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ABSTRACT

This document applies the cylindrical waves associated with the Sommerfeld solution for
a diffracting half-plane in the evaluation of the effects of secondary radiation on the focal-
region-fields of paraboloids. A cross-correlation between the computed focal-region-fields and
the feed-antenna-fields is then introduced to determine the modified radiation pattern of para-
boloidal antennas. The half-plane solution is adapted to estimate the effects of a polygonal
fence on 9-meter S-band and 3-meter S-and Ku-band antennas at the Merritt Island, FL Space-

craft Tracking and Data Network Station,
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GLOSSARY OF NOTATION
complex-vector electric and magnetic fields
wave-nimber
phase
weighting factor of linear polarization states
vector operator (grad)

VA

distance

differential area ’
a solution of the thrce-dimensional wave equation

particular forms of p and q when 8 =0

arguments of the Fresnel integral dependent on «, 8, k, r, and 0 i
generic parameter equal to u, v, p or q

azimuthal and polar plane-wave angles-of-arrival (in context)
Eulerian angles for rotation of fences w.r.t, paraboloid (in context)
paraboloid

fences

local cylindrical coordinates for fences or half-planes

a form of the complex Fresnel integral

a compact form of e'ia2 F(a)

signum or sign switch

unit vector antidirectional to plane wave propagation vector
weighting factors in plane wave decomposition

vector displacement of local origin of half-planes

orthogenal rotation matrix

unit normal to a surface
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horn diameter

voltage

complex vector polarization states
solid angle (steradians)

plane wave

cylindrical waves
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Sommerfeld diffraction theory

physical optics theory
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A RADIO-FREQUENCY ANALYSIS OF PARABOLOIDAL ANTENNAS
LOCATED NEAR DIFFRACTING FENCES

INTRODUCTION

This document is an attempt at estimating the effects of proximate diffracting fences on
the performance of paraboloidal antennas at the Merritt Island, FL Spacecraft Tracking and
Data Network Station. Both 9-meter S-band and 3-meter S-and Ku-band installations are of
concern. Mathematical simulation of the paraboloids and the diffracting fences affords a means
of assessing the effects as a function of antenna and fence parameters, High-speed digital com-
puters may be used to extract quantitative information from an analysis based on the vector
Kirchhoff-Kottler physical optics theory for continuous surfaces and the Sommerfeld diffraction
theory for half-planes,

A plane-wave which is incident on a paraboloidal antenna induces an electromaguetic
sheet-current on the latter. From this a highly satisfactory computation of the focal-region
fields, wavefronts, and time-average Poynting vectors can be made. The assumed primary wave
incident on the paraboloid .may also illuminate diffracting fences which act as secondary
sources. Each fence will radiate a cylindrical wave exhibiting, in general, a linear phase grad-
ient, and a nortrivial field-intensity distribution, If phase is preserved in a mathematical sim-
ulation, and all polarization'components are included, the total perturbation of the sheet-
current on the paraboloid may be calculated and, subsequently, a new set of focal-region fields,
wavefronts, and time-average Poynting vectors may be determined.

The far-field radiation pattern of a paraboloid, influenced by one or more diffraction
fences, may in principal be found from a knowledge of the focal-region fields and feed-antenna
fields over some surface of convenience. A sphere centered on the focal-point of the para-
boloid, with radius equal to the far-field distance of a feed horn, is satisfactory for this pur-

pose, A cross-correlation of the focal-region and feed antenna fields, by means of an algorithm
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that is responsive to the spatial (vector) and temporal (complex-phase) character of the prob-
lem leads to a single voltage for every angle of arrival of an assumed plane-wave, In this man-
ner, the far-field or transmission radiation pattern evolves, from an analysis which is predicated

entirely on reception arguments, in the presence of diffracting fences,



PLANE-WAVE SOURCES
Two orthogonal plane-wave sources are admsitted in the simulation, See Ref, 1, p. 578,

E - polarization

E = (- cosa sinB, ~ sinasing, cosB) ¢~ kS (1)

H = (- sine, cose, 0) ¢~ kS (2)
H - polarization

E = (sina, -cosa, 0) e~kS €]

H = (-cosasing, -sinasing, cosp) e~kS (4)

The phase factor of the plane waves is

ek8 = ik (x cosa cosf + y sine: cosp + z sinf) . (5)

Angles (o, 8) and coordinates (x, y, z), above, were originally in a local context for a
half-plane analysis as presented by Born and Wolf, but are now utilized in a giobal context
(GSFC coordinates) for the incident plane wave of the simulation, A given point (X, y, z)

