickups or vans. Given the estimate for the automobile
stock presented in Column 1 of Table 8-32, an estimate for the stock of light
trucks was made based on ratios by sector of light trucks to automobiles for
thewestern region.

Ignoring sectorial growth and changes in purchasing behavior since 1978,
the sectorial sales potential is derivable from the sectorial vehicle stock by
using estimated capital turnover rates. The Bobit /BNL survey collected
information from which the fraction of the fleets that are replaced annually
is derivable. This is presented in Table 8-33.

x

* In comparing the results here with statistics used by other sources it
should be recognized that the definition of a fleet is not uniform, some 	 {^
sources define a fleet as four or more vehicles, and some use four or ten
total vehicles ,_ including heavy-duty trucks and off-the-road construction

and mining equipment.

2	
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Table 8-32. WESTERN REGIONAL FLEET POPULATION FOR 1978 BY SECTOR

SECTOR AUTOMOBILES X 1000* LIGHT TRUCKS x 1000**

POLICE 56.6 4.6
GOVERNMENT 126.3 44.4
UTILITIES 90.4 171.6
TAXI 17.7 1.9
RENTAL 18.3 3.3
BUSINESS. 338.0 160.1

TOTAL 647.4 ^ 365.8

* This is based on Table 1 of Ref. 67 and t ;e assumption that the ratio of
survey vehicle / to vehicle national is applicable to the western region.
While not confirmed, this assumption is supported by Fig. 3, Estimated
Total Car Sales by Fleet Sector for 1978, of Ref. 69.

** Based on automobile stock from Table 1 of Ref. 67 and ratios by sector of
light trucks to automobiles for western region in Table 4 of Ref. 68.

Table 8-33. WESTERN REGIONAL FLEET REPLACEMENT RATES*

SECTOR

AVERAGE
ANNUAL
MILES

( x 1000)

REPLACEMENT
AGE

(Years)

AVERACE
REPLACEMENT

MILEAGE
(x 1000)

IMPLICIT
ANNUAL
MILES

( x 1000)

FRACTION
REPLACED
PER YEAR

POLICE 32.7 2.60 62.9 24.2 0.385

GOVERNMENT 12.6 5.09 52.0 10.2 0.196

UTILITIES 11.4 6.35 65.1 10.3 0.157

TAXI 49.9 2 . 10 71.3 33 . 8 0.476

RENTAL 22.0 1.60 35.0 22.0 0.625

BUSINESS 22.5 2.52 51.7 27.8 0.397

*Based on Table 12 . 9 of Ref. 68.
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Tite3 survey questions related to fleet replacement rates rind capital
turnover referred to vole cles and did not make a diatinct:ion between
automobiles and light trucks. It will be, therefore, assumed that the
replacement rates presented iti Table 8-338-33 axe* applicable to light truck-$ It
should be noted that iutet light trucks retmain in use longer than
autombbilus, depreciate more slowly ) and accrue lower annual miloage. The
application of, 'fatale 8 .33 to automobiles may result in a underestimation on
tits± automotive, fleet turnover rate. And,	 application to light
trucks may result iii a overestimation of the truck fleet turnover rate.

Applying these replacement rates to the fleet sizes given in `table 8.32,
the esti►ltated total cats sales by fleet sector can be defined. 'table ,8-34
pe asonts tltaaet estimated sales where anuuatl sales - ( fraction replaced per
year) x (float s ito)

Two hundrod .anii fittaen  thousand vehieles per year for the western
region or dpproxim4tely 157,tlOti for California represent the potential market
for Illethanol (or stoat other tothnolcgy) fleet velticl.e sales:

Based upon the o tin►eated light truck stock And replacement rates, annual
replacement sales by sector can be eastimaLed. Pleat replaeremertt rates in tile.
4ob1,tl tNG survey appear to 

be 
for automobiles only. Since use patterns

(onctuaal utileoge) is diffe?ri.nt for light trucks, at mileage; 'replacement criteria
would ecdueet sales, Saalos estimates for both age. and mileage replacement
criteria are presented i ► Table 8..35, of the. 66,000 to 96,000 light" truck
sales pets year into fleets, roughly 48,000 to 10,000 would be expected to

Table 8-:34. ESTIMATED TOTAL CAR SAIM b y FLEET SECTOR FOR
1978 IN WESTERN REGION

SECTOR
ANNUAL SALES

Cx 1000,

'ML10% 21.

vG1VKRNHtsNT 24,8

UTILITIESIES 14.2

TAX 8.4

RENTAL 11.6

BUSINESS 134.2

TOTAL 215.0



SECTOR
ANNUAL SALES x 1000
REPLACEMENT CRITERIA

Age	 Mileage

POLICE 1.77 0.47
GOVERNMENT 8.723 4.50

UTILITIES 26.95 28.13

TAXI 0.90 0.36

MENTAL 2.07 1.76

BUSINESS 55.61- 30.86

TOTAL 96.01 66.08

Table 8-35. ESTIMATED TOTAL LIGHT TRUCK SALES
BY FLEET SECTOR FOR WESTERN REGION

r
occur in California.	 Figure 8-62 presents a graphical comparison of sectorial
stock and sales for the western region.

3

4.	 Factor. Constraining Methanol Fleet Sales
i

;!

A realistic e.°,timate of sales is, of course, :fax smaller than the
potential market size.	 Established purchase criteria, fleet buyer
perceptions, and physical constraints will determine what .fraction of the
potential market is realizeable. 	 To obtain a reliable estimate of methanol
vehicle sale potentials,a methanol specific survey of fleet buyers is
needed.	 The Bobit/BNL survey was not designed to assess the market potential
of methanol vehicles. 	 Therefore, the factors used from the Bobit/BNL survey
should be viewed as imperfect surrogates for factors of a methanol survey.
While the following analysis cannot be considered a sales forecast, it does
provide some illumination of .factors constraining methanol ca	 sales.

Western fleet managers were surveyed on the criteria they used in making
new car purchasers.	 The eight criteria surveyed were:

(1)	 Purchase price.

i	 (2)	 Retail resale value (as a percent of original cost).

(3)	 Maintenance cost.

(4)	 Life-cycle cost.

{	 8-110
:

ti



POLICE

GOVERNMENT

UTILITIES

TAXI

RENTAL

BUSINESS

ORIGINAL PAGE IS
OF POOR QUALITY

EST. STOCK (77-78)

AUTOMOBILES

LIGHT TRUCKS

„ ... : ^	 .:., ^,^,^-.ate-^.;-+,ra•.;,:::::^ -,

EST, SALES

0 10 20 30 4,Q 50 ; 60

POLICE

GOVERNMENT

UTILITIES

TAXI

RENTAL

BUSINESS

. 10	 200 ,	 300:

X 1000 VEHICLES

Figure 8-62. POPULATION AND SALES, WESTERN FLEET VEHICLES 1978

(5) Reliability (day-by-day).	 y

(6) Running lifetime or durability.

(7) Tradition (i.e., past experience).

(8) Gas mil	
-

^	 esge.

r
 The fleet managers were asked co
being most important, one	 least important. Within each 

	 to

 mean
*-	 ^.

. 
g	 p	

^	
being	 p 

of the response for each criteria was computed. The four most important
criteria (rank ordered by mean value) for each fleet sector is presented in
Table 8-36. i

Fleet vehicles are resold (usually through an intermediary) to
households. On the "leading edge" of a methanol transition, the blue book
value on methanol-fueled cars will be unspecified at best, virtually worthless
at worst. The rental car market and the taxi fleet market specified resale-

F
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Table 8-36. PURCHASE CRITERIA*

POLICE Reliability 3.84 TAXI	 Resale 3.17
Maintenance 2.99 Life-Cycle Cost 2.51
Gas Mileage 2.80 Purchase Price 2.46
Resale 2.27 Reliability 2.14

GOVERNMENT Purchase Price 4.56 RENTAL	 Resale 4.53
Gas Mileage 4.36 Reliability 3.78
Reliability 3.71 Maint. Cost 3.64
Running', Life 3.67 Gas Mileage 3.46

UTILITY Gas Mileage 4.17 BUSINESS	 Reliability 3.76
Purchase Price 3.44 !lain. Cost 3.65
Maint. Cost 3.04 Purchase Price 3.47
Reliability 2.90 Resale/gas mi. 3.43

*Based on Table 2.9 of Ref.. 68.

value as the most important of the purchasing criteria. Initial sales of
methanol cars into these sectors are, therefore, taken to be nil. For the
resale criteria to have a mean value of 3.43 on a scale of one to five implies
that a large proportion of the business fleet managers must judge resale to be
an important criteria. Until amore detailed survey can be made, it will be
assumed that the resale criteria rules out one-half of the potential sales to
business fleets. For the police, governmental, and utility sectors, resale
ranked low on the purchase criteria and reliability ranked high as did gas
mileage. To the extent that reliability can be associated with availability
during petroleum crises and gas mileage can be associated with concern over
unanticipated escalation in petroleum product prices, these criteria favor
methanol in the police, government, and utility sectors.

Purchase criteria is not the only constraining factor on methanol
vehicle sales to fleet operators. Three other factors in the Bob:it/BNL survey
have a direct bearing, on the western regional market potential for-methanol
fleet sales. The fleet operators were surveyed to determine if they felt that
diesel fuel was sufficiently available for them to consider diesel engine cars
as an option. If a fleet purchaser did; not believe that diesel was	 -
sufficiently available in 1977, it is unlikely he would look favorably on the
methanol for a considerable length of time. Hence, we will keep as candidate
methanol vehicle purchaser's only those who felt that diesel was adequately
available for their utilization in 1977. Due to the initial thin fuel, supply
system, it is unlikely that methanol-fueled vehicles would be used for
anything other than local 'tripe. The fleet operators were also surveyed to
determine what percent of their vehicles could tolerate a distance betweel
refueling of 150 miles or less. Utilizing the response to this question as a
surrogate for local trip capability, we can delete from potential methanol

8-.112	 x ,
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vehicle sales those vehicles that must have long distance capability. It is
unlikely that methanol vehicle fleet purchasers would occur in the smaller
fleets. The larger fleet operators have much greater capability, expertise,
and resources to deal with an alternatively-fueled vehicle. Large fleets also
have the potential to use specific vehicles for specific purposes (e.g., a
methanol pickup only for short local trips). Fortunately, almost all fleet
vehicles in the western region are operated by large fleet operators, with the
sole except-ion of taxi fleets, which are relatively small. Table 8-37
presents by sector the factors that constrain initial methanol automobile
sales.

The Criteria used in making light truck purchases by fleet managers was
not separately surveyed by Bobit/BNL. It will be assumed that the criteria
rankings for automobiles are also applicable to light trucks. The three other
factors (large fleets, diesel availability, local utilization) used in
estimating methanol automobiles sales potential were separately estimated, for
light trucks within the survey. These factors constraining initial sales of
methanol vehicles are presented in Table 8-38.

It should be noted that there are significant differences between
automobiles and light trucks in terms of these three factors. Most light
trucks within taxi fleets are found in the larger fleets. This is quite
unlike taxi automobiles. Diesel availability was found to be much less of a
limiting factor for trucks than automobiles for all sectors. With the
exception of utilities and rental trucks, light trucks are used for local
short tripe more than automobiles are used. Figure 8-63 presents a comparison
of the factors by sector.

Table 8-37. FACTORS CONSTRAINING SALES OF METHANOL
AUTOMOBILES IN THE' WESTERN REGION*

SECTOR

I
FRACTION IN
LARGE (200+)

FLEETS

II
FRACTION DIESEL
AVAILABILITY
WAS ADEQUATE

III
FRACTION SHORT

TRIPS ONLY
(less than 150 mi)

IV
RESALE
CRITERIA
(see text)

POLICE 0.929 0.098 0.065 1.0

GOVERNMENT 0.048 0.391 0.236 1.0

UTILITIES 0.917 0.536 0.440 1.0

TAXI 0.130 0.376 0.824 0.0

RENTAL 0.935 0.178 0.563 0.0

BUSINESS 0.846 0.255 0.155 0.5

*Based upon Tables 5.1, 6.9, 2.9, from Ref. 68; and 3.12b from Ref. 67.
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I II III IV
FRACTION IN FRACTION DIESEL FRACTION SHORT RESALE
LARGE (2000 AVAILABILITY TRIPS ONLY CRITERIA

SECTOR FLEETS WAS ADEQUATE 41esi than 150 mi) (see text)

POLICE 0.757 0.568 0.477 1.0

GOVERMENT 0.887 0.540 0.479 1.0

UTILITIES 0.910 0.843 0.354 1.0

TAXI 0.651 0 1.00 0.0

RENTAL 0.921 0.742 0.220 0.0

BUSINESS 0.872 0.918 0.622 0.5

ORIGINAL PAGE IS
OF POOR QUALITY

Table 8-38, VACTORS CONSTRAINING INITIAL SALES OF
METHANOL-FUELD LIGHT TRUCKS
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5. Possible Fleet Sales Volumes

Assuming these factors are independent, the estimated methanol
fleet vehicle initial annual sales can be calculated for each sector. This

`	 should not be considered as a sales forecast but rather as a subjective
assessment of how the various constraints reduce the potential market. This
is presented in Table 8-39.

The results of this analysis yield an initial sustained sales of
approximately 5750 methanol-fueled vehicles in the western region in the
initial. years of methanol introduction. This would imply a vales expectation
of approximately 4,000 vehicles in the State of California. If only the
criteria of diesel fuel availability is used to estimate the expected market,
a western regional sales expectation of about 36,500 vehicles per year is
obtained. If only the lesser of the diesel fuel criteria or the short trip
capability criteria (but not both) is used, a western regional sales expecta-
tion of about 24,000 vehicles per year is obtained.

The difference in these factors between automobiles and light trucks
results in the light truck market being more attractive for methanol vehicles
than the automotive market. Utilizing these factors in the same manner as for
automobiles results in an estimated initial annual sales volume for light
trucks. This is presented in Table 8-40. The range of estimates represents
the uncertainty between age and mileage as the replacement criteria for light
trucks in the various sectors.

Based upon these criteria, the sales potential in light trucks is
between five times to two times larger than the sales volume for automobiles.
As was the case with automobiles, light truck sales appear to be dominated by
the larger business fleets and the utilities markets. Figure 8-64 presents a
comparison of truck and automobile potential by sector.

Table 8-39. AUTOMOBILES PER YEAR
(Possible Methanol car sales x 1000)*

SALES LIMITING FACTORS FROM TABLE 8-25

SECTOR I+II+Iil+IV I+II+IV I+IV+(II or III)

POLICE 0.13 2.13 1.42
GOVERNMENT 0.22 9.68 5.84,
UTILITIES 3.07 7.60 6.24_
TAXI -0 0 0
RENTAL 0 0 0
BUSINESS 2.24 17.11 10.40

TOTAL 5.7 36.5 23.9

For example:	 21.8K*(0.929*0.065*1.0) 	 0.13K for the police sector in
column 1
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Table 8-40. ANNUAL, METHANOL LIGHT TRUCT SALES
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SALES LIMITING FACTORS FROM TABLE 8-38

1+I1+111+IV 1+I I+IV 1' +IV+(I1 or 111)
$ECTOR x 1000 l	 1000 x 1000

POLICE 0.36.0.10 0.76-• 0.20 0.76- 0.20
GOVERNMENT 2.00-1.03 4.18- 2.16 4.18- 2.16
UTILITIES 1633-7.65 20.67-21.58 20.61-21.58
TAXI 0 0 0
RENTAL 0 0 0
BUSINESS 1.84-7.68 22.65-12.57 22.65-12.51

TOTAL 23.5 -16.5 48.25-36.5 48.25-36.5
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Figure 8-64. POSSIBLE SALES VOLUMES k'OR.METHANOL VEHICLES
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SIZE

SMALL
DISTRIBUTION
MIDSIZE	 LARGE

OVER-THE-ROAD
FLEET WEIGHTED

I	 FUEL ECONOMY (MPG)

POLICE 0.004 0.082 0.914 16.3'
GOVERNMENT 0.096 0.365 0.539 17.1
UTILITY 0.035 0.705 0.260 17.4
TAXI 0.006 0.062 0.932 16.2
RENTAL 0.324 0.420 0.256 18.3
BUSINESS 0.047 0.326 0.627 16.8

PA CITY HIGHWAY (MPG) 26.9 - 22.0	 -19.6

* Based upon size distribution for Tables 1.1a or 1.6b of Ref. 68, EPA CITY
mpg from Table 2.4, 2.5 of Ref. 67), and EPA to over-the-road correction
factor for 1977 from Pg. 2-12, Ref. 77.

These figures represent averagesustained sales. If a. major fleet
operator ; in any sector decided to replace a large fraction of his fleet with
methanoly-fueled vehicles,, these figures could be significantly exceeded for

Y	 that year. The purchase criteria used in :rids analysis is clearly nonexhaue
tive. Many other factors can enter in a methanol vehicle purchase decision.
Thd government sector, in particular, could choose to purchase methanol-fueled
vehicles based upon perceptions of societal or environmental factors.

6. Possible Methanol Demand from Fleet Markets

The demand for methanol fuel will be determined by the stock of
methanol cars which in turn is determined by the rate of sales and rate of
retirement of such vehicles. While a sales forecast of methanol cars has not
been made in this analysis, the lower estimate from Tables 8-39 and 8-40 will
be assumed to calculate methanol fuel demand.

Gasoline consumption for the western fleet vehicles can be calculated
fom the stock in each sector, composition of the stock, and estimated
mileage. Table 8-41 presents the distribution of vehicle size within each of
the sectors, along with the associated 1977 fleet-weighted over-the-road fuel
economy for each sector (Ref. 76).

Table 8-42 presents the estimated annual miles per vehicle and the total
vehicle miles traveled for each sector along with the resulting consumption of

Table 8-41. SIZE DISTRIBUTION AND FLEET FUEL ECONOMY
FOR WESTERN AUTOMOBILE FLEETS*
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Table 8-42. VEHICLE MILES TRAVELED AND FUEL CONSUMPTION
FOR WESTERN REGIONAL FLEET VHEICLES

ANNUAL NILES VEHICLE MILES FUEL
PER VEHICLE TRAVELED CONSUMPTION

SECTOR (x 10 3 miles) (109 miles) (x 1(16 gallons)

POLICE 32.7 1.85 113
GOVERNMENT 12.6 1.59 93
UTILITIES 11.4 1.03 59
TAXI 44.9 0.79 49
RENTAL 22.0 0.41 22
BUSINESS 22.5 7.61 450

TOTAL 8.81 786

gasoline. The vehiclemiles traveled and fuel consumption for these sectors
is approximately 4-1/2 percent of the totals for the western region. 1977
fuel use should be viewed only as a "bench mark's because fuel efficiencies
will be significantly higher in 1986. After the gasoline and methanol
vehicles reach market equilibrium in each sector based upon the assumed yearly
sales, the demand for methanol fuel can be calculated. The annual methanol
consumption is presented in Tables 8-43 and 8-44.

As was the case with automobiles, the demand for methanol fuel for light
truck fleets will be estimated from the lower sales estimate from Table 8 -40.
Unlike automobiles, size distribution for light trucks across the various
sectors is not available. -.Hence, it will be assumed that the over-the-road
average fuel economy for light trucks is 11 miles per gallon,

Table 8-45 presents the estimated annual miles per vehicle and total
vehicle miles traveled, along with a resulting estimated gasoline consumption
for light trucks.

The annual miles traveled per vehicle were estimated as follows. The
1971 U.S. Department of Transportation Truck Inventory and Use Survey (TIUS)
provided annual miles driven for several economic sectors. The government,
utility, and rental fleets were covered in that survey. The police sector was
assumed to have a light truck utilization similar to other government sectors,
hence the government estimator from the TIUS was used. TIUS did not contain a
taxi sector but did contain a for-hire truck sector which was used as a
surrogate.	 The business sector was composed of several different subsectors'
so an average of 15,000 miles per year per vehicle was used. 	 The national
average light truck statistics were scaled to the western regional statistics
by utilizing the ratio of the western regional to national_ annual miles for
automobiles. (From BNL/Bobit Survey.)	 This assumes that the use differences,

8-118'
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Table 8-43. 'POSSIBLE Ml THANO1 0 DEMAND--AUTOMOBUE

SECTOR
MS'TI ANOL DEMAND

(Gallt,na x 106 per year

POLICE 1.1

GOVERNMENT 1.3

UTILITIES 20.4

TAXI 0

RENTAL 0

BUSINESS 12.0

TOTAL 34.8

`fable 8-44. POSSIBLE METHANOL DEMAND —LIGHT TRUCKS

SECTOR
METHANOL DEMAND

(Gallon$ x 106 per year'

POLICE 0.7

GOVERNMENT 5.8
U`1'lLx`t'IES 50.5

TAXI 0

RENTAL 0

BUSINESS (	 41.3

,TOTAL, 98.3

between the western region and the nation ate for light trucks are si►ni,lar to
tale use differences for automobiles.

Alter the 84aolne and methanolvehicles reach market equilibrium in
each sector based upon the assumed yearly halos (2.7 percent of sales ulti-
mately results in 2 7 percent methanol vehicle population), the demand for
methanol fuel can be calculated. The Annual methanol, consumption in calculated
in Table 8-45.	 ,



Table 8-45. LIGHT TRICK MILES TRAIVELSD AND FUEL CONSUMPTION
FOR WESTERN REGIONAL_FLSST VHEICLES

I

SECTOR

ANNUAL MILES
PER VEHICLE
(x 103 miles)

VEHICLE MILES
TRAVELED
(109 miles)

FUEL
CONSUMPTION
(x 106 gallons)

POLICE 8.7 .04 3.6

GOVERNMENT 6.5 .28 255
UTILITIES 11.9 2.04 185.5

TAXI 19.8 .038 3.5

RENTAL 18.7 .068 6.2

ROSINESS 12.5 1.825 166.0

TOTAL 4.21 390.3

i

a

p y	 ^,The resulting demand for methanol represents approximately 0.2 of 1
percent of the gasoline consumed in the western region. Such a number is
extremely small compared to petroleum products that are distributed by major
oil companies. It is very unlikely that such & small demand would engender
interest in establishing a supplier distributions system from a major company.
From another perspective, the resultant methanol demand. is approximately
equivalent to the pumping rate of 70 conventional service stations.

In a analogous manner to the estimate for automobiles, the rawer of the
safes estimates for methanol light trucks was used to estimate final demand of
methanol in gallomi, per year (Table 8-44).

As can be seen from the table, the differing purchase constraints and
use Factors between automobiles and light trucks le.tad to an appreciab ly larger

.
demand for methanol fuel From the light truck .fleets as opposed to the
automobile fleets. These estimates can be viewed as an upper bound for
methanol demand from fleets until such time as the methanol distribution
system becomes developed. Taken together, this demand is equivalent to about
1200 tons per day of methanol production, or about 1/3 of the capacity of a
remote natural gas plant.
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SUMMARY OF POTENTIAL METHANOL DEMAND IN CALIFORNIA TRANSPORTATION
SUBMARKETS

The total future demand for methanol in California in the transportation
sector will be in agregation of the demands generated by various submarkets.
The various submarkets that have been examined in this analysis include gaso-
line and methanol blends, private passenger neat methanol fueled vehicles,
neat fueled light-duty fleets, and finally, medium and heavy-duty applications
of methanol fueled engines. The ,following paragraphs briefly summarize the
results of the previous technical analyses as they apply to the potential
demand for methanol.

1. Methanol Demand in Refining and Blending Submarkets

There ex"kst two principal applications of methanol within these
submarkets. First is the use of methanol as one of the feedstocks in the
production of 'MBTE, the second is its use with a co-solvent in gasoline
blending. California demand for methanol for use as a feedstock to MBTE
production will be very small or non-existent. This is due to the absence in
California of high concentration, high volume sources of isobutylene
feedstocks. If a major petrochemical industry develops in California
comparable to that found along the Gulf Coast; this situation could change.

There will exist a small market for methanol as a gasoline blending'
agent ►,y the smaller (topping and hydro-skimming) refineries. This market
appears to be presently existent at current methanol prices but mainly
unsatified. However, the fraction of gasoline produced in California by such
refineries is quite small (:approximately 4 percent). For some of these
refineries, octane number barrel costs may be sufficiently high to justify the
use of high-priced co-solvents such as propanols if low-priced tertiary butyl
alcohol is not readily available. For the most part, however, it will be the
availability of relatively 'low-price tertiary butyl alcohol on the West Coast
that will determine the magnitude of use of methanol as a blending agent in
California. If all of the TBA produced in the United States wereshipped to
the California markets, approximately 70 percent of the gasoline produced in
California could be blended with methanol. The most likely application of
methanol TBA in California would be in the blending of ..higher octane unleaded
gasolines by the larger refineries or by upgrading regular grade to premium
grade by blenders or small refineries. Unless the front-end volatility of the
gasoline into which it is blendedis reduced, RVP limits may be exceeded
and/or driveability may suffer. Since the small gasoline blender has little
control over the front:°-end volatility of the gasoline he recieves, this
reduces the potential market. For the larger refineries, there is the
potential to "back out" butane and reduce volatility, however, it may not be
an economic solution to providing octane if the refineory's existing octane
number of barrel cost is low. Compared to the production of a remote natural
gas based methanol _plant of approximately 3,000 tons per day, the potential
demand from the blending in the refinery sector in California is rather
small For example, if we assume that 20 percent is a reasonable estimate for
the 'amount of gasoline that could potentially be blended with methanol, the
daily methanol demand is approximately 900 tons of methanol or a little less
than than one-third of a single plant's capacity.

a	 ,
i.

B-121_	 F



2. Methanol Fuel Dem4nd from Private Passenger Vehicle

Methanol-fueled vehicles appear to have attributes similar to
gasoline-fueled vehicles. Such vehicles could be built performance
equivalent, or perhaps superior, to gasoline-fueled vehicles, and the tailpipe
emissions are of a nature that', could lead to improvements in urban air quality
as described in Chapter 6. Furthermore, the methanol-fueled vehicle appears
to have a thermal efficiency advantage over that of a gasoline-fueled
vehicle. The basic question appears to be: is the thermal efficiency
advantage sufficient to overcome the relatively high methanol price? The
answer to such a question is more dependent upon the petroleum price scenario
that is chosen than it is upon the uncertainties in the efficiencies of
methanol versus gasoline vehicles. Therefore, methanol vehicle viability will
be briefly outlined in terms of the three scenarios used in this analysis.

a. Low Petroleum Price Scenario. Under the low petroleum price
scenario, liquid methanol-fueled vehicles do not achieve over-the-road cost
competitiveness with gasoline-fueled vehicles in the foreseeable future. This
is true for both remote natural gas-based methanol and coal-based methanol.
Dissociated methanol-fueled vehicles become cost-competitive with gasoline in
the early 1990s if the source of the methanol is remote natural gas. However,
even with dissociated methanol technology, coal-based methanol does not become
competitive in the foreseeable future.

b. Baseline Petroleum Price Scenario. Using the baseline petroleum
price scenario, liquid methanol-fueled vehicles become competitive with
gasoline vehicles around the year 1090if the methanol is assumed to be
derived from remote natural gas. The competitive advantage in over"the-road,
costs after the early 1990s is not dramatic. This implies a relative modest
growth rate in the methanol vehicle market. Dissociated methanol technology
would move the breakeven date forward by several years, but more importantly,
would significantly increase the cost advantage of methanol relative to
gasoline. Under this baseline petroleum price scenario, coal-based methanol
would not be competitive with gasoline in the foreseeable future even with
dissociated methanol vehicle technology.

C. High Petroleum Price Scenario. Under the high petroleum price 	 L

scenario, methanol-fueled vehicles would become competitive with gasoline it
vehicles in the late 1980s and after this time possess a significant cost
advantage relative to gasoline. The high oil price scenario combined with
dissociated methanol technology would permit coal-based methanol to be---
competitive with gasolint in the early 1990s.

In summary, it appears that coal-based methanol is far too expensive to
become cost competitive with gasoline before the year 2000. If the source of
methanol is remote natural gas, it appears that methanol-fueled vehicles could
be competitive with gasoline-fueled vehicles in the 1990s, but the size of the
cost advantage for the methanol-fueled vehicles versus the gasoline-fueled
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vehicles is far more dependent, upon the behavior of future petroleum prices
than it is on the efficiencies of the methanol engines.

3. Medium- and Heavy-Duty Applications of Methanol Engines---Trucks and
Buses

There exist several methanol medium- and heavy-duty engines that
are close to being commercially available. Several of these engines have been
road tested, both in New Zealand and Germany., The UPS Texaco TCCS engine was
originally designed to run on conventional fuels, but has been ,demonstrated to
function satifactory on methanol.

Based upon the road test work to date, there does not appear to be a
significant efficiency advantage of methanol vehicles over diesel vehicles in
medium- and heavy-duty applications., This implies that no significant market
would be expected to develop until methanol and diesel reach approximately
parity in theprice per Btu. Under the baseline petroleum price scenario, Btu
parity with distillate oils is not reached by low price remote natural gas
based methanol until well after the year 2000.

4. Near-Term Ligh-Duty Fleet Vehicles

There now exists a very small methanol market in commerical fleet
vehicles'supported by several small companies performing vehicle conversions
to neat methanol. If quality methanol vehicles were available and the price
of methanol fuelwas such that these vehicles would have an over-the-road cost
competitiveness with gasoline, the near-term potential market is probably
still limited to between four and ten thousand vehicle sales per year. This 	 7

I( is due to constraining factors such as .uncertainty -onresale value, .ready
availability of methanol fuel, and customary maximum trip lengths for the	 i
vehicles. If methanol vehicles were in fact sold at this volume, it would
imply an increase in methanol demand of between about 20 and 75 tons of
methanol per day. Such a volume is quite small in comparison to a remote
natural gas methanol plant size of between two and four thousand tons per day.

5. Skimmary

In summary, the most likely near-term generator of methanol demand
in California is methanol gasoline blends. The principal constraint on this
market isthe California availability of low-priced co-solvents, not the price
of methanol itself. Neither medium- and heavy-duty trucks or buses, or light-
duty commercial fleets appear to possess the potential for generating_	 ,r
significant near- to mid-term methanol demand. Neat methanol-fueled private
passenger vehicles appear to become over-the-road cost competitive with
gasoline vehicles in the early 1990s. A modest growth rate in this market
probably would notoverstress the remote natural gas-based methanol resource x
potential. If 10,000 methanol vehicles were added in California, this would

4

generate approximately 50 to 75 tons per day of methanol demand. Such a
growth rate should be compatible with a modest increase in remote natural gas 	 R
methanol capacity,
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G.	 CONCEPTS FOR FURTHER ANALYSTS

In an analysis such as the California Methanol Assessment, the depth of
the detailed analysis is, of necessity, sacrificed somewhat by the requisite
breadth of the scope of the study. Within the market sectors of methanol
blends, private passenger cars, and fleet vehicles there are areas which may
be deserving of further inquiry. The major results of such further inquiries
would be a refinement of the size and timing of the expected methanol demand.
Within each of these areas, a market research activity may be warranted to
more precisely determine the expected behavior of methanol in the market-
place. This subsection provides an outline of these market research
activities in the above three areas.

The analysis of the potential demand for methanol by fleet vehicles in
California was based, in part, upon a 4-year old fleet buyer ' s survey con-
ducted by Brookhaven National Laboratories and Bobbit Publications for the
Department of Energy. The survey was designed to address market questions
relating to electric and hybrid vehicles. The understanding of the market for
methanol vehicles in California fleets can be refined and improved by a
similar survey, oriented specifically toward methanol-powered vehicles in
California. Such an analysis should be performed by a firm specializing in
automotive_ market analysis with experience in the analysis of the fleet
vehicle market in California. A fleet buyer's market research study for
methanol vehicles should be stratified by market sector and be focused upon
the value and liabilities in the marketplace of the attributes of methanol
vehicles. The effects upon the value of methanol vehicles of resale price and
ready availability of methanol fuel should be specifically examined. Such an
analysis would be useful to state planners in further extensions of the
California methanol fleet activities and, additionally, to automotive
companies and energy cimpanies in eff%ciently planning for possible methanol
introduction.

The economic potential of methanol blended into gasoline was examined in
this study with a simple model which was sensitive to octane number, cost, and
vapor pressure. In reality, the economics of refinery operations for gasoline
blending are far more complicated than described in this simple model. To
obtain a better estimate of the economic potential of methanol in this market
sector a refinery balance and cost linear programming analysis should be done.

Such an analysis would best be performed by a firm specializing in
technical and management consulting to the California refinery industry that

t	 has in-house capability in refinery balance and cost/economic linear
! programming models and a database representative of California-specific

refineries, including crude slates and product mixes. Due to the small
available quantity of inexpensive co-solvent (TBA), such an analysis should'

R

	

	 examine the tradeoff of various concentrations of co-solvent and parametri-
cally examine the gasoline methanol price combinations that would present
other more expensive co-solvents to enter the marketplace. In addition, such
a refinery analysis should be sensitive to the seasonal nature of vapor
pressure restrictions _ on the gasoline to examine if methanol blends are a
seasonal product. The analysis should also be sensitive to the constraints

p °	 imposed by Section 211F of the Clean Air Act and the phase separation



constraints driven by temperature and water present in the refinery system.
The results of such an analysis would permit both state and corporate planners
to better assess magnitude and timing of potential methanol demands and the
relationships generated in other market sectors.

The methanol demand generated by private passenger vehicles was
estimated in this analysis by using the surrogate of older-the-road variable
cost for marketplace viability and using analogies to diesel vehicle s for a
potential introduction rate. In fact the automotive market is far more
complicated than that represented by such a simple estimating procedure.- -

Uncertainty in this largest potential sector can assuredly be reduced by a
market research activity focused upon methanol vehicles. Such a market
research activity would be best performed by a recognized market research firm
specializing in automotive market analysis and sensitive to the California
marketplace. To most effectively conduct a market research activity, some
prior data and information would need to be developed. This would include a
complete description of the consumer perceptible attributes of several
methanol-fueled vehicles or, preferably, several methanol'vehiclee that could
be used for the market research activity. Additionally, sufficient
information to properly educate the participants in the market research is
necessary because the characteristics of methanol vehicles are not well known
by the general public. The objectives of a methanol vehicle market research
activity in California would include;

(1) Identifying early markets for methanol vehicles by market sector,
value within the market sector, and potential size of the market.

(2) Identifying the most market viable types of methanol vehicles.

(3) Quantifying the relationships of various factors that can influence
the market viability of the methanol vehicles, including methanol

prase vs. gasoline price and the market viability impact of the
size of the methanol supply infrastructure.

The results of such an analysis would permit a better estimate of the
potential timing and magnitude of methanol demand and, therefore, the
potential impact upon air quality and other factors.
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CHAPTER NINE

METHANOL UTILIZATION IN STATIONARY APPLICATIONS

A. INTRODUCTION

California electric utilities have been identified as a likely market
for methanol because of their current dependence on oil, the apparent ease of
adaptation .n of boilers and combustion turbines for methanol use, the need to x
reduce emissions of air pollutants, and the ability to consume large quanti-
ties with a minimum of infrastructure development. 	 Industrial energy applica-
tions have also been considered as potentially significant. 	 This chapter
describes an investigation of the potential use of methanol in the California
utility and industrial sectors.	 The investigation surveyed current and pro-
jected energy demand and supply (Section B), the technologies available for

kF methanol utilization ( Section C), and the factors influencing utility and
E' industrial fuel selection ( Section D) in order to identify and quantify

f
potential methanol roles (Section E). 	 Barriers to widespread use of methanol
in stationary applications are summarized in Section F along with the implica-
tions of policy options that could be used to overcome these barriers.
Conclusions are presented in Section G.

The analysis presented below is based on discussions with representa-
tives of key utilities and regulatory agencies as well as reviews of utility,
industrial, and CEO supply /demand forecasts and technical literature on
methanol applications.

B.	 CALIFORNIA STATIONARY ENERGY DEMAND AND SUPPLY a

This section establishes potential markets for methanol in the
stationary sector with emphasis on the next twenty years. 	 The markets include

t'

utility and industrial fuel use and industrial cogeneration.

