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Interest in tra;:_onlc aerodynamics endure_ because _oat co_--rzerefaland

. military aircraft operate predominantly in the transonic regime. _e design

and mmlysln of transonic w!ng_ and related configurations have bean carried

_. out largely "_ithln the framework of the transonic cmall perturbation equation

and the full potentia! equation. Apart from their relative simplicity the

popularity of these flow models is due to their adequate repre_entatlon of

flow features of practical in_portance. For instance, the pressure rtse across

an isentroplc shock in these models is sufficiently accurate for normal _%ch

numbers ahead of =he shock less than 1.3. Naturally, if other design

considerations produce strong shocks and/or complex vortical flow, then

recourse to the Euler equations Is appropriate. Indeed, Euler solutions to

r transonic flow problet_s have attracted serious attention as of late, and they

will surely gain increasing popularity as they become more competitive with

'! potentia! solutlon_. However, for many configurat!ons of engineering!

i! Iutere_t, potential flow predlctton_ with asymptotically flrst-order weak!,

vtscous-lnviscid interaction give solutions of more than adequate accuracy

i [I]. I_en strong shocks and/or vorticlty are of dominant importance in the

' flow field, weak viscous-inviscid Interaction is no longer an adequate

, model. Impleraentatfon of strong interaction models is relatively crude at:@

this time, and until substantial improvements have been made, the potential

reticulation will retain the most favorable accuracy-to-cost ratio for a wide

range of practical transonic flow problems.

The main difficulty in the numerical solution of the steady transonic

- flow problem has been the mixed elliptic-hyperbollc nature allowing for the

presence of discontinuities. The initial breakthrough in overcoming this

difficulty was made only in the early 1970"s by H_2z_an and Cole [2] who



_ ...... . .4 •

!

introduced a type-dependant difference _cheme for solving the transonic _all

perturbation equation. Following this breakthrough there have been =any

= developments _n the computation of tranaonlc £1ows, _ne survey lectures of

p'_ Ballhaus [3] and Jameson [4] present a detailed review of these developments

up to 1976. Since then most research on numerical methods for the steady-

state full potential equation has foaused on accelerating Iteratlve methods.

Much of the progress has been made by relating the relaxation scheme to a

tlme-dependent differential equation and then usin 3 the theory of numerical

Integratlon of ordinary or partial differential equation_ to estimate the

optima! relaxation parameters. Ballhaus, et el. [5] developed approximate

faetorizatlon schemes, AFI and AF2, which, applied to the transonic _all

perturbation equation, yielded rapid convergence. _e AFI scheme is analogous

to the Douglas-Corm alternate direction Implleit (ADI) method for the

parabolic equation. The AF2 scheme, which is similarly related to e

' hyperbolic equation, has been extended by Holst to the full potential equation

i in conservation form [6] and to three d_mcnslons [7]. Another variant of AF2

i is the approximate faeto_Izatlon scheme AF3 developed by Baker [8]

; (independently of Hoist) for the
full potentia! equation in the

_-_ nonaonservatlve form. The success of all these schemes over the practical

i--_ range of transonicflow conditionsis still problem-dependent.Catherall [q]

discusses the basic principle of the approximate factorlzatlon schemes for the
t

i two-dlmenslonalsteady potential equation, and describes a procedure for

. constructing optimal algorithms. _ong and Hafez [i0] propose preconditioneda

• conjugate gradient method which _s at least twice as fast as pure successive-

•, line overrelaxatlon(SI,OR). Some other Iterativeschemes are assessed by
\

X Dorla and South [II]. Another fast method is the multlgrldtechnique,first

applied by South and Brandt [12] to the transonic small perturbation equationL



with SLOR as a basic Iteratlve scheme. Recently, Janeson [IS] developed the

multigrid procedureto accelerateconvergenceof the full potentlal=olutlon

by an ADI method. Despite the existenceof quite a few efficientmethodsof

potentialsolution,controlledcomparisonsare lacking.

€"' The computer time required to obtain numerical solutlonc for tvo-

dlmenslonal potential flo_ i_ now eo _-aall that there is practicallyno

incentive for developing more efficient schemes. However, for three-

dimensionalflows exist£ng methods are still so costly that a substantially

! more efficient solution algorithm would have great practical importance.

,_ Unlike the two-dimensionalcase, computerstorage Is a crucial consideration

i in weighing the efficiency of a scheme. Peeudospectralmethods have[

! demonstrated their capacity for producing equlvalen£ accuracy with far fewer

grid points than standard second-order or even fourth-order methods, not only

for smooth flows but also, more recently, for the Euler equations [14]. The

:° first pseudospectraltwo-dlmenslonalpotentialflow solutionswere obtainedby

[ Streett [15],who establishedthat equivalentsolutionswere In fact obtalned

for potcntlal f!ows with far fewer grid points than required by standard

methods. However,his'solutiontechniquewas clearly In need of acceleration,

particularly for supercrltieal flows. In this paper we describe an

L- accelerationtechnique,based on the spectralmultlgrldmethods developedby

Zang, et al. [16], [17], that has significantly Improved the rate of

convergence of the pseudospectral dlscretlzatlon of the full potential

equation. In fact, the spectralmultigrid scheme Is so efficient that the

preliminary version described here is highly comFetitive with the finite

._ differenceschemes.

\ Since the applicationof spectra!methods to compressiblef]o_;sis still

8 fairly novel approach,most rendersare likely to be unfamiliarwith either



the practical details of o_eetral method_ or the nu_n=e_ of _umer!cal method_

for eompresslble flows. Moreover, _pectrni multi_rld nethod_ themselves are

still in the formative stage. The pro_!elng nature of the present occults

warrants a reasonably complete and _elf-conta!ned descr!ptio_ o[ the numerical

e_ method.

We begin by describing a means of implementing pscudospectral dlffereutl-

atlon, which, although agy_ptotlcally incfflclcnt, is nonetheless preferoble

for problems on moderately-slzed grld_. This is followed by descriptions of

the eseentlal features of spectral multlgrld methods and of the relaxation

schemes. These methods are then illustrated on several linear problems. An

explanation of the potentlal flow problem and its pseudospectral approximation

is given next. Finally we report on the performance of the spectral multlgrld

method on both subcrltlcal and supererltical potcntlal flows.

I II. Speetrml I_thod= _Ing l_atri= Multiples

_e Fast Fourier Transform (FFT) has usually been cited as a key element

in the efficiency and hence the implementation of spectral methods. In the

pseudospectral sort of calculations discrete Fourier methods are commonly used

in the evaluation of derivatives. However, uuder soT:e circumstances it is

actually faster tO use conventional matrlx-vector multiplications for this

purpose than to resort to transform technlques. An obvious requirement is

that the problem be of moderate size. There are many .slgnificant engineering

applications which meet this requirement. The transonic _low application,

.. which is the main thrust of this paper, is one such example. Even in clrcum-
\
• stances which m.ost favor transform techniques -- on grids with 2k points --

the matrl):-muitiply approach (usln_, nothing but Fortran) has proven
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• to be slgnlflean_ly f_nter than the transform me_hod (employing assembly

language FFT's). Precise comparisons _IIi be given below.

