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Abstr.ct 

Pl.... fluid para .. ters calculated fro. .ol.r wind and .. gnetic field data 

obtained on IS!! 3 were studied to determine the characteri.tic properties ~f 

driver gaa following interplanetary shocks. Of S4 shocks observed from Augu.t 

197a to February 1980, 9 contained a well defined driver gas that was clearly 

identifiable by a discontinuous decrease in the average proton teaperature 

across a tangential discontinuity. While helium enhance .. nts were present in 

all 9 of these events, only about half of them contained simultaneous changes 

in the two quantities. Often the HeIH ratio changed over a period ~f minutes. 

Simultaneous with the drop in proton 

temperature decreased abruptly. 

temperature 

In so.. cases 

the helium and electron 

the proton temperature 

depression was accompanied by a moderate increase in magnetic field magnitude 

with an unusually low variance and by an increase in the ratio of parallel to 

perpendicular temperature. The driver gas usually displayed a bi-directional 

flow of suprathermal solar wind electrons at higher energies (>137 eV). 
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1. Introduction 

Interplanetary shocks have been observed throughout that part of the 

heliosphere sampled by space probes during the last decade. These shocks were 

generally formed either by high speed streams which steepen with increasing 

radial distance into forward-reverse shock pairs at their leading edges 

[Hundhausen and Gosling, 1976; Smith and Wolf, 1976], or by transient events at 

the sun which expel coronal material to drive forward shocks [Hundhausen, 

1972]. Shocks produced by transient events in the corona will also fora 

forward-reverse shock pairs but usually outside of I.AU. The characteristics 

of the plasma during this latter type shock have been studied extensively. The 

"driver gas" for these shocks is usually identified by one or sore of the 

following anomalous solar wind conditions: He abundance enhancements [Hirshberg 

et al., 1972; Borrini et al., 1982), proton temperature depres~ions [Gosling et 

al., 1973], electron temperature depression [Montgomery et al., 1974], high 

magnetic field strength [Hirshberg and Colburn, 1969; Schatten and Schatten, 

1972] with low variance [Pudovkin et al., 1979], unusual heavy ion ionization 

states [Bame et ale 1979; Fenimore 1980; Schwenn et al., 1980; Gosling et al., 

1980; Zwickl et al., 1982], and bidirectional streaming of solar wind electrons 

[Montgomery et al., 1974; Temmy and Vaisberg, 1979 Bame et al., 1981] and 

energetic protons [Palmer et al., 1978; Kutchko et al., 1982]. 

The most commonly used characteristics in determining the presence of 

driver gas behind interplanetary shocks are He aoundance enhancements and 

proton temperature depressions. However, these plasma signatures are observed 

after less than half of all shocks [Schwenn et al. 1980; Borrini et al •• 

1982], and when present can show a very complex pattern [Ogilvie and Burlag., 

1974; Bame et al., ~979]. 

·J 
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Pla... fluid paraaeterl calculated from .olar wind data together with 

magnetic field data obtained with instrumentation on ISE! 3 have been stud1ed 

to determine the characteristic properties of driver gas following 

interplanetary shocks. Of 54 shocks observed from August 1978 to February 

1980, 9 contained well defined driver gas that was clearly identifiable by a 

discontinuous decrease in the average proton temperature. This decrease is 

often accompanied by an abrupt change in the magnetic field and other plasma 

parameters which taken together imply the pr~sence of a tangential 

discontinuity at the interface between the shocked plasma and driver gas. In 

this paper the plasfta properties of the driver gas from the 9 events are 

examilled with a view toward characterizing the complexity of the most well 

defined events. 

2. Characteristic Properties of Driver Gas 

The subset of 9 events in this study were selected on the basis of a 

discontinuous decrease in proton temperature. Constraints were ~ot placed on 

any other property of driver gas. Characteristic properties of driver gas 

identified for these 9 events lLa shown in Table 1. The first three properties 

are those most often used to identify the presence of driver gas. Helium 

abtndance increases and Te decreases are present in all but one case, 

indicating both properties are co~mmonly present in driver gas. Bi-directional 

streaming of plasma electrons is often but not always seen (Table 1). The thin 

proton density enhancement, located near the discontinuity separating the 

shocked plasma from the driver, is the least reliable indicator of driver gas 

and is probably not a general feature. The next three quantities in Table 1 

have not been discussed previously and all three (a bulk speed increase, a 

decrease in the RMS deviation of V,and an increase in the parallel to 
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perpendicular proton temperature ratio) are usually present. The last two 

quantities in the table indicate the nature of the magnetic field magnitude 

(increase) at the interfa~e between the shocked and unshocked plasma and RMS 

deviation ,aB, decrease within the main phase of the driver gas. A decrease in 

aB is hard to determine in cases where large ~ariations in B are taking place. 