1.	 Overview of Utility Demand and Supply Projections

Table 9- 1 shows current and projected California utility energy 
demand and peak capacity requirements.	 It should be noted that these are
projections by the utilities and that the California Energy Commission (CEC)
projects S	 g	 half	 Table 9-1.	 The analysis
concentratedWon Pacific ^ lGas and Electric (PG &E), Southern California Edison
( SCE) and the Los Angeles Department of Water and Power (LADWP), since they

p

represent 87 percent of the total demand and a similar proportion of the oil
and gas usage.	 A summary of generation technologies 

in 
the resource plans

submittedby the three utilities to the CEC is presented in Table 9-2.

Practically all of the gas and residual Foil shown in Table 9-2 is
r

burned in conventional steam turbine units, while the distillate oil (and a
small proportion of the g as) is used in peaking combustion turbines and (in
SCE's case) in combined cycle units. 	 In 1981, SCE's steam turbine generation
was split 38:62 between oil and gas, while PG&E used oil in their steam
turbine units only 20 percent of the time.
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Table 9-2. UTILITY RESOURCE PLANS

103 GWh PRODUCED
GAS OR
RESIDUAL DISTILLATE

OIL ' OIL COAL NUCLEAR OTHER* TOTAL

PG&E
1981 33 0.3 0 3 44 80
1990 19 0 0 18 52! 89
2000 20 0.3 0 18 (	 75, 113

SCE
1981 34 4 10 1 20 69
1990 19 3 11 16 31' 80'
2000 15 3 -18 20 40' 96

LADWP
1980 10 small 6 0 5 21
1990 5 small 10 2 5 22
2000 5 small 11 2 8 27

*Hydro (average conditions), renewables, cogeneration, purchases.

A key uncertainty in the growth of utility markets for methanol is the
predicted decline in utilization of oil- and'gas-fired steam turbine units.
Two forces are at work here: (1) retirement of older, low-efficiency units
under the combined pressures of rising maintenance and fuel costs, and
reduction of capacity factors for newer units as the new out of basin coal and
nuclear ,plants come on line, and (2) the pressure to reduce emissions in
metropolitan areas increases. The latter factor is particularly significant
for SCE which has about 8,000 MW of modern steam turbine units located in
environmentally sensitive areas of southern California. Availability of a
competitive, environmentally acceptable fuel, coupled with the combination of
a financial climate prohibitive to capital investment, could lead to substan-
tially increased reliance on existing steam turbine units relative to that
shown in Table 9-2. Methanol could satisfy these fuel specifications, but so
could natural gay;,, if it is available.

As a consequence of its gas supplying role, PG&E has. _long-term gas pro-
curement arrangements which they believe will satisfy a large proportion

_	 of their fuel needs (in addition to the needs of their gas customers) for at
least the next ten years, and. this takes them beyond the life expectancy of
many of their steam turbine units. On the other hand, SCE and LADWP are
subject to curtailment in the event of gas shortages, and thus cannot rely_
on gas being available to them. They are also concerned about the price
increases that will follow deregulations and are thus very interested in
finding alternative fuels for their existing boilers.
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Peaking turbines and combined cycle units, which must use expensive
distillate fuels when gas is not available, are likely targets for methanol,
but the projected fuel use in such units is small compared to steam turbines.
There is, however, a chance that some additional combined cycle units will be
built for intermediate load duty, and the likelihood of this could be increased
if availability of competitively priced methanol was assured.

2.	 Existing Utility Units 	 u

Existing steam turbine and combined cycle units,appear to represent	 t

the largest potential utility market for methanol, certainly in the next
decade, and probably in the 1990's as well. (Except as a very small first step
in the early phase of methanol supply build-up, existing combust-ion turbines
represent negligible fuel use--a few hundred gigawatt hours in 1979.) Table 	 s
9-3 identifies the steam turbine and combined cycle generating ,capacity for
the three major utilities. The steam turbines are split between modern high
efficiency units (heat rate less than 10,000 Btu/kWh, generally on-line after
1960) and older units. SCE's combined cycle units all have substantial useful
life remaining. Projected utilization of these units, shown in Table 9-2,
indicates reduced reliance on them. (Most of the residual oil and gas in
Table 9-2 is targeted for the modern steam turbine units, while nearly all of
the distillate oil is for the combined cycle units.) However, as discussed
above, methanol availability could increase reliance on these units.
Operating all of the modern steam turbine and combined cycle units at a 50
percent capacity factor equates to more than 80,000 tons of methanol per day.

SCE represents the most significant potential market for methanol
because of their current dependence on oil and gas, the relative modernity of
their generating units, and the location of most of their units in environ-
mentally sensitive areas. 	 PG&E, while also using large quantities of oil and
gas today, is a less likely target for methanol because of their access to
natural gas and the relative age of their steam turbine units. 	 Facing high
oil prices and a shortage of natural gas, PG &E would hook first toward a
source of synthetic natural gas that could be integrated with their gas supply
operations.	 LADWP's situation is similar to SCE's in regard to oil and gas
dependence and environmental pressures, but they have made major commitments

Table 9-3.	 Existing Oil- and Gas-Fired Generating Capacity ;.

CAPACITY (GIGAWATTS)
MODERN	 OLDER

STEAM	 STEAM	 COMBINED	 TOTAL
TURBINES	 TURBINES	 CYCLE

{

SCE	 8.0	 0.9'	 1-.0	 9.9

PG&E	 4.4	 2.9	 7.3

LADWP	 2.2	 0.9	 3.1
ix
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toward a shift to out of state coal-fired generation and apparently have less
difficulty in financing such ventures.

3. SCE and LAWDP Systems

Oil and gas fired elements of the SCE and LADWP systems have been
studied in detail because of their potential significance in the transition
to large-scale methanol use. Key parameters of the two sets of existing units
are listed in Tables 9-4 and 9-5. Unless otherwise noted, all steam turbine
units can currently fire either residual oil or natural gas, while all combined
cycle and combustion turbine units can fire distillate oil or natural gas. The
SCE oil distribution network, which could play a role in delivery of methanol,
is illustrated in Figure 9-1.

New baseload facilities in the SCE and LADWP resource plans are either
nuclear or coal-fired, but SCE's resource plan calls for additions of 540 MW
of new combustion turbines in the 1992-95 time period (to augment peaking
capacity) which could fire liquid or gaseous fuels. Expected capacity factors
for these units are less than 5 percent.

4. Industrial Energy Demand and Supply

Stationary industrial energy use in California for the year 1979
was approximately 0,9 x 10 15 Btu, with about two-thirds derived from natural
gas and the remainder split about evenly between oil and electricity. An
increase to 1.1 x 10 15 Btu is expected by the year 2000 (Ref. 1).

Table 9-6 shows a breakdown of energy used in 1974 for the top eleven
industries by SIC code. Energy intensiveness of each group is also shown
since those that are energy intensive will be more sensitive to fuel cost than
those that are not.

Additional detail on the top energy users is provided in Table 9-7. All
of the boiler applications and a portion of the furnace and kiln applications
are potential users of methanol. Many boiler operators are very flexible,
relative to fuel switching and are very sensitive to Biel prices. Long-term
fuel supply contracts are rare in the industrial. sector.

The biggest group of industrial energy users are the petroleum refin-
eries who derive much of their energy from burning low value products within
the refinery (e.g., for Chevron's California refineries the ratio is 2/3
internal fuels to 1/3 purchased natural gas). however, many of the refineries
are in environmentally sensitive areas and are under pressure to reduce
eml:°:sions. They also have a need for offsets whenever expansion is planned.
Thus, they should not be ruled out as potential methanol users (although Table
9-6 indicates they will be particularly sensitive to fuel cost).

s

4
iY

J

Optimistic estimates of the potential market for methanol in the indus-
trial sector can be obtained by including all of the boilers and half of the
kilns, furnaces, and petroleum refining applications indicated in Tables 9-6
and 9-7. The resulting estimates are 0 5 x 10 15Bty/yr (70,000 tons/day of

T 9-5
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Table 9-6.

GAS TURBINE FUEL
NEW GENERATING USE AT END OF PERIOD

PERIOD CAPACITY ( MW) (tons/day of Methanol)
1979 - 1985 587 3,300

1986 - 1992 935 8,600

1993 - 2000 765 1	 12,900

ORIGINAL PAGE IS
OF POOR QUALM

TOP ENERGY CONSUMING INDUSTRIES IN CALIFORNIA, 1974 (Ref. 2)

SIC
CODE CLASSIFICATION

TOTAL ENERGY USE
(1012 Btu)

ENERGY INTENSIVENESS
(103 Btu/$ of product)

29 Petroleum and coal 165 49
32 Stone, clay, and glass 100 53
20 Food and kindred 92 8

10-14 Mineral extraction 92 NA
33 Primary metals 60 27
28 Chemicals 57 17
26 Paper and allied productsi 36 21.
34 Fabricated metals 31 7
37 Transportation equipment 28 2
24 Lumber and wood 22 8
36 Electrical machinery 17 3

Other 54

Total	 755

methanol) at present and 0.6 x 10 15Btu/yr (84,000 tons/day) in the year
2000. The most likely users would be the small fraction of this market Con
the order of 10%) that currently have no access to natural gas and must rely
on expensive distillate oil.

The need for offsets may provide an inducement to use methanol in a
number of industrial applications. The value of methanol in producing offsets
is discussed in Section D below.

J{

5.	 Industrial Cogeneration

A recent study performed for the California Energy Commission
(Ref. 27) provides estimates of the potential for methanol use in industrial 	 H
cogeneration systems based on gas turbines. The fuel use estimates for elec-
trical generation are repeated in the following table (fuel use for industrial 	 i
purposes by the cogenerators is part of the total accounted for in subsea
tion 4) .

4

These estimates are for the "current trends" casein Ref. 27.^^	 a

Substantially, higher estimates are also provided in a preferred outlook" 	 {
case. As in subsection 4, methanol would have to compete with distillate oil_
and natural gas (if available) for this market.

t

d'i	
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Table 9-7. FUEL CONSUMING PROCESSES IN KEY INDUSTRIES (Ref. 3)'

^i

SIC	 INDUSTRY
PURCHASED FUEL

(1012 Btu)
FUEL CONSUMING

PROCESSES

20	 Food 112.5
2011	 Meatpacking 5.45 boilers
2026	 Milk 4.53 boilers
2033	 Fr. i Veg. Canning 19.32, boilers
2034	 Dried Fr. 6 Veg. 5.99 food dryers
2037	 Frozen Fr. 6 Veg. 2.345 food freezers
2038	 Frozen Specialities 1.997 food freezers
2047	 Pet Food 1.34 boilers
2048	 Animal Feeds 3.26 boilers(60%),`rain dryers(402)
2051	 Bakeries 5.05 boilers
2063	 Sugar Refineries 25.60 boilers
2052	 Beer 3.22 various
2084	 Wine 6 Brandy 3.34 boilers
2065	 Distilled Liquor 2.05 boilers
2086	 Soft Drinks 2.51 CO2 generators
2091	 Seatood Canning 3.11 boilers

26	 Paper 33,89
261	 Pulp Mills 1.06 boilers
262	 Paper Mille 12.07 boilers
263	 Paperboard Mills 1!?.34 boilers
265	 Containers 6 Boxes 6.01 boilers

28	 Chemicals 77.91

2813	 Industrial Gases 8.43 various(isain energy is else.)
2821	 Plastics 8.35 boilers
2822	 Synthetic Rubber 0.60 boilers
2841	 Soap 6 Detergents 3.46 boilers(30x), various(7Z)
2844	 Toilet Goods 0.71 boilers(30X), various(7X)
2851	 Paint 2.73 grinders, mixers	 -
2865	 Organic Chemicals- 1.19 boilers
2869	 Organic Chemicals 27.87 boilers
2873	 Nitrogen Fertilizer 19.36 boilera(50%), various (50X)

29	 Petroleum 6 Coal 173.83
2911	 Oil Refineries 198.6 boilers(25X), tubestills

6 Others (75X)
32	 Stone, Clay, Glass 126.41
321	 Flat Class 3.68 melters(70X), onnealers(IOX)
322	 Other Class 18.24 melters(70%), annealers(IOX)
3241	 Cement 41.29 cement kiln
325	 Brick 6 file 9.20 brick kiln
326	 pottery 3.91 clay kilns
3276	 Lime 3.93 lime kilns

33	 Metals 6940
3312	 Iron-6-Steel Mfg. 11;.22 coke oven, blast furnace,

steel turnace, soak pit
3315	 Stell Wire 0.76 heat and reheat furnace
3316	 Cold Finish Steel 0.54 heat and reheat furnace
3317	 Nonferrous Wire 1.61 heat and reheat furnace
332	 Steel Casting 5.93 reverberatory furnaces
3.141	 Nonferrous Scrap 3:46 reverberatory furnaces
335	 Nonferrous Rolling 6,96 heat and reheat furnaces
336	 Nonferrous Casting 4.48 reverberatory furnaces
339	 Metal Heat Treat 11.64 heat and reheat furnaces

Total of California Mf gs • 753.53

E
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C.	 METHANOL UTILIZATION TECHNOLOGIES FOR STATIONARY APPLICATIONS

For stationary applications, methanol is primarily considered as a
potential fuel for turbines, boilers, or fuel cells used in utility or
industrial power g,gr,eration plants. Methanol use in gas turbines can be
further divided braween simple turbines for peak and intermediate load
requirements and combined cycle configurations for base load requirements.
Repowering a steam cycle utility plant to a methanol based combined cycle
configuration is considered as a base or intermediate load utilization.

Boiler use of methanol is considered here for steam generation to pro-
duce either process steam for industrial use or turbine steam for utility use.
This section summarizes .information compiled on performance, fuel requirements,
emissions, safety, equipment conversion, equipment and operating costs, and
maintenance for methanol use in turbines, boilers and fuel cells.

3

1.	 Utilization of Methanol in Gas Turbines
L

a.	 Performance. Key performance features of methanol as a fuel
for gas turbines that will be considered are as follows:

(1) Efficiency (usually expressed as heat rate in fuel
Btu/kW-hr based on the higher heating value of the fuel).

(2) Existing facility power rating substituting methanol as
the fuel.

(3) Reliability of turbines using methanol.

(4) Availability of turbines using methanol.
T1

Gas Turbine Heat Rate. Performance tests have been run by
Southern California Edison (SCE) (Ref, 4), Florida Power Corp (Ref. 5), and
General Electric Company (Ref. 6), with .ailable results given in Table 9-8.
The heat rate using United Technology Corporation's (UTC's) FT4C-1 free tur-
bine in the SCE test is slightly better for methanol then for natural gas or
Jet A fuel. Depending on the mode of operations the methanol heat rate is j
about l to 3 percent less than that for Jet A or natural gas.

Further data for the SCE tests are presented in Table 9-9. With Jet
Fuel A,-it was necessary to inject water with the fuel to meet the 'local NOx
emission requirement whereas running methanol did not require water inject-
ion, Hence in comparing efficiencies, the wet Jet Fuel case should be
compgred with the dry methanol case. When running at a 24 MW load for both
fuels, methanol shows a 2.4 percent lower heat rate; when running at an
imposed turbine temperature limitation, methanol shows a 3.2 percent lower
heat rate.

Gas Turbine Facility Power Rating. Referring to the SCE	 k

test data presented in Table 9-9, the power rating of the FT4C engine when
running at:`an imposed frame turbine inlet temperature limitation of 1206OF is

tl
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JET A	 METHANOL

WATER INJECTION (lb H20/lb fuel) 0.35 to
(Note 1) DRY 0.5 DRY 0.2

Running in all modes to dry base	 ower load of 24 MW

24 24MW 24 24
Heat Rate (LHV-Btu/kW-hr) 11,863 12,014 11,722 11,863
T 2 ( OF) (Note 2) 1,206 1,180 1,153 :1,137,
Fuel Consumption:	 gpm 37.4 38.0 82.4 83.4

Running in all modes to dry base load of T2 = 1206OF

T 2 ( OF) 1,206

111,863

1,206 1,206 1,206
MW 24.0 25.5 27.1 27.9
Heat Rate (LHV-Btu/kW-hr) 11,863 11,481 11,530
Fuel Consumption:	 gpm 37.4 3 9 8 91.31 94.5

NOTES:	 (1)	 Water injected with Jet A to meet NOX emission limitation;
dry methanol did not require water for NOx.

(2)	 T2 in the free turbine inlet temperature.

ORIMAL: PAN 18

OF PWR QUALM

Table 9-9. SCE METHANOL GAS TURBINE PERFORMANCE TESTS1

^k

, 

41,

A

25.5 MW for Jet A and 27.9 MW for methanol. 	 This represents a power rating 4
increase^of methanol over Jet A of 9.4 percent while maintaining a 2.8 percent
heat rate advantage.	 This compares well with estimates of 6 percent and 10
percent power output gains by GE and Westinghouse respectively when using
methanol (refer to Table 9-8). 	 In Florida Power Corporation's test using
UTC's FT4C-lDF engine, the output was limited to 18 MW out of a maximum
capacity of 34 MW burning oil.	 The power output was limited because the fuel
supply system was not adjusted for the higher volumetric flows of methanol
compared to a distillate fuel.

b.	 Fuel Requirements.	 Fuel requirements are defined here as the
fuel specifications that must be met in order to effectively use methanol in
gas turbines.	 There are currently no standard specifications for methanol as 4

a gas turbine fuel.	 The ASTM Specifications for Gas Turbine Fuel Oils (D-2880)
are applicable to hydrocarbon liquid fuels varying from naphtha (No. O-GT
grade) to residual (No. 4-GT) fuel oils. 	 Pure methanol would meet all the
specifications for the No. O-GT fuel.	 However, since methanol's flash point
of 520F is below 100OF and its viscosity of 0.6 cSt at 400C is less than
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7.3 cSt, the ASTM recommendation is that the turbine manufacturer be consulted
with respect to safe handling and fuel system design.

The gas turbine fuel oils' specifications also have a maximum water and
sediment volume% of 0.05 for grades 0-GT, 1-GT, and 2-GT and 1.0 volume% for
3-GT and 4-GT. Since water and methanol are miscibl( ;A : ,h each other, volume%
as a specification term is inappropriate. Methanol w11 ,tways contain some
water, the amount depending on the degree of water fractionation at the
methanol production plant plus the amount of water picked up in transit from
the production site to the gas turbine inlet. The degree of water fractiona-
tion at the methanol synthesis plant is a choice that must be made with the
following considerations:

(1) Including limited amounts of water in methanol has the effect of
increasing both the heat rate and powerrating of the gas turbine
unit. However, this is a minor effect since the amount of water in
fuel grade methanol will probably range from 1 to 5 weight%. From
the SCE test, the effect of adding 17 weight% water to methanol was
to increase the heat rate by about 1 percent and the plant rating
by about 3 percent.

(2) The incremental costs to. produce the "dry," or chemical grade
methanol vs, the "wet" or fuel grade methanol.

(3) The incremental costs to ship the wet methanol withthe extra water
vs. the dry methanol.

The water that is picked up by methanol in transit could be a particular
concern to turbine operators if the water contains trace metals. For regular
turbine fuel oils, ASTM recommends a maximum of 0.5 ppm by weight for vana-
dium, sodium + potassium, calcium, and lead to prevent turbine blade corrosion.
In order to reduce the metals to the recommended 0.5 ppm level, fuel oils can
be processed: by separating water (which includes much of the metals) via
gravity settling, coalescing, and filtration. With methanol, these methods
are not applicable since water and methanol are miscible. Hence, any water
picked up in trucks, pipelines, tamers, barges, etc. containing dissolved
metals would carry through, 	 the gas turbine. In addition, since methanol's
heating value is about ha if that of fuel oils, the mass flow rate is double
and the resulting trace metal requirement should be half that for fuel oils,
or 0.25 ppm by weight (ppmw).

Other components typically found in methanol are not expected to be a
concern. Three compounds found in methanol include dimethyl ether, methyl r;
formate, ethanol (and others); however, the total hydrocarbon impurities
amount to only about 2000 ppmw maximum using current methanol synthesis
technology (Ref. 7).

C.	 Emissions. Emissions considered here from the use of methanol -	 >
as a fuel include NOx, CO, hydrocarbons, aldehydes, solid particulates and
S02 in the exhaust gases and methanol from fuel vaporization losses. 	 -	 f-

4
R
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NOx Emissions. NOx emissions measured during the SCE test
program using UTC s FT C-1 gas turbine are presented in Table 9-10 as a
function of load. Methanol produces exhaust well below the NOx limit at all
loads, while both Jet A and natural gas without water injection produce
exhaust above the limit at all load levels tested. In order to reduce the
emissions below 75 ppnty, water must be injected with Jet A fuel ,at a 0.35 -
0.5 to 1 weight ratio and with natural gas at a 0.3 to 1 weight ,ratio. Water
injection, however, has the disadvantage ofincreasing the heat,rate:as seen
in Table 9-9. (It should be noted that local air pollution controlagencies
in California have tighter NOx limits, but methanol can-probably-meet them
without water injection.)

The primary reason for methanol's lower NO x emissions is due to its
lower adiabatic flame temperatures which are approximately 200 OF and 300OF
lower than natural gas and Jet A fuels, respectively. The turbine tests show
that for all fuels, NOx increases as the load increases. This is apparently
due to the effect of increasing the relative fuel to air flow while the load
increases as shown Table '9-11. As the fuel to air weight ratio increases, it
is probable 'that the maximum combustor temperature increases also, thereby
increasing the NOX formed.

Earlier short-duration tests by the Florida Power Corp. using a UTC
FT4C-1DF gas turbine also confirm the low NOx emissions for methanol. 	 Tests ;	 a

showed methanol well below the EPA limit of 75 ppmv, representing roughly a 74
percent NOx reduction when compared to No. 2 fuel oil. 	 GE laboratory tests
also confirm the significantly lower (by about 60 percent) NOx emissions
when compared to No. 2 distillate fuel.

The effect of water injection in reducing NO x emission from methanol
was also investigated by SCE.	 The data in Table 9-12 indicate that a 50 to 60

percent reduction is possible when adding 0.22 lb. water per lb. methanol.

CO Emissions.	 CO emissions as measured during the SCE test
program using UTC's FT4C-1 gas turbine are presentedin Table 9-12. 	 CO
emissions are higher for methanol than for Jet A (dry) at all load levels.
However, when water is injected with Jet A-fuel, the CO emissions apparently
are similar to those with methanol.

r

rt	 _Al

Table 9-10.	 NOX EMISSION LEVELS IN SCE TEST

LOAD

PPM NOX @ 156 02

8 MW 16 MW 25 MW

Methanol (dry) 20 35 40
Jet A (dry) 90 140' 180
Jet A (wet) -- 45 70
Natural Gas (dry) -- 80 110
Natural Gas (wet) -- 50 70

9-16
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Le 9-11. FUEL/AIR RATIOS AND NO X EMISSIONS AS A FUNCTION OF LOAD

FUEL
MW

OUTPUT

CALCULATED
FUEL TO AIR
WEIGHT RATIO

PPMV - NOX
@ 15% 02

Methanol (dry) 10 .0184 25

15 .0311 35

20 .0342 40

24 .0358 42

25 .0372 45

Jet A (dry) 10 .0130 110

15 .0144 140

20 .0157 160

24 .0167 180

25 .0173 185

Table 9-12. EFFECT OF WATER INJECTION ON NOX EMISSIONS FROM METHANOL

MW OUTPUT

PPMV NOX @ 15% 02

DRY METHANOL WET METHANOL

6 22 11

17 351 20

25 45 18

^t

^.	 Earlier tests by Florida Power Corp. also showed methanol having higher

	

CO emissions than dry No. 2 Distillate Fuel Oil. At 20 MW load, CO emissions,	 r
corrected to 15 percent 02 , were about 60 ppmv compared to 30 ppmv for No. 2
Fuel Oil. When the load was decreased, CO emissions increased to that shown
in Table 9-1.3.

I

t-. it
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Table 9-13. CO EMISSIONS IN SCE TEST

LOAD
;PPM CO (as measured)

S MW 16 MW 25 MW

Methanol (dry) 250 100 40

Jet A (dry) 225 50 10

Jet A (wet) - 110 15

(
k

JET A DRY METHANOL
REQUIRED WATER

LOAD LEVEL 'INJECTION RATE NOX {ppmv CO (ppmv NOX (ppmv CO (ppmv
(MW) (lb/lb fuel) @ 15% 02) @ 15% 02 ) @ 15% 02 ), @ 15% 02)

20 0.7 40 90 40 90

25 0.8 45 60 45 60

It should be noted here that while dry methanol has higher CO emissions
than dry Jet A or No. 2 Fuel Oil, if NOX emissions of either fuel oil are
brought down via water injection to the level of NOX emissions of methanol,
then the CO emissions of methanol and the fuel oils will tend to be about
equal. This effect is illustrated in Table 9-14. These values show that at
the load levels of'20 and 25 MW, the combined emissions of CO and NO, for
both dry methanol and water-injected Jet A are about equal.

The SCE tests indicated CO emissions of natural gas were signifi-
cantly higher than for methanol or Jet A fuel. At 25 MW load conditions, CO
from dry natural gas was about 2-3-times that fromdry methanol (125-175 ppmv
vs. 60 ppmv). At lower loads, natural gas still had significantly higher
emissions. It should be noted, however, that testing of smaller turbines with
an air atomization nozzle produced 23 percent less CO emissions with gas than
Jet A fuel. The turbine tested was a 60-HP Solar International T-45M-13
machine.

Hydrocarbon Emissions. During the SCE tests, hydrocarbon
emissions from methanol were higher than from Jet A but about an order of
magnitude less than emissions for natural gas. At -a 24 MW load, .Jet A

Table 9-14. COMPARISON OF EMISSIONS FROM WATER
INJECTED JET A AND DRY METHANOL



emissions contained about 2 ppmv of hydrocarbons, methanol about '8 ppmv, and
natural gas about 200 ppmv (all fuels were dry and emissions corrected to 15
percent 02). Decreasing the load level increased emissions -for all fuels.
At a 20,MW load, Jet A emissions contained about 3 ppmv, methanol about 15
ppmv and natural gas about 250 ppmv. Water injection in the fuel had the
effect of increasing emissions. The increase is apparently less pronounced
for Jet A than for methanol. Injecting water with Jet A at weight ratios up
to 0.6 still produces less than 5 ppmv both at 20 and 24 MW load levels.
Injecting water with methanol at a weight ratio of 0.2 results in hydrocarbon
emissions of about 18 ppmv at a 24 MW load level.

Aldehyde Emissions. Aldehyde emissions were measured
separately from hydrocarbon emissions during the SCE test. Emissions from
methanol were low, ranging from 0.2-2.0 ppmv at 15 percent 02 in the exhaust
gas. For Jet A, emissions were significantly lower than methanol at 0.003-
0.050 ppmv; for natural gas emissions were significantly higher at, about 10
ppmv.

Solid Particulate Emissions. During the SCE test, solid
particulates in the exhaust gas using methanol 'were measured at 0.003 to 0.005
lb/106 Btu; emissions for Jet A measured. about 5 times as much at 0.022
lb/10 6 Btu. For Jet A, it was found that a significant portion (30-50X) of
the particulates were composed of sulfates. Since methanol has no sulfur,
sulfate particulates were not found.

S02 Emissions. Since methanol contains no sulfur except for
what is absorbed through co-mingling in transport and storage, emissions will
be low. For Jet A fuel, the emissions for 0.1 weight% sulfur are 0.1 lb
S02/10 6 Btu; for natural gas with sulfur compounds in the gas estimated at
10 ppmv (includes odorizing compounds), sulfur emissions are about 0.002
lb/106 Btu,

Fuel Vaporization Losses, Since methanol has a significantly
higher vapor pressure than distillate fuel. oils (92 mm Hg vs. 0.1 mm Hg at
680F), vaporization losses to the atmosphere could be significant if proper
precautions are not taken.- During the SCE test, it was ,estimated that 8--10
gallons per day of methanol were lost due to evaporation. The loss was blamed
on a faulty seal between. the floating roof and the walls of the methanol

	

L	 storage tank. Examination of the interior of the tank at the end of the test
showed that almost 3-inches of area between the floating roof assembly and the

	

"	 tank wall around the circumference of the tank were exposed to the atmosphere.
The loss of 8-10 gallons represents about a 0.05 percent loss of total
methanol. However, it should be noted that methanol is less reactive t.o
produce ozone than evaporated distillate oil.

}

d.	 Safety. Some of the properties of methanol require that

	

r1	 special fuel handling precautions be made. These properties arecompared with
Jet A fuel in Table 9-15. The wide flammability limits of methanol indicate

	

K	 that special precautions for startup and shutdown should be considered.

Mawr

^	 J
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Table 9-15. COMPARISON OF PROPERTIES OF JET A FUEL AND METHANOL

^- r

JET A METHANOL

Flammability Limits 1-10 6.7 to 36.5
(% by volume in Air)

Flash Point 100 min. 52
( OF) by Specification

Vapor Pressure 1	 0.1 92
(mm Hg @ 68oF)

Autoignition Temperature 450 725

(OF)

,

Explosion proof electrical equipment, turbine casings, methanol vapor
detectors and alarms are some of the equipment that may be required, 	 I- the a .,
SCE test, precautions taken incl ^ded modifying the turbine enclosure to _	 :r
incorporate a methanol vapor detector and installing a floating roof tank.
Startup with methanol was accomplished w'thout any supplementary fuel assist.

e.	 Equipment. Conversion and Costs.	 The following is a list of E
new hardware that might be required for conversion of gas turbines to methanol
firing:

o Storage with vaporization preventatives ( floating roof tank, vapor

' recovery, blanketing, etc.).

o
j

Explosion proof fuel pump and lubricating system.

o Fuel lines, valves, seals.

o Fuel filter(s).

o Fuel nozzle.

o Combustor can.

o Methanol vapor detection + alarm system.

o Turbine casing.

The fuel storage and delivery system will essentially have twice the

capacity of that for a distillate fuel, since methanol has about half the
heating value in Btu/ gal.	 Equipment conversion of the gas turbine including

the fuel nozzle and combustor will probably involve minimal hardware changes.
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For example, in the SCE' teat, turbine modification was not required since the
fuel nozzle had already been adapted for water injection with distillate
fuel. Since it is likely that utilities would prefer dual liquid fuel-capa-
bility and current NOx abatement is primarily done with Water injection, new
gas turbine installations will most likely be capable of firing methanol.

It should be noted that while the SCE gas turbine test showed methanol
to be a stable. fuel for an unmodified FT/+C-1 engine, other turbines could
require redesign of combustor cans. It has been proposed by Adelman (Ref. 8)
that methanol, compared to a jet fuel, has a significantly higher lean flamma-
bility limit. In a computer model of a jet aircraft combustor, the lean
flammability limit calculated for methanol corresponds to a fuel equivalency
ratio.of 0.8, while for Jet Fuel it was calculated to be 0.4. (The fuel
equivalency ratio is defined as the actual fuel/air ratio divided by the
stoichiometric fuel/air ratio.) The lean limits were determined to give an
indication of where the flame would be extinguished. The reason given for the
different limits is the higher heat of vaporization of methanol at 463 Btu/lb
versus 100 Btu/lb for Jet Fuel.

In a survey done by 'Badger Plants (Ref. 9), it was estimated that the
costs to retrofit a peaking gas turbine for methanol use would be up to 10
percent of the original turbine capital cost of an estimated $300 per
installed kW capacity (1981$).

f. Maintenance. Turbine inspection tests in the SCE test program
showed that components within the methanol fueled turbine were cleaner than
components within the distillate fueled turbine; i.e., a slight carbon buildup
was found on the fuel nozzles of the distillate turbine but not on the
methanol turbine. From performance data and the turbine component conditions
after inspection, UTC personnel estimate that turbine life operating on
methanol fuel would exceed the life operating on distillate fuel but probably
not exceed the life operating on natural gas. Since turbine life is generally
doubled when natural gas is used instead of No. 2 distillate, the use of
methanol could probably double the turbine life also. The typical operating
life is 1000 hours for the hot-section parts of a turbine burning oil.

In the Badger survey (Ref. 9), it was estimated that the operating and
maintenance costs would be about the same or possibly five-to-ten percent
lower for methanol-fueled turbines than for conventional-fired turbines.

2.	 Utilization of Methanol in Boilers

a. Performance. The key performance features for methanol as a

fuel for boilers are efficiency and existing facility power rating.

Efficiency. Performance tests have been made as follows:

o	 Coen Company test at Burlingame, California in December,
1971.

f

L	
_.	 _.
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•	 Central Research Institute of the Electric Power Industry (CRIEPI)
of Japan in a test furnace in the mid 1970'x.

•	 New Orleans Public Service, Inc. test at the A. B. Patterson steam
generating plant in New Orleans, Louisiana, in 1975.

•	 Environmental Protection Agency (EPA) sponsored tests for
industrial boiler applications in 1976.

•	 SCE tests at the Highgrove Station in 198'1.

Table 9-16 gives a summary of the boiler tests. Boiler efficiencies
when using methanol are lower than for heavy fuel oil by 6-8 percent and lower
than for natural gas by 2-5 percent. Part of the difference in the
efficiencies is due to higher latent heat losses from the water vapor in the
flue gas when using methanol compared to the other fuels as illustrated in
Table 9-17. Methanol's latent heat loss is equivalent to 12 percent of its
Higher Heating Value (HHV) while the loss with natural gas is about 9 percent
and with fuel oil about 6 percent. This inherent efficiency loss when using
HHV as a basis must be accounted for in fuel cost estimates, since costs ,are
often quoted in terms of dollars per million Btu of HHV.

The other major contribution to the difference in efficiencies is flue
gas sensible heat loss. For stoichiometric firing, it can be seen from Table
9-17 that the flue gas quantity in-lbs/106 Btu of LHV fired is about 3
percent higher for methanol than for natural gas, and about 2 percent higher
compared to fuel oil. Flue gas based on LHV fired fuel is used for comparison
here to negate the latent heat losses o'f each fuel and thereby represents more
closely the flue gas quantity at similar boiler heat absorption values.
Therefore, on a theoretical basis, methanol boiler efficiencies at the same
stoichioc;etric rates are lower than natural gas and fuel oil, providing the
stack gas temperatures are the same.

There has been concern that methanol flames will have poor radiant heat
transfer characteristics which would lead to even higher sensible heat
losses. In the New Orleans Public_ Service Corporation test (see Table 9-18),
the sensible heat loss was highest when firing methanol, as indicated by the
air heater outlet temperature of 315 OF for methanol, 258 OF for oil and
289OF for natural gas: However, in the Highgrove test, careful measurements
in the superheater area found that the gas temperatures for methanol were
between those for gas and oil, thus alleviating the concern about substantial
heat transfer differences.

Supplying methanol to the boiler as a liquid may not be the most
efficient use of the fuel. Methanol, with a boiling point of 148 0F, can
easily be vaporized with lower level heat to give an increased higher heating
fuel compared to the liquid; i.e.., the }HHV increases from 9,760 to 10,234
Btu/lb and the LHV from 8,580 to 9,054 Btu/lb. It may be possible to use
boiler stack gas "heat for methanol vaporization, stack gas sensible heat
representing about 250-300°F T would be required. Since methanol is a
clean sulfur-free fuel, lower stack gas temperatures are possible if the
current limitation is based upon avoiding S03 corrosion; but there are
potential problems in regard to heat exchanger size, cost and pressure drop
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Table 9-17. COMPARISON OF BOILER FIRING WITH
METHANOL, NATURAL GAS, AND FUEL OI!L

 ^	 A

METHANOL

-	 I
 ' NATURAL GAS
(as 100% CHO

FUEL OIL
(C/H = 0.6)

HHV (Btu/lb) 9760 23,879 19,000
LHV (Btu/lb) 8580 21,520 17,860

HHV Fuel Fired:
(lb/106 Btu HHV Fired) 102.5 41.9 52.6

j	 (1b/mm Btu LHV Fired) 116.7 46.5 56.0

Stoichiometric Dry Air:
(lb/mm Btu 11HV Fired) 658.9 717.6 748.6
(lb/mm Btu LHV Fired) 749.5 796.3 796.4

Flue Gas:
(lb/mm Btu HHV Fired) 761.4 759.5 801.2'
(lb/mm Btu LHV Fired) 866.2 842.8 852.4

Moles Flue Gas:
(moles/mm Btu HHV Fired) 27.6 27.5 28.3
(moles/mm Btu LHV Fired) 31.4 30.5 30.1

Water in Flue Gas: 	 (Wt%) 15.1% 12.4% 7.2%

Latent Heat Loss:
(% of HHV Fired Fuel) 12.0% 9.8% 6.0%
(% of LHV Fired Fuel) 0% 0% 0%

Based on stoichiometric firing-- zero excess air.

and explosion hazards. A more likely approach would be the use of steam
extraction for vaporizing the fuel. It has been estimated (Ref. 17) that this
would improve the heat rate by 4 percent at the cost of a 3 percent plant
der,a;ting.

