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NOMENCLATURE

a function of Me , y, and r in van Driest transformation, equation (4)

CF total skin-friction coefficient of one side of a flat plate

Cf local skin-friction coefficient, T/qe

Cp pressure coefficient, (p - p_)/q_

C_ skin-friction coefficient computed from transformed velocity profile, u*

c airfoil chord

cd airfoil section drag coefficient

c_ airfoil section lift coefficient

d probe tip height

H boundary-layer shape factor, _*/e

KG_ D Gladstone-Dale constant

k boundary-layer trip roughness height

k minimum value_of k that will cause transition to occur at the tripcr

Lef f effective optical path length

. characteristic length

M Mach number

p pressure

q dynamic pressure, 1/2 0u2

Rec Reynolds number based on chord

Re_ .Reynolds number based on length,

r recovery factor

u velocity

u velocity transformed by van Driest transformation, equation (3)

ur shear velocity, _w/Pw

u+ transformed velocity normalized by shear velocity, u*/u T

w empirical wake function, equation (6)
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x coordinate measured parallel to free-stream direction

z coordinate normal to airfoil plane

z+ law-of-the-wall coordinate, (zuT)/_ w

_geom angle of attack measured with respect to the tunnel test-section centerline

y specific heat ratio

6 boundary-layer thickness

6* boundary-layer displacement thickness, P_e dz

0 boundary-layer momentum thickness, pu _ u dz
PeUe

% laser wavelength

kinematic viscosity

H wake coefficient for transformed boundary-layer profile, equation (5)

p density

T shear stress

Subscripts:

c based on airfoil chord

e conditions at edge of boundary layer

t stagnation conditions

w conditions at the wall (airfoil surface)

free-stream conditions

iv



AN EXPERIMENTAL STUDY OF TRANSONIC FLOW

ABOUT A SUPERCRITICAL AIRFOIL

Frank W. Spaid,* John A Dahlin, ± William D° Bachalo,i and Louis S. Stivers, Jr.

Ames Research Center

SUMMARY

A series of experiments was conducted on flow fields about two airfoil models

whose sections are slight modifications of the original Whitcomb supercritical air-
foil section. Data obtained include surface static-pressure distributions, far-wake

surveys, oil-flow photographs, pitot-pressure surveys in the viscous regions, and
holographic interferograms. These data were obtained for different combinations of

lift coefficient and free-stream Mach number, which included both subcritical cases

and flows with upper-surface shock waves. The availability of both pitot-pressure

data and density data from interferograms allowed determination of flow field proper-

ties in the vicinity of the trailing edge and in the wake, without recourse to any
assumptions about the local static pressure. The data show that significant static-

pressure gradients normal to viscous layers exist in this region, and that they

persist to approximately 10% chord downstream of the trailing edge. Comparisons are

made between measured boundary-layer properties and results from boundary-layer com-

putations that employed measured static-pressure distributions, as well as compari-

sons between data and results of airfoil flow field computations.

INTRODUCTION

An experimental study of the flow about a supercritical airfoil was reported in

references 1-3. That study utilized twq models of essentially the original NASA

Whitcomb integral (unslotted) airfoil section and was conducted as a cooperative pro-
gram by McDonnell Douglas Research Laboratories (MDRL), Douglas Aircraft Company

(DAC), and Ames Research Center (ARC). The investigation was intended to provide

detailed flow field survey data that would contribute to a better understanding of
mechanisms associated with transonic drag rise. This report presents results from a

continuation of that cooperative program. A portion of this material is presented in
references 4 and 5.

This investigation was motivated in part by the increased importance of viscous-
inviscid interactions in transonic flows about aft-loaded, supercritical airfoils,

relative to earlier designs having little or no aft camber. The flow field about a

supercritical airfoil operating at its design Mach number and lift coefficient is
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characterized by regions of strong vlscous-inviscid interaction, primarily the inter-

action of the upper-surface boundary layer with a shock wave, and in the trailing-

edge region. These interactions are coupled because the properties of the upper-

surface boundary layer as it approaches the trailingoedge, and its subsequent

response to the adverse pressure gradient resulting from the pronounced aft camber,

are significantly influenced by its interaction with the shock wave farther upstream.

The aft loading is associated with a large statlc-pressure difference between the

upper and lower surfaces just upstream of the trailing edge, remnants of which per-

sist into the near wake. The coupling between the external invlscid flow and the

viscous boundary layer and wake complicates the numerical computation of these flow
fields. An inviscid, subcritical computation of the flow about a conventional air-

foil having little aft camber often produces a static-pressure distribution that is a

good approximation to the experimental distribution; as a result, flow field proper-

ties can be predicted adequately by iteration between an inviscid program and a

boundary-layer program in the conventional manner. However, the straightforward
application of this procedure to an aft-loaded airfoil often fails because the initial

inviscid calculation may be so different from the actual flow field that convergence

to a physically realistic solution does not occur.

A variety of techniques, incorporating various levels of empiricism and complex-

ity, have been used to overcome these difficulties. Numerous unpublished empirical
fixes have been used in the computation of transonic flow fields about aft-loaded

airfoils. Two examples are (i) the addition of an estimated displacement-thickness

distribution to the airfoil coordinates before the initial inviscid calculation, which

is later replaced by results of boundary-layer calculations, and (2) the extrapolation

of the calculated boundary-layer displacement thickness distribution near the trailing

edge in a manner that is known to facilitate agreement between the computed and
experimental pressure distributions. A systematic, semlempirical method for treatment

of the trailing-edge region for both supercritical and other types of airfoils was

proposed by Bavitz (ref. 6). Results of a detailed analysis of the trailing-edge
region were incorporated into a procedure for airfoil flow field calculation devel-

oped by Melnik et al. (ref. 7). Analyses of the shock-wave/boundary-layer interaction
region (refs. 8 and 9) have the potential for being incorporated into an airfoil com-

putation method. Several investigators (refs. 10-12) applied the Reynolds-averaged

Navier-Stokes equations to the computation of airfoil flow fields.

Experimental data are required for the evaluation and further development of

these prediction methods. The present data are intended to support the development

of methods for computation of transonic flow fields about airfoils by allowing more

detailed comparisons with experimental data than are possible when only the usual
surface static-pressure (lift) and far-wake survey (drag) data are obtained. Test

conditions include cases having significant viscous-inviscid interaction effects;

situations dominated by extensive separation were excluded. In some instances, sur-

face static-pressure and pitot-pressure measurements are combined with density data

obtained from holographic interferograms, resulting in an unusually complete descrip-
tion of the time-mean flow fields.

The primary data and associated data analysis are presented in this report.
Additional reduced data are presented in a separate publication, the Supplement to

NASA TM-81336, which is available upon request. A request form is provided
following the list of references.
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APPARATUS AND TEST PROCEDURE

Wind Tunnel

The experiments were conducted in the 2- by 2-Foot Transonic Wind Tunnel at Ames

Research Center. This tunnel is a variable-speed, continuous-flow, ventilated-wall,

variable-pressure facility, which was reengineeredjfor occasional two-dimensional

research testing by adding rotating, model-supporting, glass side windows mounted in

unventilated, plane sidewalls. A maximum unit Reynolds number of 26.3×I06/m gener-

ally can be maintained, and a high subsonic Mach number is held to within ±0.002.

A spark Schlieren system and an 82-tube drag rake, programmed to provide total-

pressure readings at 1.3 mm intervals and static pressure readings at 25.4 mm inter-
vals across the wake of a model, are available.

Models and Traversing Rig

The test-section arrangement for these experiments is shown in figures 1 and 2.

Airfoil models were mounted between the sidewall windows, and either the traversing

rig or drag rake was mounted on the tunnel sting. Two 15.24-cm chord models of the

airfoil were used during these experiments. One model has a nominally sharp trailing

edge, and the other has a blunt trailing edge equal to 1% chord, formed by downward
rotation of the aft lower-surface contour from 65% chord to the trailing edge. This

method of modifying the geometry to produce the additional trailing-edge thickness

also has the effect of increasing the aft camber slightly. The sharp-trailing-edge

model has an aerodynamically smooth, porous leading-edge segment for dispensing oil

mixed with fluorescent dye, which is used for flow visualization. The centerline

static-pressure-orifice layout is shown in figure 3 for both models; table i gives
the airfoil coordinates.

Boundary-layer and near-wake surveys were obtained with the aid of a two-degree-
of-freedom traversing rig and probe assembly which allowed both remote streamwise and

vertical movement of the probe. Continuous potentiometer strips were used to deter-

mine probe position. Calibration of the high-resolution vertical-position output was

checked frequently with a machinist's height gage. Contact with the height gage (and

with the airfoil during the experiments) was determined by an electrical fouling

circuit. Uncertainty in measurement of a 25.4 mm distance with the gage is about

±0.04 mm, resulting in a ±0.15% uncertainty in the distance between points in a

survey from this source. The data system resolution was 394 counts/mm. The measure-

ment of distance from a survey point to the airfoil surface was limited in accuracy by

tunnel-induced vibration. It was necessary to locate the airfoil surface with the

probe while the tunnel was running in order to minimize errors caused by aerodynam-

ically induced deflections of the model and the traversing rig. As the probe was

moved toward the airfoil surface, the vertical probe-position readout typically indi-

cated 0.05 mm of travel between the first indication by the fouling circuit and the
point at which continuous contact was established. Calibration of the horizontal-

position readout was performed with a scale, resulting in an accuracy of ±0.5 mm.

Probe tips, of the type described in references 1-3, were made from 0.25 mm o.d.
stainless steel tubing, flattened and ground at the end to a height of 0.i0 mm, and

aligned with the horizontal plane. A portion of the data was obtained with a tip
made from 0.8 mm o.d. stainless steel tubing, also flattened and ground at the end

to a height of 0.i0 mm.



Holographic Interferometer

Holographic interferograms were obtained with a system which utilized the exist-

ing tunnel Schlieren mirrors, a pulsed ruby laser for creating the holograms, and a

helium-neon laser for hologram reconstruction. Holograms were obtained showing the
entire field of view of the test section windows, both with and without flow in the

test section. After processing, the no-flow plate and one of the plates taken at test

conditions were positioned in a reconstruction plate holder, illuminated with the

reference beam, and aligned for infinite-fringe interferograms. This dual-plate
method (ref. 13) allows the fringe orientation to be chosen during reconstruction.

Since the method invoZves interference between waves that follow the same optical
path but are separated in time, imperfections in optical elements are cancelled.

A possible disadvantage of the dual-plate method is that wavefronts throughout

the field of view will be distorted by density gradients if the field of view does
not include a region of uniform flow. In that case, there is no direct means to

verify that the system is in the alignment required for infinite-fringe interferom-
etry. In the present instance, the good overall agreement between surface static-

pressure distributions obtained from the interferograms and those obtained from the

static-pressure orifices (the comparison shown later in this paper) provides indi-

rect verification of infinite fringe alignment.

If the flow is adequately two-dimensional, fringes on an infinite-fringe inter-

ferogram correspond to density contours in the flow, with a constant-density incre-
ment between fringes given by

P_ - _2 : (i)
LeffKG-D

where Pz and P2 are the densities at two adjacent fringes; Lef f is the effective
optical path length, including the effect of the sidewall boundary layers (for the

present case, Lef f = 0.599 m); % is the laser wavelength; and KG_ D is the
Gladstone-Dale constant. The value of density at one fringe must be determined by

independent means. The method used in this investigation was to choose the density
level at a reference fringe to give the best overall agreement between surface static-

pressures derived from interferograms and those measured at static-pressure orifices.

More information concerning the application of holography to airfoil testing is
given in reference 14.

INFLUENCE OF BOUNDARY-LAYER TRIP CONFIGURATION ON

AIRFOIL PERFORMANCE

The experiments described in references 1-3 were conducted with leading-edge

boundary-layer trips. If such a trip is effective in causing transition to occur

near the leading edge, complications associated with interaction between a shock wave

and a laminar, or transitional, boundary layer are avoided, as are effects of inter-

action between an aft-located roughness strip and a turbulent boundary layer origi-

nating near a leading-edge suction peak. However, at relatively low Reynolds number,

locating the transition strips farther aft can result in a displacement-thickness

distribution near the trailing edge that provides a better simulation of viscous-

inviscid interaction effects occurring at full-scale Reynolds number. During the
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present investigation, emphasis was on aft-located boundary-layer trips in an attempt
to take advantage of this potential for full-scale Reynolds number simulation. The
recommendations of Braslow et al. (ref. 15) were used as guidelines in selecting trip
configurations.

The roughness elements used for the boundary-layer trips were spherical glass

beads which had been sieved to obtain a size variation of approximately ±5% of the

nominal diameter. The trips were 1.6 to 2.2 mm in width. The value of x/c used in

identifying a trip is the downstream edge. The trips were applied by masking the
desired region with cellophane tape, coating the region with adhesive from a wiper of

the type formerly supplied with Polaroid black-and-white print film, spraying the
glass beads on with an airbrush, and immediately removing the tape while the adhesive

was still wet. The tape was removed as soon as possible to avoid the formation of

ridges in the adhesive at the edges of the trip. It was difficult to spray the beads

such that the desired uniform, sparse distribution of roughness was achieved; it was

often necessary to apply the trip several times before the result was acceptable.
Data obtained with trips having closely spaced elements (spacing of the order of a

few bead diameters) usually show disturbances in the surface static-pressure distri-

bution near the trip and anomalously large boundary-layer thicknesses downstream of

the trip.

A series of experiments was conducted during 1975 to evaluate the usefulness of

testing at relatively low Reynolds number with aft-located boundary-layer trips and

to select appropriate test conditions for more detailed study. (The data of this

investigation were obtained from several tunnel-occupancy periods over a period of

several years; the tabulated data and the data presented in the appendix are identi-

fied by run number and year.)

The effectiveness of each trip configuration tested in the 1975 tunnel-occupancy

period was verified by the sublimation flow-visualization technique. Fluorene

(alphadiphenylenemethane) was dissolved in a volatile solvent and sprayed on the
model. The tunnel was started, and test conditions were held constant until the

characteristic sublimation pattern was observed, that is, a thin coating of fluorene

remaining on the model forward of the trip and essentially a clean model-surface

downstream. Interpretation of sublimation patterns was sometimes complicated by non-

uniformity of the original coating, but in each case it was concluded that the trip

had been effective in causing boundary-layer transition.

This study was motivated in part by the comparison shown in figure 4. Data

corresponding to two boundary-layer trip configurations obtained from the 2- by

2-ft tunnel at Rec = 3xlO 6 and 4×106 are compared with data obtained at

Re c = 14.6xi06 from the 0.38- by 1.52-m test section of a transonic wind tunnel
operated by the National Research Council (NRC) of Canada. The NRC data correspond

to natural transition. The data from the 2- by 2-ft tunnel were limited to

Re c = 3×106 for M_ > 0.76 because a tendency of the tunnel drive system to over-
heat limited the run rate at higher Reynolds numbers in this Mach number range. The

difference in drag levels at the lower Mach numbers is in good agreement with scaling

laws for turbulent skin-friction drag (see ref. 16). The differences between the two

sets of data in the region of rapid drag rise implied a need for further study.

Since the NRC data were obtained at a Reynolds number much closer to that for which

the airfoil was designed and are in reasonable agreement with drag data for this air-
foil obtained from other facilities, the data from the 2- by 2-ft tunnel were

initially regarded as questionable.



Drag polars for M_ = 0.76, Rec = 4x106, and for M_ = 0.80, Rec = 3x106 from a
subsequent investigation are shown in figures 5 and 6. Data were obtained with the

sharp-traillng-edge model with several trip configurations. Also included are _air-

ings of high-Reynolds-number data obtained from the NRC tunnel, presented both as

measured and shifted in an attempt to compensate for the Reynolds number difference.

