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NOMENCLATURE

a function of Mg, v, and r in van Driest transformation, equation (4)
CF total skin-friction coefficient of one side of a flat plate

Ce local skin-friction coefficient, 'r/qe

Cp pressure coefficient, (p - p_)/q_

C; skin-friction coefficient computed from transformed velocity profile, u*
c airfoil chord

cq airfoil section drag coefficient

cy ajirfoil section 1lift coefficient

d probe tip height

H boundary-layer shape factor, 6%/6

KG—D Gladstone-Dale constant

k boundary-layer trip roughness height

kcr minimum value of k that will cause transition to occur at the trip
Leff effective optical path length

L characteristic length

M Mach number

p pressure

q dynamic pressure, 1/2 pu?

Re, Reynolds number based on chord

Rel .Reynolds number based on length, 2

r recovery factor

u velocity

u* velocity transformed by van Driest transformation, equation (3)

u, shear velocity, ¢ﬁ;ﬂi;

ut transformed velocity normalized by shear velocity,—»u*/uT

\" empirical wake function, equation (6)

iii



X coordinate measured parallel to free-stream direction

z coordinate normal to airfoil plane
zt law~of-the-wall coordinate, (ZUT)/Vw
%oeom angle of attack measured with respect to the tunnel test-section centerline
Y specific heat ratio
s boundary-layer thickness 5
&* boundary-layer displacement thickness, (1 —-—Eﬁ—) dz
Pele
o
8

Ppu u
9 boundary-layer momentum thickness, ——T;-é.— G_) dz

Pe e €

o

A laser wavelength
v kinematic viscosity
1 wake coefficient for transformed boundary-layer profile, equation (5)
p density
T shear stress
Subscripts:
c based on airfoil chord
e conditions at edge of boundary layer
t stagnation conditions
w conditions at the wall (airfoil surface)
© free-stream conditions
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AN EXPERIMENTAL STUDY OF TRANSONIC FLOW
ABOUT A SUPERCRITICAL AIRFOIL
Frank W. Spaid,* John A Dahlin,+ William D. Bachalo,* and Louis S. Stivers, Jr.

Ames Research Center
SUMMARY

A series of experiments was conducted on flow fields about two airfoil models
whose sections are slight modifications of the original Whitcomb supercritical air-
foil section. Data obtained include surface static-pressure distributions, far-wake
surveys, oil-flow photographs, pitot-pressure surveys in the viscous regions, and
holographic interferograms. These data were obtained for different combinations of
lift coefficient and free-stream Mach number, which included both subcritical cases
and flows with upper-surface shock waves. The availability of both pitot—pressure
data and density data from interferograms allowed determination of flow field proper-
ties in the vicinity of the trailing edge and in the wake, without recourse to any
assumptions about the local static pressure. The data show that significant static-
pressure gradients normal to viscous layers exist in this region, and that they
persist to approximately 10% chord downstream of the trailing edge. Comparisons are
made between measured boundary-layer properties and results from boundary-layer com-
putations that employed measured static-pressure distributions, as well as compari-
sons between data and results of airfoil flow field computations.

INTRODUCTION

An experimental study of the flow about a supercritical airfoil was reported in
references 1-3. That study utiliZed twg models of essentially the original NASA
Whitcomb integral (unslotted) airfoil section and was conducted as a cooperative pro-
gram by McDonnell Douglas Research Laboratories (MDRL), Douglas Aircraft Company
(DAC), and Ames Research Center (ARC). The investigation was intended to provide
detailed flow field survey data that would contribute to a better understanding of
mechanisms associated with transonic drag rise. This report presents results from a
continuation of that cooperative program. A portion of this material is presented in
references 4 and 5.

This investigation was motivated in part by the increased importance of viscous-
inviscid interactions in transonic flows about aft-loaded, supercritical airfoils,
relative to earlier designs having little or no aft camber. The flow field about a
supercritical airfoil operating at its design Mach number and 1lift coefficient is

*Principal Scientist, McDonnell Douglas Research Laboratories, St. Louis,
Missouri.

TSenior Engineer/Scientist, Douglas Aircraft Company, Long Beach, California.
*Senior Scientist, Aerometrics, Inc., Mountain View, California.

Note: This research was supported in part under the McDonnell Douglas Indepen-
dent Research and Development Program.



characterized by regions of strong viscous-inviscid interaction, primarily the inter-
action of the upper-surface boundary layer with a shock wave, and in the trailing-
edge region. These interactions are coupled because the properties of the upper-
surface boundary layer as it approaches the trailing-.edge, and its subsequent
response to the adverse pressure gradient resulting from the pronounced aft camber,
are significantly influenced by its interaction with the shock wave farther upstream.
The aft loading is associated with a large static-pressure difference between the
upper and lower surfaces just upstream of the trailing edge, remnants of which per-
sist into the near wake. The coupling between the external inviscid flow and the
viscous boundary layer and wake complicates the numerical computation of these flow
fields. An inviscid, subcritical computation of the flow about a conventional air-
foil having little aft camber often produces a static-pressure distribution that is a
good approximation to the experimental distribution; as a result, flow field proper-
ties can be predicted adequately by iteration between an inviscid program and a
boundary-layer program in the conventional manner. However, the straightforward
application of this procedure to an aft-loaded airfoil often fails because the initial
inviscid calculation may be so different from the actual flow field that convergence
to a physically realistic solution does not occur.

A variety of techniques, incorporating various levels of empiricism and complex-
ity, have been used to overcome these difficulties. Numerous unpublished empirical
fixes have been used in the computation of transonic flow fields about aft-loaded
airfoils. Two examples are (1) the addition of an estimated displacement-thickness
distribution to the airfoil coordinates before the initial inviscid calculation, which
is later replaced by results of boundary-layer calculations, and (2) the extrapolation
of the calculated boundary-layer displacement thickness distribution near the trailing
edge in a manner that is known to facilitate agreement between the computed and
experimental pressure distributions. A systematic, semiempirical method for treatment
of the trailing-edge region for both supercritical and other types of airfoils was
proposed by Bavitz (ref. 6). Results of a detailed analysis of the trailing-edge
region were incorporated into a procedure for airfoil flow field calculation devel-
oped by Melnik et al. (ref. 7). Analyses of the shock-wave/boundary-layer interaction
region (refs. 8 and 9) have the potential for being incorporated into an airfoil com-—
putation method. Several investigators (refs. 10-12) applied the Reynolds-averaged
Navier-Stokes equations to the computation of airfoil flow fields.

Experimental data are required for the evaluation and further development of
these prediction methods. The present data are intended to support the development
of methods for computation of transonic flow fields about airfoils by allowing more
detailed comparisons with experimental data than are possible when only the usual
surface static-pressure (lift) and far-wake survey (drag) data are obtained. Test
conditions include cases having significant viscous-inviscid interaction effects;
situations dominated by extensive separation were excluded. In some instances, sur-—
face static-pressure and pitot-pressure measurements are combined with density data
obtained from holographic interferograms, resulting in an unusually complete descrip-
tion of the time-mean flow fields.

The primary data and associated data analysis are presented in this report.
Additional reduced data are presented in a separate publication, the Supplement to
NASA TM-81336, which is available upon request. A request form is provided
following the list of references.



APPARATUS AND TEST PROCEDURE

Wind Tunnel

The experiments were conducted in the 2~ by 2-Foot Transonic Wind Tunnel at Ames
Research Center. This tunnel is a variable-speed, continuous-flow, ventilated-wall,
variable-pressure facility, which was reengineered) for occasional two-dimensional
research testing by adding rotating, model-supporting, glass side windows mounted in
unventilated, plane sidewalls. A maximum unit Reynolds number of 26.3x10°/m gener-
ally can be maintained, and a high subsonic Mach number is held to within 0.002.

A spark Schlieren system and an 82-tube drag rake, programmed to provide total-
pressure readings at 1.3 mm intervals and static pressure readings at 25.4 mm inter-
vals across the wake of a model, are available.

Models and Traversing Rig

The test-section arrangement for these experiments is shown in figures 1 and 2.
Airfoil models were mounted between the sidewall windows, and either the traversing
rig or drag rake was mounted on the tunnel sting. Two 15.24-cm chord models of the
airfoil were used during these experiments. One model has a nominally sharp trailing
edge, and the other has a blunt trailing edge equal to 1% chord, formed by downward
rotation of the aft lower-surface contour from 657 chord to the trailing edge. This
method of modifying the geometry to produce the additional trailing-edge thickness
also has the effect of increasing the aft camber slightly. The sharp-trailing-edge
model has an aerodynamically smooth, porous leading-edge segment for dispensing oil
mixed with fluorescent dye, which is used for flow visualization. The centerline
static-pressure-orifice layout is shown in figure 3 for both models; table 1 gives
the airfoil coordinates.

Boundary-layer and near-wake surveys were obtained with the aid of a two-degree-
of-freedom traversing rig and probe assembly which allowed both remote streamwise and
vertical movement of the probe. Continuous potentiometer strips were used to deter-
mine probe position. Calibration of the high-resolution vertical-position output was
checked frequently with a machinist's height gage. Contact with the height gage (and
with the airfoil during the experiments) was determined by an electrical fouling
circuit. Uncertainty in measurement of a 25.4 mm distance with the gage is about
+0.04 mm, resulting in a *0.157% uncertainty in the distance between points in a
survey from this source. The data system resolution was 394 counts/mm. The measure-
ment of distance from a survey point to the airfoil surface was limited in accuracy by
tunnel-induced vibration. It was necessary to locate the airfoil surface with the
probe while the tunnel was running in order to minimize errors caused by aerodynam-
ically induced deflections of the model and the traversing rig. As the probe was
moved toward the airfoil surface, the vertical probe-position readout typically indi-
cated 0.05 mm of travel between the first indication by the fouling circuit and the
point at which continuous contact was established. Calibration of the horizontal-
position readout was performed with a scale, resulting in an accuracy of *0.5 mm.

Probe tips, of the type described in references 1-3, were made from 0.25 mm o.d.
stainless steel tubing, flattened and ground at the end to a height of 0.10 mm, and
aligned with the horizontal plane. A portion of the data was obtained with a tip
made from 0.8 mm o.d. stainless steel tubing, also flattened and ground at the end
to a height of 0.10 mm.



Holographic Interferometer

Holographic interferograms were obtained with a system which utilized the exist-
ing tunnel Schlieren mirrors, a pulsed ruby laser for creating the holograms, and a
helium-neon laser for hologram reconstruction. Holograms were obtained showing the
entire field of view of the test section windows, both with and without flow in the
test section. After processing, the no-flow plate and one of the plates taken at test
conditions were positioned in a reconstruction plate holder, illuminated with the
reference beam, and aligned for infinite-fringe interferograms. This dual-plate
method (ref. 13) allows the fringe orientation to be chosen during reconstruction.
Since the method involves interference between waves that follow the same optical
path but are separated in time, imperfections in optical elements are cancelled.

A possible disadvantage of the dual-plate method is that wavefronts throughout
the field of view will be distorted by density gradients if the field of view does
not include a region of uniform flow. In that case, there is no direct means to
verify that the system is in the alignment required for infinite-fringe interferom-
etry. In the present instance, the good overall agreement between surface static-
pressure distributions obtained from the interferograms and those obtained from the
static-pressure orifices (the comparison shown later in this paper) provides indi-
rect verification of infinite fringe alignment.

If the flow is adequately two-dimensional, fringes on an infinite-fringe inter-
ferogram correspond to density contours in the flow, with a constant-density incre-
ment between fringes given by

A

= (1)
Legefe-p
where p, and p, are the densities at two adjacent fringes; Logs 1s the effective
optical path length, including the effect of the sidewall boundary layers (for the
present case, Logg = 0.599 m); X 1is the laser wavelength; and Kg_p is the
Gladstone-Dale constant. The value of density at one fringe must be determined by
independent means. The method used in this investigation was to choose the density
level at a reference fringe to give the best overall agreement between surface static-
pressures derived from interferograms and those measured at static-pressure orifices.

More information concerning the application of holography to airfoil testing is
given in reference 1l4.

INFLUENCE OF BOUNDARY-LAYER TRIP CONFIGURATION ON
ATRFOIL PERFORMANCE

The experiments described in references 1-3 were conducted with leading-edge
boundary-layer trips. If such a trip is effective in causing transition to occur
near the leading edge, complications associated with interaction between a shock wave
and a laminar, or transitional, boundary layer are avoided, as are effects of inter-
action between an aft-located roughness strip and a turbulent boundary layer origi-
nating near a leading-edge suction peak. However, at relatively low Reynolds number,
locating the transition strips farther aft can result in a displacement-thickness
distribution near the trailing edge that provides a better simulation of viscous-
inviscid interaction effects occurring at full-scale Reynolds number. During the



present investigation, emphasis was on aft-located boundary-layer trips in an attempt
to take advantage of this potential for full-scale Reynolds number simulation. The
recommendations of Braslow et al. (ref. 15) were used as guidelines in selecting trip
configurations.

The roughness elements used for the boundary-layer trips were spherical glass
beads which had been sieved to obtain a size variation of approximately *57 of the
nominal diameter. The trips were 1.6 to 2.2 mm in width. The value of x/c used in
identifying a trip is the downstream edge. The trips were applied by masking the
desired region with cellophane tape, coating the region with adhesive from a wiper of
the type formerly supplied with Polaroid black-and-white print film, spraying the
glass beads on with an airbrush, and immediately removing the tape while the adhesive
was still wet. The tape was removed as soon as possible to avoid the formation of
ridges in the adhesive at the edges of the trip. It was difficult to spray the beads
such that the desired uniform, sparse distribution of roughness was achieved; it was
often necessary to apply the trip several times before the result was acceptable.
Data obtained with trips having closely spaced elements (spacing of the order of a
few bead diameters) usually show disturbances in the surface static-pressure distri-
bution near the trip and anomalously large boundary-layer thicknesses downstream of
the trip. ‘

A series of experiments was conducted during 1975 to evaluate the usefulness of
testing at relatively low Reynolds number with aft-located boundary-layer trips and
to select appropriate test conditions for more detailed study. (The data of this
investigation were obtained from several tunnel-occupancy periods over a period of
several years; the tabulated data and the data presented in the appendix are identi-
fied by run number and year.)

The effectiveness of each trip configuration tested in the 1975 tunnel-occupancy
period was verified by the sublimation flow-visualization technique. Fluorene
(alphadiphenylenemethane) was dissolved in a volatile solvent and sprayed on the
model. The tunnel was started, and test conditions were held constant until the
characteristic sublimation pattern was observed, that is, a thin coating of fluorene
remaining on the model forward of the trip and essentially a clean model-surface
downstream. Interpretation of sublimation patterns was sometimes complicated by non-
uniformity of the original coating, but in each case it was concluded that the trip
had been effective in causing boundary-layer transition.