Power Rating. Maintaining plant rating when firing methanol
has also been a matter of concern. In , the Highgrove test, the maximum output
when firing methanol was about 5 percent lower than for oil or gas. This was
traced to the capacity limits of the induced draft fan and was due in part to
sir; leakage upstream of the fan. It is believed that these problems will not
be found', in modern positive pressure boilers with forced draft fans, and that
power rating of the modern units would not b.e_compromised.

In firetube industrial boilers which rely more on radiant heat transfer,
the effect of methanol's lower flame temperature on boiler performance may be
more pronounced (see Table 9-19).
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Table 9-18. PERFORMANCE TEST AT NEW ORLEANS PUBLIC
SERVICE CORP. FACILITY (Ref. 11')

METHANOL OIL GAS

Gross Generation, MW 51 52 51

Steam Flow,	 1,000 lbs/hr 426 432 431

Fuel Flow, 1 0 000 lbs/hr 60.7 30.8 24.6

Combustion Air, 1,000 lbs/hr 471 519 406

Excess Air, X 26.3 35.6 9.5

Final Steam Temperature, °F 950 950 940

Superheater Outlet Pressure, PSIG 1,250 1,240 1,250

Air Heater Inlet Temperature, °F 715 613 690

Air Heater Outler Temperature, °F 315 258 289

Economizer Inlet Temperature,* °F 337 345 324

Economizer Outlet Temperature,* °F 516 497 477

Efficiency 81.8 89.6 85.6

* Water Side

A

1

111

Table 9-19. PERCENTAGE OF TOTAL HEAT REMOVED IN THE RADIA-
TION SECTION OF A FIRETUBE BOILER (Ref. 15)

3

SECTION NO. METHANOL RESIDUAL OIL

1 2.5 11.1
2 4.5 10.5

3 5.1 7.4
4 3.1 3.0
5 4.2 2.5
6 4.2 1.9

Total 24.6 36.4

Section 1 is closest to the burner, etc.
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b.	 Fuel Requirements. Since methanol is such a relatively clean'
and pure boiler fuel,  no spec'' specifications are deemed applicable except a
minimum methanol content and a maximum water content. The Highgrove test
included runs where 5 percent water was added to the methanol with no adverse
effects other than a slight decrease in heat rate.

C.	 Emissions. Emissions considered here from the,use of methanol
as a boiler fuel include NOx, CO, hydrocarbons, aldehydes, and solid
particulates in the exhaust gases and methanol from fuel vaporization losses.

NO Emissions. Emissions data for methanol reported from
the boiler tests at the New Orleans Public Service Co. test showed
significantly lower NOx emissions than with fuel oil but only slightly lower
than that for natural gas. Emissions were measured at various unit' load .rates
as shown in Table 9-20.

Emissions data reported from CRIEPI (ref. 13) under conditions of about
l percent oxygen in the flue gas (5 y excess air) showed extremely low NOx
emissions of about 15-30 ppmv compared to emissions from residual fuel of
about. 180 ppmv. Testing of methanol was done with several burner types,
including steam atomizing,, pressure atomizing and:ulrrasonic air atomizing
burners. At 2 percent oxygen and below, steam atomization produced the lowest
NOX emissions with methanol and ultrasonic dir atomization the highest.

EPA sponsored tests (Ref. 15) that were run at about 5 percent excess
oxygen in firetube and watertube industrial sized boilers gave the results
shown in Table 9-21. EPA testing also included boiler modifications, such as

Table 9-20. NOx EMISSIONS AS L.BS /106 Btu HEAT RELEASED (Ref. 10)

UNIT 'LOAD
100% = 49MW FUEL OIL NATURAL GAS METHANOL

50 .20 .09 .08
75 .22 .12 .11

100 .26 .19 .18

Table 9-21. NOx EMISSIONS AS PPMV (Corrected to 0% 02)

BOILER TYPE NO. 5 FUEL OIL NATURAL GAS METHANOL

Firetube
Watertube

220
170

100
70

70
20

r
9-28



flue gas recirculation and staged combustion, designed to investigate how each
could be used to reduce the NO, emissions. It was found that for natural
gas fired package boilers, NOx emissions could be reduced to very low levels
(approximately 20 ppmv corrected to zero percent oxygen) by boiler flue gas
recirculation, which is less than NOx from methanol without recirculation.
Methanol Nox, could be reduced to about 10 ppmv with flue gas recirculation.
Flue gas recirculation for No. 5 fuel oil (ranging from 0.04 to 0.12 weight%
nitrogen) was much less effective and resulted in NOx emissions of about 150
ppmv. However, staged combustion of fuel oil reduced NO x emissions around
50 percent. No data is available from staged combustion with methanol.

In the Highgrove test, the NOx emissions for methanol firing were
substantially lower than both oil (0.2 %N) and natural gas, although the
emissions for gas were unusually high (see Figure 9-3). Adding 5 percent
water to the methanol further reduced NO x emissions by 25 percent at full
load.

In general, all the above data indicates significantly lower NO x for
methanol than for fuel oils and somewhat less than for natural gas.

CO Emissions. Emissions were stated to be "generally" lower
for methanol than 'that observed for the fuel oil and natural gas 'tests done at
the New Orleans Public Services Corp.. facility. At 11.1 percent excess air,
the CO concentration was measured to be 750 ppmv; all other runs made with
methanol measured less than 100 ppmv.

Emissions from CRIEPI boiler -testing at 0.2 volume% oxygen in the flue
gas (about 1 percent excess air) for methanol were about 1400 ppmv and for
residual oil about 800 ppmv. However, at 1 volume% oxygen (or about 5 percent
excess air), the CO emissions for 'both fuels were negligible.

Results from EPA sponsored tests in watertube and firetube boilers
showed emissions to be lower than 100 ppmv depending on the quantity of excess
oxygen. When excess oxygen approached 1 percent, emission levels increased
well over 100 ppmv and in some cases over 1000 ppmv.

At Highgrove, CO concentrations were essentially the same for oil, gas
and methanol.

p

	 Emissions. Results from the New Orleans Public	 ..7

r	 Service Corp. test 	 that there were negligible quantities of
hydrocarbons based on spot analyses.	 i

Results from CRIFTI tests indicated hydrocarbon emissions equal to or
Tower than that produced with fuel oils.

9

Aldehyde Emissions. Statements from References 12, 13, and 14
indicate aldehyde emissions were as low as with other fuels such as natural
gas for fuel oils. Aldehyde concentrations measured at Highgrove were less
than 1 ppm.

t	 a	 ,,

rf
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Solid Particulate Emissions. Particulate emissions from tests_
indicated very low emissions. Smoke or soot generation from methanol is
expected to be very 'lour compared to other fuels. In the New Orleans Public
Service Corp. test ., high excess air levels of over 30 ,percent for No. 5 Fuel
Oil were required to maintain a clean stack while methanol tests with excess
air below 15 percent always produced a clean stack. At Highgrove, particulate
emissions were about half those for oil.

d. Safety.' Similar precautions for gas turbine methanol use will
be required for boiler fuel use. In the `New Orleans Public Service Corp,. and
Highgrove tests, liquids handling precautions were taken, such as prohibiting
plant personnel from smoking around the tank area, loading dock and pump pits,
and adding purge and fire control systems.

e. Equipment Conversion and Costs. In burning methanol in
utility industrial boilers, the following general areas require new hardware
in order to utilize methanol:

0	 Transportation equipment to the fuel storage system.

o	 Fuel storage.

0
	

Pumps, lines, valves for delivering methanol from storage to the
boiler.

0
	

Boiler modifications such as different burners, atomizers, plus
possible redesign of convection section, air fans, etc.

0
	

Bailer control modifications.

o	 Additional safety requirements.

More than twice the volume of fuel is required when using methanol
instead of oil. The major cost component, making up about 50 percent of the
total retrofitting cost for converting existing boilers, is the cost of fuel
storage. Using the guideline of a total fuel storage requirement of 3 bbls of
fuel oil per kW of plant capacity„ a 400 MW unit plant would require a fuel
oil storage capacity of 1,200,000 bbls; methanol would require storage of
about 2,800,000 bbls, or a difference of 1,600,000 bbls. additional storage
capacity if the existing fuel oil storage can be converted to methanol

storage.	 Three barrels of fuel' oil perikW of plant capacity equates to a
60-90 day storage capaci ty.	 Total installation costs for seven 250.,000 bbl.

-`:	 tanks are estimated to be about $8 million in mid 1981 (Ref. 18).	 Total
retrofitting costs would be on the order of $16 million for .a . 400 MW plant
which equates to $40 /kW of installed capacity. .a

f.	 Maintenance.	 Maintenance of boilers using methanol is
-expected to be less expensive than for oil-firing, and about the same as for
natural gas.	 Since soot and sulfur problems are considerably reduced, even
compared to natural gas, there could be a small maintenance cost advantage in

ti t



the boiler area. In addition to the cost savings, the availability of a
boiler firing methanol would be improved.

3.	 Dual 'Fuel Applications

Dual fuel firing, i.e., sisnultaneously firing two different fuels
through different burners in a mul.,tiburner boiler ,, has recently been identified

p	 '	 g application for methanol. 	 Small-scale tests have indigatedpromis ingas a	 Sin
that firing methanol above fuel oil, with appropriate stoichiometry adjust-
ments, can provide NOx emission reductions far out of proportion to the
fraction of methanol used, e.g.., substituting methanol for 20 percent of the
oil has reduced NO x emissions by up to 40% (Ref, 19).	 Firing methanol above
gas may also be beneficial. {

Similar effects can be achieved by firing gag over oil; tests by SCE at
the Highgrove and Alamitos stations (data not .released for publication) have €;
shown very promising results.

There is also some indication. (Ref.. 28) that me`.:hanol use in dual fuel
firing can result in a boiler efficiency improvement, on the order of 2 Q
percent improvement for 10 percent siiethanol.	 This .could lead to payment of a i
premium for methanol on the order of 20 percent of the fuel price.

Dual fuel firing with methanol may merit serious consideration if
pressures for emission reductions increase but the price of methanol remains
higher than that of oil.	 The low emission benefits of methanol could be r
realized w%th a relatively small increase in total fuel costs and with low
implementation costs.

It should be noted that dual-fuel firing has been investigated only for r.

gill-fired boilers and not for tangential firing. 	 A substantial majority of t`
CAJT 'o ni.a utility boilers are wall fired.

^
s

4.	 Repowering Utility Steam Plants

-	 a.	 Description of Repowering. 	 Repowering may be described as the
modification of an existing steam turbine power plant by addition of a combus-
tioa gas turbine and the mechanical and thermal integration of the gas and
steam turbine systems.	 There are many ways of i.stegrating,a combustion
turbine into an existing steam turbine plant including: f	 j

(l)	 Addition of a supplementary boiler between the gas turbine and
existing boiler to cool the turbine exhaus-t prior to reaching .'#
the windbox.

(2)	 Addition of a high temperature, high volume windbox to the
existing boiler between the gas turbine and existing boiler,
capable of handling the turbine exhaust.

(3)	 Addition of a boiler feedwater heater after the gas turbine.

9--32
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(4) Replacement of the oil- or gas-fired boiler with a waste heat
boiler to generate steam from the turbine exhaust (applicable
to repowering of older, lower pressure and temperature plants).

Wemtinghouse Electric Corp. has recently completed a study which favored
option r+umber (1) for modern reheat steam plants (Ref. 17).

b..	 Incentives for Repowering. Some of the reasons for repowering
a steam plant ire as follows

(l) Efficiency gain from simple cycle to combined cycle operation.

(2) Increase in plant rapacity at the existing site.

(3) Reduced lead times relative to new plant construction due to
plant sating, permits, aid construction considerations.

(4) Minimal environmental impact possible with repowered plant.

(5) Iocrease in generating,eapacit.y without necessarily increasing
the cooling water requirement.

(6) Boiler plant in need of extens;ivz overhaul or replacement.

(7) Air pollution difficvitiez at existing plant.

(8) Low installation cost per added kW capacity.

C.	 Repowering Cost and Performance. The Westinghouse study
evaluated several options for repowerring a modern reheat steam plant
(specifically PG&R f s Contra Costa #6 plant). Results for the options of
principal interest are summarized in Table: 9-22. Westinghouse predicts very

Table 9-22. REPOWERING COST AND PERFORMANCE :F'qR: co f_u COSTA #6

k..

EXISTING SYSTEM WESTINGHOUSE CASE NUMBER
61L GAS METHANOL

j
6 9 10

Fuel Flow (lb/sec)
Boiler;

Residual oil. 36.6 - -- 16.6 0 24.6 12.3

Methanol -- -- 76.9 0 76.9 25,3 50.8
:Comb. Turbinar Methanol -° _°_ 37.9 37.9 37.9 37.9

Net Power (MW) 343 343 341 463 466 465 466
Heat Rate (Btu/kWh) 9100' 9510 9700 8300 8700 8400 8550

NOX Emissions (lb/MWh) 2.9; 1.9 0.6 1.7 0.4 1.1 0.7

Repowering capital -- - 10 119 127 127 127

(1061, 	 1983)
New Generation Cost 980 1030 1030 1030

(1983$/new kW)_
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low total NOx c,missions for the cases which rely primarily on methanol.
Thus, methanol-fueled repowering could provide new capacity while simultan-
eously reducing total NOx and SOX emissions at an existing plant, and
would therefore be likely to survive any environmental challenge.

d.	 Cost Comparisons for New Generating Capacity Options ;Because
of the advantages of methanol-fueled repowering identified above, it is
necessary to understand how the various repowering options compare with other
options for adding new generation capacity. The ESEA model (described in
Section D-5 below) was used to estimate life-cycle cr4ts for the various
options using financial parameters from Ref. 26. Results are presented in
Table 9-23. Data inputs were taken from the following sources:

-Capital and operating costs
for repowering

-Capital and operating costs for
other options

-Methanol cost
-Oil, gas, and coal costs
-Nuclear fuel cost, performance

data, financial parameters

-Westinghouse study (Ref. 17)

-SCE CFM TV inputs (Ref. 26)

-Chapter 4
-Summary
-SCE CFM IV

Table 9-23 indicates that repowering has lower capital cost than most of
the other options for capacity addition, but that levelized electricity costs
are substantially higher than for other baseload options. In the high oil
price scenario (described in the Summary Report), repowering with methanol may
have an advantage in cost of electricity (as well as an environmental advantage
in some cases) relative to continued operation of existing units on oil or gas.

5.	 Methanol Utilization in Methanol Fuel Cells

Fuel cells are electrochemical devices which convert chemical
energy directly into electrical energy. This is in contrast.to  conventional
electricity generators which .convert chemical energy to heat energy to
mechanical energy to electrical energy. ` One of the advantages of using fuel
cells to generate electrical energy is that they require a relatively low fuel
heat rate over a wide range of rated power loads (see Figure 9-4) 	 Further-
more, fuel cells enjoy a fairly constant and high system efficiency over an
extensive power output range compared to traditional; prime movers.

r

	

	
Fuel cellsare made up'of'electrodes, elec-trolyte, and cooling plates

which are sandwiched together to form "stacks". Chemical fuels are "burned"
with air to produce electricity directly. The anode is the fuel electrode and
the cathode is the air electrode. A'schematic portraying a typical fuel cell
system is illustrated in Figure 9-5. First generation fuel cells use phos-
phoric acid as the electrolyte andoperate at temperatures (around 2000C)
controlled by coolant passing through the stack. Second generation fuel cells
will employ a molten carbonate electrolyte and operate at temperatures near
600oC.

a.	 First Generation Fuel Cells. Phosphoric acid fuel cells,

despite continued research, have not been able to operate efficiently on

9-34
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OF POOR QUALITY

CAPITAL COST

REAL LEVELIZED BUSBAR
ELECTRICITY COST

(1981 i/kWh)
BASELINE !HIGH OIL

OPTION (19$1 $/new kW) SCENARIO PRICE SCENARIO

EXISTING STEAM TURBINE

Residual Oil 9 15

Natural Gas 9 14

Methanol, 12 14

EXISTING COMBINED CYCLE

Distillate Oil 11 15

Natural Gas 8 13

Methanol - 12 14

NEW 'COMBUSTION TURBINE

Distillate Oil 400 16 22

Natural Gas 400 11 18

Methanol 400 16 19

NEW COAL (out of state) 1500 7 9

NEW NUCLEAR 1700 4 -

FUEL CELLS 650 12 16-

GEOTHERMAL-FLASH 1450 18 -

WIND 1000 5

SOLAR

Photovoltaics 2450 10

Pond 3600 6

Tower 2550 8

HYDRO (Large) 950 1

REPOWERING

Westinghouse Case 5 840 9 13

Westinghouse Oase 6 880 12 14

Westinghouse Case 9 880 10 13

Westinghouse Case 10 880 11 13

Table 9-23. COST COMPARISONS FOR NEW GENERATION OPTIONS
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hydrocarbons fed directly to the anode. The direct supply of hydrocarbons to
the anode has been attempted without success using the twat fue7Ls which have
the best potential for direct conversion, propane and methanol. The most
efficient operation of phosphoric acid fuel cells is with hydrogen. However,
molten carbonate fuel cells will operate satisfactorily on appreciable-
quantities of carbon monoxide mixed with the hydrogen.

The first generation fuel cell system, by necessity, includes a fuel
processor upstream of the fuel cell in order to generate a hydrogen-rich
stream for fueling the stack. The requirements of a fuel processor are that
it must efficiently convert the hydrocarbon feed into a hydrogen-rich gas with
carbon monoxide levels not in excess of 1-2 percent,. The efficiency of a fuel
processor is defined in terms of both the thermal and conversion efficiencies.
High efficiency can most effectively be achieved through the use of easily
converted fuels, if possible, and the application of steam reforming.

Steam reforming is an endothermic process whereby a hydrocarbon feed is
reacted with excess steam to produce, primarily, hydrogen and carbon monoxide.
This is commonly followed by a water gas-shift convertor for reducing the
carton monoxide concentration and increasing the hydrogen concentration.
However, the steam reforming of methanol is unique in that the level of carbon
monoxide is typically 1-2 percent and requires no shift convertor. A diagram
of this type of system is provided in Figure 9-6.

Methanol is particularly well adapted to first and second generation
fuel cells because of its efficient conversion. Steam reforming of hydro-
carbons or light naphthaa requires temperatures of 780 - 8400C, produces
methane which reduces the available hydrogen for the fuel cell, requires
cleaning of impurities (sulfur and chlorine) from the feedstock, demands 70
percent more steam than the theoretical requirement, and produces carbon
monoxide which requires secondary conversion to carbon dioxide and hydrogen.
On the other hand, methanol steam reforming requires temperatures around
3200C, produces no methane, requires no pre-cleanup (because of methanol
purity), demands 40 percent more steam than the theoretical requirement
(nearly one-fourth of the hydrocarbon steam requirement), and produces low
concentrations of carbon monoxide, compatible with phosphoric fuel cells.
Therefore, a phosphoric acid fuel cell using a hydrocarbon fuel results in
approximately 38-39 percent efficiency (heating value of fuel in, to
electricity out) compared to 44-45 percent efficiency for such a fuel cell
using methanol. This efficiency difference creates great interest for the use
of fuel cells in utility systems where electricity is the prime product.

b.	 Second Generation Fuel Cells. Second generation molten
carbonate fuel cells are expected to operate at efficiencies of 45-50 percent
using the same fuel processing technology for hydrocarbons as is being
developed for phosphoric acid fuel cells. Although steam reforming of
methanol offers an 'improvement in efficiency of phosphoric acid fuel cell
operation, a parallel improvement for molten carbonate fuel cells is not
expected. This is primarily because the temperature at which the molten
carbonate operates (600 00 affords sufficient waste heat to maintain steam
reforming at higher temperatures without losses due to heat transfer, control
and heat recovery from many different locations within the system. Based on
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recent preliminary tests in which methane was partially steam reformed in or
near the fue cell anode, rather than in a separate steam reformer, the
potential for conversion of methanol in like manner would be much greater.
Thus, methanol use in molten carbonate .fuel cells could conceivably be
accomplished more efficiently, perhaps by 5 percent, through the elimination
of the fuel processor and achieve conversion directly at the anode. The
deciding factors still rest with the scientific advances of this fuel cell to
be made in the next ten years.

C. Commercialization. Methanol as a fuel for phosphoric acid
fuel cells is mature on a limited basis. The U.8. "*_+X has conducted a
program for developing 1.5, 3, and 5 kW fuel cells over the past ten years.
United Technologies Corporation (UTC) and Energy Research Corporation (ERC)
have been involved in this program and are currently participating in its
final stages,. UTC is in the process of building 1.5 kW units for field
testing in 1982. ERG is designing the 3 and 5 kW units which would lead to
field testing in approximately two to three years. Another effort toward
developing methanol/phosphoric acid fuel cell systems is underway at Engelhard
Industries. This effort is aimed at on-site commercial application in the 50
kW size range. This project is scheduled for a five year development prior to 	 9

commercialization. Studies conducted by Westinghouse, which is working with 	 i
7

ERC, to determine the applicability of methanol/phosphoric acid fuel cells in
the size range of 5-10 MW for utilities found a great deal of interest among
the utilities and a dearth of information in industry regarding steam reform 	 -'
ing of methanol.

All work in the methanol/phosphoric acid fuel cell area has been with
chemical or high purity methanol. The main reasons for this are:

(1) It is readily available now and is expected to fir>atinue to be.

(2) The projected cost is very nearly that of "raw" or "fuel" grade
methanol (although this has not been evaluated in the current
study).

(3) The inclusion of processing methanol to chemical grade in new
plants is expected.

(4) Chemical grade, methanol can be converted at lower temperatures

without catalyst degradation than "fuel" grade or methanol
contaminated with higher alcohols.

Steam reforming tests were conducted at JPL, UTC, and Engelhard, in
which it was found that the temperatures required for high conversion of 	

j

chemical grade versus fuel grade methanol were much higher for the latter
because of the higher alcohol contaminates. Thus, if fuel grade methanol is
used for fuel cells, either better catalyst activity will be necessary or
lower overall efficiency will be realized due to higher temperature firing of
the steam reformer. No deleterious effects of unconverted higher alcohols on
the anode have been demonstrated at this time although there is some question
concerning sustained activity. In any case, no fuel clean-up is required
prier t the steam reformer as in the case of all other fuels.	 }

4



Iethanol is probably the most desirable fuel for fuel cells because of
its ease of conversion. In this respect, it can be thought ofas an excellent
hydrogen carrier. For this reason it would be the most logical fuel if fuel
cells were adopted for transportation as well ns for on-site and utility use.
Both capital costs and inefficient operation would be reduced by this^met"hod
of electricity production. However, large scale acceptance of both a novel
electricity generator and a novel fuel, methanol, may be difficult.

On the other hand,, the overall economics of fuel cells are uncertain .at
this point and the projected high price of methanol has led SCE to use natural
gas and naptha as baseline fuels for near-term (10 years) fuel cell
applications under study.



D.	 EVALUATION OF 
FACTORS 

INFLUENCING FUEL SELECTION AND FUEL PRICE
COMPARISONS

A broad range of technical j rogulatory, and fi liantial factors have been
evaluated in then investigation of stationary source?

	
for methanolnol

use- 'rite technical factors can be divided into those related to parfor ►ilance
of mcthi-knol its it fuel 

and 
those Involving the Inglatics of methanol supply.

The mot4t important rOgnlatory factors involve- rate determination, and ooviron-
mental control. Many of these. factors may influence the 

value 
of methanol in

utility and industrial ,applications  and would thus require correction of, its
pried for purposes 

Of 
comparison with tile prices of compating fuels. Thaso

attribntes are, discussed in this secCioa, auzd quantitative estimates are
provided w1wrovor possible.

I.	 Por(ormance Factors

Ef fects of methanol 0.40 oi
l 
efficloncy ) rating, materials,

requirements, and omissions in boiler zand combustion turbine
applications havo been evaluated 

in 
detail above, and the key fiiudings are

HUM11 1drized here.

Performance comparisons for two key parameters, thermodyunmic etficiency
anti NO issions are presented in Fi.v eml	 -gure 9-7. Un-cer-t-iintios 

are 
shown for

just fuel efficiency, whe've estimated improvtAments relative to 0-i'l firing have
not yet been domostratedw and for NOX emissions for pure methanol, wile-re
combustloti techniques have not been optitil-ized.

System	 of combustion tur billed gellerators call be shown ana-
IytiCmlly to be higher for me •hanol than for oil or gas. This was collf-Imled
by SCE tests at till' 	 Station which sliowod -improvemente, ,in heat rate at
Constant  NUX omi q iion level.,A oil tho. order Of 2 percent. For boilers, -it has
been found that heat rates for methanol, as measured 

in 
terms of hlgho-r

heating values Of the fuels, area 2-5 J)ercent worsen 	 for natural Ass slid
6-8 percent worse than for oil.

With appropriate injector changes, SCE jind tjo troublo -in maintaining the
system 

rating 
^n, the turbliMe tests. Ian 	 boiler test at	 however,igligrove, howevr,

,it was found that derat a necessarying was necssry because of th ey inability  of tile fail
to tiwkintain the increased stack, gas flow for methanol combust "Wo - This fatl
llmitat,.loo is bolievod by SGE4 to be, pecolitar to balanced pressure units such
as llighgrovo- and not Applionble to most of their modern stoam Lmi, 441le units
which use positive pressure boilers•

$omo matorials used in existing fuel pumps and supply systems may not be
compatible with methanot Or may be inaaeiealeaatee for the increased vOl1Lm,,etr-.1*Ld
C I ows - Ttlo cost of modifying these systems does' not appear to be substauti'At,
but this should be verified by a detailed study.

It has been migge,4tod that methatiol—fived systems will require less
thall O'l-fired systems because: 	 clean—bort	 0 8 -it 01	 oing charact ri t i s f

mkithanol. Long dirration tests nocessary to cotifirto this have not b(ldti run,

but SCI oviginoots have confirmed thatin torma of dowposition and corrosion 41.
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their brief test programs, methanol appears to be no worse than natural gas
firing, which requires about half the maintenance as for oil firing.

The various tests have confirmed that, in both boilers and turbines,
methanol has NOX emission levels which are roughly half of those for oil and
somewhat lower than for natural gas. Since the methanol production process
can be designed to remove practically all of the sulfur and ash present in the
feedstock, emissions of Sox and particulates will be very small.

2. Cost Impact of Capacity Rating and Heat Rate Differences

Evaluation of the impact of heat rate changes on utility system
operating costs must take into account not only the changes in fuel costs per
unit of output for the generator in question, but also changes in the loading
order. An improvement in marginal cost due to methanol firing would lead to
increased capacity factors for the units using methanol and a decrease in
capacity factors for other units. In addition, the lovr-NOX dispatch scheme
used by SCE in which units are brought on-line in economic order but then
dispatched in order of minimum NO X emissions, could lead to very high
capacity factors for methanol-fired units.

If derating is involved (e.g., fan-limited boilers), it can lead to
increLsed operating costs because of the need to load up more expensive units
and may also require capital expenditures to maintain peak capacity reserves
and an acceptable loss of load probability (LOLP).

y
Heat rate related costs and derating operating costs and LOLP impacts

were evaluated using the SYSGEN computer simulation (Ref. 22). SYSGEN is a
production costing and reliability model of an electric power system. The 	 ?
model determines the conventional plant operating schedules which will meet
required loads at minimum cost and estimates the frequency, duration, and
probability of loss of load for the given generation mix and customer demand. 	 i
The program uses a modified Booth-Baleriaux technique which treats plant
outages as randomly occuring loads on :other plants in the utility system.

To provide an estimate of the impact of derating that 'might result from
large-scale methanol use, a simulation of the 1990 SCE system was run in!which
a 2 percent derating (a pessimistic estimate of the average influence of
fan-limits) was assumed for all steam turbine units, with no change in heat
rate or fuel cost per unit of energy. The simulation results showed an
increase in busbaar energy costs of 0.02 mil/kWh (1981$) and an increase in
LOLP from 0.0004 to 0.0006, both of which are considered negligible.

To investigate the effects of heat rate changes, a 1990 simulation was
run in which a 2 percent improvement in heat rates for all combined cycle and s
combustion turbine units was assumed. The result wasa negligible decrease in
busbar energy cost of a few thousandths of a mil/kWh.

3. Impact of Maintenance Cost Differences

Although no long-term tests have been run to provide definitive
data, all of the short-term tests on boilers and turbines have indicated that
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fouling and corrosion problems with methanol will be minimal,. Thus, main-
tenance requirements similar to those for natural gas (and substantially less
than those for oil) are indicated. When compared with oil tiring, cost
savings would result both from reduced direct maintenance costs and from
improved availability of the methanol-fired units. Since total ABM costs for
oil-fixed turbine units are on the order of 2 mils/kWh, the direct maintenance
cost savings will nolt be significant. The availability improvement could have
a larger impact.

4.	 Logistics Factors

Supplying methanol to existing power plants and on-site storage may
both involve significant impediments to utility methanol.. use. As Chown in
Table 9-5, only three of SCE's eight large power plants in southern California
can currently be directly supplied by water. Tke others rely on a network of
oil pipelines which connect them with several oil refineries, a number of
remote storage. sites, and the Long beach harbor. Wi;ile it would probably be
possibleo after some modification, to put: methanol through the pipeline net-
work, simultaneous use of both methanol and oil would create problems both in
the logistics of batch deliveries and in regard to contamination of one fuel
by the other. There are precedents for batching in regard to distillate
deliveries to combined cycle plants, but these involved much smaller percent-
ages of the total :system capability than if a substantial part of the system
were to be converted to methanol. A number of concerns regarding cross-
contamination have been raised, possibly the most significant being an
increase in vapor pressure of fuel oil requiring expensive air pollution.
controls for storage facilities. Thus, use of the existing supply infra-
structure cannot be assumed without a more detailed investigation.

On the other hand, development of a parallel pipeline system would
involve enormous difficulties in obtaining rights of way and permits. Thus,
the first units to use methanol would probably be those which could be sup-
plied by water. The others may have to rely on expensive rail transport until
an all-methanol system evolved

The utilities currently have firmly entrenched rules regarding fuel
reserves. For example, Edison desires to maintain a level of inventory suffi-
cient to ensure continuity of oil supply for 90 days under conditions of
increased demand for oil covering a probable variation in load together with
the capability of non-oil generation resources (such as natural gas) to pick
up the load. Since methanol has half the volumetric energy content of feel
oil,, additional storage tanks would be needed at most stations. Some of the
stations would not have room, but it may be posible to substitute system
storage. Storage costs appear to be the mo st significant cost element of the
modifications necessary to convert existing units to methanol (see Section C-2
above)

5.	 Costs of Modification of Existing Facilities

The most significant modification cost would be for increased
:	 storage facilities to satisfy reserve requirements. Other costs are associ

i
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ated with modi ficstion or replacement of burners, p.rmps and plumb ng # slid
additioo of safety provisions. 	 Total costs have been estimated as $40/kW for
steam turbines units and #15/kW For combustion turbines (seer Section ^)

Tile iolfluence of tloeasea expenditures on electrici ty cost; # was estimated
uoillR the Energy Systems Economic Analyst* (bSkiA) model	 Ref. 23).	 TIle Uti
program calculates the not present value, breakcvon capital coot, And break- f

ovon busbar oneargy cost 01)4C) of a utility-owned. electric plant. 	 RSEA uses a, a
required rovenoo aleothodology which treat$ taxes and dopreoiation explicitly
,pond allows they inclusion of tax preference in the form of Accelerated depre-
clation, and/car oil 	 tax credit.

Tito incrosse in real leveli>zeld 100...0 	 due to modification costs with
stal-idard uti lity financial assumptions (see Table 9^24) was esti"Ated to b I
1.7 .soils/kA for steain turb1non and p.fiS nills/kWh for combustion turbines
(boat in 1981 dall.ars). 	 To provides the same, lovel ,aod OBEC,, the pricer of
inothatiol should bo 'lower than tiled' price of a foo l usable without modification
by 0.1d dollars per million Utu (MOt-0 for steam turbines slid 0.07i/Miltu for
combustion turbines. r	 1l

It should he recognixott that this analytical a pproach is not u sed by the
Caliiforn a Public Utilities Comtlist► ion (sees the following paragraph).	 Capital
expend itures a re approved in advances for inclusirotl itt the rate base ill tilt: -	

J

year they ar ea placed in sarvicea and can be justified in terms of long-term

potontial for coat savings.	 Fuel costs, are approved for pass^through, on a
yoar-by-*yelar b aa- sa Ellie<t1, this modifications have been made, the PUC would not
consider the capital-slated costs in evaluating a decision. to purchase.
Inoth€ollol

G.	 hates koSulatioll

Investao°_fawned utilities ill California (which include PG&E and SCE,
but not 1ADWO are sW)Ject to rate, regulation by the state lAt.►blic Utilities

Tables 9-21+..	 ESRA MODEL INPUTS
f

i

if
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Commission (PUC), The POO approves new major capital projects in advance, but
formal. ruling on pass-through of foot purchase coots to rate payers in not
made until after the fact. There is,, however, informal coordination in which
the POO call make known the likelihood of approving costs incurred under
particular types of procurement contracts. Tile following paragraphs present
highlights of discussions with ti le PUC staff.

As a result of recent bad experiences with long term take-or-pay oil
contracts, the POO is very strongly against this type of contract. Since thePOO 

has been considering rejection of pass-through of tinder-lift penalties in
current contracts, tile utilities are also wary of such contracts, and it is
not likely tha t 4 utilit

y would Oven go to the trouble of proposing a strict
take-or-pay contract for methanol to the POO. This situation is likely to
pose severe problems for development of a utility mae,.,et for methanol, since
early suppliers could have trouble finding alternative applications. It may
be possible, however, to satisfy the POO by developing compromise contracts in,
which the risk associated with all unexpected downturn in demand is shared
among the )uethanol supplier, tile utility, and the rate payers.

Tile PUC 4dheres to a long-standing policy of not requiring today's rate
payers to subsidize future benefits. Thus, a long-term methanol contract with
Promise of low escalation. rates, but with first year costs higher than th&,
spot market price of oil, would he subject to severe Attack.. This is not to
say that such a contract would be rojected out-of-'C{-,+,jjd. Some small premiums
may be allowed by tile PW to pay for benefits auct.) as protectfo-IlAgainst price
escalation, security of supply, and environmeot&^. 1_'mprovoments. Tradeoffs of
this type are made oil a ^,,mq e-by-case basis. 	 cotmuissions would not be
bound by precedents set by an earlier dacisioli4-

In regard to premiums for security of supplyo the 
POO 

would tend
to favor synthetic natural gas (SNG) over other synfuels because of tile Com-
mission's responsiblity for gas supply. (PG&E has expressed a similar prefer-
ence.) They look upon gas supplies for electric utilities as a cushion against
shortages for higher priority gas risers (those who have no alternatives).

The 
POO 

is very wary of arrangements that would require rate payers to
cover cost overruns on capital intensive projects. A sharing of risk would
have to be included in such cases.

Thtis, in tile. forseeable future, near-tertit :cost will Continue to be they
overriding factor iii 

POO 
decisions and premium payments allowed for the

benefits discussed below will continue to be modest.

7.	 Environmental Regulation

It is clear that substitution of methanol for oil in utility
appl

i
cations cano lead to substantial environmental benefits as a result of

reductions in NOX , S0.x, and particulate emissions. The value of these
benefits to the utilities, however, is not so clear.