The shifting of drag d_ata presented in this section for facilitating comparisons
between data obtained at different Reynolds numbers was accomplished as follows:

Reynolds number scaling is assumed to follow the Schultz-Grunow flat-plate total
skin-frictlon law (ref. 16):

0.427
CF = (2)

(log Re_ - 0.407) 2.64

The variation of skin-friction drag with Reynolds number is assumed to be independent

of Mach number and angle of attack. A drag increment is computed at M= = 0.5 and

is applied throughout the Mach number and angle-of-attack range, using cd = 0.0105

at M_ = 0.5, Rec = 4x106, and c_ = 0.6 as a reference level. Values of k/kcr
corresponding to each trip configuration and chord Reynolds number are given. The

quantity kcr is the roughness height corresponding to a roughness Reynolds number of

600, the value indicated in reference 15 to be the minimum roughness height that
causes transition to occur at the trip if the Reynolds number based on distance from

the leading edge to the trip is greater than I05. Data presented in reference _5

indicate that roughness sizes greater than 2kcr produce additional roughness drag.

The data of figures 5 and 6 were obtained with the same upper-surface boundary-

layer trip. Figure 5 gives data corresponding to three lower-surface trip locations
having approximately minimum-size roughness for the lower Reynolds number. The

results are comparable for lower-surface trip x/c values of 0.06 and 0.18 at the

higher lift coefficients. The lower-surface trip at x/c = 0.35 produces slightly

higher drag at M_ = 0.76 throughout most of the cI range. At M_ = 0.8, the
polar obtained with this trip has a different shape from the others, with high drag

levels in the intermediate cI range. Similar data shown in figure 6 for constant

lower-surface trip location and a range of roughness heights show that the optimum
height for this chordwise.location is approximately the upper limit of allowable

roughness, according to the criterion of reference 15.

Examples of static-pressure distributions at M_ = 0.8 at two angles of attack

are shown in figure 7. Data obtained with trips giving the best and poorest drag

performance in the intermediate cI range have been chosen for comparison. The

static-pressure distribution obtained at ageom = i'0°, near the minimum of each drag
polar, are similar, even though the corresponding drag difference is large. At

ageom = 3-0°, the drag is apparently dominated by shock losses, and both the static-
pressure distributions and the drag levels are similar.

Figure 8 consists of a series of fluorescent oil-flow photographs of the lower

surface of the sharp-trailing-edge model. The boundary-layer trip and the circular

patches of epoxy filler covering heads of machine screws can be seen in the photo-

graphs. These photographs show that at some test conditions the flow was separated

in the lower-surface concavity. Figure 8(a) corresponding to M_ = 0.6, ageom = 2"6°,
shows the flow to be attached in the concavity. This test condition is the only one

in which the flow was attached in the concavity for which extensive boundary-layer

and wake-survey data were obtained. Figures 8(b) through 8(e) correspond to the test

conditions of the static-pressure comparison, figure 7. At ageom = I'0°, the chord-
wise extent of separation is approximately the same for both trip configurations. At



the higher angle of attack, the flow corresponding to the lower-surface trip at

x/c = 0.35 is attached, but it is separated with the trip at x/c = 0.18.

A series of lower-surface boundary-layer surveys was obtained with the sharp-

traillng-edge model during a test conducted in 1977 to obtain more detailed data to

support interpretation of the drag data previously presented. Data were obtained at

M_ = 0.8, Re c = 3x106, and egeom m I'0°" Four of the lower-surface trip configura-
tions of the 1975 test series were chosen for study. The upper-surface trip was the

same in all experiments, x/c = 0.35, k = 0.08 mm.

Two sets of profile data are presented in figure 9 corresponding to the trips

giving the best and the poorest drag performance. (Details of the boundary-layer

data-reduction process will be presented later.) The profiles of figure 9(a), corre-

sponding to the best trip, show attached flow at x/c = 0.5 and 0.6, forward of the

concavity. The profile at x/c = 0.75 is near separation, and the profile at

x/c = 0.91 is separated, although the layer of reversed flow is thin relative to the

boundary-layer thickness. Since a pitot-probe is incapable of measuring reverse
velocities, data for which the measured pitot pressure is less than or equal to the

local static pressure have been omitted from the plots. The shape of the trailing-

edge profile shows the effect of the lower-surface expansion in the last few percent
chord. The profiles of figure 9(b), although similar to those of figure 9(a) at

x/c = 0.5 and 0.6, show a larger separated region and a correspondingly thicker

trailing-edge boundary layer.

Both oil-flow photographs corresponding to M_ = 0.8, _geom = i'0° (figs. 8(b)
and 8(c)) show a similar chordwise extent of separation. However, the boundary-layer

and drag data show that in one case the separated region was thin, and its influence

on the primary flow field characteristics was small; in the other case it was thick

and apparently caused an increase in drag. At M_ = 0.8, _geom = 3-0° (figs. 7(b)
8(d), and 8(e)), separation had a negligible influence on drag, implying a thin

separated region.

Displacement-thickness distributions corresponding to the data of the previous

figure are presented in figure I0, which also includes data corresponding to trip

configurations resulting in intermediate drag performance. Accurate values of dis-

placement thickness cannot be determined for profiles having significant regions of

reverse flow; for these profiles, flow velocities were set equal to zero in the

reverse-flow region, and the data were plotted with an arrow indicating that the

values represent lower limits. Boundary-layer properties in the region approaching

the concavity, x/c = 0.5 and 0.6, are plotted in figure ii for the same test condi-

tions as the data of the previous figure. Displacement thickness, shape factor

(H = _*/e), and skin-friction coefficient are presented. The skin-friction coeffi-

cient was determined by a least-squares fit to the law-of-the wall logarithmic

profile.

There is no consistent trend linking development of the time-mean profile imme-

diately upstream of the concavity, such as increasing H or decreasing Cf, with

increasing separation in the concavity and correspondingly increasing drag. Appar-

ently differences in the turbulence flow properties associated with the differences

in trip configuration are responsible for the observed variations in response to the

adverse pressure gradient in the upstream portion of the concavity. If attached
flow is to be maintained in the concavity (or the extent of separation minimized),

the beginning of transition must be sufficiently far upstream of the region of

adverse pressure gradient. The poor performance observed with the lower-surface trip
at x/c = 0.35 is probably a result of insufficient distance between the trip and



the beginning of the concavity. The influence of lower-surface bead size at a fixed

chordwise location on drag may be associated with the ability of the larger bead sizes

to accelerate the transition process. Although drag was not measured during the 1977
test series, the trend in lower-surface viscous drag is believed to follow the trend

in lower-surface trailing-edge boundary-layer thickness.

A summary of drag data for several values of c_ is presented in figure 12.

Data obtained with the sharp-trailing-edge model are shown for two boundary-layer-
trip configurations. Limited data obtained with the blunt-trailing-edge model are
included, together with a fairing of high-Reynolds-number data from a test in the NRC

tunnel. All data obtained at Rec # 4x106 have been shifted to that Reynolds number

by the method described previously. The drag-rise characteristics of the sharp-

trailing-edge model corresponding to the lower-surface trip configuration x/c = 0.18,

k = 0.12 mm, are consistent with the high-Reynolds-number data for cI < 0.8 and are
clearly superior to data obtained with the alternative trip configuration chosen
earlier in this study. Data obtained with the blunt-trailing-edge model at

Rec = 2x106 and 4x106 are in reasonable agreement with data obtained with the other

model, although some discrepancies are present in the drag-rise region.

Results of this study imply that particular care should be taken in testing and

interpreting data associated with high-aspect-ratio wings employing supercritical,
aft-loaded airfoil sections, if local Reynolds numbers based on chord are in the

range of the present study. Separation in the lower-surface concavity can lead to

high values of drag, which are probably not representative of performance at flight

Reynolds numbers. Although the present results indicate that a thin separated region
in the concavity may not degrade performance, separation should be avoided. Oil-flow

visualization studies should be conducted if this type of separation is likely.

AIRFOIL FLOW FIELD MEASUREMENTS

Static-Pressure Distributions

Plots of those static-pressure distributions for which boundary-layer data also

were obtained are presented in figures 13(a)-13(g), and the corresponding tabulated
data are given in table 2.

A comparison of static-pressure data obtained with the two airfoil models at

M_ = 0.6 is shown in figure 13(e). The increased aft camber of the blunt-trailing-
edge model is at least partially responsible for the observed differences in the

static-pressure distributions. Some of the differences, such as those for x/c < 0.3

on the lower surface, may be caused by deviations of the actual airfoils from the
theoretical coordinates.

Data obtained with the blunt-trailing-edge model at M_ = 0.83 are presented in

figure 13(g). Data from the present study with aft-located boundary-layer trips are

compared in this figure with data obtained with a leading-edge trip from reference i.

Although the Reynolds number and angle of attack are not matched precisely, these
discrepancies are not sufficient to cause the difference in shock location; this

variance is believed to be associated with the difference in upper-surface
displacement-thickness distribution.

Probe interference effects observed during this study are similar to, but smaller
than, those reported by Cook (ref. 17). Static-pressure distributions obtained
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upstream of the probe location, with the probe near the surface in position for a

survey, are superimposed in figures 13(a) and 13(d) on the corresponding distribution

obtained with the probe retracted. Where interference effects are present, they

always take the form of an additional adverse static-pressure gradient superimposed
on the undisturbed static-pressure distribution. The magnitude of the effect

decreases as the probe tip approaches the trailing edge. At the trailing edge and

slightly forward of the trailing edge on the lower surface, probe interference effects
on the static-pressure distribution were always negligible (less than the run-to-run

data repeatability).

Results of an attempt to determine the effects of these static-pressure pertur-

bations on boundary-layer properties are summarized in table 3. In the first two
columns, calculated values of displacement thickness, momentum thickness, shape

factor, and skln-friction coefficients are presented for upper-surface locations and

for the test conditions of figure 13(a). Calculations were performed using the
Cebeci-Smith finite-difference method (ref. 18), both for the undisturbed static-

pressure distribution and for the distributions obtained with the probe tip at the

survey station. Use of the perturbed pressure distribution in a two-dimensional
calculation almost certainly overestimates the influence of the perturbation, because

the actual perturbation is a three-dimensional effect (ref. 17). The experimental

boundary-layer data were reduced using both the pressure coefficient obtained in the
presence of the probe and the interference-free value. The former values were then

corrected by ratios of the computed quantities (column 5, table 3), and percent

differences were computed using the corrected values of column 5 as a reference. The

measured data, reduced using the noninterference Cp, differ little, in most cases,

from the data reduced using the Cp measured in the presence of the probe and cor-
rected using the calculated values. A similar set of computations was performed in

which data were first reduced using the Cp values containing interference effects
and then expanded isentropically to the noninterference Cp, accounting for stream-
tube area change. These boundary-layer properties differed only slightly from those

calculated using the noninterference Cm. Although a completely satisfactory evalua-
tion of interference effects is not pos§ible without a set of interference-free

experimental data, the use of the noninterference Cp directly is believed to give
results that are at least as accurate as any of the more complex alternatives.

The influence of interference effects on the measured distribution of boundary-

layer properties is minimized by the decreasing magnitude of the static-pressure
perturbations with increasing x/c of the survey station. As a result, the full

profiles forward on the airfoil are relatively resistant to the increased adverse

pressure gradient, and the profiles nearer the trailing edge having larger shape
factors are subjected to a smaller incremental pressure gradient.

Interferograms

Examples of interferograms obtained with the sharp-trailing-edge model and with
an uncambered NACA 64A010 airfoil (ref. 14) are presented in figure 14. Figure 14(a)

shows a predominantly subcritical case. A close-up of the trailing-edge region is

shown in figure 14(b). Two supercritical cases with upper-surface shocks correspond-

ing to two different angles of attack are shown in figures 14(c) and 14(d). Differ-

ences in the fringe patterns between the two airfoils near the trailing edge result

from the stronger viscous interaction in this region associated with the supercritical

airfoil. Fringe patterns in the viscous and inviscid regions are distinctly differ-
ent. As a result, the approximate boundaries of the viscous regions are visible.

Within the viscous regions, the static pressure varies only in the streamwise



direction, except near the shock and the trailing edge, but the fringe patterns show

density gradients to be approximately parallel to streamlines. Static temperature

variations associated with adiabatic deceleration therefore must be the predominant

mechanism for production of density variations in the boundary layers and wakes. For

the NACA 64A010 airfoil, the closed contours in the primarily inviscid flow are

located symmetrically above and below the trailing edge. By contrast, for the super-

critical airfoil, the closed contours are displaced streamwise in the interferograms,
indicating local density maxima in the lower-surface concavity and downstream of the

trailing edge on the upper surface of the near wake. The fringe pattern in the

lower-surface boundary layer near the trailing edge is a composite of the viscous and

inviscid patterns, indicating that adiabatic deceleration and static-pressure gra-

dients are of comparable importance in producing density variations in this region.

Data from static-pressure orifices and pressures determined from the interfero-

grams usin_ the assumption of constant stagnation pressure and temperature are com-

pared in figure 15. A comparison of 1977 and 1978 data showed that an apparent 0.4 °

increase in angle of attack in the 1978 data was required to achieve agreement with a

corresponding static pressure distribution obtained in 1977. Values of angle of

attack associated with the 1978 data have been decreased by 0.4 ° throughout this
report, except in table 2, and in the appendix. Pitot-pressure data obtained for the

test conditions of figure 15(b) show the stagnation pressure at the boundary-layer
edge downstream of the shock to be equal to the free-stream value within experimental

uncertainty. As a result, no corrections for shock losses were made in the computa-

tion of static pressure from the interferogram data for the cases of figures 15(b)

and 15(c). Agreement is generally good between the two types of data, implying that
a close approximation to infinite-fringe alignment was achieved. Oil-flow visualiza-

tion photographs show that upper-surface shocks on the supercritical airfoil sweep
forward near the sidewalls, causing an apparent smearing of the shock compression in
the interferogram data. The comparison of figure 15(d) for the NACA 64A010 airfoil

indicates that the flow near the shock is more nearly two-dimensional. Apparently the
greater upper-surface curvature of this airfoil causes the shock to remain at a more

nearly constant chordwise location than it does on the supercritical section.

The interferogram data give static-pressure distributions at the edges of the

boundary layer and near wake, which are difficult to measure by other techniques.

Significant static-pressure gradients normal to streamlines are present in the near-

wake data for the supercritical airfoil and extend approximately 10% chord downstream
in figures 15(a) and 15(b). The effect is less pronounced in figure 15(c) and for

the NACA 6-series airfoil. Pressure variations across the lower-surface boundary
layer near the trailing edge are present in the data for the supercritical airfoil.

The flow is attached in the lower-surface concavity at the test conditions of fig-

ure 15(a), M_ = 0.6; the static pressure varies across the boundary layer throughout
most of the lower-surface concavity in this situation. On the other hand, little or
no static-pressure variation normal to the surface is indicated in the data of

figure 15(b) for M_ = 0.8, cI = 0.61 where the flow was separated in the concavity.
The flow in the concavity at M= = 0.8, cI = 0.44 was also separated, and the data
of figure 15(c) also indicate little static-pressure variation across the separated
boundary layer.

Boundary-Layer and Wake-Profile Data

Two sets of boundary-layer data derived from pitot-pressure measurements have

been chosen for presentation in detail; both were obtained with the sharp-trailing-
edge model. Data were reduced, using the compressible Bernoulli equation in subsonic
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flow and the Rayleigh pitot formula in supersonic flow, assuming constant stagnation

temperature. The first data set corresponds to the case at M= = 0.6, Rec = 4x106

(fig. 13(e)). The second corresponds to M_ = 0.8, Rec = 3×106 , _geom = 2"4°
(fig. 13(f)) and is characterized by a shock located relatively far aft of the trip,
so that effects of the trip on the shock-wave/boundary-layer interaction are mini-

mized, but sufficiently far forward to permit the existence of a region of nearly

constant static pressure immediately downstream of the shock, thus allowing recovery

of the boundary-layer profile before encountering the adverse pressure gradient near

the trailing edge. The boundary-layer profiles are presented in figures 16 and 17;
velocities are normalized by the free-stream value, and a common length scale is used

to facilitate direct comparison. The profiles of figure 16(a) show features typical

of attached turbulent boundary layers, except at the trailing edge where the upper-

surface profile appears to be approaching separation and the lower-surface profile
shows the effects of the sudden expansion in the final few percent chord.

The laminar boundary layer at x/c = 0.3 on the upper surface is shown in

figure 17(a). This boundary layer is approximately at the lower limit of resolution

of the measuring technique. Values of overall boundary-layer thickness, displacement
thickness, and momentum thickness, at this station all normalized by the chord, are

tabulated and compared with values calculated by the Cebeci-Smith method (ref. 18),

using the experimental pressure distribution. Agreement between measured and com-

puted thicknesses is good. Subsequent thickening of the boundary layer by the shock
located at x/c m 0.55 is apparent. Although no reverse flow is indicated by the

lower-surface boundary-layer profile at x/c = 0.91, oil-flow data indicate that a

separation bubble was present in the lower-surface concavity under these conditions.

