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ABSTRACT
A spline-based approximation scheme is discussed for optimal control
problems governed by nonlinear nonautonomous delay differential equations.
The approximating framework reduces the original control problem to a
sequence of optimization problems governed by ordinary differential
equations. Convergence proofs, which appeal directly to dissipative-type
estimates for the underlying nonlinear operator, are given and numerical

-

findings are summarized.
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51 Introduction

The focus of our efforts here is to ex;end the results of Banks in
[ 3] to spline-based approximation schemes for control systems governed by non-
1inear nonautonomous functional differential equations (FDE). Our ideas are
similar to [ 371 in spirit in that we approximate infinite-dimensional FDE
systems by finite-dimensional ordinary differential equation (ODE) systems.

(This approach is not new to the treatment aov control problems; a fairly
thorough summary of the literature may be found in [6].)

Our results improve upon the findings of [ 3] (as well as the linear FDE
results in [10], [5], [ 6] and the nonlinear autonomous findings of [21]) in
that we handle very general nonlinear nonautonomous FDE systems that may contain
nonlinear discrete delay terms (i.e., terms involving x(t-r)); in [3], discre@e
delay terms could only appear in the linear autonomous part of the control system.
Additionally, our approximations are based on linear splines which have generally

demonstrated superior performance when compared in [10] and [7 ] to the averaging



approximations treated in [ 3]. Furthermore, we adopt a mora direct theoretical
aporoach than that of [31. In the latter, the nonlinearity is treated as a
perturbation of a linear system (which is formulated as a linear semigroup
problem) and Trotter-Kato convergence results are invoked to demonstrate the
convergence of approximating semigroups. Our ideas are in the ;pirit of [41], (81,
and [ 9] where convergence is demonstrated through a direct application of
dissipative-type éstimates to the underlying nonlinear operators. This
straightforward approach easily accommodates both nonlinear and nonautonomous
systems, differing from such recent studies as the examination of linear non-
autonomous FDE systems in [11] via an evolution operator analogue of the
Trotter-Kato theorem, or the consideration in [19], [20] of nonlinear autonomous
equations using a nonlinear Trotter-Kato fype result.

Disadvantages of our treatment of FDE-governed control problems are that
we require additional smoothness hypotheses on the right-hand side of the.FDE
gnd we must consider a restricted class of controls: Specifically, we will"
1imit our attention to contro}]ers with inertia, or those controls with restrictions
on the rate at which they may be varied. Although such a restriction is not
unreasonable in many applications (see the wind tunnel example in §4; fnformation
on relevant méchanical and economic systems may be found on pages 120-123 of [13])
it represents a limitation not found in the previously_mgntioned papefs.

Qur presentation is as follows: In section 2 we describe an optimal control
problem for nonlinear FDE systems and present an equivalent Hilbert space
formulation based on an . abstract nonlinear evolution equation. Approximating
spline subspaces are construcfed in section 3, where approximate control problems

are defined and convergence results are detailed. Finally, in section 4 we



present numerical findings for several examples where the spline approximations
have been used to esiimate the control and state variables.

Much of the notation is standard and in accordance with popular usage.
Since most functions considered will be R"-valued, we will designate by Hp(a,b)
and Lp(é,b) the corresponding Sobolev and Lebesgue spaces of R'-valued functions
defined on (a,b); similarly, the spac’ Cm([a,b];R") of n-vector valued functions
on [a,b] with m continuous derivatives will be denoted by C"(a,b). For a square-
integrable function s + x(s) ¢ R", the notation x, will designate the Lz(-r,o)
function given by x.(e) = x(t+6), - v < 6 < 0, where r > 0 is fixed throughout.
Finally, we shall not distinguish between the column form of a vector and its
transpose, and the same symbols |«] (and <-,+>) will be used to denote any of
several norms {and inner products) for Rn, LZ’ and Z = R" x>L2 when the meaning

is clear from the context.

52 The Nonlinear FDE Control Problem

In the present section we describe the nonlinear nonautonomous FDE control
problem that is the focus of this paper, and outline the'properties that will be
employed in’subsequent sections. OQur approach in §2.1 is to reformulate the
FDE-governed control problem as an abstract problem on an infinite-dimensional
‘state space. In Theorem 2.3, the result that concludes the section, we guarantee
the existence of a control that minimizes the quadratic cost functional and
generates a solution to the nnnlinear FODE.

The control problem exgmined in this paper will be limited to a class of
problems invelving inertial controllers, i.e., those controls with restrictions
on the rate at which they may be varied. The control problem considered here

{referred to hereafter as P) may be formally stated zs follows:
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Find an optimal control U e U, where U is defined by

U= {ue H ((2,b) s8] [ua)] < K}

(K a fixed constant), that minimizes the quadratic cost

functional J{(u},

J(u) = (x(b) - «(0))Qy{x(b) - «(0))

0
+/ (x,(8) - <(0))Q;(x,(8) - (o))de
-r
b
+ x(t)Qyx(t)dt
a .
b
+ [ {u(t)Ru(t) + G(t)SL(t)}dt.
a

Here («(0),<) is a given "target" in R" x LZ(-P,O), Qi > 0 are nxn matrices
(i=0,1, 2), Rand S are mxm matrices with R > 0 and S > 0, (without loss of
genéra]ity Qi’ R, and S may be assumed to be symmetric), and the pair (x,u)

satisfies the vector nonlinear FDE

x(t) = f(t,x(t),xt,x(t-r1), AN x(t-rv))ﬂ-B(t)u(t), a<tz<hb,
(2.1)
(x(a),x,) = (¢(0),9).

We shall assume that B ¢ H‘((a,b);Rnxm), the initial data (¢(0),¢) is such that

¢ € H](-r,O), and the discrete delays satisfy

0= Pg < Fp < --e < rv = r;

in addition, f satisfies the following standing hypothsses.



senq e = ORIGINAL PAGE IS
b OF POOR QUALITY

(1) The mapping f satisfies a global Lipschitz condition on R" x Lz(-r,o) x R,
That is,-there exists m e LZ((a,b);R), My > 0, such that for alil
(5;9\1”‘”]’-“:‘”\',)’ (55X:Y],~"=yv) € Rn X Lz(‘rao) x ans

: v
(L8 0awps W) = F{G 8000 ys oy M < mledtle-s] + [y=x] + iz1twi'yi!}
for almost all tefa,b]. '

(H2) The function f is differentiable on [a,b]xR" x Ly(-r,0) x R™.

(H3) The mapping (o,y) - ft(o,w(o),w,w(-r]),...; ¢(~Pv)) is continuous
from [a,b] x C(-r,0) to R".

Remark 2.1 It is an immediate consequence of hypotheses (H1) that f

satisfies an affine growth condition; that is, for x given in Lz(a-r,b),
) \
(2.2)  [F(tax(t)xgax(t=ry),eeax(tor )|

< m](t){]x(t)! + ]xtl + ii}lx(t-ri)i} +my(t},

where mz(t) = |f(t,0,...,0)] is in LZ((a,b);R) from {H2). Quite standard arguments
may then be employed to demonstrate that t - f(t,x(t),xt,x(t-r]), . x(t-rv)) is
in L](a,b) and that the mapping depends only on the equivalence class of x. There-
fore, since we shall only consider (2.1) in its equivalent integral form, there

will b2 no difficulty associated with the point evaluations of x appearing in f.

Remark 2.2 Assumption (H3), which is required in the proofs of Lemma 3.2 and

Lemma 3.4, may actually be replaced by a weaker hypothesis:

(H3') For x € E, E bounded in C(a-r,b), the mapping

g+ ft(o,x(o),xo,x(a—r]),..., x(c-rv)) is dominated by a

L2(a,b) function, uniformly in x ¢ E.
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Remark 2.3 It is not difficult to prove that the set U of admissible controls is
convex an& closed in Hl((a,b);Rm). In addition,vwe remark that although u e U has
been defined without constraints on the Lz(a,b) normof its derivative, it is clear
that any optimal control U (J{u)< » ) must satisfy |ﬁ} <o,

Before we consider the problem of locating an optimal control U e U, we
shall first establish the existence, uniqueness, and continuity properties of
solutions to (2.1) for any given u in U. In the theorem that follows we state
these results without proof, since the arguments required involve quite
standard applications of uniform contraction principles ([18], p. 7), hypothesis

(H1), and the growth condition (2.2) (see §1.3 of [14] for details).