This study was motivated in part by the comparison shown in figure 4. Data
corresponding to two boundary-layer trip configurations obtained from the 2- by
2-ft tunnel at Re, = 3x10% and 4x10° are compared with data obtained at
Re, = 14.6x10° from the 0.38- by 1.52-m test section of a transonic wind tunnel
operated by the National Research Council (NRC) of Canada. The NRC data correspond
to natural transition. The data from the 2~ by 2-ft tunnel were limited to
Re, = 3x10%° for M, > 0.76 because a tendency of the tunnel drive system to over-
heat limited the run rate at higher Reynolds numbers in this Mach number range. The
difference in drag levels at the lower Mach numbers is in good agreement with scaling
laws for turbulent skin-friction drag (see ref. 16). The differences between the two
sets of data in the region of rapid drag rise implied a need for further study.
Since the NRC data were obtained at a Reynolds number much closer to that for which
the airfoil was designed and are in reasonable agreement with drag data for this air-
foil obtained from other facilities, the data from the 2- by 2-ft tunnel were
initially regarded as questionable.



Drag polars for M, = 0.76, Re, = 4x10%, and for M, = 0.80, Re, = 3x10° from a
subsequent investigation are shown in figures 5 and 6. Data were obtained with the
sharp-trailing-edge model with several trip configurations. Also included are fair-
ings of high-Reynolds-number data obtained from the NRC tunnel, presented both as
measured and shifted in an attempt to compensate for the Reynolds number difference.
The shifting of drag data presented in this section for facilitating comparisons
between data obtained at different Reynolds numbers was accomplished as follows:
Reynolds number scaling is assumed to follow the Schultz-Grunow flat-plate total
skin-friction law (ref. 16):

c - 0.427 )

¥ (log Re, - 0.407)2+5"

The variation of skin-friction drag with Reynolds number is assumed to be independent
of Mach number and angle of attack. A drag increment is computed at M_ = 0.5 and

is applied throughout the Mach number and angle-of-attack range, using cqg = 0.0105

at M, = 0.5, Re, = 4%x10%, and cy = 0.6 as a reference level. Values of k/k.,
corresponding to each trip configuration and chord Reynolds number are given. The
quantity k., 1is the roughness height corresponding to a roughness Reynolds number of
600, the value indicated in reference 15 to be the minimum roughness height that
causes transition to occur at the trip if the Reynolds number based on distance from
the leading edge to the trip is greater than 10°. Data presented in reference 15
indicate that roughness sizes greater than 2k.,. produce additional roughness drag.

The data of figures 5 and 6 were obtained with the same upper-surface boundary-
layer trip. Figure 5 gives data corresponding to three lower-surface trip locations
having approximately minimum-size roughness for the lower Reynolds number. The
results are comparable for lower-surface trip x/c values of 0.06 and 0.18 at the
higher 1ift coefficients. The lower-surface trip at x/c = 0.35 produces slightly
higher drag at M, = 0.76 throughout most of the c7 range. At M, = 0.8, the
polar obtained with this trip has a different shape from the others, with high drag
levels in the intermediate c¢7 range. Similar data shown in figure 6 for constant
lower-surface trip location and a range of roughness heights show that the optimum
height for this chordwise .location is approximately the upper limit of allowable
roughness, according to the criterion of reference 15.

Examples of static-pressure distributions at M_ = 0.8 at two angles of attack
are shown in figure 7. Data obtained with trips giving the best and poorest drag
performance in the intermediate c; range have been chosen for comparison. The
static-pressure distribution obtained at Ogeom = 1.0°, near the minimum of each drag
polar, are similar, even though the corresponding drag difference is large. At
Ggeom ~ 3.0°, the drag is apparently dominated by shock losses, and both the static-
pressure distributions and the drag levels are similar.

Figure 8 consists of a series of fluorescent oil-flow photographs of the lower
surface of the sharp-trailing-edge model. The boundary-layer trip and the circular
patches of epoxy filler covering heads of machine screws can be seen in the photo-
graphs. These photographs show that at some test conditions the flow was separated
in the lower-surface concavity. Figure 8(a) corresponding to M_ = 0.6, dgeom = 2.6°,
shows the flow to be attached in the concavity. This test condition is the only one
in which the flow was attached in the concavity for which extensive boundary-layer
and wake-survey data were obtained. Figures 8(b) through 8(e) correspond to the test
conditions of the static-pressure comparison, figure 7. At « eom = 1.0°, the chord-
wise extent of separation is approximately the same for both trip configurations. At



the higher angle of attack, the flow corresponding to the lower-surface trip at
x/c = 0.35 is attached, but it is separated with the trip at x/c = 0.18.

A series of lower-surface boundary-layer surveys was obtained with the sharp-
trailing-edge model during a test conducted in 1977 to obtain more detailed data to
support interpretation of the drag data previously presented. Data were obtained at
M, = 0.8, Re, = 3x10°, and dgeom = 1.0°. Four of the lower-surface trip configura-
tions of the 1975 test series were chosen for study. The upper-surface trip was the
same in all experiments, x/¢c = 0.35, k = 0.08 mm.

Two sets of profile data are presented in figure 9 corresponding to the trips
giving the best and the poorest drag performance. (Details of the boundary-layer
data-reduction process will be presented later.) The profiles of figure 9(a), corre-
sponding to the best trip, show attached flow at x/c = 0.5 and 0.6, forward of the
concavity. The profile at x/c = 0.75 is near separation, and the profile at
x/c = 0.91 1is separated, although the layer of reversed flow is thin relative to the
boundary-layer thickness. Since a pitot-probe is incapable of measuring reverse
velocities, data for which the measured pitot pressure is less than or equal to the
local static pressure have been omitted from the plots. The shape of the trailing-
edge profile shows the effect of the lower-surface expansion in the last few percent
chord. The profiles of figure 9(b), although similar to those of figure 9(a) at
x/c = 0.5 and 0.6, show a larger separated region and a correspondingly thicker
trailing-edge boundary layer.

Both oil-flow photographs corresponding to M_ = 0.8, Ggeom = 1.0° (figs. 8(b)
and 8(c)) show a similar chordwise extent of separation. However, the boundary-layer
and drag data show that in one case the separated region was thin, and its influence
on the primary flow field characteristics was small; in the other case it was thick
and apparently caused an increase in drag. At M, = 0.8, ageop = 3.0° (figs. 7(b)
8(d), and 8(e)), separation had a negligible influence on drag, implying a thin
separated region.

Displacement-thickness distributions corresponding to the data of the previous
figure are presented in figure 10, which also includes data corresponding to trip
configurations resulting in intermediate drag performance. Accurate values of dis-
placement thickness cannot be determined for profiles having significant regions of
reverse flow; for these profiles, flow velocities were set equal to zero in the
reverse-flow region, and the data were plotted with an arrow indicating that the
values represent lower limits. Boundary-layer properties in the region approaching
the concavity, x/c = 0.5 and 0.6, are plotted in figure 11 for the same test condi-
tions as the data of the previous figure. Displacement thickness, shape factor
(H = 6*%/6), and skin-friction coefficient are presented. The skin-friction coeffi-
cient was determined by a least-squares fit to the law-of-the wall logarithmic
profile.

There is no consistent trend linking development of the time-mean profile imme-
diately upstream of the concavity, such as increasing H or decreasing Cg, with
increasing separation in the concavity and correspondingly increasing drag. Appar-
ently differences in the turbulence flow properties associated with the differences
in trip configuration are responsible for the observed variations in response to the
adverse pressure gradient in the upstream portion of the concavity. If attached
flow is to be maintained in the concavity (or the extent of separation minimized),
the beginning of transition must be sufficiently far upstream of the region of
adverse pressure gradient. The poor performance observed with the lower-surface trip
at x/c = 0.35 is probably a result of insufficient distance between the trip and



the beginning of the concavity. The influence of lower-surface bead size at a fixed
chordwise location on drag may be associated with the ability of the larger bead sizes
to accelerate the transition process. Although drag was not measured during the 1977
test series, the trend in lower-surface viscous drag is believed to follow the trend
in lower-surface trailing-edge boundary-layer thickness.

A summary of drag data for several values of c7 1is presented in figure 12.
Data obtained with the sharp-trailing-edge model are shown for two boundary-layer-
trip configurations. Limited data obtained with the blunt-trailing-edge model are
included, together with a fairing of high-Reynolds-number data from a test in the NRC
tunnel. All data obtained at Req # 4x10%° have been shifted to that Reynolds number
by the method described previously. The drag-rise characteristics of the sharp-
trailing-edge model corresponding to the lower-surface trip configuration =x/c = 0.18,
k = 0.12 mm, are consistent with the high-Reynolds-number data for c7 < 0.8 and are
clearly superior to data obtained with the alternative trip configuration chosen
earlier in this study. Data obtained with the blunt-trailing-edge model at
Re, = 2x10° and 4x10° are in reasonable agreement with data obtained with the other
model, although some discrepancies are present in the drag-rise region.

Results of this study imply that particular care should be taken in testing and
interpreting data associated with high-aspect-ratio wings employing supercritical,
aft-loaded airfoil sections, if local Reynolds numbers based on chord are in the
range of the present study. Separation in the lower-surface concavity can lead to
high values of drag, which are probably not representative of performance at flight
Reynolds numbers. Although the present results indicate that a thin separated region
in the concavity may not degrade performance, separation should be avoided. O0il-flow
visualization studies should be conducted if this type of separation is likely.

AIRFOIL FLOW FIELD MEASUREMENTS

Static~Pressure Distributions

Plots of those static-pressure distributions for which boundary-layer data also
were obtained are presented in figures 13(a)-13(g), and the corresponding tabulated
data are given in table 2.

A comparison of static-pressure data obtained with the two airfoil models at
M, = 0.6 is shown in figure 13(e). The increased aft camber of the blunt-trailing-
edge model is at least partially responsible for the observed differences in the
static-pressure distributions. Some of the differences, such as those for x/c < 0.3
on the lower surface, may be caused by deviations of the actual airfoils from the
theoretical coordinates.

Data obtained with the blunt-trailing-edge model at M_ = 0.83 are presented in
figure 13(g). Data from the present study with aft-located boundary-layer trips are
compared in this figure with data obtained with a leading-edge trip from reference 1.
Although the Reynolds number and angle of attack are not matched precisely, these
discrepancies are not sufficient to cause the difference in shock location; this
variance is believed to be associated with the difference in upper-surface
displacement-thickness distribution.

Probe interference effects observed during this study are similar to, but smaller
than, those reported by Cook (ref. 17). Static-pressure distributions obtained
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upstream of the probe location, with the probe near the surface in position for a
survey, are superimposed in figures 13(a) and 13(d) on the corresponding distribution
obtained with the probe retracted. Where interference effects are present, they
always take the form of an additional adverse static-pressure gradient superimposed
on the undisturbed static-pressure distribution. The magnitude of the effect
decreases as the probe tip approaches the trailing edge. At the trailing edge and
slightly forward of the trailing edge on the lower surface, probe interference effects
on the static-pressure distribution were always negligible (less than the run-to-run
data repeatability).

Results of an attempt to determine the effects of these static-pressure pertur-
bations on boundary-layer properties are summarized in table 3. In the first two
columns, calculated values of displacement thickness, momentum thickness, shape
factor, and skin-friction coefficients are presented for upper-surface locations and
for the test conditions of figure 13(a). Calculations were performed using the
Cebeci-Smith finite-difference method (ref. 18), both for the undisturbed static-
pressure distribution and for the distributions obtained with the probe tip at the
survey station. Use of the perturbed pressure distribution in a two-dimensional
calculation almost certainly overestimates the influence of the perturbation, because
the actual perturbation is a three-dimensional effect (ref. 17). The experimental
boundary-layer data were reduced using both the pressure coefficient obtained in the
presence of the probe and the interference-free value. The former values were then
corrected by ratios of the computed quantities (column 5, table 3), and percent
differences were computed using the corrected values of column 5 as a reference. The
measured data, reduced using the noninterference C,, differ little, in most cases,
from the data reduced using the C, measured in the presence of the probe and cor-
rected using the calculated values. A similar set of computations was performed in
which data were first reduced using the C, values containing interference effects
and then expanded isentropically to the noninterference C,, accounting for stream-—
tube area change. These boundary-layer properties differeg only slightly from those
calculated using the noninterference C,. Although a completely satisfactory evalua-
tion of interference effects is not possible without a set of interference-free
experimental data, the use of the noninterference C, directly is believed to give
results that are at least as accurate as any of the more complex alternatives.

The influence of interference effects on the measured distribution of boundary-
layer properties is minimized by the decreasing magnitude of the static-pressure
perturbations with increasing =x/c of the survey station. As a result, the full
profiles forward on the airfoil are relatively resistant to the increased adverse
pressure gradient, and the profiles nearer the trailing edge having larger shape
factors are subjected to a smaller incremental pressure gradient.

Interferograms

Examples of interferograms obtained with the sharp-trailing-edge model and with
an uncambered NACA 64A010 airfoil (ref. 14) are presented in figure 14. Figure l4(a)
shows a predominantly subcritical case. A close-up of the trailing-edge region is
shown in figure 14(b). Two supercritical cases with upper-surface shocks correspond-
ing to two different angles of attack are shown in figures 14(c) and 14(d). Differ-
ences in the fringe patterns between the two airfoils near the trailing edge result
from the stronger viscous interaction in this region associated with the supercritical
airfoil. Fringe patterns in the viscous and inviscid regions are distinctly differ-
ent. As a result, the approximate boundaries of the viscous regions are visible.
Within the viscous regions, the static pressure varies only in the streamwise



direction, except near the shock and the trailing edge, but the fringe patterns show
density gradients to be approximately parallel to streamlines. Static temperature
variations associated with adiabatic deceleration therefore must be the predominant
mechanism for production of density variations in the boundary layers and wakes. For
the NACA 64A010 airfoil, the closed contours in the primarily inviscid flow are
located symmetrically above and below the trailing edge. By contrast, for the super-
critical airfoil, the closed contours are displaced streamwise in the interferograms,
indicating local density maxima in the lower-surface concavity and downstream of the
trailing edge on the upper surface of the near wake. The fringe pattern in the
lower-surface boundary layer near the trailing edge is a composite of the viscous and
inviscid patterns, indicating that adiabatic deceleration and static-pressure gra-
dients are of comparable importance in producing density variations in this region.

Data from static-pressure orifices and pressures determined from the interfero-
grams using the assumption of constant stagnation pressure and temperature are com-
pared in figure 15. A comparison of 1977 and 1978 data showed that an apparent 0.4°
increase in angle of attack in the 1978 data was required to achieve agreement with a
corresponding static pressure distribution obtained in 1977. Values of angle of
attack associated with the 1978 data have been decreased by 0.4° throughout this
report, except in table 2, and in the appendix. Pitot-pressure data obtained for the
test conditions of figure 15(b) show the stagnation pressure at the boundary-layer
edge downstream of the shock to be equal to the free-stream value within experimental
uncertainty. As a result, no corrections for shock losses were made in the computa-
tion of static pressure from the interferogram data for the cases of figures 15(b)
and 15(c). Agreement is generally good between the two types of data, implying that
a close approximation to infinite-fringe alignment was achieved. O0il-flow visualiza-
tion photographs show that upper-surface shocks on the supercritical airfoil sweep
forward near the sidewalls, causing an apparent smearing of the shock compression in
the interferogram data. The comparison of figure 15(d) for the NACA 64A010 airfoil
indicates that the flow near the shock is more nearly two~dimensional. Apparently the
greater upper-surface curvature of this airfoil causes the shock to remain at a more
nearly constant chordwise location than it does on the supercritical section.

