
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



(NASA-TM - 84996)	 A ktADIU-FhE(JUEYCY ANALYSIS	 U83-33910

UY PARAbULUIDAL AN'T'ENNAS LOCATED NEAF
DIFFHACT1N ,3 FENCES (NASA)	 47 p
HC AU .i/t1N AU1	 CSCL 2UN	 Uaclas

(;J/U9 42020

NASA
Technical Memorandum 84996

A RADIO-FREQUENCY ANALYSIS
OF PARABOLOIDAL ANTENNAS
LOCATED NEAR DIFFRACTING
FENCES

10

Ca `CO. 0

R.F. Schmidt

March 1983

Nationai Aeronautics and
Space Administration

Goddard Space Flight Center
Gree: befit, Maryland 20771

^i

^t



TM84996

A RADIO-FREQUENCY ANALYSIS OF PARABOLOIDAL ANTENNAS

LOCATED NEAR DIFFRACTING FENCES

r

r
^„

R, F. Schmidt

March 1983

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland 20771

E,



A RADIO-FREQUENCY ANALYSIS OF PARABOLOIDAL ANTENNAS
3

LOCATED NEAR DIFFRACTING FENCES

R. F, Schmidt
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ABSTRACT

This document applies the cylindrical waves associated with the Som merfeld solution for

a diffracting half-plane in the evaluation of the effects of secondary radiation oil 	 focal-

region-fields of paraboloids. A cross-correlation between the computed focal-region-fields and

....;
the feed-antenna-fields is then introduced to determine the modified radiation pattern of Para-

'.	 boloidal antennas, The lialf-plane solution is adapted to estimate the effects of a polygonal

.pence on 9-meter S-band and 3-meter S-and Ku-band antennas at the Merritt Island, FL Space-

craft Tracking and Data Network Station.
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GLOSSARY OF NOTATION

complex-vector electric and magnetic fields

k wave-number

phase

Co weighting factor of linear polarization states

V vector operator (grad)

V_ T

r distance

ds differential area

U a solution of the three-dimensional wave equation

U, v particular forms of p and q when	 0

p ) q arguments of the Fresnel integral dependent on a, Q, k, r, and 0

a generic parameter equal to u, v, p or q

a, a azimuthal and polar plane-wave angles-of-arrival (in context)

a, J3, 'y Eulerian angles for rotation of fences w.r.t. paraboloid (in context)

010
paraboloid

Fi fences

(r, 0, z) local cylindrical coordinates for fences or half-planes

F(a) a form of the complex Fresnel integral

G(a) a compact form of e 	
2 

F(a)

sgn signum or sign switch

Ri unit vector antidirectional to plane wave propagation vector

mi , n, weighting factors in plane wave decomposition

Tilp vector displacement of local origin of half-planes

[A] orthogonal rotation matrix

F unit normal to a surface
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electric sheet-current

wavelength

horn diameter

voltage

complex vector polarization states

solid angle (steradians)

plane wave

cylindrical waves

lialf-planes

Sommerfeld diffraction theory

physical optics theory

focal-region field

perturbation

cross-correlation algorithm

time average Poynting vector

spherical locus

dummy variable (Appendix A)

permeability of free space (henry/meter)

permittivity of free space (farad/meter)

characteristic impedance of free space (ohms)
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A RADIO FREQUENCY ANALYSIS OF PARABOLOIDAL ANTENNAS

LOCATED NEAR DIFFRACTING FENCES

INTRODUCTION

This document is an attempt at estimating the effects of proximate diffracting fences on

the performance of paraboloidal antennas at the Merritt Island, FL Spacecraft Tracking and

Data Network Station. Both 9-meter S-band and 3-meter S-and Ku-band installations are of

concern. Mathematical simulation of the paraboloids and the diffracting fences affords a means

of assessing the effects as a function of antenna and fence parameters. High-speed digital corn- 	 {

puters may be used to iaxtract quantitative information from an analysis based on the vector

Kirchhoff-Kottler physical optics theory for continuous surfaces and the Sommerfeld diffraction

theory for half-planes.