Utilities 
in 

tile South Coast Air Aasin. Uos Angeles and vicinity) and
in the Ventura County A i r Pollution Control District--particularly SCE and, nd Lill

fi
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LADWP--are required to reduce their Nox emissions by 60 percent by the year
1990.	 Use of methanol in some units could be included as part of an overall
strategy to satisfy this requirement.	 This could lead to payment of a premium
for methanol as discussed in Section D-10 below.

The South Coast Air Basin Air Quality Management Plan (AQMP), recently
adopted by the local agencies (but likely to be rejected by the EPA because it
does not provide for meeting Federal standards by 1987) included only one
stationary application of methanol, namely use in utility turbines for S0 2	{
mitigation, in the recommended short-term tactics (implementation by 1987).
Methanol use could be a substitute for some of the other recommended short-
term tactics such as. the requirement to burn oil with less than 0.1 percent
sulfur in power plants, but the ability to make such substitutions will depend

` on the form of the regulations prepared pursuant to the recommended tactics and
the value of methanol use in emission control strategies cannot be determined	 [

G until the regulations are finalized. 	 Use of methanol as an industrial fuel 	 IT`

was listed among the longer-term strategies outlined in the AQMP for control
of reactive organics,_ but the total emission reductions available were found

I to be relatively small.

` Methanol may also provide benefits in regard to the "offsets" and
"bubble" policies currently being developed by federal, state and local air

` pollution control agencies.	 Methanol use could provide offsets to be used
for expansion of other facilities or for sale to other companies. 	 Under the
bubble policy, burning methanol to one boiler could allow less expensive,
higher-sulfur oil to be burned in another boiler. 	 These policies are in their
infancy, and there is no precedent that can be used to predict the outcome of
their application here. 	 There is concern that once methanol is used success-
fully at one site, the regulatory agencies will order its use at other sites, 	

p	 y

thus subsumming offset and bubble benefits.	 a

` Methanol could also have some environmental problems of its own. 	 Being
more volatile than fuel oil, additional precautions against evaporative emis-
sions in handling and storage could be required (unless it is shown that low
photochemical reactivity of methanol balances the increased emissions). 	 Seal-
ing, of storage tanks could be very expensive. 	 Further, since most of the
existing power plants are in areas within the jurisdicvion of the California
Coastal Commission, < separate permits would be required from that agency.	 The
Coastal Commission would be particularly concerned with the impacts of spills.

8.	 Value of Environmental Benefits

Methanol use can result in avoidance of costs associated with
required addition of emission control equipment and can produce salable 	 ;N

offsets.	 The PUC does not presently have a mechanism for providing credit for
such savings, but it is possible that either the legislature or the PUC would
develop such a mechanism if the savings appear significant.

The actual savings would depend strongly on the precise terms of the air
quality regulations. 	 To establish the order of magnitude of the savings, the
ESEA model (see Section D-5) was applied to three cases involving hypothetical
regulations for oil-fired steam turbines.	 The results are outlined in Table
9-25.	 In all three cases, regulations similar to those assumed are currently
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Table 9--25. VALUE OF METHANOL IN AVOIDING
ENVIRONMENTAL CONTROL COTS

Regulation

Likely Location

Control technology
alternative

Methanol Alternative

Reduce NOX emis-
sions by 50%

South Coast Air
Basin

Add selective
catalytic reduction
to 2/3 of plants

Burn methanol in
all plants

Reduce SOx emis-
sions by 60%

South Coast Air
Basin

Burn .1% S Oil
in all plants

Burn methanol in
60% of the plants

Control Tech. Costs
Capital ( 1981$/kW)
Operating ( 1981 mils/kwH

Value of methanol as
Alternative to Control
Technology Addition
(1981 $/106 Btu)

110
3.3	 3.2

0.57
	

0.56

t'	 under consideration in some part of California, although the recent out -of-
court settlement of ligitation over NOX emission reductions in the South
Coast Air Basin has reduced the likelihood that selective catalytic reduction
will be necessary for NOX emission control in the near future (see Section
D-10). Assumptions in Tablc 9-24 were used in these calculations.

The value of methanol use in producing salable offsets would be
1.

essentially equal to the value in Table 9-25 for avoidance of internal costs
by the utilit y . While these benefits are potentially significant, the
utilities tend to discount them because of the possibility that they would
vanish if the use of methanol for NOX emission reduction is incorporated
into the State Implementation Plan ( SIP). Emission reductions can only be 	 r
counted as offsets to the extent that they surpass SIP or other regulatory
requirements.

F

^	 u

9. Value of Increased Capacity for Environmentally -Restricted Power
Plants

._	
P1a	

,

Three modern Southern California power plants are restricted to
operate below full capacity in order to limit emissions of NOx and other
pollutants. Firing of methanol in these plants could potentiallyhave lover
emissions per unit of generation than either oil or gas and thus permit

t
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increased capacity at these stations (although it is not clear from tests to
date how much lower emissions would be for methanol than for gas). Such a
capacity increase could result in avoiding increased operation of less
efficient units and/or expenditures for new capacity or power purchases and
thus could place a premium value on the methanol used. The three environ-
mentally restricted cases are outlined: in Table 9-26 and analyzed, individually
in the following paragraphs.

Ormond Beach is believed to he the moext important of the three because of
the possibi lity that dual fueling could eliminate the restriction thus result-
ing in a large premium payable for methanol. In the past, the Ormond Beach
boilers were restricted to operate below nameplate capacity because of high
NOX emissions and also because of vibration. A recent modification to one
of the two boilers ( a divisionary wall) has eliminated the vibration and
reduced NOX to a level whereafter the second boiler is modified) the
output would be restricted by NOX to t`le levels shown in Table 9-26. It is
believed that methanol/oil or methanol/gas dual fueling could permit operation
at 1700 MW or possibly higher, although this muse be considered somewhat
speculative until test data on dual fueling in large boilers is obtained. It
should also be noted that gas /oil dial fueling and/or gas/gas burner stoichio-
metry variations might also permit operation at 1700 MW or higher and thus
preclude the payment of a premium for methanol.

Under current conditions of substantial capacity margins, the premium
payable for methanol in increasing the capacity of Ormond Beach ( assuming that
it cannot be increased using non-methanol tactics) can be evaluated in terms
of the cost savings resulting from reduced loads on less efficient units. In
Figure 9-8 the premium for methanol is expressed in terms of the cost of the
conventional fuel in use at the other units, the average heat rate of the

Table 9-26. ENVIRONMENTALLY RESTRICTED POWER PLANTS
	

G

POWER PLANT ORMOND BEACH
1 and 2

SCATTERGOOD
3

LONG BEACH
8 and 9

Estimated actual 1,700
capacity NO

Nameplate capacity NO 1,500 496 530'

Placed in Service 1971 1974 1976

Heat Rate at Full 9 , 066 9,980 9,980
Load ( Btu/kWh)

Restriction 1520MW firing oil no oil : fir ng 34% capacity factor'
1520MW firing gas 284K4 firing gas

Potential Neat Methanol 10,700' 3,500 3,400
use (tons/day)

Potential Overfiring 1,070 350 -
(10X) Methanol Use
(ton/day)

r
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capacity displaced (assumed to be approximately 9500),* the increase 'in Ormond
Beach capacity and the percent of methanol in the dual fuel firing. A 100
percent methanol case is also shown. Under current conditions the unloading
would be expected to occur on relatively efficient ►,nits, so a likely combina-
tion would be a heat rate of 9500, a capacity increase to 1700 MW and a 10
percent methanol mix resulting in premium of about 5 percent of the current
oil or gaa costs: about $0.25/MBtu. It should be noted that this is in
addition to any premium that would be payable as a result of projected
efficiency improvements for dual fuel firing! (see Section C-3). In order to
illustrate the impact of the potential heat rate improvements, two additional
sets of calculations aria also displayed in Figure 9-8, which show the impact
of a l percent or 2 percent improvement in the boiler heat rate. It is clear
that the value of the potential heat rate improvement dominates the value of
using more efficient generating units in the near term, and is necessary if
nethanol use is to be justified on cost-effectiveness grounds. For example,
if the price of oil or gas is assumed to be $6.00/10 6 Btu in the mid 1980s
(1981 dollars), then in the 10 percent overfiring mode with a 2 percent heat
rate improvement and a capacity expansion to 1700 MW the justified premium for
methanol is 28 percent, which implies a price of X7.68/10 Btu for methanol.
Although there may be small quantities of subsidized methanol that cost this
amount to produce (e.g., methanol receiving substantial tax breaks from
bioenergy feedstocks), it is unlikely that the market price would drop this

6

	

	 low. As discussed in Chapter 4, the baseline case for methanol production is
that the marginal producer in chemical markets will be existing producers
using pipeline natural gas (expected operating cost of over $10.00/ 106 Btu)
and the marginal producer into fuel markets would be based on new remote
natural gas projects at an expected delivered cost of $9.00/106 Btu. Thus,

in the near term the potential improvements in efficiency are probably not
0 1-I fficient. to lead to methanol overfiring on a fuel efficiency basis.

In the longer term, less efficient units would be displaced, resulting
in higher premiums for methanol, and eventually the increased Ormond Beach
capacity would displace power purchases from marginal sources. The premium
payable for methanol in avoiding such purchases is shown for the 10 percent
dual fuel case in Figure 9-9, as a function of heat rate improvement, capacity
increase and cost of purchased power. Purchases under PURPA negotiated on the
basis of avoided cost plus capacity credit are currently averaging about
7J/kWh. Thus, in the case that there is a 2 percent heat rate gain, the
avoided cost is WkWh and the capacityis increased to 1700 MW at Ormond
Beach the premium payable for methanol would be $3.00/106 Btu over the
applicable oil or gas price. The value of methanol, therefore, would be $9.00/
l0 Btu, which is approximately what its delivered cost to California has
been calculated to be based on remote natural gas feedstocks. As shown in
Figure 9-9, the actual value of the appropriate premium could be greater or
less than $3.00/106 Btu depending upon the actual heat rate gain achieved

I

*The precise heat rates of the units impacted by expanding an efficient unit in
the loading order is a very complicated calculation which would require de-
tailed simulation analysis. Experience with this type of modeling suggests
that the largest impact occurs on the units immediately following in the load-
ing order, which would also be quite efficient in this case.
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and the expansion in capacity that would be permitted. 	 These unknowns can

only be resolved through a demonstration of methanol overfiring in comparison
with natural gas overfiring in a full-scale test. 	 The potential premiums are

substantial enough, however, to warrent that the testing, be done.	 Furthermore,
if the more optimistic improvements (2X or.mgre heat rate gain and capacity
restriction at Ormond Beach relaxed to' 400.0w) are achieved, there would be a
viable application for methanol at the Ormond Beach plant.

At Scattergood, an increase to nameplate capacity would require a 40
percent emission reduction compared to gas firing, which may not be achievable
by overfiring with methanol.	 Assuming that the necessary reduction could be
achieved, the value of the premium for 30 percent methanol overfiring, dis-
placement of capacity with a heat rate of11,000 Btu/kWh would be 15 percent
of the oil or gas price (approximately $0,90/106 Btu).	 In the longer term
With the value of capacity included in the potential premium, the value would
increase to approximately $1.50/106 Btu over the oil or gas price if t,07/
kWh is the displaced cost of purchased power, 30 percent methanol is used in
the overfiring mode, and a 2 percent efficiency gain is achieved.

The restriction at Long Beach was negotiated with a predecessor of the
California Coastal Commission and changes would have to be negotiated with
that agency.	 The restriction covers all pollutants and also other considera-
tions such as thermal discharges, so it is not clear that a reduction of air
pollutants would be sufficient to lift the restriction. 	 Assuming that the
restriction could be lifted and the capacity factor increased to 60 percent,
there would probably be little benefit relative to displacing less efficient
units because of the relatively high heat rate at Long Beach.	 Relative to

7/kWh	 'th	 °1	 t *6/MBt	 the	 remium forpurchasing power at	 , wt of or gas a_	 u,	 p
methanol would be $0.40/MBtu.

i

10. Value of Methanol in NOx Emission Reduction Strategies

Substitution of methanol for fuels now in use has often been con-
sidered as a means to reduce emissions of nitrogen oxides which are a key
contributor to photochemical smog in Southern California. Recent establish-
ment of requirements for reducing NOx emissions from utility boilers permits
estimation of the premium that might be paid for methanol as part of a
strategy to meet these requirements.

SCE and LADWP are required under terms of an out-of-court settlement of
their suit against the state and local regulatory agencies to reduce basin
wide NOx emissions from boilers according to the schedule shown in Table
9-27. Both utilities believe that implementation of their current resource 	

s

plans will result in meeting the requirements in Table 9-27 without use of any
additional emission control steps. The resource plans call for reduced reli-
ance on in-basin boilers and a shift to nuclear, renewables and out of state
coal. If the limits in Table 9-27 are exceeded for three consecutive years
(or for 2 two-year periods), the settlement requires that the utility add
Nor emission control equipment to 'avoid future exceedances.

If the resource plan is not adhered to and heavier reliance is placed on
existing plants, the utility would have to cake steps to reduce NOx
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ible 9-27. NOx EMISSION LIMITS FOR GENERATING SYSTEMS LOCATED WITHIN
THE JURISDICTION OF THE SOUTH COAST AIR QUALITY MANAGEMENT
DISTRICT AND VENTURA COUNTY AIR POLLUTION CONTROL DISTRICT

(tons/year)

YEAR

SOUTH COAST AIR QUALITY
MANAGEMENT DISTRICT
LADWP	 SCE

VENTURA COUNTY AIR
POLLUTION CONTROL

DISTRICT
SCE

1982 6,530 21,300 7,580
1983 7,350 19,800 6,940
1984 8,270 18,950 6,510
1985 8,340 18,230 6,510
1986 8,900 14,060 5,150
1987 8,420 12,200 4,650
1988 7;220 12,430 4,330
1989 6,080 12,180 4,250
1990 4,200 11,780 4,460
and beyond

Notes This table is subject to adjustment pursuant to the terms and
conditions of the Stipulation and Order for Judgement

SOURCE: Superior Court of the State of California, Stipulation for
Order, Case #C323997, March 1.982.

emissions either by adding emission controls or shifting to a low emission
fuel such as methanol.	 In such a situation the utility would be willing to
pay a premium for methanol equal to the levelized cost for the control 3
equipment avoided.	 To provide estimates of this premium, three hypothetical
cases for SCE (combination of South Coast and Ventura County units) in the
late 1980s were analyzed:

Case 1 - The San Onofre nuclear plant is not available,

Case 2 - The costs of geothermal generation are excessive.

Case 3 - No natural gas is available.

In all three cases, the baseline assumption was that the lost generation would
be made up by firing oil in existing steam turbine units with addition of
emission control equipment (either low-NOX burners or selective catalytic
reduction) to meet the limits in Table 9-27. 	 It was assumed that no
additional natural gas would be available in Cases 1 and 2. 	 Costs for
low-NOX burners and selective catalytic reduction (SCR) were taken from a
survey of control technology costs (unpublished) which showed a capital cost
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Table 9-29. VALUE OF METHANOL AS ALTERNATIVE TO ADDITION
OF NOx EMISSION CONTROL EQUIPMENT

CASE

1.

SAN ONOFRE NOT
AVAILABLE

2.
GEOTHERMAL
GENERATION

NOT AVAILABLE

3.

NO GAS

AVAILABLE

1990 Steam Turbine
Generation (GWH)

oil 23,400 16,400 19,000
gas 7,000 7,000 0

Average emission factor 1.06 1.38 1.74
allowable (lb/MWh)-

Premium value of Meth-
anol in place of options
A or B (1981 $/MBtu) A	 B A	 B A	 B

OPTION C-1 0.70	 0.40 070	 0.10 0.7-1	 0.10
C-2 0.90	 0.50 0.90	 0.10 0.80	 0.10
D 1.90	 1.10 1.90	 0.20 1.70	 0.20
E 2.10	 0 2.30	 0.25 2.30	 0.30
F-1 NA	 NA .90	 0.10 1.00	 0.10
F-2 1.00	 0.50 .90	 0.10 1.10	 0.10
F-3 .90	 0.60 .90	 0.10 1.10	 0.10

Methanol use (tons/day)
OPTION C-1 27,000 11,000 11,000

C-2 22,000 9,000 10,000
D 10,000 4,000 5,000
E 3,000 3,000 3,000
F-1 NA 8,000 9,000
F-2 21,000 9,000 9,000
F-3 18,000 8,000 9,000

in the table that, if the low NOX burners are as effective as described in
Option B, deviations from the resource plan must be substantial in order to
generate a significant premium for methanol. It is also noteworthy that the
largest premiums are found in the dual fueling cases, although the quantities
of methanol used are relatively small.

11. Financial Factors

Decisions on capital expenditures_ are generally based on providing
the west life-cycle electricity costs consistent with the ability of the
utilityy	 se capita].. In today's situation, with high interest rates and
stocks selling below book value, the investor-owned utilities are under pres-
sure from shareholders to avoid capital-intensive projects. This situation
could contribute to heavier reliance on existing steam turbine and combined
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:cycle units than is reflected in the current resource plan, thus increasing
the potential market for methanol.

12. Near-Term Fuel Supply Considerations

The likelihood of near ,-term use of methanol in California station-
ary applications will be strongly :influenced by the cost and availability of
conventional fuels (oil and natural gas) and of other alternate fuels. Nat-
ural gas is currently the fuel of choice for southern California utilities
and industry because of both price and environmental attributes.

Utilities have the lowest priority for natural gas and industry the nett
lowest, but projected gas availability has been increasing in recent months
and shortages in the next ten years are considered unlikely. Deregulation is
widely expected to result in utility gas costs rising to a level similar to
that of medium to high sulfur residual oil,'and thus lower than the price of
low sulfur oi;, used by California utilities. This is illustrated in Figure
9-10, which shows methanol target prices derived From oil and gas price
projections in Reference 24 for two economic scenarios defined in the Summary
Report. As defined in Chapter 2, the target price represents the price of
methanol, delivered to a coastal or inland distribution center, at which the
user would choose methanol over the competing fuel. These target prices take
into account modification costs and differences in efficiency and delivery
cost, but they do not include premiums for environmental benefits which must
be dealt with on a case-by-case basis. The general topic of price and
availability of oil and gas is discussed in detail in the Summary Report.

Both SCE and PG&E have historically relied on multi-year oil supply
contracts that could hinder a transition to methanol. However, current
difficulties with the California Public Utilities Commission over take-or-pay
aspects of these contracts and the early termination of two such contracts
have introduced a highdegree of uncertainty into the future of long-term fuel
supply contracts, both for oil and methanol. This action is potentially very
harmful for new fuels such as methanol, where potential producers would be
reluctant to make investments based or, contracts that might not be honored.

Alternative fuels that will compete for the same markets as methanol are
discussed in the Summary Report. The most significant possibilities for
existing power plants are imported liquified natural gas (LNG) and medium Btu
gas (MBG) produced from western U.S. coals. LNG does not appear to be a
near-term option because of problems in siting of receiving terminals in
southern California and the uncertainties surrounding the long-term availa-
bility of conventional gas that make construction of such a facility a
doubtful financial venture.

SCE has considered the possibility of supplying its Los Angeles area
power plants with MBG produced in the nearby desert and transported by

1.	
b	 tts	 t	 f	 d t b	 ce , vpipe ine, ut a cos was --- o e ex 0. e,

S

13. Cost and Performance Uncertainty 	 r

Since the testing of methanol in utility scale systems has been
limited in scope and duration, the utilities are not likely to accept the
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results at face value or to extrapolate them with a high degree of confidence
to larger units or longer time periods.	 For example, the preliminary heat
rate data from the Highgrove test was relatively favorable, but it could be
argued that performance in that teat would not be typical of larger, more
modern boilers with larger radiant heat transfer sections.	 Thus, in comparing
methanol with alternative fuels, it would be appropriate to adjust the
methanol cost for the possibility of poorer performance.

k	
^

Uncertainties of this type are dealt with in a probabilistic manner in {
utility fuel selection analysis, with weighting factors influenced by the
question of who pays for degraded performance. 	 In the heat rate example, if
no problem was anticipated in pass-through of higher fuel costs related to
higher than expected heat rates, this uncertainty would not be a major factor
in the analysis.

Some of the other uncertainties to be considered are related to:

(1)	 Escalation of methanol production costs.
^ ;p

(2)	 Costs of modifications.

(3)	 Costs related to permit delays.

(4)	 Costs resulting from derating.
s

(5)	 Maintenance costs.

(6)	 Escalation of costs of alternative fuels.

(7)	 Changes in PUC policy.
9

(8)	 Changes in environmental requirements,
a

14.	 Vulnerability to Supply Cutoff

In the early stages of the transition to large-scale methanol use,
it is envisioned that the methanol would come.from a small number of large
production facilities, each having its output committed to large users. 	 An
interruption of the supply from one of these facilities could not be easily n

made up.	 Even in the longer term, when large supplies of methanol are
presumed to be available, the utilities have expressed concern that in the
event of an oil supply disruption, government authorities would divert
methanol to the transportation sector. 	 These considerations would weigh
against methanol in utility fuel selection analysis.

On the other hand, long-term contracts for methanol from domestic >
resources could protect the utilities against the large jumps in cost that
have been associated with the international oil supply disruptions of the ri
1970'x.	 However, changes in PUC policy would be required before any
substantial premium could be paid for this protection.

9-60t;



E.	 'POTEtTIAL ROLES FOR METHANOL IN STATIONARY APPLICATIONS

The following roles for methanol in the utility sector have been
suggested during the course of the California Methanol Assessment:

(1) In new baseload facilities.

(2) In new peaking units: combustion turbines or fuel cells.

(3) In existing units repowered by addition of front end
combustion turbines.

(4) As a substitute for oil and gas in existing steam turbines,
combustion turbines and combined cycle units.

The first two are long-term roles, while items (3) and (4) are part of the
transition question since they apply to units having at most 20-30 years of
useful life remaining=

1. Long-Term Roles

._'

	

	 A few years ago, there was a great deal of C;%„Jfornia interest in
construction of oil-fired combined cycle baseload units that could be switched
to coal-based synfueis as they become available. While all plans for new
baseload capacity have been eroding as a result of lower demand projections,
the interest in combined cycle units has largely evaporated. This is
apparently due to increased confidence in being able to site coal-fired
baseload units in or near the state and to a general slowdown of the synfuels
thrust. Availability of a secure, inexpensive methanol supply could
contribute to a revival of interest in liquid fueled combined cycle units, but
the time frame appears to be the mid-1990's. It appears unlikely that life
cycle costs fora methanol-from-coal combined cycle system would ever be
competitive with direct combustion of the coal or an integrated coal
gasification combined cycle system. One option that might be competitive,
however, would be a combined cycle using methanol produced using a low
opportunity cost gas source.

New peaking units would be a more near-term market for methanol, but
the size of this market (a small portion of the distillate oil projections
in Table 9-2) is rather small. Methanol-bcsed fuel cell systems could also
capture a portion of the intermediate load fuel demand now supplied by oil
and gas, but the economics of such systems are not well defined.

2. Utility Transition Roles

This section examines potential electric utility roles for methanol
in the next twenty years. These roles relate almost entirely to existing
boilers and turbines (although new .fuel cells are a possibility)

r
9-(1



a.	 The Current Situation. 	 The key facets of the environment in

ahete 
to

provide aN

utilities
	 p olcontext for evaluation	 potential near-term methan	 roles.

(1) There is strong pressure on the utilities and the PUC to hold rates
down, leading to emphasis on very near-term rate .impact aspects of
utility decisions.

(2) Natural gas is available in large quantities and will apparently
continue to be beyond 1990, at a price competitive with residual
oil.

(3) Methanol is perceived by the potential users to be very expensive
and unlikely to be competitive with gas or oil (on a dollars per a

Btu basis) for the next fifteen years. 	 This was confirmed by the
present study (compare the oil and gas target prices in Figure 9-10
with methanol costs in Chapter 4).

(4) Growth rates continue to be lower than expected, and capacity
additions continue to be deferred.

(5) SCE and LADWP have reached an agreement for reducing NOx
1

emissions which can be met without installation of emission
controls if current resource plans which call for decreased
reliance on oil and gas are implemented.

This situation is not very promising in terms of near-term methanol
use.	 However, some circumstances have been identified in which substantial x
quantitites of methanol might be used in the utility sector.	 These are
discussed in the following subsection.

b.	 Potential Methanol Roles.	 The utilities are generally con-

cerned that it may be necessary to rely more heavily on existing Oil- and f

gas-fired plants than resource plans currently indicate, and that environ-

mental restrictions will hinder this.	 Among the potential circumstances cited

were:

(1) Delays in licensing and/or construction of nuclear and coal plants.

(2) Renewables not meeting cost and schedule goals.

(3) Reduced gas availability.

(4) Prolonged adverse hydra conditions.

(5) Unexpected increases in demand. c

In southern California, the NOx reduction agreement and potential
s

tighter restrictions on Sox emissions in the AQMP could substantially

increase the costs associated with increased use of oil and,gas for in-basin

units.

9-52
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As a result of these considerations, SCE and LADWP have shown continued
interest in alternative fuels for their existing boilers and turbines, as
evidenced by SCE's test programs and LADWP's recent funding of a study of
alternatives. (PG&E appears to have more. confidence in their ability to
obtain gas and has shown less interest recently in alternatives.) The options
that involve methanol are discussed here in the transition context.

(1) Peaking Combustion Turbines. SCE has five large combustion
turbines totaling 630 MW and several smaller ones, which are used
for peaking and operate at average capacity factors of only 2-3
percent. These 'burn distillate and gas and would be the first
place where tinethanol would be cost competitive because of improved
efficiency. However, the likely usage is quite small, on the order
of 200 tons/day. Successful load management programs will probably
maintain peaker capacity factors at low levels for the next 10-15
years.

The desire to gain more experience in handling and knowledge of
long-term materials impacts could lead to dedication of one large
turbine for long-term methanol testing before methanol becomes cost
competitive. The impacts of such a test on rates would probably be
negligible, but there have been problems with the PUC in the past
over similarly "negligible" R&D expenditures.

(2) Existing Combined Cycle Units. SCE has four combined cycle units
(two at Long Beach, two at Cool Water) totaling about 1000 MW
capacity. These also burn distillate or gas and are likely candi-
dates for methanol in case of reduced gas availability. These
units use heat recovery boilers with no supplementary firing. The
Long Beach units are good candidates, because they are suppliable
by water and currently are restricted to 34 percent capacity factor

f

	

	 because of emissions. The substantial NOx reductions achievable
with methanol could lead to relaxation of this restriction, which
could result in a moderate premium payable for methanol (see
Section D-9).

(3) Restricted Steam Turbines. The two SCE Ormond Beach units (1500
MW) and the LADWP Scattergood 3 units (500 MW) are restricted to
operate at less than full load becauseof NOx emissions. Use of
methanol to eliminate these restrictions could result in substan-
tial premiums for methanol (see Section D-9). Ormond Beach is also
a prime location for methanol use because it is supplied by water.

(4) Dual Fueling. As discussed in Section C, small scale tests have
indicated that dual fuel firing with methanol can provide
disproportionate NOr reductions, and analytical results have
indicated a potential efficiency improvement. The NOx reduction
could lead to premiums for methanol of as much as $2.00/MBtu (in
case of major deviations from the resource plan--see Section D-10);
while the efficiency improvement (if confirmed) could lead to
premiums of up to 20 percent of the price of oil or gas in most
boiler applications. For the high oil price scenario in Figure	 -
9-10, such premiums could make methanol competitive with
petroleum-based fuels in the early 1990s.:

a
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(5) Repowering. Repowering of existing units was also discussed
above. Delays in nuclear and coal plants and/or renewables could
lead to a need for timely provision of new baseload capacity.
Repowering using methanol has the potential to provide inexpensive
baseload capacity while contributing to meeting the NOx reduction
requirements (see Tables 9 -22 and 9-23). The value of the low
emission attribute would be as high as one dollar per million Btu.

(6) Offsets, Bubbles, Etc. Recent EPA regulations have been intended
to remove some of the obstacles to the use of offsets and bubbles.
While the utilities generally do not have plans for in-basin
expansion that would require offsets, there is a strong indication
that industrial markets for the offsets could develop within the
next decade. On the other hand, many observers are pessimistic
about the development of a market in offsets, saying no one who has
not totally ruled out the possibility of future expansion will ever
sell one.

Use of bubbles by the utilities is more likely, especially in
regard to side-by-side use of methanol and higher sulfur oil. The
premium for methanol in such an application would be on the order
of $.50/MBtu.

3. Maximum Rate of Growth of Utility Methanol Usage

Although all boiler and turbine tests to date have been successful,
they have all been short-term tests. Questions regarding corrosion and other
long-term effects must still be answered and combustion equipment must be
developed. Thus, even if methanol prices were to become strongly competitive
with oil and gas in the near future, it is likely that concerns about
Long-term technical problems, coupled with constraints on capital expenditures
and on supplying large quantities of methanol other than by water would result
in a gradual phasing-in period. Two schedules for such a phasing-in period
have been developed for the Souther: ► California Edison system and are
illustrated in Figures 9-11 and 9-12. The first is an agressive development
schedule and would only be applied if both SCE and the PUC concluded that
methanol use was urgently needed. The second is a more cautious schedule
consistent with assumptions that methanol may become cost-competitive in the
mid 1990s. It would still require support from the PUC._

Combustion turbines would be the first application in the cautious
schedule because of the relative ease of conversion and the small quantities
involved. The Long Beach combined cycle units would probably be the next
step, since the quantities are moderate, the units are easily supplied by
water, the turbine applications will provide an experience base, and the use

3g 	 , it isglikely y that one of the seven turbi
i
nes would be

factorr	 of methant 
on

o I
- Beach liftn 

of the air ollution based ca•acne
limit. A

`	 tested fil,st, with later conversion of the other six. A third major step

C`
using the experience with handling large quantities gained at Long Beach would
be conversion of one unit at one of the two large steam turbine facilities
suppliable by water (Ormond Beach or Mandalay) with Mandalay being the most
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likely because it is smaller. Conversion of the Coolwater combined cycle	
i

units could also follow a successful demonstration at Long Beach, while
conversion of other large steam turbine facilities could follow a period of
successful operation at Mandalay. In the aggressive development case, it is

assumed that the combustion turbine, combined cycle and steam turbine steps
could be started at once, based on the successful tests at Ellwood and
Highgrove.

For each step in the cautious development case, it is assumed that a
one-year period of successful operation is required prior to commitment to
major modificationsfor the next phase. For the agressive schedule, this is
shortened to six months. In the event of a major disruption of oil and gas
supplies, this schedule could be further compressed. In lieu of such a
disruption, Figure 9-11 probably represents the most rapid possible build-up
for methanol use by the utility sector.

Figure 9-13 shows the methanol quantities associated with the schedules
in Figures 9-11 and 9-12. Although the conversion would probably be designed
to permit an easy return to oil or gas, it is assumed that all converted units
will continue to use methanol. Capacity factors for combustion turbines (3X)
and steam turbines (40-50X) were taken from Reference 25. For the Long Beach
combined cycle units, it was assumed that the current air pollution based
limit of 34 percent would be waived and a 50-percent factor was used,. Low
NOx dispatching procedures could lead to higher capacity factors for
methanol-fired intermediate load units--possibly as high as 70 percent.

Modern LADWP steam turbine units (Haynes and Scattergood) are also
included in the last step of Figure 9-13, since conditions (price, air quality
regulations) that would induce SCE to use methanol in their large boilers
would probably do the same for LADWP. PG&E is not included because of their
long-term gas supply arrangements. Including PG&E's modern steam turbine
units at 50 percent capacity factor would add another 23,000 tons/day to the
last step in Figure 9-13.

To put these quantities in perspective, it should be recalled that
current United States production of methanol is 16,000 tonslday, with a
projected increase to 19,000 by 1987. Thus, even an intermediate step such as
complete conversion of Long Beach 8 and 9 (3,400 tons/day) would require
substantial new sources of methanol.

4. Utility Methanol Demand Curves

Demand curves for methanol for the utility sector during the
transition phase are presented in Figures 9-14 through 9-23. These curves
were prepared as follows:

(1) All of the modern boilers and combined cycle units indicated
in Table 9 . 3 were assumed to remain in service throughout the
transition period. All of the older units were as4umed to be
retired. Capacity factors were based on Tables 9-4 and 9-5
but were increased in some cases on the assumption that
availability of competitively priced methanol would increase
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the reliance on existing fossil fueled units. Capacity
factors for environmentally restricted units were also
increased.

(2) The methanol usage growth rates for the cautious development
case were used, assuming a 1983 start on the schedule in
Figure 9-12.

(3) Costs of competing fuels for both the baseline and high oil
price scenarios identified in the Summary Report were used,
with adjustments as outlined in Section D above, No adjust-
ments were made for environmental benefits since the most
likely value of such benefits is zero. Conditions under which
environmental benefits become significant are discussed in
Sections D-8, 9, and 10. Premiums payable for methanol under
some specific conditions are discussed in those sections, and
are compared with the methanol price disadvantage indicated in
the demand curves in Figures 9-24, 9-25, and 9-26.

(4) PG&E was not included as a potential methanol user during the
transition period because of their focus on natural gas and
SNG. Including all of PG&E's modern steam turbine units in
the 1997 cases would add 23,000-tons/day to the demand curves.

It should be emphasized that for these demand curves to be realized, it
would be necessary that the competitiveness of the methanol price be
recognized far enough in advance to initiate the developmental program. Even
with a 1983 start, the 1992 curve is probably unrealistic in that it is based
on the assumption that once methanol is demonstrated in one 'large steam
turbine, all of the other steam turbines would immediately begin conversion if
the methanol price was competitive.

For reference, each figure shows the mid-point of the estimated price
range for remote-gas-based methanol delivered to a southern California
distribut.on center (see Chapter 4).

If the efficiency improvement for dual-fuel firing is confirmed, the
resulting premium payable for methanol would have a significant impact on the
demand curves. Figure 9-27 shows changes to Figure 9-17 corresponding to a 2
percent efficiency improvement for 10 percent methanol.

5. Methanol Demand Curves for the Industrial Sector

i The potential industrial market for methanol is assumed to include
current industrial fuel use (with some exceptions as discussed in Section B),
projected growth in industrial fuel use, and the generation of electricity by
industrial cogenerators using gas turbines.

E

Fuel costs are the same as those used in developing the utility demand
curves. It is estimated that 10% of the industrial users do not have access
to natural gas. A small fraction of users do not have rail access and would
require delivery by truck, thus reducing their breakeven price of methanol by
a few cents per gallon.
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The industrial demand curves are presented in Figures 9-28 through 	 4
9-33. The response to a sudden shift in fuel prices would be faster here than
in the utility sector, since innovative fuel users, especially those who are
energy intensive, would probably consider existing test data adequate to start
using methanol. The dual-fueling efficiency improvement would have an impact
on these curves similar to that for the utility case.
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F.	 SUMMARY OF BARRIERS AND POLICY CONSIDERATIONS

In the preceding sections a number of barriers which could prevent or
delay widespread use of methanol in the stationary sector were identified. In
this section these barriers are summarized and the implications of policy
options for various government agencies and private organizations that could

r'	 help overcome the se barriers are discussed.

Certainly the most significant "barrier" is the continued availability
of natural gas at prices substantially below the lowest projected energy
equivalent price of methanol. Substitution of methanol for natural gas in
stationary applications, even where environmental benefits can be realized,
appears improbable.

Other barriers identified in this study and their policy implications
are shown in Table 9-30. The barriers in the table are divided among
technological, rate regulation, environmental regulation and ,general
categories. Within categories they are listed in order of apparent
significance.
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G.	 CONCLUSIONS

Several conclusions can be drawn from the analysis in this report:	 1`

(1) The most significant poteniial market for methanol (up to 80,000
tons/day) is composed of existing utility steam turbine and com-
bined cycle units which currently fire oil and gas. The actual
extent of this market will, of course, depend strongly on future
cost and availability of oil and gas. A switch to methanol would
be most cost effective for combined cycle units (about 6000 tons/
day) which may otherwise have to rely on expensive distillate oii.