Instances where measured pitot pressures were slightly in excess of the local static

pressure in regions where the flow was known to be reversed have been reported by
others (refs. 19 and 20).

Figure 18 presents boundary-layer profiles derived independently from pitot-

pressure and interferometry data. These data were reduced employing the usual assump-
tion that the static pressure does not vary in the direction normal to the surface.

This comparisonservesprimarilyas a check on both types of data, since the tech-
niques are subjectto differenterror sources, and as a demonstrationof repeatabil-
ity, since the data were obtainedduring differenttunnel entries. Other comparisons
of this type show similartrends: the profilesobtainedby the two methods at
M = 0.8 were always in better agreement than those obtained at M_ = 0.6.

Trailing-edge profiles of density, pitot pressure, velocity, and static pressure

arepresented in figure 19. The velocity and static-pressure data were derived from

the density and pitot-pressure measurements with the assumption of constant stagna-

tion temperature. Integral properties for these profiles were calculated as described
in reference I, with the modifications for static-pressure variation across the

boundary layers proposed by Zwaaneveld (ref. 21). The key feature of this modifica-
tion is the definition of a reference inviscid flow having the experimentally deter-

mined static-pressure distribution and the free-stream stagnation pressure. The data

of figure 19 show a decreasing static-pressure level with increasing z/c. A major

portion of the waviness in the derived Cp distributions is undoubtedly associated
with the fact that the density and pitot-pressure data were obtained in separate

experiments. Errors in the location of the z-axis origin relative to the measured
profiles also may have contributed to errors in calculated static pressure. These

data show a static-pressure variation throughout the upper-surface boundary layer,

especially for the lower Mach number, M_ = 0.6. Most of the variations in Cp
within the lower-surface profiles are confined to the region near the surface. The

average Cp levels in the lower-surface profiles are significantly higher than the
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trailing-edge surface Cp'S. The surface measurements were made with aft-facing ori-
fices in the trailing edge, a technique which would be expected to give an average

static-pressure level for the entire trailing-edge region.

The use of the surface trailing-edge Cp in computing velocities and integral
properties for the lower-surface trailing-edge boundary layers leads to large errors.

Lower-surface traillng-edge velocities were computed using the present method in the

cases for which interferograms were available; Cp increments between the trailing-
edge static-pressure orifice and the average value for the lower-surface profile

derived from interferograms were used for the remaining cases.

Examples of near-wake profile data presented in figure 20 correspond to the test

conditions of figures 15(a) and 15(b). Comparisons of wake-velocity profiles similar

to those presented in figure 18 for boundary-layer data, in which the interferogram
and pitot-pressure data were reduced independently, show reasonable agreement, except
near the wake centerline; near the centerline, the minimum velocities derived from

the interferograms are greater than those computed from the pitot-pressure measure-

ments. Although the cause of this discrepancy is not completely understood, the

fact that the interferogram represents an average of the density field over the test-
section width is believed to be a contributing factor. The near-wake velocities of

figure 20 were computed from the pitot-pressure data, using static-pressure levels
determined from the interferogram at the edges of the wake and assuming a linear

variation in static pressure across the wake.

Boundary-layer velocity profiles corresponding to attached flow were transformed

to equivalent incompressible profiles, using the van Driest transformation (ref. 22):

u (u)u* = e sin-i a u (3)
a

where
z/2

= r T ea (4)
1+ r M

2 e/

The subscript e refers to edge conditions, and r is the recovery factor, taken to

be 0.89. The transformed profiles were fitted by an iterative least-squares tech-

nique to Coles' wall-wake formula (ref. 23):

u+ = 1 z+
0.4----_£n + 5.0 +_?_ w (5)

• 2/_z\
w = 2 sln _) (6)

where u+ = u*/uT; z = (zuT)/Vw;uT is the shear velocity _w/Pw; T is the shear
stress,and the subscript w refers to conditionsat the surface. The quantities
uT, H (wakecoefficient),and _ (boundary-layerthickness)were determinedby the
fitting-process. Additional details pertaining to the transformation and fitting

process are given in references 1 and 2. Apparently because of the abrupt expansion

on the lower surfacenear the trailingedge, the lower-surfacetrailing-edgeprofiles
did not conform to the wall-wake familyand have been excludedfrom this presentation.
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Most upper-surface trailing-edge profiles did not exhibit a distinct logarithmic

region, implying a state of incipient separation.

The data of figures 16 and 17 are presented in wall-wake coordinates in fig-
ures 21-24. In most cases a well-defined logarithmic region is present near the wall.

Some data for which the wake component of the profile was negligible have been

omitted from figures 22 and 24. Boundary-layer and wake integral properties are

summarized in table 4, and velocity and density profiles are presented in table 5.

A representative sample of the upper-surface trailing-edge profiles is compared

with Stratford's separation profile (ref. 24) in figure 25. Stratford's analysis for

an incompressible turbulent boundary layer at separation predicts the following

velocity profile near the surface:

i/2

u = (7)

where k = 0.41. This can be written,

u= _w d(x/c) 7 (8)

_alues of the static-pressure gradient used in determining the predicted profiles

of figure 25 were estimated from the data of figure 13. Figure 25(a) is clearly a

separated profile. Since the points near the surface for figure 25(b) also lie below

the predicted profile, it is probably separated too. Cases (c) and (d) are in rea-

sonable agreement with the predicted profile, indicating a state of incipient separa-

tion. The experimental profile of figure 25(e) is probably attached, since it lies

above the incipient separation profile and since a small logarithmic region exists
near the surface (fig. 23(a)).

COMPARISONS WITH COMPUTATIONS

Boundary-Layer Computations

Comparisons between measured and calculated boundary-layer properties are pre-

sented in figure 26 for the case shown in figure 13(e), the sharp-trailing-edge model

at M_ = 0.6. This case is probably the one for which the best overall agreement

would be expected between measured and calculated boundary layers. First, the flow

is almost completely subcritical, with only a small supersonic region at the leading

edge, so that complications caused by shock-wave/boundary-layer interactions are
absent. Second, both pitot-pressure measurements and oil-flow results indicate that

the flow remained attached in the lower-surface concavity.

Experimental momentum and displacement thicknesses for the upper surface are

compared in figure 26(a) with results of computations obtained from three boundary-

layer computation methods, using the measured static-pressure distribution. Corre-

sponding values of skin friction and shape factor are compared in figure 26(b). The

boundary-layer computation methods used for this purpose are the Cebeci-Smith method

(ref. 18), a finite-difference method which is among the most accurate and generally
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applicable methods available, and two integral methods (refs. 25 and 26). The Nash-

Macdonald method was developed specifically for computation of boundary layers on

airfoils having flat-rooftop-type pressure distributions; it has been used in combi-

nation with programs for computation of transonic airfoil flow fields (refs. 27
and 28). Initial conditions for the Nash-Macdonald method for this and all subsequent

cases were obtained from the Cebeci-Smith results, just downstream of transition.

Agreement between measured and calculated properties is reasonably good for
x/c < 0.8.

Discrepancies in Cf and H shown by Bower's method (ref. 25) for 0.3 < x/c < 0.4

are caused by the use of an experimental profile for starting the calculation; it is
remarkable how for x/c > 0.4, the predictions of this scheme are insensitive to the

perturbation in initial conditions. The close agreement between the Cebeci-Smith

computations and those of Bower's method is consistent with results from numerous

similar comparisons between predictions of the Cebeci-Smith method and results from
the methods of Reeves (ref. 29) and Bradshaw and Unsworth (ref. 30), even though each

of these methods is substantially different from the others. Near the trailing edge,
the Nash-Macdonald predictions depart drastically from those of the other schemes;

the computed displacement thicknesses exceed measured values. Since the computed

momentum thickness is underpredicted, this situation corresponds to a computed shape-

factor distribution that is much larger than the experimental distribution. Only the

Nash-Macdonald method predicts separation just upstream of the trailing edge, as

indicated by the computed skin-friction distribution. Although the pitot-pressure

measurements indicated that the flow was attached at the trailing edge, the presence

of a small region of reverse flow may not have been detected by the probe. These data

correspond to case (c) of figure 25, indicating incipient separation at the trailing

edge.

The Nash-Macdonald method contains a direct dependence of a boundary-layer shape-

factor parameter on the local static-pressure gradient; the latter was derived from

a correlation of airfoil boundary-layer data restricted to adverse pressure gradients.

Apparently this correlation causes the resulting prediction of displacement-thickness

development near the trailing edge to differ from that of the other methods and to

agree better with the experimenta_ datain this region. Since the boundary-layer
formulation is invalid in the immediate'vicinity of the trailing edge, this agreement

is partially fortuitous.

A similar set of comparisons for the lower surface is presented in figures 26(c)

and 26(d). The calculations include the Cebeci-Smith and Nash-Macdonald methods.

Agreement between both sets of calculations and the data is reasonably good upstream

of the concavity. Both methods underpredict the growth of displacement thickness,
and the skin-friction predictions of the Cebeci-Smith method are in better agreement

with the experimental data. The discrepancies between measured and calculated skin

friction upstream of the concavity may be due in part to inadequate correction for

probe interference effects. This static-pressure distribution is considerably dif-
ferent from those used to determine the shape-factor correlation in the Nash-

Macdonald method. Although the Nash-Macdonald method does not adequately treat flows

in which the static-pressure gradient changes from adverse to favorable, it is mar-

ginally suitable for the flow type under consideration, in which a steep adverse

pressure gradient is followed by one less severe.

Comparisons involving both upper and lower surfaces are shown in figure 27 for

the case of the blunt-trailing-edge model at M_ = 0.75. This flow field was char-

acterized by an upper-surface shock at about 18% chord.
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In this and all subsequent cases involving a shock-wave/boundary-layer interac-

tion, care was taken in the definition of the static-pressure distribution used for

boundary-layer calculations. In a study reported by Lynch (ref. 31), boundary-layer

properties computed by the Cebeci-Smith method downstream of a shock-lnduced pressure

rise showed sensitivity to the extent of streamwise smoothing of the static-pressure

distribution. Since static-pressure orifices on the models used in the present study

are spaced at intervals of 5% chord, except at the leading edge, details of the sur-

face static-pressure distribution in regions of shock-wave/boundary-layer interaction
were not resolved. The calculations presented here utilized static-pressure distri-

butions in which the shock-induced pressure rise was smoothed over a streamwise dis-

tance of 8-10 times the upstream value of 6, which was the most abrupt pressure rise

that could be treated by the Cebeci-Smlth program for the present set of experimental
data. This distance is difficult to define precisely because of difficulty in defin-

ing both _ and the extent of the interaction region. Examination of a summary of

experimental shock-wave/boundary-layer interaction data presented by Inger (ref. 32)

indicates that this degree of smoothing of the wall static-pressure distribution is

of the correct order of magnitude.

The large shape factors indicated by the measured boundary-layer profiles in the

lower-surface concavity imply that the flow was probably separated, even though the

measured pitot pressures were always greater than the static pressure. The data of

figures 27(a)-27(c) were obtained from the two tests involving separate model instal-
lations. These results indicate that data repeatability was reasonably good; the

most important source of discrepancies is probably associated with unavoidable differ-

ences in the boundary-layer transition strips. Since the upper-surface boundary layer

was slightly thicker in the 1976 test than in the 1977 test, it is not surprising
that the observed difference in displacement thickness is maximum at the trailing

edge. Both the Cebeci-Smith and the Nash-Macdonald methods are in good agreement
with the measurements downstream of the shock. The relative behavior of the Cebeci-

Smith and the Nash-Macdonald methods near the trailing edge is similar to that of the

earlier comparison. Note, however, that the Nash-Macdonald skin friction decreased
to zero at x/c = 0.91. Downstream of this point, the calculation proceeds, using a

constant value of shape-factor parameter which has little physical significance.

The comparisons of figure 27(c), involving lower-surface momentum and displace-

ment thicknesses, are typical of the remaining lower-surface results. In this case,

the Cebeci-Smith and the Nash-Macdonald predictions are in good agreement with the

data at the first two stations, but the Cebeci-Smith predictions indicate separation

at the third station_ probably not far from the actual separation point. The Nash-

Macdonald method predicted attached flow for this later station, as well as for all

of the remaining lower-surface flows. Since neither formulation is valid for flow at

or downstream of separation, comparisons downstream of a physical separation location

are not meaningful.

Results obtained with the blunt-trailing-edge model nearer the design condition,

M= = 0.8, are shown in figure 28(a). In this case and in all of the following cases,

the upper-surface boundary-layer trip was located at x/c = 0.35. Good agreement

between measured and computed values of both momentum and displacement thicknesses is

shown for the laminar boundary layer upstream of the trip. Agreement is fairly good

between measured and computed properties at x/c = 0.4, but the shape-factor discrep-

ancy and the proximity to the boundary-layer trip indicate that the experimental

boundary layer was probably transitional at this station. Agreement of all calculated

quantities with experiment from 0.5 S x/c ! 0.85 is good, a result not anticipated,
because none of the details of the shock-wave/boundary-layer interaction are
considered.
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The sensitivity of the Nash-Macdonald method to local static-pressure gradients

is manifested in a peak in the displacement thickness at the shock. Neither method is

accurate near the trailing edge, where the Nash-Macdonald method again predicts early

separation, based on computed Cf. The Nash-Macdonald method continues to proceed

downstream of the point where zero skin friction is first predicted, using the pre-

viously mentioned arbitrary maximum value of shape-factor parameter. The lower-

surface results of figure 28(¢) are similar to those of figure 27(c).

Four sets of upper-surface data are presented in figure 29 for both blunt- and

sharp-trailing-edge models at M_ = 0.80 and for the blunt-trailing-edge model at

M_ = 0.83. Agreement between measured and calculated boundary layers on the forward

portion of the airfoil is reasonably good, except in figure 29(a). These cases corre-

spond to stronger, more-aft-located shock waves on the upper surface than those shown

in figure 28, and the increases in boundary-layer thicknesses caused by the interac-

tions are correspondingly greater. Predictions of these increases also are good.

Analyses proposed by Inger and Mason (ref. 8) and by Bohning and Zierep (ref. 9)

predict separation at the shock for all cases of the present study. It is possible
that separation bubbles were present in the interaction region but were too small to

be detected by the techniques of this investigation.

The Cebeci-Smith predictions of displacement and momentum thickness fail at

0.90 < x/c < 0.95. Further study is needed to determine whether the boundary-layer

calculations are accurate throughout the entire region where the formulation is valid;

if a special treatment of the trailing-edge region is employed, such as that proposed

by Melnik et al. (ref. 7), the upstream boundary conditions provided by the conven-
tional calculation must be accurate.

A typical example of a Nash-Macdonald prediction for this type of case is

included in figure 29(c), in which a large overshoot in.displacement thickness occurs

at the shock and the predicted displacement thicknesses near the trailing edge are

too large.

The data of figure 29(d) correspond to the case described in detail in refer-

ences i and 2, except for the previously mentioned difference in boundary-layer trip

location (see fig. 13(g)). The present data show the expected thinner boundary layer

over the aft portion of the airfoil, relative to the data of references i and 2,
associated with aft movement of transition, and also better agreement between mea-

sured and computed increases in momentum and displacement thicknesses caused by the
shock.

Airfoil Flow Field Computations

Comparisons between measured and computed static-pressure distributions are pre-

sented in figure 30 for the test condition at M_ = 0.6, sharp-trailing-edge model

(see figs. 14(a), 14(b), and 15(a)). The computation technique, developed by

Garahedian and Korn (ref. 33) and extended by Tranen (ref. 34), uses the full

potential equation for two-dimensional, steady, inviscid transonic flow, in conjunc-

tion with a quasi-conservative, rotated differencing scheme. The region exterior to

the airfoil is mapped to the interior of a circle. The effective airfoil shape used

for the calculation of figure 30(a) was obtained by adding a displacement thickness

distribution faired through the measured values for this case to the airfoil coordi-

nates, resulting in a profile having an open trailing edge. The calculation of the

potential field uses only the airfoil surface-slope distribution. When the results
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are transformed to the physical plane, the computed flow field includes a source

within the airfoil whose strength is determined by the trailing-edge thickness.