A plane-wave which is incident on a paraboloidal antenna induces an electromagsietic

sheet-current on the latter. From this a highly satisfactory computation of the focal-region

fields, wavefronts, and time-average Poynting vectors can be made. The assumed primary wave

incident on the paraboloid .may also illuminate diffracting fences which act as secondary

sources. Each fence will radiate a cylindrical wave exhibiting, in general, a linear phase grad-

ient, and a nor. trivial field-intensity distribution. If phase is preserved in a mathematical sim-

ulation, and all polarization 'components are included, the total perturbation of the sheet-

current on the paraboloid may be calculated and, subsequently, a new set of focal-region fields,

wavefronts, and time-average Poynting vectors may be determined.

The far-field radiation pattern of a paraboloid, influenced by one or more diffraction

fences, may in principal be found from a knowledge of the focal-region fields and feed-antenna

fields over some surface of convenience. A sphere centered on the focal-point of the para-

boloid, with radius equal to the far-field distance of a feed horn, is satisfactory for this pur-

pose, A cross-correlation of the focal-region and feed antenna fields, by means of an algorithm

1
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that is responsive to the spatial (vector) and temporal (complex-phase) character of the prob-

lem leads to a single voltage for every angle of arrival of art assumed plane-wave. In this man-

ner, the far-field or transmission radiation pattern evolves, from an analysis which is predicated

entirely on reception arguments, in the prescnce of diffracting fences,

2
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PLANE-WAVE SOURCES

Two orthogonal plane-wave sources are admitted in the simulation. See lief. 1, P. 578.

E -- polarization

cos« sing, - sinasinp, cosp) e" dks	 (1)

H = (- sing, Cosa, 0) a-ikS	 (2)

H -- polarization

E = (sina, -Cosa, 0) e-s`s	 (3)

H = (-cosasinp, -sinasinp, cosp) e -lk5	 (4)

The phase factor of the plane waves is

1ks = e-ik (x Cosa cosp + y sing: cusp + z sing)	 (5)

Angles (a, p) and coordinates (x, y, z), above, were originally in a local context for a

half-plane analysis as presented by Born and Wolf, but are now utilized Ill a global context

(GSFC coordinates) for the incident plane wave of the simulation. A given point (x, y, z)

on the paraboloid will appear as (x", y", z") at the origin of a rotated and translated diffrac-

tion fence. Similarly, angles (a", p") will emerge as the local angles of arrival at such a fence.

See Fig. 1. It can be seen that (a) is an azimuthal variation in the equatorial (x, y) plane,

„	 and (p) is a polar variation emanating from the (x, y) plane.

j

	

	 Any degree of polarization ellipticity, orientation, and rotation sense of the polarized state

is available via either (1) and (3) or (2) and (4). It may be more direct to combine two
i

counter-rotating circular states, in any given instance, since the relative phase of the circular
i

states and inclination angle of the polarization , ellipse are simply related,

Or = 201	(6)

,a

k

F

L

3



the axial ratio of the ellipse derives from the relative weights,

AR = (WI * W2)/(wl c0
2 )	 0	 (7)

and the rotation sense of the field vector is determined by the la 4 ,;er of (w l ) and (w2).

q.

w
r
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SCATTERING FORMULATION (PARABOLOID)

An amended form of the complex-vector Kirchhoff-Kottler formulation (physical optics)

suffices to compute the focal region fields, wavefronts, and time-average Poynting vectors of

the paraboloid, It is a variation of t1w Stratton-Chu formula, See Ref. 2, p, 460; Ref. 3,

p, 158; Ref. 4, p. 4; Ref. 5, p. 35,

h(x' 
y' x) 4 3wc Oar f

S 
 

f(n x R,) - VIVOds -jwy 
4L
L fS  (n x H_I) bids ► (8)

1	 1

H_(X) y, z)_ 
4^ f

s(r,x Hl ) x W ds	 (p)
1

eik` / r	 (10)

where

1	 T
nT^ – + ()k – —)	 1	 (I1)

r	 r

a
The phase of the Green's function (10) is seen to be consistent with the plane-wave formula-

t	 tion of Born and Wolf, given previously.