(2) SCE is the most likely large-scale utility user of methanol in
California because of a large inventory of modern oil- and
gas-fired units, strong environmental pressures, and limited
long-term access to natural gas.

(3) Existing industrial boilers and heaters (80,000 tons/day), and
future industrial cogeneration systems (10,000 tons/day) also
represent potential markets for methanol of substantial size, but
these currently use natural gas in most cases and have higher
priority than the utilities for o's-'';aining gas.

(4) In order for methanol to be competitive in these markets, its price
per unit of energy will have to be competitive with the prices of
residual oil for utility boilers, distillate oil for combined cycle	 s
and industrial units, natural gas (if available), and other syn-
fuels. Some adjustments for such factors as modification costs and
environmental benefits will be appropriate in this comparison, but 	 a
they will probably have a second order effect in the absence of
legislative action or a major change in PUC policy. Some exceptions
to these statements are discussed in item (5).

(5) Dual-fuel firing may result in payment of substantial premiums for
efficiency improvements in all boiler applications. In some
speculative situations, the NOg emission reductions associated
with dual fueling could result in very large premiums for methanol
(although these may be limited by the performance of gas/toil dual-
fuel systems) These premiums are very uncertain because of the 	 k

early state of development of dualfueling. A state-sponsored test
program which would measure emissions and efficiency for methanol/
oil and methanol/gas dual fueling in a large boiler and also
provide gas/oil data for comparison could play a major role in
determining the value of this technology.

r'
(6) Comparing projected methanol prices with demand curves based on oil

and gas price scenarios developed in,the Summary Report, it is seen
that in the baseline scenario met'r.:an i.will not be competitive with
conventional boiler and turbine fuels inthe next twenty years 	 g`
(with the possible exception of distillate oil applications under'
optimistic ` methanol cost assumptions or extreme scenarios for
emission reduction requirements). In the high oil price scenario,
methanol would be competitive with distillate by 1995, and
marginally competitive with residual oil by the late nineties. It
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i

appears very unlikely that methanol would be competitive with
natural gas in stationary applications in the next fifteen to
twenty years under either scenario, although the long-term
availability of natural gas is not clear.

(7) Repowering of existing steam turbine units with front-end gas
turbines and firi^.6 methanol in all or part of the system can
provide low-cost capacity expansion and emission reductions. Under
the high oil price scenario, repowering may have an advantage in
cost of electricity over continued operation of the existing system
firing either conventional fuels or methanol. (The cost of
electricity for repowering would be much higher than for some other
options that do not involve use of liquid or gaseous fuels.)

(8) If methanol were to become cost competitive sooner than expected, a
phased development period would be expected before the full market
potential could be realized. This period would last from four to
eight years, depending :on the urgency of the circumstances that led
to methanol becoming competitive. (The buildup of the methanol
supply would probably take longer than this.)
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CHAPTER TEN

ENVIRONMENTAL AND REGULATORY CONSTRAINTS

The purpose of this orudy is to identify existing and potential environ-
mental regulatory constraints on methanol energy systems for California, and	 r

to characterize the environmental, health and safety impacts that may be asso-
ciated with implementation of methanol energy systems. All aspects of the
fuel cycle, from resource extraction through use of methanol as a fuel, are
examined in light of current and anticipated environmental regulations and
constraints.

Section A of the report provides a general overview of major environ-
mental statues and regulations applicable to methanol energy systems. Sections
B through D examine specific issues related to resource extraction, methanol
production, and end use of methanol as fuel. Section E compares environmental
impacts of methanol energy systems with other synfuels systems, and Section F
summarizes the priority environmental constraints on methanol energy systems.

A.	 OVERVIEW OF APPLICABLE STATUTES AND REGULATIONS

1.	 Air Quality r
The production and use of methanol as a fuel will be subject to an

interrelated complex of federal, state and local air quality regulations.	 The }
federal Clean Air Act (CAA) provides the basis for most of these laws and regu- :j

ij
lations, but California has a tradition of air pollution control regulations
predating federal activities in this area, and often imposes emission limits
that are stricter than federal requirements.

The CAA requires each state to adopt a State Implementation Plan (SIP).
Once the SIP is approved by the U.S. Environmental Protection Agency, it has
the force of a federal law, but its enforcement is delegated to the state.
In California, rules governing, emissions from stationary sources are adopted
and enforced by local Air Pollution Control Districts (APCDs) under the
supervision of the state Air Resources Board (ARB).	 The ARB is responsib e
for regulation of mobile sources and for preparing the SIP which includes
a compilation of APCD plans and rules.	 California currently has a SIP in
effect, but revisions are required by 1977 CAA ame7dments. 	 Until these
revisions are approved by the EPA, administration of portions of the CAA
is in the hands of the EPA.

The following paragraphs discuss the various typesof regulations appli-
cable to methanol production facilities and to use of methanol in station-
ary and mobile applications.	 The CAA is scheduled for reauthorization by
Congress this year, and the Reagan administration is expected to press for r=
significant changes in the law, mainly oriented toward easing the regulatory
burden on industry.	 Thus, some of the detailed provisions described here may
be revised in the `near future.

a.
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a.	 New Source Performance Standards (NSPS).	 The EPA has estab-
lished NSPS for boilers with heat input greater than 250 x 106 Btu/hr for
stationary turbines, and is developing standards for industrial boilers and
possibly for synfuel production plants. 	 These are based on demonstrated
technology and represent an upper limit on allowable emissions.

b.	 Best Available Control, Technology (BACT)/Lowest Achievable
Emission Rates (LAER). 	 State and local regulations generally require use of F

BACT on any large project, while the CAA requires use of LAER for projects in
non-attainment areas (areas not meeting federal ambient air quality standards)
and BACT for very large projects in attainment areas.	 BACT is determined on a
case-by-case basis and takes into account the economics of the project. 	 LAER 4

is defined in the CAA as the lowest emission rate allowed by the SIP of any
state (unless the applicant "demonstrates" that such levels are "not achiev-
able") or the lowest rate achieved in practice, whichever is more stringent.
LAER could result in requirements on applicants to include in their designs
technology that has not been commercially demonstrated and is high on the 'g
administration's list of priorities for CAA changes. 	 It should be noted that

'r much variation on these regulations exists: 	 for example, the APCD for the
}

Los Angeles area uses the federal definition of LAER as its definition of 4?

BACT.	 In many cases to date, federal and state agencies have accepted
technology satisfying the NSPS as also satisfying BACT or LAER, except in
California where state and local agencies tend to push for more stringent ?	 3

emission limits on large projects. xif

C.	 Prevention of Significant Deterioration (PSD). 	 The PSD pro-
gram specifies allowable increments in ambient pollution concentrations for M
attainment areas.	 The increments depend on land classifications, with very
small degradations permitted in Class I areas (national parks, wilderness
areas, other state designated areas), small degradations in Class II areas

d

(most often county), and moderate degradation in Class III areas (none yet
designated by state).	 Class I areas are also protected against any degra-
dation of visibility. 	 New large projects must demonstrate via modeling that
they will not cause the allowable increments to be exceeded. 	 PSD could limit
the number of large synfuel plants in some western coal resource areas.

d.	 Offsets-.	 In non-attainment areas, the CAA permits no further
air quality degradation.	 This has led to the concept of "offsets" in which
emissions from any new source must be balanced by equal or greater reductions
in emissions from nearby existing sources, sometimes leading to a major impact

` on project costs.

e.	 Emission Limits for Motor Vehicles.	 The CAA provides for
establishment of highway vehicle emission limits as a function of model year. 't
It also allows individual states to set their own limits as long as they are
"at least as protective" as the federal standards. 	 California has set a NOx l
standard tighter than the federal standard which has led to significant dif-
ferences in engine settings between cars sold in California and those sold in
the other forty-nine states. 	 Although the Reagan administration is pushing a
relaxation of NO, standards currently to be tightened in future model years,
California may choose to keep tightening the NOx limits.

10-2
0 y

Lim-,



Fr

f.	 Regulation of Motor Vehicle Fuels. Before Any now fuel or
additive may be used in motor vehicles, it must be certified by the EPA,
based on intensive; testing, as not representing a hazard to public health.
While neat methanol has not yet been so certified, there is very little
indication of potential problems in gaining certification. California also
has the power to forbid use of specific fuels or additives, but there is
likewise no indication that this will be a hindrance to the use of methanol
in vehicles.

In summary, the .flexibility built into the current laws and the Reagan
adnainistraation's desire to change these laws results in substantial uncer-
tainty regarding the air pollutant emission limitations that will be applied,
to methanol production and tit il zation .systems. However, one generalization
can be made for all large energy systems of the future, and especially those
in California: It is unlikely that any large energy ; production or utilization
system will be permitted to deviate very far from using the best available
emission control technology that does not drastically alter the process
economics.

2.	 Water Quality

Resource extraction, especially coal mining, and methanol produc-
tion processes produce effluents that may affect water quality and will be
subject to a variety of regulations governing water pollution. The primary
federal mechanism for protecting water supplies from pollution resulting from
industrial discharges is the Federal Water Pollution Control Act and its many
amendments, orten re:ferrea to as the Clean Water Act (CWA) (33 U.S.C. &&1251
et seci .). The basic regulatory mechanism is the National, Pollutant Discharge
71imination System (NPOES), which was established with the goals of making
U.S. waterways fishable and swinmirable by 1983, and achieving zero discharge
Of pollutants by 1985. Regulations under this program include effluent guide-
lines, new source performance standards, toxic pollutant regulations, anti
oil--hazardous substance spills limitations.

EPA has the responsibility to establish point--source effluent limita-
tions for municipal dischargers, industrial dischargers, ,industrial users of
municipal treatment works, and toxic substances. Effluent guidelines and
Standards, including new source performance standards, are issued for specific
industries that discharge conventional pollutants directly into receiving
waters. The effluent limitations are t~esclinology-base:d, and may reflect best
practicable pollution control technology, best conventional control technol-
ogy, best available technology, or best available technology economically
achievaible., Generally, limitations are placed on the mass of individually
identified substances that can be discharged per unit of product produced.
Examples of regulated industries include steam electric power plants, petro-
leum refining, organic and inorganic chemicals manufacturing, and coal mining.

Under NPDES, states must adapt; water quality standards that meet or
.,	 exceed federal criteria. These water quality standards provide a basis for

establishing both point-source based effluent limitations and toxic pollutant
limitations used in issuing NPDES permits to point-source dischargers, which
include specific discharge limitations for each pollutant discharged. by a

k
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facility.	 States have the authority to issue the permits if federal guide-
lines and standards are met. 	 Permits can be decided in the absence of guide-
lines and standards, but such permits may be litigated and the limitations
challenged in court by the source discharger.

Sources which discharge to publicly owned treatment works (POTW) via'
sewers are not ccvered by the NPDES permit system. 	 Such sources must instead
comply with pretreatment standards designed to protect the POTW. 	 Facilities
that do not discharge to sewers or surface waters, or which discharge negli-
gible amounts of effluents, are not covered under the NPDES system.

C,	Under the Clean Water Act, EPA is also required to publish a list of

.r

r	 designated toxic pollutants, and is authorized to promulgate effluent stan-
dards for these pollutants. 	 Approximately 75 toxic substances will eventually
have effluent standards. 	 EPA is also authorized to promulgate hazardous spill s
regulations.	 EPA has designated as hazardous those discharges which present
an imminent and substantial danger to public health or welfare, and has estab-
lished a system of reporting and fines for operators exceeding discharge
limits.	 Currently, EPA must seek to impose penalties on a case-by-case j
basis through the courts.

it
i
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3.	 Solid Waste 1

Resource extraction and methanol production processes will undoubt-

edly generate solid wastes, some of which may be classified as hazardous,; which
will need to be disposed of in an environmentally acceptable manner. 	 The
Resource Conservation and Recovery Act (RCRA) of 1976 (42 U.S.C. &66901 et
sea.) provides the federal basis for regulation of solid and hazardous wastes,
particularly industrial wastes. 	 The RCRA program will provide a cradle-to- 4
grave regulatory scheme for hazardous wastes, and provide for the protection
of public health and welfare by supplying guidelines co protect the quality of
groundwater,	 surface water, and ambient air from contamination by solid wastes.

Under RCRA,	 the EPA Office of Solid Waste: was given basic authority for i

controlling; the disposal of solid and hazardous wastes. 	 Major elements of the
program include:

(1)	 EPA specification or generic or individual .substances
considered hazardous. t

(2)	 A "manifest" system under which a manifest is written for each
consignment of hazardous waste when it is generated.

(3)	 A tracking system to follow these consignments until they
reach ultimate disposal sites. !'

(4)	 A permit sy stem to identify those sites that have adequate
facilities to safely dispose of the consignments.

(5)	 Record keeping and period reporting requirements.

: e
i

s
y

10-4
^k

I



Substances identified as hazardous by the EPA are waste-specific rather
than industry specific. "Hazardous waste" includes those wastes that are
ignitable, corrosive, reactive, or toxic. Wastes that are radioactive,
infectious, phytotoxic, teratogenic, or mutagenic may also be subject to
regulation under RCRA. It is the responsibility of the waste generator to
determine if a waste is hazardous; generators of small amounts generally are
not subject to regulation under RCRA. The RCRA program prescribes standard's
and regulations applicable to hazardous waste generators, transporters, And
facility owners and operators, as well as storage, treatment, and disposal
operations. Construction and operation of any hazardous waste treatment,
storage, or disposal facility requires a permit under RCRA.

In addition, under RCRA, the Office of Solid taste has developed
criteria for the disposal of non-hazardous solid wastes in order to protect
water and air quality, safeguard environmentally sensitive areas, eliminate
disease vectors, and ensure public safety. Under this program, the states
are required to survey and evaluate all solid waste disposal sites and develop
solid waste plans in accordance with federal criteria. The Office of Solid
Waste has developed guidelines for the design and operation of landfills and
for surface impoundment of solid waste.

Efforts are currently under way to streamline the waste disposal process
by integrating the RCRA waste disposal regulations with other regulatory ̀pro-
grams, particularly NPDES requirements under the Clean dater Act, the Safe
Drinking Water Act, and the Federal Insecticide, Fungicide, and Rodent.cide
Act.

As noted above, solid and hazardous waste generators must comply with
specific operational standards. However, the Solid Waste disposal Act Amend-
ments of 1980 exclude from hazardous regulation under RCRA solid wastes from
the extraction, beneficiation, and processing of ores and minerals, and solid
wasted from fossil fuel-fired electric generating stations. Solid wastes
resulting from coal gasification processes are not likely to be classified
as hazardous by EPA, but may be by the State of California.

4.	 Toxic Substances

The Toxic Substances Control Act (TSCA) (15 U.S.C. &&2601 et
seq.) authorizes the EPA to obtain information on all new or existing
chemical substances and to control any of these substances determined to
cause an unreasonable risk to public health or the environment. If war-
ranted, EPA may regulate the manufacture, processing, distribution, use
and disposal of these substances. Hazards to be regulated under TSCA
include those no-, covered under othE^r statutes and regulations; therefore,
EPA is required to control substances determined to be toxic by authorities
gi, n in other laws or even though other agenciev, rather than vin TSCA.

To date, most emphasis has been placed on obtaining and analyzing
information, rather than promulgating control regulations. rile program
includes (1) development of testing standards and regulations, (2) a premanu
facturing notification system, (3) record keeping and reporting requirements,

1
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(4) hazard assessments, and (5) making priority-setting and information
systems operational.

Testing procedures are inteneed to yield information on the physical and
chemical properties of substances, health and ecological effects, environmental
behavior and fate, likely sources of discharges, technological and economic
factors, exposed populations, and industry's risk assessment. Recommendations
to EPA on substances to be tested are made by an Interagency Testing Committee,
which comprises the EPA, the Occupational Safety and Health Administration
(OSHA), the Council on Environmental Quality (CEQ), the National Institute of
Environmental Safety and Health, the National Cancer Institute, the National
Science Foundation, and the Department of Commerce. To date, a candidate list
of approximately 100 existing chemicals not regulated elsewhere has been recom-
mended for detailed analysis, and only two substances are regulated under TSCA:
polychlorinated biphenyls (PCBs) and fully halogenated chlorofluoroalkanes.

Under Section 5 of TSCA, persons intend--ng to manufacture a new chemical
substance for commercial purposes are required to notify EPA prior to commen-
cing production. Permit requirements and guidelines have been promulgated for
premanufacturing notification requirements, review procedures, and premanu-
facturing testing. EPA has indicated that it will not exempt the synthetic
fuels industry from regulations designed to protect the public from exposure
to toxic chemicals. Methanol is a well-known and well-characterized sub-
stance, but if methanol production processes generate toxic or hazardous
substances as by-prodvcts or waste stream components that are not covered
under other laws, pr(pluction facilities may be subject to the requirements
of Section 5 of TSCA.

S.	 Health and Safety

Resource extraction for methanol feedstocks, methanol production,
and methanol transport are subject to a variet y of regulations concerned with
worker health and safety. The extraction of coal is regulated by the Mining
Safety and Health Administration (MSHA). Though MSHA is responsible for both
underground and surface coal mining, the use of surface equipment jointly used
in the construction and quarrying industries results in some overlaps between
MSHA and Occupational Safety and Health Administration (OSHA) regulations.
The MSHA regulations (Title 30, Mineral Resources) generally address equipment
design and saf,2 practices for both the use and maintenance of equipment. The
oil and natural gas extraction industries are also regulated under OSHA through
Chapter 4, subchapters 1 and 14 of the General Industry Safety Orders. These
regulations address equipment design and safe drilling/storage practices asso-
ciated with the extraction of liquids and gases under pressure.

The accumulation and processing of municipal waste and biomass (i.e.,
the harvesting, compacting and decomposing processes) are controlled by OSHA
regulations. These regulations are described in Chapter 4, subchapter 7,
under the General Industry Safety Orders, and essentially cover the design
and use of the various equipment used in the sanitation and agricultural
industries. These regulations generally refer to component design (such as
brakes, warning signals, etc.) and total system design (such as safe load
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operating limits, designated safe areas for workers, etc.). Also included are
safe operation and maintenance practices.

Production processes and resultz ,ng plant design for methanol will require
conformance with OSHA regulations govirning general construction practices
(Chapter 44, subchapter 4 of the Safety Orders), design and construction of
pressure vessels, pressure lines, pumps and pipelines (Chapter 4, subchapters
1 and 14 of the Safety Orders), design and construction of tanks or pressure
vessels for the containment of hazardous substances (Chapter 4, subchapter 7,
Groups 8, 16 and 20 of the Safety Orders), and strict conformance with safe
practices and personnel protection for handling hazardous substances (Chapter
4, subchapter 7, Group 2 of the Safety Orders). The additional regulations
referring to the handling of hazardous substances are required because of the
high toxicity and disaster hazard potential associated with methanol and its
derivatives, including formaldehyde and formic acid.

C	 The transport of methanol can be done viap	 pipeline or ground. carriers^	
(such as trucks).	 OSHA regulations (Chapter 4, subchapter 15 of the Safety

F	 Orders) govern the transport of substances via pipelines. 	 These regulations
k	 address the safe design of pipelines, pumps, and valves required for pumping

hydrocarbons long distances under pressure. 	 The use of ground carriers to t
transport hazardous substances is regulated jointly by OSHA and the Department

'	 of Transportation (DOT).	 One factor that may complicate the problem of hazard
6	 mitigation is the requirement for mega-methanol plants to produce sufficient
` quantities of methanol as direct fuel. 	 Plants of this size not only pose reli-

ability problems, but also pose problems in the design of process controls,

l	
process monitoring devices, and operation and maintenance procedures for safe
plant operation.	 In summary, it would appear that the methanol production
phase would require the most detailed analysis from the standpoint of worker
health and safety.

6.	 Resource Extraction

i

j

Coal may play a significant role as a feedstock for methanol
production.	 Environmental impacts of surface mining of coal, as well as

_a
surface effects of underground coal mining, are regulated by the Surface
Mining Control and Reclamation Act (SMCRA) of 1977. 	 SMCRA mandates the
formulation of permit requirements and performance standards for coal mining.
States must formulate a regulatory program, approved by the Department of the
Interior's Office of Surface dining, that is at least as strict as the federal
standards-.	 SMCRA regulations cover permitting procedures and requirements,
mitigation of environmental impacts of mining, and reclamation procedures to
be followed after mining.

7.	 Environmental Impact Assessment Requirements

The federal government and most state governments have enacted
Legislation requiring assessment of the extent of environmental impacts
resulting from government actions, including projects, programs, permits and
licenses,

rx

r
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Projects funded by or receiving permits or licenses from federal
agencies must comply with the National Environmental Policy Act (NEPA)"
projects involving state or local agencies must comply with the California
Environmental Quality Act (CEQA), which is similar to NEVA. The agency with
the widest jur..sdiction.over a project or the agency funding the project is
designated the lead agency and has responsiblity to comply with environmental
reporting requirements. Certain aspects of 'methanol energy systems (i.e.,
siting, construction, and operation of production facilities) may be subject
to CEQA or NEPA requirements. Current emphasis is to coordinate state and
.federal requirements to eliminate duplication and streamline the process.

st ,

This section has emphasized the major federal statues and regulations 	
4

applicable to methanol energy systems. It must be kept in mind, however, that
virtually the entire body of federal environmental legislation zs subject to
change in the current atmosphere of national regulatory reform. President
Reagan's Task Force on Regulatory Relief has targeted many of EPA's regula-
tions for reform, based on information received from the industrial sector on
regulations considered most burdensome. Major targets for reform include
(1) the Clean Air Act and its many regulations, (2) RCRA's hazardous waste
management regulations, (3) criteria and standards for NPDES under the Clean
Water Act, (4) pretreatment standards under the Clean Water Act, and (5) TSCA
reporting, and record-keeping rules. In addition, the Department of Inter-
ior may push for major reforms in regulations implementing the Surface Mining
Control, and Reclamation Act, and reduce the regulatory functions of the Office
of Surface Mining. Environmental impact assessment and reporting procedures
mandated by NEPA and its guidelines will continue to be administered by the
Countil on Environmental Quality, with sour possible streamlining of
procedures.

California state statutes and regulations are, in many cases, stricter
and more long-standing than the federal laws (e.g., air quality and hazardous
waste regulation), on the other hand, many state guidelines and standards
still need to be formulated. Many permits and licenses are still: under the
jurisdiction of regional, county, and city authorities.

B	 RESOURCE EXTRACTION

Most methanol is currently produced from natural gas.. However, a
greatly expanded methanol production industry for Californiamarkets may need
to depend upon large quantities of alternative feedstocks, such as remote
natural gas, western coal, petroleum coke, and woody biomass, if conventional
natural gas supplies diminish or become too expensive. The technology and
impacts of natural gas extraction or production, And subsequent methanol
production from the gas, ' are well known. The most 'likely long-term alter-
native domestic feedstock to natural gas for large-scale methanol production
for California appears to be western coal. Large-scale extraction.of coal in
the western United States involves a host of environmental and regulatory ri

issues, which are the focus of this section.
Y
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1. Land Use and Wasing Constraints

Many factors affect the selection of sites for mining coal in the
western United States. For mining coal to be used as methanol feedstocks, the
costs of extraction and transportation are likely to be more important Factors
than cork! quality. The type of coal feed used would (1) affect the total tons
per day of feed, due to differences in carbon content, (2) affect the size of
sulfur recovery facilities, since coals have varying sulfur contents, and (3)
affect ash disposal and handling facilities, due to variations in ash content.
Much is dependent upon the type of gasifier to be used in the gasification
process prior to methanol synthesis. According to industry representatives,
KBW gasifiers can accommodate peat, petroleum coke, and any rank of coal;
Shell's entrained--bed slagging gasification process can also convert most
feedstocks, and Texaco gasifiers can handle some eastern and western coals,
lignite, SRC residues, and petroleum coke.

The most important coalfields are likely to be those with thick strip-
pable deposits, relatively close to California. The Yampa/Green River fields
in Colorado and Wyoming, the San Juan fields in New Mexico, and the Black Mesa
field in Arizona fall into this category (Ref. 17). Much of the coal in these
areas may be exhausted after fulfillment of current and anticipated contracts;
coal to supply a large California methanol fuel market may need to come from
strippable deposits farther away from California (such as the Powder River
area) or from deep mines in Utah and Colorado.

a
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The majority of the western coal lands are under the jurisdiction of
the federal government. These include lands administered by the Department
of Agriculture (U.S. Forest Service) and the Department of Interior (Bureau
of Land Management, National Park Service, And the U.S. Fish and Wildlife
Service). The Bureau of Land Management is the agency primarily responsible
for resource development. In conjunction with the U.S.. Geological Service,
tracts of land are selected for leasing; a person, association, or corporation
can lease a maximum of 46,080 acres of land from the federal government within
a state at any one time. These leases are subject to a comprehensive land use
plan. A $0.25/acre rental fee, plus royalty payments based on minimum annual
production, must be paid to the federal government. In addition, the Surface
Mining Control and Reclamation Act (SMCRA) also places land use controls on
both federal and nonfederal lands, and establishes performance standards to
regulate coal mining. Mining in national parks, monuments, and wildlife
refuges is prohibited,, subject to valid existing rights and certain other
exclusions. Lands administered by the BLM and Forest Service that are
undergoing wilderness inventory and study are also subject to restrictions.
Alluvial valley floors and prime farming lands are subject to special protec-
tion under SMCRA. The individual states must submit coal regulatory programs
to the ,Department of Interior's office of Surface Mining for approval. States
in the west with conditionally approved coal regulatory programs include
Colorado, New Mexico, Utah and Wyoming (Ref. l). Under these programs, in
conformance with SMCRA, entities applying for coal: leases must submit mine
plans, plans for mitigation of impacts during mining, and establish recla-
mation procedures to restorethe land after mining. Coal resources located on
Indian tribal lands are subject to constraints and royalties levied by the
involved tribal councils.
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Table 10-1. FEDERAL LAND MANAGEMENT CONSTRAINTS TO
MINING AND SYNFUEL PLANT SITING

n

RELATIVE EASE
CONSTRAINT OF SITING LAND CLASSIFICATION

Absolute Low Nati:.nal parks

National monuments

National wildlife refuges

National wilderness preser-
vation systems

Severe Medium Low Roadless Area Review and
Evaluation ( RARE II)
wilderness (USFS)

Administration endorsed
wilderness

Moder:* e Medium -RARE II further planning
(USES)

National forests and
BLM lands

Minor Medium High National forests and BLM
lands with scattered owner-
ship patterns

(Source:	 Ref.	 2)

An SRI International study for the U.S. Department of Energy (Ref. 2)
examined legislative and administrative actions that restrict coal mining and
developed four general constraint categories in which federal land management
units were placed (Table 10-1). SRI determined the existence of these units
and their locations within primary and secondary western coal counties.
Results of their analysis indicates that federal land use controls will not
seriously constrain siting of . coal mines in many areas of the west. In only
three counties ( Hinsdale, Pitkin, and San Juan, Colorado) do absolute con-
straints exceed 25% of the total acreage, but in no county does the area so
controlled exceed 50%. Two Colorado counties reach the 25-50% level of
severely constrained land; neither are coal resource counties. Several coal
resource counties have more than 25% of their land in national forests
(Sheridan, Wyoming; Bilings and McKenzie, North Dakota; Garfield, Utah; and
Gunnison and Routt Colorado). The only coal resource county with more than
50% of its area under federal control is Gunnison, Colorado, whereas nine
non-resource counties have a majority of their surfaces in federal ownerships.
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The Four Corners area of Colorado and Utah is the only area where significant
conflicts are likely to occur; the northern Great Plains are relatively free
of federal lands.

A previous JPL study on potential resources for methanol identified
seven western coal regions containing significant resources that could support
potential methanol production for California. These regions are (1) Arizona
(Black Mesa), (2) southern Utah (Kaiparowits, Kolob-Alton, Henry Mountains),
(3) New Mexico-Colorado (San Juan), (4) central Utah-Colorado (Piceance,
Uinta, Wasatch, Emery), ( 5) Wyoming-Colorado (Green River-Yampa), (6) Wyoming
Montana (Powder River Basin), and (7) Alaska). The Black Mesa region is
totally under the jurisdiction of the Navajo and Hopi tribes. The minesin
this region are operated by Peabody Coal under lease agreements with these
tribes. Over a 35-year period, royalties of $76 million to the Navajo and
$25 million to the Hopi will be paid. In addition, revenues of $315 , 000 will
be paid to the Navajo for use of 127,750 acre-feet of water to operate the

I slurry pipeline.

The southern Utah fields are located mainly on federal and state land.
Several environmentally sensitive areas (Zion National Park, Cedar Breaks
National Monument, Bryce Canyon National Park, and Capitol Reef National
Monument) are in the region and may impede development of these coal fields.
In the San Juan field, much of the area is owned by Indian tribes, and the
rest by the federal government, the state, railroads, and other private
parties. It is likely that many of the economic resources in this area also
may be depleted due to current contracts.

In the central Utah-Colorado region, lands underlain by coal are mainly
federal, state, and privately owned. The Uinta-Piceance areas also have vast
oil shale resources on federal lands, and potential conflicts may arise con-
cerning leasing for coal /oil shale extraction. Competition for scarce water
supplies may also be a constraint. In addition, many coal resources in this
area are high-quality or coking -quality coals, deeply buried and faulted, and
may be too expensive to mine for use as methanol feedstocks.

Most of the land in the Green River-Yampa area is federal land, admin-
istered by the Bureau of Land Management and the U.S. Forest Service. Farcels
of state and private land occur within the federal land. Some of 'the coal
areas are located near Rocky Mountain National. Park and other wilderness
areas, preservation areas, national wildlife refuges, national monuments, and
state recreation areas and parks. In the Powder River region, the federal
government administers about 25% of the land; of this land, one-quarter is
owned by Indian tribes. Six percent of the land is state-owned, and the
remainder is private land. In Alaska, there arealmost no privately-owned
coal lands. The coal lands are under federal and state jurisdiction.

2. Environmental Constraints

Surface coal mining in the arid and semiarid west is subject to
a variety of environmental constraints. Environmental consequences include
aquifer disruption,- alkaline or salty leachate from the mine site, sedimen
tatinn ._ aurfar p d rainAVP chat-riu-tlnn _ afforha of -tnwin rnv%nf F' nn nn^evnte.w e
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and water supplies, erosion, waste disposal, and spoil piles. Fugitive dust
emissions and aqueous effluents from coal mining and cleaning operations,
spoil piles, and coal storage are regulated by EPA. Coal spoil is currently
not classified as hazardous by EPA, but individual states may have more strin-
gent standa,0A that apply to effluents and spoils. Reclamation procedures are
established by the states in conformance with the SMCRA, under jurisdiction of
the Department of Interior's Office of Surface Mines (OSM) Reclamation on
Indian lands is under the jurisdiction of the Indian tribes and OSM. In
accordance with regulations, topsoil must be replaced and revegetated after
mining is completed, in order to return the land to its previous uses. This
can be difficult in the wei t, where rainfall scarcity may require irrigation
in order to reestablish vegetation cover.

Returning the land to its previous use, as required by the SMCRA, is
difficult in the semiarid and arid west. Land uses in the Rocky Mountain
Province coal-bearing areas include cattle and sheep ranching, dryland
farming, some irrigated farming, and forestry, depending on elevation and
rainfall. Large tracts are covered by vegetation communities including
sagebrush scrub, prairie and grassland, and pine forest. In some areas,;
irrigation may be necessary during the first year of reclamation to revege-
tate surface-mined areas with vegetation comparable to that which existed
prior to mining. Some areas of higher elevation, such as Black Mesa in
Arizona, may not need irrigation for reclamation. Some of the strippable
areas in the Green River and Powder River areas may also have sufficient
rainfall to ensure reclamation success. Both surface and ground water
resources need to be evaluated in the water-scarce areas before mining is
planned.

The generally poor soils of the Rocky Mountain Province tend to compound
reclamation and revegetation problems. Soil horizons are poorly developed,
humus content is low, sufficient topsoil for revegetation is often absent, ana.
erosion rates tend to be high.

Reclamation costs in the Rock`' Mountain Province coal-bearing areas
average about $3000/acre. Areas with poorer soils and extremely low rainfall
may have much higher reclamation costs, or reclamation may not be possible
at all (Ref. 23).

3	 Health and Safety Impacts

Coal mining, is an extremely hazardous occupation, although under-
ground Coal mining results in more deaths and disabling injuries than surface
mining. In addition, underground coal mining exposes the workers to risks of
black lung disease. Surface coal mining is four times safer than underground
mining in terms of accidental deaths, and six times safer with respect to
injuries. A certain amount of accidental deaths and injuries are associated
with coal transportation. Worker exposures, to known carcinogenic substances,
respirable dust, noise, vibration, heat, fumes, and explosive danger is
regulated under the Occupational Safety and Health Act (OSHA) and by the
Mining Safety and Health Administration (MSHA). Properly designed, and
operated facilities ard best engineering practices can substantially' mitigate
worker health and safety problems.

f
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ORIGINAL PAGE 13
OF POOR QUALITY

C	 METHANUi, PRODUCTION

Piant:s producing mothaanol for end use in California call be located near
tine area	 feedstock extraction, with the methanol transported vain rail,
truck, or pipeline to distribution centers in California. Alternatively;, the
feedstocks, swt'- as coral,, can be shipped to methanol production facilities in
California. Eoi'ironmental regulations and constraints affecting methanol pro-
ductic^n facilities will be dependent on the characteristics of the proposed

site, the size of the proposed facilities, the processes used, And the region
and state of proposed facility location.

1.	 siting Issues

Plant siting constraints will vary depending upon the state in ?

which the facility will be located. 	 California encourages the3 growth of alter-na tive And ,Synthetic fuels indu9 tri.es, but si ting large production plants in
California may be difficult due to stringent air pollution and waste disposal
regul ations and local enviro ►amental constraints.	 In terms of coordinating
siting and leasing permits, it may be more feasible to locate methanol pro-
duction facilities close to the i koe Mouth.	 Colorado has a sta te jo int
environmental review process to facilitate permitting of sic fuels i
industries through joint project and aageaacy meetings. 	 Through this pzoce?ss, ;
permits may be obtaine d within a ronsonaabl.e time. 	 Colorado generally favors
Synthetic fuels production, but prefer s slow, planned development to reduce
sociot?colaomac impact ' .	 Concerned state age 	 es in Colorado are the Depart-
ment of Health	 which e,aaf^)rces atr and water pollution	 laws;	 cite Air Pollution
Control COtmA ss io r► , whatih Sets ('m i asion Staandards And grants permits for
construction of facilities;	 Anal: Clio Water Ouality Control Commission, which .k

regulate.i dis charge of wastes into Sur face and und ergrou nd Walt er s (lief.	 16).

Utah also favors synthetic fuel:: dove,lopment, but adopts a cautious

approach becaau;:c of their commitment to maintaining high water quality and it
controlling air pollution, particularly in the four-comity Wasatch Front
area.	 Utah is also concerned about mitigating socioeconomic impacts.
1-Niv ironmen ta l stand a rd s in Utah are the responsibil i ty of the state Division
of Health; policy guidance on environmental regulations in Utah is the respon-
sibility of the state: Air Con:iervation Committee and Board of health.

Montana tends to hravo stcingent siting requirement and is reluctant
to site sy1afL10I$ plants within its boundaries'. t,nvironmentol regulation is
elnder t11v jurisdiction of the Montana Department of ileAlth and Environmental
Sciencos. In Wyoming, water shortages prompt it cautious aatti.tude toward
syntlaeta.c .rUels development, aand property for synruel pl.aant siting may be
scarce. New Mexico has tic) firm synthetic fuels policy, but appears to offer

cautious support. Alaska, which has large coal, oil. and natural gas reserves,
is supportive of developing, means to produce synthetic fuels from domestic

resources.	 fl`	 1

_

	

	 Siting of met:hanol production facilities Must consider the illipacts of
building A single elailae and pliant in an area and Anticipate Lite cumulative
impacts resulting from as series of mines, plants, and infrastructure. Impacts

G	 of methanol production facilities must also be considered in conjunction, with

3
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impacts related to mining activities. Factors most critical to the develop-
ment and sicing of synfuels production facilities in the west, from an envi-
ronmental standpoint, are (1) air pollution control, (2) water availability,
and (3) socioeconomic impacts. Air pollution and socioeconomic impacts are
discussed in later sections.