Agreement between the experimental and computed distribution is generally good,

although the measured Cp levels were shifted by -0.03 for this comparison (see the

appendix for a discussion of discrepancies in Cp levels). Discrepancies on the
lower surface near the leading edge are believed to be caused by deviations of the

airfoil model contour from the prescribed coordinates. Pressure levels in the con-

cavity are affected strongly by the displacement-thickness distribution. Since the
experimental values are used here, the difference between the measured and computed

static pressure distribution in this region is greater than expected. Static-pressure

levels in the concavity derived from the interferogram are even lower than the

pressure-orifice data on figure 30(a).

The experimental data of figure 15(a) are compared with predictions of viscous-

inviscid computations in figure 30(b). The method of reference 34 is a conventional
iteration between inviscid and boundary-layer computation procedures that uses

extrapolation of the computed displacement-thickness distribution near the trailing

edge for x/c > 0.997. The method proposed by Melnik et al. (ref. 7) includes a

detailed treatment of the trailing-edge and near-wake flow field. In both cases the

computed aft loading is greater than that shown by the data.

Momentum and displacement-thickness distributions for the boundary layers and the

near-wake obtained from the computations of figure 30(b) are compared with experimen-

tal data in figure 31. The comparison for the upper-surface boundary layer is given

in figure 31(a). Both of the computed boundary-layer thickness distributions lie

somewhat below the data, particularly for x/c > 0.9. Considerably better agreement

would have been obtained if the computed shape factor, _*/O, were closer to the mea-

sured value at x/c _ 0.8, which is approximately at the beginning of the region of

adverse pressure gradient. The computed response of a turbulent boundary layer to an

adverse pressure gradient is sensitive to upstream conditions, particularly if the

initial shape factor is greater than that corresponding to zero static-pressure

gradient. Better agreement was obtained between the experimental lower-surface

boundary-layer properties and the predictions of reference 7, as shown in fig-

ure 31(b). Since the special treatment of the trailing-edge region of Melnik et al.

(ref. 7) extends upstream for only a distance of the order of a boundary-layer thick-

ness, differences in computed boundary-layer properties shown in figure 31(b) are

probably the result of differences in the boundary-layer computation methods and not
the trailing-edge treatemnt. The computed static-pressure distributions differ from

the experimental distribution in the concavity. Boundary-layer computations using the

experimental static-pressure distribution would result in significantly smaller com-

puted displacement thicknesses in the concavity than the distributions of

figure 31(b).

Near-wake displacement and momentum thicknesses computed by the method of

Melnik et al. (ref. 7) for the M_ = 0.6 case are in good agreement with experimental

data, as shown in figure 31(c). The interferograms show that elevated static-pressure

levels persist relatively far downstream of the trailing edge. Since momentum and

displacement thicknesses determined from pitot-pressure surveys are relatively sensi-
tive to the static pressure used in data reduction, interferometry is valuable in

obtaining an accurate description of this type of wake.

Comparisons between the experimental static-pressure distribution and static-

pressure distributions computed by the method of reference 34 for the supercritical

case shown in figure 14(c) are presented in figure 32. Inviscid computations were

performed for an effective airfoil shape obtained by adding a displacement-thlckness
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distribution faired through the measured values. The dashed line represents results

of a nonconservative calculation performed at M= = 0.78, with the angle of attack
chosen to give reasonable agreement with the static pressure levels on the forward

portion of the airfoil., Similar calculations performed at higher Mach numbers, and

those performed using quasi-conservative differencing, tended to form strong shocks

near the trailing edge and failed to converge. Viscous-inviscid calculations, using
the method of reference 7, were similarly unsuccessful. The inverse feature devel-

oped by Tranen (ref. 34) was used to determine an effective airfoil shape which would

yield approximately the experimental pressure distribution. The resulting static-

pressure distribution is indicated by the solid line, also computed for M_ = 0.78,
but using quasi-conservative differencing. The required modification to the effective

airfoil shape, shown in the insert in figure 32, consists of an upward deflection of

the upper surface, beginning at x/c = 0.94, and corresponds to a displacement thick-

ness 50% greater than the measured value at the trailing edge. Preliminary calcula-

tions in which the effective airfoil shape was extended downstream of the trailing

edge using a fairing of the measured displacement-thickness distribution gave similar

results; the initial analysis calculation leads to shock waves that are too strong
and too far aft, and unreasonably large wake displacement-thickness distributions
are required to move the shock forward.

Additional comparisons between measured and computed results are presented in
figure 33 in the form of Mach number contours. The measured Mach number contours were

obtained from infinite-fringe interferograms. The edges of the boundary layers and
wakes obtained from the interferograms also are shown. Agreement between measured

and computed contours is reasonably good near the airfoil but becomes poorer with

increasing distance from the airfoil. The experimental contours show a more rapid
approach to free-stream conditions with distance from the airfoil, normal to the

chord line, than the computed contours. If the behavior of the computed contours at

some distance from the airfoil is representative of flow in an unbounded medium, then
the behavior of the measured contours implies a situation more like that of flow in a

free jet. In a free-jet flow, a constant static-pressure level equal to the free-

stream value is imposed at the jet boundary, thereby forcing the disturbance field
produced by the airfoil to vanish more rapidly with distance from the airfoil than it

would in free air. Interpretation of the comparison of figure 33(b) is complicated

because the computation was performed at M_ = 0.78, but Mach numbers assigned to the

fringes were determined assuming M= = 0.8. Alternative methods of comparison, shch

as assuming the experimental M_ to be lower or selecting experimental fringes to

match the density ratio of the computed contours, resulted in poorer agreement than
that shown in figure 33(b).

It is also possible that the interferometer was not set exactly in the infinite-

fringe mode. As discussed previously, there was no means available to verify that
the setting was in infinite-fringe mode when the wavefronts in the entire field of

view were disturbed by the flow about the airfoil.

Comparisons of measured and calculated density contours, using data obtained from

the same wind tunnel, were presented by Rose and Seginer (ref. II). These comparisons
imply that the effective angle of attack in the tunnel is a function of streamwise

location. The conclusions of Rose and Seginer are based in part on discrepancies

between computed and measured contours upstream of the leading edge in which the

angle of attack of the computation was chosen to give best overall agreement with the

experimental surface static pressures. The trend of disagreement between measured
and computed contours for variation in the streamwise direction in reference Ii is

the reverse of that shown in figure 33. In reference ii, the computed contours
approach the free-stream conditions more rapidly than the experimental contours, as
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the distance upstream of the leading edge is increased. The same comparison also

shows that the experimental contours approach the free-stream conditions more rapidly

than the computed contours as the distance from the airfoil, normal to the chord line,
increases. This trend for the cross-stream direction is consistent with the present

results.

CONCLUDING REMARKS

Data were obtained on the flow about a supercrltical airfoil, including surface

static-pressure distributions, far-wake surveys (drag measurements), oil-flow visual-

izations, pitot-pressure surveys in the viscous regions, and holographic interfero-

grams. For cases characterized by upper-surface shock waves near midchord, upper-
surface boundary-layer transition was fixed at 35% chord to achieve a boundary-layer

thickness distribution near the trailing edge representative of a Reynolds number

range higher than that at which the experiments were conducted.

Airfoil drag performance is sensitive to the lower-surface boundary-layer trip

configuration, apparently because of the influence of boundary-layer trip configura-
tion on the extent of separation in the concavity.

Combining surface static-pressure, pitot-pressure, and interferogram data pro-

vides detailed descriptions of tlme-mean flow fields about the airfoil. The average

static-pressure level in the lower-surface boundary layer at the trailing edge is

substantially higher than the pressure measured by the trailing-edge orifice. Static-

pressure differences across the wake extend approximately 10% chord downstream of

the trailing edge.

Attached boundary-layer profiles, transformed by the van Driest transformation,

are in good agreement with Coles' profile family.

Comparisons made between measured flow field properties and results from compu-
tations show the following features:

i. The upper-surface boundary-layer predictions of the Cebeci-Smith method are

reasonably good except near the trailing edge where the discrepancies may be par-

tially a result of the breakdown of the boundary-layer approximations. The generally

good agreement between theory and experiment downstream of the shock-wave/boundary-

layer interactions supports the suggestion of Melnik et al. (ref. 7) that special

treatment of such interactions may not be necessary for engineering calculations when
the flow remains attached.

2. The Nash-Macdonald method predicts thicker boundary layers near the trailing

edge, but the predicted displacement thicknesses are often considerably greater than

the measured values. The sensitivity of this method to the local pressure gradient

produces peaks in the displacement-thickness distributions at the shock; special
treatment would be required if the method were coupled with an inviscid program.

3. Both methods give fairly accurate results on the lower surface when the flow
remains attached.

Computations of the surface static-pressure distribution, employing both mea-
sured and calculated displacement-thickness distributions, are in fairly good agree-

ment with experiment at M= = 0.6. Good agreement between measured lower-surface
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boundary-layer and near-wake properties and predictions of a viscous-inviscid inter-

action method is shown at M= = 0.6. Growth of the upper-surface boundary layer near

the trailing edge is underpredicted for that case. Reasonable agreement between a

measured static-pressure distribution and one computed by an inviscid transonic com-

puter program for a case at M_ = 0.8 characterized hy an upper-surface shock at

midchord, requires a reduction in the Mach number of the computation to 0.78 and

modification of the effective upper-surface contour near the trailing edge; the latter

modification is equivalent to adding a trailing-edge displacement thickness 50%

greater than the experimental value. Comparisons of computed Mach number contours

with contours derived from interferograms show differences that could be interpreted
as wall-interference effects.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif. 94035,
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APPENDIX

REPEATABILITY OF STATIC-PRESSURE DISTRIBUTIONS

The experiments described in this report were conducted in a sequence of four

tunnel-occupancy periods, one per year from 1975 through 1978. Some discrepancies
were noted between static-pressure data obtained during different occupancy periods

at the same nominal test conditions and also between data obtained during this series

and those published in references i and 2. The purpose of this appendix is to illus-

trate the degree of repeatability achieved during this investigation and to discuss

possible sources of the observed discrepancies.

Some of these variations are clearly the result of real differences in the flow

fields from which the data were obtained. For example, differences in static-

pressure distributions in the lower-surface concavity are almost certainly caused by

differences in the extent of separation in the concavity. The inability to reproduce

a boundary-layer trip configuration precisely is believed to be at least partially

responsible for differences of this type. Other differences seem just as clearly to
be associated with the data acquisition process and not with any significant differ-

ences in the flow fields. Discrepancies of this type include apparent shifts in the

angle of attack or Cp level required to achieve a particular static-pressure dis-
tribution. Data obtalned for a range of Mach number and angle of attack during a

single occupancy period support the conclusion that when two static-pressure distri-

butions corresponding to the same nominal Mach and Reynolds numbers were essentially

identical, except possibly for a shift in Cp level, then the airfoil flow fields
were also identical to the same level of approximation; no two different combinations

of Mach number and angle of attack produce the same static-pressure distribution.

Data obtained in 1973 (refs. 1 and 2) and 1975 with'the blunt-trailing-edge model

and a leading-edge boundary-layer trip are presented in figure 34. The earlier data

show higher static-pressure levels in the lower-surface concavity throughout the Mach

number range, implying that the separation bubble was consistently thinner in 1973

than in 1975. The comparison of figure 34(a) for M_ = 0.75 shows an apparent shift

in the overall static-pressure level between the two sets of data; the 1975 level is

lower (more negative). This trend is also present in the higher-Mach-number data,

figures 34(b) and 34(c).

Comparisons involving the blunt-trailing-edge model with aft-located boundary-

layer trips are shown in figure 35. Some interpolation is necessary in interpreting

figure 35(a), in which data from 1975 and 1976 are compared at M= = 0.6 because data

for the same angle of attack are not available. However, it is clear that the appar-

ent static-pressure level of the 1975 data is lower than that of the 1976 data and

that the upper-surface static-pressure distributions near the trailing edge are dif-

ferent. Data at M_ = 0.6 shown in figure 35(b) from 1976 to 1977 are in reasonable

agreement, except for a small difference in Cp level. The two sets of data from the
1977 series were obtained several weeks apart, with an intervening period during which

testing was discontinued but the model installation was not disturbed. These data

show an apparent shift of 0.2 ° in angle of attack. The comparison between the data

from the 1975 series at M_ = 0.8, shown in figure 35(c), shows a second supersonic

region terminated by a shock on the upper surface, and relatively low static-pressure

levels in the lower-surface concavity. Similar trends are apparent at M_ = 0.83,

figure 35(d). The data of figures 35(c) and 35(d) show an apparent shift in both

angle of attack and Cp level.
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Comparisons of data obtained with the sharp-trailing-edge model are shown in

figures 36 and 37. The data of figure 36(a) show good agreement between results of

the 1977 and 1978 tests at M_ = 0.6, except for a small apparent shift in Cp level
and an apparent angle-of-attack discrepancy of 0.4 °. Data obtained at M_ = 0.8

from the 1975, 1977, and 1978 tests are compared in figures 36(b)-36(d). These data

show the previously noted discrepancies in apparent angle of attack and Cp level.

The 1975 data show the lowest apparent Cp levels and more aft-located shock waves
than data obtained in 1977 or 1978.

Almost all of the boundary-layer and wake pitot-pressure surveys of this inves-
tigation were obtained during 1977, and interferograms were obtained in 1978 with the

sharp-trailing-edge model. Static-pressure distributions obtained from these two

tunnel-occupancy periods are in good agreement when a small Cp shift (ACp = .03) is
incorporated and the 0.4 ° shift in apparent angle of attack is compensated for.

Examples corresponding to M_ = 0.8 are given in figure 37 (see also fig. 36(a)).
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TABLE 1. -- DSMA 523 AIRFOIL COORDINATES, SHARP AND BLUNT TRAILING EDGES

Zupper Zlower Zupper Zlower Zlower
x/c x/c c c

c c c (sharp TE) (blunt (TE)
0.000500 0.005069 -0.005096 0.440000 0,055247 -0.053009
0.001000 0.007096 -0.007128 0.460000 0.055146 -0.052143
0.002500 0.011063 -0.011078 0.480000 0.054973 -0.051136
0.005000 0.015320 -0.015320 0.500000 0.054723 -0.049915
0.007500 0.018417 -0.018417 0.520000 0.054390 -0.048483
0.010000 0.020716 -0.020671 0.540000 0.053976 -0.046780
0.012500 0.022651 -0.022548 0.560000 0.053486 -0.044613
0.015000 0.024267 -0.024135 0.580000 0.052917 -0.052006
0.020000 0.026918 -0.026744 0.600000 0.052269 -0.038885
0.030000 0.030729 -0.030667 0.620000 0.051540 -0.035181
0.040000 0.033459 -0.033607 0.640000 0.050726 -0.030940
0.060000 0.037407 -0.038087 0.660000 0.049826 -0.026087 -0.026390
0.080000 0.040367 -0.041739 0.680000 0.048832 -0.020633 -0.021541
0.100000 0.042987 -0.044648 0.700000 0.047725 -0.015445 -0.016958
0.120000 0.045198 -0.046796 0.720000 0.046494 -0.010574 -0.012692
0.140000 0.047017 -0.048616 0.740000 0.045130 -0.006027 -0.008750
0.160000 0.048543 -0.050114 0.760000 0.043625 -0.001872 -0.005200
0.180000 0.049828 -0.051348 0.780000 0.041942 0.001892 -0.002041
0.200000 0.050902 -0.052370 0.800000 0.040043 0.005224 0.000686
0.220000 0.051802 -0.053207 0.820000 0.037907 0.008108 0.002965
0.240000 0.052563 -0.053890 0.840000 0.035502 0.010505 0.004757
0.260000 0.053199 -0.054423 0.860000 0.032780 0.012374 0.006021
0.280000 0.053729 -0.054808 0.880000 0.029666 0.013645 0.006687
0.300000 0.054161 -0.055056 0.900000 0.026155 0.014169 0.006606
0.320000 0.054513 -0.055163 0.920000 0.022185 0.013798 0.005630
0.340000 0.054788 -0.055137 0.950000 0.017708 0.012338 0.003565
0.360000 0.054998 -0.054978 0.960000 0.012642 0.009726 0.000348
0.380000 0.055149 -0.054701 0.980000 0.006842 0.005773 -0.004210
0.400000 0.055240 -0.054283 1.000000 0.000308 0.000498 -0.010109
0.420000 0.055272 --0.053719 Leading-edgeradius/c= 0.023