The interferogram data give static-pressure distributions at the edges of the
boundary layer and near wake, which are difficult to measure by other techniques.
Significant static-pressure gradients normal to streamlines are present in the near-
~wake data for the supercritical airfoil and extend approximately 10% chord downstream
in figures 15(a) and 15(b). The effect is less pronounced in figure 15(c) and for
the NACA 6-series airfoil. Pressure variations across the lower-surface boundary
layer near the trailing edge are present in the data for the supercritical airfoil.
The flow is attached in the lower-surface concavity at the test conditions of fig-
ure 15(a), M, = 0.6; the static pressure varies across the boundary layer throughout
most of the lower-surface concavity in this situation. On the other hand, little or
no static-pressure variation normal to the surface is indicated in the data of
figure 15(b) for M, = 0.8, c; = 0.61 where the flow was separated in the concavity.
The flow in the concavity at M, = 0.8, cy = 0.44 was also separated, and the data
of figure 15(c) also indicate little static-pressure variation across the separated
boundary layer.

Boundary-Layer and Wake-Profile Data
Two sets of boundary-layer data derived from pitot-pressure measurements have

been chosen for presentation in detail; both were obtained with the sharp-trailing-
edge model. Data were reduced, using the compressible Bernoulli equation in subsonic
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flow and the Rayleigh pitot formula in supersonic flow, assuming constant stagnation
temperature. The first data set corresponds to the case at M, = 0.6, Rec = 4x10°
(fig. 13(e)). The second corresponds to M, = 0.8, Re, = 3x10%, o eom = 2.4°

(fig. 13(f)) and is characterized by a shock located relatively far aft of the trip,
so that effects of the trip on the shock-wave/boundary-layer interaction are mini-
mized, but sufficiently far forward to permit the existence of a region of nearly
constant static pressure immediately downstream of the shock, thus allowing recovery
of the boundary-layer profile before encountering the adverse pressure gradient near
the trailing edge. The boundary-layer profiles are presented in figures 16 and 17;
velocities are normalized by the free-stream value, and a common length scale is used
to facilitate direct comparison. The profiles of figure 16(a) show features typical
of attached turbulent boundary layers, except at the trailing edge where the upper-
surface profile appears to be approaching separation and the lower-surface profile
shows the effects of the sudden expansion in the final few percent chord.

The laminar boundary layer at x/c = 0.3 on the upper surface is shown in
figure 17(a). This boundary layer is approximately at the lower limit of resolution
of the measuring technique. Values of overall boundary-layer thickness, displacement
thickness, and momentum thickness, at this station all normalized by the chord, are
tabulated and compared with values calculated by the Cebeci-Smith method (ref. 18),
using the experimental pressure distribution. Agreement between measured and com-
puted thicknesses is good. Subsequent thickening of the boundary layer by the shock
located at x/c = 0.55 is apparent. Although no reverse flow is indicated by the
lower-surface boundary-layer profile at x/c = 0.91, oil-flow data indicate that a
separation bubble was present in the lower-surface concavity under these conditions.
Instances where measured pitot pressures were slightly in excess of the- local static
pressure in regions where the flow was known to be reversed have been reported by
others (refs. 19 and 20).

Figure 18 presents boundary-layer profiles derived independently from pitot-
pressure and interferometry data. These data were reduced employing the usual assump-
tion that the static pressure does not vary in the direction normal to the surface.
This comparison serves primarily as a check on both types of data, since the tech-
niques are subject to different error sources, and as a demonstration of repeatabil-
ity, since the data were obtained during different tunnel entries. Other comparisons
of this type show similar trends: the profiles obtained by the two methods at
M, = 0.8 were always in better agreement than those obtained at M, = 0.6.

Trailing-edge profiles of density, pitot pressure, velocity, and static pressure
are presented in figure 19. The velocity and static-pressure data were derived from
the density and pitot-pressure measurements with the assumption of constant stagna-
tion temperature. Integral properties for these profiles were calculated as described
in reference 1, with the modifications for static-pressure variation across the
boundary layers proposed by Zwaaneveld (ref. 21). The key feature of this modifica-
tion is the definition of a reference inviscid flow having the experimentally deter-
mined static-pressure distribution and the free-stream stagnation pressure. The data
of figure 19 show a decreasing static-pressure level with increasing z/c. A major
portion of the waviness in the derived C, distributions is undoubtedly associated
with the fact that the density and pitot-pressure data were obtained in separate
experiments. Errors in the location of the 2z-axis origin relative to the measured
profiles also may have contributed to errors in calculated static pressure. These
data show a static-pressure variation throughout the upper-surface boundary layer,
especially for the lower Mach number, M, = 0.6. Most of the variations in C
within the lower-surface profiles are confined to the region near the surface. The
average Cp levels in the lower-surface profiles are significantly higher than the

11



trailing-edge surface C,'s. The surface measurements were made with aft-facing ori-
fices in the trailing edge, a technique which would be expected to give an average
static-pressure level for the entire trailing-edge region.

The use of the surface trailing-edge C, in computing velocities and integral
properties for the lower-surface trailing-edge boundary layers leads to large errors.
Lower-surface trailing-edge velocities were computed using the present method in the
cases for which interferograms were available; Cp increments between the trailing-
edge static-pressure orifice and the average value for the lower-surface profile
derived from interferograms were used for the remaining cases.

Examples of near-wake profile data presented in figure 20 correspond to the test
conditions of figures 15(a) and 15(b). Comparisons of wake-velocity profiles similar
to those presented in figure 18 for boundary-layer data, in which the interferogram
and pitot-pressure data were reduced independently, show reasonable agreement, except
near the wake centerline; near the centerline, the minimum velocities derived from
the interferograms are greater than those computed from the pitot-pressure measure-
ments. Although the cause of this discrepancy is not completely understood, the
fact that the interferogram represents an average of the density field over the test-
section width is believed to be a contributing factor. The near-wake velocities of
figure 20 were computed from the pitot-pressure data, using static-pressure levels
determined from the interferogram at the edges of the wake and assuming a linear
variation in static pressure across the wake.

Boundary~-layer velocity profiles corresponding to attached flow were transformed
to equivalent incompressible profiles, using the van Driest transformation (ref. 22):

u
u* = 2§>sin_1( ﬁL> (3)
e
where
1/2
y-1.2
T Mo
a = —3 (4)
1+I‘L2—M(23

The subscript e refers to edge conditions, and r is the recovery factor, taken to
be 0.89. The transformed profiles were fitted by an iterative least-squares tech-
nique to Coles' wall-wake formula (ref. 23):

ut = 0}41 gn 2zt + 5.0 + B%ET w (5)
C o s 2fTZ
w = 2 sin (26 (6)

where ut = u*/ur; z = (zug) /vy; ugr is the shear velocity Ty/Pys T 1s the shear
stress, and the subscript w refers to conditions at the surface, The quantities

ur, I (wake coefficient), and § (boundary-layer thickness) were determined by the
fitting-process. Additional details pertaining to the transformation and fitting
process are given in references 1 and 2. Apparently because of the abrupt expansion
on the lower surface near the trailing edge, the lower-surface trailing-edge profiles
did not conform to the wall-wake family and have been excluded from this presentation.
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Most upper-surface trailing-edge profiles did not exhibit a distinct logarithmic
region, implying a state of incipient separationm.

The data of figures 16 and 17 are presented in wall-wake coordinates in fig-
ures 21-24. In most cases a well-defined logarithmic region is present near the wall.
Some data for which the wake component of the profile was negligible have been
omitted from figures 22 and 24. Boundary-layer and wake integral properties are
summarized in table 4, and velocity and density profiles are presented in table 5.

A representative sample of the upper-surface trailing-edge profiles is compared
with Stratford's separation profile (ref. 24) in figure 25. Stratford's analysis for
an incompressible turbulent boundary layer at separation predicts the following
velocity profile near the surface:

1/2

where k = 0.41. This can be written,

1 |2 _F_)i__dcp e z L/2 (8)
U |2 Py d(x/c) (c)

Y¥alues of the static-pressure gradient used in determining the predicted profiles
of figure 25 were estimated from the data of figure 13. Figure 25(a) is clearly a
separated profile. Since the points near the surface for figure 25(b) also lie below
the predicted profile, it is probably separated too. Cases (¢) and (d) are in rea-
sonable agreement with the predicted profile, indicating a state of incipient separa-
tion. The experimental profile of figure 25(e) is probably attached, since it lies
above the incipient separation profile and since a small logarithmic region exists
near the surface (fig. 23(a)).

COMPARISONS WITH COMPUTATIONS

Boundary-~Layer Computations

Comparisons between measured and calculated boundary-layer properties are pre-
sented in figure 26 for the case shown in figure 13(e), the sharp-trailing-edge model
at M_ = 0.6. This case is probably the one for which the best overall agreement
would be expected between measured and calculated boundary layers. First, the flow
is almost completely subcritical, with only a small supersonic region at the leading
edge, so that complications caused by shock-wave/boundary-layer interactions are
absent. Second, both pitot-pressure measurements and oil-flow results indicate that
the flow remained attached in the lower-surface concavity.

Experimental momentum and displacement thicknesses for the upper surface are
compared in figure 26(a) with results of computations obtained from three boundary-
layer computation methods, using the measured static-pressure distribution. Corre-
sponding values of skin friction and shape factor are compared in figure 26(b). The
boundary-layer computation methods used for this purpose are the Cebeci-Smith method
(ref. 18), a finite-difference method which is among the most accurate and generally
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applicable methods available, and two integral methods (refs. 25 and 26). The Nash-
Macdonald method was developed specifically for computation of boundary layers on
airfoils having flat-rooftop-type pressure distributions; it has been used in combi-
nation with programs for computation of transonic airfoil flow fields (refs. 27

and 28). Initial conditions for the Nash-Macdonald method for this and all subsequent
cases were obtained from the Cebeci-Smith results, just downstream of transition.
Agreement between measured and calculated properties is reasonably good for

x/c < 0.8.

Discrepancies in Cgf and H shown by Bower's method (ref. 25) for 0.3<x/c<0.4
are caused by the use of an experimental profile for starting the calculation; it is
remarkable how for x/c > 0.4, the predictions of this scheme are insensitive to the
perturbation in initial conditions. The close agreement between the Cebeci-Smith
computations and those of Bower's method is consistent with results from numerous
similar comparisons between predictions of the Cebeci-Smith method and results from
the methods of Reeves (ref. 29) and Bradshaw and Unsworth (ref. 30), even though each
of these methods is substantially different from the others. Near the trailing edge,
the Nash-Macdonald predictions depart drastically from those of the other schemes;
the computed displacement thicknesses exceed measured values. Since the computed
momentum thickness is underpredicted, this situation corresponds to a computed shape-
factor distribution that is much larger than the experimental distribution. Only the
Nash-Macdonald method predicts separation just upstream of the trailing edge, as
indicated by the computed skin-friction distribution. Although the pitot-pressure
measurements indicated that the flow was attached at the trailing edge, the presence
of a small region of reverse flow may not have been detected by the probe. These data
correspond to case (c) of figure 25, indicating incipient separation at the trailing
edge.

The Nash-Macdonald method contains a direct dependence of a boundary-layer shape-
factor parameter on the local static-pressure gradient; the latter was derived from
a correlation of airfoil boundary-layer data restricted to adverse pressure gradients.
Apparently this correlation causes the resulting prediction of displacement-thickness
development near the trailing edge to differ from that of the other methods and to
agree better with the experimental data in this region. Since the boundary-layer
formulation is invalid in the immediate vicinity of the trailing edge, this agreement
is partially fortuitous.

A similar set of comparisons for the lower surface is presented in figures 26(c)
and 26(d). The calculations include the Cebeci-Smith and Nash-Macdonald methods.
Agreement between both sets of calculations and the data is reasonably good upstream
of the concavity. Both methods underpredict the growth of displacement thickness,
and the skin-friction predictions of the Cebeci-Smith method are in better agreement
with the experimental data. The discrepancies between measured and calculated skin
friction upstream of the concavity may be due in part to inadequate correction for
probe interference effects. This static-pressure distribution is considerably dif-
ferent from those used to determine the shape-factor correlation in the Nash-
Macdonald method. Although the Nash-Macdonald method does not adequately treat flows
in which the static-pressure gradient changes from adverse to favorable, it is mar-
ginally suitable for the fiow type under consideration, in which a steep adverse
pressure gradient is followed by one less severe.

Comparisons involving both upper and lower surfaces are shown in figure 27 for

the case of the blunt~trailing-edge model at M, = 0.75. This flow field was char-
acterized by an upper-surface shock at about 18% chord.
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In this and all subsequent cases involving a shock-wave/boundary-layer interac-
tion, care was taken in the definition of the static-pressure distribution used for
boundary-layer calculations. In a study reported by Lynch (ref. 31), boundary-layer
properties computed by the Cebeci-Smith method downstream of a shock-induced pressure
rise showed sensitivity to the extent of streamwise smoothing of the static-pressure
distribution. Since static-pressure orifices on the models used in the present study
are spaced at intervals of 5% chord, except at the leading edge, details of the sur-
face static-pressure distribution in regions of shock-wave/boundary-layer interaction
were not resolved. The calculations presented here utilized static-pressure distri-
butions in which the shock-induced pressure rise was smoothed over a streamwise dis-
tance of 8-10 times the upstream value of §, which was the most abrupt pressure rise
that could be treated by the Cebeci-Smith program for the present set of experimental
data. This distance is difficult to define precisely because of difficulty in defin-
ing both § and the extent of the interaction region. Examination of a summary of
experimental shock-wave/boundary-layer interaction data presented by Inger (ref. 32)
indicates that this degree of smoothing of the wall static-pressure distribution is
of the correct order of magnitude.

The large shape factors indicated by the measured boundary-layer profiles in the
lower-surface concavity imply that the flow was probably separated, even though the
measured pitot pressures were always greater than the static pressure. The data of
figures 27(a)-27(c) were obtained from the two tests involving separate model instal-
lations. These results indicate that data repeatability was reasonably good; the
most important source of discrepancies is probably associated with unavoidable differ-
ences in the boundary-layer transition strips. Since the upper-surface boundary layer
was slightly thicker in the 1976 test than in the 1977 test, it is not surprising
that the observed difference in displacement thickness is maximum at the trailing
edge. Both the Cebeci-Smith and the Nash-Macdonald methods are in good agreement
with the measurements downstream of the shock. The relative behavior of the Cebeci-
Smith and the Nash-Macdonald methods near the trailing edge is similar to that of the
earlier comparison. Note, however, that the Nash-Macdonald skin friction decreased
to zero at x/c = 0.91. Downstream of this point, the calculation proceeds, using a
constant value of shape-factor parameter which has little physical significance.