3. Temporal variability of driver gas 

The time history of several solar wind paraaet.rs together with ~he 

strength of the interplanetary ~gnetic field are shown in Figure 1 for the 

shock occurring on 21 February 1979. The dashed line (-1515 UT) indicates the 

onset of the discontinuous drop in proton temperature and marks the location of 

t~e tangential discontinuity. Simultaneous with this drop in proton 

temperature, the proton density incre~ses, the HelH ratio inc~eases, and the 

electron temperature decreases (not shown). While the magnetic field magnitude 

increases at this time, it is difficult to determin~ if this increase is due to 

the presence of the driver gas or is just another of the many variations in the 

field. 

The plasma flow after for the 21 February shock is a near classical 

example of what the solar wind parameters (Tp ' Te , He/H) should look like in 

the ideal case: all parameters change simultanously at the onset of ·the driver 

gas. However, such events are rare, only 3 of the 9 events show similar 

characteristics. 

In general the HelH abundance I.'atio enhancement can occur at any time 

after the onset of the discontinuous drop in temperatu~e. The most interesting 

example of the HelH abundance variation is found in the 2~ Karch 1979 event 

shown' in Figure 2. Here, the ReIH abundance is enhanced before, depressed 

during, and enhanced after the low temperatlJre region. Several othe.r 



-6-

intereating featurea are also present in Figure 2. The _gnitucle of the 

aagnetic field increases simultaneous with the decrease in proton temperature 

and remains high with a reduced RMS deviation throughout the low temperature 

region. During the same time interval the ratio of the parallel to 

perpendicular proton temperature increased to relatively high levels. Part of 

the increase is due to the difficulty of making accurate measurement of the two 

components at low temperature. 

4. Discussion 

Many of the parameters shown in Table 1 and Figures 1 and 2 have been 

examined previously. The most often studied parameter, the H\.·/H ratio, has 

long been held to be the best indicator of the presence of driver gas behind a 

shock [Hirshberg et al., 1972]. The present study indicates that not only can 

HelH increases [Bame et al., 1979) occur anywhere with respect to the 

boundaries of the low temperature regiolls, they usually have rise and decay 

times on the order of minutes. Such would not te the case if the HelH 

increases were a necessary and sufficient identifier of driver gas. In the 

case of the HelH increase occurring prior to the Tp _ecrease in the 22 March 

1979 event shown in Figure 2, we believe the enhanced He plasma was ejected 

from the corona ahead of the discontinuity, and as such is simply an extended 

signature of the transient disturbance which later produced the shock. 

This study confirms and extends recent work concerning the nature of the 

magnetic field during the passage of driver gas. Borrini et al. (1982), in a 

statistical survey of 103 forward shocks, showed that, on the average, driver 

gas containing enhanced HelH ratios also exhibited increased magnetic field 

strength. Slightly eariier Pudovkin et al. (1979) had indicated that the RMS 

deviation of the magnetic field often decreases during the passage of driver 
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gas. These two characteristics are clearly seen in the 22 March 1979 event 

shown in Figure 2 and their frequency of occurrence in clearly identified 

drivers can be determined from the data in Table 1. 

The signature of the magnetic field parameters in driver ga. suggesu a 

similar examination be made of the bulk flow velocity and its RMS deviation. 

These parameters, shown in Table I, indicate that while the solar wind bulk 

velocity often. increases at the onset of the drivel gas, the RMS deviation, 

averaged over a 10 minute interval, usually decreases. Thus, the plasma data 

and the magnetic field data indicate that cold driYer gas contains very low 

levels of low frequency wave activity. 

A schematic model illustrating a possible geometry for plasma driving an 

interplanetary shock is shown in Figure 3 (based on Figure 10 from Bame et al., 

1979). Many of the characteristic properties of driver gas listed in Table 1 

are illustrated in the figure. Of particular note in Figure 3 is the uneven 

distribution of helium enriched plasma and the smooth closed ~gnetic field 

lines. The geometry of our model differs considerably from that presented by 

iudovkin et ale (1979). Our model suggests that it is possible to observe the 

shock without detecting driver gas, and when driver gas is observed the 'He 

enhancement may oc~ur early or late or the He enhancement may occur in several 

distinct regions. These characteristics, which are observed in the data, are 

not shown in their model [Pudovkin et al., 1979]. 
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table 1 

1811-3 

Characteristic Properties of Driver ea. 

Characteristic Nov 12 Dec 14 Feb 21 Mar 9 Mar 22 Apr 1 Apr 5 Apr 24 May 29 
1978 1978 1979 1979 1979 1979 1979 1979 1979 

1. .Tpdecrease Y Y Y Y Y Y Y Y Y 

2. He/! increase Y Y Y Y Y Y Y Y Y 

3. Te decrease Y Y Y Y Y Y Y Y 

4. Bl-dlrectional Y ? Y Y Y Y Y 
streaming 

5. Density spike ? Y Y Y ? Y 

6. V iilcrease Y Y Y Y Y Y 

7. av decrease Y Y Y Y Y Y Y Y 

8. T./Tl Y Y Y Y Y Y Y 

9. IBI increase Y ? Y Y Y Y Y Y 

10. aB decrease Y ? Y Y Y Y Y 

Y • yes· ? - uncertain - - not present 
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