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ABSTRACT

The interaction of a shock wave with a hot spot, a single vortex and a

vortex street is studied within the framework of the two-dimensional

compressible Euler equations. The numerical results obtained by the

pseudospectral method and the finite difference MacCormack method are

compared. In both the methods the shock wave is fitted as a boundary of the

computational domain.

Research of T. A. Zang was supported by NASA Grant No. NAG1-109. Research of
M. Y. Hussaini was partially supported by NASA Contracts No. NAS1-16394 and
NAS1-15810 while in residence at ICASE, NASA Langley Research Center, Hampton,
VA 23665.



Introduction

In their recent paper, Pao and Salas [1] presented a finite difference

solution to the two-dimensional Euler equations governing the phenomena of

shock wave interaction with an isolated vortex. Their study emphasized the

acoustic aspects of the problem. Zang, Hussaini, and Bushnell [21 extended

this numerical approach to the problem of turbulence amplification in shock

wave interactions. In this work it was necessary to resolve rather complex

fine-scale structure in order to draw meaningful conclusions about the

transient processes that dominate turbulence amplification. The present study

is a continuation of these efforts in two directions. First, to develop a

highly accurate pseudo-spectral method capable of resolving the crucial small-

scale structure on a relatively coarse grid. Second, to gain insight into the

nonlinear dynamics of the transient processes involved in the passage of a

shock wave over a single vortex, a vortex street and a hot spot.

Spectral methods have been demonstrated [31, [4] to be powerful

alternatives to finite difference methods for the numerical solution of smooth

flows. Recently, the work of Gottlieb, Lustman, and Orszag [51 and of Zang

and Hussaini [6] have shown their applicability to simple one-dimensional

compressible flows with shocks. The present paper discusses a Chebyshev

pseudo-spectral method that has produced reliable, accurate and efficient

solutions to complex, two-dimensional flows with a strong shock. Although the

main emphasis is on the spectral technique, solutions to the governing

equations obtained by the well known, second-order finite difference method

originated by HacCormack are also given. This is the method that was used in

[1] and [2). The finite difference results for the present set of problems

were calculated on a very fine grid and are used here for comparison with the

solutions obtained with the spectral method.



Statement of the Problem

The physical problem that we model corresponds to an infinite, initially

planar normal shock wave moving from left to right into a downstream region

containing a flow field representative of one or more vortices, or a hot

spot. In order to model the interaction of the shock wave with some given

flow field ahead of it, it is only necessary to compute the flow field

upstream of the shock. The physical domain, therefore, need consist only of

the region between some left boundary h(t), judiciously chosen such that it

will be far from the interaction region, and the shock wave front itself

xs (y,t). It is mapped onto the computational domain by the transformation,

x - h(t)
X ' x8(y.t) - h(t)

Y - tanh	 + 1
2
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T - t.

The computational domain is thus (X,Y) a [0,1) x [0,1].	 Note the

stretching that has been used to handle the infinite extent of the lateral

coordinate y. If the relative shock Mach number Ms is sufficiently high

(Ms > 2.08), the flow upstream of the shock remains supersonic. 	 In this

case, the left boundary corresponds to a supersonic inflow, and all dependent

variables can be prescribed on it. However, if the relative shock Mach number

is low, then radiation-type boundary conditions are used at the left

boundary.	 On the right, the computational region is bounded by the shock

wave. Downstream of the shock the flow field is given analytically. The flow

field immediately upstream of the shock, as well as the shape and velocity of
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the shock, are evaluated such that the Rankine-Hugoniot jump conditions and

the compatibility condition reaching the shock wave from the upstream side are

simultaneously satisfied.

The unsteady, two-dimensional, compressible, F.uler equations in the

computational plane are written in the form,

QT +AQX + y - 0 ,

where Q - [P,u,v,S] T and

U	
YXx YXY	

0	 V	 Y X Y y	 0

a 2X /y	 U	 0	 0	 a2Y /y	 V	 0	 0
A 	

x	
B a	 x

a 2Xy /y	 0	 U	 0	 a2y/y	 0	 V	 0

0	 0	 0	 U	 0	 0	 0	 V

The natural logarithm of the pressure, the speed of sound, and the entropy are

represented by P, a, and S, respectively, and y is the ratio of specific

heats.	 The velocity in the 	 x	 and	 y	 4 iirections are	 11	 and	 v,

respectively.	 All variables are normalized with respect to reference

conditions at downstream infinity, as in [1]. 	 The contravariant velocity

components are defined by

U - Xt +uXx+vX
Y

and

V t+uX +vY .
Y

Subscripts denote partial derivatives with respect to the independent

variables.
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Let k denote the time level and let At be the time step increment.

The time discretization of eq. ( 12) is then as follows:

Q - 11 - AtLkIQk,

Qk+l 1/2 (Qk + (1 - At^)Q] ,

where the spatial operator L represents an approximation to A6  + Ra Y.	 In

the finite difference KacCormack method, the operators 	 Lk	 and L	 are

evaluated as two points forward and two points backward differences in the

predictor (left) and corrector (right) levels, respectively. In the paeudo-

spectral method studied here, the solution Q is first expanded as a double

Chebyahev series,

M N
Q(X , Y , T) - F	 Y Q (T) t (C) ti (r),

p•0 q.0 Pq	P	 q

where

Ca2X-1,

il- 2Y- 1,

and 
T  

and T  are the Chebyshev polynomials of degrees p and q. The

derivatives appearing in the spatial operators are then evaluated as 	 .