', z'") at the origin of a rotated and translated diffrac-

on the paraboloid will appear as (x", y'
tion fence. Similarly, angles (', B'") will emerge as the loca! angles of arrival at such a fence.
See Fig. 1. It can be seen that (o) is an azimuthal variation in the equatorial (x, y) plane,
and (B) is a polar variation emanating from the (x, y) plane,

Any degreé of polarization ellipticity, orientation, and rotation sense of the polarized state
is available via either (1) and (3) or (2) and (4). It may be more direct to c¢imbine two

counter-rotating circular states, in any given instance, since the relative phase of the circular

states and inclination angle of the polarization-ellipse are simply related,

wr = 21111 ’ (6)




§

the axial ratio of the ellipse derives from the relative weights,
AR = (wl + ‘*’2)/(“’1 - wz) ’ (7)

and the rotation sense of the field vector is determined by the lazzer of (wy) and (w,).

£
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SCATTERING FORMULATION (PARABOLOID)
An amended form of the complex-vector Kirchhoff-Kottler formulation (physical optics)
suffices to compute the focal region fields, wavefronts, and time-average Poynting vectors of
' the paraboloid, It is a variation of the Stratton-Chu formula, See Ref. 2, p, 460; Ref, 3,
p. 158; Ref, 4, p. 4; Ref. 5, p. 35.

— - 1 l - — l - Ty
F(x, ¥, z) Twoe ar /81 (@1 x Hy) viyvds « jou y /Sl ( x Hy) yds , (8)
Hx, y,2) = --—l—w/(ﬁxﬁl)xV\pds , 9)
4 Sl
v o= ek/r (10)
where
, 1 ~ .
vnrh=+gk==;=) v, (11

The phase of the Green's function (10) is seen to be consistent with the plane-wave formula-

tion of Born and Wolf, given previously.
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SCATTERING FORMULATION (HALF-PLANE)
The total fields, in local coordinates, for *hree-dimensional diffraction of a plane wave
by a half-plane are given in Ref. I, p. 579, in the Gaussian system of units as

(E-plane polarization)

Ey = ~I~Iy sin g8 (12)
Ey = Hy sin § (13)
E, z_c:m/‘t cos g ek cos B~z sin ) 1Gp) - G(q)] (14)
N
Hy = -e™ if4 g ik(r cos f8 - zsin f) sina[G(p) + G(q)] + l\;—w——%—-—- sinoy/2 0050/2}
-\/_-;r_-; kr cos 8
(15)
. o= i[4 o Ik(r cos B~ zsin ) - VA :
_ﬂy e {ccsa[G(p) G(Q)) 1\, kr oos B sina/2 cosf/2
VT (16)
H, =0 . a7

As mentioned previously, (x, y, z) above will be redesignated (x", y", z") due to certain
correspondences, translations, and rotations among the Cartesian coordinate systems used hereir

The companion expressions to (12) through (17) for the H-plane polarization case are not
given explicitly in Ref. 1, It happens that the E-plane polarization case was developed by

means of two auxilliary equations,

_ _ (-isnp U -isng U o
E ( - o - 5y o7 BU (18)
and
— -i U i ou
H = \_k' "53'{' ’ "k_' ’5‘; ’ 0> . (19)




R RS

ORIGINAL PAGE 1§
Of POOR QUALITY

The H-plane polarization case may, therefore, be developed using two other auxilliary

equations, See Ref, 1. p. 579,

— i ou -1 U
P = TR sy T T 0
B ( T o) (20)

and

- -~ isinf oU -isinf oU 2
{ = e I e , © . 1
l ( Kk ox K oy P U) 1)

Detaiis of the derivation may be found in Appendix A of this document, The results are
given below, also in the Gaussian system of units, as

(H-plane polarization)

1
I

e-M/4 oik(r cos B ~ zsin B) sina[G(p) - G(q)) @ i\/-_._z__. cos il sin ..0_.
— kr cos § 2

= 2
X I

(22)
- g~ T4 ik(r cos B - zsin B) §coscx{G(p) +G(Q)] @ ,\,/-—_.g——_ cos = cos 9
By = —= { kr cos @ 2 2
VT
(23)
E, =0 (24)
H, = E,sing (25)
Hy = - E, sinf (26)
p-Tif4 oik(r cos B - zsin §) 3
o - e [G(p) + G(a)] an
ﬁ
Note:

Present derivation (+ i) in equation (22), (+ i) in equation (23).
Ref. 1, 2nd Ed. (- i) in equation (22), (- i) in equation (23).