In a p_eudoopectral me-hod the fundamental representation of the solution

Is in phyoical space. The quantities t_.Ich are stored are the values of the

function u(x) at special collocation points xj. Derivatives, however, are

evaluated spectraily. _'ne values of the function are passed thro,gh a

suitable discrete transform to produce the representation of the function in

transform (wavenumber) space. The actual differentiation takes place in

wavenumber space. Then an inverse transform is appllcd to yield the

paeudoopectral approximation to the derivatives of the function at the

colloc.-tion points. Let U denote the vector of valueg of the function at

the collocation points. Then the approximation to the derivative at these

points may be written

0 U, (1)
where

(, o ,. c-1 DC, (2)

with C representing the discrete transform and D representing

differentiation in wavenu_mber space.

"i The most well-known pseudospectral method is based upon Fourier series.

"" Let the interval of interest be [0,2_] and use the collocation points

xj - H J "_O,l,...,M-1. (3)

Then
" __ M _-_

, l t! I'. ,- - _,-..,_ - i
\ C,d = _ e, . " J - O,I,...,H-1 (4)
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Dk£ =' (5)

0 l-.- H
2

;+- - _ ,..., _. - ,..

(C-I)j = e }'k " (6)

The Fourier series differentiation matrix may be conatructed by the matrix

multiplies Implied by Eq. (2). Alternatively, one may simply use the explicit

- formula given in Eqs. (8) and (9) of [16] for the elements of 0.

, Once the matrix 0 has been con.qtructed, the cost of evaluating a

derivative by the matrix vector product OU is 0(H 2) The transform

technique reduces this to 0(M £n H) However, two transforms are required

': and the constant in the 0(H £n M) fae:or is larger than the one in the
i

+ O(M 2) case.

i: Chebychev pseudospactral methods have been the most widely used ones for

t, non-perlodlc boundary eondltion_. The standard Interval is [-I,I] and the
i

,, collocation points are

i;

,_ xj - cos -_-_N J = 0, I,..- J+. (7)

i,

'; ThenI:

!! Ckj " cos k,J - O,I,o..,N , (8)
,,ii N_-k_j N
't

t
f
!
|

..... _...... : +,,. -, ........... _...................................... "
It
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where

-- _2 J -OorN

e. = I . (9)3 I otherwise

Horeoverp

Dkg = , (I0)

I O otherwise

where

2 j = ocj = (I1)1 otherwise

and

(C-1)jk " c°s _-'_N " (12)

An explicit formula is available in Eqs. (49) and (50) of [16] for this

Chebysher differentiation matrix.

i

III. Spectral _:ultlgr_d Funda_entalo
!:

: Overview of Multiqrld Al_orithms

The problems of Interest here are scalar partial differential boundary

:t value problems' The PDE can be written _n the general form

L(u) " f, (13)

'i
:i where u(x,y) is the unknown function, f(x,y) is some source term,

_ and L is a partial differential operator which might be nonlinear in the
I

!i unknown u. The eorre3ponding discrete problem will be written
!

t

.i
;_ _
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[ L(_y)_ P (14?

_I+. in obvious notation.

! Hultlgrld solution schemes for Eq. (14) involve combining relaxationt
[ sweeps for that equation with relaxation sweeps for related problems on

coarser grids. Let V denote an appro_!matlon to U. The e--eential property1
[ for the relaxation scheme is that it preferentially damp the hlgh-frequency

components of the error V - U+ _nen after a small number of relaxations the
!

error will have so little high-frequency content that it can be approximatedt

{
.1 well on a coarser grid. Solutions on the coarser grid are relatively

i inexpensive to obtain, cspeclally if this strategy is applied recurslvely by

, using still coarser grids as needed.
!

Let us consider Just the interplay between two grids. The fine-grid
i

,, problem is written
I

_ Lf(uf) = Ff. (15)
Pl

,
The shift te the coarse grid occurs after the flne-grld approximation Vf has

been sufficiently smoothed by the relaxation process, i.e., after the high-

frequency content of the error Vf - Uf has been sufficiently reduced. The

related coarse-grid problem is

LC(Uc) .:FC., . (16)

:, where

,, Fc = riFf - Lf(vf)] + Lc(Rvf). (17)

+, The restriction operator R interpolates a function from the fine grid to the

|

, coarse grid. The coarse-gr!doperatorand solutionare denoted by Lc and
t

Uc, respectively. After an adequate approximation Vc to the coarse-grld
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1,
problem has been obtaLn_d_ the flnc-gr._d approximation i_ corrected via

" vf+ vf+ p(ve- I_vf)" (is)

_e prolongation onerator P £nterpo!ateo a function from the coarse _rid to

the fine grid.

_le choice of the coar_e-grid problem i_ based upon rewriting Eq. (15) as

Lf(uf) = [Ff - Lf(vf)] . Lf(Vf)" (19)

The term in brackets is the Zine-grld re=Idual, Since != has been presumed to

be smooth, its coarse-grld approximation is clearly

R[Ff - Lf(vf)]" (20)

Equations (16) and (17) then follow by replacing the remaining flne-grld

_ quantities with appropriate coarse-grid ones.

The quantity

wc = uC - Rvf (21)

is the coarse-grld correction. Equations (16) to (18) are equivalent to

Lc(RV f + Wc) - Lc(RV f) = Fc (22)

vf . vf + PzC' (23)

where Zc is the appro::tmation to _F. For lineor problems r_. (22) reduces
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t LC_: " Pc" (24)

This overvlew has, of course, bean based upon the paper by _randt [18],

pc- albeit in notation popularized by l_ckbu_ch [19]. The parrlcular choices of

the interpolation and coarse-grld operators u_ed in _he pre_ent spectral

multigrld _rk are described in the following sub-sect!ons. This description

is given for one-d!menslonal problem=. The extension to hlgher dlmenslons i_

obvious. X_ese details are followed by a discussion of the rela=ntlon

schemes,

Interpolation ___rat ors

The spectral multigrld interpolation operators _'hlch were proposed in

[16] for pcrlodlc coordinates amount to trigonometric interpolation: given a

function on a coarse grid (with Hc points), compute the discrete Fourier

coefficients and then use the resulting discrete Fourier series to construct

the interpolated function on the flne grid (with Hf points). This ray be

accomplished by performing two FFT's. An explicit representation of *.be

prolongation operator Is

- If
c

2 " 2_Ig - )