5
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SCATTERING FORMULATION (DIAL.-PLANE)

The total fields, In local coordinates, for 4Hrce-dimensional diffraction of a plane wave

by a lialf•plane are given in Ref. 1, p. 579, In the Gaussian system of units as

(l-plane polarization)
d

Ex w -fly sin /3	 (12)

	

ry = l°Ix sin R	 (13)

Ez = e
-rrl /4 Cos P e l k(r cos - z sin P) [G(p) - G(q )l	 (14)

Hx

	

	 - e- r i/4 a lk(r cos (3 - zsln P) sina[G(p) + G(q)J + Isins/2 cos0/2
n

kr cos R

(15)

I;l	 :., -7r 1/4i/4 e ik(r cos (3 - zs1n(3)	 ;`,^^
Y	

cesa[G(p) - G(q)J - 1 V 
kr os 0 

sing/2 cdsO/2

_S/ 7	
(16)

Hz = 0
	

(17)

As mentioned previously, (x, y, z) above will be redesignated (x", y", z") due to certain

correspondences, translations, and rotations among the Cartesian coordinate systems used Hereir

The companion expressions to (12) through (17) for the H-plane polarization case are not

given explicitly in Ref. 1. It Happens that the E•plane polarization case was developed by

means of two auxilliary equations,

sin /i	 au	 - i sin	 aU	
cost U	 (18)

k	 ax	 k	 ay

and

H = - i au	 i	 au	 0	 . 
(1 9)k ay' k ax '

A_
6

1
1^	 5

{
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The 1-1-plane Polarization ease may, therefore, be developed using two other auxilliary

equations.	 See Ref. 1. p. 579,

9 =	
i	 au	 - i	 3U	 p (20)
k	 ay	 lc	 ax

and

R	
1 sin Q	 aU	 - 1 sin	 W	

c,os 2	 Ua 21
k	 ax	 k	 ay

neta:is of the derivation may be found in Appendix A of this document. The results are

givers below, also in the Gaussian system of units, as

(H-plane Polarization)

Sri 4	 ik r cos	 - zsin	 sina[G(p) - G(q)]^ /	 e (	 ^	 /^)	
®i ^krEx

cos

(22)

7ri/4	 ik r cos (3 - zsIn	 2_ e-	 e	 (	 a)	 cosa[G(h) + G(q)1
a

cos	 cos
' Y

E
y	 kr cos Y ,r

(i	 2	 2 ))
.# (23)

5

Ez _ 
0 (24)

Hx	 =	 Ey sin a (25)

Hy	 =	 - Ex sin a (26)

0-id /4 elk(r cos	 - zsin 0)	 [G(p) + G(q)]Hz -
7

(27)

Note:

Present derivation (+ i) in equation (22), (+ i) in equation (23).

Ref. 1, 2nd Ed. (- i) in equation (22), (- i) in equation (23). 4

Ref. 1, 6th Ed. (,- i) in equation (22), (+ i) in equation (23).

7
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The evaluation of G(p) and G(q) presents alternatives, Assume that

	

a < Ir/2	 (24)

and

	

a 4;^ n	 (25)

See Fig, 2, where the diffracting half-plane is bounded by the tz axis and lies in the (+x)

part of the xz-plane. It can be seen that

p > 0 1	 (26)	 +0>7r+a
and

04
i

from an inspection of equations (2A). That is, p > 0 in the shadow region (SR) and q ` 0

in the reflection region (RR).

^i
It can also be seen that the condition for asymptotic evaluation,

kr >> 1	 (28)

giver! in Ref. 1, p, 572 for the two-dimensional diffraction of a plane wave by ahalf-plane,

becomes

kr cos (3 >> 1	 (29)
a

for the present three-dimensional case. Further, (p) and (q) may vanish under same copditions:

p0

	

	 (30)
0 = rr+a

and

q - OM B = ^ - a 	 1

t the shadow and reflection boundaries, respectively, even for large (kr cos (3). This indicates

that the requirement on (a) for asymptotic evaluation implies

p>> 1 ,q>>>	 (31)	 .
i

8
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G(a) = e-ia 2 F(a)	 (30)

and parameter (a) may be zero, positive, or negative. Isere,

F(a) = f 00 ei µ2 du
a

The development of Ref. 1, p. 572 pertaining to the evaluation of G(a) for negative (a) is not

explicit for small values of (a). Appendix B of this document gives the details of a develop-

ment leading to a general formula,

00	 2G(a) ^ e-ia2	 r el'i/4 U(- a) + sgn(a) f 
IaI e"

4 	dµ 1	 (32), (7-13)

where

U(x) = 1 I x > 0	 (33) i
01x<0

and

sgn (x) _ + 1 I x > 0	 (34)

-1 Ix <0

For large values of (a), equation (32) above reduces to

G(a)	 ^ e^i /4 e-ia2 U(- a) + sgn(a) 21a1 + 0 
IaI3	

(35)

	

which agrees with Ref. 1, excepting a typographical error; (e-ia ) should read (e-ia2 ), equation
	 A

(32), i2age 572.