Ref, 1, 6th Ed. (- i) in equation (22), (+ i) in equation (23).

B S8 o N S S
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The evaluation of G(p) and G(q) presents alternatives, Assume that

g < w2 (24)
and

O |7 : (25)

See Fig, 2, where the diffracting half-plane is bounded by the %z axis and lies in the (+x)

part of the xz-plane. It can be seen that

p > 0 | : (26)

0>nr+a
and

a>0 1,9 4 , 27)

from an inspection of equations (2A). That is, p > 0 in the shadow region (SR) and q <0
in the reflection region (RR).

It can also be seen that the condition for asymptotic evaluation,

kr >> 1 ) (28)
giver in Ref. 1, p, 572 for the two-dimensional diffraction of a plane wave by a half-plane,
becomes

krcos g >> 1 29)

for the present three-dimensional case. Further, (p) and (q) may vanish under same corditions:

0 3
l@ T+ o (30)

o
i

and

0
I¢9=7r—oz s

q
at the shadow and reflection boundaries, respectively, even for large (kr cos ). This indicates
that the requirement on (a) for asymptotic evaluation implies

p>>1,q>>1 @31

8



ORIGINAL PAGE I3
From Ref. 1, p. 569, OF POOR QUALITY

2
G(a) = c™ia® F(a) (30)
and parameter (a) may be zero, positive, or negative. Here,

i 2
Fla) = [  elfdy . (21)
a

The development of Ref. 1, p. 572 pertaining to the evaluation of G(a) for negative (a) is not
explicit for small values of (a). Appendix B of this document gives the details of a develop-

ment leading to a general formula,

G@ = e’ [y e uea) + s [ e du ) ., (32), (7-B)
where
Ux) = 1 |x>0 (33)
0jx<0
and
sgn (x) = +1|1x=20 34)
-1]1x<0

For large values of (a), equation (32) above reduces to

Gla) = /7 eM/4 eia U(- ) + sgn(a) Aoy L , (35)
2lal laf?

, ; 2
which agrees with Ref. 1, excepting a typographical error; (e™?) should read (e’ia ), equation
(32), page 572.

See Appendix C for a conversion of the Ref. 1 equations, above, to the rationalized MKS

system of units.
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COORDINATE SYSTEMS

A convenient means for computing the sheet-current induced on the paraboloidal reflector
by the diffracting half-planes or fences is to retain the local coordinate conventions of Born
and Wolf, Ref, 1, pp. 556-580. Figure 3 illustrates a reference coordinate system (x, y, z) of
the overall problem and the local coordinate system (x', y', z') of a half-plane shown translated
from O to 0'. It can be seen that a correspondence exists between the two systems prior to

translation of origin.

x, ¥, 2) > (%', 2', y) : (36)

The Cartesian components of vector (F') from 0' to a point on the paraboloidal reflector

(v) may be specified in the (x, y, z) coordinate system using

= 7~ HP = (X, Y, Z) (37)

and rewritten as

T ', y', 2) (38)

!
i}

using the correspondence, (36).
Prior to rotation of the half-plane, the Born and Wolf local cylindrical coordinates

(', 0', 2') are then found from

x' = 1’ cosf’ (39)

or
y' = 1 sing’ (40)

and
@ = T 2= (O + ) : (41)

10
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Rotation of the haif-plane results in a re-designation of the local coordinate frame as (x",
y", 2'") with origin (0') at (0') as shown in Fig, 4, The Cartesian components of vector (F')

are now different from those of (r"/). The latter are found using

(x", y", 2" = [A] (x', ¥, 2") (42)
where
(cosycosax - cosfsinasiny) (sosysina + cosfcosasiny) (siny sing)
[A] = | (-sinycos ~ cosfsinacosy) (-sinysina + cosfcosacosy) (cosy sing) 43)
l)[

(sinf sino) (-sinf cosa) (cosp) ,

See Ref, 6, p. 107 for a discussion of Eulerian angles.