Theorem 2.1 There exists a unique {continuous) solution x to (2.1) on the
intervatl [a-r,b] which depends continuously on {¢(0),4,u} ¢ R™ x H‘(-r,O)x H1((a,b);Rm)
in the R" x LZ(-r,O) * Lz((a,b);Rm) topology.

§2.1 An Abstract Reformulation of the Control Problem

We next estaé]ish an equivalence between the nonlinear nonautonomous FDE
(2.1) and an abstract evolution equation (AEE) in an infinite-dimensional state
variable. The abstract framework established in the present section is similar
in spirit to [10] and [ 3] and is well-established in the FDE literature (see,
for example, [ 6] and the references therein).

The state space will be defined to be the infinite-dimensional Hilbert
space Z = R" x L2(—r,0) with norm |-| induced by the inner product
<(g,¥),08,x) > = €6 + fo yx. For (t,g,v) in [a,b] x R" x C{-r,0) we define

-7 } .
Fltsgsw) = F{t,g,p,0(-ry)so.u(-r ) and A(t) : ¥ > Z by

(2.3)  AE)((0),) = (F(t,u(0),4), Dv)

whare W = {(p(0),y) e Z] v e H](-r,O)}, and Dy denotes the LZ(-r,O) function

that is the derivative of y.
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Details of the reformuiation of (2.1) as an equivalent evolution equation
on Z may be found in [ 8], where the same FDE is examined in the context of a
parameter estimation problem (where coefficient paraméters as well as delays
Pysesesl and initial data (¢(0),4) are unknown). The results in section 2 of
[ 8] may be readily extended to the FDE control system under consideration here;
we state those findings inlemma 2.1 and Theorem 2.2. The first of these resuits
describes how to construct an equivalent topology for Z so that the nonlinear
overator A satisfies a dissipative-type inequality. The lemma, a nonlirear
analogue of similar estimates found in [ 6] and [10]}, greatly simplifies our

calculations and is the foundation for our theoretical development without the

use of semigroups.

temma 2.1 Llet y = (&,p) and z = (§,%x) be given im 7 and define a new weighted
: 0
inner product on Z by <y,z>p = g5 + [ y(e)x(e)o(side where p is given on
-7 -
[-+,0] by

. _
L g [-r,-r ;)

(2'4) D(e) = { 2, 9 ¢ ['rv_1"rv_2>

v, 8 e {-r],o].

\

Then <A(t)y - A(t)z,y-z>D f_w(t)]y—zfz for all y,z ¢ W and almost all t e [a,b].

The function w > 0 is in L]((a,b);R) and is given by w(t) = %-m](t) + §-+ %-m?(t).

The equivalence of the FDE (2.1) to an evolution equation in z(t) e Z is:

established in the next result.
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Theorem 2.2  Let y(t;z,u) = (x(t;c,u),xt(c,u)), where x is the solution to
(2.1) corresnonding to ¢ = (4(0),4) e Wand u e H’((a,b);Rm). Then y(z,u) is

the unique solution on [a,b] to

t
(2.5) z2(t) = ¢ + [ {Alo)z(a) + (B(o)u(c),0)}do,
a

for (B(o)u(o),0) ¢ Z. Furthermore, y(t;z,u) ¢ Z is continuous in t ¢ [a,b] and
uniformly countinuous in {z,u} e W x H]((a,b);Rm) (in the Z x L2((a,b);Rm)
topology) uniformly in t e [a,b].

Remark 2.4 Although we have estqb1ished an equivalence between an FDE (in the
finite-dimensional state variable x(t)) and an AEE (in the infinite-dimensional
state variable z(t)), the infinite dimensiorality of the latter is actually
inherited from the FDE in that the LZ(-r,Q) history of x on [t-r,t) is required
before the solution X to the FDE  may be determined at t. Thus any computational
difficulties associated with (2.5) are not due to the approach we have taken hare
but, rather, may be traced to the inherent infinite dimensionality of the under-
lying FDE.

In view of the equivalence established between the FDE and the AEE dynamical
systems, we may now restate the control problem P in this abstract setting. That

is, we wish to find a control U ¢ U that minimizes

(2.6)  J(u) = (mgz(bsu) - «(0))Qy(myz(bsu) - «(0))

0
) (le(b;u) -K)Q](sz(b;u) - x)(9)de
-r
b
+ [ (mez(tu))0,(mpz(t;u))dt
a

b
+ f {u(t)Ru(t) + a(t)su(t)dt,
a
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vhere 1y & Z *‘R" and my : 7+ L2(-r,0) are defined by n0(€,¢) = £ and n](e,w) = ¢,
and z(t;u) satisfies the AEE (2.5). Several pronerties of P important to the

developnent in §3 are summarized in the following theorem.
Ihggﬁgm_g;g. Let uk be given in U, k = 1,2,... . Then
(i) the cost functional J(uk) + o if lﬁkl +
(ii) the functional J is weakly lower semicontinuous on H]((a,b);Rm), and,
(iii) the contral problem P has a solution in U,

Proof: Trivial arguments establish (i). For (ii), we will let (uk} ¢ U be given
such that U, converges weakly to some u in H]((a,b);Rm), and a2stablish that

J{u) < 1im_J(uk). Rellich's Lemma (the injection of n into L,

k>re
is compact; see, for example, [16]) may be employed to obtain strong convergence
of Uy to u in LZ so that we may u-ilize continuity properties of z to claim that

2(tsu,) ~ z(t3u) in Z, uniformly in t (Theorem 2.2). It immediately follows that
(mgz(bsuy) - «(0))Qy(ngz(bsu,) - «(0)) -
(mgzibsu) - «(0))Qy(ngz(bsu) - «(0)) inR,
(ny2(b3u,) - <) (1yz(b30,) = <)
(1yz(bsu) - «)Q(nyz(bsu) - «) in Ly((-r,0):R)
and, for t ¢ [a,bl,

'(HOZ(t;hk))QZ(HOZ(t;uk)) + (mgz{t;u))Qy(nyz(tsu)  in R
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In fact, the last convergence is aominated because we may find ¢ € R such

that

Hngz(tsu 0yt z(tsu )] < c2 1y

due to the fact that (t,v) - noz(t;v) is continuous and hence bounced on the
compact set [a,b] x V, where V = {u b
The remaining terms in J are
b b
S u(t)Ru(t)dt + g u(t)su(t)dt.

a

We note~thét for any positive semidefinite m x m matrix K, the mapping v -+ [v

defined by

I
b

{v{K = [ v(t)Kv(t)dt
a

is continuous with respect to the L, norm and, due to its convexity properties,

it is also weakly lower semicontinuous on L, (Mazur's Theorem; see [15], p. 422;
(2], p. 30). Hence |uylp > |ul, since u > u in L, and lilg < Ljﬁllakis

since GK—A»G in L,. The proof of (i) is complete.

(ii1) Since J{u) > 0, there exists a > 0 such that o = inf J(u) = lim J(uk)
uell k>

for somez sequence {uk} in U. We must have ]ﬁk] 5-K0 for some K0 > 0; otherwise,
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Pty Ay .
there axists a subsequence {u,.} such that &, | + = and ¢ = Tim J(u, ) = =,
k. L k.
J J kj+m h]
contradicting a < J(v) < « for any v ¢ .
Finally, making use of the bounds, ’&kl < Ko and {uk(a)[ < K, we &staclish

1

that {uk} is bounded in H' so that {uk} must have a subsequence Uy, comerging
3

weakly to u in H‘((a.b);Rm). In fact, u is in U since U closed and convex
implies that U is weakiy closed in Hl ([2], p. 30). The observatior that u is
a solution to the control problem P follows immediately from the lower semi-’

continuity of J sinca

a < Huw) < lim Iu, ) = a.

e -

53  Approximate Optimal Control Problems

Qur objective in this section is to construct a sequence of control preblems
PN, each of which depends on a finite-dimensional ordinéry differential equatcion
(ODE), that will serve to approximate P, a computatienally difficult cc trol
problem governed by an FDE (an intinite-dimensional state equation). Conver.tional
optimization techniques may then be applied to PN, applying standard ODF sottware
schemes each time a solution to the state squatir~ is required. Aithough the
~poroximation framework we deveton is based on linear splines, an extzansion of
thase ideas to arbitrary ovder splines is easily accomplished by adding addiZicnal
smoothness hypotheses on f énd making minor modifications in the arguments giveﬁ

below (see the theory developed in [10] an which all of our work here is based).
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For N = 1,2,..., we shali define the linear spline subspace ZN of Z by