The comparisons of figure 27(c¢), involving lower-surface momentum and displace-
ment thicknesses, are typical of the remaining lower-surface results. 1In this case,
the Cebeci-Smith and the Nash-Macdonald predictions are in good agreement with the
data at the first two stations, but the Cebeci-Smith predictions indicate separation
at the third station, probably not far from the actual separation point. The Nash-
Macdonald method predicted attached flow for this later station, as well as for all
of the remaining lower-surface flows. Since neither formulation is valid for flow at
or downstream of separation, comparisons downstream of a physical separation location
are not meaningful.

Results obtained with the blunt-trailing-edge model nearer the design condition,
M, = 0.8, are shown in figure 28(a). In this case and in all of the following cases,
the upper-surface boundary-layer trip was located at x/c = 0.35. Good agreement
between measured and computed values of both momentum and displacement thicknesses is
shown for the laminar boundary layer upstream of the trip. Agreement is fairly good
between measured and computed properties at x/c = 0.4, but the shape-factor discrep-
ancy and the proximity to the boundary-layer trip indicate that the experimental
boundary layer was probably transitional at this station. Agreement of all calculated
quantities with experiment from 0.5 £ x/c < 0.85 is good, a result not anticipated,
because none of the details of the shock-wave/boundary-layer interaction are
considered.
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The sensitivity of the Nash-Macdonald method to local static-pressure gradients
is manifested in a peak in the displacement thickness at the shock. Neither method is
accurate near the trailing edge, where the Nash-Macdonald method again predicts early
separation, based on computed Cg. The Nash-Macdonald method continues to proceed
downstream of the point where zero skin friction is first predicted, using the pre-
viously mentioned arbitrary maximum value of shape~-factor parameter. The lower-
surface results of figure 28(c) are similar to those of figure 27(c).

Four sets of upper-surface data are presented in figure 29 for both blunt~ and
sharp-trailing-edge models at M, = 0.80 and for the blunt-trailing-edge model at
M, = 0.83. Agreement between measured and calculated boundary layers on the forward
portion of the airfoil is reasonably good, except in figure 29(a). These cases corre-
spond to stronger, more-aft-located shock waves on the upper surface than those shown
in figure 28, and the increases in boundary-layer thicknesses caused by the interac-
tions are correspondingly greater. Predictions of these increases also are good.

Analyses proposed by Inger and Mason (ref. 8) and by Bohning and Zierep (ref. 9)
predict separation at the shock for all cases of the present study. It is possible
that separation bubbles were present in the interaction region but were too small to
be detected by the techniques of this investigation.

The Cebeci-Smith predictions of displacement and momentum thickness fail at
0.90 < x/c < 0.95. Further study is needed to determine whether the boundary-layer
calculations are accurate throughout the entire region where the formulation is valid;
if a special treatment of the trailing-edge region is employed, such as that proposed
by Melnik et al. (ref. 7), the upstream boundary conditions provided by the conven-
tional calculation must be accurate.

A typical example of a Nash-Macdonald prediction for this type of case is
included in figure 29(c), in which a large overshoot in.displacement thickness occurs
at the shock and the predicted displacement thicknesses near the trailing edge are
too large.

The data of figure 29(d) correspond to the case described in detail in refer-
ences 1 and 2, except for the previously mentioned difference in boundary-layer trip
location (see fig. 13(g)). The present data show the expected thinner boundary layer
over the aft portion of the airfoil, relative to the data of references 1 and 2,
associated with aft movement of transition, and also better agreement between mea-
sured and computed increases in momentum and displacement thicknesses caused by the
shock.

Airfoil Flow Field Computations

Comparisons between measured and computed static-pressure distributions are pre-
sented in figure 30 for the test condition at M, = 0.6, sharp-trailing-edge model
(see figs. 14(a), 14(b), and 15(a)). The computation technique, developed by
Garabedian and Korn (ref. 33) and extended by Tranen (ref. 34), uses the full
potential equation for two-dimensional, steady, inviscid transonic flow, in conjunc-
tion with a quasi-conservative, rotated differencing scheme. The region exterior to
the airfoil is mapped to the interior of a circle. The effective airfoil shape used
for the calculation of figure 30(a) was obtained by adding a displacement thickness
distribution faired through the measured values for this case to the airfoil coordi-
nates, resulting in a profile having an open trailing edge. The calculation of the
potential field uses only the airfoil surface-slope distribution. When the results
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are transformed to the physical plane, the computed flow field includes a source
within the airfoil whose strength is determined by the trailing-edge thickness.
Agreement between the experimental and computed distribution is generally good,
although the measured C levels were shifted by -0.03 for this comparison (see the
appendix for a discussion of discrepancies in C levels). Discrepancies on the
lower surface near the leading edge are believed to be caused by deviations of the
airfoil model contour from the prescribed coordinates. Pressure levels in the con-
cavity are affected strongly by the displacement-thickness distribution. Since the
experimental values are used here, the difference between the measured and computed
static pressure distribution in this region is greater than expected. Static-pressure
levels in the concavity derived from the interferogram are even lower than the
pressure-orifice data on figure 30(a).

The experimental data of figure 15(a) are compared with predictions of viscous-
inviscid computations in figure 30(b). The method of reference 34 is a conventional
iteration between inviscid and boundary-layer computation procedures that uses
extrapolation of the computed displacement-thickness distribution near the trailing
edge for x/c > 0.997. The method proposed by Melnik et al. (ref. 7) includes a
detailed treatment of the trailing-edge and near-wake flow field. In both cases the
computed aft loading is greater than that shown by the data.

Momentum and displacement-~thickness distributions for the boundary layers and the
near-wake obtained from the computations of figure 30(b) are compared with experimen-
tal data in figure 31. The comparison for the upper-surface boundary layer is given
in figure 31(a). Both of the computed boundary-layer thickness distributions lie
somewhat below the data, particularly for x/c > 0.9. Considerably better agreement
would have been obtained if the computed shape factor, 6*/6, were closer to the mea-
sured value at x/c = 0.8, which is approximately at the beginning of the region of
adverse pressure gradient. The computed response of a turbulent boundary layer to an
adverse pressure gradient is sensitive to upstream conditions, particularly if the
initial shape factor is greater than that corresponding to zero static-pressure
gradient. Better agreement was obtained between the experimental lower-surface
boundary-layer properties and the predictions of reference 7, as shown in fig-
ure 31(b). Since the special treatment of the trailing-edge region of Melnik et al.
(ref. 7) extends upstream for only a distance of the order of a boundary-layer thick-
ness, differences in computed boundary-layer properties shown in figure 31(b) are
probably the result of differences in the boundary-layer computation methods and not
the trailing-edge treatemnt. The computed static-pressure distributions differ from
the experimental distribution in the concavity. Boundary-layer computations using the
experimental static-pressure distribution would result in significantly smaller com-
puted displacement thicknesses in the concavity than the distributions of
figure 31(b).

Near-wake displacement and momentum thicknesses computed by the method of
Melnik et al. (ref. 7) for the M_ = 0.6 case are in good agreement with experimental
data, as shown in figure 31(c). The interferograms show that elevated static-pressure
levels persist relatively far downstream of the trailing edge. Since momentum and
displacement thicknesses determined from pitot-pressure surveys are relatively sensi-
tive to the static pressure used in data reduction, interferometry is valuable in
obtaining an accurate description of this type of wake.

Comparisons between the experimental static-pressure distribution and static-
pressure distributions computed by the method of reference 34 for the supercritical
case shown in figure 14(c) are presented in figure 32. Inviscid computations were
performed for an effective airfoil shape obtained by adding a displacement-thickness
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distribution faired through the measured values. The dashed line represents results
of a nonconservative calculation performed at M, = 0.78, with the angle of attack
chosen to give reasonable agreement with the static pressure levels on the forward
portion of the airfoil. Similar calculations performed at higher Mach numbers, and
those performed using quasi-conservative differencing, tended to form strong shocks
near the trailing edge and failed to converge. Viscous-inviscid calculations, using
the method of reference 7, were similarly unsuccessful. The inverse feature devel-
oped by Tranen (ref. 34) was used to determine an effective airfoil shape which would
yield approximately the experimental pressure distribution. The resulting static-
pressure distribution is indicated by the solid line, also computed for M, = 0.78,
but using quasi-conservative differencing. The required modification to the effective
airfoil shape, shown in the insert in figure 32, consists of an upward deflection of
the upper surface, beginning at x/c = 0.94, and corresponds to a displacement thick-
ness 50% greater than the measured value at the trailing edge. Preliminary calcula-
tions in which the effective airfoil shape was extended downstream of the trailing
edge using a fairing of the measured displacement-thickness distribution gave similar
results; the initial analysis calculation leads to shock waves that are too strong
and too far aft, and unreasonably large wake displacement-thickness distributions

are required to move the shock forward.

Additional comparisons between measured and computed results are presented in
figure 33 in the form of Mach number contours. The measured Mach number contours were
obtained from infinite-fringe interferograms. The edges of the boundary layers and
wakes obtained from the interferograms also are shown. Agreement between measured
and computed contours is reasonably good near the airfoil but becomes poorer with
increasing distance from the airfoil. The experimental contours show a more rapid
approach to free-stream conditions with distance from the airfoil, normal to the
chord line, than the computed contours. If the behavior of the computed contours at
some distance from the airfoil is representative of flow in an unbounded medium, then
the behavior of the measured contours implies a situation more like that of flow in a
free jet. In a free-jet flow, a constant static-pressure level equal to the free-
stream value is imposed at the jet boundary, thereby forcing the disturbance field
produced by the airfoil to vanish more rapidly with distance from the airfoil than it
would in free air. Interpretation of the comparison of figure 33(b) is complicated
because the computation was performed at M, = 0.78, but Mach numbers assigned to the
fringes were determined assuming M, = 0.8. Alternative methods of comparison, such
as assuming the experimental M, to be lower or selecting experimental fringes to
match the density ratio of the computed contours, resulted in poorer agreement than
that shown in figure 33(b).

It is also possible that the interferometer was not set exactly in the infinite-
fringe mode. As discussed previously, there was no means available to verify that
the setting was in infinite-fringe mode when the wavefronts in the entire field of
view were disturbed by the flow about the airfoil.

Comparisons of measured and calculated density contours, using data obtained from
the same wind tunnel, were presented by Rose and Seginer (ref. 11). These comparisons
imply that the effective angle of attack in the tunnel is a function of streamwise
location. The conclusions of Rose and Seginer are based in part on discrepancies
between computed and measured contours upstream of the leading edge in which the
angle of attack of the computation was chosen to give best overall agreement with the
experimental surface static pressures. The trend of disagreement between measured
and computed contours for variation in the streamwise direction in reference 11 is
the reverse of that shown in figure 33. In reference ll, the computed contours
approach the free-stream conditions more rapidly than the experimental contours, as
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the distance upstream of the leading edge is increased. The same comparison also
shows that the experimental contours approach the free-stream conditions more rapidly
than the computed contours as the distance from the airfoil, normal to the chord line,
increases. This trend for the cross-stream direction is consistent with the present
results.

CONCLUDING REMARKS

Data were obtained on the flow about a supercritical airfoil, including surface
static-pressure distributions, far-wake surveys (drag measurements), oil-flow visual-
izations, pitot-pressure surveys in the viscous regions, and holographic interfero-
grams. For cases characterized by upper-surface shock waves near midchord, upper-
surface boundary-layer transition was fixed at 35% chord to achieve a boundary-layer
thickness distribution near the trailing edge representative of a Reynolds number
range higher than that at which the experiments were conducted.

Airfoil drag performance is sensitive to the lower-surface boundary-layer trip
configuration, apparently because of the influence of boundary-layer trip configura-
tion on the extent of separation in the concavity.

Combining surface static-pressure, pitot-pressure, and interferogram data pro-
vides detailed descriptions of time-mean flow fields about the airfoil. The average
static-pressure level in the lower-surface boundary layer at the trailing edge is
substantially higher than the pressure measured by the trailing-edge orifice. Static-
pressure differences across the wake extend approximately 10% chord downstream of
the trailing edge.

Attached boundary-layer profiles, transformed by the van Driest transformation,
are in good agreement with Coles' profile family.

Comparisons made between measured flow field properties and results from compu-
tations show the following features:

1. The upper-surface boundary-layer predictions of the Cebeci-Smith method are
reasonably good except near the trailing edge where the discrepancies may be par-
tially a result of the breakdown of the boundary-layer approximations. The generally
good agreement between theory and experiment downstream of the shock-wave/boundary-
layer interactions supports the suggestion of Melnik et al. (ref. 7) that special
treatment of such interactions may not be necessary for engineering calculations when
the flow remains attached.

2. The Nash-Macdonald method predicts thicker boundary layers near the trailing
edge, but the predicted displacement thicknesses are often considerably greater than
the measured values. The sensitivity of this method to the local pressure gradient
produces peaks in the displacement-thickness distributions at the shock; special
treatment would be required if the method were coupled with an inviscid program.

3. Both methods give fairly accurate results on the lower surface when the flow
remains attached.

Computations of the surface static-pressure distribution, employing both mea-

sured and calculated displacement-thickness distributions, are in fairly good agree-
ment with experiment at M, = 0.6. Good agreement between measured lower-surface
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boundary-layer and near-wake properties and predictions of a viscous-inviscid inter-
action method is shown at M_ = 0.6. Growth of the upper-surface boundary layer near
the trailing edge is underpredicted for that case. Reasonable agreement between a
measured static-pressure distribution and one computed by an inviscid transonic com-
puter program for a case at M, = 0.8 characterized by an upper-surface shock at
midchord, requires a reduction in the Mach number of the computation to 0.78 and
modification of the effective upper-surface contour near the trailing edge; the latter
modification is equivalent to adding a trailing-edge displacement thickness 50%
greater than the experimental value. Comparisons of computed Mach number contours
with contours derived from interferograms show differences that could be interpreted
as wall-interference effects.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035,
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APPENDIX

REPEATABILITY OF STATIC-PRESSURE DISTRIBUTIONS

The experiments described in this report were conducted in a sequence of four
tunnel-occupancy periods, one per year from 1975 through 1978. Some discrepancies
were noted between static-pressure data obtained during different occupancy periods
at the same nominal test conditions and also between data obtained during this series
and those published in references 1 and 2. The purpose of this appendix is to illus-
trate the degree of repeatability achieved during this investigation and to discuss
possible sources of the observed discrepancies.

Some of these variations are clearly the result of real differences in the flow
fields from which the data were obtained. For example, differences in static-
pressure distributions in the lower-surface concavity are almost certainly caused by
differences in the extent of separation in the concavity. The inability to reproduce
a boundary-layer trip configuration precisely is believed to be at least partially
responsible for differences of this type. Other differences seem just as clearly to
be associated with the data acquisition process and not with any significant differ-
ences in the flow fields. Discrepancies of this type include apparent shifts in the
angle of attack or C level required to achieve a particular static-pressure dis-
tribution. Data obtained for a range of Mach number and angle of attack during a
single occupancy period support the conclusion that when two static-pressure distri-
butions corresponding to the same nominal Mach and Reynolds numbers were essentially
identical, except possibly for a shift in C level, then the airfoil flow fields
were also identical to the same level of approximation; no two different combinations
of Mach number and angle of attack produce the same static-pressure distribution.