The frame (x", y", z'") is visualized as rotating with respect to the frame (X', y', 2"),
and requires the rewriting of (39) (40) and (41) in double-prime notation to obtain the Born
and Wolf local cylindrical coordinates (r'', 8", z'"). Once the latter are obtained, it is conven-
ient to drop the double-prime notation and enter the Born and Wolf equations with the

derived values,

11



POLYGONAL FEICES

Additional complexity arises when the half-plane formulation is applied repeatedly to
mathematically simulate a polygonal fence such as the one illustrated in Fig. 5. Also see flow
charts, Figs, 6 and 7. The procedure is justified by the parameters of the present problem
and the inherent behavior of the half-plane formulation when kr >> 1, Only S- and Ku-band
frequencies are to be introduced into the present calculations, and the fence height and length
for each polygonal element exceed 8-feet. Under these conditions a segment of a cylindrical
wave is associated with each segment of the fence. Ref, I, p. 572. Also see Fig. 1 of this
document. Points (7', T") which either exceed the cylindrical bounds of a finite cylindrical
wave, or imply intersection with paraboloid (v,), are excluded from consideration,

Assuming that a single plane-wave illuminates the paraboloid directly, together with the
several elements of a polygonal fence, it can be seen that a distinct set of input parameters
must be associated with each element of the fence, The local plane wave angles-of-arrival
(@, B), the local Eulerian angles (e, 8, 7), and the displacement vectors ('r'HP) are required,

A direct method for finding the set of plane-wave angles-of-arrival is to proceed on the
assumption that the fence geometry, in relation to the paraboloid, has been established. Sel-
ection of a single pair of values (w, f), for purposes of illuminating the paraboloid, then fixes
all of the local angles of arrival for the half-planes. If a unit vector with Cartesian components
in the (x, y, z) reference frame is chosen co-linear, but antidirectional with respect to propaga-

tion vector of the plane-wave so that
-lil = (X,¥,2) = (cosxcosp, sina cos@, sinf) , (44)

the wave angles of arrival are obtainable by combining the correspondence (36) and the rota-
tion (42). The translation (37) may be ignored here since only angles are of concern. In each
instance the Eulerian angles of the rotation matrix are known and a vector (x”, y"”, z'') is the

output. The local (@, ) for each half-plane is then found by solving a system of equations

12
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similar to (44) of the present document. Note that Rl is different between Fig. 2 and Fig. 3
due to the preservation of local («, 8) and [A] not equal to the identity matrix,
Assume that selection of the (o, §) pair taken with respect to the (x, y, z) frame leads to an

incident linearly-polarized magnetic field whose vertor components, without regard to phase, are
ﬁ = (Hx! }{y’ Hz) ¢ (45)

via either equation (2) or equation (4). This field must now be decomposed into an EPOL
and ﬁPOL field, so that, in general, the magnetic fields scattered by each half-plane may be
evaluated via equations (19) and (21) for E-plane and H-plane polarizations, respectively. It

follows, using (2) and (4), that the field of (45) may be written in local coordinates as

(H", Hy" H,") = mj(-sina, cosa, 0) + nj(-cosa sin, - sina sinf, cosf) , (46)

where (m) and (n;) are the unknown weights of two orthogonal, cophased plane-waves incident

on the half-plane. The angles (o, B) of (46) are now the local angles of arrival, computed

previously, so that (46) is a system of three equations in two unknowns. This leads to
(H, ", H,", H,") = my Hppor, + 0y Hypor, : “7)

In the event that an elliptically-polarized phane wave is incident on the paraboloid (v,)
and the half-planes or fences, a second and similar resolution of the type discussed is required.

This leads to an illumination of the form

Bror = (my Hgpor + 1 Hypop) e V1 + (my Hgpor, + ny Hypor)é¥2 ,(48)

where (m;, ny, my, “2) are scalar weighting factors and (gl/l, 11/2) are scalar phase-constants
affecting rotation sense, axial ratio, and inclination angle of a preferred elliptical state.
A correction remains to be made concerning phase, The solutions of the half-plane prob-

lem were originally obtained using a phase factor given by (5), with the origin of coordinates

13
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on the diffracting edge. Since the incident plane-wave has been referenced to the origin (0) of

the (x, y, z) frame the phase at the various origins (0") is given by a factor
F = ¢lkRy * Typp (49)

which now must be applied to the scattered fields of the half-planes or fences. The ?HP are,
in general, distinet when several fences are encountered, but there is only one value of 'Iil
(antidirectional to the propagation direction of the incident plane wave). See Fig, 5 which de-
picts a polygonal fence.

The total fields associated with each half-plane or fence are evaluated in a local context for every
point on the paraboloidal reflector (v,) and must be converted to the global context of the problem.