N

Z° = {(y(0)s¥) € Z| v is a piecewise linear spline with knots

N it .
at tj F - J';:T, ,J : O,}g-.-,N} s

and the orthogonal projection (in the <eam>y topology) of Z onto A along (ZN)l
will be denoted byPN. The nonlinear operator AN(t) LY AR ZN will be defined by

AN(t) = PNA(t)PN for t € [a,b]. We remark here that AN(t) is well-defined since
PNZ CUW, W the domain of A(t); in addition, AN(t) may acutally be viewed as an

operator on ZN Jecause PNzN = zN for any zN & ZN. We may now define "approximating"

equations on ZN, N=1,2,..., by

) t
(3.1) M) =P+ [ M) o) + PN(Blo)ule) 0)1do, a <t < b,
a

each of which may be replaced by an eguivalent ODE on ZN,

Mgy = aV(e) M) + M Be)u(e),0), a<t<b
(3.2)
Ma) = o,

Since Z" is finite-dimensional (each element of ZN is comp]ete?y determined
by its value at N+1 knots). Corresponding to the new state spaces ZN and
"approximating" equations on ZN, we may define an "approximate" control problem

for each value of N. We shall let PN

denote the problem of finding U ¢ U that
minimizes JN(u) over all u e U, where the "approximate" cost functional JN is

defined in a natural way from the form of J in (2.6): Let
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JN(U) = (Hsz(b;u) - KN(O))QO(HOZN(b;u) - KM(O))

[

0 -
+f (H]ZN(b;u) - e (nlzN(b;U) - «M)(e)de
-r :

by . |
+ [ (mgz (3u))Q,(ng2" (t5u) et
a .

b
+ [ {u(t)Ru(t)dt + G(t)Su(t))dt,
‘a

where (KN(O), KN) = PN(K(O), k) € ZN and t zN(t;u) denotes the solution to

(3.2) corresponding to u ¢ U. )
At this point it is appropriate to charécterize properties of AN(t), PN,

and solutions to (3.2); it is not surprising that most of these properties are

inherited from their infinite-dimensional counterparts in §2.1 and §2.2.
Lemma 3.1 Let ¥y and z be given in Z. Then
<Aty - ez, vz < () ly-21

for every N and almost every t ¢ [a,b]. Here w is defined as in Lemma 2.1 by

w(t) =3 m (1) + 3+ 3 nd(1).

Proof: The result follows immediately from the same dissipative-type estimate

on A(t), because
Aty - At)z, y-2>,

= Pae)elly - Mace)plz, vz,

A(t)eNy - ae)eNz, oYy - p”z>p

T

w(t) | Py - PNZ{§

1A

fA

w(t) | y-zls
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for almost all t ¢ [a,b]. _
| Il
Theorem 3.1 Let ¢ = (¢(0),¢) ¢ Wand u e U be given. Then there exists a

unique-solution t+zN(t;c,u) € N to (3.2) continuous on [a,b] with the property

that the map

{z,u} » zN(t;z;,u)

is uniformly continuous (in the Z x Lz((a,b);Rm) topology) uniformly in N and t.

The proof of this resu]t'may be found in [ 8] in the context of a parameter
estimation problem and will not be detailed hure; the idea is to use a Galerkin-
type procedure to rewrite (3.2) as an ODE in spline basis coefficients of zN(t),
so that we obtain existence, unigueness, and continuous dependence of solutions
through an application of conventional ODE theory. For future reference, we
briefly describe the linear spline basis elements and the ODE in the basis
coefficijents, although we refer the reader to [ 8] for the details of this con-

struction (which is in the spirit of [10]). In the case of the scalar equation

N 1

(where 7" CR

x Lz((-r,o);R])). linear spline basis elements are given by
N _
e, =

N Ny
Voy,eYy, 3 =0,1,....0
5 = (e5(0).e5), d

where e? is the piecewise linear spline in ZN characterized by“eg(t?) = §.., 6.

ij* ij

the Kronecker delta symbol. Then any function zN with zN(t)_e ZN can be written

zN(t) = 'go w?(t);?; where w?(t) € R]; extending to N c R" x Lz(—r,O), we have
J= .

-zN{t) = 'go w?(t)ég where now w?(t) e R, 1In either case, the ODE in the

n(N+])~chtof wN(t) = co](wg(t),...,wm(t)) of basis coefficients becomes
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Ny = @ Were Mgy & M NNy
ARG G0N Hod 1 dodien),

N
o Lolloelie ) + sue)0,... 00T

| 1w
{3.3) ¢ 3=0

+ (QN)-1H¥2WN(t)’ a-< t < b

< w'a) = M
N NN N NN e
where 77 = col(zg.,275...,5,) is defined by PPz = § ¢le.. The n(N+1)-square
0’1 N : 20 373 ,

0
matrices QN and H?z are given by QN_= BN(O)TsN(O) + f BN(e)TBN(B)p(e)de, with
-r

SN = (eg,.... eg) ®@ I, I represents the nxn identity matrix,-@ denotes. the.

Kronecker product, and

<ég,eg> .. <ém,eg>
H{-\:n = : . @ I’
N N N

<eO’eN> N <ég’eN>

where here <«,+> denotes the p-weighted LZ((-r,o);R]) inner product. For

M=2,3,..., both QN and H?Z have simple three-band matrix forms, exhibited

here for the special case of v = 1 (so p{8) = 1):
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N, 1
r*3 % 0\ 0
1 2 1
6 3 6
N_r
Q" = § 0 0 ®1,
1Nz '\
6 3 6
1 1
. 0 0§ 3
1 1
7 7 O
1 1
7 o0 -7
H’;‘2~ 0 0 ® 1
1 1
7 0 -3
1 1
0 0 7z -z

Finally, we need only make minor modifications in the proof of Theorem 2.3

to establish that PN enjoys many of the same properties ds P:
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Theorem 3.2 Let uk be given in U, k = 1,2,... . Then
(1) the N cost functional aM(u,) » = if [i | » =,
(ii) the functional JN is weakly lower semicontinuous on H]'(a,b);Rm), and,
{
N

(iii) P has a solution in U.

53.1 Conavergence of State Variahle Approximations

From our findings in the preceding sections we are guaranteed the existence

of a sequence of optimal pairs {(Ebt zNﬁTN))} where each'&'N

N 1 N

is a solution to
P”_and z )} is the optimal solution to (3.2) corresponding to'UN. We have
yet to establish that the sequence of pairs converges in any meaningful sense
to (U,2{(0)) where T is an optimal control for the original control problem P
and z(u) is the corresponding solution to the original AEE (2.5). Fundamental
tn this endeavor is the requirement that the'approximate state variables

zN(t;u) converge to z(t;u) uniformly in u e U}, where u‘

is a suitably restricted
subsaet of U. To motivate the definition of u], we remarl: that one of our

nbjectives is to demonstrate the convergence of JN(U$U to J(u), so that an
- anoroximate cost may be comouted for M sufficiently large (it is actually J@M
that is important in practice but it too 1s approximated by JN(ITN) ).. To this

N is a solution to PN

end, any szquence of controls ﬁTN} s whera ﬁf , must be
charactarized by the property that {&pH.§ M, for some M > 0, or we will obtain
JN(EPU-+ ® as !ﬁ¢‘1+ =, It is not unreasonable then to want to prove state
variable convergence uniform in u e Uz ueu la] < M}.

In what follows we will establish that solutions zN(;,g) to

. |
(3.8)  2(t) = PN+ £ (o) 2N(o) + PNgla),0) 1de,
a
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N=1,2,..., converge to z(z,g) the solution to
¢ .