GP11_232-35
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TABLE 2. -- STATIC-PRESSURE DISTRIBUTIONS, CASES FOR WHICH
BOUNDARY-LAYER AND WAKE PROFILES WERE MEASURED

Trip- upper, x/c = 0.05, 0.09 mm

lower, x/c = 0.18, 0,13 mm

Moo= 0.60, Rec-- 2x 106 , M_ = 0.75, Rec = 2x 106 ,

c/ = 0.58, _geom = 1.63°, c/= 0.58, _geom = 1.23°,

Run 22:1, fig. 13(a) Run 26:1, fig. 13(b)

C C
p Px/c x/c

Upper Lower Upper Lower

0.000 1.069 -- 0.000 1.154 --
0.005 --1.324 0.447 0.005 --0.620 0.312
0.015 --1.507 -- 0.015 --0.925 --
0.025 --1.601 -- 0.025 --1.126 --
0.050 --1.168 0.051 0.050 --1.155 --0.048
0.100 --0.802 --0.104 0.100 --1.138 --0.225
0.150 --0.687 --0.082 0.150 --1.100 --0.169
0.200 --0.619 --0.110 0.200 --1.047 --0.196
0.250 --0.546 --0.120 0.250 --0.505 --0.200
0.300 --0.499 --0.105 0.300 --0.455 --0.171
0.350 --0.472 --0.107 0.350 --0.447 --0.166
0.400 --0.452 --0.126 0.400 --0.440 --0.192
0.450 --0.443 --0.145 0.450 --0.450 --0.204
0.500 --0.441 --0.148 0.500 --0.459 --0.202
0.550 --0.440 --0.137 0.550 --0.473 --0.177
0.600 --0.430 --0.056 0.600 --0.458 --0.053
0.650 --0.420 0.119 0.650 -0.439 0.141
0.700 --0.419 0.249 0.700 --0.435 0.263
0.750 --0.405 0.332 0.750 --0.416 0.331
0.800 --0.400 0.378 0.600 --0.396 0.366
0.850 --0.375 0.413 0.850 _0.340 0.406
0.900 --0.284 0.441 0.900 -0.210 0.432
0.950 --0.092 0.426 0.950 --0.029 0.438
0.975 0.384 0.975 -- 0.406
1.000 0.038 -- 1.000 0.058 --

(a) Blunt trailing edge, 1976.
GP 11-0232-36
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TABLE 2. -- Continued.

Trip - upper, x/c = 0.05, 0.10 mm
lower, x/c = 0.18, 0.13 mm

Moo= 0.60, Rec = 2 x 106, Moo= 0.75, Rec = 2 x 106,

c1= 0.58, %eom = 1.4°, cI = 0.58, _geom = 1-0°,
Run 40:1 Run 45:1

Cp Cpx/c x/c
Upper Lower Upper Lower

0.000 --0.038 0.000 --0.051
0.005 --1.249 0.480 0.005 --0.532 0.349
0.015 --1.669 -- 0.015 --0.976 --0.025 -1.592 0.025 -1.099

O._J80.050 -1.287 0.050 -1.187 -0.005
0.100 -0.770 -0.087 0.100 -1.070 -0.169
0.150 -0.672 -0.071 0.150 -1.027 -0.154
0.200 -0.069 0.200 -0.139
0.250 -0.521 -0.090 0.250 --0;33 -0.153
0.300 -0.481 --0.073 0.300 -0.424 -0.134
0.350 -0.454 -0.061 0.350 -0.426 0.037
0.400 --0.101 0.400 -- --0.144
0.450 --0._23 --0.122 0.450 --0.426 --0.169
0.500 --0.394 -0.121 0.500 --0.406 --0.161
0.550 -0.422 -0,111 0.550 --0.443 --0.147
0,600 -0.412 -0.039 0,600 -0.439 0,037
0.650 -0.400 0.137 0,650 -0.419 0.168
0.700 -0.394 0.269 0,700 -0.409 0.287
0.750 -0.389 0.348 0,750 -0,390 0.357
0.800 -0.378 0,400 0.600 -0.373 0,3910650 -0342 0.435 0650 -0317 0.433
0.900 -0.265 0.459 0.900 -0.198 0.452
0.950 -0.070 0.437 0.950 -0.013 0.4500.976 0.408 0.975 04291.000 0 71 - 1.000 0. 89 -

Trip- upper, x/c = 0.35, 0.13 mm
lower, x/c = 0.18, 0.13 mm

Moo= 0.80, Rec = 2 x 106, Moo= 0.80, Rec = 2 x 106, Moo= 0.83, Rec = 2 x 106,

c! = 0.63, _geom = 0.9o' c l = 0.77, %eom = 1.6 °, c l = 0.61, _geom = 0"78o,

Run 80:2, fig.131c) Run 80:4, fig. 13(d) Run 79:2, fig. 13(g)

C C C
x/C P x/c P x/c P

Upper Lower Upper Lower Upper Lower
0.000 --0.084

0"_83.. 0.000 --0.066 0.000 --0.0690.005 -0.449 0.424 0.005 -0.219 0.2530.OO5 _Oi356

0.015 --0.766 -- 0.015 --0.869 -- 0.015 --0.636 --
0,025 --0.903 - 0.025 --0.984 0.025 --0.741
0.050 "1.000 --0.053 0.050 --1.084 0.065 0.050 --0.649 --0.080
0.100 --0.963 --0.273 0.100 --1.050 --0.140 0.100 --0.814 --0.339
0.150 --0.945 --0.213 0.150 --1.034 --0.112 0.150 --0.808 --0.256
0.200 -- --0.188 0.200 -- --0.097 0.200 --0.233
0.260 -0.866 -0.201 0.250 -0.987 -0.116 0.250 -0.772 -0.231
0.300 -0.882 -0.162 0.300 -0.986 -0.090 0.300 -0.779 -0.181
0.350 -0.160 0.350 -0.094 0.350 -0,175
0.400 -0.833 -0.179 0.400 -0.936 -0.114 0.400 -0_61 -0.195
0.450 -0.662 -0.202 0.450 -0.924 -0.139 0.450 -0.740 -0.219
0.500 -0.324 -0.168 0,500 -0.854 -0.134 0.500 -0.668 -0.198
0.550 -0.353 -0.153 0.550 -0.912 -0.109 0.550 -0.754 -0.150
0.600 -0,382 -0,025 0.600 -0.414 0.006 0.600 -0.778 -0.003
0.650 -0.404 0.180 0,650 -0.291 0.207 0.650 -0,781 0.201
0.700 -0.425 0.293 0.700 -0.287 0,325 0.700 -0.436 0.297
0.750 -0.433 0.348 0,750 -0,306 0.387 0.750 -0.260 0.349
0.800 -0.429 0.384 0.800 -0.331 0,426 0.600 -0.246 0.380
0.850 -0.358 0.421 0.850 -0.297 0,464 0.650 -0.211 0.418
0.900 -0,215 0.449 0.900 -0.184 0.489 0.900 -0.096 0.443
0.950 -0,001 0,469 0.950 0.010 0.501 0.950 0.054 0.470
0.975 0,436 0,975 - 0.462 0.975 - 0.448
1.000 0.113 -- 1.000 O.117 -- 1.000 0.130 --

(b) Blunt trailing edge, 1977. o,,.o=a=,3
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TABLE 2. -- Continued.

Trip - upper, x/c ,, 0.05, 0.05 mm
lower, x/c - 0.18, 0.13 mm

Moo= 0.6, Rec = 4 x 106,

cl = 0.58, _geom = 2.60,
Run 84:3, fig. 13(e)

c
x/c P

Upper Lower

0.000 0.987
0.002 0.155 1.068
0.005 -0.488 0.969
0.010 - 0.677
0.025 0.223
0,050 --1.3_I 0.073
0.075 --0.904 0.037
0.100 --0.829 -0.030
0.150 -0.003
0.200 --0.622 --0.033
0.250 --0.549 --0.063
0.300 --0.483 -0.080
0.350 --0.476 -0.104
0.400 --0.435 --0.110
0.450 --0.429 -0.119
0.500 -0.412 -0.153
0.550 --0.402 --0.134
0.600 --0.388 --0.087
0.650 --0.404 0.066
0.700 --0.367 0.243
0.750 --0.348 0.339
0.800 -0.346 0.400
0.850 0.444
0.900 -0.178
0.950 0.466
1.000 0.104 --

Trip- upper, x/c = 0.35, 0.13 mm Trip - upper, x/c = 0,35, 0.08 mm
lower, x/c = 0,18, 0.13 mm lower, x/c = 0.18, 0.13 mm

Moo = 0.80, Rec = 2 x 106, Moo= 0.80, Rec = 3 x 106,

c! = 0.61, %eom = 1.6°, cl = 0.71, _geom = 2"40,

Run 2:2, fig. 13(f) Run 121:1, fig. 13(f)

Cp c
x/c x/c P

Upper Lower Upper Lower

0.000 1.170
0.002 0.713 1.045 0.000 1.1550.002 0.656 1.0_2
0.005 0.276 0.868 0.005 0.207 0.9270.010 0.478 0.010 0.5840.025 -0._9 -0.013 0.025 -0._3 0.1090050 -1085 -0092 0050 -1151 0.007
0.075 --1.052 --0.143 0.075 --1.117 --0.0340.100 -0.990-0.103 0.100 -1.061-0.092
0.150 -0.189 0.150 - --0.086
0.200 -0.987 -0.152 0.200 --1.049 -0.096
0.250 -0.976 -0.180 0.250 --1.033 --0.123
0.300 -0.942 -0.185 0.300 --0.997 -0.127
0.350 -0.896 -0.207 0.350 --1.000 -0.147
0.400 -0.911 -0.227 0.400 -0.970 -0.153
0.450 --0.904 --0.222 0.450 -0.970 -0.149
0.500 --0.831 -0.252 0.500 " -0.959 -0.186
0.550 --0.345 -0.187 0.550 -0.554 -0.150
0.600 --0.246 -0.074 0.600 -0.297 -0.054
0.650 -0.274 0.134 0.650 -0.240 0.145
0.700 -0.298 0.267 0.700 -0.251 0.294
0.750 -0.300 0.312 0.750 -0.254 0.350
0.800 -0.273 0.352 0.800 -0.249 0.394
0.850 0.389
0.900 --0.084 0.850 0.436
0.950 0.423 0.900 -0.0_3
1.000 0.,38 0.950 o.sq2- 1.ooo o1_6 -

GPl 1_232-44

(c) Sharp trailing edge, 1977.
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TABLE 2. -- Concluded.
Trip - upper, x/c - 0.05, 0.05 mm Trip - upper, x/c - 0.35, 0.13 mm

lower, x/c = 0.18, 0.13 mm lower, x/c = 0.18, 0.13 mm

Moo=0.60, Rec =4 x 106, Moo=0.80, Rec=3 x 106,

Run36, %eom = 3"0o, Run46, %eom= 1.4 °,
Fig. 15(a) Fig. 15(c)

Cp Cp
x/c x/c

Upper Lower Upper Lower

0.000 1.0213 0.000 1.1940
0.002 0.1919 1.0820 0.002 0.8194 0_611
0.005 --0.4338 0.9772 0.005 0.3952 0.7466
0.010 --1.1744 0.6739 0.010 --0.1416 0.3193
0,025 --1.8737 0.1936 0.025 --0.7119 --0.2400
0.050 --1.2471 --0,0090 0.050 --0.9796
0.075 --0.9114 -- 0.075 --0.9219 --0.3565
0.100 --0.8062 --0,0651 0.100 --0,8335 --0.4331
0.150 --0.7377 --0.0351 0,150 --0.8473 --0.3408
0.200 --0.6242 --0.0703 0.200 --0.8485 --0.3393
0.250 --0.5671 --0.0934 0.250 --0.8185 --0.3534
0.300 --0.4911 --0.1044 0.300 --0.7635 --0.3421
0.350 --0.4853 --0.1278 0.350 --0.7532 --0.3656
0.400 --0.4561 --0.1423 0.400 --0.3554 --0,3672
0.450 --0.4380 --0.1498 0.450 --0.3309 --0.3653
0.500 --0.4296 --0.1933 0.500 --0,3879 --0.3911
0.550 --0.4213 --0.1852 0.550 --0.4000 --0.2909
0.500 --0,4118 --0.1118 0.600 --0.4243 --0.1449
0.650 -0.3998 0.0420 0.650 - 0.0824
0.700 --0.4026 0.2296 0,700 -0.4598 0.1868
0.750 --0.3978 0.3179 0.750 -0.4319 0.2252
0.800 -0.3901 0.3782 0.800 -0.3967 0.2462
0.850 -0.3320 0.4247 0.850 --0.3087 0.2850
0.900 -0.2340 0.4543 0.900 -0.1506 0.3358
0.950 -0.0215 0.4490 0.950 0.0669 0.3866
0.999 0.0707 -- 0.999 0.1304 -

Trip - upper,x/c = 0.35, 0.13 mm
lower,x/c = 0.18, 0.13 mm

Moo= 0.80, Rec = 2 x 106, Moo= 0.80, Rec = 3 x 106,

Run 17,ageom= 2.20' Run41, _geom= 2.8
Fig. 15(b)

c c
P p

x/c x/c
Upper Lower Upper Lower

0.000 1.1803 0.000 1.1715
0.002 0.7321 1.0445 0.002 0.6715 1.0611
0.005 0.2961 9.8518 0.005 0.2176 0.9230
0.010 --0.2416 0.4771 0.010 --0.3274 0.5529
0.025 --0.8163 --0.0444 0,025 --0.9169 0.0802
0.050 --1.0796 --0.0183 0.050 --1.1475 --0.0182
0.075 --1.0535 --0.1816 0.076 --1.1441 --0.0869
0.100 --0.9994 --0.2280 0.100 --1.0582 --0.1449
0.150 --0.9777 --0.1886 0.150 --1.0723 --0.1143
0.200 --0,9962 --0.1943 0.200 --1.0774 --0.1225
0.250 --0,9821 --0.2287 0.250 --1.0411 --0.1702
0.300 --0.9525 --0,2317 0.300 --1,0217 --0.1590
0.350 --0.9609 --0.2634 0,360 --1,0318 --0.2077
0,400 --0.9272 --0.2746 0.400 --0.9851 --0.2217
0.450 --0.9038 --0,2651 0.450 --0.9802 -0.2117
0.500 --0,9115 --0.3032 0.500 --0.9602 --0.2655
0.550 --0,5899 --0.2417 0.550 --0,9696 --0.2094
0.600 --0.2768 --0.1152 0.600 --0.4935 --0.0996
0.650 --0.2786 0.0971 0.650 --0.2565 0.1142
0.700 --0.3241 0.2319 0.700 --0.2737 0.2574
0.750 --0.3460 0.2749 0.750 --0.2928 0.3142
0.800 --0.3298 0.3095 0.800 --0.2802 0.3423
0.850 .--0.2718 0.3431 0.850 --0.2357 0,3896
0.900 -0.1438 0.3895 0.900 -0.1403 0.4353
0.950 0.0724 0.4391 0.950 0.0734 0.4671
0.999 0.1460 -- 0.999 0.1555 --

GP11 _232-45

(d) Sharp trailing edge, 1978.
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TABLE 3. -- EVALUATION OF PROBE INTERFERENCE

Calculated boundary Experimentaland
layers,ref. 18 correctedquantitiesa % Difference

x/c No inter- Inter- Ratio . C,,vwith Corrected Cp, no _)-_) ®-®
ference ference 1_ / (_) ,nterference (_)x (_) inteiference ®