See Appendix C: for a conversion of the Ref. 1 equations, above, to the rationalized MKS
	

s

ti
system of units.

j_

3	 .;
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COORDINATE SYSTEMS

A convenient means for computing the sheet-current induced on the paraboloidal reflector

by the diffracting half-planes or fences is to retain the local coordinate conventions of Born

and Wolf, Ref, 1, pp. 556-580. Figure 3 illustrates a reference coordinate system (x, y, z) of

the overall problem and the local coordinate system (x', y', z') of a half-plane shown translated

from 0 to 0'. It can be seen that a correspondence exists between the two systems prior to

translation of origin.

	

(x, Y, z) -► (-x', z', y')	 (36)

The Cartesian components of vector (r') from 0' to a point on the paraboloidal reflector

(y) may be specified in the (x, y, z) coordinate system using

	

"r - rHP = (x , Y, z)	 (37)

and rewritten as

	

'r' = (x" Y" z')	 (38)

using the correspondence, (36).

Prior to rotation of the .half-plane, the Born and Wolf local cylindrical coordinates

(r', B', z') are then found from

. — ;
X 	 r' coso ,	(39)

1
or

	

y' = r' Sin6'	 (40)

and

r 2 = (x')2 + (y')2 	 (41)

a	 r

10
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r
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Rotation of the half-plane results in a re-designation of the local coordinate frame as (x",

y", z") with origin (0") at (0') as shown in Fig, 4, The Cartesian components of vector (r

are now different from those of (r"), The latter are found using

(x ,, , y	 z") = [A] (x', y', z')	 (42)

where

(cos-ycosx - cospsinasiny) (,osysina + cosgcosasiny) (sfi y sing)

[A] _ (-sinycosa - cospsinacosy) (-sinysina + cospcosacosy) (cosy sing) 	 (43)

(sing sing)	 (-sin( Cosa)	 (cosy)

See Ref. 6, p. 107 for a discussion of Eulerian angles.

The frame (x", y", z") is visualized as rotating with respect to the frame (x', y', z'),

and requires the rewriting of (39) (40) and (4I) in double-prime notation to obtain the Born

and Wolf local cylindrical coordinates (r", 0", z"), Once the latter are obtained, it is conven-

ient to drop the double-prime notation and enter the Born and Wolf equations with the

derived values,

r

E
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POLYGONAL FEI,TES

Additional complexity arises when the half-plane formulation is applied repeatedly to

mathematically simulate a polygonal fence such as the one illustrated in Fig. 5. Also see flow

charts, Figs, 6 and 7. The procedure is justified by the parameters of the present problem

and the inherent behavior of the half-plane formulation when kr » 1, Only S- and Ku-band

frequencies are to be introduced into the present calculations, and the fence height and length

for each polygonal element exceed 8-feet. Under these conditions a segment of a cylindrical

wave is associated with each segment of the fence. Ref. 1, p.. 572. Also see Fig. 1 of this

document. Points((`r', 'r") which either exceed the cylindrical bounds of a finite cylindrical

wave, or imply intersection with paraboloid (yo ), are excluded from consideration.

	

Assuming that a single plane-wave illuminates the paraboloid directly, together with the 	 H

several elements of a polygonal fence, it can be seen that a distinct set of input parameters

must be associated with each element of the fence. The local plane wave angles-of-arrival

(a, R), the local Eulerian angles (a, /3, y), and the displacement vectors (FHp) are required.

A direct method for finding the set of plane-wave angles-of-arrival is to proceed on the

assumption that the fence geometry, in relation to the paraboloid, has been established. Sel-

ection of a single pair of values (a, 0), for purposes of illuminating the paraboloid, then fixes

all of the local angles of arrival for the half-planes. If a unit vector with Cartesian components

	

^' !	 in the (x, y, z) reference frame is chosen co4inear, but antidirectional with respect to propaga-

tion vector of the plane-wave so that

R I = (x, y, z) = (cosa coso, sins cosy, sing) 	 (44)

the wave angles of arrival are obtainable by combining the correspondence (36) and the rota-

tion (42). The translation (37) may be ignored here since only angles are of concern. In each

instance the Eulerian angles of the rotation matrix are known and a vector (x", y", z") is the

output. The local (a, (i) for each half-plane is then found by solving a system of equations i