Data obtained in 1973 (refs. 1 and 2) and 1975 with’the blunt-trailing-edge model
and a leading-edge boundary-layer trip are presented in figure 34. The earlier data
show higher static-pressure levels in the lower-surface concavity throughout the Mach
number range, implying that the separation bubble was consistently thinner in 1973
than in 1975. The comparison of figure 34(a) for M, = 0.75 shows an apparent shift
in the overall static-pressure level between the two sets of data; the 1975 level is
lower (more negative). This trend is also present in the higher-Mach-number data,
figures 34(b) and 34(c).

Comparisons involving the blunt-trailing-edge model with aft-located boundary-
layer trips are shown in figure 35. Some interpolation is necessary in interpreting
figure 35(a), in which data from 1975 and 1976 are compared at M, = 0.6 because data
for the same angle of attack are not available. However, it is clear that the appar-
ent static-pressure level of the 1975 data is lower than that of the 1976 data and
that the upper-surface static-pressure distributions near the trailing edge are dif-
ferent. Data at M, = 0.6 shown in figure 35(b) from 1976 to 1977 are in reasonable
agreement, except for a small difference in C level. The two sets of data from the
1977 series were obtained several weeks apart, with an intervening period during which
testing was discontinued but the model installation was not disturbed. These data
show an apparent shift of 0.2° in angle of attack. The comparison between the data
from the 1975 series at M, = 0.8, shown in figure 35(c), shows a second supersonic
region terminated by a shock on the upper surface, and relatively low static-pressure
levels in the lower-surface concavity. Similar trends are apparent at M, = 0.83,
figure 35(d). The data of figures 35(c) and 35(d) show an apparent shift in both
angle of attack and Cp level.
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Comparisons of data obtained with the sharp-trailing-edge model are shown in
figures 36 and 37. The data of figure 36(a) show good agreement between results of
the 1977 and 1978 tests at M, = 0.6, except for a small apparent shift in Cp level
and an apparent angle-of-attack discrepancy of 0.4° Data obtained at M, = 0 8
from the 1975, 1977, and 1978 tests are compared in flgures 36(b)-36(d). These data
show the previously noted discrepancies in apparent angle of attack and Cp level.
The 1975 data show the lowest apparent Cp levels and more aft-located shock waves
than data obtained in 1977 or 1978.

Almost all of the boundary-layer and wake pitot-pressure surveys of this inves-
. tigation were obtained during 1977, and interferograms were obtained in 1978 with the
sharp-trailing-edge model. Static-pressure distributions obtained from these two
tunnel-occupancy periods are in good agreement when a small Cp shift (AC, = .03) is
incorporated and the 0.4° shift in apparent angle of attack is compensated for.
Examples corresponding to M, = 0.8 are given in figure 37 (see also fig. 36(a)).

REFERENCES

1. Hurley, F. X.; Spaid, F. W.; Roos, F. W.; Stivers, L. S. Jr.; and Bandettini, A.:
Detailed Transonic Flow Field Measurements about a Supercritical Airfoil
Section. NASA TM X-3244, 1975.

2. Hurley, F. X.; Spaid, F. W.; Roos, F. W.; Stivers, L. S. Jr.; and Bandettini, A.:
Supercritical Airfoil Flowfield Measurements. J. Aircraft, vol. 12, no. 9,
Sept. 1975, pp. 737-744.

3. Spaid, F. W.; Hurley, F. X.; and Hellman, T. H.: Miniature Probe for Transonic
Flow Direction Measurements. AIAA J., vol. 13, no. 2, Feb. 1975, pp. 253—255.v

4. Spaid, F. W.; and Stivers, L. S. Jr.: Supercritical Airfoil Boundary Layer
Measurements. AIAA Paper 79-1501, July 1979.

5. Spaid, F. W.; and Bachalo, W. D. Experiments on the Flow About a Supercritical
Airfoil, Including Holographlc Interferometry. - AIAA Paper 80-0343, Jan. 1980.

6. Bavitz, P. C.: An Analysis Method for Two-Dimensional Transonic Viscous Flow.
NASA TN D-7718, 1975.

7. Melnik, R. E.; Chow, R.; and Mead, H. R.: Theory of Viscous Transonic Flow Over
Airfoils at High Reynolds Number. AIAA Paper 77-680, June 1977.

8. Mason, W. H.; and Inger, G. R.: Analytical Theory of Transonic Normal Shock-
Boundary Layer Interaction. AIAA Paper 75-831, June 1975.

9. Bohning, R.; and Zierep, J.: Condition for the Onset of Separation of the Turbu-
lent Boundary Layer on a Curved Wall with a Normal Shock Wave. Translated
from Zeitschrift fiir angewandte Mathematik und Physik, vol. 29, 1978.

10. Deiwert, G. S.: Numerical Simulation of High Reynolds Number Transonic Flows.
AIAA J., vol. 13, no. 10, Oct. 1975, pp. 1354-1359,

l11. Rose, W. C.; and Seginer, A.: Calculation of Transonic Flow over Supercritical
Airfoil Sections. J. Aircraft, vol. 15, no. 8, Aug. 1978, pp. 514-519.

22



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25,

26.

27.

Walitt, L.; King, L. S.; and Liu, C. Y.: Computation of Viscous Transonic Flow
About a Lifting Airfoil. AIAA J., vol. 16, no. 8, Aug. 1978, pp. 775-776.

Trolinger, J. D.; Bogdonoff, S. M.; and Smith, J. A.: Laser Instrumentation for
Flow Field Diagnostics. AGARDograph 186, 1974.

Johnson, D. A.; and Bachalo, W. D.: Transonic Flow About a Two-Dimensional
Airfoil — Inviscid and Turbulent Flow Properties. AIAA Paper 78-1117, July
1978.

Braslow, A. L.; Hicks, R. M.; and Harris, R. V., Jr.: Use of Grit-Type Boundary-
Layer Transition Trips on Wind-Tunnel Models. NASA TN D-3579, 1966.

Hoerner, S. F.: Fluid-Dynamic Drag. Published by the author, 2 King Lane,
Greenbriar, Brick Town, N.J., 1965, pp. 2-1 to 2-10.

Cook, T. A.: Measurements of the Boundary-Layer and Wake of Two Aerofoil Sec-
tions at High Reynolds Numbers and High-Subsonic Mach Numbers. R. & M.
No. 3722, British R.A.E., 1973.

Cebeci, T.; and Smith, A. M. O.: Analysis of Turbulent Boundary Layers.
Academic Press, 1974, pp. 258-384.

Vidal, R. J.; Wittliff, C. E.; Catlin, P. A.; and Sheen, B. H.: Reynolds Number
Effects on the Shock Wave-Turbulent Boundary Layer Interaction at Transonic
Speeds. AIAA Paper 73-661, July 1973.

Kooi, J. W.: Experiment on Transonic Shock-Wave Boundary Layer Interaction.
Flow Separation. AGARD CP-168, Nov. 1975.

Zwaaneveld, J.: Comparison of Various Methods for Calculating Profile Drag from
Pressure Measurements in the Near Wake at Subcritical Speeds. Aerodynamic
Drag. AGARD-CP-124, 1973.

van Driest, E. R.: Turbulent Boundary Layer in Compressible Fluids. J. Aeronaut.
Sci., vol. 18, no. 3, Mar. 1951, pp. 145-160.

Coles, D. E.: The Young Person's Guide to the Data. In Proceedings: Computa-
tion of Turbulent Boundary Layers. 1968 AFOSR-IFP-Stanford Conference,
Vol. II, Compiled Data, D. E. Coles and E. A. Hirst, eds., Stanford Univer-
sity, 1969.

Stratford, B. S.: The Prediction of Separation of the Turbulent Boundary Layer.
J. Fluid Mech., vol. 5, part 1, Jan. 1959, pp. 1-16.

Bower, W. W.: Analytical Procedure for Calculation of Attached and Separated
Subsonic Diffuser Flows. J. Aircraft, vol. 13, no. 1, Jan. 1976, pp. 49-56.

Nash, J. F.; and Macdonald, A. G. J.: The Calculation of Momentum Thickness in
a Turbulent Boundary Layer at Mach Numbers up to Unity. C.P. no. 963,

British Aeronautical Research Council, 1967.

Garabedian, P. R.: Computational Transonics. Aerodynamic Analyses Requiring
Advanced Computers, Part I1II, Paper no. 44, NASA SP-347, 1975, pp. 1269-1280.

23



28.

29.

30.

31.

32.

33.

34.

24

Carlson, L. A.; and Rocholl, B. M.: Application of Direct-Inverse Techniques to
Airfoil Analysis and Design. Advanced Technology Airfoil Research, vol. 1,
NASA CP-2045, 1978, pp. 55-72. '

Reeves, B. L.: Two-Layer Model of Turbulent Boundary Layers. AIAA J., vol. 12,
no. 7, July 1974, pp. 932-939.

Bradshaw, P.; and Unsworth, K.: An Improved FORTRAN Program for the Bradshaw-
Ferris-Atwell Method of Calculating Turbulent Shear Layers. Aero Report
no. 74-02, Imperial College of Science and Technology, London, 1974.

Lynch, F. T.: Recent Applications of Advanced Computational Methods in the Aero-
dynamic Design of Transport Aircraft Configurations. Douglas Paper 6639,
11th Congress of ICAS, Lisbon, Portugal, 1978.

Inger, G. R.: Analysis of Transonic Normal Shock-Boundary Layer Interaction
and Comparison with Experiment. AIAA Paper 76-331, July 1976.

Garabedian, P. R.; and Korn, D. G.: Analysis of Transonic Airfoils. Commun.
Pure Appl. Math., vol. 24, no. 11, Nov. 1971, pp. 841-851.

Tranen, T. L.: A Rapid Computer Aided Transonic Airfoil Design Method.
AIAA Paper 74-501, June 1974.



Copies of "Supplement to NASA TM-81336" will be furnished upon request. The
supplement consists of additional reduced data obtained from tests of two slightly
modified versions of the original NASA Whitcomb airfoil section and a model of the
NACA 0012 airfoil section.

Requests for '"Supplement to NASA TM-81136" should be addressed to:
NASA Scientific and Technical Information Facility
Attn: Distribution Control Department

P.0. Box 8757
Baltimore/Washington International Airport, MD 21240

Date

Please forward "Supplement to NASA TM-81336" to

Name of organization

Street number

City and State Zip code

Attention: Mr.

25






TABLE 1. — DSMA 523 AIRFOIL COORDINATES, SHARP AND BLUNT TRAILING EDGES

——

—— —
Zupper Zlower Zupper Zower Ziower
x/c x/c < T

¢ ¢ ¢ (sharp TE) (blunt (TE)
0.000500 0.005069 —0.005096 0.440000 0.055247 —0.053009
0.001000 0.007096 —0.007128 0.460000 0.055146 —0.052143
0.002500 0.011063 -0.011078 0.480000 0.054973 —0.051136
0.005000 0.015320 -0.015320 0.500000 0.054723 —0.049915
0.007500 0.018417 ~0.018417 0.520000 0.054390 —0.048483
0.010000 0.020716 —0.020671 0.540000 0.053976 —0.046780
0.012500 0.022651 —0.022548 0.560000 0.053486 —0.044613
0.015000 0.024267 —0.024135 0.580000 0.052917 —0.052006
0.020000 0.026918 —0.026744 0.600000 0.052269 —0.038885
0.030000 0.030729 —0.030667 0.620000 0.051540 —0.035181
0.040000 0.033459 —0.033607 0.640000 0.050726 —0.030940
0.060000 0.037407 —0.038087 0.660000 0.049826 —0.026087 —0.026390
0.080000 0.040367 —0.041739 0.680000 0.048832 —0.020633 —0.021541
0.100000 0.042987 —0.044648 0.700000 0.047725 —0.015445 -0.016958
0.120000 0.045198 —0.046796 0.720000 0.046494 —0.010574 —0.012692
0.140000 0.047017 —0.048616 0.740000 0.045130 —0.006027 -—0.008750
0.160000 0.048543 —0.050114 0.760000 0.043625 —-0.001872 -0.005200
0.180000 0.049828 —0.051348 0.780000 0.041942 0.001892 —0.002041
0.200000 0.050902 —0.052370 0.800000 0.040043 0.005224 0.000686
0.220000 0.051802 —0.053207 0.820000 0.037907 0.008108 0.002965
0.240000 0.052563 —0.053890 0.840000 0.035502 0.010505 0.004757
0.260000 0.053199 —0.054423 0.860000 0.032780 0.012374 0.006021
0.280000 0.053729 —0.054808 0.880000 0.029666 0.013645 0.006687
0.300000 0.054161 —0.055056 0.900000 0.026155 0.014169 0.006606
0.320000 0.054513 —0.055163 0.920000 0.022185 0.013798 0.005630
0.340000 0.054788 —0.055137 0.950000 0.017708 0.012338 0.003565
0.360000 0.054998 —0.054978 0.960000 0.012642 0.009726 0.000348
0.380000 0.055149 —0.054701 0.980000 0.006842 0.005773 —0.004210
0.400000 0.055240 —0.054283 1.000000 0.000308 0.000498 -—0.010109
0.420000 0.055272 —0.053719 Leading-edge radius/c = 0,023

GP11-0232-35
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TABLE 2. — STATIC-PRESSURE DISTRIBUTIONS, CASES FOR WHICH
BOUNDARY-LAYER AND WAKE PROFILES WERE MEASURED

Trip - upper, x/c = 0.05, 0.09 mm
lower, x/c = 0.18, 0.13 mm

M,, = 0.60, Rec = 2x 105, M, = 0.75, Re¢ = 2 x 105,
¢; =0.58, ageom = 1.63°, ¢, = 0.58, ageom = 1.23°,

Run 22:1, fig. 13(a) Run 26:1, fig. 13(b)

Cc C
x/c P x/c P
Upper Lower Upper Lower

0.000 1.069 - 0.000 1.154 -
0.005 -1.324 0.447 0.005 -0.620 0.312
0.015 —1.507 - 0.015 —-0.925 —-
0.025 -1.601 - 0.025 -1.126 -
0.050 -1.168 0.051 0.050 —1.155 -0.048
0.100 -0.802 —0.104 0.100 —1.138 -0.225
0.150 -0.687 —0.082 0.150 —-1.100 -0.169
0.200 —0.619 -0.110 0.200 —1.047 -0.196
0.250 —0.546 —0.120 0.250 —0.50% —0.200
0.300 —0.499 —-0.105 0.300 —0.455 —0.171
0.350 -0.472 —-0.107 0.350 —-0.447 —0.166
0.400 —-0.452 -0.128 0.400 —0.440 —-0.192
0.450 —0.443 —0.145 0.450 —0.450 —0.204
0.500 —0.441 -0.148 0.500 —~0.459 —0.202
0.550 —0.440 —0.137 0.550 —0.473 —-0.177
0.600 -0.430 —0.056 0.600 —0.458 —0.053
0.650 —0.420 0.119 0.650 —0.439 0.141
0.700 -0.419 0.249 0.700 —0.435 0.263
0.750 —0.405 0.332 0.750 —0.416 0.331
0.800 -0.400 0.378 0.800 —0.396 0.366
0.850 —0.375 0.413 0.850 ~—0.340 0.406
0.900 -0.284 0.441 0.900 -0.210 0.432
0.950 -0.092 0.426 0.950 -0.029 0.438
0.975 - 0.384 0.975 - 0.406
1.000 0.038 - 1.000 0.058 -

(a) Blunt trailing edge, 1976.
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TABLE 2. — Continued.