Since the magnetic field components are expressed in the (x", y", z'') system of coordinates,
(Hy', Hy', Hy) = [A]™ (4", H,", H,") . (50)

Once (I-_Ix’, Hy’, HZ’) have been determined, the correspondence of (36) is used in the inverse sense.
(Hx', Hy', Hz') - (- H,, H,, Hy) (s1)

The translations (fyp) are irrelevant since translation does not affect projections between two
non-congruent coordinate frames. In the preceding [A]™! is, in general, distinct for the half-
planes or fences since the Eulerian angles (o, B8, vy) are distinct.

Once the total magnetic fields associated with the diffracting fences have been computed and
the geometric optics field has been subtracted for each fence, a superposition of sheet currents

may be visualized. That is,

Krop = 20 x H, + 20 x (Hs; + Hs, + Hs; + ..Hs) (52)

(primary induction) (secondary induction)

for (i) half-planes or fences. The focal region fields may then be computed using equations (8)

14



through (11) of this document in conjunction with the incident magnetic fields of (52). See

Figs. 6 and 7 for a flow chart of the preceding operations, and Appendix D for a discussion

relating to the total field.

15
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CROSS-CORRELATION (FOCAL-REGION FIELDS AND FEED FUNCTION)
An algorithm is now writtenn to express the received voltage as a cross-correlation between
a completely polarized focal-region and a feed function. Such a voltage represents one point of
an aperture-antenna radjation pattern, The cross-correlation is effected on a spherical locus,

as shown in Fig. 8, for convenience. Its radius is the far-field distance of the feed horn,

RS = ~2_§£__ ’ (53)

The algorithm derives directly from the fact that the induced voltage which results from

tke interaction of two elliptical states iz given by
Voc =a* ' P ) (54)

where q* is the complex-conjugate of the received field and P represents a linear receiving an-
tenna. See Ref, 8, p. 105, Ref. 9, p. 184, When P and @ are both unit complex-vectors,

an expression for polarization efficiency may be written as
mpo, = |P - q* |2 : (55)

In the subject cross-correlation for receiving apertures equation (54) becomes

Voo = f{z Eg - E; dQ : (56)

Here (E) is a complex-vector focal-region field and (E ) is characterized by the feed function.
f

In the present context the received field may be regarded as having the dimensions (volts/meter!),

and the feed function acts as an effective height (meter!) per unit solid angle (§2). The dif-

ferential solid angle (d2) may be formally associated with area (dS) on the spherical locus (8) via

iQ = ’—ra-ﬂl- ds (57)

16
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where

Rs (58)

-
i

and the unit normal (1)) is that of a sphere. See Ref. 10, p. 290. It is noted that (TS'IQ and
(E}) are, in general, not unit quantities in (56) and only relative voltage is required for
a radiation pattern,

The magnetic counterpart to (56) may therefore be written ss a proportionality:
Q

The magnetic field (ﬁR) incident on the locus (S) is obtained from equation (9). The term

(ﬁf) depends on the feed function selected for the calculation, It may be as simple as

— N @ -
H = _A_‘_E_‘[’_)S___._ B, : (60)
where
B o= £21 1)
P x V|

Here (A) is a scalar amplitude, (N) is a directivity factor,EDis a polar angle taken with respec

to the feed horn axis, (¥) is a polarization moment, and
|51 = Rs \ (62)

Many other representations are possible: rigorously derived expressions for feed horns and open
waveguides, numerical data, etc.

Returning to Fig. 8(a), it appears that a rotationally symmetric situation exists when the
primary or incident plane-wave is axially directed (@ = 7/2, = n/2). This is somewhat illusory
since the rule for current induction

K = 2nx H (63)

17
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converts the axial symmetry associated with the paraboloid to uniplanar symmetry, This uni-

planar symmetry persists for (o < /2, g = n/2), or paraxial wave arrival, although the received
fields (Elg are now displaced with respect to the feed function (Ef), as suggested by Fig. 8(b).
Introduction of diffraction fences, Fig. 8(c), will leave the calculation entirely without sym-

metry,

18
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CONCLUSION

This document constitutes the first or analytical phase of an attempt to estimate the ef-
fects of proximate diffracting fences on the performance of paraboloidal antennas at the Mer-
ritt Island, FL Spacecraft Tracking and Data Network Station, The second and third phases
are the writing and verification of a computer program which Incorporates the theory presented
herein, and the actual generation of numerical data for assumed antenna and geometrical para-
meters, Introduction of fence mesh details in a higher level analysis, attendant program modifi-
cation, and subsequent numerical calculations, constitute possible additional phases,