Since methanol production may require 5-7 tons of water for each ton of
methanol produced, water availability is a critical concern throughout most of
the likely areas for siting methanol production facilities in the west. Also,
coal slurry pipelines and water-intensive oil shale technologies will compete
with methanol production for scarce water supplies. uotn physical factors

(stream flows, ground water) and institutional factors (such as state allo-
cation policies and Indian water rights) can affect the availability of water
for methanol production. In addition, the quantity and quality of waters that
may receive plant discharges are other components of the water availability

issue. The U.S. Water Resources Council has indicated that the upper Colorado
River region has enough ground and surface water to support a synfuels indus-
try producing about 3 million barrels per day.. Annual water consumption in
this region would increase by about 150,000 acre-feet per year for each

million barrels per day of production. Table 10-2 presents the results of
the Water Resource Council's assessment of water requirements for synfuels
by the year 2000. The Council recommended five alternatives for supplying
water for synfuels development--additional development of surface water
resources, transfer of water supplies currently used for irrigated agri-
culture, development of groundwater resources, weather modification to
increase precipitation, and more efficient use of water supplies.

Energy companies are looking to the option of transferring water rights

from agricultural users, interstate transfers, and speculative leasing of
irrigated land to ensure that water will be available for synfuels develop-

ment. However, economic and political conflicts will persist. Wyoming, for 	 f'

example, has cut the quantities of water available for transfer from agricul-
tural to energy uses. Montana is restricting groundwater withdrawals to rates

of annual recharge. Currently, estimates of quantities and prices of western	 ;:}

water supplies are uncertain, as are definitions of individual water rights	 g

and interpretation of applicable laws. Other studies have indicated that	 i
virtually no water may be legally available for synfuels development in
Montana and Wyoming. The Crow and Cheyenne Indian tribes hold substantial

water rights, and irrigation rights of greater than 15 cf/sec. are not trans-
ferable to other uses. If the federal government honors Montana's state water
reservations, no water may be available in the state for synfuels development_. 	 =r
Generally, estimates of water needs for synfuels plants tendto be just as

uncertain as e—timates of western stream flows. However, plants can reduce
their water needs by using combination wet -dry cooling systems instead of wet p

cooling systems, and can cut water needs by up to 80% by recycling and
r{

conserving water.

2.	 Air Quality

Clean Air Act (CAA) legislation affecting coal gasification

facilities includes new source performance standards (NSPS), prevention of
significant deterioration (PSD) for areas attaining the national ambient air



BASELINE CASE* ACCELERATED CASE**

SYNFUELS SYNFUELS ASSO- SYNFUELS ASSO-
DEVELOPMENT DEVEL- CIATED DEVEL- CIATED

AREA OPMENT GROWTH TOTAL OPMENT GROWTH TOTAL

Upper Green River 10.4 4 14.4 23.2 7 30.2

Yampa River 0 0 0 7.5 3 10.5

White River
Colorado 71.3 19 90.3 136.8 35 171.8
Utah 51.3 0 51.3 68.4 0 68.4

Upper Colorado River
Main Stem 22.8 6 28.8 70 14 84

San Juan River
Colorado 11.2 2 13.2 10.2 2 12.2
New Mexico 50 0 50 50 0 50

TOTALS 217 35 252 373.6 68 441.6

* A baseline case, as defined by DOE, would assume synfuels development would
proceed at a "business---as-usual" pace.

Under an accelerated case, synfuels development would substitute for a
greater portign of domestic gas and oil and reduce foreign imports; would
have an optimistic degree of success in early market penetration; and pro-
duction costs would make the product competitive.

Source:	 U.S. Water Resources Council
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Table 10-2. ANNUAL WATER, REQUIREME`"; 14	 2000 3

(1,000 acre- feet/yeas)
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quality standards, non-attainment areas (subject to emission tradeoffs),
visibility regulations, and state implementation plans (SIPs). Individual
states may set more stringent standards than those promulgated by EPA.
Pollutants of concern for current and potential regulation include particu-
lates, S02, NOx, CO, stack and fugitive gas, hydrogen sulfide, coal dust
and process fines, hydrogen cyanide, ammonia, trace hazardous materials, and
aldehydes (Ref. 4). Hydrogen cyanide and ammonia are not criteria pollutants,
but may be regulated by individual state implementation plans.

Under NSPS regulations, best available control technology would be
required for new facilities. Presently, NSPS for gasification and methanol
production facilities do not exist. NSPS do exist for the fossil-fired
utility boilers and gas turbines that would supply power for plant operations
(see Addendum, p. 10-52). These standards may also apply, as a minimum, to
the gasification/methanol production facility in the absence of specific
standards.

For facilities that may be located in non-attainment areas (areas that
do not achieve the national ambient air quality standards), lowest achievable
emission rates (LAER) and offsets are required. This may preclude plant
location in many areas in California and other metropolitan areas in the
west. LAER is expensive; therefore, facilities may not be sited in non-
attainment areas on economic grounds.

Siting permits would be required for facilities locating in or near
Class I PSD areas. These are "pristine" areas, such as national parks, that
meet national ambient air quality standards. Air quality increment allowances
for Class I, II, and III areas exist for S02 and particulates. Use of best
available control technology and one year of air quality monitoring is required
for all new sources. Many areas in the west located near coal resources are
in PSD areas. For example, in Colorado, a proposed coal=to-methanol facility
(675 tons per day of methanol) located 60 miles south of Steamboat Springs,
needed a PSD permit. An S02 source, the auxiliary boiler (coal), produced
5 lb/day of S02, far below the standard. There were problems, with NOx and
CO; these emissions must be monitored. There was no problem with meeting the
particulates standard.

In some PSD areas, needed air quality increments may become unavail-
able. EPA is currently studying strategies to permit energy gro4?th in PSD
Class I areas (such as western North Dakota) where increments are exhausted.
According to EPA, major expansion opportunities for energy growth may remain
under an aggressive offset-purchase program within current Clean Air Act con-
straints. In the absence of these offsets, it may take CAA revisions relaxing
increments restraints to permit siting of fending and future conversionplants.
The six options potentially available include offsets, stringent BACT, vari-
ances (waivers from Class I increments), BACT with no Class I increment, and
elimination of short y-term increment regulations.

Visibility protection regulation for Class I areas and "integral vistas"
(views that can be seen from mandatory Class I areas) may be a potential con-
straint on methanol plant siting, but some studies indicate that visibility 	 r

protection rules will not 'routinely pose siting constraints for new synfuels
plants (Ref. 1). To date, no integral vistas have been officially designated,
but the National Park Service has proposer 44 integral vistas from park

10-16	
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service areas. Under the current Adminiotration, the idea of integral vistas
may be eliminated, and visibility protection rules would only apply within
congressionally designated Class I areas, such as the national parks. States

E
maybe given authority over integral vista protection in areas designated by
the Department of Interior.

Other studies indicate tha.; EPA's visibility protection rules for Class
I areas would have a very sitegg lacific impact on synfuels development; some
plants may have to relocate miles away from preferred sites, particularly
large coal gasification facilities located within 10 miles of a Class I area.
If methanol plants cannot locate close to the mine mouth due to PSO restric-
tion, feedstock transport may make the project infeasible.

The Clean Air Act is-targeted for revision by the current Administra-
tion.	 EPA may relax NOX standards, and is under pressure to relaxnational

L	 ambient air quality standards for ozone.	 Visibility regulation is also an
area of current regulatory uncertainty.	 Short-term standards for PSD Class I

f	 areas may be eliminated. 	 Only four hazardous air pollutants have been defined
and regulated by EPA; environmental groups are pushing for 37 more to be regu-
lated under the Clean Air Act. 	 Pollutants of concern for coal gasification

E`	 facilities include formaldehyde, anhydride, and phenols (see Addendum). a
` r	 Currently, hazardous air pollutant emission standards for synthetic fuel rt

facilities have not been established.	 Evidence indicates that there may be >'
hazardous species in vent gases and fugitive emissions from gasification
processes, but little firm data is available (Ref. 3).

,a

A potential area of concern for gasification/methanol production
facilities is CO2 emissions-.	 These emissions are not currently regulated,
but researchers are concerned with long-term effects of increasing CO2 emis-
sions from energy facilities on global climate trends. 	 A potential area of
regulation is acid rain control (Addendum); potential acid rain regulation may
affect siting of synfuels plants in the future. i

3.	 Water Quality

Aqueous effluent streams from gasification/methanol production Ji

facilities include runoff from coal storage piles, and dust control, spent gas
-quench and cooling water, gasifier blowdown water, process condensate from F

shift conversion, and waste water such as cooling and boiler blowdown water
from associated power generation facilities. r

Runoff water from coal storage piles and dust control may contain
organic materials and trace elements characteristic of the coal. 	 An EPA study
of aqueous effluents from various gasification processes cited 18 potentially
hazardous liquid stream pollutants from coal gasification, including phenols,
cresol,, cyanide, ammonia, sulfides, arsenic, and chlorides (Ref. 7). 	 Spent
gas and ash quench waters from gasifiers. may contain polycyclic aromatic
hydrocarbons (PAH), phenols, other organic materials, and toxic trace metals 	 r

of known toxicity or carcinogenicity that may exceed present specific effluent
Limits (Ref. 4). Gas cooling processes may result in water contaminated with
suspended organic and inorganic materials (Ref. 3). Many of these contaminants
occur in very low concentrations.
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Problems associated with pollutants in aqueous effluents can be mini- 9
mized by recycling the water and planning for zero discharge of effluents.
Most current designs for gasification/methanol production facilities incorpor-
ate these features.	 High-Btu Lurgi gasification process plants will produce
almost no liquid effluents (Ref. 4).	 With Koppers-Totzek gasification proces-
ses, no special effluent waste treatment is required (Ref. 15).	 In the Texaco
coal-to-methanol process, runoff from coal piles will be collected and used in
slurry preparation.	 Coal is also slurried with recycled process water. 	 In v	 ,'
addition, water and particulates removed from the gas are recycled to the coal'
slurrying unit.	 Aqueous blowdown from the gasifier unit is processed to
environmentally acceptable effluents in wastewater treating units. 	 During
shift conversion, process condensate is reheated and returned to the gasifi-
cation section.	 The largest amount of waste water produced in this process
comes from the power generation facilities (Ref. 6).

The Clean Water Act (CWA) provides for effluent guidelines and NSPS to
be established for various point sources of aqueous discharges. 	 These stan-
dards have not yet been proposed for coal gasification/methanol production
facilities.	 However, gasifier condensate is very similar to coke plant liquors
in chemical composition.	 Point-source effluent limitations have been estab-
lished by EPA for aquecus effluents from by-product coking plants under the
CWA.	 Control technologies for regulated constituents of these streams are y
well-established, and can probably be easily applied to gasifier condensate. R

Point-source effluent limitations have also been established for certain
effluents from petroleum refineries; techniques developed for pollution
control of these streams may also be applicable to gasification wastewater.
In addition, aqueous effluent streams from associated power generation faci-
lities must comply with effluent guidelines and NSPS for such facilities
(Addendum).	 Point-source discharge permits under the National Pollutant
Discharge Elimination System (NPDES) will need to be issued for new methanol
production facilities; in the absence of specific standards, permit writers
will be guided by standards developed for the similar industries mentioned
above, and by state-generated limits for specific receiving waters and po lu- E

r	 tants.	 Planning production facilities to have zero discharge should make
permits easier to obtain. IJ

The Clean Water Act is currently targeted for revisions. 	 EPA may
recommend (1) pushing back deadlines for water quality goals, (2) allowing
waivers from toxic best available technology and conventional best control
technology limitations, and (3) extending NPDES permits from 5 to 10 years.
States may be allowed to adopt site-specific criteria. 	 While EPA may ease up
on regulations, states and local regions may still adopt stringent standards
and guidelines of their own.

4.	 Solid Waste

Solid wastes generated from feedstock gasification/methanol
production processes include rock and mineral matter resulting from crushing
and sizing of coal; char, tar, slag, and ash from the gasifier; particulates
removed from the gas; wastewater treatment and evaporation pond sludges; spent
process materials (catalysts andreagents); and ash, particulates, and sludges
resulting from associated power generation facilities. 	 Elemental sulfur,

t
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recovered from acid gas treatment processes, can be sold. Coal. gasification
solid wastes and residues will be produced at the rate of 200 pounds or more
per ton of coal feed (Ref. 4). The vast majority of the solid wastes produced
from gasification/methanol production facilities will be residual wastes from
coal gasification. Incomplete gasification results in the formation of organic
solids and tars, which are produced in smaller quantities than slags or mineral
residues. Amounts and types of solid wastes generated will depend upon the
gasification process_.

There are limited data on the characteristics of these solid wastes,
expecially concerning the amounts of unreacted coal, trace elements, and
organics, and little information on the impacts of handling and disposal of
coal gasification solid wastes. 'Trace elements present in the waste will be
representative of elements in the feed coal. An EPA laboratory-scale study
and comparison of solid wastes from several types of gasifiers identified 14
solid waste stream pollutants of potential concern (Ref. 1). Gasifier ash may
contain the trace elements of arsenic, nickel, beryllium, and selenium. These
trace metals may be toxic, but occur in minute amounts. On an equivalent
weight basis compared with other gasifier waste streams, the tar stream resul-
ting from some gasifiers may contain significant amounts of toxic, carcino-
genic, and mutagenic substances, including polycyclic aromatic hydrocarbons
(PAH), other carcinogenic hydrocarbons, and tar bases. Although the tars
are produced in smaller quantities than slags and mineral residues, they may
require more attention because of suspected carcinogenicity.

Collected particulate matter from gas purification will contain some
unreacted carbon, sulfur species, organics, and trace elements. These par-

tyticulates may contain enough unreacted carbon to serve as a combustion fuel
(Ref. 3). Associated utilities will produce solid wastes, such as fly and
bottom ash and FGD sludge.

,a

Koppers-Totzek gasifiers and Texaco partial oxidation gasifiers produce
no tars or liquid hydrocarbon by-products. In the Texaco process, ash is with- 	 €
drawn from the gasifiers, sent to an ash dEwatering unit, and sent to disposal?
in landfills. Recovered particulate matter from the gas is recycled to the 	 a
coal slurrying unit.

Management and disposal of solid wastes must comply with evolving
Resource Conservation and Recovery Act (RCRA) standards for nonhazardous
and hazardous waste disposal promulgated byEPA. State controls may b
more specific and stringent. EPA has not issued specific guidelines for
coal gasification facilities, but it appears likely that they will exclude
medium Btu coal gasification wastes from hazardous classification. Gas-
ifier ash may legally fall under the definition of "coal slag," and as such
will be considered as nonhazardous. These residues are mostly intractable 	 j
mineral matter that can be disposed of in sanitary landfills, or sent to lined
evaporation ponds with subsequent disposal of the dewatered sludges. Solid

`	 wastes from the electrical utility portion of the plant are also currently
classified as nonhazardous and can be disposed of in sanitary landfills
(Addendum)	 Solid wastes from coalpreparation and sizing are also cur-
rently excluded from hazardous designation; these wastes are normally dis-
posed of in landfills. Gasifier ash will probably also be exempt from the

f	
Toxic Substances Control Act (TSCA) premanufacturing notification requirements

4
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(EPA has exempted Great Plains Coal Gasification Project ,gasifier ash frot
such requirements).

It is highly likely, however, that the California Department of Health
will classify Goal gasification waste as hazardous, placing additional con-
straints upon siting of large facilities in the state. Specific handling and
disposal procedures wi-11 be under the jurisdiction of regional Water Quality
Control Boards, leading to site-specific constraints. The concern is over
trace elements and organic substances that may eventually leach from the solid
waste into water supplies. In Colorado, the Board of Eealth recently adopted
stringent hazardous waste regulations designed to prevent contamination from
dumps for 1,000 years (these rules do not apply to private or on-site disposal
facilites.) If gasifier wastes are classified as hazardous in Colorado, it
may be prohibitively expensive to dispose of the wastes:.

Although EPA is currently willing to classify these wastes as non-
hazardous, characteristics of the wastes are still not well known. The
potential exists in the future for hazardous classification of char, catalyst
residue, spent reagents, heavy tar residues, wastewater treatment residues,
slag and coal dust residues, and flue gas desulfurization sludge. Spent
catalysts containing heavy metals may be restricted under the Toxic Substances
Control Act. However, such *^strictions are not likely in the near future,
since EPA research on health and environmental effects of synfuels
technologies will be severely curtail-2d  in the next few years.

5.	 Health and Safety

Methanol is a well-characterized substance in. terms of occupational
levels of exposure and safe handling procedures. A value of 200 ppm of meth-
anol in air is estimated as the upper tolerance limit for a steady exposure,
eight hours per day, for a single 40-hour week.. However, large-scale gasifi-
cation/methanol production facilities may involve higher levels of exposureto
gasification/methanol synthesis by-products. As mentioned in the previous
section, gasification products and by-product streams may contain traces of
known toxic and carcinogenic substances which have not been characterized in
terms of low-level, chronic exposures to workers in these plants, such as
might occur in planned facilities. Worker health and safety is covered by
OSHA regulations, which regulate worker exposure to hazardous substances,
known carcinogens, heat, dust, fumes, noise, vibration, and explosives
danger;_ properly designed and operated facilities, using appropriate control
technology and sound industrial hygiene procedures, should result in little
risk from known dangers. Regulations also require hazard-specific record
keeping and monitoring. However, more research is needed to characterize
process streams and fugitive emissions in uncontrolled or malfunction situa-
tions, start-up, shun-down and maintenance, the consequences of industrial
accidents for these facilites, and exposure and safety risks related to demon-
stration vs. commercial scale. Researchers recommend the establishment of an
epidemiological data base with the initiation ofa synfuels industry.

There mayalso be a public health risk from process products,
by-products, and emissions, which may contain carcinogenic or mutagenic
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Table 10-3. ANNUAL HEALTH RISKS OF A 1-QUAD
COAL GASIFICATION INDUSTRY

PUBLIC HEALTH RISKS

RISK FACTOR CONSEQUENCE RANGE OF EFFECTS

Polycyclic organic 	 Excess lung cancer	 0-13 excess deaths
matter emitted to air	 deaths

Benzene emitted to air	 Excess leukemia deaths	 0-0.02 excess deaths

Nickel contamination	 Excess lung 6 nasal	 0-0.2 excess deaths
of product gas	 cancer deaths

Sulfate exposure resul-	 Non-pyecific premature 	 0-248 premature deaths
ting from sulfur dioxide 	 deaths
emissions

OCCUPKTIONAL HEALTH RISKS

RISK FACTOR CONSEQUENCE RANGE OF EFFECTS

Exposure to polycyclic .Excess lung cancer 0-5 excess deaths
organic matter in the deaths
work place

Accidents Deaths 9-25

Injuries 1100-1250

(Source:	 Ref. 10)

substances and toxic trace metals. Little data is available on public health
risks from synfuels technologies. There is insufficient knowledge in general
on the potential of carcinogenic or genetic damage from trace contaminants u

associated with coal conversion technologies (Ref. 15). Table 10-3 lists the
potential public and occupational health risks resulting from a projected
1 quad coal gasification industry.

6.	 Socioeconomic Impacts
W

Concern has been expressed over potential socioeconomic impacts of
r'	 siting large energy facilities in rural, sparsely settled areas of the western
r	 United States. A study of conceptual coal-to-methanol plants in Wyoming con-

cluded that development of a methanol industry would result in small townsi	
bearing a large portion of the burden ofsocioeconomic impact because of

10-21	 a



ORIGINAL PAGE IS
OF POOR QUALM

pressures on local utilities and infrastructure, but that county governments
would benefit from additions to the tax base (Ref. 19).

In Colorado, a Cumulative Impact Task Force has been established to
perform assessments of the socioeconomic impacts of coal, oil shale, elec-
tricity generation and other major projects.	 The task: force consists of
representatives from state and local government, energy companies, and the
Bureau of Land Management. 	 A major goal is to make assessments of the costs
and sources of revenue for providing government services for persons migrating
to the region to work on projects and provide support services.

D.	 END USES

In this section, the environmental impacts of end use of methanol as a
i

motor fuel and as utility fuel in California will be discussed.	 Included are
potential health, safety, and public awareness issues associated with use of a

i	 neat methanol as fuel:

1.	 Methanol as Vehicular Fuel

Use of methanol as a fuel in vehicles will result in emission
characteristics quite different from those of gasoline and diesel fuel. 	 There
will also be associated public health and safety considerations, because
methanol is different from gasoline in its health risks and toxic effector, and
has been pe rceived in the past as an alcohol with potential for use as an
intoxicant.

Potential air quality issues associated with use of neat methanol as a
motor fuel include increased aldehyde emissions and associated problems of
control, toxicity and photoreactivity; impacts and control of unburned meth-
anol in exhaust; and emissions of nitrogen oxides, sulfur oxides, hydrocar-
bons, and CO as compared to conventional fuel emissions. 	 Characterization of
the dispersion, transformation, and transportation of methanol fuel emissions
in the atmosphere has not been well defined.	 The effects of methanol addi-
tives on the characteristics of methanol exhaust, such as dimethyl ether and
methyl tertiary butyl ether (MTBE), also need to be considered.

A study for the National Alcohol Fuels Commission (Ref. 20) found that ,

methanol does not contribute significantly to the formation of photochemical
smog.	 Mass hydrocarbon and CO emissions may be the same for alcohol fuels as h
for ,gasoline, but NO, emissions from the alcohols are only one-third to
two-third of those from gasoline at the same equivalence ratio. 	 Aldehydes,
primarily formaldehydes, are the predominant unregulated oxygenated compounds
in methanol exhaust.	 If aldehydes were to be regulated in the future, oxi-
dation catalysts can remove 80-90% from the methanol exhaust; the oxidation
catalysts can also effectively remove unburned alcohols from the exhaust.

a

EPA studies found that pure methanol is a potentially clean-burning
automotive fuel that could reduce air quality problems and help alleviate
acid rain, due to reduction of NO, emissions from vehicles. The studies
indicated that methanol is environmentally preferable to gasoline and diesel

tr	
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Table 10-4. ENVIRONMENTAL CHANGES DUE TO METHANOL FUELING

i

i

POLLUTANT CHANGE IMPACTS

1. Ozone Large Reduction o Reduced acute resporatory illness.
o Reduced damage to paints, rubber,

elastomers.

2. Sulfate Small Reduction o Reduced mortality.
o Reduced acidity of rain.

3. Sulfur Dioxide Small Reduction o Reduced corrosion of metals.
o Reduced respiratory illness.

4. Formaldehyde Large Increase o No known effects at low concen-
tration.

o possible odor.

5. Nitrogen Dioxide Significant o Reduced acidity of rain.
Reduction o Possible reduction in

respiratory illness.

6. Nitrates Large Reduction o Reduced eye irritation.

7. Particulates Significant o Reduced mortality.
Reduction

fuel because of reduced emissions of nitrogen oxides, sulfur oxides, and
particulates. However, coal-based methanol may contain as-yet unknown
impurities. _ EPA also indicated that catalytic converters could eliminate up
to 90% of potential aldehyde emissions.

Researchers at the California Institute of Technology performed
preliminary air quality modelling studies to determine potential air quality
impacts in the Los Angeles Basin resulting from automotive use of neat
methanol. Preliminary results indicate that ozone and peroxycetyl nitrate
(PAN) levels may be reduced by using methanol in automobiles. Table 10-4
indicates potential environmental changes resulting from methanol Fueling,
based on the Caltech study.

The overall air quality impacts of using methanol as vehicular fuel are
beneficial, but the Reagan Administration EPA is considering relaxation of the
current NOx and CO tailp:iir,4k emission standards; this may reduce incentives
to using methanol as a duel.

`	 The potential health and safety impacts of using methanol as a vehicular 	 t

	

fuel will need to be carefully assessed before any large-scale introduction of	 ;4
methanol fuel is attempted. Formaldehyde, present in methanol exhaust, is
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potentially carcinogenic to humans. The current occupational TLV* is 200 ppm;
if concentrations in exhaust approach or exceed this limit, formaldehyde
emissions may be regulated. However, as mentioned previously, aldehyde
emissions can be controlled by use of catalytic converters. Until recently,
formaldehyde was being considered by EPA for regulation under the Toxic
Substances Control Act; however, EPA recently decided that risks of for-
maldehyde exposure were not sufficiently proven to justify regulation.
California may still choose to regulate formaldehyde as a hazardous air
pollutant.

A potential health risk with methanol fuel may be low-level, chronic
methanol leakage from service stationi, pipes, valves, fuel pumps, and car-
buretors.	 If such leakage is shown to approach or exceed methanol's occupa-
tional TLV of 200 ppm, regulatory action may be indicated. 	 Little data exist
on the occurrence and impacts of low-level, chronic exposure. 	 New Zealand is
currently conducting a trial program on methanol diesel buses; the program
includes monitoring of exposure of servicing personnel to methanol, including
inhalation and skin contacts.	 Urine samples of personnel will be tested for
methanol levels, and monitoring equipment has been installed in refuelling and

rservice areas.	 This study may provide needed data on hazards of methanol
exposure. '{

si

Methanol has a higher flash point than ,gasoline; therefore, it has
slightly less danger- of fire in the event of spills and leaks. 	 Except for
the need for prevention of ignition of vapors above the liquid fuel in the
tank, methanol poses no flammability or explosion hazards not encountered
with gasoline.	 As far as crash safety is concerned, alcohol fuels are saf-
est, gasoline intermediate, and alcohol blends least safe (Ref. 20). 	 How- .
ever, methanol burns with a nearly invisible flame, and accidental exposure

r}

to methanol fires may be a hazard (Ref. 22_).

As opposed to gasoline, methanol is extremely soluble in water.	 Spills i
would be difficult to clean up, but rapid dilution of methanol with water °!

would help to mitigate the effects of methanol spills.

Some studies hava indicated that the toxic effects of gasoline and
gasoline components may be more sere than those of methanol. 	 Acute i
exposures to gasoline through dermal contact, ingestion, and evaporative

mucocutaneous cbranes	 and res irator	 tissues mayinteractions with eyes,,	 respiratory	 y
be more poisonous, disruptive, and irritating than methanol or ethanol.
However, synergistic effects of interactions with methanol and its emissions
with drugs, chemicals, and metal pollutants need to be evaluated, and chronic x

k	 levels of exposures should be evaluated. 	 Table 10-5 compares the toxicities t

`	 of gasoline, methanol, ethanol, and formaldehyde.

Methanol has occasionally been.perceived by certain segments of the
population as an intoxicant for potential internal consumption. 	 This problem
can be mitigated by public education, addition of disagreeable denaturants, a

i

`Fire shold li-,it values (TLV) refer to airborne concentrations of substances
a;ld represent conditions tinder which it is 'believed that nearly all workers
m4y be repeatedly exposed day after day without adverse effect.

10-2+
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Table 10-5. COMPARATIVE TOXICITY RATINGS

EYE
CONTACT INHALATION

SKIN PEKE-
TRATION

SKIN
IRRITATION INGESTION

Gasoline (2) (3) (3) (1) (2)

Methanol 2 2 2 1 1

Ethanol 2 1 1 1 1

Formaldehyde 4 3 4 4 3

1 - mild; 5	 sxtreme toxicity; ( )	 estimated--depends on composition

(Source:	 Ref. 22)

not labeling methanol as "methyl alcohol," and warnings on containers, pumps,
and engines.

2.	 Methanol as Utility Fuel

Methanol may have environmental performance benefits over coal and
other conventional fuels for power generation. If environmental regulations
remain stringent or become tighter, methanol use may be encouraged. For
example, methanol's zero emissions of S02 and low emission of NOx may make
it the preferred utility fuel for control of acid rain if a stmig regulatory
program is adopted by Congress. This is particularly true in the Northeast
and Middle Atlantic areas, but may not be as important for California. Also,
utilities wishing to expand facilities in an area which has not attained the
national standards for S02, particulates, or NOx may turn to methanol to
avoid the need for costly "offsets" (i.e., emissions reductions in existing
facilities). California and New York would.be  particularly good markets for
methanol in this situation. If the EPA were to declare tighter emission
standards for S02 or NOx, methanol could become a prime fuel for new power
plants. Under the current Administration, tighter controls are unlikely; if
anything, the current EPA trend is to relax percentage reduction requirements
for pollutants.

California is a prime area for broad application of methanol in utili-
ties due to stringent air quality regulations. Methanol has the potential for
repowering of existing steam generation .plants and for use as a primary gas
turbine and boiler fuel. Good initial market locations are in the Los Angeles
Basin and other smog-prone areas. However, there may be problems with fuel
switching in utilities; alternative fuels may be evaluated at higher plant
capacities Ghan existing .fuels for environmental regulatory purposes.

I

a
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Table 10-6. ESTIMATED EMISSION FACTORS FOR PRODUCTION AND
COMBUSTION OF METHANOL

BOILER FUEL
(lb/MM Btu coal feed)

GAS TURBINE FUEL
(lb/MM Btu coal feed)

S02 0.0055 0.6055

NOx 0.047 0.090

Particulates 0.00171 0.00171

SOURCE:	 Ref. 12

Coal gasification followed by methanol synthesis, with end use in a fuel
cell, combined cycle or boiler, results in emissions lower than advanced coal-
fired power plants, and the potential exists for extremely low emissions
(Ref. 12). A summary of emissions factors for production and combustion of
methanol utilizing coal gasification is given in Table 10-6.

Methanol fuel has been tested in utility boilers and turbines. In gas
turbine peaking facilities, methanol was burned with high efficiency, low
NO, emissions, and no sulfur oxide emissions.

Methanol was also tested as a utility fuel in a two-phase study which
assessed NOx characteristics of a supplementary combined-cycle system, and
the effectiveness of combustion modifications to the boiler in reducing NO,
emissions when the turbine and boiler were fired with methanol (Ref. 9).
The baseline NO, emissions with methanol firing were found to be signifi-
cantly lower than when firing with natural gas. The studies indicated that
staged combustion with methanol was effective in reducing NOx emissions by
50%.

Incentives for using methanol in southern California utilities in order
to lessen NO, emissions may be somewhat reduced as a result of recent agree-
ments between Los Angeles area utilities and state and local air pollution
agencies. According to the agreement, a 60% reduction in basin-wide NOx
emissions by 1990 will be attained by reduction of electricity generation
in the Los Angeles Basin and purchase of electricity from plants outside the
area. However, the utilities may need to rely on alternative energy sources
in the future.

ti

E.	 SYNFUEL COMPARISONS
'a

Assessment of the environmental, health and safety impacts of meth-
anol production and use are most meaningful when compared with other synthe-
tic fuels, and with conventional petroleum and natural gas counterparts.

10-26
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Tables 10-7 and 10-8 present resource requirements and emissions resulting
from several synfuels energy systems, including Lurgi coal gasification, two
coal liquefaction processes, coal-to-methanol, coal-to-methanol-to-gasoline,
surface oil shale retorting, and ethanol production from corn (Ref. 15).
Methanol production appears in the middle of the range for overall resource
requirements, but has higher water resource requirements compared to some of
the other processes. In terms of emissions, methanol from coal is low in
production of S02, NOx and solid wastes, and intermediate in production of
CO2 and particulates compared to production of other synfuels. The same
study also developed relative indices of major potential environmental, health
and safety impacts for these systems (Table 10-9), and compared projected
major annual health and safety impacts for these energy systems (Table 10-10).
The coal-to-methanol process ranks low to intermediate in comparison with
other synfuels for these impacts.

Utilization of methanol and other synthetic fuels should be compared
with petroleum and natural gas for environmental, health and safety impacts.
A recent study by Ghassemi, et al. (Ref. 11), focused on potential widespread
utilization of synfuels products rather than on technologies and production
facility emissions, and compared synthetic fuels with their petroleum and
natural gas analogues. The study was based on a realistic synfuels utili-
zation scenario, discussed with major potential synfuel suppliers and users,
and industry and government planners. Table 10-11 presents the relative
assessment of environmental hazards associated with synfuels products;
Table 10-12 presents a priority ranking of environmental concerns associated
with the various synfuels products at a projected growth up to the year 2000.
Methanol exhibits similar or lower hazards than its petroleum analogues, and
is ranked low in environmental concerns compared with other synfuels. Crude
shale oil, shale oil refinery feeds, and coal liquefaction fuel oils present
the greatest concern.

It must be kept in mind that the environmental data base currently
available for synfuels products is very limited. Data on secondary products,,
such as methanol and gasoline derived from coal, are particularly scarce. 	 =a
There is also a lack of data on the environmental, health and safety charac-
teristics of analogous petroleum and natural gas products that synfuels will
replace. Relative rankings of synthetic fuels may change as more data become
available. Ghassemi, et al., indicated that research needs for environmental
effects of synfuels include (1) a more systematic approach to product charac-
terization and testing so that findings can be correlated, (2) collection of
environmental data in conjunction with planned performance testing programs,_
(3) consideration of end use environmental implications in the selection of
the product .slates and in the development of the synfuels industry, and (4)
compilation of characterization/performance data on analogous .petroleum
product; (Ref. 11).

The West German Environmental Agency has compiled comparisons of air
emissions from five representative coal conversion processes. The study'
indicated that emissions can be controlled to protect the health and welfare
of workers as well as the surrounding populations. The study analyzed Lurgi,
Sasol, Texaco, SRC; L1, and modified Bergius processes in plants using best
available environtental control technology. The study found that well-known

3,
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Product 1980-1987 1988-1992 1993-2000

Crude shale oil (fuel) 2 - -
Shale oil refinery feed 1 1 1
Shale jet fuel 2 2 2

Shale diesel fuel 2 2 2
Shale residuals 2 2 2
Shale gasoline 2 2 2

Medium-Btu gas (coal) 2 2 1
SNG (coal) 3 3 3
Gasifier tars, oils - 1 1

Gasifier phenol 2 2 2
F-T LPG - 3 3
F-T medium-Btu gas - 3 3

F-T SNG - 3 3
F-T heavy fuel oil - 3 3
F-T gasoline - 3 3

Mobil-M gasoline - 3 3
F-T diesel fuel - 3 3
Fuel methanol - 3 3

SRC-II fuel oil - 1 1
SRC-II naptha - 2 2
SRC-II LPG - 3 2

EDS feel oil - - 1
EDS naptha - - 2
EDS LPG - - 3

H-coal fuel oil - - 1
H-coal naptha - - 2
H-coal LPG - - 3

k

Table 10-12. PRIORITY RANKING OF SYNFUEL PRODUCTS FROM THE STANDPOINT OF
ENVIRONMENTAL CONCERNS*

^	 a
Degree of concerns 1-most, 2-modest, 3=low; -) indicates product not
produced or not used as indicated.
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technologies used in oil refining appear to be applicable to the production of
synfuels.

F !

EPA has performed relative assessments, comparing methanol with the
Mobil methanol -to-gasoline process, Exxon Donor Solvent, H-coal, and SRC-II
direct liquefaction processes. Methanol was found to be both cheaper and
environmentally cleaner than other synthetic transportation fuels derived from
coal. EPA also found that indirect liquefaction processes appear to facili-
tate the removal of environmentally damaging substancea. Gasification proces-
ses place most of the potentially harmful substances into forms which can be
removed with relative ease. In addition, methanol engines promise lower'
emissions of NOx and absence of particulate matter. Coal liquids, in
contrast, are more aromatic and contain significant quantities of organic
compounds; some of these compounds have been shown to be mutagenic in bio-
assays. Indirect liquefaction products do not appear to exhibit mutagenicity
or carcinogenicity, although methanol is highly toxic in heavy exposures.