0.3 8* 0.001517 0.001627 0.9324 0.00181 0.00169 0.00173 7.1 2.4

0 0.000893 0.000956 0.9345 0.00101 0.00094 0.00097 7.4 3.2

H 1.698 1.702 0.9977 1.786 1.782 1.774 0.2 -0.4

Cf 0.00306 0.00286 1.0676 0.00305 0.00326 0.00320 -6.4 - 1.8

0.7 _* 0.00261 0.00274 0.9537 0.00315 0.00300 0.00303 5.0 1.0

0 0.001617 0.001693 0.9551 0.00190 0.00181 0.00184 5.0 1.7

H 1.616 1.619 0.9981 1.665 1.662 1.650 0.2 -0.7

Cf 0.00283 0.00273 1.0362 0.00277 0.00287 0.00288 -3.5 0.3

0.8 _* 0.00289 0.00313 0.9237 0.00370 0.00342 0.00346 8.2 1.2

0 0.001797 0.001932 0.9301 0.00220 0.00205 0.00210 7.3 2.4

H 1.610 1.621 0.9932 1.682 1.671 1.645 0.7 -1.6

Cf 0.00276 0.00255 1.0821 0.00235 0.00254 0.00255 -7.5 0.4

0.9 _* 0.00369 0.00368 1.0035 0.00470 0.00472 0.00458 -0.4 -3.0

e 0.00225 0.00226 0.9956 0.00267 0.00266 0.00263 0.4 --1.1

H 1.644 1.631 1.0080 1.759 1.773 1.739 -0.8 --1.9

Cf 0.00212 0.00222 0.9527 0.00181 0.00172 0.00193 5.2 12.2

aExperimentalcasecorrespondingto fig. 13(a). Qp11-o2_-_7
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TABLE 4. -- BOUNDARY-LAYER AND WAKE INTEGRAL PROPERTIES

Trip - upper, x/c = 0.05, 0.09 mm,
lower, x/c = 0.18, 0.13 mm

= 0.60, Rec = 2 x 106, c/= 0.58, _geom = 1.63 °Moo

x/c Cp (_*/c 6/c H Cf Run

0.299U -0.498 0.00173 0.00097 1.744 0.00320 16
0.699U -0.418 0.00303 0.00184 1.650 0.00288 17
0.802U -0.400 0.00346 0.00210 1.645 0.00255 18
0.899U -0.266 0.00454 0.00261 1.738 0.00195 19
0.950U -0.094 0.00689 0.00345 1.994 0.00100 20
1.000U 0.033 0.01154 0.06451 2.561 - 21-1
0.499L -0.148 0.00159 0.00101 1.569 0.00357 14
0.650L 0.142 0.00349 0.00199 1.756 0.00174 28
0.750L 0.332 0.00762 0.00327 2.326 0.00072 29
1.000L 0.143 0.00442 0.00277 1.595 - 21-2
1.050 0.100 0.01790 0.00881 2.032 -- 30
1.099 0.093 0.01552 0.00927 1.676 -- 22

GP11-0232-38

Trip - upper, x/c = 0.05, 0.09 ram,

lower, x/c -- 0.18, 0.13 mm

Moo = 0.75, Rec = 2 x 106, cl = 0.58, _geom = 1.23 °

x/c Cp 8"/c e/c H Cf Run

0.300U -0.457 0.00212 0.00107 1.987 0.00269 23
0.700U -0.435 0.00350 0.00190 1.840 0.00266 24
0.900U -0.210 0.00530 0.00273 1.943 0.00161 25
0.999U 0.057 0.01638 0.00498 3.289 - 26-1
0.499L -0.205 0.00188 0.00103 1.823 0.00338 31
0.650L 0.142 0.00447 0.00216 2,073 0.00135 32
0.750L 0.332 0.00999 0.00412 2.421 0.00040 33
0.999L 0.157 0.00438 0.00280 1.567 -- 26-2
1.100 0.093 0.01680 0.00959 1.753 -- 27

(a) Blunt trailing edge, 1976. cP,-o232e2

Trip - upper, x/c = 0.05, 0.10 ram,
lower, x/c = 0.18, 0.13 mm

= 0.60, Rec = 2 x 106, cl= 0.58, _geom = 1.4°Moo

x/c c p (_*/c _/c H Cf Run

1.000U 0.050 0.00866 0.00378 2.291 - 39
0.500L --0.119 0.00127 0.00081 1.569 0.00382 58
0.910L 0A58 0.00987 0.00455 2.168 - 68
0.985L 0.370 0.00399 0.00264 1.514 0.00284 70
1.000L 0.150 0.00411 0.00220 1.872 -- 43
1.000L 0.150 0.00281 0.00187 1.498 -- 56
1.050 0.120 0.01611 0.00856 1.882 -- 40
1.100 0.113 0.01272 0,00785 1.621 -- 41
1.200 0.099 0.00997 0.00695 1.434 -- 42
1.500 0.060 0.01024 0.00809 1.265 -- 5

(b) Blunt trailing edge, 1977. GP, o23283
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TABLE 4. -- Continued.

Trip - upper, x/c = 0.05, 0.10 mm,

lower, x/c =0.18, 0.13 mm

Moo = 0.75, Rec = 2 x 106,Cl = 0.58, _geom = 1.0°

x/c Cp (_*/c 0/c H Cf Run

0.300U -0.425 0.00195 0.00104 1.886 0.00291 50
0.800U -0.372 0.00343 0.00198 1.736 0.00286 49
0.950U -0.013 0.00727 0.00344 2.116 0.00134 48
0.980U 0.050 0.01035 0.00419 2.467 0.00033 54
1.000U 0.090 0.01390 0.00437 3.180 47
0.500L --0.162 0.00141 0.00084 1.680 0.00376 66
0.910L 0.453 0.01185 0.00495 2.396 -- 74
0.945L 0.452 0.00821 0.00425 1.932 0.00153 76
0.985L 0.410 0.00528 0.00312 1.691 0.00238 72
1.000L 0.180 0.00389 0.00249 1.562 -- 51
1.100 0.123 0.01511 0.00842 1.794 -- 52
1.200 0.109 0.01223 0.00807 1.516 -- 53
1.500 0.070 0.01071 0.00790 1.355 -- 7

GP11-0232-84

Trip - upper, x/c = 0.35, 0.13 mm,

lower, x/c = 0.18, 0.13 mm

Moo= 0.80, Rec = 2 x 106, cl = 0.63, _geom = 0"900

x/c Cp (_*/c _/c H Cf Run

0.300U --0.882 0.00089 0.00027 3.288 -- 104
0.400U -0.837 0.00101 0.00034 3.027 - 106
0.550U -0.352 0.00179 0.00080 2.233 0.00344 108
0.650U -0.405 0.00201 0.00104 1.928 0.00338 112
0.750U --0A35 0.00230 0.00122 1.882 0,00324 114
0.850U --0.359 0.00252 0.00142 1.781 0.00313 116
0.900U -0.217 0.00315 0.00174 1.812 0.00259 118
0.950U 0.005 0.00562 0.00268 2.097 0.00117 120
1.000U 0.115 0.01077 0.00373 2.890 0.00023 102
0.500L -0.180 0.00147 0.00081 1.813 0.00374 164
0.750L 0.348 0.00948 0.00367 2.585 0.00053 166
0.910L 0A60 0.01381 0.00523 2,641 -- 178
0.985L 0.410 0.00626 0.00355 1.766 -- 180
1.000L 0.205 0.00409 0.00258 1.585 -- 168
1.000L 0.205 0.00397 0.00253 1.569 -- 122
1.050 0.150 0.01728 0.00840 2.058 -- 125
1.100 0.143 0.01330 0.00785 1.693 -- 124
1.200 0.129 0.01040 0.00704 1.477 -- 123

(b) Continued. GPll-0232-eS
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TABLE 4. -- Continued.

Trip - upper, x/c = 0.35, 0.13 mm,
lower, x/c = 0.18, 0.13 mm

Moo-- 0.80, Rec -- 2 x 106, c! = 0.77, ageo m = 1.6°

x/c Cp (_'/c 01c H Cf Run

0.300U -1.021 0.00082 0.00024 3.485 -- 129
0.500U -0.892 0.00127 0.00060 2.116 0.00359 131
0.650U -0.316 0.00288 0.00143 2.005 0.00214 133
0.800U -0.310 0,00325 0,00179 1.812 0.00284 135
0,900U -0.172 0.00402 0.00205 1.966 0.00240 137
0.950U 0.005 0.00621 0.00295 2.105 0.00127 139
1.000U 0.138 0.01113 0.00408 2.729 0.00025 127
0,300L -0,082 0.00087 0.00050 1.728 0.00433 172
0.500L -0.130 0.00133 0.00079 1.691 0.00391 154
0.600L 0.005 0.00219 0.00120 1.828 0.00302 156
0.650L 0.208 0.00326 0.00159 2.049 0.00198 158
0.750L 0.390 0.00850 0.00331 2.567 0.00055 160
0.910L 0A98 0.01244 0.00491 2.534 - 184
0.985L 0A25 0.00524 0.00326 1.660 0.00244 182
1.000L 0.228 0.00406 0,00264 1.540 - 141
1.050 0.170 0.01737 0.00869 1.999 - 142
1.100 0.163 0.01349 0.00797 1.694 -- 143
1.200 0.149 0.01177 0.00795 1.481 -- 144

GP11-0232-86

Trip - upper, x/c = 0.35, 0.13 mm,

lower, x/c = 0.18, 0.13 mm

Moo = 0.83, Rec = 2 x 106, cI = 0.61, _geom -- 0"780

x/c Cp 8"/c 0/c H Cf Run

0.300U -0,778 0.00101 0.00030 3.344 - 85
0.450U -0,745 0.00090 0.00045 2,024 0.00376 87
0.700U -0A30 0.00292 0.00141 2.077 0.00231 89
0.850U -0.210 0.00371 0.00188 1.969 0.00222 91
0.900U -0.092 0.00448 0.00217 2,065 0,00180 93
0,950U 0.055 0.00725 0.00308 2.350 0.00078 95
1.000U 0.130 0.01339 0.00416 3.220 - 83
0.500L -0.198 0.00142 0.00081 1.745 0.00383 146
0.750L 0.347 0.01063 0.00379 2.803 0.00040 148
0.910L 0.452 0.01534 0.00538 2.849 -- 176
0.985L 0.430 0.00723 0.00393 1.838 0.00202 174
1.000L 0.220 0.00420 0.00266 1.578 - 150
1.000L 0.220 0.00441 0.00272 1.621 - 97
1.100 0.194 0.01556 0.00873 1.781 - 98
1.200 0.170 0.01344 0.00896 1.500 - 100

GP11-0232-87

(b) Concluded.
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TABLE 4. -- Continued.

Trip- upper, x/c = 0.05, 0.05 mm,
lower, x/c = 0.18, 0.13 mm

Moo = 0.60, Rec = 4 x 106, c! = 0.58, _geom = 2"60

x/c Cp _*/c OIc H Cf Run

0.300U -0.485 0.00135 0.00066 2.040 0.00331 102
0.500U -0.417 0.00186 0.00115 1.622 0.00260 104
0 300 U -0.370 0,00270 0.00151 1.792 0.00254 106
0.800U -0.345 0.00276 0.00173 1.594 0.00252 108
0.900U -0.175 0.00381 0.00225 1.696 0.00211 110
0.950U --0.015 0.00605 0.00326 1.854 0.00117 112
1.000U 0,110 0.01069 0.00435 2.460 - 114
0.300L --0.080 0.00056 0.00038 1.487 0.00442 100
0.500 L '--0.155 0.00103 0.00058 1.789 0.00370 88
0.600L -0.085 0.00117 0.00077 1.525 0.00341 90
0.650L 0.059 0.00214 0.00106 2.012 0.00254 92
0.750L 0.335 0.00502 0.00242 2.073 0.00090 94
0.910L 0.461 0.00725 0.00383 1.892 0.00120 96
1.000L 0.180 0.00288 0.00191 1.505 - 98
1.000L 0.180 0.00271 0.00162 1.674 -- 120
1.050 0.130 0.01162 0.00682 1.704 -- 115
1.1O0 0.123 0.00993 0.00645 1.540 -- 116
1.200 0.109 0.00885 0.00625 1.416 - 118

GP11-0232-88

Trip.- upper, x/c = 0.35, 0.13 ram,

lower, x/c = 0.18, 0.13 mm

Moo = 0.80, Re c = 2 x 106,c1 = 0.61, _geom = 1.8 °

X/C Cp _*/€ 0/c H Cf Run

0.300U -0.941 0.00070 0.00022 3.228 -- 4
0.400U -0.910 0.00130 0.00052 2.499 0.00337 24
0.450U -0.904 0.00144 0.00057 2.520 0.00355 6
0.600U -0.243 0.00303 0.00153 1.984 0.00228 8
0.750U -0.300 0.00300 0.00162 1.850 0.00300 10
0.850U -0.195 0.00327 0.00194 1.688 0.00284 12
0,900U -0.085 0,00430 0.00240 1,787 0,00231 14
0.950U 0.082 0.00663 0.00329 2.017 0.00130 16
1.000U 0.188 0.01133 0.00462 2.454 -- 18
0.300L --0.185 0.00092 0.00053 1.756 0.00418 26
0.500L -0.235 0.00143 0.00073 1.968 0.00382 28
0.600L --0.072 0.00176 0.00101 1.743 0.00327 30
0.650L 0.134 0.00306 0.00161 1.899 0.00184 32
0.750L 0.313 0.01086 0.00383 2.840 -- 34
0.910L 0.438 0.01662 0.00535 3.106 -- 36
1.000L 0.257 0.00535 0.00338 1.584 -- 20
1.050 0.231 0.01487 0.00856 1.737 -- 21
1.1O0 0.225 0.01279 0.00798 1.602 - 22
1.200 0.I 85 0,01124 0.00756 1,486 -- 37

GP11-0232-89

(c) Sharp trailing edge, 1977.
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TABLE 4. -- Continued.

Trip - upper,x/c = 0.35, 0.08 mm,
lower,x/c = 0.18, 0.13 mm

Moo= 0.80, Rec -- 3 x 106, cl --0.71, _geom= 2.4o

x/c Cp (_*/c _/c H Cf Run

0.300U -0.998 0.00079 0.00023 3.527 -- 125
0.450U -0.965 0.00122 0.00041 2.968 0.00354 123
0.650U -0.242 0.00360 0.00170 2.114 0.00157 127
0.800U -0.248 0.00311 0.00175 1.780 0.00256 129
0.900U -0.081 0.00412 0.00233 1.769 0.00228 131
0.950U -0.005 0.00539 0.00299 1.803 0.00186 133
1.000U 0.197 0.01007 0.00447 2.252 0.00066 135
0.300L -(3.129 0.00099 0.00056 1.768 0.00347 150
0.500L -0.185 0.00113 0.00061 1.839 0.00374 144
0.600L -0.055 0.00176 0.00092 1.915 0.00297 146
0.750L 0.350 0.00891 0.00322 2.770 0.00037 148
0.910L 0.483 0.01301 0.00522 2.491 -- 142
1.000L 0.250 0.00444 0.00282 1.572 -- 137
1.1O0 0.235 0.01246 0.00781 1.596 -- 140
1.200 0.195 0.01053 0.00718 1.467 -- 138

GP11-0232-90

(c) Concluded.

Trip - upper, x/c = 0.35, 0.08 ram,
lower, x/c = 0.06, 0.05 mm

Moo = 0.80, Rec = 3 x 106, c! = 0.435, _geom = 1.05 °

x/c Cp (5"/c _/c H Cf Run

0.500L --0.295 0.00164 0.00093 1.757 0.00321 40
0.600L --0.091 0.00226 0.00121 1.870 0.00262 43
0.750L 0.256 0.01332 0.00403 3.302 -- 45
0.910L 0.387 0.02057 0.00523 3.933 -- 47
1.000L 0.270 0.00625 0.00384 1.627 - 49

GP 11-0232-91

Trip - upper, x/c = 0.35, 0.08 ram,
lower, x/c = 0.18, 0.08 mm

Moo= 0.80, Rec = 3 x 106, c/= 0.432, (Xgeom = 0.98 °

x/c Cp (_*/c _/c H Cf Run

0.500L --0.298 0.00130 0.00075 1.728 0.00353 52
0.600L -0.099 0.00228 0.00121 1.879 0.00255 54
0.750L 0.280 0.01425 0.00362 3.936 -- 56
0.910L 0.406 0.02480 0.00525 4.724 - 58
1.000L 0.256 " O.00817 0.O0496 1.660 -- 60

GP11-0232-92

(d) Sharp trailing edge, 1977,
boundaw-layer trip study.
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TABLE 4. -- Concluded.