PJk '= __. _ cH e , (25)
c H

_=_-_c+ !
2

which sums to yield

PJk " _ S( - (26)
where



_J II

S(r) _ r integer

t . (27)

The corresponding restrlcrion operator Is eonentlally th__8dJofnt €. thlo:

_s(L L).
RJk _:F.f Hc - i.f (?8)

Interpolation for non-perlodlc coordinates employs Cheby_hsv _erie3 iz an

analogous fashion. _e prolongation operator Is

N
c

PJk _INc _-I coo _ cos--- , (2_;e

where Ck is defined by Eq. (9) wi_h N = Nc. This sums to

' PJk _"----'-- [Q - k O(j +. p

CkNc f N'-')+ "Nf (30)c c

i
where

Q(r) = r integer
_rN * (3i)

e _r

, ('/4- '/4co_(.rNc)+'/2cos(2e%-,-,).,stnC--T--)csc(_)o:he_ise

We will have occasion to use two distinct restrictionoperators. One is

• sometimes used in forming tlle coarse-grid operator and is obtained by applying

Chebyshev restriction in the obvious fashion. It will be deno=ed by R(°)

and it in given by

-_-_--- - + + ,1--)l, (32)R_°) k b
k CkNf c 'c _: "
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where e k is defined by F_I. (9) with N -iIf and

i

N

I I/4+ 2 r integer

.#

! _(r)- _,rN • (33)

cseI_'-) otherwise

} The other is used for interpolation,is denoted by R(f) and is defined byi

the adjoint requirement:

.i

R(i) 2 _ I" NJ_c N_
" - )+ )] (34)jk [QI _( +

CkN c _ 'r

! where ck is defined by Eq. (9) with 11- Nc.
{

_' Coarse-Grld Operator

. A typical term in the class of problems considered here i_

4. :

d [a(u,x)d-al
!_ dx dx J" (35)

: The discrete operator which represents it_ fine-grld pseudospectral

approximation is
a

)o

: Lf -OAO,-: (36)

:'! where O is gi_.__nby Eq. (2) and A Is the diagonal matrl>:

Ajk _ a(uj,xj)_j, k. (37)
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! _ •Many multlgrid Inveotlg=tora, e.g., [ _] [20], and [21_, have advocated

choosing the coarse-grid operator so that

Lc - RLfP. (38)

Both the Fourier and the Chebyshev flrst-derlvatlve operators• defined by Eqs.

(2) - (12), satisfy

oC " RofP, (39)

where R - R (°) IG chosen in the Chebyshev case. However, _q. (38) itself is

not satisfied if the coarse-grld analog of Eq. (36) is used to define Le,

except in the trivial case for which a(u,x) is a constant. On the other

hand• much of the efficiency of the pseudospectral method is lost if Eq. (38)

Is used to define the coarse-grld operator. Some compromises were suggested

in [17]. The most satisfactory one seems to be using Eq. (36) but with the

restricted values of a(uj,xj) in place of the polntwlse values. _e

Chebyshev restrictions should be performed w_th R (°).

Boundary Conditions

In the appllcationf_ that follow, three types of boundary conditions

appear: periodic, Dirlchlet, and Neumann. Periodic boundary conditions are

automatically satisfied by the use of Fourier series, rully-perlodlc problems

contain some subtleties that are discussed in [17).

Dirichlet boundary conditions are handled effortlessly. The vector of

unknowns should include the values at the boundary poin2s in their natural

locations. (This has the side effect of facilitating the programming of the

Chebyshev interl_olatJon.) On the fine _r!d the desired boundary values are
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in_erted into the approlmlote location_ and theoe valucu are not r o_ificd

during the relaxation. On the coarser grids the appropriate boundary values

are the ones uhlch fall ou_ of the restriction process.
I

Net,mann boundary conditions are a bit touchier. We have _nforeed them by

incorporating the Ncumann boundary condition into the discrete operator.

Suppose that there is a Neumann boundary condition at ,-,= -1. In the

evaluation of a terra such as appears in F_. (35)_ the first stage is the

computation of du/dx at all the collocation points. In general this value

will not match the desired boundary value. %q_e boundary condition Is enforced
!

by resettlng the value of du/dx at x = -I to the desired value before

proceeding _Ith the multiplication by a(u,x) and then the final

differentiation. This produces the desired boundary condltlon in the

converged eolutlon. This approach has the advantage of ensuring that the

[ boundary condition appears in the discrete operator with a consistent _callng.

A much less effective alternative is to replace the differential equation at
i

• x - -I with the condition that du/dx is the prescribed _oundary value. The
[

disadvantage of this approach is that this boundary equation is far out o2

#

scale with the rest of the operator. This alternative has in fact bee,: tried

• on some of our test problems and it has resulted in a substantlal

'_, deterioration of the convergence rate.

4

IV. P,el _-'-at :f.oa Schuss

_ne crucialpropert:ythat a relaxationscheme shouldposses_ for use in a

: mult!grld algorithm is that it damp effectively the hlgh-frequency components

,,:
k of the error. It need not be espec_allyeffectivein the low-frequencyrange,

_o long as it does not an'_pllfyany components. For spectral _ultigr!d _ethods
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an addJ.tlonalrequlrenen_arisesfromthe globolnatureof the appro_i_tlon:

the fast evaluation of derivatives demands thaL Lhe relazatlon bo almultancou=

, rather than successive, e.g., Jacob_'o method can be iopi_ented efficiently,
whereas Gauss-Seldel's Cannot.

A classof Itera_Iveschemesthatmeetstheserequirementsis basedupon

approximate factor!zatlon techniques [5]. _lese method_ are especially

attractive because they have been employed in come of the most successful

finite difference solutions to the delicate transonle potential flow proble_

[7], [13]. Moreover, the latter work demonstrated their effectiveness in the

mul£_grld context, albeit for a purely finite difference approximation. A

review of the computational transonlcs literature suggests that the most

fruitful interpretation of approximate factor!zatlon schemes for this mixed

ell_ptlc-hyperbollc problem is in terms of their corresponding tlme-dependent

partial differential equation. This is the approach that will be taken below.

An alternative and perhaps more traditional interpretation for llnea_,

elliptic problems is in terms of preconditioning. The relaxation scheme

proposed in [17] for a spectral mult_gr_d method for such problems _s

interpreted as an incomplete LD decomposition serving as a preconditioning for

Richardson's iteration. A brief description of this scheme is included here

since it will serve as a comparison for the approximate factorlzatlon method

on one of the linear test problems.

• RichardsonIterationwith IncompleteLU Decomposltlo,,

A preconditioned Richardson iteration for solving Eq. (14) can be
expressedas

V + V + tJ H-IIF - L(V)], (40)



where H is the preconditioning matri_ end v is tho rela_atlon parameter.