An appreciation of the antenna environment may be formed from Fig, 9, which shows
the Kennedy Space Center Layout (KSC). The effects of the diffraction fences are seen to be
a function of antenna pointing angle, elevation, range, and frequency. A photograph showing
the 30" (9-meter) USB Antenna, No. 2, is inciuded as Fig. 10 and should be compared to the
abstraction originally presented as Fig. 1. It appears, from the large number of parameters,
the repeated appearance of integrals in the present formulations, the relatively high frequencies
of operation (S- and Ku-bands) and the electrical size of the antennas (3-meter, 9-meter), that
a highly organized approach to the overall problem is imperative. Accordingly the programming
is proceeding with careful monitoring of computer core and cpi requirements, Option switches
are being incorporated as suggested by Figs. 6 and 7. Initial computations will be restricted
to linear polarization and single-fence configurations to obtain program verification although
the program will be written to accommodate arbitrary angle of primary wave arrival, elliptical
polarization states for the received fields and the feed horn characteristics, and polygonal fences

with elevation contours included.
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Figure 1. Ilumination of Reflector (7,) due to Primary Source (PW) and Seconcary
Sources (CW,) and (CW,).
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Figure 2. The Shadow and Reflection Regions (SR, RR) for a > #/2, 8 = 0.
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Figure 4. Coordinate Systems after Rotation of
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Figure 5. Coordinate Sys ems after Rotation of Half-Planes (Fixed Plane-Wave Source)

24



R~

oRIGIN AL PAC £l

L )

Fields of
Paraboloid
Due to (PW)

of QUALTTY
Plane-Wave
with (a.f) Angles-of-Arrival
PW Ay F RF -
Focal-Region Field Map
v Due to Primary lllumination
H
P ey
Phase (x.y.2) Yo Q
Correction
(:‘. ’ | Subtract PW
v R-Fieid
pd 4 SoT bl Y0 @-
n -
o
@ - "=
1 ot Hae -l [rm—c—
bt F) sOT s "8 Ll + 6K
nz 2 (x,y,l) 9 ("")
»Hon
G-, ]
V-ﬂ HiE
wis H
L F, i | sor 5, Hg; ——I Yo
n; (x,y,2)
B Him 1
Summer
Converted  Paraboloid
Summer Fields Shee! Current
Coordinate Conversion
Total Fields
Sommerfeld Diffraction Theory Focal- R°9'°"
- Field Map
Weighting Factors Due to
Plane Wave Resolvers ﬁ:ﬁ?nr:::;xm

Fences (Half-Planes) at Typ, Oriented (@i i, i)

-“0v
=

Physical
Optics
Theory

Fnelds of
Parabolo

Xl

id

Due to (CW;

Figure 6. Flow-Chart Showing Computation of Focal-Region Fields (FRF I)
and Perturbation (FRF II).

25



ORIGINAL PAGK 1§
OF POOR QUALITY

Feed-Horn Pattern
(Voltage)

Cross-Correlation
Algorithm

CCA —.@

Radiation Pattern
(Voltage)

Field Coordinates

(Cartesian & Spher cal)
Grids

Focal-Region Field Map

Due to Primary and Secondary lllumination

Sum of Field Values Due to
Primary (1) Plane-Wave and
Secondary (I1) Cylindrical-Wave
IHlumination of Paraboloid

Figure 7. Flow-Chart Showing Computation of Combined Focal-Region Fields
(FRF 1II) and Radiation Pattern

26



- Airy Disc RAD'“.L'%_F_X

(a) Axial Plane-Wave (PW) AOM 2
Spherical Locus R¢=2df

A

Paraxial PW

Ao ‘
Paraboloid

(b) Paraxial Plane-Wave (PPW)

Paraxial PW

S
/f >
Ao Paraboloid

(c) Paraxial Plane-Wave (PPW)
and (F,;) Present

Fences (Fy)

Figure 8. Cross-Correlation of Feed-Pattern (Ef) and Received-Field (_F:R) on Spherical
Locus (S)
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APPENDIX A

Scattered Fields for H-plane Polarization

The evaluation of equ’ations (20) and (21) requires the partial derivatives (Uy) and (Uy)
for the H-plane polarization case. An expression for (U), given in Ref, 1, p. 580, may be used
to form (U, ) and (Uy) for the E-plane polarization case only, and these partial derivatives may
be verified by utilization in equations (18) and (19) to obtain the explicit field equations (12)
through (17). This process is now carried out in detail. Subsequently an expression for (U)
of the H-plane polarization case is found and the process is repeated so that explicit field
equations may be written,