Trip- upper, x/c = 0.35, 0.08 mm,

lower, x/c = 0.35, 0.10 mm

Moo= 0.80, Rec = 3 x 106, c1 0.452, Qgeom = 0"940

x/c Cp (_*/c 0/c H Cf Run

0.500L --0.296 0.00135 0.00078 1.741 0.00341 63
0.600 L --0.120 0.00209 0.00118 1.770 0.00267 65
0.750L 0.322 0.01900 0.00302 6.296 -- 67
0.910L 0A50 0.03336 0.00612 5.453 -- 69
1.000L 0.245 0.01244 0.00759 1.639 -- 71

GP11-0232-93

Trip - upper, x/c = 0.35, 0.08 mm,

lower, x/c = 0.18, 0.13 mm

Moo = 0.80, Rec = 3 x 106, cl = 0.440, _geom = 0"990

x/c Cp (_*/c _/c H Cf Run

0.500 L -0.301 0.00123 0.00071 1.738 0.00356 74
0.600L --0.095 0.00169 0.00098 1.724 0.00295 76
0.750L 0.272 0.01131 0.00365 3.098 -- 78
0.910L 0.425 0.01752 0.00501 3A98 -- 80
1.000L 0.257 0.00520 0.00328 1.582 -- 82

GP 11 "0232-94

(d) Concluded.
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TABLE 5. - BOUNDARY-LAYER VELOCITY AND DENSITY PROFILES 

X I C  - 299U RUN 16 X I C  = 899U RUN 17 X I C  - .802U RUN 18 X I C  = .899U RUN 19 X / C  = . W U  RUN 20 

zlc ulu- plp, ZIC U/U, PIP, zlc ulu, PIP, ZIC ulu, PIP, zlc ulu, PIP, 

X I C  -1.000U RUN 21-1 X I C  = A99L RUN 14 X I C  - .650L RUN 28 X I C  - .760L RUN 29 X I C  = 1.000L RUN 21-2 

zlc ulu, plp, zlc ulum plp, zlc ulu, plp, zlc ulu, PIP, zlc ulu, PIP, 



TABLE 5. -- Continued.

XlC = .999U RUN 26-1 XIC " .499L RUN 31 XlC -.650L RUN 32 XlC " .750L RUN 33 XIG " .999L RUN 26-2

zlc uluoo plpoo zlc uluoo plpoo zlc uluoo plpoo zlc uluoo plPoo zlc uluoo plPoo

:_ . , 6 .9_°_._ .o_es ,°ZOO _S
.9190• 4 4

• 0_ .9103

°°"'il!!i
• g33Z ,OZO0

.g046
esg6g cO003

,OOOZ .0070 _'"' t6739:_i .-- ._,o,

.ooo,.1,,z .ozo, ,ooo?.,,, .°_oo :ttK
GPI I-0232_g
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TABLE 5. - Continued. 

W C  - 1.1 00 RUN 27 

zlc ulu, PIP, 

XIC = 1.000U RUN 39 XIC - bWL RUN 68 XIC-  .910L RUN 68 X/C= ,9851 RUN 70 XIC-  1.0WL RUN 43 

zlc ulu, PIP, zlc U/U, PIP, ZIC UIU, PIP, ZIC u/um PIP, Z/C ulu, PIP, 



TABLE 5. - Continued. 

XIC = 1.000L RUN 66 XIC = 1.050 RUN 40 XIC = 1.1 00 RUN 41 XIC = 1.200 RUN 42 XIC = 1.500 RUN 5 

zlc ulu, plp, zlc UIU, PIP- zlc ulu, PIP, zlc ulu, PIP, zlc ulu, PIP, 

XIC = 300U RUN SO XIC - BOOU RUN 49 XIC = 950U RUN 48 XIC = .980U RUN 54 XIC = 1.0WU RUN 47 
-- 

Z/C UIU,  plp, zlc ulu, PIP, zlc ulu, P I ~ ,  zlc ulu, PIP, zlc ulu, PIP, 



TABLE 5. -- Continued.

X/C " .500L RUN 66 X/C " .910L RUN 74 XlC " .945L RUN 76 XlC " .986L RUN 72 X/C " 1.000L RUN 51

z/c u/u plPoo z/c U/Uooplpoo z/c U/UooplPoo z/¢ u/u_o plPoo z/c U/Uo_plpoo

i_ .o,,, ,ol, ,.,_.,,•o., |gI t:o*_o0317

•gll_ I111|:_111

:IllIli$111:gl_l._,7 II. ]
:_ft,* :_lll

_iPl1-0232-54
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TABLE 5. - Continued. 

XIC = .SWU RUN 108 XIC = .6W RUN 112 XIC - .750U RUN 114 X/C = .850U RUN 116 XIC = .900U RUN 118 

zlc ulu, PIP, ~ I c  ulu, PIP, zlc ulu, PIP, zlc ulu, plp, zlc ulu, DID- 

X/C - .950U RUN 120 XIC - 1.000U RUN 102 XIO-  .MH)L RUN 164 XIC = .750L RUN 166 XIC =.910L RUN 178 

zlc UIU, PIP, ZIC UIU, PIP, ZIC u1um PIP- zlc ulu,  PIP^ ZIC ulu, plpm 



TABLE 5. - Continued. 

X / C  - .986L RUN 180 X I C  - 1.000L RUN 168 X I C -  1.000L RUN 122 X I C  - 1.050 RUN 125 X I C  - 1.100 RUN 124 

zlc ulu, plp, zlc ulu, plp, zlc ulu, PIP, ZIC ulu, PIP, ZIC ulu, PIP, 

X I C  - 1.200 RUN 123 



TABLE 5. -- Continued.

X/C - .950U RUN 139 XIC - 1.000U RUN 127 XlC = .300L RUN 172 XlC" .500L RUN 154 X/C " .600L RUN 156

z/c u/uoo plpoo z/c u/uoo plpoo z/c u/uoo plpoo z/c u/uoo plpoo z/c u/uoo plpoo

.....,o,._,,.,.,...

13

•°° illlio.. :_lll:_;ll :ll_l:!li! l :fill[_II
e_6_ _69Z_

,93_00937_ 0_'_99e• 9609 ,9101"917_ ,673_ ,93_95
e6_79

e9 E s 5 S.,hl .ld, .,,o;III
sZ_T8

• 44 eg_
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TABLE 5. - Continued. 

XIC - .6EOL RUN 168 XIC - .7WL RUN 160 XIC =.9lOC RUN 184 XIC - .985L RUN 182 XIC = 1.000L RUN 141 

zlc UIU- PIP, ZIC U!LI, PIP, IIC UIU, PIP, ZIC u h ,  PIP, ZIC UIU,  PIP, 

XlC - 1.060 RUN 142 XIC - 1.100 RUN 143 XIC - 1.200 RUN 144 XIC- 3 W U  RUN 85 X/C-.450U RUN 87 

ztc ulu,  ptp, zlc utu, ptp, zlc ulu,  plp, ztc utu, PIP, zlc ulu, plp, 



TABLE 5. -- Continued•

XlC = .500L RUN 146 XIC = .750L RUN 148 XlC = .910L RUN 176 XlC = .985L RUN 174 X/C = 1.000L RUN 150

z/c u/uoo plpoo z/c u/uoo plpoo z/c u/uoo plpoo z/c U/Uoopip= z/c u/uoo plpoo

eliTb
• O_ZO *8876

. :,,. i!iil ill!i
064

.,.; :_$1_.,o,9 ! "")!:ll_ .oo=9.:69z ii"I• 86e_) 00014 ,|567 10 744

GPl 1;_232-65
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TABLE 5. - Continued. 

XIC = 1.000L RUN 97 XIC = 1.100 RUN 98 XIC = 1.200 RUN 100 

zlc ulu, plp, zlc ulu, plp, zlc ulu, PIP, 

XIC 300U RUN 102 XIC = .500U RUN 104 XIC = .7WU RUN 106 XIC = .800U RUN 1OB XIC = .900U RUN 110 



TABLE 5. - Continued. 

WC - 0.950U RUN 112 XIC - 1.000U RUN 114XlC - 0.300L RUN 100X/C- 0.500L RUN 88XlC = 0.600L RUN 90 

- ~ 

WC - 0.650L RUN 92 XIC = 0.750L RUN 94 XIC - 0.910L RUN 96 X/C 1.000L RUN 98 XIC - 1.000L RUN 120 



TABLE 5. - Continued. 

XIC-1.060 RUN 116 XIC- 1.100 RUN 116 XICgl.ZOORUN 118 XIC-.300U RUN4 X/C=.400U RUN24 

zlc UIU, plp, zlc ulu, pIpm zlc u/um pIpm zlc u/um  PIP^ zlc uIum PIPrn 

XIC - ASOU RUN 6 XIC =.600U RUN 8 XIC = .760U RUN 10 XIC = .850cl RUN 12 XIC - .9WU RUN 14 

z/c "Iu, plpm zlc ulu, PIP, zlc ulu, plp, zlc ulu, PIP, zlc ulu, PIP, 



TABLE 5. - Continued. 

XIC - .QWU RUN 16 XIC = 1.000U RUN 18XIC = 300L RUN 26 WC=.500L RUN 28 X/C9.6WL RUN 30 

zlc ulu, PIP, ZIC ulu, PIP, zIc ulu, PIP, ZIC ulu, PIP, zlc ulu, PIP, 

XIC = .650L RUN 32 XIC .750L RUN 34 XIC = .910L RUN 36 XIC - 1.000L RUN 20 XIC = 1.050 RUN 21 

zlc ulu, PIP, zlc ulu, PIP, zlc ulu, PIP, zlc ulu, PIP, zlc ulu, PlP, 



TABLE 5. -- Continued.

X/C " .300U RUN 125 X/C -A50U RUN 123 X/C - .650U RUN 127 X/C" .800U RUN 129 X/C " .900U RUN 131

z/c u/u= Plpoo z/c uluo_ plpoo z/c u/Uoo plpoo z/c u/uo,:, plpoo z/c uluoo plpoo

00074 065Z8 *©104 _..4608 *6601 1195 ,0361 1,0316 ,9716._,0 .6,,, .oo9, *0324

i ,.,6,6.6606 fill
.0045 *65|Z '. 10463.

•:ltll !!l_ ,,,6,o:_t_;.,.,9.,,. .,6 .9.,[*4QZ6 06606 1194
0659Z

1186

!ill! _.,,tt:z;. .o4,I.,3Z1 *65|9 1967
06499 1960
,64_1_ ,,Ill*639Z
*6343 17911
,6ZSZ _II_S

_iiII I! :fill:IIll

iifl] i .,,,6.'4":lli:_ .,6,6.,,93.0o_0

GPI 1-0232-75
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TABLE 5. -- Continued.

X/C - .700L RUN 148 X/C - .910L RUN 142 X/C - 1.000L RUN 137 X/C - 1.100 RUN 140 X/C - 1.200 RUN 138

z/c u/uoo plpoo z/c u/uoo plpoo z/c u/uoo plpoo z/c u/uoo plpoo z/c u/u=_ plPoo

elT|_ 1e06°7 .0=60 e°; tee_l]l

:::_.,,o, .:_, .,,,,._t_ i:;:8 ._t_,
,03Z_.', , .881_,7370*_)601

e5074

•,...  iiiii;''"8'-;''"i :l;|l ::_I|

i_!l! ! -._r,!"i°'i!i il!!l °""
•i_!!iillilooo.,_ii

GP11-0232-77
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TABLE 5. - Continued. 

X/C - .WOL RUN 40 XIC - .6WL RUN 43 XIC - .760L RUN 46 X/C - .910L RUN 47 X/C 1.000L RUN 49 

z/c UIU, pIpw ZIC u/um plpw ZIC u1uw pIpm ZIC u/um PIP- 21c u/um PIP- 

XIC - b00L RYN 62 XIC - .6OOL RUN 64 XIC = .7WL RUN 66 XIC - .9lOL RUN 68 XIC =l.MML RUN 60 



TABLE S. -- Concluded.

X/C " .500L RUN 63 X/C " .800L RUN 65 X/C " .750L RUN 67 X/C " .910L RUN 69 XIC " 1.000L RUN 71

z/c u/uo= plpo= z/c u/uoo plpoo z/c u/uoo plpoo z/c u/uoo pip= z/c u/uoo plpoo

1111615
0111615
.9610
0960_

!i!sl :s.t
:lttl !11ti

:ltlI

GP11-0232-80
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Instrumentationleads
bothendsof airfoil)

Opticalglass
window

Traversingrig

Tunnel
sting

Ventilatedtop and
bottom walls

GP11-0232-1

Figure 1. -- Test section setup.

57

I



GP11-0232-2

Figure 2. -- Two- by Two-Foot Transonic Wind Tunnel test section with
blunt-trailing-edge model installed.
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f_ Chord:
0, 0.5, 1.5, 2.5,

5.0% chord--_ =/'Upper, 0.2, 0.5, 1.0, 2.0, 5.0

i-e_ Leadingedge Leadingedge _L Lower,0.1,0.2, 0.5, 2.0, 5.0• Upper-surface

• Lowersurface
• • _11

q ol:• 5.0% chord I_
5.0% chord J_ q intervals 0_

intervals T • ",,t
° III

• mq

(? OI •
• m,,
• •

-"ll"- 1.67%chord "" I" 4.0% chord

(a) Blunt-trailing-edgemodel, (b) Sharp-trailing-edgemodel.
upperandlower surfaces.

GP11-0232-3

Figure 3. -- Distribution of static-pressureorifices at centerspan.
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Boundary-layer trip

Upper Lower

k k

Rec x/c (mm) x/c (ram)

O 3x 106,4x 106 0.35 0.05 0.188 0.05

(_ 3x 106,4x 106 0.35 0.05 0.06 0.08

O 14.6 x 106 Natural transition

0.030 I I I I I I

Rec= .,4, !,_.Re = t

_%J Lv, c
0.025 - 4x 106 3 x 106

0.020 -

cd
0.015 -

0.010 _L

O

0.005 I I I I I I
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

M
oo

GP 11-0232-4

Figure 4. -- Effect of boundary-layer trip configuration and
Reynolds number on drag rise characteristics at c1=0.6.
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Trip configurations

x/c k k/kcr
(mm)

R%=3x106 Rec- 4x 106

0.35 0.08 0.9 1.2 Uppersurface

O 0.06 0.05 1.0 1.3 1

[] 0,18 0.08 1.2 1.4 .j_ LowersurfaceA 0.35 0.09 1.1 1.4

-- Dataat Rec = 14.5 x 106

Moo= 0.76, Rec = 4 x 106 Moo= 0.80, Rec = 3 x 106

-- -- -- Dataat Rec = 14.5 x 106 -- -- -- Dataat Rec = 14.5 x 106
correctedto correctedto

Rec =4 x 106 Rec = 3 x 106

0.9 I I I I I I I I I I I I I
I

0.8

0.7

0.6

0.5 /
cz /

o.4 /
I

0.3 I
0.2 I

I \
0.1 \ \

0 I I I I

0.008 0.012 0.016 0.020 0.024 0.008 0.012 0.016 0.020 0.024 0.028

Cd cd
GP11-0232-6

Figure 5. -- Effect of lower-surface boundary-layer trip location on drag characteristics.

61



Trip configurations

k k/kcr
x/c

(ram) Rec ,, 3 x 106 Rec ,, 4 x 106

0.35 0.08 0.9 1.2 Uppersurface

[] 0.18 0.08 1.2 1.4 "_

0 0.18 0.10 1.5 1.8 .j_ Lowersurface

Z_ 0.18 0.12 1.9 2.3

O 0.18 0.16 2.4 3.0

Dataat Rec = 14.5 x 106

Moo= 0.76, Rec = 4 x 106 Moo= 0.80, Rec = 3 x 106

m m -- Dataat Rec=14.5x106 _EBDataatRe c=14.5x106
correctedto correctedto

Rec= 4 x 106 Rec = 3 x 106

9 | I I I I I I I i |
8

7

6

5

c/
4

3

2

1

0

0.008 0.012 0.016 0.020 0.024 0.008 0.012 0,016 0.020 0.024

cd cd
GP11-0232-5

Figure 6. m Effect of lower-surface boundary-layer trip bead size on drag characteristics.
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--1.2 I I I I I I I I I

M== 0.8, Rec = 3 x 106
-1.0

Upper-surfacetrip
x/c = 0.35, k = 0.08 mm

-0.8

-0.6

-0.4

Cp
-0.2

0 Lower-surfacetrip
cI cd

x/c k
0.2 (ram)

O 0.347 0.0135 0.18 0.12

0.4 Zl 0.387 0.0183 0.35 0.09

0.6 I I I I

(a) _ geom = 1.0°.