_le matrix H should be chosen as that it ia an approximate Inverse to L,

but is easily invertib!e. The version recommended in [17] for linear problem_

is obtained by first constructln_ the matrix HFD which represents a standard

_ second-order finite difference appro_:Im_tlon to ! (see Eq. (13)) and then

perforfalng an incomplete LU decompositlou of I_FD. Details are provided in

[17] along with a prescription for choosing the relaxation parameter m =o

that the hlgh-frequency error components are damped preferentially.

,ApproximateFactorlzatlon

For this discussion it is convenient to red.Ire Eq. (14) as

H(u)= o, (41)
where of course,

H(U) = L(U) - F. (42)

Next, view U not as the solution to Eq. (41), hut rather as the steady-state

solution to the evolution equation

'" _}lJ
.- _-_- H(U). (43)

This is surely sensible if L(u) is elliptic for then Eq. (43) represents

the spatial dlscretl;:ation of a parabolic problem. Seml-impliclt time-

stepping procedures are desirable for such problems because of the severe

expllcft time-step limitations. (This is especially a_:ute for pseudospectral'i

dlscretizations employing Chebyshev series because of the very small spacing

between the eollocati_n points near the boundary.) _le simplest practical
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U(n+l) - U(n)

,. " At " _(u(n))+ J_(n))_(n+l) - u(n)), (44)-
where

3M

_+" aCu)- ._. (u), (45)

and a superscript refers to a time level. Let

1
v _ m

At (46)
and

Au(n) " u(n+l)- u(n)' (47)

and then rewrite Eq. (44) as

! [al - J(U (n))]hU (n)':.'. +"M(uCn))' (48)

where I denotes the identity matrix.

This motivates the relaxation scheme

_? V + V + _AV, (49)

: where AV is the solutionto

[aI- J(V)]AV..M(V). (50)

t

In many cases the Jacobian J(V) can be split into the stun.of two operators

Jx(V) and Jy(V). each involvin_ derivativesin only the one coordinate
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dlrecCion indicated by the- subacrlpt. Appro=i_ate factor-*zati_n methods

encompass various approximations to the lef_-hand aide of F,q. 448). _'he _ost

straightforward of these is

:

_" [ai - jx(v)] tel- j (v)]av = all(v), 451)
. y

In combination with Eq. 449). This is Just the Douglas-Gunn verslon of ADI

: [22]. It Is commonly referred to as AFI for the transon!c problem [5]. For
/

..... _ second-order spatial dlscretlzatlons the term [el - J (V)] leads to a set of
/

trldlagonal systems, one for each value of y. The second left-hand side

factor produces another set of trldlagonal systems. For pseudospecrral

diacretizattons, however, these systems are full; hence, Eq. 451) 18 still

relatively expensive to invert. A compromise analogous to the one invoked in

the incomplete LU decomposition preconditioning is to replace Jx and Jy

_ i' with their second-order finite difference analogs, denoted by _x and _.

!.i respectively:

[aI-Hx(V)][az-H -aM(v). 452)y

-- t-;

The approximate factorlzation scheme consists of Eqs (49) and (52) For.._. •

purely finite difference approximations some analytical results are available

for selecting optimal values for the parameters e and _' [9]. h'osimilar

_ , results are yet available for the present application. _y analogy with thez

finite difference case we have chosen _ to be of order unity and have

: selected a sequence of a'n in a range [a£,ahI by the rule
%

k-i
k (az972T

a = eh_ehj ,-r..... _""'[L
-- , O.RI_=,[,_,_'-.:'_-_ :- (53)

,. OF POOR QUAL;';-'_"
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where K denote= the nu=_berof dlotlnct a'_. T_e choices of a£ and ah

were based in part on eutimates of the elgenvalue range of the discrete

- operater= and in (=_ch greater) part by trial and error. Fertunately, the /tF[

scheme I_ not very =enolt_ve _o these 9arauetLrs.

For glngle-grld solutions to the cubcri_ical potential flow problem the

pseudospeetral _I scheme ba_ed on Eq. (43) has proven satisfactory [15].

Extensive _rk on finite dlfferenc_ methods for cupercrlt_ea! potential flow

has indicated the necessity to base their appro_ir_atefaetorlzat_on schemes on

_2U

where o Is a physical variable directed along the =treamllne. One scheme

which models thls behavior Is referred to as AF2 [5]. A pseudospectral _J_2

variant is described in [15]. Since schemes of the AF2 type model hyperbolic

equations they are relarlvely ineffective a= damping hlgh-frequency error

components. Indeed, In the pseudospectral slngle-grld _plezentatlons [15]

for supercrLtlcal flow, an iteratlve strategy involving both AF2 and AFI was

found to be more effective than AF2 alone. (By itself, of course, AFI was

divergent.) This wlll be referred to below as the AF2/AFI scheme.

_- _=erlcal P_aulto for Linear Problems

T_ chose a series of test problems to bridge the gap between the spectral

multlgrld methods described in [17] and those required f_r the potential flow

problem. The first step was to change the rela:tatlon scheme from

preconditioned Richardson iteration to approximate factorlzat_on. The

boundary conditions were left as Dirich!et in both coordinate directions The
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next phaoo Invo!ved _'_if_,nZ te _erledlc _ou_d_ry condltlono In one

dlree_ion, in the flna_ s_age the ge_not_/ _as altered frc_ a rectansle to _n

annulcs ,)_th an inner radial boundary condition of Neumann rather tb.._

Dirlehlettype. Yhis lastproblemis aboutas closeas one ca_ ce-_-_to the

potential flow problem within the ccnst_alnt of !Inearlty.

•"_,emultIgrld codes ueed a _axi_ of 4 levels. These are labelled by

the index k, _here k = 2, 3, 4, or 5. The _rid cn level k contains

either 12k (Fourier) or 2k -:oI (Chebyshev) collocation points in a coordinate

direction (Ineludln_ b=undary points). _o different schedules were used;

_ they wore referred to as eehedules B and D in [!7]. For schedule B the

problem was first _olved on level 2; then that solution was interpolated to

level 3 as the initial guess for a =ultlgrld iteration involving levels 2 and

3; then the converged level 3 solution _as interpolated to level 4 as its

! initial guess, and so on until level 5. For schedule D the multlgrld proeees

almply began on level 5. In both eases the initial i-a_ssconsisted of random

. ! numbers chosen from (0,!)p ensuring that all error components were present

' InltlallT. _oth schedules were run in a fixed mode _'ith 6 relaxatlona (2

I posses through a 3 paremete':sequence) before restriction to a coarser grid.