E-plane Polarization;

= % socpelks cosB - i) [G(p) - G(@)] = CelkreosB [Gp) - Gea)] = Cel® [G(p) - G(q)]

VT
(1-A)
Here C = ¢/4 secBA/m, and E = ik cos.
1 |
p = ~(2kr cosB)” cos —;— 0 -0) , q = =2 kr cosp)” cos 5 6 + o) (2-A)
X = r cosf , V¥ = rsind (3-A)
~ip? = ~ik cosf(r + xcosa + ysina) = - i(E + A) (4-A)
where A = kcosf(x cosx +y sina)
-iq? = ik cosf(r + xcosx - ysina) = - i(E + B) (5-A)
where B = kcosf(x cosa - y sina)
X : 2
G@) = et e g , @ = ettt 7k gy (6-A)
U = celA f: ot gy - CotiB f‘: et gy (7-A)
HA 3 oo 2 9 oo 2 de71A oo, 2 de7Beo
= — u - CeriB . in +C — Wy - 0 —
Uy Ce ™ fp el du C? ™ fq et dutC ™ fp el® du ™
(8-A)

A-1

12
I el du
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Applying Lelbnitz’s Rule to equation (8-A),

= oA GlE+A) O o B IE+B) 00 A 2 Gl gy o B (P Gl
Uy Ce™H e ™ Ce™® ¢ ™ ~Cik cosf cosa{e fp '™ du -e fq e’ du

(©-A)
After simplification,
U, = -Ce'E{ik cosp cosar [G(p) - G(q)] + -aa-; 0 - q)} , (10-A)
where
p~q = -:Z-—_(?. k cosp)” sin & [ (x2 +y2)2 - x]% (11-A)
V2 2
and
Wm0 koot & o0 (12-A)
X N 2 2 '
Substituting (12-A) into (10-A), and using
i
Hy = U, y  (19)
equation (16) is verified,
A similar process produces
U, = ~CelE t ik cosp sina [G(p) + G(q)] + "a%' - q)% (13-A)
and
ap ~-q) _ cos /2 a(p -q)
oy (sin 0/2 ax (14-A)
Substituting (14-A) into (13-A), and using
H, = i U (19
X - - -12— y ) )

equation (15) is verified.
An expression for (U), appropriate for the H-plane polarization case may be forced

directly from a specialized case (8=0) in Ref. 1, p. 574. Using (i1) of the present document,

A-2

- T TR T T ST T} Ly

e o
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e-mij4 ik(r cosB ~ zsinfl) ik r cosf

U = = secfe [G() + G@)] = Ce [G() +G@! = CelF [Gp) + Gla)] (15-A)

NG

Using equations (2-A) through (6~A),
U = celA f: oH? du + CeriB f: i g

0

0 . 2
c-5;ele el du

Using Leibnitz’s Rule,

U = oA Gi(B+A) B0 _ oo-iB Gi(E+B) 20
x ox ox

2 42
~ Cik cosp cosa (e‘iA f: elh” qu + 1B f: elk dp)

After simplification,

U, = - CelE 31k cosf cosa {G(p) + G(q)] + % (p + 9 );

where

p+q= -\-/?‘-_2.(2k cosp)”s cos ;i [(x? +y2)% - x] "%

and

Y
2 pt+tq = __(E_l_(_cow) uos—fx- cos 4

0x Vi 2 2
Substituting (21-A) into (19-A), and using
i oU

E - e ——

y k  ox ’
A-3

(16-A)

0 00 ,,.2 0 oo 2 oo 2
U = A . ““ dit + ~iB . “‘ du + P e"iA e’ﬂ d o+
Ce o fp e i+ Ce e fq e p+C i) B m

(17-A)

(18-A)

(19-A)

(20-A)

(21-A)

(21)
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equation (23) is obtained.
A similar process produces
0
U, = -Celf {ik cosf sinalGp) - G@)] + 5 (0 + @) (22-A)
and
] 2 k Y 6
~— (p+tq = - -(-—- coSﬁ)cos-‘-)‘— sin —— . (23-A)

oy VT 2 2

Substituting (23-A) into (22-A), and using

E. = _a.E,. (20)

i
X k oy ’
equation (22) is obtained.
Returhing to equations (20) and (21), (24) through (27) are obtained immediately using
(U), (Uy), and (Uy). Equations (22), (23), and (27) should be compared to those of the spec-

ialized case (8=0) of Ref, 1, p. 574,

A4

o Pt pssbus, o ey~ o
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The Fresnel Integrals

a> 0 2
Fa) = f': KT

a < 0: . O . 2 2
Fa) = [ e dp = [ o dus [ ol ap

~|al -la] 0
Let u = - u so that

My =0 ug =0 |a]