Currently, EPA appears to be withdrawing from making synfuels policy
decisions and from expressing a preference for methanol over other synfuels.
Overall work on-pollution control technology development for synfuels is
expected to decrease, although some research on health effects of oil shale
and coal liquefaction processes may increase. EPA is not presently planning
to issue environmental standards governing synthetic fuels technologies, and
no synfuels pollution control guidance documents for industry will be issued,
although some technical documents may be published. In the future, EPA may
attempt a unified approach to synfuels regulation, combining air, water, and
solid waste regulations.

F.	 METHANOL POTENTIAL IN CALIFORNIA AIR QUALITY PLANNING

1.	 Introduction
i

Under the Clean Air Act, the U.S. Environmental Protection Agency
has set primary and secondary national ambient air quality standards for six
air pollutants; sulfer dioxide (S02), nitrogen dioxide ( NO2),, carbon
monoxide (CO), total suspended particulates ( TSP), ozone, and lead. EPA
requires each state to submit for approval a State Implementation Plan (SIP),
which outlines how the state will achieve or maintain the national ambient air
quality standards. Because the original 1977 compliance date for achievement
of the national standards was not met, the 1977 Clean Air Act amendments set a
new final compliance date of December 31, 1982. Extension 's of the final
compliance date to 1987, only for the ozone and carbon monoxide standards, are
allowed if the state implements certain specific control measures which EPA
and Congress have determined to be "reasonably available" (Ref. 24).

The federal standards function as minimum standards for air quality;
state standards must be at least as stringent as the federal standardp.
California's S02 and ozone standards are stricter than the federal stand-
ards. In addition to the six air pollutants regulated by the EPA, California
has also established air quality standards for ethylene, hydrogen sulfide,
sulfates, visibility-reducing particulates, and vinyl chloride (Ref. 25). The
regulatory picture can become quite complicated due to the interaction of

10-34-
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federal, state, and regional entities, and the severity and public percep-
tion of the individual state's air pollution problems. Thus, regulatory
constraints and incentives to methanol use can vary widely from state to state.

In California, overall authority for state air quality planning and SIP
preparation and submission rests with the California Air Resources Board (ARB).
The ARB has divided the state into 14 air basins, represented by regional air
pollution control districts, air quality management districts, and other local
and regional governments. Regional planning authorities have primary
responsibility for control of air pollution from stationary sources, and for
devising plans to bring the regions to attainment of the air quality
standards. ARB is responsible for approving the regional plans, rules and
regulations, and for incorporating them into the SIP. ARB also has primary
responsibility for setting'statewide motor vehicle emission standards. ARB
(takes a relatively active role in assisting the regions in preparation of the
air quality management plans, and sets guidelines for the regions to follow.

The planning_ agencies must submit annual reports demonstrating
reasonable further progress toward attainment of the NAAQS. In addition, air
quality monitoring is needed to verify that the planned emission reductions
are being carried, out at a reasonable and sufficient rate. Requirements of
plans include establishment of interim air quality goals, long -range plans for
attainment, and updates of the air quality management plans every five years
uncil the standards are met (Ref. 25).

The following sections evaluate the potential contribution of methanol
fuel use in California's efforts to devise strategies to meet air quality
standards. Methanol potential was evaluated from the statewide (CARB)
perspective, and for two major regions in California: the Bay Area Air
Quality Management District (BAAQMD), and the South Coast Air Quality
Management District (SCAQMD). Both of these regions have recently revised
their air quality management plans.

2.	 Tie Statewide Perspective: Methanol Potential
t

The 1979 State Implementation Plan requires that the state
implement certain procedures to demonstrate progress toward attainment and
maintenance of the NAAQS. These requirements are as follows: 	 17

(1) Inventory of Emissions from all existing sources of 'air pollution.

(2) Air Quality Analyses and Forecasts.

(3) A demonstration that the plan will achieve "Reasonable Further
Progreiss" in reducing emissions during each year between 1979 and
the final compliance date.	 r:

(4) Reasonably Available Control Measures for industrial facilities.
i

(5) Permit Program for industrial sources including a New Source Review
rule for new facilities.

y'
1j
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(6) Emissions Growth Allotments for the construction or the modification
of major industrial sources.

(7) Uniform Population Growth Assumptions for the SIP and other plans
which affect or are affected by population growth.

(8) An analysis of the Plan Effects on the environment and the economy.

(9) Evidence that Consultation with the general public and local govern-
ments has occurred during the development of the plan.

(10) Evidence that Resources Commitment sufficient to carry out the plan
has been made.,

(11) Evidence that the Adoption of the plan by agencies responsible for
its implementation has occurred.

The 1979 forecast for 1987 air quality in the state's air basins
indicates that the ozone and CO standards in the South Coast Air Basin, and CO
in the Lake Tahoe Air Basin, will not be attained by the deadline using.
control measures already adopted or ready for adoption. It is unlikely that
the standards will be attained even with development of further control
measures (Ref. 24). An extension of the attainment deadline to 1987 (for
ozone and CO) can be granted by EPA if the following measures are incorporated
into the SIP as amendments:

(1) Commitment to providing adequate Public Transit.

(2) Commitment to adopt Transportation Control Measures.

(3) A Motor Vehicle Inspection Program requiring the annual inspection
of all cars and light-duty trucks and the correction ofdefects
which increase emissions.

(4) Existence of an Industrial Facility Siting Program.

(5) A list of Other Measures sufficient to meet the air quality
standards by the final compliance date.

Transportation vehicles are responsible for slightly less than one-half the
problems related to hydrocarbon and nitrogen oxide emissions (potential
contributors to ozone formation), and cause most of the CO problem. Under
measure (2) above, 18 "reasonably available" transportation control measures
are required to be considered by the state, if an extension to 1987 for

i h	 d CO t d rds 's re uired (Ref 26)compliance wits t o ozone an 	 s_an a	 i	 q

One of the required control measures is the conversion of fleet vehicles
to alternative fuels or engines, or to otherwise control emissions from fleet
vehicles. It is the policy of the state to foster methanol use in Beet
vehicles, on an experimental bases, as a_replacement for gasoline and diesel
fuels. The ARB believes that methanol can be used as a low emissions fuel,
because it has demonstrated the potential for lower CO and ni ! :rogen oxide

e
I

a
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emissions (in gasoline engines). It appears that hydrocarbon emissions from
-

	

	 methanol vehicles will be no more reactive than those from gasoline engines,
and may be less reactive (Ref. 27). However, ARB believes that more research
needs to be done on methanol engines before use can become. widespread.

There are no statutory impediments to the development of methanol
vehicles in California since existing laws clearly recognize methanol as a
legal motor vehicle fuel. Section 5115 of the California Motor Vehicle Code

i	 states:

"Notwithstanding any other provision of law or any regula-
tion, methanol fuel, or methanol fuel and gasoline blends,
shall be considered a legal fuel in California." (Ref. 27)

Subsequent sections encourage the use of methanol on an experimental basis.
In addition, the State Department of Motor Vehicles is authorized to establish
an eleven-year methanol fuel experimental program. Each participating 'experi-
mental vehicle is required to have a valid Certificate of Compliance from a'
licensed motor vehicle pollution control device installation and inspection
station, indicating that the emission control system is in compliance with the
Health and Safety Code. All reasonable engine modifications (except for
tampering with exhaust emission control systems) are permitted in order to
allow the use of alcohol fuels as motor vehicle fuels (Ref. 27).

Under current California law, exhaust emission standards for gasoline-
powered vehicles also apply to vehicles which have been modified to use other
fuels. In addition, under present law, ARB is authorized to adopt standard's
and test procedures to certify fuel systems of vehicles powered by fuels other
than gasoline or diesel. Establishment of these standards and procedures is
necessary for large-scale, rather than experimental, implementation of altern-
ative fuel systems. Such standards have already been adopted by ARB for
liquefied petroleum and natural gas fuels conversion systems. In November
1982, ARB proposed standards and procedures for certification of alcohol and
alcohol%gasoline conversion systems (Ref. 28). The proposed procedures cover
methanol and ethanol fuel systems, dual-fuel methanol/gasoline systems,
dual-fue l. 'ethanol/gasoline systems, and systems using methanol/gasoline or
ethanol/g26oline blends. The need to evaluate alcohol conversion systems
stems primarily from the potential for increased emissions and reduced engine
durability. Requirements of the _proposed standards are as follows:

(1) Conversion system manufactures will be required to test a minimum
of three, but not more than 10, vehicles per vehicle class for each
alcohol conversion system. Emissions from modified vehicles may
not exceed emission levels found in the baseline test.

(2) Conversion system manufacturers may be required to evaluate vehicle
driveability and durability.

P	 (3) There will be no limits placed on the number of modifications a
conversion system manufacturer may make to a vehicle converted to

!.	 use methanol or ethanol, so long as themodifications do not
f	 increase emissions.

,I

1
t
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(4) Vehicles participating in the Methanol, fuel Experimental Program
established pursuant to Vehicle Code Sections 5115,5 and 5116 are
not required to have a certified conversion system. However,: Chi±
owner or lessee of the vehicle must obtain an annual Certificate of
Compliance indicating that the vehicle's emissions axe in compliance
with state standards. ARB has proposed guidelines for issuance of
Certificates of Compliance for methanol-powered experimental
vehicles (Ref. 28).

While there are few regulatory impediments to the use of methanol in
vehicles on an experimental basis, widespread conversion of vehicles to use
methanol will require manufacturers and sellers of methanol conversion systems	 r;'
to undergo the process of certification by the ARB.

i

Replacing portions of the fleet with advanced low-emissions technology z
vehicles is part of ARB's overall mobile service emission control strategy,
which also includes reducing excess emissions from regulated sources, lowering
standards for regulated sources and adopting standards for unregulated sources
(Ref. 29). Applications of this strategy in the South Coast Air Basin, and	 3

potential methanol applications, are discussed below under Regional Strategies.

State exhaust emission standards (for hydrocarbon, CO and nitrogen,
oxides) for vehicles of 1989 and later model years are tighter than for
previous models. In many cases the standards are more stringent than federal
standards (Ref. 30). The ARB has recently tightened the NOx and particulate
standards for diesel-powered passenger cars, light-duty trucks, and medium-
duty vehicles. The new NOx standard of 1.0 grams per mile (gpm) will apply
to 1984 model passenger cars and light-duty trucks that are certified to
100,000 miles. The new particulate standard of 0.4 gpm will be effective for
1985 models; the standard will be tightened to 0.2 gpm for 1986 models and
0.08 gpm in 1989 and subsequent model years (Ref. 31). Vehicle manufacturers
claim that emission control technology for diesels is uncertain and that there
may be problems in meeting the standards. Diesels can meet the hydrocarbon
and CO standards, but have difficulty in controlling NOx and particulate
emissions. To compensate for this difficulty, ARB will allow manufacturers to
submit tradeoff proposals to reduce NOx emissions from gasoline-powered
vehicles to compensate for emissions from diesel vehicles. Guidelines for
this option are currently being developed by ARB. Methanol-powered vehicles

may make a contribution to arranging these tradeoffs if the number of
diesel-powered vehicles continues to increase as the exhaust emission
standards are tightened.

As mentioned previously, control of emissions from stationary sources i
primarily the responsibility of individual air pollution control regions in
the state. However, exemptions from the general emission limitations con-
tained in Article 1, Chapter 3, Part 4, Nonvehicular Air Pollution Control, o
Division 26 of the California Health and Safety Code exist for certain 1

methanol fuel manufacturing plants. Exempt facilities include methanol fuel,
plants which' manufacture not more than 2,000,000 gallons of methanol fuel per
day from wood, agricultural residues, natural gas, or coke (exclusive of
petroleum coke). However, only one such plant is allowed in each air basin,
the plant must be located in an area that has attained the NAAQS under the
Clean Air Act,, and the plant must meet all applicable standards required by
the district' board (Ref. 32).
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3.	 Regional Strategies:	 Methanol Potential

a.	 Bay Area Air Quality Management District ('BAAQMD). 	 The
BAAQMD, the Association of Bay Area Governments and the Metropolitan Trans-
portation Commission have recently revised and updated the 1979 Air Quality
Management Plan for the district, and issued a draft for comment (Ref. 33).
The final plan should be out in December 1982.

The federal standards for ozone and CO are currently exceeded in the Bay
Area.	 The S02 and NO2 standards are met, and are not expected to be a
problem in the future.	 Thus, the recommended control strategies of the BAAQMD
are aimed at reducing hydrocarbon and carbon monoxide emissions.

Twenty-two new regulations were proposed by the BAAQMD for control of
stationary source emissions, and an additional twelve were proposed as
contingencies.	 The thrust of the proposed regulations is to reduce
hydrocarbon (especially volatile organic compound) emissions from industrial
sources.	 No mention is made of using methanol or any other alternative fuel
in industrial or utility stationary applications. 	 A proposed measure to
reduce emissions from large stationary sources by 1.0 percent below the present
baseline was rejected, due to expectatons that an arbitrary reduction of 10
percent may not be achievable, and could be very expensive.

Fifteen transportation control meavisees were proposed for implementation. :F
Again, no specific measures encouraging methanol or other alternative fuel use
were proposed.	 Most of the measures are aimed at increased use of ridesharing,
public transit, and zoning.	 However, transportation control measure No. 15
demonstrates a commitment to "disseminate information on the economic and
technical benefits of alterative engines and fuels to fleet operators in the
Bay Area" (Ref. 33).	 The three worst areas of CO concentrations (San Jose,
Oakland,- and Vallejo) have additional recommended strategies for CO control,
but none of them involve use of alternative fuels.

ji

Conversion of fleet vehicles to cleaner engines or fuels in the Bay Area
was not selected by the BAAQMD as a candidate mitigation measure for several
reasons.	 It was believed that there would be difficulties in implementation
and enforcement resulting from the fact that vehicles are registered with the
state rather than with local jurisdictions, and that fleet vehicle conversion
programs would be most effectively implemented by the state. 	 Also, the
benefits were perceived to be small, because the percentage of fleet vehicle
miles is a relatively small percentage of the total vehicle miles. 	 In
addition, the Bay Area's Metropolitan Transportation Commission policy
supports measures that would improve or enhance automobile alternatives (such
as rapid transit, carpooling, and bicycling) without penalizing those persons
dependent upon conventional automobiles.

1.

It appears that there are few, if any, incentives to use methanol as a
fuel in either stationary or mobile applications in the Bay Area, as indicated
by the 1982 Bay Area Air Quality Plan.

b. South Coast Air Quality Management District (SCAQMD). As
r	 indicated earlier, the South Coast Air Basin has serious air pollution prob

r

1
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lems and will encounter severe difficulties in attaining air quality standards
by the ccmpliance dates (1982 for NO X; 1987 for Co and ozone). The SCAQMD
and the Southern California Association of Governments have recently approved
a 1982 revision of the 1979 Air Quality Management flan for the South Coast 	 j

Air Basin (Ref.. 25). The primary goal of the Plan is attainment of the air
quality standards by the earliest possible date. Approval of the Plan by the
ARB for incorporation into the SIP is expected in early 1983; EPA approval is
uncertain, since the Plan does not demonstrate attainment of the federal air
quality standards by the deadlines,

It is hoped that implementation of the Plan will achieve compliance with
federal and state standards by the year 2000 or shortly thereafter. 	 Attempting
to attain the standards by the 1987 final deadline would require drastic miti-
gation measures that appear to be almost impossible to implement (such as a 90
percent reduction in forecast petroleum refining, marketing, and extraction
emissions, LOO percent use of non-reactive solvents and degreasers, and 80 f
percent fuel rationing). 	 The approved 1982 Plan for later compliance will -?
still require major changes in the South Coast Air Basin. 	 The plan Calls for
both short-range and long-range tactics to control industrial, commercial, and

F	 vehicular sources of air pollution.	 The short-term measures consist of
setting standards for currently unregulated smaller sources of pollution, and

F	 tightening controls on larger sources.	 The long-range control measures

r	 include use of alternatives to petroleum products, in addition to other
measures.

Table 10-13 presents the air quality standards, allowable emissions to
meet the standards, emissions for the baseline year (1979) and projected
emissions for 1987 and 2000, required emission reductions'`. order to meet the
standards, reductions achievable through the 1982 Plan, and the shortfall.
The following paragraphs discuss potential use of methanol in both the
short-term and long-term strategies.

The short-range control strategies outlined in the Plan are those that
can be implemented before 1987.	 135 r, ,̂ rategies were considered reasonably
available; of these 104 were well dte ined and qu,,AiVt fiable, while 31 were
non-traditional and	 Tab<<, u;t-.l_ :shows emission reductions
achievable by 1987 and 2000, :,.f all of the quantifiable measures are imple-
mented.	 Air quality for ull contaminants will improve over the next five
years in terms of reducing peak concentrations or meeting some of the air
quality standards, although the compliance deadlines will not be met. 	 Imple-
mentation of all the recommended measures will accomplish the following;

Ozone:	 Reduction of the number of first and second stage ozone
episodes'.	 I.n the years 1978 through 1980, there were an average of 115
first-stage episode days and 21 second -stage episode days in the South
Coast AirBasin.	 Modeling estimates indicate that implementation of all
proposed reactive organic gas ( ROG) and NOx measures will reduce these
violations to a range of 33-80 first -stage and 0-1 second-stage days in j
1987, and 15-55 first-stage and zero second-stage episode days by the
year 2000. ui

Nitrogen Dioxide:	 Attainment of federal standards by 1987 and the state
standard by 2000.
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Carbon Monoxide: Attainment of federal standards by 2000, while reducing
the number of violations of state standards.

Sulfur Dioxide and Sulfates: Continued attainment of federal sulfur
dioxide standards and redaction of state sulfate standard violations.

Total Suspended Particulates: Reduction of the number of violations of
the current federal standard. Attainment of the standard if it is
changed to include only inhalable particulates.

Total Oxidants: Reduction of total oxidants, including ozone,
concentrations. (Some oxidants may have more severe health effects than
ozone.) (Ref. 25)

Five basic types of short-term control measures were proposed: (1)
stationary source, controls, (2) transportation measures, (3) mobile
technological controls, (4) energy conservation measures, and (5) lend use
measures. Two of the recommended control strategieG, one for electrical
generation and on( !or vehicle emission control, have potential methanol
applications.

The electric generation emission control strategy (Ref. 34) consists of
using methanol in electric utility gas turbines in order to reduce SO z
emissions. Projected S02 reductions from this strategy are 0.20 tons/
average day in 1987, and 0.20 tons/average day in 2000. The target date for
implementation is 1986, but this is contingent upon the availability of
low-cost methanol in large quantities. SCAQMD will not adopt a rule for this
measure until there is assurance of such a supply. This measure does not
appear to be a v4 ►luable use of methanol, since the South Coast Air Basin is
already in compliance with the S0 2 standard and few future problems are
anticipated.

The vehicle emission control strategy is to convert fleet vehi+.. t in
the SCAQMD to run on methanol. fuel, in order to reduce emissions of ?.,,-tive
organic gases, NOx) and CO. This measure would target approximately 16
percent of the light-duty vehicle fleet, or 1.36 million vehicles by 2000, and
is designed to encourage the use of at least 85 percent methanol fuel. Poten-
tial emission reductions from this strategy are indicated in Table 10-14.

The SCAQMD feels that fleet; vehicles are the most appropriate candidates
for methanol conversion. According to SCAQMD, such conversions would not	 i
disrupt the existing petroleum retail distribution system, and would provide a
smooth transition to increased use of methanol fuel. The target date for
implementation of this strategy is 1984. However, several actions are needed
to carry out this .measure. SCAQMD feels that support from the U.S. Synthetic
Fuels Corp. for coal-based methanol is necessary. The Clean Air Act must be
amended to allow for limited exemptions from rules that control the introduc-
tion and use of new motor vehicle fuels, and exemptions from anti-tampering 	 1
provisions. The state legislatur,2 could provide several incentives, such as 	 t=
passing legislation requiring sale of methanol at service stations, Creation
ofregional methanol service station directories, and continued support for
tax credit legislation for conversions beyond the 1991 deadline.
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Table 10-14. METHANOL FLEET VEHICLE CONVERSION:
EMISSION FORECAST AND REDUCTION

1979 1987 2000

ROG Inventory (Ton/Avg. Day) 647 329 319
ROG Reduction (Ton/Avg. Day) 4.1 16.2

NOx Inventory (Ton/Av8. Day) 279 231
NOX Reduction (Ton/Avg. Day) 471 1.1 4.5

CO Inventory (Ton/Avg. Day) 4,673 3,331 3,211
CO Reduction (Ton/Avg. Day) 88.5 345.6

SOURCE:	 Ref. 34

The Plan's long-range control strategies are those which could lead to
attainmeat of the ozone and CO otandards, 'hopefully by the year 2000 or soon
after. These strategies require lead time or further study before implemen-
tation; it is hoped that studies will be completed by 1987. Three broad
categories of strategies appear to be the most promising for further reduction
of reactive organic gases emissions after implementation of the short-term
strategies: use of lower polluting alternative fuels, transportation and
urban form changes, and technology advances for reduced emissions. The
alternative fuel use category includes two measures with potential methanol
applications.

One of the long,-term measures is to use alternatively powered vehicles
(such as methanol, electric, or natural gas cars). SCAQMD believes that
limited quantities of the vehicles will become available in the near future;
the objective of the long-range strategy is to promote widespread use of these
vehicles until most of the cars in the South Coast Air Basin are powered by
alternative fuels. However, methanol in vehicles must be used in conjunction
with other strategies in order to reach attainment of the standards (Ref. 25).

F

	

	 The alternative fuel use by industrial sources strategy is to replace
petroleum fuels with cleaner fuels, such as methanol or natural gas, in order

s	 to reduce emissions of organic gases. Because development tests are underway
on various types and sizes of engines, useful data should be available in the 	 p

near future to evaluate and quantify the possible benefits from the use of
methanol. If a development program is started in the near future, SCAQMD
feels that methanol could become available in sufficient quantities in the 	 {
next 15 to 20 years and could have a significant impact on the air pollution

r problem.	
3

j^
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YEAR 2000 ROG EMISSION REDUCTIONS
(tons/day)

WITHOUT SHORT- WITH SHORT-
RANGE CONTROL RANGE CONTROL

STRATEGY/MEASURE MEASURES MEASURES

ENERGY USE

Methanol Fueled Vehicles 127 47

Electric Powered Vehicles 110 40

Areawide Highway Electrification 41 15

Alternative Industrial Fuels 4 4
Petroleum Fuel Industry 116 83

TRANSPORTATION AND URBAN FORM

Transportation System Design and 50 18

Urban Form

Telecommunications 18 7

High Speed Trains 12 6

Less Than Anticipated Growth 38 21
Redirecting Growth

TECHNOLOGY

Non-Reactive Solvents 226 167

TOTAL NET ROG EMISSIONS REDUCTIONS* 450 37.1

*Total net emission reductions represent the amount of emission reduction
after removing theoverlaps between measures.	 This eliminates any double
counting of emission reductions.

SOURCF,:	 Ref. 25

t

Table 10-15 presents potential long-range reactive organic gas emission
reduction from using one of the possible combinations of long-range control
strategies.

The following is a set of actions which can be taken by the SCAQMD, the
Southern California Association of Governments and local governments to
facilitate the transition to alternative energy uses.

Table 10-15. POTENTIAL LONG-RANGE ROG EMISSION REDUCTIONS
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•	 Study the feasibility of alternative energy use in the South Coast
Air Basin. The studies should address the production potential of
various alternative fuels, the design of a fuel distribution
system, the compatibility of new fuel systems with existing systems
and the costs of providing alternative fuels and the potential.
health effects of their use. These studies should be completed by
1985 so that actions can be taken to implement their recommenda-
tions.

•	 Study the economic, social and environmental impacts of a reduction
in the Basin's petroleum fuel industry.

•	 Explore the potential alternative uses of lands currently being
used by petroleum production facilities.

•	 Develop by 1986 a set of recommendations for state and federal tax
incentives promoting alternative fuels. These tax incentives
should encourage the production of alternative fuels and promote
the use of alternative fuels.

n
•	 Institute regulatory actions by 1980' to facilitate alternative

energy sources. These actions could include streamlining the
review process for alternative fuel development projects; encour-
aging or requiring the provision of alternative fuels to ensure 	 y

public access to fuels; and allowing trading of emission offsets
obtained through early conversion to alternative fuels. i

•	 Conduct demonstration projects showing the feasibility of alterna-

tive fuels. These projects, which can be begun immediately, could
include methanol and electric car demonstrations and support of
private sector projects.

The state ARB has also devised a possible long-range mobile source
control strategy for the South Coast Air Basin for reduction of hydrocarbon,
CO, and NOx emissions, targeted for the year 2000. Components of the
strategy include reduction of excess emissions from regulated sources,
tightening of standards for regulated sources, adoption of standards for
unregulated sources, and replacement of portions of the vehicle fleet with
advanced low emissions technology vehicles ( Ref, 29). ARB has projected that
if 10 percent of the passenger cars wereconverted to methanol by the
projected 1987 implementation date, year 2000 hydrocarbon emissions would be
reduced by 3 tons /day, CO emissions would be reduced by 57 tons /day, and NOX
emissions would be reduced by 2_i :ons/day„

Methanol appears to have greater potential for control of mobile source
emissions than for control of stationary source emissions in the South Coast
Air Basin ._ Pollutants from transportation sources are so significant that ARB
believes that much more emphasis must be placed on transportation control
measures during the next several years.

Methanol-fueled vehicles have the potential for substantially decreasing
exhaust emissions anI evaporative emissions that occur with gasoline -fueled
vehicles. Some results of preliminary road and lab tests by the California
Energy Commission are presented in Table 10-16. Unburned methanol is also
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Table 10-16. 1982 CALIFORNIA EMISSION STANDARD VS
1982 VW RABBIT METHANOL EMISSIONS

(Grams Per Mile)

HC CO NOx

1982 California Emission Standard 0.41 7.00 0.40

1982 VW Rabbit Methanol Emissions 0.12 0.80 0.32

Differences 0.29 6.20 0.08

Percentage Change 70.73% 88. 7% 20.00%

SOURCE:	 Ref. 35.

present in the exhaust, but these emissions are essentially unreactive.
Aldehyde emissions from methanol vehicles are highly reactive and may
contribute directly to photochemical smog formation, but aldehyde emissions
can be subrtan.tially reduced by present control technolcg y (Ref. ;34).

SCAQMD is not optimist c concerning the use of r•:ethanol/gasoline_ blends,
and prefers the option of converting portions of r r I--, ..ht-duty vehicle fleet
to methanol fuel (Ref. 16).

E. Stationary applications of methanol fuel use do not appear to be i
stressed in the proposed control strategies. 	 As a combustion fuel, methanol

' has more potential for lowering NO x and CO emissions than fuel oil, and
virtually no emissions of unburned hydrocarbons, S0 2 , or particulates.	 As a

` gas turbine fuel, methanol appears to have advantages over distillate and
natural gas, with potential for lowered_NO x , CO, hydrocarbon, and particu-
late emissions.	 Use of, methanol in turbines for S0 2 reduction was
recommended as a short, terte strategy, but this may not be methanol's most
advantageous use. 	 The stringent new source review rule for new and modified
stationary sources of pollution, recently adopted by SCAQMD (Ref.37) may {
provide more incentives for the use of a lower polluting fuel such as methanol
to reduce emissions.	 However, use of methanol in stationary applications for
offsets and emissions banking is unclear.

{

G.	 CONCLUSIONS
,I

There are several priority environmental, health and safety concerns
E associated with large-scale use of methanol as a fuel in California.	 An over- =`
{ view of the issues indicates that the major adverse impacts will be associated {

with resource extraction, especially if western coal is the preferred feed- {,

k. stock, and methanol production from feedstock gasification.	 End use of meth-
f

anol as a transportation or utility fuel results in overall positive impactsr

'1

10-47

Lit

),` -

w.



on air qualty,'but some potential health and safety risks may occur. The
major concerns can be summarized as follows:

(1) Strip mining of western coal for methanol feedstocks can result in
irreparable loss of potentially productive land due to reclamation
difficulty in arid and semiarid areas.

(2) Methanol production facilities require large quantities of water;
this may place severe constraints on plant siting in many areas of
the West.

(3) Little data exist on the characteristics and compositions of
gasification waste streams, particularly in terms of potentially
toxic, hazardous, or carginogenic organic constituents and trace
elements. In addition, the effects of these potentially harmful
substances on humans is poorly understood in many cases.

('4) Potential occupational health and safety hazards associated with
large gasifiation/methanol production facilities are not well known. 	 R.

(5) Large-scale use of methanol as a fuel may expose service personnel
and the public to little-known risks of low-level, chronic methanol
exposure. In addition, public education and appropriate safety
precautions are needed to reduce accidental or intentional
ingestion.

Easing of environmental regulations by the current Administration may
k

	

	 result in lessening of constraints on coal mining and plant siting, but at the
same time may reduce incentives for using methanol. California's environmental
regulations, however, are likely to remain more stringent than EPA's. It must
be kept in mind that environmentally damaging substances associated with the
feedstocks will have to be dealt with at some point in the energy system.
However, converting fossil fuel feedstocks to methanol via gasification may
result in easier removal and control of environmentally harmful substances
than combustion of the fossil fuels.

{
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ADDENDUM

ENVIRONMENTAL AND REGULATORY CONSTRAINTS

ENVIRONMENTAL STANDARDS FOR NEW COAL-FIRED POWER PLANTS



$02 :. S02 emissions of > 0.60 lb/MBtu heat input:
90% reduction in potential emissions

2. S02 emissions < 0.60'lb /MBtu:i
70% reduction in potential emissions

3 1.2 lb/MBtu ceiling

NOx Varies according to fuel type.

1. Subbituminous coal: >0.50 lb /MBtu heat input

2. Any fuel with <25% (weight.) lignite from N.
Dakota, S. Dakota, or Montana: 	 0.80 lb/MBtu from
combustion in a slag tap furnace

3. Fuel with	 >25% coal refuse: 	 exempt from NOx
standards

4. Other coals not specified above: 	 0.60 lb/MBtu

Particulates 0.03 lb /MBtu heat input

Initial full-scale demonstrations of certain technologies are subject to
less stringent standards ( case-by-case basis).

.i

i

1.	 AIR

A.	 CONVENTIONAL PULVERIZED COAL

New Source performance Standards have been issued by EPA for new,
modified, and reconstructed electric utility steam generating units capable
of firing >73 MW heat input of fossil fuel. Limits are imposed on S02 + NOx
and particulates emissions; new units are required to use best demonstrated
technological systems of continuous emission reduction to satisfy the require-
ments of the 1977 Clean Air Act Amendments. Standards applicable to conven-
tional coal-fired plants are set forth in Table 1.

Table 1. AN NSPS: COAL-FIRED UTILITY STEAM GENERATING UNITS

Pnl_ltit-ant	 Standard

r

z

't
}
t

h	
^;

B	 INTEGRATED GASIFICATION COMBINED CYCLE ( IGCC)

It is not clear ifexisting and proposed air quality regulations appli-
cable to gas turbines and large coal-fired utility steam stations will be
applicable to IGCC plants. Currently, for electric utility combined -cycle

x
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plants, the NSPS as defined in Section A. I-a. are applicable to steam
generator emissions resulting from fossil fuel. fired to the steam generator
with >73 MW heat itiput, exclusive of the heat input and electrical power
contribution of the fas turbine. Combined-cycle gas turbines that use only
turbine exhaust gas to provide heat to a steam generator (waste heat boiler),
and that are fired with 73 MW of fossil fuel, are not covered by the NSPS
for steam electric utilities.

NSPS have been promulgated limiting SO- and NO X for all stationary
gas turbines with a heat input at peak load of >10.7 gigajoules /hr, based
on the lower heating value of the fuel.. These standards are applicable to any
gas turbine portion of a combined-cycle steam/electric generating system. The
efficiency factor must be based on gas turbine efficiency itself, not the
over-.all efficiency of a gas turbine combined with other equipment. NSPS for
combined-cycle systems are summarized in Table 2. Fuel-bound nitrogen allow-
ances have been proposed for gas turbines. These are summarized in Table 3.

Since IGCC cleanup processes are designed to remove fuel-bound nitrogen
compounds in addition to sulfur and particulates, these allowances will most
likely not apply to IGCC plants.

Although the status of EPA regulation of IGCC emissions is unclear,
states may regulate particulates, S0 2 and NOX emissions from IGCC systems.

C.	 FLUIDIZED-BED COMBUSTION (FBC)

New FBC facilities are subject to the S02, particulates, and NOX
NSPS for fossil-fired utility steam generating units as described in Section
I(A). However, the 90% reduction required for S02 may be reduced to 85%
reduction for full-scale commercial demonstrations. The gas turbines of
combined-cycle FBC plants are subject to the NSPS for gas turbines and the
constraints established for the desired turbine performance described in
Section I(B).

II.	 WATER

A.	 CONVENTIONAL PULVERIZED COAL

EPA has promulgated final regulations limiting aqueous pollutant
discharges from new coal-fired steam electric power plants. However, EPA
is currently proposing to revise these regulations to include !best available
technology (BAT) limitations on some toxic and other chemical pollutants in
certain waste streams. Restrictions on thermal pollution from power plants

'	 have been remanded; EPA is not proposing regulations for thermal discharges
}	

at this time.

EPA has proposed effluent guidelines; and standards for the following
Liquid waste streams from steam electric power plants:

1.	 Once-through cooling water
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Table 3. FUEL-BOUND NITROGEN ALLOWANCES
FOR GAS TURBINES

Fuel-Bound Nitrogen
(% by Weight)
	

NOx % by Volume

N < 0.015
	

0

0.015 < N < 0.1
	

0.04 (N)

0.1 < N < 0.25
	

0.004 + 0.0067 (N-0.1)

N < 0.25
	

0.005

2. Cooling tower blowdown

3. Fly ash transport water

4. Bottom ash transport water

5. Low volume wastes, including boiler blowdown

6. Metal cleaning wastes

7. Area runoff

Final and proposed NSPS discharging to surface waters and pretreatment
standards for new sources (PSNS) discharging to publicly owned treatment works
are outlined in Table 4.

B.	 INTEGRATED GASIFICATION COMBINED-CYCLE /FLUIDIZED BED COMBUSTION

Effluent guidelines and standards for new IGCC and FBC ,facilities have
not yet been proposed, and are not likely to be proposed for the next two or
three years. Permit writers for these facilities will be guided by NSPS for
the most similar point source, which will most likely be the NSPS for steam
electric generators defined in II(A).

III. SOLID WASTE

A.	 CONVENTIONAL PULVERIZED COAL 	 '-

Solid wastes produced in conventional coal-burning steam electric
i'	 plants, including fly ash waste, bottom ash waste, slag waste, and flue gas

emission control waste generated from coal and other fossil fuel combustion	 £
are not defined as hazardous wastes by EPA. Disposal of these solid wastes is
still subject to 1976 RCRA disposal requirements and 1979 guidelines for solid

waste disposal in sanitary landfills (RCRA Sectio 4004 and 1008). 	 ;.
z r	 "^
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B. INTEGRATED GASIFICATION/COMBINED-CYCLE

Solid wastes generated by coal gasification are not currently classi-
fied as hazardous by EPA and are excluded from any hazardous designation under
existing EPA rules. Elemental sulfur produced by IGCC processes can be sold.
Slag and other solid wastes generated by IGCC processes can be disposed of
under solid waste guidelines, as mentioned in III(A). Some IGCC slags may be
classified as hazardous under individual state laws, and must be disposed of
accordingly.

C. FLUIDIZED BED COMBUSTION

Currently, FBC solid wastes are considered non-hazardous and can be
disposed of in sanitary landfills using approved practices, as mentioned in
III(A). FBC solid residue may be a candidate for inclusion in EPA's apecial
waste category under RCRA. Proposed regulations governing special wastes are
due from EPA in early 1982.

f

I.V.	 OTHER

Toxic Substances.	 Currently, none of the components of by-product
streams from the three processes contain significant toxic substances as
defined by EPA under TSCA. 	 Some concern has been raised over the presence of
phenols in by-product streams from coal gasification; EPA is currently study-
ing the issue.	 Synfuels facilities will be subject to Section 5 of TSCA, in
which EPA must be notified prior to manufacturing a new chemical substance for
commercial purposes.