A coarse-gr!d solution was deemed acceptable for prolongation to a fine-grld

[" whenever its _MS residual dropped below 0.1% of the last residual on the finer

grid. All o£ these linear runs employed the correction scheme, i.e., Eq. (24)

rather than Eq. (16) was solved on the coarser levels. The variable

coefficients and the right-hand sides for the coarse-grid problems were

filtered in the manner deccrlbed _n [17].

The specific mea,qure used was the equivalent smcothlng rate. In sane

"_ preliminary calculatlon_ the _verage time TO required for a single flne-grld

_ rela_atlon was detezmln_:d. For an actual mu!tigrld calculation let rI and
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r 2 be the F_S revidualo after the first ond last fir.e-grid relcr_at!ona,

re_pectlvely and let T be the total CPU time. Then the equivalent cmooVhlng

' " rake wao =aken a=

1

T_--I-7_
[r2!O

. I. .1 " (55

: Rectnn,_ular Cheby_hev - Chebyohev Problem

! The problem elaa_ IB the same one examined in [17]

i:

, 7

i " on (-I,!) x (-I,I) with Dirlchlet boundary conditfons wlth

i i cos ma_(X+y)
.{. a(._.,y) ,, 1 + € e , (57)

! :

; : and f(x,y) and the boundary data chosen so that the solution is

; ,

' _ ,u(x,y) = sln(m _x + _/4) sln(mu_Y + _/4) (58)._. U *

:, The properties of three test cases are listed in Table I. The parameterm used

i', in the approxfmate factorlzatlon scheme are given in Table II.

The performance of the preconditioned Richardson (PR) and the approximate[,i

factorlzatlon (AF) r_thods i_ shown in Table Ill. The PR method 18 about

_\ twice as fast a,J AF on these problems. But recall that the PR scheme h:-_ been

highly.tuned (especially for problem 1), whereas the AF scheme was subjected
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to only a ca-all amount of trial mad error tuning. No doubt the AF scheme

would benefit greatly from more experimentation, not to mention analysis. We

• have been content wltb establishing It_ _rkabill_y in this multigrid context.

When derivative evaluations are performed via FFT's, the time required on

a CI)C Cyber-175 for a single level 5 relaxation (including both the residua!

c_aluation and fsctorlzation stages) Is 0.248 see. for PR and 0.238 sec. for

AP. Only about 5% of the total time _n these calculations was spent inter-i

polating between levels. On average there were 4 to 5 relaxations for every!

interpolation. A com parlson between the transform aad r_trlx-multlply method=

of differentiation !s provided in Table IV. Only on level 5 (a 33 × 33 grid)

does one gain by using FFT*s. Furthermore, since most of the work takes place

on levels 2 to 4, the total running time is less (by I0 - 20%) for the matrlx-

multiply versions. Bear In mind that assembly language FFT's were perfomz.,ed

on grids ideal for the FFr (powers of 2). The matrix ra|Itiplles were coded in

I Fortran. In the potentialflow applicationit is advantageousto work on more

_ general _;rids. Thus the matrlx-multlplyal_ernatlve is highly competitive.

i Its advantageought to extend to even larger grids on vector processors.

i Table Y. Characterlotles of the P_eetangular
} _iebyshev-[YnebyshevTest Probl__as

I Problem No.

_[, mu ma

!, 1 0.00 1 I

_i 2 0.20 2 2

3 1.00 5 5
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_51c il. Far__etero of '_he _ Seh_e for the

P-_cta=_u!r__ Cheby_i_e_L_leby_hav Prol)!c_n

Level a£ ah

2 l 6 1.4

3 8 75 1.2

•4 80 1000 I.I

5 600 8000 1.0

_able III. _Id.valent .q=e=th!ngP_tec on th__

r_ectamgularChebyshev-Cheby_Imv Probl_

Problem No. rR AF

I ,26 .43

2 .58 .78

3 .7g .92

_able IV. r_aldual Evaluat£on Time for the AF S=heme on the

Rectangular Chebyshev-Chebyshev Te_t Probler_

Level Transfoz_ Method MatrIx-Hultlply
Differentiation Differentiation

3 .0204 .0083

4 .0622 .0390

5 .2!4 ,248
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Rectangular Chebyshev-Fourter Problem

This problem is also described by Eq. (56), but on (-1,!) × (0,2_) and

with Dlrlchlet boundary conditions in x and per_.odlelty in y. The
coefflcient

cosme(_x+y)
a(x,y)= I + € e (59)

and the rest of the problem fits the solution

u(x,y) ,,sln(muW x + w/4) sln(muV cos y + _14). (60)

The properties of three rest cases are listed in Table V and the AF parameters

are supplied in Table 9"I.

: Table VII gives the results. There is evidently nothin_ to be gained

here by working up to the finest level by first solving the coarser level

problems. The present combination of the coarse-grld operator and the AF

parameters would not permit a solution to be obtained for a highly oscillatory

problem such as the previous sub-sectlon's problem 3. Note that the

equivalent smoothing rates on the present problems 2 and 3 are comparable to

•" those for the previous problem 2.

i

Table V. {_araeterlotles of the P_etangular

_*ebyshev-Fourler Test Proble=s

,_ Problem No. e _, ma

[,. 1 0.0o 1 I

2 0.10 1 !

' 3 0.20 2 2

i



Table VI. P_r_e_ern o£ the ,_ 7_h_e for the

Kcct_gular _,eby-Jhe_-Fourler rrcble_o

Level a£ ah

2 0.5 6 1.0

3 2.0 75 !.0

4 I0.0 1000 1.0

5 100.0 8000 1.0

Table VII. F4ufvaLmt _ood,lng llatcn on the

Rectangulnr _.ebynhev-Fourier Probl e_

Problem No. AF/B AF/D

1 .77 .75

2 .78 .79

3 .82 .76

Annular Chehyshev-Fouriev Problem

The differential equation for this last linear example is

t

___!u] _ I _u (61)

on (1,5) x (O,2z) witb

cos(m (r+O))
a (62)

a(r,O_ = 1 + _ e
\
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u(r,O) _ cos(= .r) s!n(m _ cose + I_/4). (63)
U U

i The radia! boundary conditions are Dfrlchlet at r = 5 But L'eunannat r = I.

Periodicity In azimuth i_ enforced. Tables VIII and IX present the test case

- and A_ parameters, respectively.