T B R

my = -lal pp = lal 0

a<0;

) 2 o0 2
Fa) = 2 fo el du - flﬂl el du

using (2-B), (3-B) and

2 1,2 o 2
la eiy dp = f:; el# du __flal elM du ,

From Ref. I, p. 573, equation (35),

2 1 i
Gy = Jy oW = — 7 eml ;
so that
. 2 : iu?
G(a) = e /7 e™/4 U(- a) + sgn(a) f?; et dul

for
Ux) = 1]x>0
01x<0

ang;

B-1

(1-B)

(2-B)

(3-B)

(4-B)

(5-B)

(6-B)

(7-B)

(8-B)
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sgn(x) = +1|x=20
- 1]1x<0 .
is a general formula for (a) positive, negative, or zero,
For G(a) to be continuous at a = 0,

lim G(- €) = lim G(e) = G(0) = 7‘/-77 eTi/4

e >0 e >0 See Ref. 1, p. 76.

G- e) = ele? [/a enild - f:| elh? dp

‘2 2
Gle) = el€® [ elh? gy
el
o .2 L
I 1" 4 = mi/4
m o Jje & W T e ’
therefore (10-B) is satisfied.
Using

2 ; i 1
eia? [ e gy = L 4 of— ,

la] 2|al BE

when (a) is large,
G) = /7 em/4 e UC- a) + sgn (a) L + 0 L
2|al |a13

: See Ref. 1, p. 572, equations (29) and (30) for the origin of equation (14-B).

B-2

(9-B)

(10-B)

(11-B)

(12-B)

(13-B)

(14-B)

(15-B)
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Units and Dimensions

The Kirchhoff-Kottler (physical-optics) formulation of equations (8) through (11) of this
document is in the rationalized MKS system of units, It is characteristic of this system of
units that, in the far-field, the ratio of the magnitude of the electric to the magnetic field

yields the free-space impedance (ZO). This is easily seen from

- ) -
IE | (V/m) I=jwry 27 fs (MxHy) yds | Wty [
= - . 1 = . = - = Z, (ohms)
- ‘ 1 - - 0
[HI(AT/m) |- ym fS,t (fxHy) xvyds| (10)

using (8) and (9) as r = « .,

The plane wave formulation, (1) through (4) and the solution for the half-plane, (12)
through (17) and (22) through (27), as obtained from Ref. 1 is in Gaussian units, Conver-
sion of units may be formally effected using Ref. 11. In view of the fact that the magnetic
fields are of prime interest throughout this paper it is convenient to multiply all electric fields

of Ref, 1 by a numerical factor

“0
FN = (ZO)N = ( —E(-)—) N =377 , (2-C)
Suppressing the units ohms for (FN), The electric field and magnetic field expressions obtained
from Ref. 1 may then be taken as volts/meter (V/m) and ampere-turns (AT/m), respectively.

In the far-field

| B | | Eyjpy |
B o p, —1 =7 ohms . G0
% .
L
C-1 ,
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Equations (12) through (17) and (22) through (27) represent the total fields associated
with a given half-plane, This may be seen by considering the special case (8 = 0) and the
electric field in the reflection region (p < 0, q<0), the illuminated region (p<0, q>0), and
the shadow region (p >0, q >0), respectively, for a remote observer (r =» ), The G(p) and
G(q) of the field equations, cited above, then lead to the indentification of interfering inci-
dent and refiected plane waves, a transmitted or incident plane wave, and the degenerate or
zero plane wave for the regions named upon application of half-angle identity formulas. Col- J
lectively these constitute the geometric optics field for the special case being considered:

e-ikr cos (0 - @) | o-ikrcos (0 + o) , 0€0<7~a
E,® = (elkrcos (6 -a) , T-a<f<mta (1-D)

0 , Tt+ta<d £2n

See Ref. 1, p. 572, eqn. (33).

From the preceding it follows that the geometric optics field is contained in the field
solution of each half-plane i{ff # 0 in general), for electric and magnetic fields, and must be
subtracted (i) times when (i) fences are considered in the present simulation. The paraboloid
is illuminated directly by a specified incident plane-wave, and will not lie in either the shadow

or reflection regions.
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