Hazardous Air P ollutanLS.	 EPA has the authority to define and regulate
hazardous air pollutants under Section 112 of the Clean Air Act. 	 Hazardous

r air pollutant standards currently exist for:

1.	 Asbestos

2.	 Beryllium

3.	 Mercury
4

{ 4.	 Vinyl chloride

Listed as hazardous, but no standards yet: ,I

k 1.	 Benzene

2.	 Arsenic

3.	 Radionuclides

r Health assesments completed or nearly; completed on;
a

1.	 Coke emissions
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2.	 Acrylonnitrile

3.	 Methyl chloroform

4.	 Methylene chloride

5.	 Trifluorochloroethane

6.	 Perchloroethylene

'	 7.	 Trichloroethylene

8.	 Chloroform

9.	 Vinylidene

10.	 Chromium

11.	 Chloride

12.	 Formaldehyde

13.	 Nickel

14.	 Ethylene dichloride

15.	 Dioxin
M

None of the emissions from the three processes are expected to be
designated as hazardous air pollutants.

v	 Acid Rain Control. Several acid rain control bills have been introduced
into the Senate and House, and some form of acid rain legislation in 1982 is
highly probable.	 New and existing large electric power utilities will be the
most affected.- Potential plans for control can be summarized as follows:

1.	 A 5-million ton two-phase reduction in S0 2 and NOX from a
23-state corridor by 1990, with the states given the responsi-
bility to come up with reduction plans or face a mandatory

j"	 federal emissions reduction. plan. 	 Trading between NOX and
t	 S02 would be allowed.

2.	 A 10-million ton reduction in S02 from 31 eastern states over a
ten-year period.

s
3.	 An 8.2 million ton or 36% reduction in S02 from a 31-state region

r

b	 1991- no specific target for NO	 Tradeoffs between statesy	P	 $	 X-	 , 3!.

and in S02-NOX emissions, would be allowed.

The most likely outcome will be a compromise among the proposed changes.

i
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Uncertainties

1. Visibility protection:	 Adoption of a secondary fine particulate
standard is not likely. 	 Visibility protection may wait until acid rain
control strategy is revised.

2. NSPS for synthetic fuel facilities:	 EPA is still gathering data prior
to standard development.	 Not likely to be developed for at least
several years.

3. NSPS for fossil fuel-fired steam electric utilities: 	 Potential
relaxation of S02 percentage removal requirement.

4. NAAQS primary particulate standard:	 1982 EPA proposed revisions may
relax present limits by up to 50%.

5. Stringent NOx standards may limit atmospheric fluidized bed combustion
(AFBC) dense-bed boiler applications.

6. Classification of FBC solid wastes under RCRA.

7. Potential acid rain control amendments to the Clean Air Act.

8. Characterization and classification of coal gasification waste stream

k

constituents,
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APPENDIX A

GLOSSARY

air/fuel equivalence ratio BIT bituminous

17 thermal efficiency BMMP barge-mounted methanol
plant

oC degrees Centigrade
Btu British thermal unit

OF degrees Farenheit
C carbon

$ dollars
CAA United States Clean Air Act

cents
CAFE corporate average fuel

A/F, AF air/fuel ratio economy

AC alternating current Cc capital cost

ANL Argonne National CcCc' levelized capital cost
Laboratories

C annual operation and M'
AO annual output maintenance costs

APCD Air Pollution Control CEC California Energy
District Commission

API American Petrolew CENT central
Institute

CEQ Council on Environmental
ARB, CARB California Air Resources Quality

Board
5

CEQA California Environmental
ARCO Atlantic-Richfield Company Quality Act

ASTM American Society of CF cubic feet
Testing Materials

CFR cooperative fuel research
BACT Best Available Control

Technology CIPV present value of recurring_
costs ti

BBEC breakeven busbar energy
cost CInom nominal annual sum of

E investment expenditures
BBEC levelized price

CO carbon monoxide
BBL, bbl barrel ^ s

CO2 carbon dioxide
Bcf billion cubic feet j

CR compression ratio
B/D barrels per day

x.

A_2

u
AA



GLOSSARY (continued)

CRC Coordinating Research FCCU fluidic catylaic cracking
Council unit

CRF capital recovery factor FG flue gas

CRIEPI Central Research Institute F'OC fixed operating cost
of the Electric Power
Industry ( Japan) FT3,ft3 cubic feet

CST centistokes FT, ft feet

Cv variable cost FWT front wheel traction

CWA Clean Water Act g grans

DC direct current gal gallon
1

j	 DOT Department of GE General Electric
Transportation

G/M grams per mile
DPF depreciation factor

CM General Motors
DRI Data Resources Incorporated

GNP gross national product
7

DWT dead weight tons
GPM gallons per minute

EFI electric fuel ignition
GTBA gasoline-grade teriary

w	 E,H&S environmental, health and butyl alcohol
safety

H hydrogen
EHV extra high voltage

H2O water
Ej escalation rate for

recurrent costs H2.S hydrogen sulfide

_Emsn emissions
H/C hydrogen/carbon molecular

r	 EPA Environmental Protection ratio
Agency

HC hydrocazbons
EPRI Electric Power Research

Institute HHV higher heating value

ERC Energy Research Corporation Hr, hr hour
3 ,mot

ESEA Energy Systems Economic HVDC high voltage direct current
r Analysis

I pretax amount to amortize
Evap evaporation_ original capital

:p investment
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GLOSSARY (continued)

ICI Imperial Chemical MBT maximum brake torque
Industries

MBT minimum spark advance for
ID,	 id inner diameter beat torque

ITC investment tax credit Mcf thousand cubic feet

IW inertial, weight McOH methanol

JPL Jet Propulsion Laboratory MF moisture free

k general discount rate mi mile

kg kilogram MISC miscellaneous expense rate

KJ kilojoule Mkt market

km/L kilometers per liter mm millimeter

KPa kilopascal MMBtu million British thermal.
units

K-T koppers-Totzck
Mol mole(^ular

KV kilovolt
MPG, mpg miles per gallon

kW-hr kilowatt-hour
MSHA Mining Safety and Health

F KW, kW kilowatt Administration

L.A. Los Angeles MSW municipal solid wastes

r
LADWP Los Angeles Department of MTBE methyl tertiary butyl -

Water and Power ether
i

LAER Lowest Achievable Emission MTD metric torts per day
.Rates

MW, MWe megawatt ,.
LB, lb pound

N nitrogen
LCC life-cycle costs

NEPA National Environmental
LHV lower heating value - Policy Act 4

LNG liquefied natural gas NG natural gas

r

LoLP loss of load probability NOx, nitrogen oxides ;#

M meters No. number
J

M3 cubic meters NPDES National Pollutant ^y
Discharge Elimination 1
System

^.r -A-4
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GLOSSARY (continued)

NSPS New Source Performance PSIG pounds per square inch,
Standards gauge

02 oxygen PUC Public Utilities Commission

OH hydroxyl radical QUAD, Quad quadrillion (1x1015)
I

0&M operation and maintenance r investor's discount rate

ON octane number RCRA Resource Conservation and
Recovery Act

ONB octane number barrel
RDH removable dome head

ONBC octane number barrel cost
RESID residual

OSHA Occupational Safety and
Health Administration RG&E Pacific Gas and Electric

OSM U.S. Office of (Surface RNG remote natural gas
Mining, Department of
the Interior RR railroad

PAD petroleum allocation
district RVP Reid vapor pressure

` PAFC phosphoric acid fuel cell S sulfur

PAN peroxyacetyl nitrate SCAQMD Snuth Coast Air Quality
Management District

PCB polychlorinated biphenyl
SCE Southern California Edison

Pet petroleum
SCF standard cubic feet

POTWs public owned treatment
works SCFD standard cubic feet per day

m „ ppm parts per million Sec second

ppmv parts per million by volume SHED sealed housing for
evaporative emissions

' ppmw parts per million by weight r4
SIP State Implementation Plan

K

POR' levelized total cost
SMCRA Surface Mining Control and

PSD Prevention of Significant Reclamation Act
Deterioration

}
,i

SNG synthetic natural gas or
PSI, psi pounds per square inch syngas

PSIA pounds per square inch, So south	 -
absolute

S02 sulfur dioxide
rE_

.F
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GLOSSARY (continued)

S03 sulfur trioxide	 WT, wt weight

ST standard ton	 WY Wyoming

STD standard tons per day 	 YR, yr year

syn crude synthetic crude oil

T/D,'TD, tons per day
TPD, tpd

TBA tertiary butyl alcohol

TBtu trillion british thermal
units

fief trillion cubic feet

TCGP Texaco Coal Gasification
' Process

TCR total capital requirement

h
TPI total plant investment

' z

TR tax rate

TSCA Toxic Substances Control
Act

x

TT tangent to tangent

UBF unburned fuel

UC uniform change

UTC United Technology
Corporation

V-8 eight cylinder internal
conbustion engine with
"V" configural block

VOC variable operating cost
E

VOL, vol volume
F

W watts

t WOT wide open throttle
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APPENDIX A

UNITS OF CONVERSION

To Convert From To Multiply By

atmospheres pounds/sq. in. 14.70

barrels (oil) gallons (oil) 42.0

Btu foot - lbs 778.3

Btu kilowatt-hrs 2.928x10-4

Btu/hr watts 0.2931

Centigrade Fahrenheit (Cox9/5) + 32

cubic feet gallons (U.S. liquid) 7.48052

gallons Titers 3.785

gallons/minute cubic feet/second 2.228x10_3

grams joules/meter (newtons) 9.807x10-3

grams pounds 2.205x10'3

F	 grams/liter pounds/cubic feet 0.062247

horsepower foot-pounds/second 550.0	 .

horsepower kilowatts 0.7457	 ?

horsepower-hours Btu 2,547.0

joules Btu 9.480x10-4

joules/centimeter grams 1.020x104r
kilograms pounds 2.205

kilowatt-hours Btu 3,413.

kilowatts Btu/minutes 56.92

knots nautical miles/hour 1.0

knots statute miles/hour 1.151

liters gallons (U.S. liquid) 0.2642

meters feet 3.281

miles (statute) meters 1,609

pounds/square inch kilograms/square 'meter 703.1	 r

tons (long) pounds 2,240.

tons (metric) pounds 2,205.



APPENDIX B

EXHIBIT OF SPONSOR REVIEW COMMENTS



The sponsoring organizations of the California Methanol Assessment were
invited to submit comments on the final report for inclusion in the Report.
Comments received in time for printing are presented in this appendix. At the
time of printing, the following sponsors had not submitted comments:

California State Energy Resources Conservation and Development Commission

Chevron, USA

E. I. du Pont de Nemours and Company, Inc.

Exxon Research and Engineering Company

Ford Motor Company

Phillips Petroleum Company

Texaco, Inc.



ARCO Petroleum Products Company
515 South Flower Street
Mailing Address! Box 2679 - T.A.
Los Angeles, California 90051
Telephone 213 486 0941

J, 0. Siemssen
Manager
Technical Coordination
Research and Engineering

March 18, 1983.

Aj k6,
'Nor

ORIONNAL PAGE 19
OF POOR QUALITY

Mr. Richard P. O'Toole
Methanol Task Manager
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91109

Dear Richard:

We have reviewed the California Methanol Assessment, and wish to
compliment you and the staff at both _,PL and CalTech who participated in
the study on a comprehensive job, well done. In general we believe the
study is a reasonable assessment of methanol in California, particularly in
the near term.

For the longer term, the projection of the potential for methanol may be
somewhat conservative. Given the fact that large scale production and
utilization of methanol as a fuel has only recently gained detailed attention,
it seems probable that there will be future advances in both these areas
which will impact the time frame for the growth of methanol in the
marketplace. This is an area which could use further work.

A second area deserving additional attention is the assessment of the
environmental consequences which widespread methanol use will have.
While the initial results appear interesting, a more detailed technical review
is warranted, particularly in view of results obtained in other studies.

We have appreciated the opportunity to have been a part of this study. The
effort which you and the study team have put into consolidating the diverse
input from the sponsors group has made this assessment particularly
worthwhile.

Sincerely, {

Siemssen
ian

O.
ager, Technical Coordination

Research and Engineering
ARCO Petroleum Products Company
Atlantic Richfield Company
Los Angeles, California j

JOS/vlk
B-3

A9GD Polmleunt Products. Company )s a Division of Atlantic 8lchtleldCompany '.
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Cconoco

Conoco Inc.
High Ridge Park
Stamford, CT 06904

ORIOINAI: PAGE is	 (203) 329.2300

March 17, 1983	 OF POOR QUALITY

Mr. Richard P. O'Toole
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109

Dear Rich:

While we have some reservations about small details ofthe 	 'R'
analysis presented in the report we, as a sponsor of the
project, are satisfied that the report largely addresses
the questions in our minds when we first accepted sponsor-
ship of the program.

The initial concept of this evaluation depended on Caltechi
JPL obtaining advice and information from the sponsors
sufficient for them to make a reasonable independent
assessment of the value of methanol as a fuel in California.
The investigators have made a creditable effort to present
data obtained from us, and other sponsors, in an informa-
tive way and have been able to draw pertinent conclusions
from it.

Within the limits set by time and cost, we feel we will be
receiving a document adequate for our purpose.

One subject we would have hiked to see developed, and which
we believed was to be covered according to the original out-
line, was analysis of institutional factors peculiar to
California which could influence the introduction of methanol

s as a fuel independent of economics should a supply be available.
We were aware before the study began than various bills had been
presented to the Sacramento legislature attempting to mandate
the use of methanol as a fuel and that some bills had passed
making it legal to use methanol.	 While we did not expect any
conclusions on the likelihood of any legislation being success-
ful, it would have been helpful to non-residents of California	 E

to have available an assessment of the influence on the market-
place of socio/political forces, and how these might induce the
use of methanol,if it became available in large quantities, even
if it wasclearly non-competitive economically (e.g. mandated to)
reduce emissions).

E (Continued)
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Mr. Richard P. O'Toole
California Institute of Technology 	

ORIOINAL PAGE 1$

March 17, 1983	 OF POOR QUALITY

In terms of economics, the crude oil price forecast taken
from DRI's Spring 1982 Energy Review is clearly now out of
date. Since the spring of last year DRI, as have Conoco
and most other energy industry analysts, have lowered their
projections of the likely path of oil prices. At the time
many of the comparisons in the study were made, the lowest
price sensitivity, which is that most close to present day
forecasts, was assigned a probability of only 5 percent.
Today that projection is almost identical to Conoco's
forecast. Clearly it is impossible to re-write the report
to take these changes into account, but I believe it would
be appropriate for you to point it out in a covering letter
or addendum to the executive summary. In making such a
statement care should be taken to show that these changes
do not affect some of the conclusions'(the use in light
vehicles for instance) so much as the timing.

It wasa pleasure to work with you and your colleagues on
this project and I look forward to receiving the final
report.

Sincerely,



ELE CT RIC POWER RESEARC i INSTITUTE

March 15, 1983
ORIGINAL PAGE SS
OF POOR QUALfi'Y Effil

Dr. Richard P. O'Toole
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Park Drive
Pasadena, CA 91109

Dear Dr. O'Toole:

We have reviewed the draft volumes summarizing the California Methanol
Assessment that has been prepared. During the project there has been
opportunity for the sponsors of the project to meet with the project team
to provide information that has been summarized. 	

++

The conclusions with regard to methanol use for stationary combustion
application are reasonable. It is not presently attractive to utilize
methanol instead of directly using natural gas or petroleum production
in California for electricity generation. The use of methanol in large
quantities is not likely to occur for several decades. Thus, the produc-
tion and utilization of methanol requires further development to improve
its relative economic incentive.

Costs are presented in the report for methanol derived from a variety of
feed stocks using different processing routes. These costs were from work
that were not originally generated by the project, in that there was al-
ready a large body of information on the topic. With the available fund-
ing, it was not considered prudent to duplicate such cost information,
thus, the cost data which appear in the study should not be considered
definitive information.

A recommendation to the California Energy Commission (p. 19) is that they
should consi&,r support of development of coal gasification combined cycle
plants that incorporate "once through" methanol processing schemes that
would co-produce electricity and methanol. The report does not contain

--	 specific information on the status of these technologies.

5
Enclosed is an attachment from the EPRI Journal on the status of the "once
through" methanol processing scheme and a description of the program that
is being performed and partially supported by the Electric Power Research

p	 Institute in collaboration with industrial organizations.

The R&D work is well launched in that a 100 MW coal gasification combined
cycle plant is under construction at the Cool Water site of the Southern
California Edison Co. The plant is to start up in June 1984 and operate
for several years at that site. In addition, the "once through" methanol
route is also at a pilot plant scale in Texas where a 3 ton/day-unit is 	 I

under construction. Thus, the technology for "once through" methanol will
not be technically ready until the late 1980's based on current programs.

fi	 B_C

I ieadgUarters 3412 Hillview Avenue. Post Office Box 10412, Palo Alto, CA 94303 (415) 855-2000

i'	 `^	 War; r.,^,4n'R 0 1111-F• 1800 A3assar.huselts Avenue, NW 6ui1(^ 700, Wa,hmgtnn. DC 20036 (202) 872.1222
°-
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Page 2

The report is an excellent source document, and the conclusions are reason-
able and derive from the information that has been summarized.

Taking into account the diverse interests of the sponsors, the Jet Propulsion.
Latoratory and the California Institute of Technology performed a difficult
job of assessing this complicated area.

Very truly yours,

), 6. aelzatt
S. B. Alpert
Technical Director
Advanced Power Systems Division

SBA/mb

Attachment
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General Motors Research LaboraiU!es

Warren, Michigan 98090-9055

rM

March 18, 1983

Dr. Richard P, O'Toole
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109

Bear Dick:
	

e

You, and the Staffs from APL and Cal Tech, are to be congratulated for the
comprehensive report on "California Methanol Assessment." You have distilled a
tremendous amount of material, and a variety of opinions where hard factual
information was not available, into a report that both makes sense and has
credibility.

The title of the report may imply that it pertains to only the State of California.
However, this is far from the truth. The report's contents are widely applicable to
the United States as a whole, and even to other countries interested in methanol.
Thus, I expect the report to attract widespread interest.

The major conclusion of the report, that the time for widespread utilization of
methanol is at least ten to fifteen years away, is based, as it should be, primarily
on economic considerations. Thus, California, and our nation should not have to
mount a panic effort to ensure that large quantities of methanol are available and
that users are ready for it in the next several years. The current situation with
respect to petroleum and natural gas availability and price should provide
California and the nation with the time to take an orderly approach to the time,
which will ultimately come, when alternatives to petroleum will be necessary.
Your report points out that methanol, initially from natural gas, and ultimately`
from coal, is a leading candidate as an alternative fuel for automobiles. Our
studies at General Motors have also come to the same conclusion.

The report contains considerable discussion of the potential environmental benefits
of substituting methanol for gasoline as an automotive fuel However, I believe
that the text of the report, in several places, overstates the atmospheric benefits
achievable in the Los Angeles basin by such a substitution. Data in the report
(Figure '6-2 in Volume k Summary Report) indicate that there may be only
marginal benefits in peak ozone concentration reduction in the year 2000. For

y	 t	 example, complete substitution of _methanol for gasoline, reduces peak ozone by
only 14.4 percent. It is highly unlikely that there will ever be such a complete

I ti
i=

B-8
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substitution.	 The report also implies that automobiles fueled with methanol will
have lower NOx emissions than comparable gasoline-fueled automobiles (because of
the inherently lower NOx production in the combustion process with methanol's
lower peak combustion temperature).	 In practice, however, this will not occur
because the	

x	
emission
	

for
inhe ntly low rrNOx with methanolsdcan be traded off for improved fuel economy
and /or performance. Also, data in the report (Figure 6-2 again) show that there is
essentially no	 atmospheric	 benefit	 to	 having	 methanol fueled vehicles with
50 percent of the NOx emissions of their gasoline counterparts.	 Peak ozone is
reduced from 0.285 to 0.275 ppm, only a 3.5 percent reduction.

The report also contains a significant comment with respect to the role of
emissions from gasoline-fueled vehicles in contributing to photochemical smog in i

`	 Los Angeles in the year 2000.	 In one of the atmospheric modeling cases, these
emissions were set equal to zero.	 This resulted in a reduction of peak ozone of
25 percent, indicating that nonautomotive emissions are the primary contributor to

k	 photochemical smog in Los Angeles by the year 2000.

The main conclusion in the report regarding the air-quality impacts of methanol is
that, "the use of methanol in motor vehicles could form part of an effective long-
term strategy to reduce air pollution in the South Coast Air Basin." i believe the
data in the report, as mentioned above, do not support this conclusion.	 Use of
methanol	 in	 motor vehicles could have marginal benefits. 	 However, more
significant benefits would be achieved by controlling nonautomotive sources in the
same vigorous manner in which automotive emissions have been controlled.

Dick, I appreciated the opportunity to represent General Motors on your Technical
Advisory Group, and I know that I and General Motors have benefitted from this
association. Good luck to you and the Staffs from JPL and Cal Tech on your next
assignments.

Sincerely,

Joseph M. Colucci, Head
`	 Fuels and Lubricants Dept.

o
JMC/ljl

y
1..

t
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PACIFIC CrAS AND ELEC?'RIC COMPAIST"T
^ ^.^. aF?
	 245 MARKET STREET	 SAN FRANCISCO, CALIFORNIA 94106	 (415) 781.4211

E. F. KAPRIELIAN

VICC P9,WOW -FUELS PLANNING AND ACQUISITION

March 11, 1983

Dr. Richard P. O'Toole
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109

Dear Dr. O'Toole:

The California Methanol Assessment Report is a
comprehensive analysis of the prospective use of methanol
as a fuel in California. The results and conclusions in the
report will provide an excellent basis for our fuels planning
and future action. We expect this report to receive wide
circulation and to serve as a reference document on methanol
for many years to come.

We fully support the conclusion that methanol's
contr''bution to the future California energy mix will be
very limited. Methanol is not cost competitive with oil,
natural gas and other fuel alternatives as a power plant
boiler fuel. However, methanol may prove viable for specific
electric utility applications, given more testing and perhaps
special incentives.	 s

Although this was a very difficult study, considering
the diverse sponsor interests, we commend Jet Propulsion
Laboratory and the California Institute of Technology for their
efforts in carrying out a comprehensive independent assessment.
PGandE is ol:eased to have been involved in this imnortant
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SRI^
March 22, 1983

Richard P. O'Toole,	 Leader
California Methanol Assessment
Jet Propulsion Laboratory r
4800 Oak Grove Dive
Pasadena, CA	 91109

Dear Rich: i

I think that you and your team have done a good job on a study that included
the very difficult tasks of synthesizing trends and conclusions from limited

j	 and sometimes conflicting data and predicting the future. 	 Since the validity
`	 of your conclusions and the :advisability of your recommendations depend on -..

N

your view of the future, it is unlikely that anyone will totally_ agree with
you (or anyone else) on the future of methanol in California.

Of particular interest to me is the work you have done on methanol
utilization.	 I believe that there is greater uncertainty on the efficiency
potential of liquid methanol,	 vaporized methanol and,	 in particular,
dissociated methanol than does the JPL team.	 There has not been very much
research done on optimization of engines (e.g.,	 combustion chamber geometry,
port design, ignition system, etc.) 	 for these fuels, so their potential is
less well understood than the venerable gasoline engine.

The nature of the fuel economy comparisons also has a fundamental effect on
the results.	 An equal performance methanol vehicle should have a larger fuel
economy advantage over its gasoline counterpart than a higher performance
methanol vehicle (e.g.,	 matching the gasoline vehicle 's engine size and
gearing).	 It is possible to trade performance for fuel economy (operating
cost).

Fuels with extended lean-burn capabilities show their greatest fuel economy
improvement at light load since they permit a reduction in engine throttling.
High ,performance vehicles generally require more engine thrott ling to obtain
the same power as lower performance vehicles.	 Therefore, high performance
methanol, and especially dissociated methanol, vehicles would be expected to
show a larger fuel economy improvement over gasoline than would lower

` performance vehicles. High performance vehicles might be a good early market
r opportunity for the methanol vehicle manufacturer. 	 This consideration has the

potential for hastening the onset of a transition. l_

B-11
A Division of Midwest Research institute
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Since your study depends on such vagaries as future world economic and
political events, as well as technological developments I caution the readers
of this final report to remember the context in which the study was conducted
and not to draw universal and permanent conclusions from it.

Sincerely,	
ORIGINAL' PAGE 1$
OF POOR 01!ALMY

Joseph G. Finegold, Manager
Fuel Utilization and Systems Engineering

I:

i"
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Southern California Edison Company
P. O .BOX BOO

2244 WALNUT GROVE AVENUE

ROSEMEAD, CALIFORNIA 51770
CHARLES B. MC CARTHY	 9	 TELEPHONE

MAH .)GCR OF FUEL, SUPPLY	 March 17., 1983	 (213) 372.2974

TELEX: 074391

CABLE, 674391

Dr. Richard. P. O'Toole	 ORIGINAL PAGC t$
Jet Propulsion Laboratory	 OF POOR QUALnY
4800 Oak Grove Drive
Mail Stop 506-316
Pasadena, CA 91109

Dear Dr. O'Toole

Subject; California Methanol Assessment

We have appreciated the opportunity to work with JPL and
the other study sponsors during the course of the subject study
and to review the final report of the California Methanol Assess-
ment. The comments in this letter are ther- esult ofaretrie' w
which was concentrated primarily on stationary applications' findings
and conclusions.

In our opinion the report presents a comprehensive analysis
of the background, the projections for methanol production, costs,
market economics, and use in California. The market and use orien-
tation is e,pecially valuable in highlighting the barriers and
problems in the potential transitional periods. We believe that
the wide ranging interests and technical competence of the Technical
Advisory Group have served well in focusing this study on practical
end-use applications of methanol fuel.

G
The comments on air quality improvement limitations in the

"Findings" section of the Executive Summary appear especially
relevant. This section confirms our opinion that the potential
improvements in air quality resulting from stationary sources
would be small compared to vehicular sources.

We would agree with the Report's finding of the lack of
competitiveness for electric utility use of methanol compared to
pipeline gas in the period to the mid-1990's The point made con-
nnrnina fncriha.nie nffnnta nn mzathannl mrnra»ntinn nnef c in 1-ho Eatranf
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March 17, 1983

We believe, however, that the report has over-emphasized
the utility industry use of methanol in an over-firing mode with
natural gas or oil to reduce NO S . This concept needs a great deal
of testing and cost evaluation in a competitive environment with
other alternatives before its reasonableness can be accepted.
Comments made in the report concerning utility use of methanol. for
environmental reasons must always be weighed in view of the security
of fuel supply sources, reliability of the generating system in
operation, and the reasonableness of the costs. This applies
whether methanol is used in a dual fuel mode, in gas turbines, or
as the single fuel in boilers. The comments made under "Consequences"
in the table on "Barriers and Policy Options" in Chapter 9 when
viewed in this light may not be entirely accurate.

We understand the logic for the recommendation of possible
regulatory encouragement in testing the once-through methanol
synthesis concept, However, we believe the demonstration of this
concept will add very little to the state-of- the-art of producing
methanol or synthesis gas and utilizing them in utility applications.

The consideration of methanol in our fuel planning options
and our test programs remains an active issue at Southern California
Edison. This study will help focus on future work to be done.

Thank you for the opportunity to work with you and your
very professional staff on a comprehensive look at this often
mentioned fuel.

Very truly yours,

GEC : s cc

CC., R. H• Bridenbecker

;r

k
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Petit ve with convent ional fuels. Furthermore, it is not in
girt public, states car , notional interest to discriminate arbi-
trarily and provide incentives for selective alternatives such
W; dnmestic ethanol or rr*thhnol,. In the cast bf e6,rergencyt
reoWocatioll Of total available Pllery supplies would be neces-
^ary on a national basis,	

i

: any reall8ticelly PrOJected substitution of methanol for gaso-
line will gave a rregligibie impict on California air quality, at
least through and well heyond the year 2000. The concept; itsel f
that a rnethmiol fue; is "cleaner" than a hydrocarbon fuel is
debatable since nosy: research has not been done bt equivalent
Perfor-mante levels f6v vehicles fueTR wi tit methanol vs, gaso-
line fuaelod vehicTes * The extent of vehicle emissions. control
has been determiried by set standards and it is to be expected
that 11neat" rap-thartol vehicles would be designed . to tot the sac"
standards as hydrocarbon fueled vehicles,

ei viere are technolo ies being developed which may impact any assess-
rient of al ternate Eels,, including haethanol,, Some en-jino develop-
Events h ve been addressed firs the report but little has been dis-
cussed about new feels and Fsre+esseso especially these aimed to
pr ov i-Ong higher alcohols with .matt:anol /gasoline blends.  Much
i t"is 'Nkv+e been beyond the scope of this particular study Ne
caase of time CDnstraint-s. limited funds,,`and . ncn-cwru±er0a1
a tptc Vas * However, these re prwiising technologies need to be
ct- are;'4,01 a )x;. vi ewed when recomnandationi for any future work are
^r^. n
	 ail ii	 43 RR . fr ld . i

Apin, wr congr4tulat you and your Staff at ;)PL for p±-seating a timelY
and use furl document tKbout methanol fuel utilization,

baf	 nCi i1 nter	 i

for l^`a^tw`rr In^:'^r
Box it 135	 I

Marcus ^4400 s PA 1 Sol6vi

«Fire	 P`s S. Baei':siz
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1.United States Synthetic Fuels Corporation
2121 K E13"1, P(,W, WoohingtoM, 01sviot of 0orumWa 20588 TMph". !2021 8 22-+0W

Match Z4, 198

Mrs . Mchard P ► O'Toole
Jet Propulsion Laborstor.y
California Institute of TedhRolagyr
4000 Oak Or^ove br i ve
Pesadenn b 4alifernia X1109

Door W. G'Toolt

I have guickly reviewed sections of ioO the summary and technical report
that relats pAr' t i cu larly to the informatioh and Im toltests of the U.S.
Synthetic Fuelsor`oot+i<t`tpn. I was leased to observe that so" of the
substantial suggestions offored at t • October 1982 sponsors' TechnicaT
Advisory Group were reflected im than final draft# and recognize the time and
resource limitations that: apparentl y irthib ;ted f^tl ier R respolat to sate of
those sµ	 nvggestiona. The following comments reflect my individuAl view yin tale
report.

k	 Among the any Possible Wttiletic fuel substitutes for petrolsGm products,
methanol posts spacial questians and opportunities of interest to the
$Pthetic Fuels Cor0ratton. on one hand, basic project configurations
suggest that methanol may bs a lower cost, Aoal-based liquid fuel coapared
to gasoline (via the M -gas route) or is iser ar- rop3ah liquids. Moreover.
$ogle potentiall y high-valued uses are apparte *V. on the otrlsrr hond,

k

	

	 large-salt furl uti 1 ilati n of methWl poses now and tfo!lax matket
issues. The dFu Wifornia Ktthanal Assessment is A usefully broad Arid
structured review of many of the production and uti i iW'9ort 4ssuas that
affect prospects for a f'u grl Whon-0 market, I believe the study makes k
useful contribution to t yre msth4nol literature because. it is app

conteXtn many oft thedkey issues. H9wgvtr, tilorsa breadth that ^,%ontrlbutes
f 

to the study ' s usefulness necessarily limits, givers time and rrsvur~ce
constraints ► the depth and definitions of important ascassMAts And	 x
discussions. For sxsrople, the data sources and discussion of both synthetic
fuel prod ,.cotion casts and the role of W Incentives Ar• necessari3Y
limited. Use of the study's information and inter station of results^^rr

should bw appr^opria^t4ly caveated to raflect these limitations.

in this reltrd i I would hope that readers moderate the strength of star
comclusiarrs, both with respect to the definiteness of facts themeaTves as
well as interpretation of 'information. Two examplss seris to i?luatrato my 	 E
toricefna:

$-17
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(1) In d6voloping comparisons of the cost of various s ynthotio fuel
options, the study nscessaril Y UB01 ava ilab l e publi&htd Costs
sstfi,,*tee 0d attempts to normalise estivtes produced at difforrent
tiaras, in Varying levels of detail, and by different sources to a
common comparotivs basis, SVbrr with w#71-developed project
designs, such comparisons r#quire careful enginsoring analysis that
WAS not possible wi thin the scope of this Study. Thus$
ropresentations regarding cwpo ative production costs should be
viewed in the context of the underlying data sourcss and analysis,
and statements such at "methanol is conclusively we competitive
than MTg .. ." (Volurrw 1 ► pages 4 .8) moderstsd to reflect the
depth of analysis a,otuplly performed.

(2.) The discussion of ?overnment production incentives (y olunt+s T,
pages 7-11 to 7-13 illustrates similarly end, 1 believe. 	 f
Ineppr^optiately, oaf inittve interpretation fro#aa limited fact
analysis. ousting this section, ". F 	 further subsidy mAy not be
necessary for M#tfranol to compete in the octane ertWeement market
nationally. Thus# VC could miniatirs ► its contribution to
Moil-to-methanol pro fi^cta by limiting its participation to loan 	 -
duar=antee.: #" The va idity of swa h an assessment depends on tine
validity of the undr, lying production cast and market price
ss$umptions, iI will as i nvestor perceptions of r i sks for these and
4VItar key factors;

Theso towants are not try nt to su^gest that the underlying artalysos and
*IVed relttionsh ps and i7plicat one in these and other areas are
necessarily inatrrtet. Rather, my concern is that same of the conclusions
04wn are ratheit s OMA and definitive, relative to the context of the

f
eYider'rt un^erlyirlg ana ,Vale.

The discussion of the rationale for a government synthetic fu sTs program
}	 emphasizes prkoducton to displace 0 i imports and the ^radua^l eval+^tiorr 0

energy rarketa. In t is contexty the discussion of the oil import prersifirrr
as the major externali Y motivating ovet^nmer.t investmant incentives is
appropriate, howevert then one cons ders tha distinct possibility of vapid,
non-evolutionary char • in the Market price or iatplicit ssctrity cost of
oil, additional benefits **rm pioneering synthstio fuel projects become

ar4ticularly important. FignsorIng projects will pr ovida Information,
evning, and infrastructure development that oars yield tangible benefits i f

it becomes neoossary to aggressively expand s ynthetic furl production.
These benefits from base-building are not closely related to the valu-me of
fuel -produced and romain at -key rationalefor the continuing Energy Security
Act proram and the SFO imp7sontation Strategy. This view of the SFC role
and strategy is not fully reflected in the atudys
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The study is undo►^atandably based on fixed evolutionary aConarioe, HoWev a^,
is the TAG group observsu at the October meeting, iron y of the expectations
regardin methanol market devolopment are dr • iv4n not by time, but rather by
the 140 Of energy prices. Reductions toices could delay the projected
timing for Methanol market development, while incrsases in paces could,
psrh aps suddenly, accelerato the timin g for Methanol market change, Tanis,

ti	 ,the Study ' s stdteMent regarding timing might better be interpreted in the
context of the underlying oil price ocenarivs.

In this regard, the prospect for non-evolutionary chAr.ge in energy price
levels poses key strategic issues for private or ;over nmentCly-assilted
investments directed toward methanol market evolution, Ener 	 price
Increases may be ntided to make methanol compellin Q 1y Ooncmic as a fuel# A
question for national strategic planning is what, if any, in yestments rood
to be made in advance of clear sconomic compoitiveness to allow efficient
and ag ggrressVe ar 17 development if energy price increasss fade methanol
suddenly economic on a large 4c414k. The JPL study develops much useful
i nformation bearing on this qquestion, sv:h as the discussioncf evolution
rates and incremented posts for mrothonol-compatible gasoline stations.
Given the time required to build coal-based methanol production facilities,
marry transition issues mMy be Manageable, while others may not.

Notwi thstsnding my concerns regarding the definitiv#noss. Completensss, and
presentation of some dsto, analysis, and conclusions, t think this study is
a usefully broad and reasonably comprehensive structuring of information and
analysis bearing on prospects for methanol market devolopment in California
and nationwide. it is a significant contribution to the methanol
litereturs,and x have been pleased to have the opportunity to colment
through the TeGhrricail Advisory Group process,

R4spectful ly,

Janes X. Harlan,
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