The results are available in Table X. _lese are the least _mpressive

: smoothing rates of the linear test problems. Neu_r,ann boundary condlt_ons are

, usually more troublesome than Diric1,1et ones. The global approximation

urderlylng the spectral methods makes them especially difficult to enforce.

i

•_ Table VIII. _nracte:latlcs of the bmnular

ghebyshev-Fourler '_estProbl_s

_: Problem No. a mu ma

._ " 0.00 i I

," 0.!0 I I

:_ 3 0.20 2 2

.: Table IX. Para=eters of the AF Schc_e for the

._nnularChebyshev-Fourler Problena

Level a_. ah to

;,-i 2 5 40 2.0
_ _ 3 !0 600 1.4

: 4 I00 6000 1.0

"' 5 i000 I0000 1.0

| ,"
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_l'_bleZ. _u_v_n_ _eot_.In_ P_tes on t_e

_nul_r G_e_y_hev-Fourler Prob!er_s

Problem No. AF/B AF/D

I 82" .87

2 .81 .87I

3 .87 .[_6

VI. Potential Flo_ Paot an _[rfoil

Tile problem considered is that of compressible potential flow past a two-

dimensional airfoil. We model this with the full potential equation, applying

boundary conditions at the actual airfoil surface. In this work a numerically

generated eonformal mapping [23] is used to transform the airfoil onto the

;. unit circle. The form of the transformation between the complex physica!

.'i plane (the z-plane) and the complex computational plane (the o-plane) is
N

)i(A+It)o(l-n)
dz (I+ _) n n

_ edO (l-o) n=l , (64)

-- where the coefficients An and Bn are generated numerically so that the

known relations between the surface tangent angles and arc lengths of the

airfoil shape are satisfied. %he trailing edge of the airfoil is located at

• o- I in the computational plane. The Schwarz-Chrlstoffel factor in the

_ transformation allows the smooth mapping of a flnlte-angle trailing edge. For
i

_ further details on this particular mapping see Jameson [23] The inner!%
Ix

i portion of a 16 x 48 grid is _ho_zn in F_gure I.
t

L
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In the computational plane, _th a = P_ele_ the potential equation

beccues

_---_(Rp_'h_R,_2-r£_+ _) ,_o, (65)

p

where 0 Iz the velocity potential and p ts the density, given by the

Isentroplc relation

I

p [I "___!2 2 2 ],c-z= - z H_(qr + q9 - I) ; (66)

the ratio of specificheats Is denoted by Y, the }inchnumber at infinity18

denotedby M , and the velocitycomponentsin the physical (r,8) plane are

I _

qr " H _R (67)

' I @_,

i! no = RH BO' (68)
' _ withL.t

• (69)

The boundaryconditionsat the surfaceand in the farfieldare

• _---_-_-o at R _,I (70)

;

The first term in the farfleld boundary condltlon describes the uniform
\

freestream flow. The remalntng term Is the flrst-order lifting term; it is

derived in [24]. The quantity E is known as the circulation, it is
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deter._Ined by the Kutta condition, wl)ich state3 thnt the physical velocity at

the trafling edge must be finite. Since H " 0 at the trailing edge, the

• Kutta condition reduces to

e" ' a¢

a--o" 0 at G = 1. (72)

• The _Ingularlty of the potential in the farfleld poses dlfflcult!eo

./ (especially for spectral methods) that are best handled by computing in tees

, o[ the reduced potential O, _Ich is defined by

i

iG = @ - (R +_) cos e E tan -I- tan e] (73)

and is assumed to be periodic in O. It follows that G satisfies

, a aG a o aG

i Rp + o, (74)

along with

a--_-= 0 at R - 1 (75)

,. " O + 0 as R + _, (76)

L_

and the Kutta condition.

The spectral method employs a Fourier serle_ representation in e.

L

; , . Constant grid spacing in Q corresponds to a convenient dense spacing in the

. , physical plane at the leading and trailing edges. The domain in R (with a
• |

- _ : large, but finite outer cutoff) is mapped onto the _tandard Chebyshev domain

I [-i,I] by an analytical stretching transformation that clusters the

collocation points near the airfoil surface. The stretching is _o severe that

!
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the ratio of the largest-to-smallost radia! intervals le over I000 for the

_ 8rid whose Inner portion is illustrated in Figure I. The transforr.atlon !s

incorporated into the operator _h_eh represents differentiation in the R
direction.

Despite its nonlinearity the potential flo',t problem remains fairly

straightforward co long as the flow is everywhere _ubsonlc. The real

" difficulty of the problem arises when the flow forms a eupersonlc bubble on

the airfoil. The potentia! equation is then of mixed elliptlc-hyperbollctype •

; and admits %_ak solutions with dlscontlnultles. Both compression and
{

; expansionshocks will appearunless an artificialviscosity*_th a dlrectlonal

blas is introduced into the equation in the supersonic reglon" The most

expedient technique for dealing with this is to use the artificialdennlty

approachof Hafez,et el. [25] The originalartificialdensityis

" p' " P - 14 6 p ('77)
!t with

14- - '--1
H2 ' (78)

.

, where H is the local }_ch number and 6p is an upwind flrst-order

(undivided) difference. In the present work a hlgher-order artificial density

formula related to a form developed by Jameson [13] has been employed.

The first pseudospectral solutions to the compressible potential flow

problem were obtained by Streett [15], [26] using a slngle-grld version of the

approximate factorlzatlon iterative scheme described in the fourth section.

For subcrltlcalflows this method _ms already highly competitivewith state-

of-the-artfinite differencemethods. For supercrlt!cal£iow9, however, the

slngle-grld pseudospectra! scheme was quite Inefflcient, even _th the use of
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the AF2 er_tension of the approximate factori=atlon scheme. Thlo prcb!e=,

! then, poses a useful application of the spectral m=,Itigrid _pproach and, as

_. . the results indicate, a dr_'m_-ticdemonstration of its effeetlver.cos.

_I. P_o_l_= for Potential _-l_-mPa_= =n t_rfoll

_ie numerical e_amples of this section have been chosen primarily to

illustrate the effectiveness of the multlgrld cpproximate factori==_ion

(HG/AF) solution scheme in comparison with the earlier slngle-grld approximate

factorization (SG/AF) method [15] for solving the cpe=tral equation= for

potential flow. A secondary issue is the comparative qual_ty of this spectral

dlscretization and of wldely-used finite difference approximations. A by-

. product of these examples is some practical guidelines for the multigrld

algorithms.

! Three test problems suffice for a comprehensive treatment of the _pectral

! i multigr_d efficiency and spectral dlscretlzation accuracy issues: a

subcritical lifting airfoil, a supercritlcal nonllftlng alrfoil, and a

supercritical lifting airfoil. These have been listed in order of increasing

difficulty. Detailed comparison of the spectral SG/AF and _/AF schemes will

i be provided for the first two examples. Extensive comparisons are also made

for all three problems between the spectral HG/AF scheme and two popular

' flnlte difference codes: TAIR [7], a slngle-grld/AF2 method and FLO36 [13], a

.. multigrld/AF method.