(3.5) z(t) = ¢ + [ {A(o)z(o) + (g(0),0)}do
a _

uniformly in geh={ge H1(a,b) ~]g(a)l E_K], lg] < Ko} for all t e [a,b]
and ¢ ¢ W. {(There will be no difficulties encountered in replacing g{t) by
B(t)u(t) when we return to the contro1'prob1em formulation.) Our approach will
be in the spirit of [ 8] where convergence is first uemonstrated for {z,g} in
a smooth subset of W x A, ,

Define S = {{¥(0),y) e Z|v ¢ H2(-r,0)}. For any constant M > 0 and
z = (¢(0),4) in S, let I{z,M) be given by T(z,M) = {g ¢ Hl(a,b) [gl < Mand
g(a) = $(0) - F(a,$(0),¢)}. Convergence of zN(t;c,g) to z(t;z,g) is not difficult
to show if z is chosen from S and ¢ ¢ T (z,M), because z{t;z,g) will be sufficiently
smooth to allow use of certain standard spline estimates. These remarks are

summarized in the two rather technical results that follme.

Lemma 3.2 (1) For any M > 0, the solutiom t-z(t;z,g) to (3.5) corresponding
toz e Sand g ¢ T(z,M) is such that z{t} ¢ S for all
t ¢ [a,b].

(ii). S is dense in W.

The proof of (i) requires hypotheses (H1) - (H3) and is presented in detail
in Lemma 3.2 of [8] (%he arguments are applicable here because ¢ ¢ S and
g = Tiz,M)  implies that the pair {z,g} ¢ I, where T is defined in [g ] and differs
from 1{z,M) defined here). Part (ii) of the lemma is a standard resul* from the
theory of Sobolev spaces.

If z = (p(0),y) is sufficiently smooth, standard spliie results (see, for

example [27], [28]) may be invoked to characterize the order of convergence of
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¢¥ to ¢ and D(w?) to Dy, where w? is the interpolating linear spline function
‘with knots at t?? for ¥. The conVergence rates outlined in the lemma that

follows are estabiished in [10], [8] and are derived from these sptine esti-

mates and the fact that {PNz - zip < !(¢?(0), ?) - z)p for all N.

Lemma 3.3  lLet z =.(¢(0),v) be given in $, and denote by (wN(O),wN) the

element PNz of ZN. Then the following estimates may be obtained for N sufficiently

larga:
k
N 1,2
(3.8)  1Mzz) <% [Py
0 = 2
| N ko
(3.7) 1oy" - Dy < (0 |
N /K '"%'"2 2
(3.8)  Ju'(e) - ule)] 14\?*' = ) 0%, r <o <o,
I

where k] and k2 are positive constants independent of H.

We now consider the problem of demonstrating the convergence of zN(t;c,g)
tn z(t3z,9) uniformly in ge A. To this end, we establish preliminary estimates

that facilitate the uniform convergence proofs.

Lemma 3.4 Let M > 0 and ¢ = (6(0),4) ¢ S be given, and let t + z{t;g) =
(x(t3q), xt(g)) denote the solution to (3.5) corresponding to r and g ;_I(C,M),

t ¢ [a,b]l. Then

(i) the mapping

(£.9) = A()2(t39) = (F(t.x(t30),x,(9)).Dx,(0))

is continuous from Rx Léa,b) to Z, and,
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(i1) there exists a constant k = k(z,M) > 0 such that
[0%x,(9)| < &

for all g ¢ I(z,M) and almost all t e [a,b].

Proof: To establish (i), we demonstrate first the uniform continuity of the

map

(3.9) (t.g) » F(t,x(t39),x.(9))

from R x Lz(a,b) to Z for (t,g) e [a,b] x T(z,M) (here T(z,M) denotes the
closure of I{z,M) in the L, topology). Since I(z,M) is bounded in Hl(a,b),
{and thus the set is precompact in Lz(a,b)), the continuity of z in t and g

established in Theorem 2.2 guarantees that
{(t, x(t39) :x(g)sx(t-ry39) 5. .. ox(tr 59)) | tela,blge I(c,M)‘}

is compact in R x Z x R Hypothesis (H2) may be invoked to complete the
arguments needed to obtain uniform continuity of the function given in (3.9).
To complete the arguments for (i), let € > 0 be given and let g, g’ be

chosen in I(z,M) such that |g-g'| <6, & = 6(e). It follows that
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t(F(t,x(t;g).xt(gn,vxt@))» - (Fltax(tso) a0, xy(e) 12
< IF(E.x(£59),%,(0)) - Flt.x(t.g'),x (g")) |2

0 -« 13 2
+v [ [x(t+e;g) - x(t+e;g*)|“de
-r ]
< IF(Ex(£39) () - F(Eax(tig")xy(9)) ]2

0 . ® 2
+v [ 14(e) - $(e)|5de
: -r

b

+2v [ [Flo,x(osa)sx (9)) - Flosx(aig)x (")) [%do
) |

b 2
+2v [ glo) - g'(c)| das
a

uniformly in t and g, where we have used the continuity of (t;g)¥+F(t,x(t;g),xt(g))

Just established. These estimates verify the uniform continuity of the map
g+ A{t)z(t;g),

uniform in t. Finally, the continuity of A(t)z(t,g) in the pair (t,g) follows
from an application of the triangle inequality: For (t,g) and (t',9') in
[aab] X I(C,M),
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7 [A(t)z(t;g) - A(t‘)Z(t';g‘)!f
< 2IA®a(tsa) - A(t')z(t?;g)lf
+ 2lAe )2t 50) - AE)z(t 50" )2
< 2]F(Ex(39) %, (9)) - F(E",x(t39).x, (9))]2

0
+2v [ |k(t+e:9) - X(t'+030)|%do
-r

+ 2JA(t")z(t';9) - A(t‘)Z(t';g')ls )

whers the first and third terms may be made arbitrarily small us‘ng the previous
arquments. 1In addition, the middle term is small for [t-t'| small since
Lemma 3.2(1) may be used to demonstrate that X is uniformly contiruous in

t ¢ [a-r,b]. The desired continuity of
(t,g) - A(t)z(t;9)

+han obtains.

(i) Let M be fixed and consider lszt(g)l for all g € I(g,M). The
differentiability of f (assumed in (H2)) yields

X(t) = fg(t,x(t),xt,,..) + fg(t,x(t),xt,...}i(t)

+ fw[t,x(t),xﬁ,...; xt]

+
.i

e~ &

. Vo .
: fyi(t,x(u),xt,...,x(t ri) + g(t)
for t ¢ (a,b), where f6 denntes the Frechet derivative of f(o,g,w,y],...,yv)

with respect to 8, 8 = 6,£,9,¥7,.--,¥ . The global Lipschitz property for f

"3
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ensures that these derivatives (excluding fc) are bounded, so that, for almost

all t ¢ (a,b),
1%€(t,x(t),xt,...)>‘<(t)l < m(t)x(t)]
I’w[t,x(t),xt,...; it]| 5_m](t)]itl;
vwa obtain similar estimates for fyi. Thus,
(3.10)  [K(t:9)] < IF (tx(8)oxsnn )]+ my () e /2 4 w)L + [3(0)]

almost evarywhere on [a,b] for L = sup {|x(t;g)]; te [a-r,b], g e T{g,M)}.
That L is finite is easily obtained from the fact that x = ée H] on [a-r,a] and,

for £ ¢ (a,b],

[x(t33)] < [F(t.x(tg)x (a))] + Jg(t)],

where the first term is bounded (uniform in t and g) from arguments developed in

the proof of (i), and

b
lg(a)| + [ lg(e)|de
d

lg(t)]

fA

16(0)| + |F(a,8(0),8)] + (b-a)'/2u.

1A

Therefore, from (3.10),

b
[Pxg(9)12 < [ 1K(039) | do
a-r

O 2 b 1/2 C a2
< f-lele)|%de + [ [1f_ (o.x(e39), x,(9)s...)] + myle)(T+r " %+v)L + [g(s)|]de
-T a

<k2
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for all t e [a,b] and g e I(z,M), where k = k(g,M) is finite since |G| < M and
(using (H3)) the map (6,y) + fq(e,w(o),w,w(-r]),..., w(-rv)) is bounded (continuous) .
over all (e,p) in the compact set {(t,xt(g))l te [a,b],9 ¢ T{Z.M)}.

' ||
Lemma 3.5 Let z = (¢(0),4) be given in S, and let zN and z denote the solutions

to (3.4) and (3.5) respectively, corresponding to z and g ¢ A. Then, for any
M> 0.

zN(t;c,g) > z(tsz,9) as N+
uniformly in g e 1(z,M) and t ¢ [a,b].