Trip - upper, x/c = 0.05, 0.10 mm
lower, x/c = 0.18,0.13 mm

M, = 0.60, Rec = 2 x 10,
CI= 0.58, ageom = 1.40,

Run 40:1
x/c

Upper Lower
0.000 -0.038 -
0.005 —1.249 0.480
0.015 —1.669 -
0.025 -1.592 -
0.050 -1.287 0.098
0.100 -0.770 -0.087
0.150 -0.672 -0.071
0.200 - —0.069
0.250 -0.521 -0.090
0.300 -0.481 -0.073
0.350 —0.454 -0.081
0.400 - -0.101
0.450 -0.423 -0.122
0.500 —0.394 -0.121
0.550 -0.422 -0.111
0.600 —-0.412 —-0.039
0.650 —0.400 0.137
0.700 -0.394 0.269
0.750 —0.389 0.348
0.800 -0.378 0.400
0.850 —0.342 0.435
0.900 —0.265 0.459
0.950 —0.070 0.437
0.975 - 0.406
1.000 0.071 -

M., = 0.75, Rec = 2 x 105,
¢ = 0.58, Qgeom = 1.00,

Run 45:1
C
x/c P

Upper Lower
0.000 -0.051 -
0.005 -0.532 0.349
0.015 -0.976 -
0.025 —1.099 -
0.050 -1.187 —0.005
0.100 -1.070 -0.189
0.150 -1.027 —0.154
0.200 - —0.139
0.250 -0.433 —0.153
0.300 -0.424 -0.134
0.350 -0.426 0.037
0.400 - —0.144
0.450 -0.426 —0.169
0.500 —0.406 —0.161
0.550 —0.443 -0.147
0.600 —0.439 0.037
0.650 -0.419 0.168
0.700 -0.409 0.287
0.750 -0.390 0.357
0.800 —0.373 0.391
0.850 -0.317 0.433
0.900 -0.198 0.452
0.950 -0.013 0.450
0.975 - 0.429
1.000 0.089 -

Trip- upper, x/c=0.35, 0.13 mm
lower, x/c = 0.18, 0.13 mm

M, = 0.80, Reg = 2 x 105, M., = 0.80, Reg = 2 x 106, M., = 0.83, Reg = 2 x 105,

- =0.9° = = 1.6° = =0.78°
¢ = 0.63, &gy, = 0.9°, 6= 0.77, gy = 1.6°, ¢, = 0.61, g = 0.78°,
Run 80:2, fig.13(c) Run 80:4, fig. 13(d) Run 79:2, fig. 13(g)

c c
x/c P x/c x/c p
Upper Lower Upper Lower Upper Lower
0.000 —0.084 - 0.000 —0.08 - 0.000 —0.069 -
0.005 —0.356 0.283 0.005 —0.449 0.424 0.005 -0.219 0.253
0.015 —0.788 - 0.015 —-0.869 - 0.015 —0.636 -
0.025 —0.903 - 0.025 —0.984 - 0.025 —0.741 -
0.050 —1.000 —0.053 0.050 —1.084 0.065 0.050 -0.849 —0.080
0.100 —0.963 -0.273 0.100 -1.050 —0.140 0.100 -0.814  —0.339
0.150 —0.945 —0.213 0.150 -1.034 —0.112 0.150 -0.808  —0.256
0.200 - —0.188 0.200 - —-0.097 0.200 - -0.233
0.250 —0.886 —-0.201 0.250 -0.987 —0.116 0.250 -0.772  -0.231
0.300 —0.882 —-0.162 0.300 —0.986  —0.090 0.300 -0.779  —0.181
0.350 - —0.160 0.350 - —0.094 0.350 - —0.175
0.400 —0.833 —0.179 0.400 -0936 -0.114 0.400 ~0.761 —0.195
0.450 —0.662 —0.202 0.450 —0.924  —0.139 0.450 —0.740  -0.219
0.500 —-0.324 ~0.188 0.500 -0.854 -0.134 0.500 —0.688  —0.198
0.550 —0.353 —-0.153 0.550 -0912  —0.109 0.550 —0.754  —0.150
0.600 —0.382 —-0.025 0.600 -0.414 0.006 0.600 -0.778  —0.003
0.650 —0.404 0.180 0.650 —0.291 0.207 0.650 —0.781 0.201
0.700 —0.425 0.293 0.700 -0.287 0.325 0.700 —0.436 0.297
0.750 —0.433 0.348 0.750 —0.306 0.387 0.750 —0.260 0.349
0.800 -0.429 0.384 0.800 —0.331 0.426 0.800 —0.246 0.380
0.850 —0.358 0.421 0.850 ~0.297 0.464 0.850 —0.211 0.418
0.900 —0.215 0.449 0.900 —0.184 0.489 0.900 —0.096 0.443
0.950 —0.001 0.469 0.950 0.010 0.501 0.950 0.054 0.470
0.975 - 0.436 0.975 - 0.462 0.975 - 0.448
1.000 0.113 — 1.000 0.117 - 1.000 0.130 -
(b) Blunt trailing edge, 1977. GP11.023243
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TABLE 2. — Continued.

Trip - upper, x/c =0.05, 0.05 mm
lower, x/c = 0.18, 0.13 mm

M, = 0.6, Rec = 4 x 106,
¢; = 0.58, ageom = 2.6°,

Run 84:3, fig. 13{e)

x/c

Upper Lower
0.000 0.987 -
0.002 0.155 1.068
0.005 —-0.488 0.969
0.010 - 0.677
0.025 - 0.223
0.050 -1.371 0.073
0.075 -0.904 0.037
0.100 -0.829 -0.030
0.150 - -0.003
0.200 —-0.622 -0.033
0.250 —-0.549 -0.063
0.300 —-0.483 -0.080
0.350 -0476 —-0.104
0.400 -0.435 -—0.119
0.450 -0.429 -0.119
0.500 -0.412 —0.1563
0.550 -0.402 —0.134
0.600 —0.388 -0.087
0.650 —-0.404 0.066
0.700 -0.367 0.243
0.750 —0.348 0.339
0.800 -0.346 0.400
0.850 - 0.444
0.900 -0.178 -
0.950 - 0.466
1.000 0.104 -

Trip- upper, x/c = 0.35, 0.13 mm
lower, x/c = 0.18, 0.13 mm

M., = 0.80, Rec = 2 x 105,
¢ =061, ageom = 1.8°,

Run 2:2, fig. 13(f)

x/c

Upper Lower
0.000 1.170 —
0.002 0.713 1.045
0.005 0.276 0.868
0.010 - 0.478
0.025 -0.839 -0.013
0.050 -1.086 —0.092
0.075 —-1.062 -0.143
0.100 -0.990 -0.193
0.150 - -0.189
0.200 -0.987 -0.152
0.250 -0.976 -0.180
0.300 —0.942 -0.185
0.350 —0.896 -0.207
0.400 -0.911 -0.227
0.450 —0.904 -0.222
0.500 -0.831 -0.252
0.550 -0.345 -0.187
0.600 —0.246 -0.074
0.650 -0.274 0.134
0.700 —-0.298 0.267
0.750 —0.300 0.312
0.800 -0.273 0.352
0.850 - 0.389
0.900 -0.084 -
0.950 - 0.463
1.000 0.178 -

Trip - upper, x/c = 0.35, 0.08 mm
lower, x/c = 0.18, 0.13 mm

M., = 0.80, Rec = 3 x 10,
¢ =0.71, ageom = 24°,

Run 121:1, fig. 13(f)

x/c

Upper Lower
0.000 1.165 -
0.002 0.656 1.072
0.005 0.207 0.927
0.010 — 0.584
0.025 -0.913 0.109
0.050 -1.151 0.007
0.075 -1.117 —-0.034
0.100 -1.061 -0.092
0.150 - -0.086
0.200 -1.049 —0.096
0.250 -1.033 —-0.123
0.300 -0.997 -0.127
0.350 —1.000 —-0.147
0.400 -0.970 -0.153
0.450 -0.970 —-0.149
0.500 —0.959 —0.186
0.550 -0.554 —-0.150
0.600 -0.297 -0.054
0.650 -0.240 0.145
0.700 -0.251 0.294
0.750 -0.254 0.350
0.800 -0.249 0.394
0.850 - 0.436
0.900 -0.083 -
0.950 - 0512
1.000 0.196 -

{c) Sharp trailing edge, 1977.

GPF11-0232-44



Trip - upper, x/c = 0.05, 0.05 mm
lower, x/c = 0.18, 0.13 mm

TABLE 2. — Concluded.

Trip - upper, x/c = 0.35, 0.13 mm
lower, x/c = 0.18, 0.13 mm

M, =0.60, Re; =4 x 10°,
Run 36, Ogeom = 3.0°,

Fig. 15(a)
x/c P
Upper Lower

0.000 1.0213 -

0.002 0.1919 1.0820
0.005 —0.4338 0.9772
0.010 —-1.1744 0.6739
0.025 —-1.8737 0.1936
0.050 —1.2471 -0.0090
0.075 -09114 -

0.100 -0.8062 -0.0651
0.150 -0.7377 -0.0351
0.200 -0.6242 -0.0703
0.250 —-0.567% -0.0934
0.300 -0.4911 -0.1044
0.350 -0.4853 -0.1278
0.400 -0.4561 -0.1423
0.450 —0.4380 -0.1498
0.500 -0.4296 -0.1933
0.550 -0.4213 -0.1852
0.500 -~-04118 -0.1118
0.650 -0.3998 0.0420
0.700 -0.4026 0.2296
0.750 —-0.3978 0.3179
0.800 —0.3901 0.3782
0.850 -0.3320 0.4247
0.900 -0.2340 0.4543
0.950 -0.0215 0.4490
0.999 0.0707 -

M., = 0.80, Re = 3 x 105,
Run 46, ageom = 1.4°,

Fig. 15(c)
C
x/e P
Upper Lower

0.000 1.1840 -
0.002 0.8194 0.9611
0.005 0.3952 0.7466
0.010 -0.1416 0.3193
0.025 -0.7119 -0.2400
0.050 -0.9796 -
0.075 -0.9219 -0.3565
0.100 —0.8335 -0.4331
0.150 —-0.8473 -0.3408
0.200 -0.8485 -0.3393
0.250 -0.8185 -0.3534
0.300 —-0.7635 —-0.3421
0.350 ~0.7632 -0.3656
0.400 —-0.3564 -0.3672
0.450 -0.3309 -0.3653
0.500 -0.3879 -0.3911
0.550 —0.4000 -0.2909
0.600 -0.4243 -0.1449
0.650 - 0.0824
0.700 -0.4598 0.1868
0.750 —-0.4319 0.2252
0.800 -0.3967 0.2462
0.850 —-0.3087 0.2850
0.900 —0.1506 0.3358
0.950 0.0669 0.3866
0.999 0.1304 -

Trip - upper, x/c =0.35, 0.13 mm
lower, x/¢ = 0.18, 0.13 mm

M, = 0.80, Rec = 2 x 105,
— 950
Run 17, ageom 2.2°,

Fig. 15(b)
C
x/c
Upper Lower

0.000 1.1803 -

0.002 0.7321 1.0445
0.005 0.2961 0.8518
0.010 -0.241%8 04771
0.025 —-0.8163 -0.0444
0.050 -1.0796 -0.0183
0.075 -1.0535 -0.1816
0.100 -0.9994 -0.2280
0.150 -0.9777 -0.1886
0.200 —-0.9962 -0.1943
0.250 —-0.9821 -0.2287
0.300 -0.8625 -0.2317
0.350 -0.9609 -0.2634
0.400 —-0.9272 -0.2746
0.450 —-0.9038 -—0.2651
0.500 -0.9115 -0.3032
0.550 -0.5899 —-0.2417
0.600 —-0.2768 -—0.1152
0.650 —0.2786 0.0971
0.700 -0.3241 0.2319
0.750 —0.3460 0.2749
0.800 -0.3298 0.3095
0.850 ~0.2718 0.3431
0.900 -0.1438 0.3885
0.950 0.0724 0.4391
0.999 0.1460 -

M., = 0.80, Rec = 3 x 10°,

Run 41, %3e0m 2.8
(o
x/e P

Upper Lower
0.000 1.1715 -
0.002 0.6715 1.0611
0.005 0.2175 0.9230
0.010 -0.3274 0.5529
0.025 —-0.9169 0.0802
0.050 -1.1476 -0.0182
0.075 —-1.1441 -0.0869
0.100 —1.0582 -0.1449
0.150 -1.0723 -0.1143
0.200 -1.0774 -0.1225
0.250 -1.0411 -0.1702
0.300 -1.0217 -0.1590
0.350 -1.0318 -0.2077
0.400 -0.9851 -0.2217
0.450 -0.9802 -0.2117
0.500 —0.9602 -0.2655
0.5650 -0.9696 —0.2094
0.600 —0.4935 -0.0996
0.650 —0.2565 0.1142
0.700 —0.2737 0.2574
0.750 -0.2928 0.3142
0.800 —-0.2802 0.3423
0.850 —0.2357 0.3896
0.900 -0.1403 0.4353
0.950 0.0734 0.4671
0.999 0.1655 =

(d) Sharp trailing edge, 1978.

GP11-0232-48
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TABLE 3. — EVALUATION OF PROBE INTERFERENCE

Calculated boundary

Experimental and

layers, ref. 18 corrected quantities® % Difference
©) @ ® @ ® ® @
x/c Nointer-  Inter-  Ratio C,, with Corrected C,, no @-6 ©-06
ference ference (7)/ (@ interference @ x® interference ® ®
0.3 &% 0.001517 0.001627 0.9324 0.00181 0.00169 0.00173 7.1 24
6 0.000893 0.000956 0.9345 0.00101 0.00094 0.00097 7.4 3.2
H 1.698 1.702 0.9977 1.786 1.782 1.774 0.2 -0.4
Cs; 0.00306 0.00286 1.0676 0.00305 0.00326 0.00320 -—6.4 —-1.8
0.7 &* 0.00261 0.00274 0.9537 0.00315 0.00300 0.00303 5.0 1.0
7} 0.001617 0.001693 0.9551 0.00190 0.00181 0.00184 5.0 1.7
H 1.616 1.619 0.9981 1.665 1.662 1.650 0.2 -0.7
C; 0.00283 0.00273  1.0362 0.00277 0.00287 0.00288 -3.5 0.3
0.8 6" 0.00289 0.00313 0.9237 0.00370 0.00342 0.00346 8.2 1.2
6 0.001797 0.001932 0.9301 0.00220 0.00205 0.00210 7.3 2.4
H 1.610 1.621 0.9932 1.682 1.671 1.645 0.7 -1.6
Cs 0.00276 0.00255 1.0821 0.00235 0.00254 0.00255 -7.5 0.4
09 &% 0.00369 0.00368 1.0035 0.00470 0.00472 0.00458 -04 -3.0
0 0.00225 0.00226 0.9956 0.00267 0.00266 0.00263 04 -1.1
H 1.644 1.631 1.0080 1.759 1.773 1.739 -0.8 -1.9
Cs 0.00212 0.00222 0.9527 0.00181 0.00172 0.00193 5.2 12.2

dExperimental case corresponding to fig. 13(a).