Some of the relevant issues have already been discussed in [15]. The

- ', most _ensltive matter is surely the weighing of the efficiency of two schemes

_" (spectral _nd f_n_te difference) with different _ccuraey and convergence

properties• The reader is directed to [15] for a more detailed discussion

than i_ provided her_.
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_nree different grids have been used (with the coarser levels In

parentheses): 16 x 32 (12 x 16 and 8 x 8), 16 x 48 (14x 32, 12 "(16 and

8 × 8) and 18 x 64 (16 x 4_, 14 x 32, i2 × 16 and _ x 8). Note th.'.t In

passing to a coarser level the grid is typically reduced by ie_s than a factor

of 2 in each coordinate dir_ction. _111_ choice leads to a slgnlflc:nt

improvement over the standard gridding for the spectral potentia! flo_

problem, especially in the supercrit!eal regime _nere the solution has large

high-frequency content.

"A'hisproblem has the added complication of a highly-stretched grid in the

i radial direction. This is accounted for by changing the spectral

' differentiation matrices from C-IDc (see Eq. (2)) to

0 = BC-IDC, •(79)

where B is a diagonal matrix: which contains the Jacobian of r}le

transformation. A substantial improvement in the spectral multlgrid algorithm

results from defining the coarse-grld differentiation _trlces directly by E:_.

(39) rather than by the coarse-grld version of Eq. (79). In the absence of

stretchlng these two definitions are equivalent. Equation (39) is easily and

efficiently implemented with matrlx-multlply techniques.

Virtually all the spectral multlgrid results included here were obtained

with the same fixed schedule: start on the finest grid, work do_m to the

coarsest grid and then back up to the finest grid; on the way down there is 1

sweep though the (three) parameter sequence and on the way up there are 2

sweeps.
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Subcrftical Lifting, Afrfoi!

The flow past an I_CA 0012 airfoil at 4° angle of attack and a freestream

• Mash number of 0.5 wlll serve as the flrst test case. _ne airfoil produces a

fairly large Iff_ coefficient at these condltion3 and the surface pressure

distribution sho_s a sharp suction peal: near the leading edge. Slnce the

, local M_ch number in this peak i_ nearly I, compressibility effects are

substantlal.

In order to demonstrate that the _pectral _olution on s relatively enarbe

grid captures all the essential details of the flow we f.!rst compare It with

an extremely accurate finite difference result. In Figure 2 is ,oho_n the

surface pressure coefflcfent from a spectral solution using 16 points in the

radial (R) direction, and 32 points in the azimuthal (@) direction; the

symbols denote the solution at the collocation points. For comparison, the

result from the finite difference code FL036 is shown as a solid llne. The

grid used in the benchmark finite difference calculation is _o fine (64 × 384

points) that the truncation error is well below plotting accuracy. The

spectral calculation seems to lack detai! near the leading edge suction

peak. However, since the spectral solution is actually a continuous

representation of the solution, It may be expanded In terms of its basis

functions onto a much finer mesh. Such an expansion, shown In Figure 3,

reveals the hidden detail of the solution. The FL036 and expanded spectral

results are Identical to plotting accuracy. The spectral computation on this

mesh yields a llft coefficient %,_Ithtruncation error less than i0-4. Spectral

solutions on a 16 × 32 grld are thus of more thnn adequate resolution and

accuracy for subcritical flow_.

The convergence hfstorles for both the SC/AF and the _G/AF spectral

_ schemes on this test case are dlsp)ayed in Figures 4 and 5. The convergence
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hlstor!e_ have be_n _upplled for both the rnx__r,um residual (rlgure4) and rim

error in clrculatlon (Figure 5). They are plotted asainst machine time on a

CDC Cyb_r-175 computer. Although the _altl -',' cod_ (henceforth referred to

as '_C,AFSP") shows a _,ubstantlal _provemenr over the slngle-_,rld approximate

_" • factorfzatlon code ("AFSP") in ma::Imum residual convergence, the gala is even

more dramatic from the llft convergence standpoint, _ni= is understandable

since the llft is predominantly a low-frequency property of the solution. The

slngle-grld spectral approximate factorlzatlon scheme was recognized to be[

weak in damping for long-wavelength error components [15].

The consensus in the computatlonal transonlcs co_munlty appears to be

that TAIR is the fastest wldely-available finite difference code. A

; comparison of maximum residual versus machine time for TAlK and MGAFSP on the

subcrltlcal test case is shown :n Figure 6o The two codes require nearly
1

I equivalent machine tir_e with TAIR showing a better asymptotic convergence

i rate. However, the TAIR result was produced on a rather coarse (default)

. f_nite difference mesh of 30 x 149 points. Compared with the surface pressure

: results from M_AFSP and FL036, the TAIR result is significantly In error near

the leading edge (Figure 7).
i This is indeed truncation error, because TAIR

results on a 60 x 297 mesh are more in agreement with those of ?_AFSP and

FLO36. A further Indication of the somewhat large truncation error of the!-

i TAIR result is that the predicteddrag and llft coefficientsare correct to

! only two decimal places (subcrltlcalpotential flow ylelds identicallyzero

i drag).

i In Figure 8 are shown convergence histories from TAIR, FL036, and L_AFSP
I on meshes which yield approximatelyequlv_lentaccuracy;the surfacepressure

". results are the same to plotting accuracy
, the llft ccefflclent is converged

in the third decimal [,lace, and the predicted drag coeff_clent is less than
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•001. (Actua!ly, the sp=ctrnl result i_ an order of _cgn!tude _ore accurate

than these limits, but the TAlK result barely meetc them.) As can be seen

. from F_gure 4, the _ingie-grld AFSP result _ould fall in the v!cluity of the

FL036 and TAIR results in the present figure.

Use of more than three grids in the spectra! =ultigr_d code did not yield

an !mprovement in effective convergence, since the interpolation overhead

becam_ a greater proport!cn of the total work. It would have been desirable

to use a lowest grid coarser than 8 × 8 in the multigrid cycle.

Unfortunately,due to the presenceof the metric singularityat the trailing

edge, coarser mesh results%_re so oscillatoryas to provide no uzeful long-

wavelength information.