I	 QX . 2 F	 Q(1,0) z z
P qu

o Pq	 P qua1	 •Q

j

	

	 -

where

4
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(1,0) . 2	
M

Qpq	 C	 I mQmqV
p M-P+l
m+p odd
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and

c 0 . 2,

c p - 1, p > 0.

The Qy derivative is evaluated in a similar fashion.

The evaluation of the shock wave shape and velocity followed the same

procedure described in [1), except that in the spectral formulation, the

derivatives that must be evaluated on the upstream side of the shock are

expressed as Chebyshev expansions. At the left boundary, all variables were

specified for supersonic inflow. For the case of subsonic inflow, the two

velocity components and the entropy were specified, while the pressure was

computed from a quasi-one-dimensional characteristic as described in [83.

The pseudo-spectral method has a tendency to develop slowly growing

oscillations. Because of the global nature of this method they are spread

over the entire flow field rather than being confined to the vicinity of sharp

gradients. The underlying smooth solution can be recovered by a variety of

filtering techniques. The results presented here were obtained by applying a

von Hann window filter (see [61 for details) every 160 time steps. Another

practical consideration is the explicit time-step restriction. The Chebyshev

collocation points are clustered near the boundaries. Thus, smaller time-

steps must be used in the pseudo-spectral calculations.
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Perhaps the simplest interaction to consider is that of a planar shock

wave with a ho- spot, as shown in Fig. 1. The flow field downstream of the

shock wave situated at x - 0 at t - 0 is taken as a quiescent field whose

temperature distribution a, is given. by

Cr - 2% exp(-((x-x 0) 2 + (Y-YO ) 2
 
Mr 

2).

where for this case K - 0.25, r - .125, x0 - 0.5, y0 - 0.0, and Me - 3 at

t - 0. The vorticity distributions obtained by the finite differerce method

and by the spectral method after the shock wave has passed over the hot spot

are shown in Fig. 3. The finite difference solution presented here, and in

all cases that follow, was obtained with 75 mesh points in the X direction and

50 in Y. The spectral solutions were all obtained with 33 collocation points

in the X direction and 17 in Y. There is very little difference between the

two solutions. Both show the two counter-rotating vortices upstream of the

shock, which is typical of this interaction. See (2) for more details on the

physics.

Figure 2 shows the velocity field for a single vortex about to interact

with a shock wave of the same initial strength as in the previous case. The

downstream conditions here are obtained by assuming a constant density field,

calculating the velocity from the stream function,

- 27t log	 r2 + (x-x0 ) 2 + 
(y-y0)2

the pressure from Bernoulli's relation, and the temperature from the equation

of state. For the case shown in Fig. 2, the circulation K - 2 and the

-6-
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softening scale r - 0.1. This model approaches an idealized incompressible

point vortex at large distances but is much smoother near the center. Figure

4 shows the resulting pressure field after the shcck wave has passed over the

vortex. Overall, the results are qualitatively very similar, although the

spectral method seems to be resolving the pressure field more accurately. See

(1) for more details on the physics.

Finally, Figs. S and 6 show the results for the interaction with the

Karman vortex street that simulates the conditions of the experiment reported

in (7). For this case, the stream function representing the vortex is given

by the difference of 41+ and 4o- where

t̂ - 
K

log[cosh(^^ r2 + (y t 1/Z b) 2 ^ - COS('-' (x *1/2c))]-

To match the experiment, the circulation, core radius, shock Mach number and

vortex separation parameters were determined as K - 0.186, r - 0. 1, Ms

1.3, c - .33, and b - .048. For this calculation, the inflow Mach number was

subsonic and radiation boundary conditions were applied at the left

boundary.	 The results shown in Fig. 6 are in agreement with the

'-	 experimentally observed [7) longitudinal compression and lateral elongation of

the vortex field after passage through the shock. 	 The finite difference

_-

	

	 results are noticeably smoother than the spectral ones. However, it is well

known that the idealized Karman vortex street is unstable "or all but one

, special raLio of the horizontal and vertical. separations. The downstream flow

has the stable ratio. Thus, it is likely that the upstream flow is physically

unstable. It may be that the spectral results have captured this phenomena,

but more computations are needed to settle the issue.
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Fig. 1: Surface plot of entropy
	

Fig. 2: Velocity field of a single vortex
distribution for a hot spot about
	

about to interact with a Mach 3 shock wave
to interact with a Mach 3 shock
	

(solid curve). The velocity vectors repre-
wave.	 sent perturbetfon from the mean values.

Fig. 3: Vorticity fields at t 0.20 computed by pseudo-spectral (left) and finite
difference (right) methods for a hot spot after interaction with a Mach 3 shock
wave (solid curves).
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N e• 4: Isobars at t - 0.20 computed by pseudo-spectral (left) and finite
cifference (right) methods for a single vortex after hilerArtion .+ith a
..-cn 3 shock rave.
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Fitz. 5: Velocity field (left) and vorticity contours (right) for a Karman vortex
street about to interact with a Hach 1.3 shock wave (solid curves). The velocity
vectors represent perturbations from mean values. Negative contour levels are
Are indicated by dashed lines.
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Fig. 6: Velocity fields (top) and vorticity contours (bottom) at 	 0.36 computed
by pseudo-spectral (left) and finite difference (right) methods for a Kaman vortex
street after interaction with a Mach 1.3 shock wave (solid curves). The velocity
vectors represent perturbations from mean values. Negative contour levels are Indi-
cated by dashed lines.	 ^_ {
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