GP11-0232-37



TABLE 4. — BOUNDARY-LAYER AND WAKE INTEGRAL PROPERTIES

Trip - upper, x/c = 0.05, 0.09 mm,
lower, x/c = 0.18, 0.13 mm

= = 6 . _ - o
M., = 0.60, Re, =2 x 107, ¢; = 0.58, %geom = 1.63

x/c Cp 8 e O/c H C Run
0.299U —-0.498 0.00173 0.00097 1.744 0.00320 16
0.699U -0.418 0.00303 0.00184 1.650 0.00288 17
0.802V —0.400 0.00346 0.00210 1.645 0.00255 18
0.899U —0.286 0.00454 0.00261 1.738 0.00195 19
0.950U -0.094 0.00689 0.00345 1.994 0.00100 20
1.000U 0.033 0.01154 0.00451 2.561 - 211

0.499L -0.148 0.00159 0.00101 1.569 0.00357 14
0.650L 0.142 0.00349 0.00199 1.756 0.00174 28
0.750L 0.332 0.00762 0.00327 2.326 0.00072 29
1.000L 0.143 0.00442 0.00277 1.595 - 21-2
1.050 0.100 0.01790 0.00881 2.032 - 30
1.099 0.093 0.01552 0.00927 1.676 - 22
GP11-0232-38
Trip - upper, x/c =0.05, 0.09 mm,
lower, x/c = 0.18, 0.13 mm
= = 6 . _ = o
Moo = 0.75, Rec =2 x 10", ¢ = 0.58, Ygeom = 1.23

xlc c, 8" /c b/c H ¢ Run
0.300U —0.457 0.00212 0.00107 1.987 0.00269 23
0.700U —0.435 0.00350 0.00190 1.840 0.00266 24
0.900U -0.210 0.00530 0.00273 1943 0.00161 25
0.999U 0.057 0.01638 0.00498 3.289 - 26-1
0.499L —0.205 0.00188 0.00103 1.823 0.00338 31
0.650L 0.142 0.00447 0.00216 2.073 0.00135 32
0.750L 0.332 0.00999 0.00412 2.421 0.00040 33
0.999L 0.157 0.00438 0.00280 1.567 - 26-2
1.100 0.093 0.01680 0.00959 1.753 —_ 27

(a) Blunt trailing edge, 1976. GP11-0232:82
Trip - upper, x/c =0.05, 0.10 mm,
lower, x/c = 0.18, 0.13 mm
= - 6 . - _ 140
M., =0.60, Re, = 2 x 107, ¢ 0.58, %geom = 1.4
*

x/c Co S /e 0/c H c; Run
1.000U 0.050 0.00866 0.00378 2.291 - 39
0.500L -0.119 0.00127 0.00081 1.569 0.00382 58
0910L 0.458 0.00987 0.00455 2.168 - 68
0.985L 0.370 0.00399 0.00264 1514 0.00284 70
1.000L 0.150 0.00411 0.00220 1.872 - 43
1.000L 0.150 0.00281 0.00187 1.498 - 56
1.050 0.120 0.01611 0.00856 1.882 - 40
1.100 0.113 0.01272 0.00785 1.621 - 41
1.200 0.099 0.00997 0.00695 1.434 - 42
1.500 0.060 0.01024 0.00809 1.265 - 5

(b) Blunt trailing edge, 1977.

GP11-0232-83
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TABLE 4. — Continued.

Trip - upper, x/c =0.05, 0.10 mm,
‘lower, x/¢ =0.18, 0.13 mm

= = 6 . .. = o
M, = 0.75, Re, =2 x 10°, c; =058, %geom = 1.0
»

x/c Cp 6 /e O/¢ H Cf Run
0.300U —0.425 0.00195 0.00104 1.886 0.00291 50
0.800U —0.372 0.00343 0.00198 1.736 0.00286 49
0.950U —0.013 0.00727 0.00344 2.116 0.00134 48
0.980U 0.050 0.01035 0.00419 2.467 0.00033 b4
1.000U 0.090 0.01390 0.00437 3.180 — 47
0.500L -0.162 0.00141 0.00084 1.680 0.00376 66
0.910L 0.453 0.01185 0.00495 2.396 - 74
0.945L 0.452 0.00821 0.00425 1932 0.00153 76
0.985L 0410 0.00528 0.00312 1.691 0.00238 72
1.000L 0.180 0.00389 0.00249 1.562 - 51
1.100 0.123 0.01511 0.00842 1.794 - 52
1.200 0.109 0.01223 0.00807 1.516 - 53
1.500 0.070 0.01071 0.00790 1.355 - 7

GP11-0232-84
Trip - upper, x/c =0.35, 0.13 mm,
lower, x/c = 0.18, 0.13 mm
= = 6 . _ - o]
M = 0.80, Re, =2 x 10°, c;=0.63, %%eom 0.90
*

x/c c, 5 /e /¢ H C; Run
0.300U -0.882 0.00089 0.00027 3.288 - 104
0.400U —-0.837 0.00101 0.00034 3.027 - 106
0.550U —-0.352 0.00179 0.00080 2.233 0.00344 108
0.650U —0.405 0.00201 0.00104 1.928 0.00338 112
0.750U —0.435 0.00230 0.00122 1.882 0.00324 114
0.850U —0.359 0.00252 0.00142 1.781 0.00313 116
0.900U -0.217 0.00315 0.00174 1.812 0.00259 118
0.950U 0.005 0.00562 0.00268 2.097 0.00117 120
1.000U 0.115 0.01077 0.00373 2.890 0.00023 102
0.500L -0.180 0.00147 0.00081 1813 0.00374 164
0.750L 0.348 0.00948 0.00367 2.585 0.00053 166
0.910L 0.460 0.01381 0.00523 2,641 — 178
0.985L 0.410 0.00626 0.00355 1.766 - 180
1.000L 0.205 0.00409 0.00258 1.685 - 168
1.000L 0.205 0.00397 0.00253 1.569 - 122
1.050 0.150 0.01728 0.00840 2.058 - 125
1.100 0.143 0.01330 0.00785 1.693 - 124
1.200 0.129 0.01040 0.00704 1477 - 123

GP11-0232-85

(b) Continued.



TABLE 4. — Continued.

Trip - upper, x/c = 0.35, 0.13 mm,
lower, x/c = 0.18, 0.13 mm

M., = 0.80, Re, =2 x 108, ¢; = 0.77, a gy = 1.6°

-

x/c Cp 8 /e Orc H C, Run
0.300U —-1.021 0.00082 0.00024 3.485 - 129
0.500V -0.892 0.00127 0.00060 2.116 0.00359 131
0.650V -0.316 0.00288 0.00143 2.005 0.00214 133
0.800U -0.310 0.00325 000179 1812 0.00284 135
0.900U -0.172 0.00402 0.00205 1.966 0.00240 137
0950V 0.005 0.00621 0.00295 2.105 0.00127 139
1.000U 0.138 0.01113 0.00408 2.729 0.000256 127
0.300L -0.082 0.00087 0.00050 1.728 0.00433 172
0.500L —-0.130 0.00133 0.00079 1.691 0.00391 154
0.600L 0.005 0.00219 0.00120 1828 0.00302 156
0.650L 0.208 0.00326 0.00159 2.049 0.00198 168
0.750L 0.390 0.00850 0.00331 2567 0.00055 160
0910L 0498 0.01244 0.00491 2534 - 184
0.985L 0425 0.00524 0.00326 1.660 0.00244 182
1.000L 0.228 0.00406 0.00264 1540 - 141
1.050 0.170 0.01737 0.00869 1.999 - 142
1.100 0.163 0.01349 0.00797 1.694 - 143
1.200 0.149 0.01177 0.00795 1.481 - 144

GP11-0232-86
Trip - upper, x/c =0.35, 0.13 mm,
lower, x/c = 0.18, 0.13 mm
= = 6 = = O
M., = 0.83, Re, =2 x 107, ¢; = 0.61, %eom 0.78
»

x/c cp S /e O/c H C Run
0.300V -0.778 0.00101 0.00030 3.344 - 85
0.450U —-0.745 0.00090 0.00045 2024 0.00376 87
0.700U —0.430 0.00292 0.00141 2.077 0.00231 89
0.850U -0.210 0.00371 0.00188 1.969 0.00222 91
0.900U -0.092 0.00448 0.00217 2.065 0.00180 93
0.950U 0.055 0.00725 0.00308 2.350 0.00078 95
1.000U 0.130 0.01339 0.00416 3.220 - 83
0.500L -0.198 0.00142 0.00081 1.745 0.00383 146
0.750L 0.347 0.01063 0.00379 2.803 0.00040 148
0.910L 0.452 0.01534 0.00538 2.849 - 176
0.985L 0.430 0.00723 0.00393 1.838 0.00202 174
1.000L 0.220 0.00420 0.00266 1578 - 150
1.000L 0.220 0.00441 0.00272 1.621 - 97
1.100 0.194 0.01556 0.00873 1.781 - 98
1.200 0.170 0.01344 0.00896 1.500 - 100

GP11-0232-87

(b) Concluded.
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TABLE 4. — Continued.

Trip - upper, x/c = 0.05, 0.05 mm,
lower, x/c = 0.18, 0.13 mm

= = 6 . - _n o
Moo = 0.60, Re.=4 x 10°, G 0.58,ageom =2.6
»

x/c Cp S /e 0lc H Ce Run
0.300U -0.485 0.00135 0.00066 2,040 0.00331 102
0.500U ~0.417 0.00186 0.00115 1.622 0.00260 104
0.700U ~0.370 0.00270 0.00151 1.792 0.00254 106
0.800U ~0.345 0.00276 0.00173 1.594 0.00252 108
0.900U ~0.175 0.00381 0.00225 1.696 0.00211 110
0.950U -0.015 0.00605 0.00326 1.854 0.00117 112
1.000VU 0.110 0.01069 0.00435 2460 - 114
0.300L -0.080 0.00056 0.00038 1.487 0.00442 100
0.500L ~0.155 0.00103 0.00058 1.789 0.00370 88
0.600L -0.085 0.00117 0.00077 1.525 0.00341 90
0.650L 0.059 0.00214 0.00106 2.012 0.00254 92
0.750L 0.335 0.00502 0.00242 2.073 0.00090 94
0.910L 0.461 0.00725 0.00383 1.892 0.00120 96
1.000L 0.180 0.00288 0.00191 1.505 - 98
1.000L 0.180 0.00271 0.00162 1.674 - 120
1.050 0.130 0.01162 0.00682 1.704 - 115
1.100 0.123 0.00993 0.00645 1.540 - 116
1.200 0.109 0.00885 0.00625 1416 - 118

GP11-0232-88
Trip.- upper, x/c =0.35, 0.13 mm,
lower, x/¢c = 0.18, 0.13 mm
= - 6  _ = o
M, =0.80, Rec—2 x 10 = 0.61,ageom =1.8
*
x/c [ § Ie O/c H c Run
P f
0.300U ~0.941 0.00070 0.00022 3.228 - 4
0.400V -0.910 0.00130 0.00052 2.499 0.00337 24
0.450U -~0.904 0.00144 0.00057 2520 0.00355 6
0.600U -~0.243 0.00303 0.00153 1.984 0.00228 8
0.750U -0.300 0.00300 0.00162 1.850 0.00300 10
0.850U -~0.195 0.00327 0.00194 1.688 0.00284 12
0.900U -~0.085 0.00430 0.00240 1.787 0.00231 14
0.950U 0.082 0.00663 0.00329 2.017 0.00130¢ 16
1.000U 0.188 0.01133 0.00462 2454 - 18
0.300L -0.185 0.00092 0.00053 1.756 0.00418 26
0.500L -0.235 0.00143 0.00073 1.968 0.00382 28
0.600L —-0.072 0.00176 0.00101 1.743 0.00327 30
0.650L 0.134 0.00306 0.00161 1.899 0.00184 32
0.750L 0313 0.01086 0.00383 2.840 - 34
0910L 0.438 0.01662 0.00535 3.106 - 36
1.000L 0.257 0.00535 0.00338 1.584 - 20
1.050 0.231 0.01487 0.00856 1.737 - 21
1.100 0.225 0.01279 0.00798 1.602 - 22
1.200 0.185 0.01124 0.00756 1.486 - 37

{c) Sharp trailing edge, 1977.

GP11-0232-89



TABLE 4. — Continued.

Trip - upper, x/c = 0.35, 0.08 mm,
lower, x/c = 0.18, 0.13 mm

= = 6 = = o
M, = 0.80, Re, =3 x 10°,¢; =0.71, %eom 2.4

x/c Cp 8" /e G/c H C; Run
0.300UV -0.998 0.00079 0.00023 3.527 - 125
0.450U —0.965 0.00122 0.00041 2.968 0.00354 123
0.650U -0.242 0.00360 0.00170 2.114 0.00157 127
0.800U —0.248 0.00311 0.00175 1.780 0.00256 129
0.900U —0.081 0.00412 0.00233 1.769 0.00228 131
0.950U —0.005 0.00539 0.00299 1.803 0.00186 133
1.000U 0.197 0.01007 0.00447 2.252 0.00066 135
0.300L -0.129 0.00099 0.00056 1.768 0.00347 150
0.500L -0.185 0.00113 0.00061 1.839 0.00374 144
0.600L -0.055 0.00176 0.00092 19156 0.00297 146
0.750L 0.350 0.00891 0.00322 2.770 0.00037 148
0.910L 0483 0.01301 0.00522 2.491 - 142
1.000L 0.250 0.00444 0.00282 1.572 - 137
1.100 0.235 0.01246 0.00781 1.596 - 140
1.200 0.195 0.01053 0.00718 1.467 - 138

(c) Concluded. erivozzen
Trip - upper, x/c = 0.35, 0.08 mm,
lower, x/c = 0.06, 0.05 mm
= = 6 = = o
M, = 0.80, Re, 3 x 107, = 0.435, %geom 1.05
*

x/c c, & /e O/c H C; Run
0.500L —0.295 0.00164 0.00093 1.757 0.00321 40
0.600L -0.091 0.00226 0.00121 1.870 0.00262 43
0.750L 0.256 0.01332 0.00403 3.302 - 45
0.910L 0.387 0.02057 0.00523 3933 - 47
1.000L 0.270 0.00625 0.00384 1.627 - 49

GP11-0232-91
Trip - upper, x/c = 0.35, 0.08 mm,
lower, x/c = 0.18, 0.08 mm
= = 6 = = o
M, = 0.80, Re, =3 x 107, ¢ 0.432, %eom 0.98

x/c ¢ 8 re 0/c H C; Run
0.500L —~0.298 0.00130 0.00075 1.728 0.00353 652
0.600L -0.099 0.00228 0.00121 1879 0.00255 54
0.750L 0.280 0.01425 0.00362 3.936 - 56
0910L 0.406 0.02480 0.00525 4.724 - 68
1.000L 0255 - 0.00817 0.00495 1.650 - 60

GP11-0232-92
(d) Sharp trailing edge, 1977,
boundary-layer trip study.
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TABLE 4. — Concluded.