Supercrltical Nonllftlng Airfoil

The test is again the }_CA 00!2 but at M = 0.8 and _dth zero angle of

attack, i.e., a nonli£ting condition. The surface pressure coefficient
J

: distribution as computed by the spectral method on an 18 x 64 grid is

displayed in Figure 9. The shock a_ told-chord is relatively strong; the

: normal Mach number ahead of the shock is approximately 1.25. The shock is
i

p spread over several mesh spaces by the flnite difference artificial viscosity

;-- used in the spec[ral calculation. Although this shock is already far sharper

i than those produced by finite difference codes on a cemparable grid, it ought

to be possible to capture the shock in a still smaller region with a spectral

method employing _n artificial viscosity more suited to the spectral

i dlscretizatlon.

i_ " The co_.vergence h]storles for the SG/AF scheme (combining AF2 and AFI)

i \\

and the MG/AF scheme (using AFI alone) on a fine grid are shou_ in Figure

• _Ighe.as_ptotlc convergence: I0. The multigr£dscheme obvlouslvshows a much _ -

}
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rate. Note that the single-gr_dscheme initiallyoscillates_rLththe mnz.lmum

reoldual of order unity for a rather lengthyperiod. This is indicativeof

the lach of hlgh-frequency damping in th_ AF2 scheme. The fl6-=fleld Is being

established in this period by the AF2 scheme; the plot of the history of the

number of supersonicpoints in Figure !! sho_s that the AF2 scheme establishes

the shock position and the size of supersonicregion nearly as fast as the

multlgrld scheme, albeit _rith some transient overshoot. This rapid

establishmentof the flowfield is at the expense of h!gh-frequencyerror,

which is subsequentlydamped_en the AF2/_'Ialternatecyclingis begun. The

mnltlgrld algorithm, ho'_ever,monotonically establishes the flowfleld and

damps hlgh-frequencyerrors in a far more efficientmanner.
i

Experiencewith all fol-r_sof transonicpotential flow calculationshas

, sho_m that convergencerates are quite sensitiveto the order and amount of

L artificial viscosity: more artificial viscosity generally yields faster

i convergence,but at the expense of more _rldelysme._redshocks. Multlgrld

_i schemes have been especiallysensitiveto these effects, and the present one

is no exception. However,the large improvcmentin efficiencyofferedby the

I_ multigridover the previousslngle-grldspectralschemehas al!owedthe use of
|

: , much finer grlds, offsettlng the present, uncomfortably large artificial

viscoslty.

Supercritlcal Liftin_ Atrfoll

The lifting supercritical test case _,as the NACA 0012 at M = 0.75 and
o

a - 2 , which yields a section llft coefficient of nearly 0.6. A shock

i appears only on the upper surface for these conditions and is rather strong

for a potential calculation; the norma! Math number ahead of the shock Js

a_out 1.36. Lifting supercritical test cases are especia!ly difficult for



spectral =etho_s slnce the solution will always have significant content in

the entire frequency spcctrtte; the shoeh populateo the highest frequencies of

. the grid and the llft Is predomlnantlv,on the _ca]e of the ent,r._- don-ain, t_

Iteratlve scheme therefore _aot be able to damp error components across the

spectrum. The AF2/AFI scheme of [15] wan sore_'hat unreliable for such

probl_n_;so a comFazluon_w.iinot be shs_mbetween_2/AFI and the_u!tlgrid
scheme.

A hlstory of the surface pressure coefflc£ent _s supplied in Figure 12.

This dezonstratesthe rapidconvergenceof the entirefrequencyspectrumof

the solution. Pressure distributions are _ho_m after 0, l, 4, and 9 cycles of

the flned-cycle algorlth_1; one cycle requires approximately 5 seconds of

Cyber-175 time. The shock overshoot seen in the _-cycle frame is a phenomenon

. associated with the final posltlon_ng of the shock by the multigrld scheme.

The finite difference multlgrld scheme exhibits similar behavior [13].

All of _he supercritical spectral multigrld calculations shozm thus far

used a sequence of five rather than three grids, mostly due to the finer

finest grld used for these cases. Scheduling within the flxed-cycle mult!grld

algorlthm was much the same as for the subcrltical cases: one or two passes

through the tlme-step sequence were made on each grid. Convergence for

supercrltleal cases is not always monotonic because adjustments in llft or

shock position can Intreduee high-frequency errors which may require an extra

cycle to damp. An adaptive cycle algorithm m__ghtbe of benefit here provided

that the "limit cycle" problem were avoided.

Surface pressure distributions, both at the collocation points and

spectrally expanded onto finer spacing, are shown in Flgures 13 and 14 for

grids of 16 × 48 and 18 x 64 points, respectively. As can be seen, the

coarser-grld result predicts virtually the same chock pesftion as the finer-
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grid ccm-putatlon; the l!ft eeeffic_-ento agree tO I%. These results may be

compared _th those from the finite difference codes, TA!R and FL036, sho_m in

Figures 15 and 16, respectively. The ghock predicted by TAIR is far more

rounded and smeared than that of FL036, reflecting the coarser mesh and larger

_,B artificial vlecos[ty used in the forner. The TAIR result mho%m is also only
.

correct to one decimal place in lift as compared with a finer-grid result.

Convergence histories for these four cases: spectral multlgrld (16 x 48)

and (18 x 64), YAIR (30 × 149), and FL036 (32 x 192) are cho%m in Figure 17.

The spectra! results are obviously handicapped in this comparison by the

necessity of such fine (for spectral methods) meshes brought about by the use

of the finite difference artificial viscosity form. Perhaps the purely

spectral shock-capturing methods currently under development will permit sharp

. l

shocks to be captured with still coarser meshes.

i
!. ; VIII. Concluslon_

: Spectral multlgrld methods are still in their Infancy. Nevertheless,
T

they have already exhibited the capacity to eceelerate drastically iteratlve

schemes for nonlinear, _s well as linear, problems. Pough estimates of the
_-

;_ asymptotic convergence rates indicate that the multigrid procedure has led to

an improvement over the single-grid spectral method of nearly a factor of I0!

: for subcrltlcal case_; the improvement is considerably greater for
o

[ supercrltlcalsituatlon_.
t

: The worth of the spectral discretlzation itself for compressible flows is
[

_ now clear: equivalent solutions are indeed obtained with far fewer gild
'%
" points than are required for finite difference solutions. Since subcri_ical

•

[ flows are smooth, the present results, showing both that the spectral method

t



¢oavergence rate is far better than ascend-order and aloe that its absolute

error level io lower then f_nlte d!fference ones even on unreasonably coarse

• £rlds, are no ourpri=e. Undeniably_ any shock d_contln_Ity in _upercrlt_cal

flow _hould produce home _egrad_tlon in _he formal accuracy of the spectral

oolutlon. Eone_heless, gr_d reflne_ent studlea demon3trat_ that the spectral

aolutlons stabilize on far eo_r_er grids than do finite difference

aolutlong. Coupled with multlgrld solution technlques, _peetral me'hods for

steady compressible flow= have reached the stage at whlch they are truly

competitive with finite difference methods on problems of aerodynamic
interest.

Several aspects of thi_ technique have to he improved before spectral

methods for compressible flows reach thelr full maturity. Ti_e pre_ent

rela_atlon schemes are Just straightforward modlflcatlon_ of the on_s use_ for

finite difference method_. _urely relaxation scheme_ more tuned to the

spectral diccretlzatlon can and will 5e devi_ed. There is also the clear need

to develop more sulta2le forms of artificial vlscos_ty for capturing shocks by
spectral methods.
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