Proof. let AN(t) = zN(t) - z(t); Then
t .
aVe) = P - o+ AN 0)2 () - AGe)2(e) + PM(a(0).0) - (a(0),0)1do.
a ’ , -

We apply a commenly used result from analysis: If X is a Hilbert space and if

t
x: [a,b] » X is given by x(t) = x(a) + f v(o)da, then |x(t)]|% = |x(a)|?
a

t B
+ 2 [ <x(o),v{c)>do (this is actually a restatement of the well-known result

a
[12, p. 100] that é%»%‘{x(t)iz = <x(t),x(t)>). It follows that
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. - .t
la"(t)tj = | - nclf + 2§ <o) N0y - A“ca-)zm,a"(o»pda
a ,

.2 It AN S e N, . ’
<A (c)z{c) - A{c)z{a),a (c)>pdc
a .

oo N
+2 f <(P" - 1)(g(a},0),a (o)>pdu
a

{A

: t
1" = Dl + 2 fute)|aY0) |2 do
Qa

t N N
+2 [ |AY(o)z(o) - Alo)z(o)| I (c)fpda
a

2]

t N : N
+2 f (P - I)(Q(U),O)lp la (a)lpda
a

fA

.. .
1% - D2i? + [ 1AY)20) - Ale)2(o) |20
0 ¢ .

b b ' .
¢ L1 - 1(g(0),0) do + § 20w(0)+1) [aM0) | 2o,
a a . .

using 2ab < az + b2 and the dissipative result for AN. An application of the

Gronwall inequality establishes
Nyoyi2 ‘ b :
187} < [eg(N) + ep(N) + e3(N)] exp f 2(w(o)+1)de,
4 ) a

where
e = 1" - nel?
| b N 2
eZ(N) = { |A(co)z(0) - A(o)z(c)lpdc,
a
and

b on 2
ea(N) = [ [(P7 - I)(Q(c),O)Ipdo.
a
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To demonstrate the desired convergence of zN(t) to z(t) it suffices to show

that Ei(N) + 0 as N+ =, uniformly in g ¢ I(z,M); that the convergence is uniform

in t is readily seen.

From Theorem 4.1 of [10] we obtain the strong convergence of PN oto 1

over Z. It is c¢clear then that el(N) - 9 and tha the integrand in 33(N) also

converges to zero uniformly in g ¢ I(z,M). Uniform domination is established

by calculating that

1" - D(90),0)12 < 3i(5(),0) (2 = 41g(a) |2

g . 2
< 4(lg(a)| + [ |g(e)|de)
AR

< 4(15(0)] + {F(a,0(0),0)] * (b-a)/2m? |

50 that we may claim, using a uniform Dominated Converyence Theorem (see p. 241
of [17]) that, for each M > 0, eg(N) +0 as N+ o, uniformly in g e I(z,M).
Finally, to demonstrate the convergence of &Z(N) to zero. we let (yﬁ(f &) ¢ M

represent PNz(c) = PN(xc(O),xc) and observe that

1e)2(0) - Ae)2(o)|2

P (o) (YR0)u) Ao (x (00 ) (2

"

P(Flolo) oo )< (Flawx (00.x 00x )12

3 2
< 21P" (v (0,4 - Floux (00 )ooy - ox )12

+ Z[PN(F(g,xG((‘,xO),Dxc) - (F(c,xc(o),qu,ﬂxg>l§

4

< o) + Th(a) + Thia),
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where N _
o) = 2[F(o,yN0),Y) - Flawx_(0),x )17,
Th(o) = 2v[0y" - ox |7,

and ‘
o) = z;pN(F(c,xo(O),xo),vxg) - (Floux 01,200 )12 .

To complete the proof we demonstrate the dominated convergence of T?(o) -+ 0
uniformly in g e I(z,M), frequently applying the spline estimates given in Lemma 3.3
(which are valid because ¢ « § and g ¢ I{g,M) implies that z(s) ¢ S for all

o ¢ [a,b]). From (H1) and (3.8) we abtain, for N sufficiently large,

v
_T?(o) < 2m$(o){[y2(0) - xc(Q)l +“y§ - xcl +_1Z]|y§(-ri) - xc(fri)I}Z
1/2
k r %k, \ 2 )
3 2”‘%(0)(?’*"]/2%)2(;1—]2* +,°‘N—";) szqlz

whera l”zxolz < k2 (a.e. in g) for all g e T{g,i) from Lemma 3.4. The spline

estimat? in (3.7) establishes that, for N sufficiently large,

2uk’ 2vk 2Kk
Me v 2 2,42 2
Tz(o) _f_—(\?— [0 Xcl T s

so that w2 have, for almost all o ¢ [a,bh], T?(c) +~ 0 and Tg(c) + 0 uniformly in

g ¢ I(5,4); in addition,
T?(o) §_2m$(c)(1 w2 v)z(k] + P]/Zkz)zkz,

?
o) < 2ukjk?

" 50 that each is dominated uniformlyv in g by an integrable function. Finally,



. ORIGINAL PAGE 13
2 % oF POOR QUALITY

Tg(a) +0 as N> = for every g ¢ [a,b] from the strong convergence of PN to I
on Z. In fact, the convergeice is uniform on V © Z, where

V= {(F(a,x(c;g),xc(g)),on(g)>{ o ¢ [a,b], g e T(z,M)} is compact from

Lemma 3.4(i). Uniform dominated convergence folicws similarly since

1506 = 8 I(Flo,x(o3),x,(6)),9%,(9)) 12

<8 sup Iv]2 <,
veV e

Il

Theorem 3.3 Let ¢ = (4(0),s) be fixed in W. Then

i PO .

z (t;z,9) » z(t;z,9)
as N - « uniformly in g ¢ A and t ¢ [a,b].
Proof: let ¢ » 0 be given. From the uniform continuity of the maps‘

(z,9) + 2(t35,9)

Neo.

(z.9) + z(t5z,9),
(uniform in t and N), & > O may be determined so that

IZ(t;C,g) - Z(t;CO’go)’p < ef3

]zN(t;C:g) = ZN(t;Cong)lp < 2/3

for all t ¢ [a,b) and N = 1,2,..., whenever |¢ - col <68, |g -~ 90} < §. Since

S is dense in W we may select ¢, = (¢O(O),¢O) e S that satisfies this condition.
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In addition, it is a straightforward Eut tedious exercise to compute MO (which
depends on e, &y, and ST Kz from the definition of A) such that, for any g ¢ A
we may construct gg e I(co,MO) that satisfies ]gagD} < §. For example, for a given

g, one mightllook for a function 9 of the form

gola) = 39(0) - Flarsg(0)aty)
(x) - gyla)
gyla) + [ 0" J(s-a), aco <,
gole) =

g(e), . T<0<b;

if MO is chosen carefully (see pp. 76-78 of [14] for details) then it is not
difficult to show that léol < Mg and [g-g4| < & so long as t is positioned

appropriately in [a,b]. Therefore it follows from Lemma 3.5 that there exists

N0 > 0 such that

12N(tsz,9) - z(t;;,g)lp

| oSNy, '
[2°(tsz,9) - 2 (t,co,go)lp

[ ES

+

IZN(t;;O,go) - 2(t5zg,90) 1

-+

Iz(t;Coago) - Z(t;C:g)lp < €

for N Z-No' The convergence in the middle term is uniform in 9% I(cO,MO), 50
the choice of NO depends on I(CO,MO), i.e., ong (through CO), e and A, It

follows immediately that
Neooo .
z (tig,9) » z(t;z,9) as N+ =

Uniform]y inge Aand t e [a,b].
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§3.2 Convergence of Optimal Controls

In §3 we established the existence o? an optimai~control'ﬁn for each
approximate control problem PN, and a solution zN(t{UN) = (xN(t{UN),xg(ﬁN)) to
(3.2) associated with’EN. Our final result indicates when the approximate

probliem PN may be used to compute numerical solutions for the original control

problem P.

Theorem 3.4 Let fﬁN} denote a sequence of controls in U where‘GN is optimal
for the approximating control problem PN. Then there is a control Eﬁe U and
a subsequence {u Ky of (a3 such that
N
(1) UK~ inH'((a,b):RM),
N
(11) T KT dn Ly((a,b):RM,

Nk N‘

(ii1) x “(t;u *) + x(t;u) wuniformly in t ¢ [a,b], where x

N

“(£) = mpz *(1)

and x(t) = noz(t) are the first components of the solutions to (3.2)
and (2.5), respectively,

N N
(iv) J K@% » 3@, and

(v) U is a solution to the original control problem P.