Trip- upper, x/c =0.35, 0.08 mm,
lower, x/c = 0.35, 0.10 mm

= _ 6 - (o}
Mo, = 0.80, Re, =3 x 10° ¢; 0452, oo, = 0.94
x/c ¢, 5%c Olc H s Run
0.500L —0.296 0.00135 0.00078 1.741 0.00341 63
0.600L -0.120 0.00209 0.00118 1.770 0.00267 65
0.750L 0322 0.01900 0.00302 6.296 - 67
0.910L 0.450 0.03336 0.00612 5453 - 69
1.000L 0.245 0.01244 0.00759 1.639 - VA
GP11-0232-93
Trip - upper, x/c =0.35, 0.08 mm,
lower, x/c =0.18, 0.13 mm
Moo = 0.80, Re =3 x 105, ¢, =0.440, 0 =0.99°

geom

-_—
_—_—nmmm

x/c c, 8*%/c O/c H c Run
0.500L -0.301 0.00123 0.00071 1.738 0.00356 74
0.600L —0.095 0.00169 0.00098 1.724 0.00295 76
0.750L 0.272 0.01131 0.00365 3.098 - 78
0.910L 0.425 0.01752 0.00501 3.498 - 80
1.000L 0.257 0.00520 0.00328 1.582 - 82

(d) Concluded.
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TABLE 5. — BOUNDARY-LAYER VELOCITY AND DENSITY PROFILES

X/C=.299U RUN 16 X/C=.699U RUN 17 X/C =.802U RUN 18 X/C=,899U RUN 19 X/C=.950U RUN 20
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X/C = 1.000U RUN 21-1 X/C = 499L RUN 14 X/C = .650L RUN 28 X/C-.760L RUN 29 X/C = 1.000L RUN 21-2
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TABLE 5. — Continued.

X/C = 900U RUN 25

X/C=1.060 RUN30 X/C=1.099 RUN22 X/C=300U RUN23 X/C=.700U RUN 24
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X/C = .499L RUN 31 X/C-.650L RUN32 X/C=.750L RUN 33 X/C =.999L RUN 26-2

X/C =.999U RUN 26-1
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TABLE 5. — Continued.

X/C = 1.100 RUN 27
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X/C = 1.000U RUN 39 X/C=.500L RUNGE8 X/C=.910L RUN68 X/C=.985L RUN70 X/C=1.000L RUN 43
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TABLE 5. — Continued.

X/C=1.200 RUN42 X/C=1.500 RUNS

X/C=1.000L RUNB6 X/C=1.050 RUN40 X/C=1.100 RUN 41
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X/C = 300U RUN 60 X/C=.800U RUN49 X/C=.950U RUN 48 X/C =.980U RUN54 X/C =1.000U RUN 47
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TABLE 5. — Continued.

X/C = .500L RUN66 X/C=.910L RUN 74 X/C=.945L RUN76 X/C=.985L RUN 72 X/C =1.000L RUN 51
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X/C=1.100 RUN B2 X/C=1.200 RUNG63 X/C =1.500 RUN 7 X/C =.300U RUN 104 X/C =.400U RUN 106
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TABLE 5. — Continued.

X/C = 550U RUN 108 X/C =.650 RUN 112 X/C=.750U RUN 114 X/C = .850U RUN 116 X/C = .900 RUN 118
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X/C = .950U RUN 120 X/C =1.000U RUN 102 X/C'=.500L RUN 164 X/C =.750L RUN 166 X/C =.910L RUN 178
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TABLE 5. — Continued.

X/C = .986L RUN 180 X/C = 1.000L RUN 168 X/C = 1.000L RUN 122 X/C = 1.060 RUN 125 X/C = 1.100 RUN 124
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X/C = 1.200 RUN 123
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TABLE 5. — Continued.

X/C = 300U RUN 128 X/C = .500U RUN 131 X/C = .660U RUN 133 X/C = .8C0U RUN 135 X/C = .900U RUN 137
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X/C = .950U RUN 139 X/C = 1.000U RUN 127 X/C = .300L RUN 172 X/C = .500L RUN 154 X/C = .600L RUN 156
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TABLE 5. — Continued.

X/C = .650L RUN 168 X/C = .750L RUN 160 X/C =.910L RUN 184 X/C = .985L RUN 182 X/C = 1.000L RUN 141

ulu plo,, z/c  uluy, Plog 2/lc uluy, plps, zlc  ulu,, plp,, zflc  ulu,, plpy,
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X/C = 1.060 RUN 142 X/C = 1.100 RUN 143 X/C = 1.200 RUN 144 X/C = 300U RUN 85 X/C =.450U RUN 87
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TABLE 5. — Continued.

X/C =.700U RUN 89 X/C=.850U RUN91 X/C=.900U RUN93 X/C=.950U RUN96 X/C - 1.000U RUN 83
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X/C = 500L RUN 146 X/C = .750L RUN 146 X/C =.910L RUN 176 X/C = .985L RUN 174 X/C = 1.000L RUN 150
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TABLE 5. — Continued.

X/C=1.000L RUN97 X/C=1.100 RUN98 X/C=1.200 RUN 100
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X/C = .300U RUN 102 X/C = .500U RUN 104 X/C =.700U RUN 106 X/C =.800U RUN 108 X/C =.900U RUN 110
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TABLE 5. — Continued.
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TABLE 5. — Continued.
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TABLE 5. — Continued.
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TABLE 5. — Continued.
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TABLE 5. — Continued.
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TABLE 5. — Continued.
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TABLE 5. — Concluded.
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Figure 2. — Two- by Two-Foot Transonic Wind Tunnel test section with
blunt-trailing-edge model installed.
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Figure 3. — Distribution of static-pressure orifices at centerspan.
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Boundary-layer trip

Upper Lower

k k
Re, x/c  (mm) x/e  {mm)

O 3x108,4x106 035 005 0188 0.05
Q 3x10%4x108 035 005 006 008
0146 x 106 Natural transition
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0.020
¢
0.015
0.010
0.005 | | | | | |
0.50 06565 060 065 070 0.75 0.80 0.85
M

GP11-0232-4

Figure 4. — Effect of boundary-layer trip configuration and
Reynolds number on drag rise characteristics at ¢;=0.6.



Trip configurations

x/c k ke
(mm) Rec=3x106  Re_=4x 106
0.35 0.08 0.9 1.2 Upper surface
O 0.06 0.05 1.0 1.3
O o.18 0.08 1.2 1.4 } Lower surface
A 0.35 0.09 1.1 14
Data at Re, = 14.5 x 106
M= 0.76, Re, = 4 x 106 M.,= 0.80, Re_ = 3 x 108
— — —Dataat Re_ = 14.5 x 108 — — —Dataat Re,, = 14.5 x 106
corrected to corrected to
Re, =4 x 10° Re. =3 x 108

0 N1 o
0.008 0.012 0016 0.020 0.024 0.008 0.012 0.016 0.020 0.024 0.028

Cd Cq

GP11-0232-6

Figure 5. — Effect of lower-surface boundary-layer trip location on drag characteristics.



Trip configurations
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Data at Re,, = 14.5 x 108
Mo,= 0.76, Re, = 4 x 108 M,.= 0.80, Re_ = 3 x 10°
— — — Dataat Re, = 14.5 x 10° — — — DataatRe. = 14.5 x 108
corrected to corrected to
Re, = 4 x 108 Re. = 3 x 108
° T T T T T T 1
8 — —]
7 - -]
6 = ]
5 }— —
|

4 _ -
3 }— pou
2 — —
1 — —
0 2
0.008 0.012 0016 0.020 0.024 0008 0012 0.016 0.020 0.024

Cq Cq

GP11-0232-8

Figure 6. — Effect of lower-surface boundary-layer trip bead size on drag characteristics.
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M_=0.8, Re, = 3 x 106
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x/c = 0.35, k = 0.08 mm

Lower-surface trip
0.2 f- Xe (mm)
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0.6 — | ] | ] | ]
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Lower-surface trip
° 9 Kk
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l l I l l l |
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(b) & geom = 3.0%

04

0.6

GP11-0232-7

Figure 7. — Static-pressure distributions corresponding to high- and low-drag conditions.
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(a) My,= 0.6, Reg =4 x 106, & goom = 2.0, (b) My= 0.8, & goom = 1.0, Reg = 3 x 108,

lower-surface trip, x/c = 0.18, k = 0.12 mm. lower-surface trip, x/c = 0.18, k = 0.12 mm.

(c) M_=0.8« geom = 1.0, Re, = 3 x 106, (d) M,=0.8, & geom = 3.0, Re; = 3 x 108,
lower-surface trip, x/c = 0.35, k = 0.09 mm. lower-surface trip, x/c = 0.18, k = 0.12 mm.

(e) M= 0.8 & goo = 3.0°, Reg =3 x 106,
lower-surface trip, x/c = 0.35, k = 0.09 mm.

GP11-0232-8

Figure 8. — Lower-surface fluorescent oil-flow photographs.
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Figure 9. — Lower-surface boundary-layer profiles, M, = 0.8, Re; = 3 x 100,
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M., = 0.8, Re,= 3x 106
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GP11-0232-10

Figure 10. — Influence of lower-surface trip configuration on displacement thickness distribution.
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Figure 11. — Boundary-layer properties upstream of the lower-surface concavity.
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Trip configuration
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GP11-0232-12

Figure 12. — Drag data summary; various trip configurations at moderate Reynolds numbers and
natural transition at higher Reynolds number.
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Figure 13. — Static pressure distributions, including examples of probe interference.
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Figure 13. — Concluded.



(a) Supercritical airfoil, M, = 0.6, Re; = 4 x 106, (b) Supercritical airfoil, M, = 0.6, Rec = 4 x 106,
c;=0.58. c; = 0.58, close-up of trailing-edge region.

(c) Supercritical airfoil, M_, = 0.8, (d) Supercritical airfoil, M_, = 0.8,
Re, = 2x 105, ¢;= 0.61. Re, = 3x 105, ¢;= 0.44.

W

(e) NACA 64A010 airfoil, M., = 0.8, Reg = 2 x 106, ¢;= 0.50.

GP11-0232-40

Figure 14. — Interferograms of transonic airfoil flowfields.
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Figure 15. — Comparison of data from static-pressure orifices
and pressures determined from interferograms.
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Figure 15. — Concluded.
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Figure 16, — Boundary-layer profiles at M__ =0.6; sharp trailing edge,
Re,=4x 109, ®geom = 2-6 (see fig. 13(e)).
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Figure 17. — Boundary-layer profiles at M_, = 0.8; sharp trailing edge, Re, =3 X 106,
ctgeom = 2-4 (see fig. 13(f)).
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Figure 18. — Comparison of upper-surface boundary-layer profiles derived from pitot pressure

measurements and from interferograms.
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Figure 19. — Trailing-edge boundary-layer profiles
derived from pitot-pressure and interferogram data.
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Figure 20. — Examples of near-wake profiles.
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Figure 21. — Transformed boundary-layer profiles in law-of-the-wall coordinates; sharp
trailing edge, M_,=0.6, Re, =4 X 106, Cgeom = 2.6 (see fig. 16).
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Figure 22. — Wake components of transformed boundary-layer profiles, sharp trailing
edge, M, =0.6, Re, =4 X 106, ageom = 2.6 (see fig. 16).
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Figure 23. — Transformed boundary-layer profiles in law-of-the-wall coordinates; sharp
trailing edge, M, =0.8, Rec =310, apeqm =2.4 (see fig. 17).
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Figure 24, — Wake components of transformed boundary-layer profiles; sharp trailing
edge, M, = 0.8, Rec=3x 105, cpo o =2.4 (see fig. 17).
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Figure 25. — Comparison of upper-surface trailing-edge profiles

with Stratford’s separation profile.
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Figure 26. — Comparison of measured and calculated boundary-layer properties; sharp trailing
edge, My, =0.6, Re, =4 X 10 ageom—z 6 (see fig. 13(e)).
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{c} Lower-surface displacement and momentum thicknesses.

Figure 27. — Comparison of measured and calculated
boundary-layer properties; blunt trailing edge, M_,=0.75,
Rec=2% 105, atgeqm =1.23 (see fig. 13(b)).
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Figure 28. — Comparisons of measured and calculated boundary layer properties;
blunt trailing edge, M_,=0.8,
Rec=2x105, ageom =0.9 (see fig. 13(c)).
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Figure 29. — Comparisons of measured and calculated upper-surface boundary-layer
properties; boundary-layer trip at x/c=0.35, shocks aft of x/c=0.5.
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Figure 30. — Calculated static-pressure distribution compared with experiment;
M,,=0.6, Rec=4x 106 (see fig. 15(a)).
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Figure 31. — Comparison of calculated and measured boundary-layer and wake properties,
M_ = 0.6, Re = 4x 106, ;= 0.61.
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Figure 32. — Comparison of calculated and measured static-pressure distributions.
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Figure 34. — Repeatability of static-pressure measurements, blunt-trailing-edge model,
leading-edge boundary-layer trip, k =0.05 mm.
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Figure 35. — Repeatability of static-pressure measurements, blunt-trailing-edge model,
aft boundary-layer trips.
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Figure 35. — Concluded.
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Figure 36. — Repeatability of static-pressure measurements, sharp-trailing-edge modél.
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Trip, see fig. 36(b)
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GP11 023297

Figure 36. — Concluded.
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Trip, see fig. 36(b) Trip, see fig. 36(b)

Moo Qogom  Year Run Moo Cgeom  Year Run
a 0.798 1.4 1978 46 o 0.798 2.2 1978 17
o 0.797 1.0 1977 72.1 a 0.801 1.8 1977 2.2

(a) Moo = 0.8, Reg = 3 x 106, ¢; = 0.44. (b) Mo = 0.8, Reg = 2 x 106, ¢, = 0.61.
Trip, see fig. 36(b)
Meo Q®geom  Year Run
o 0.797 2.8 1978 41
a 0.801 24 1977 1211
2T T T T T T T

{c) Moo = 0.8, Reg = 3x 106, ¢; = 0.71.

GP11-0232-24
Figure 37. — Repeatability of static-pressure measurements, sharp-trailing-edge model,
Cp’s from 1978 shifted by 0.03.
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