--1.2 - I I I I I I I I I

M== 0.8, Rec = 3 x 106--1.0
v_=._ _ Upper-surfacetrip --

|,i=

_i = 0.35, k = 0.08 mm

-0.8

-0.6

-0.4

-0.2 -

0

0.2 __ x/c (ram) _ -

. o..1o..o o.oo
0.6 I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X/C
GP11-0232-7

(b) _.geom = 3"00"

Figure 7. B Static-pressure distributions corresponding to high- and low-drag conditions.
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(a) Moo=0.6, Rec = 4 x 106, _ geom= 2.0o, (b) Moo= 0.8, _ geom= 1.0°, Rec= 3 x 106,
lower-surfacetrip, x/c = 0.18, k = 0.12 mm. lower-surfacetrip, x/c = 0.18, k = 0.12 mm.

(c) Moo=0.8 _ geom-- 1"0°, Rec-- 3 x 106, (d) Moo=0.8, _ geom-- 3.0o, Rec = 3 x 106,
lower-surfacetrip, x/c = 0.35, k = 0.09 mm. lower-surfacetrip, x/c -- 0.18, k = 0.12 mm.

(e) Moo--0.8 _ geom= 3"0o, Rec= 3 x 106,
lower-surfacetrip, x/c -- 0.35, k -- 0.09 mm.

GP11-0232-8

Figure 8. -- Lower-surface fluorescent oil-flow photographs.
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0.05 I I I x/c= 0.91I I
geom= 0.99°, cl = 0.440

0.04 _ri----p__ conf,_ ra_ti_n_ __ x/c = 1"0_. , k x/c=0.75

0.03 _urt'ace x/c (mm) ; /
Z/C Upper 0.35 0.08

0.02- Lower 0.18 0.13 _ j_ /

= ==; x,c=o0i/o.o_,--Pro_e_ x,c=O.5_ J _-

lal Low-drag conditions.

0.07 I t t t t
x/c= 0.91

geom= 0"940,cl = 0.452 x/c= 1.0
0.06 -

Trip configuration

k
0.05 -- Surface x/c (mm)

0.04 -- Upper 0.35 0.08 x/c =0.75Lower 0.35 0.10
z/c

0.03 - l

0.02 -

x/c =0.5 x/c= 0.6

0.01 j j0 I 1 I
0 0 0 0 0 0.5 1.0

u/u

(b) High-dragconditions.
GP11-0232-9

Figure 9. -- Lower-surface boundary-layer profiles, Moo = 0.8, Rec = 3 x 106.
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Moo= 0.8,Rec= 3 x 106

0.035 I I I J I4

0.030 --

i
0.025 -- l --

Trip configurations

0.020 -- _ o _geom cl x/c k(ram)
o

o 1.05 0.435 0.06

-- v 0.085_
c & 0.98 0.432 0.18 0.0 Lower

0.015 m z_ -- v 0.99 0.440 0.18 0.13 f surface

o o 0.94 0.452 0.35 0.10,/
V

0.010 _ _ 0.35 0.08 Upper
surface

0.005 --

0 , , I I I
0.4 0.5 0.6 0.7 0.8 0.9 1.0

x/c

GPll-0232-10

Figure 10. m Influence of lower-surface trip configuration on displacement thickness distribution.

66



M_==0.8, Rec = 3 x 106

Lower surface
trip configurations

k
x/c (ram)

o 0.06 0.05

& 0.18 0.08

v 0.18 0.13
n 0.35 0.10

0.003 I I 2.2 I I 0.00S I I

rl
0.002-- -- 2.0-- - 0.004-- -

vo
8*/c H Cf X

o

0.001 -- -- 1.8 -- - 0.003 -- v -
n

0 I I 1.6 I I 0.002 I I
0.5 0.6 0.5 0.6 0.5 0.6

x/c x/c x/c

GP11-0232-11

Figure 11. -- Boundary-layer properties upstream of the lower-surface concavity.
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Trip configuration

Upper Lower ix €dRe€
k k correction

x/c (mm) x/€ (mm)

0 ° 4x 106 0.35 0.08 0.18 0.12 "_

Q, 3 x 106 0.35 0.08 0.18 0.12 -0.0006 _ Sharp

r_ 4 x 106 0.35 0.06 0.18 0.06 trailingedge

I:_ 3 x 106 0.35 0.06 0.18 0.06 -0.0006
A 2 X 106 0.05 0.09 0.18 0.12 --0.0015 "_
V 2X 106 0.35 0.12 0.18 0.13 --0.0015 /),

Blunt

J trailing edge• 4 x 106 0.35 0.08 0.18 0.12

-- _ m 14.5 x 106 Naturaltransition +0.0020 Sharp
trailingedge

0.030 I I I I I I/"
/

0.025 - _// -

0.020 _

c/_ 0.8/_:

0.015 -
I

O.OLO0.005 -

Cd 0 _ "'" """

cl!= 0.4
0

0 I I I I I I
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Moo GP11-0232-12

Figure12. -- Dragdatasummary;varioustripconfigurationsat moderateReynoldsnumbersand
natural transition at higher Reynolds number.

68



-Moo Rec c! 0_geom Moo Rec c! %ore

0.58 2x 106 0.58 1.63 0.75 2x 106 0.58 1.23

Trip location, x/c Trip location, x/c
Upper Lower Upper Lower
0.05 0.18 0.05 0.18

blunt TE blunt TE

1 I [ I

-1.4

-1.0

-0.6

Cp
-0.2

0.2

0.6 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
x/c x/c
(a) (b)

Moo Rec c! O_geom Moo Re c c! %eom

0:80 2x106 0.63 0.9 0.80 2x 106 0.77 1.60

Trip location, x/c Trip location, x/c
Upper Lower Upper Lower
0.35 0.18 0.35 0.18

blunt TE blunt TE

i w i I 1 I I ]

-1.0 _\
-0.6

-0.2

0.2
• probe interference

0,6 0 ' , : : ' , , ,0.2 0.4 0 6 0 8 1.0 0 0.2 0.4 0.6 0.8 .0

x/c x/c

(c) (d) GPll-O_3=-13

Figure 13. -- Staticpressuredistributions,includingexamplesof probeinterference.
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Moo Rec Cl OZgeom Trailingedge Moo Rec Ci _geomim

o 0.6 2 x 106 0.58 1.63 Blunt O 0.8 2 x 106 0.61 1".8
o 0.6 4 x 106 0.58 2.60 Sharp D 0.8 3 x 106 0.71 2A

Trip location,x/c Trip Iocatlon,x/c
Upper Lower Upper Lower
0.35 0.18 0.35 0.18

sharpTE

--1.6__ _ , J r ,--1.2

-0.8

Cp -0.4 L -__o

o,4!08 i _ I
0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

x/c x/c
(e) (f)

Moo Rec Cl (Xgeom

o 0.83 2 x 106 0.61 0.78
o 0.83 3 x 106 0.54 1.03

Trip location,x/c
Upper Lower
0.35 0.18
LE LE
blunt TE

-1.0

-0.6

Cp -0.2

0.2

0.6 I
0 0.2 0A 0.6 0.8 1.0

X/C

(g)
, GPl1-O232-46

Figure 13. -- Concluded.
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(a) Supercriticalairfoil, Moo= 0.6, Rec = 4 x 106, (b) Supercriticalairfoil, Mbo= 0.6, Rec = 4 x 106,
cl = 0.58. cl = 0.58, close-upof trailing-edgeregion.

(e) Supercriticalairfoil, Moo= 0.8, (d) Supercriticalairfoil, Moo= 0.8,

Rec= 2 x 106, cl = 0.61. Rec = 3 x 106, c/= 0.44.

(e) NACA 64A010 airfoil, Moo= 0.8, Rec = 2 x 106, cl = 0.50.

GP11-0232°40

Figure 14. -- Interferograms of transonic airfoil flowfields.
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-2.0 I I I I I J l

Static pressure orifices

-- 1.6 I nterferogram --0.2

-1.2 _o_:b

Trip location, x/c 0 -

Cp -0.8 Upper Lower

0.05 0.18 Cp o o
-0.4 0.2- _ n o o a

0
0.4

0.4 _ i t I I I

(a) Supercritical airfoil, Moo= 0.6, Rec = 4 x 106, _ geom= 2.6 cl = 0.58.

--1.2 I I I I I -0.2
• • Static pressureorifices

--0.8 o o Interferogram

Trip location, x/c 0 -
--0.4 Upper Lower

0.35 0.18 Cp

Cp 0 0.2 - o o o a°°[3

0.4 -
- 0.4

0.8 I i i t t I I I
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.8 ° 0.9 1.0 1.1 1.2

x/c x/c

(b) Supercritical airfoil, Moo= 0.8, Rec ---2 x 106, _Xgeom = 1.8, c! = 0.61.

GP11-0232-14

Figure 15. -- Comparison of data from static-pressure orifices
and pressures determined from interferograms.
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GP11-0232-95

Figure 15. -- Concluded.
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(b) Lower surface, trip at x/c = 0.18. GPllo2a2.1s

Figure 16. -- Boundary-layer profiles at M_ = 0.6; sharp trailing edge,
Rec = 4x 106, C_geom = 2.6 (see fig. 13(e)).
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(b)Lowersurface,tripatx/c= 0.18.
GPll-0232-16

Figure 17. -- Boundary-layer profiles at Moo= 0.8; sharp trailing edge, Rec = 3 × 106,
ageom = 2.4 (see fig. 13(f)).
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Figure 18. -- Comparison of upper-surface boundary-layer profiles derived from pitot pressure
measurements and from interferograms.
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GP11-0232-111

Figure 19. --Trailing-edge boundary-layer profiles
derived from pitot-pressure and interferogram data.

77



Moo= 0.6 x/c =o1.05 Moo= 0.8 x/c = 1.05
0.04 -- Re =4x 106 - Re =2x106 e x/c= 1.1

C o C o o

%eom = 2.60 o x/c = 1.1 _eom = 1"8° _ °o x/c = 1.2
(Seefig. 15(a)) oo _ x/c = 1.2 (Seefig. 15(b)) °o o

0.02 - o " ,', - oo o° g
O A O O O O O

O O a O oOOO O & O O
A& & O O O OO O Q O O O OO

O & O O O O

O O & &A A rl "_ O O O O O O
moO O & OO oO O O

z/c o r=" o°° oo o&& o o o o °

°° o Oo °°oA A & &, o° °o o Ooo
_o

0.02 - °o ,= ° - °o o o
o ,,%_ o° o 0%

Oo && O O O Oo OO
0 O O 0 00 0o = o o o °o

0.04 - o , o o oo _ o o °o
o _ Oo o o Oo

& O 00 O O
0 & O 0 0 0

D O O

0.06 '=-- O -- O O

I I I I o I I 1 I

0,4 0.6 0.8 1.0 1.0 .0 0.4 0.6 0.8 1.0 1.0 1.0

U/Uoo U/U°° GP.-o=",2-19

Figure 20. -- Examples of near-wake profiles.
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(a) Uppersurface. (b) Lower surface.
GP11-0232-42

Figure 22. -- Wake components of transformed boundary-layer profiles, sharp trailing

edge, Moo = 0.6, Rec = 4 x 106, _geom = 2.6 (see fig. 16).
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(a) Upper surface. (b) Lower surface. 
GPll-0232-41 

Figure 23. - Transformed boundary-layer profiles in lawsf-the-wall coordinates; sharp 
trailing edge, M, = 0.8, Rec = 3 x lo6, ageom = 2.4 (see fig. 17). 
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Figure 24. m Wake components of transformed boundary-layer profiles; sharp trailing

edge, Moo = 0.8, Rec = 3 x 106, _geom = 2.4 (see fig. 17).
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Case Trailing edge Moo Rec 0_geom

(a) blunt 0.75 2 x 106 1.0
(b) blunt 0.83 2 x 106 0.8
(c) sharp 0.60 4 x 106 2.6
(d) sharp 0.80 2 x 106 1.8
(e) sharp 0.80 3 x 106 2.4
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Figure 25. -- Comparison of upper-surface trailing-edge profiles
with Stratford's separation profile.

83



Theory
Cebeci-Smith

mm Nash-Macdonald
----- Bower

o.0_6 ........
Test data Test data,

trip at x/c = 0.05 trip at x/c = 0.18

0.010 o_-/c /i °_'/c

o0/c / oO/o o /6*/c,0/c /
/o

000 Y

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
x/c x/c

(a) Upper-surfacedisplacementand (c) Lower-surfacedisplacementand
momentumthicknessess, momentumthicknesses.

3.0 /
{3 I

I'x\ o :

H 2.0 _ o / a _.
[

1.0 , , ,
0.006 , _ _- --- T

Test data

Cf 0.004 ocf_oH
o / ,

o '1!
// I

0.002 _/ =

0 , , i
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

x/c x/c
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shapefactor.
GP11-0232-23

Figure 26. -- Comparison of measured and calculated boundary-layer properties; sharp trailing
edge, M_ = 0.6, Rec = 4 x 106, _geom = 2.6 (see fig. 13(e)).
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GP11-0232-24

Figure 27. -- Comparison of measured and calculated
boundary-layer properties; blunt trailing edge, Moo = 0.75,

Rec = 2 x 106, _geom = 1.23 (see fig. 13(b)).
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GP11-0232-25

Figure 28. --Comparisons of measured and calculated boundary layer properties;
blunt trailing edge, Moo= 0.8,

Rec = 2 x 106, ageom = 0.9 (see fig. 13(c)).
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(e) Upper-surfaceskinfriction andshapefactor, blunttrailingedge,Moo= 0.83, Rec = 2 x 106, _geom-- 0.78.
GP 11.0232 26

Figure 29. -- Comparisons of measured and calculated upper-surface boundary-layer
properties; boundary-layer trip at x/c = 0.35, shocks aft of x/c = 0.5.
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GP11-0232-27

Figure 30. --Calculated static-pressuredistribution compared with experiment;
Moo= 0.6, Rec = 4x 106 (see fig. 15(a)).
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Figure 31. -- Comparison of calculated and measured boundary-layer and wake properties,

Moo = 0.6, Rec = 4 x 106 , c/= 0.61.
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Numerical computations (ref. 34)
_ Airfoil coordinates plus experimental (_*,

Moo = 0.78, 0_= 0.77, c/= 0.825, nonconservative

Airfoil coordinates plus experimental _*,
modified as shown on upper surface for x/c _0.94,
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GP11-0232-29

Figure 32. -- Comparison of calculated and measured statlc-pressure distributions.
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Figure 33. -- Comparison of Mach number contours traced from
interferogram with computed contours.
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Figure 34. -- Repeatability of static-pressure measurements, blunt-trailing-edge model,
leading-edge boundary-layer trip, k = 0.05 ram.
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Trip configuration

xi____€(mkm)
Upper 0.05 0.09

Lower 0.18 0.13
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(a) Moo= 0.6, Rec = 2 x 106, 1975 and 1976 data.

Trip, see Fig. A-2(a)
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(b) Moo = 0.6, Re c = 2 x 106, 1976 and 1977 data.
GP11-0232-32

Figure 35. -- Repeatability of static-pressure measurements, blunt-trailing-edge model,
aft boundary-layer trips.
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k
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Upper 0.35 0.13

Lower 0.18 0.13
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(d) Moo= 0.83, Rec= 2 x 106.
GP11-0232-96

Figure 35. -- Concluded.
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(b) Moo = 0.8, Rec= 3 x 106.
GPl1-0232-33

Figure 36. -- Repeatability of static-pressure measurements, sharp-trailing-edge model.
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Trip, see fig. 36(b)
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Figure 36. -- Concluded.
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Figure 37. D Repeatability of static-pressuremeasurements,sharp-trailing-edge model,
Cp's from 1978 shifted by 0.03.
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