Proof: We first remark that, for any v e U, JN(V) + J{v)}; this is trivially
true because PN(K(O),K) -+ {((0),k) in Z and zN(t;v) +z(t,v) in Z, uniformly in
t ¢ [a,b], from Theorem 3.3,

The sequence (EN} must have the property that [UNI < M, for some M > 0,
N N
or there would exist a subsequence f{u k} such that |u k} + =, and thus
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. Nk _Nk | |
J *(u ") + =, which contradicts the inequality

N, N N
J k(ﬁ k) <d k(v) +dv) <=

for any v e U. This result and the definition of U establish that {EN} is

bounded in H1((agb);Rm). We may therefore extract a weakly convergent sub-

N N f
sequence {u k} such thatd & = T in H], for some U ¢ U, proving (i). The proof

of (ii) is an application of Rellich's Lemma. To demonstrate the convergence

needed in (iii), we employ Theorems 2.2 and 3.3 to observe that

N N N N
|x k(t;’ﬂ Ky - x(tsu)! < |z K(tsu k) - z(t;—u_)[p

N N _N _N -
< |z k(t;u k) - Z(tsu k)lp + |z(tsu k) --_;(t;u)lp + 0

as Nke-w uniformly in t ¢ [a,b], where convergence in the first term is uniform

;Nk me .
inu < since Bu "¢ {g=Bv]|v e U, |v] < M} cA.

Finally, the weak lower semicnntiyuity of J and the convergence of
N N, - N _ ;
z k(t{ﬁ k) to z{t;u k) uniform in {u k}lnay be used to demonstrate
- ' —-Nk
J(u) < lim J(u ™)
Nk+oo
N, N
Lim 3 K@ ¥
N,+o

k

§®

N
T J K@ 9
Nk-+ca

I A

Tim 3 X
Nk+_oo

A

= J(v)
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for any v € U. Thus, the control uc U must be optimal for the original control
problem P. Repeating the same arguments with u in place of v we also find
_ N, M
W) = Vim J KT K.
Ny e
Il

§4 Numerical Results

In the final section we present our numerical findings for a number of
inertial control problems governed by fTuncticnal differential equations. To
illustrate the method developed in previous sections we chose examples that were
representative of problems found frequently in applications or that were of special.
interest because of their difficult or commonly occuring nonlinear structure.

In Example 4.1 we consider tae problem of controlling the Mach number in the
test chamber of the liquid nitrogen wind tunnel currently being builé éf NASA
Langley Research Center. Problems with nonlinearities of the form sin(x)  and.
x sin(x) are examined in Examples 4.2 and 4.3, where it 15§ interesting to note
that performance of the spline approximations for each iz excellent in spite of
the fact fhat the second nonlinearity is only locally Lipschitz (and thus the
FDE in question does not satisfy the hypotheses detailed above). In the cantrol
problem presented in Example 4.4, we consider a delay equation with a nonlinearity
of the Michaelis - Menten type; such an equation is commonly used to approximate
velocity of reaction in models involving enzyme-mediated chemical reactions.

The example also serves to illustrate convergence in models with point delays

in the ndni?ﬁear part of the FDE, which would be importamt if one desired to
model the transport (with a time lag r) of substrate/product molecules in and

out of a compartment where enzymatic reaction takes place. Finally, in
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-

Exampie 4.5 we compare the'spline;baséd approximation scheme to the averaging
apnroximation method developed in [3], using an example from that reference.

Although the control problem is not of inertial type, we are able to success-
fully apply our method and demonstrate that the spline approximations exhibit

hetter performance for this example.

In the examples that follow we consider the open loop control problem of

finding E'e:ur; ue H1((O,T);R)! u(0) = 0} that minimizes
N 1 N 9 T n, a2, oo 2.
) ) =M™+ F [ix(8ax(E) + u(BIRa(e) + (50 et

where x satisfies

. n, v " N

x(t) = AOx(t) + A1x(t—r) + F(t,x(t),x(t-r)) + Bu(t), 0 < t < T,
(4.2)

XO = ﬂ)eH}("f‘,O) ’

v 4" Q" Ny QY -
and AO’ A], QO, and,Q] are n x n matrices, R€ R, and B is a« n x 1 matrix. To

simplify our calculations we replace (4.2) by an equivalent delay equation in

tha (n+1)-vector y = (x,u)T,

y(t) = Agy(t) + Ayy(t-r) + F(t,y(t), y(t-r)) + Bu(t), 0<t =T,
[

Yo © (0)

wher2 v(t) = 0(t) is now treated as th2 control function; here the (n+l1)-square

(4.3)

matrices AO and A] are given by

N

n,
Ay 8B
0

o 0
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and

(1)

where © is the zero vector in R". Similarly, the nonlirearity is defined to be

F(tax(t) x(t-1))
F(t’y(t)s‘y(t'r)) =
X 0

The cost functional asscciated with (4.3) may now be written as

' T
(4.4) d(v) = Jz-y(T)QOy(T) + %—é (y(t)Quy(t) + vz(t)}cit

where
N N
Q = .0 = .
T
0 0 0 R

are (n+1)-square matrices. We turn now to the problem of determining a numerical

N h

solution for P°, the Nt approximating control problem for (4.3), (4.4). From

(3.3) and the discussion following Theorem 3.1, the approximate control problem

is that of finding V" that minimizes

. - . T ° .
(4.5) uw=%w&n%%n)+%éw&w%%u>+ﬂunm
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over all v€ L,((0,T):R); here Wg (the 7" basis coefficients for y = (x,u)') is

the first (n+1)-vector component of W = (wg,...,wg)Téi R("+1)(N+!) satisfying

b - ,
AOWé(t) +A wﬁ(t) + F(t,w'é(t) ,wx(t) )+ By(t)

(WMt = (@) @), octer

Qe O

(4.6)

Loy = SN,

'where ;N is defined from the Z' basis coefficients of PN(¢(0),¢), and QN and

H?Z were given in §3.

To obtain an optimal controI'VN (and the associated optimal trajectonyiig)
for PN, vie appiied‘standard computationai routines (such as gradient and con-
jugate gradient schemes; see [23]) to necessarybccnditicns for quadratic control
problems governed by nonlinear GDE's (see [22], for example). All computations
were executed on the CDC 6600 computer at Southern Methodist University, using
a software package developed by Dr. D. Reber in 1977 while he was a student at
Brown University. A full description of the optimization package and convergence
criteria may be found in [3; Section 4]; integration of all ODE's was accomplished
using Gill's modification of a standard fourth-order Runge-Kutta method.

Since analytic solutions for these nonlinear problems are not available,
an independent method of checking the validity of our results is desirable.

To this end we worked directly with the FDE-governed control problem givea by
(4.3) and (4.4), and applied necessary conditicns for optimé1ity of delay

system problems (detailed in Theorem VII.2.31 of [24]). If (y,v) is an extremalv
pair for (4.3), (4.4), the necessary conditions ensure that a multiplier

‘ + - ..
Mty e R" ! exists such that v maximizes
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(8.7 H= =30 £ A AF(E) + AF(Ee) + FET(E), Fler))+ By(e))

(i.e., v = Bx) and » satisfies

A(t) = - (Ag + D,F(ET(),7(t-r)) ()
- (Ay + DgF(tar () F(4)) Ta(ter)
(4.8) +Qult), 0<tc<T,
AMT) = - Qu(T),
A(t) =0, t>T,

8 component, i = 1,2,3.

where D.F denotes the derivative of F with respect-to jts i
Therefore, te solve the original control pfob]em directly, wa must solve a mixed
advanced/delayed two-point boundary value problem [TPBVP) that consists of
equations (4.3) and (4.8). For our purposes this was accomplishediusing,one of
the fourth-order block methods developed by Tavernini [29] for solving FDE's.

We were able to construct an apprcximate numerical solution (y,V) to the original
control problem by fi;st integrating (4.8) backwards to obtain A (using the

spline approximation 3&?2 in place of ¥ in (4.8)); we then used the method in [29]
once again to integrate (4.3) forward in time to obtain y (substituting v = Bi).
One nged then only check to see if A(T) % - Qdy(T) to determine whether the pair
(v,v) provides an adequate standard by which we may compare the spline approx-
imations (ﬁg‘, Vb{). “As will be seen in éxamb1es 4.2>through 4.5, these values

provide a rough, but ‘independent, check on our approximate numerical solutions

(g » V).
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Example 4.1 Our first example is an open loop control problem motivated by
theAneed to requlate the ﬁach number in the test chamber of the 1iquid nitrogen
wind tunnel;(National Transonic Facility - NTF) under construction at NASA
Langley Research Zenter in;Qirginia. The RTF will be able to ggnerété aéjair~'
stream that can reach a maximum of Mach 1.2 in speed, a feat accomplished through
the use of high spee& tfans a..d nitrpgen gas maintained at very low temperatures
and high pressure. The 1iquid nitrogen that is sprayed into the tunnel upstream
of the fan section acts primarily to regulate temperature, while pressure éontro]
is facilitated by veﬁting nitrogen gas to the outside of the tunnel; Mach
number is primarily regulated by fan motor speed, although subtle varijations
in Mach -number are more easily controlled by making changes in inlet guide vanes

in the fan section. These features of the wind tunnel are depicted in Figure 1.

//<77/'in19t'guide vanes

Ld r

fan section

N

nitrogen T . liquid
vent nitrogen
o injection
N/

= tast chamber

. Figure 1
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To control the Mach number, w2 first need an adequate model for fluid flow in
the tunnel and test chamber. Unfortunately, standard Navier-Stokes partial |
differential equations of fluid flow ire extremely difficult to solve compu-
tatioha]]y and thus would be of limited value when used in conjunction with the
design of an optimal controller; a hetter alternative appears to be a Tumped-
parameter delay difrerential equation model [1] in which the delays represent
transport lags of the fluid as it moves from one section of the tunnel to the
other. In [1], a model of the relationship between Mach number and guide vane

angle (GVA) is given by
(4.9) M(t) + M(t) = ko(t-r)

where M(t) represents the perturbation of the Mach numberbfrom a given set point
and o(t) is the perturbation of the GVA from a steady state GVA. For this
example, we will consider the regulation of Mach number from .8 to a set point
of .9, so that the control problem consists of steering M{t) from an initial
value of -.1 to the terminal value 0.0 in an efficient manner. The time delay

r is approximately .3 sec and, with a Mach number set point of .9, the con-

stants k and t are given by -0.0117 deg"]

and 1.964 sec respectively. Change
in GVA is initiated by a guide vane actuator; the dynamics of this process are
approximated in [1] by the following ODE in o and 0ys Where o is the perturbation

of the guide vane actuator from a steady state value:

(4.10) a(t) + 2cob(t) *+ wio(t) = mZGA(t) .

The constants ¢ and w are given by .8 and 6.0 rad/sec., respectively. For

theoretical reasons discussed in [17, it is desirable to let the guide vane
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actuator rate'(éA) be the control variable v(t). Combining equations (4.9) and
(4.10) we obtain a first order linear delay differential eguatior in

x(t) = (M(t),0(t),8(t),0,(t))T, given by

(4.11) i(t) = on(t) + A]x(t—r) + év(t)

where
. 0 0 0
T
0 0 1 0
A =
0 .
0 --wz -2rw w‘
L0 0 0 0
0 k 0 0
T
0 0 0 0
Al =
0 0 0 0
0 0 0 0
and
8 = (0,0,0,1) .

Reasonable initial conditions for x are given by

Xg * (-0.1, 8.547, C.0, 8.547),

and a steady state value of 1.93 is given for both the &VA and the gu ~e vane

actuator. For the Mach number control problem, the cost functional is chosen
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to be

| 12
(4.12) Jw)=%¥um+%é a0t ee) + v3(t)ydt

where v = éAE Lz(f(),lE);R).

Although time-consuming (CPU time = 252 sec), the spline approximation for
N = 6 gives excellent results when compared to the findings in [1], where the
approach was to discretize (4.11) by finite-difference techniques. Graphs of
the spline-based approximation for the optimal trajectories of Mach- number and

GVA may be fou‘nd in Figures 2 and 3, where our findings are conirasted with

those of [1].

Example 4.2 Consider the problem of finding W€ U that minimizes the cost

functicnal
) 2 '
) = 5 x3(2) + & [ W¥(t)at
2 2 )

where U and X = x{u) satisfy

x(t) = %-tz sin x(t) + x(t-1) + u(t), O<t<2,

"

¢(e) =1, -1<0<0.

The results of our computations are summarized in Table 1, where we 'present
approximate cost :]"N , the spline approximations ?N (for the optimal trajectory)
and i (for the optimal control), where N is taken to be 4, 8, 20 and 32.
“True" extremals x and U were generated from the TPBVP described in the intro- '

duction to this section, with
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Results for Example 4.2.

Time i ub 70 w32 u
0.00 . 0.0000 0.0000 0.0000 0.0000 . 0.0000
0.25 -0.6674 -0.6899 -0.6873 -0.6874 -0.6858
0.50 -1.2200 -1.2379 -1.2327 -1.2325 -1.2291
0.75 -1.6463 -1.6611 -1.6551 -1.6550 -1.6494
1.00 -1.9674 -1.9758 -1.9726 -1.9725 -1.9645
1.25 -2.2056 -2.1979 ~2.1995 -2.1997 -2.1891
1.50 -2. 3681 -2.3385  ~2.3462 -2.3462 -2.3332
1.75 -2.4558 -2.4072 -2.4226 -2.4232 -2.4087
2.00 -2.4786 -2.4239 -2.4445 -2.4453 -2.4303
Time o x® x 20 X% %
0.00 1.0000 1.0000 - 1.0000 - 1.0000 - 1.0000
0.25 1.1634 1.1631 1.1633 1.1633 1.1636
0.50 1.1953 1.1855 1.1875 1.1875 1.1889
0.75 1.1314 1.1174 1.1195 1.1194 1.1228
1.00 1.0168 0.9957 0.9981 0.9979 1.0041
1.25 0.8969 0.8717 0.8758 0.8756 0.8862
1.50 0.7926 0.7727 0.7756 0.7754 0.7927
1.75 0.7031 0.6855 0.6880 0.6878 0.7162
2.00 0.6223 0.6097 0.6088 0.6085 0.6564
g 2.4739 2.4505 2.4567 2.4560
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| - 0.6080
A(2) =( )
0.0

— - 0.6564
- Qo.y(z) =< ) 5
0.0

as in the examples to follow, we see that the values of X and U calculated in

this way are rough approximations o true extremals.

Example 4.3 In this examnle, we handle a system conmtaining a nonlinearity

satisfying only a local Lipschitz condition. 1he problem is to minimize

2 ,
J(u) = %—xz(z) + % é x2(t) + ul(t) + &Z(t)}dt

.over .u € U subject to. . ... L L

x
——
ot
—
{]

x{(t-1) + x(t) sin x(t) + u(t) 0<t <2

¢(e) =10, -1<o<0.

The spline approximations (xN,uN), N = 2,4,8,16,32, for (x,u) are given in

Table-Z, with "optimal" values of (X,u) determined from the TPBVP; in this

- 10.3444
0.0

- 10.3457 )

example,

- ..-2):(
Qoy( 0.0
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Resu1ts for Example 4.3
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Time ul at us a6 732 u
0.00 $.0000 0.0000 0.0060 0.0000 0.0000 0.0900
0.25 -0.4320 ~-0.4693 -0,4794 -0.4842 -0.4882 ©-0.4920
0.50 -0.8120 ~0.8646 -0.8714 -0.8776 -0.8832 -0.8875
0.75 -1.1401 ~1.1767 ~-1.1875 -1.1943 -1.2003 -1.2039
1.00 -1.4280 ~1.4319 -1.4421 -1.4490 -1.4549 -1.4550
1.25 -1.6901 -1.6699 -1.6755 -1.6808 -1.6861 ~1.6798
1.50 -1.9371 -1.9166 -1.9118 -1.9136 -1.9177 ~-1.9064
1.75 -2.16148 -2.1571 -2.1431 -2.1409 -2.1452 -2.1334
2.00 -2.2910 -2.2932 -2.2807 -2.2785 -2.2840 -2.2757
Time %2 x4 %8 %18 ¥ 5
0.00 10.0000 10.0000 10.0000  10.0060 10.0000 10.0000
0.25 10.4570 10.4639 10.4631 10.4609 10. 4605 10.4608
0.50 10.5118 10.5018 10,4959 10,4949 10.4941 10.4638
0.75 10.4837 1C. 4585 10,4589 10,4579 10.4569 10.4564
1.00 10.4490 10.4279 10.4204 10.4167 10.4149 10.4140
1.25 10.4201 10.4204 10.4203 10.4224 10.4210 10.4215
1.50 10.3933 10.4095 10.4135 10.4114 10.4103 10.4116
1.75 10.3658 10.3787 10.37656 10.3784 10.3776 10.3793
2.00 10. 3421 10.3428 10.3457 10,3452 10.3444 10.3457
UF' 165.707 165.700 165.702 165.694 165.692
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Example 4.4  We now consider a nonautonomous problem with a Michaelis-Menten
‘type nonlinearity involving the point delay x(t-r). We wish to find UE U

that minimizes

J(u) =-%.x2(2) +'%'é a2(t)dt

where U and X satisfy

ih)=-mh)+ﬁﬁgﬁ+uﬁL 0<t<2,
¢(e) =10, -1<0<0.

In this case, the numerical solution of the TPBVP yields X and u such that

/- 1.0444 -
A(2) =< ' >
0.0

. - 1.0166
- Qoy(z) =< ) ’
’ 0.0

the values of (x,u) as well as the spline approximations th , 341) for

M= 2,4,8,16 and 32 are presented in Table 3.

Examole 4.5 As a final problem we take Example 4.4 from [3] and compare the
averaging approximation method detailed there. to the splime approximation scheme
outlined in this paper. Although the control problem in gquestion is not of in-
artial type (i.e., neither U nor the form of J requires that O be boundéd), we
arz still able to apply our method with success. The problem is to find

usus= LZ((O,Z);R) that minimizes

s
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7Y

N e OO

Time -62 3-8 U"ﬁ '632 m
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.25 -0.1429 -0.1530 -0.1576 -0.1598 -0.1611 -0.1620
0.50 -0.2887 -0.3051 ~0.3091 -0.3118 -0.3137 ~0.3153
0.75 -0.4309 -0.4478  -0.4523  -0.4549 -0.4567  -0.4590
.00 -0.5629 -0.5788 -0.5847 -0.5870  -0.5882 -0.5911
1.25 -0.6782 -0.6966 -0.7027 -0.7044 -0.7050 -0.7084
1.50 -0.7704 -0.7953 -0.8013 -0.8024  -0.8024 ~0.8060
1.75 -0.8324 -0.8641 -0.8713 -0.8722 ~0.8720 ~0.8758
2.00 -0.8573 -0.8901 -0.8987 ~0.9001 -0.8999 -0.9037
Time X2 34 X8 %16 %32 X
0.00 10.0000 10.0000 10.0009 10.0000 10.0000 10.0000
9.25 9.7467 9.7291 9.7207 9.7178 9.7171 9.6915
.50 8.9221 8.8599 . 8.8405 8.8356 8.8340 8.7874
75 7.6345 7.5383 7.5170 7.5108 7.5088  7.4489
.00 6.0770 5.9843 5.9646 5.9587 5.9566 5.8925
.25 4.4723 4.4159 4.4012 4.3967 4.3950 4,3345
.50 3.0157 3.0050 3.0001 2.9984 2.9976 2.9464
75 1.8363 1.8612 1.8671 1.8690 1.8692 1.8297
.00 0.9837 1.0277 1.0407 1.0437 1.0444 1.0166
h 0.6956 0.7548 0.7726 0.7767 0.7777
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o2
3u) = 5 x%(2) + 3 [ () + uP(e)dt
: 0 -
subject to
x(t) = x(t) sin x(t) + x(t-1) + u(t), O0<t <2,
10(e+1), -1 <o < -0.5,
| ¢(e) = u

-100 , -0.5<0<0.

From Tables 5 and 6 of [3] it is evident that the averaging scheme works quite well,
but, as we shall demonstrate, the spline—baséd method exhibits even better per- .
formance for this example. At this point we wish to remark that the "true”
extremals (X,u) used for comparison in [3] wera determined from the TPBYP, where
an incorrect version of Tavernini's block method was used to integrate the
delayed-advanced equations (in fact, the error is a misprint on p. 793 of
Tavernini's original paper [29] where, in the fourth Tine of the calculations
for x3(s), ZFh and 4Fh should be éeparated‘by a minus sign). In this particular
example the errors involved are slight; they are more substantial for Example 4.2
of the sam= referénce. A |

In Table 4, the averaging .apnroximations thg and GXLE are givén for
N = 8 and 32. Similarly, w2 provide results for the spline-based method by .
~summarizing our findings for §g£L" UQLL, N=4, 8, and 32. Both are compared
against “optimal® so]utioné % and U (using the correct version of Tavernini's

method), where, from the TPBYP, it is determined that

A(2) = u(2) = - 0.3230

and

- x(2) = - 0.3053.
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Results for Example 4.5
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~32

-— - —d — —

Time Taye Une Uspy Ugp, Uspy u
0.00  -2.3083 -2.3032 -2.3331 -2.3024 -2.2967 -2.3028
0.25 -2.1804 -2.2706 -2.3707 -2.3230 -2.3101 -2.3164
0.50 -1.9855 -2.1972 -2.2820 -2.3034 -2.3126 | -2.3189
0.75 21,5751 -1.6908 | -1.692] -1.7294 -1.7428 .| -1.7470
1.00 -1.1446 -1.1318 -1.0787 -1.1002 -1.1037 | -1.103
1.25 -0.8173 -0.7697 -0.7160 -0.7427 -0.7497 -0.7483
1.50 -0.5967 -0.5667 -0.5727 -0.5644 -0.5624 -0.5619
1.75 -0.4401 -0.4327 -0.4978 -0.4591 ©  -0.4451 -0.4440 -
2.00 -0.3125 -0.3147 -0.3960 -0.3496 -0.3265 -0.3230
Time *AVE R XspL. XspL Xon X
0.00 0. 0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.25 -0.1062 -0.2056 -0.2457 -0.2414 -0.2445 -0.2473
0.50 0.135] 0.1245 0.1377 0.1123 0.1104 0.1078
0.75 .  0.3456 0.4917 0.5717 0.5895 0.5725 0.5663
1.00  0.4120 0.5550 0.6459 0.6175 0.6267 0.618¢
1.25 0.3805 0.4232 0.3902 0.4099 0.4204 0.4127
1.50 0.3269 0.2966 0.1737 0.2447 0.2582 0.2474
1.75 0.2988 0.2644 0.2079 0.2420 0. 2404 0.2272
2.00 0.3106 0.3115 0.3699 0.3289 0:3230 0.3053
N 2.177 2.401 2.541 2.523 2.523
CP Time

(sec) 31.87 . 72.39 19.98 49.42

125.27
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From Table 4 it is evident that the spline approximation for N = 4 is generally
better than the averaging appfokimation for N = 8, at a considefable savings in
CP time. A similar éomparison may be made between (Eé;i, Eé?L) anﬁ {Ezﬁ%v,
Eﬁg%). One should note however that, for the same value of N, computing
solutions via the averaging method is much less costly than by the.sp1ine-basgd
scheme, although at a loss in accuracy. Analogous statements may be made about
a comparison between the averaging and spline methods for Example 4.3 of (31,

‘ which is identical to this example excebf'that the initial function is the
constant function ¢ = 10. It is clear then that the observations made here
reflect ﬁore than the possfbility tﬁat & nonconstant ¢ is better apprpximated
by splines than by averaging schemes. The two methods nerfdrmed eQuéT1y well

when applied to Example 4.2 of the same reference.

§5 Concluding Remarks

Thz convergence proofs constructed in §3, together with the convergence
results- obtained in practice lead us to conclude that our method is indeed a
reasonable approach to take in the solution of hereditary control problems,
performingvbettérfthan the avekaging approximat{ons of {3]‘iﬁ’some of.thé
examp1esvwe have tried. In addition, the sp]ine-bqsed schemes appear to offer
a somewhat inexpensive alternative to existing numerical algorithms'in that
approximating systems as small as N = 2 or 4 provided satisfactory solutions to
many of the control problems we tested. ' '

In future efforts we hope to investigate the possibility of relaxing some
of - the hypothéses'made in §3 (in particu]ar, the g]obél Lipschitz4¢riterié)
and to make comparfsons between our method and the approach taken in [25], [26],

where a full discretization of the FDE control system is examined.
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