12

	

j	

k

a

t
w

3

r^



ORIC. IAL FA I. V
OF POOR QUALI"I e

similar to (44) of the present document, Nate that R l is different between Fig. 2 and Fig. 3

due to the preservation of local (a, a) and [A] not equal to the identity matrix,

Assume that selection of the (Q, A) pair taken with respect to the (x, y, z) frame leads to an

incident linearly-polarized magnetic field whose ve p ior components, without regard to phase, are

H = (Hx, Hy, HZ)
	

(45)

via either equation (2) or equation (4). This field must now be decomposed into an EPOL

and HpOL field, so that, in general, the magnetic fields scattered by each half-plane may be

evaluated via equations ( 19) and (21) for E-plane and H-plane polarizations, respectively. It

follows, using, (2) and (4), that the field of (45) may be written in local coordinates as

(Hx" , Hy " , Hz1f = m l (-sina, cosa, 0) + n l (-cosa sing, - sina sing, cosp)	 (46)

where (m l ) and (n l ) are the unknown weight, of two orthogonal, cophased plane-waves incident

on the half-plane. The angles (a, a) of (46) are now the local angles of arrival, computed

previously, so that (46) is a system of three equations in two unknowns. This leads to

(Hx ", H _ " , Hz" ) = m l HE-POL. + n l HH-POL.	 (47)

In the event that an elliptically-polarized phane wave is incident on the paraboloid (yo)

and the half-planes or fences, a second and similar resolution of the type discussed is required.

This leads to an illumination of the form

HTOT	 (ml HE-POL + n l HH-POL) ej 01 + tm2 HE-POL + n2 HH-P0L*	 ,(48)

where (m l , n l , m 2 , n2 ) are scalar weighting factors and (ai l , ^2 ) are scalar phase-constants

affecting rotation sense, axial ratio, and inclination angle of a preferred elliptical state.

A correction remains to be .made concerning phase, The solutions of the half-plane prob-

lem were originally obtained using a phase factor given by (5), with the origin of coordinates	 1 x
ax

Y

13
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on the diffracting edge. Since the incident plane-wave has been referenced to the origin (0) of

the (x, y, z) frame the phase at the various origins (0") is given by a factor

F = e-ikK i. • rxr	 (49)

which now must be applied to the scattered fields of the half-planes or fences. The `Hp are,

in general, distinct when several fences are encountered, but there is only one value of Ri

(antidirectional to the propagation direction of the incident plane wave). ,See Fig. 5 which de-

picts a polygonal fence.

The total fields associated with each half-plane or fence are evaluated in a local context for every

point on the paraboloidal reflector (yo ) and must be converted to the global context of the problem.

Since the magnetic field components are expressed in the (x", y", z") system of coordinates,

(HX,, 
I.iy') Hz ,) = [A] -i (HX„, Hy", HZ11)	 (50)

Once (FIX ', Hy ', Hz ') have been determined, the correspondence of (36) is used in the inverse sense.

(HX ', Hy ', Hz ') -+ ( - FIX , Hz , Hy )	 (51)

The translations (flW ) are irrelevant since translation does not affect projections between two

non-congruent coordinate frames. In the preceding [AI -1 is, in general, distinct for the half-

planes or fences' since the Eulerian angles (a, (3, y) are distinct.

Once the total magnetic fields associated with the diffracting fences have been computed and

the geometric optics field has been subtracted for each fence, a superposition of sheet currents

may be visualized. That is,

KTOT - 2n x Hi + 2n x (Hs i + Hs2 + Hs3 + ...Hsi )	 (52)

(primary induction)	 (secondary induction)

for (i) half-planes or fences. The focal region fields may then be computed using equations (8)

r	 14
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through (11) of this document in conjunction with the incident magnetic fields of (52).  Se

Flp. 6 and 7 for  a flow chart of the preceding operations, and Appendix D for  a discussion

relating to the total §e/.
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CROSS-CORRELATION (FOCAL-REGION FIELDS AND FEED FUNCTION)

An algorithm is now written to express the received voltage as a cross-correlation between

a completely polarized focal-region and a feed function. Such a voltage represents one point of

an aperture-antenna radiation pattern, The cross-correlation is effected on a spherical locus,

as shown in Fig. 8, for convenience, Its radius is the far-field distance of the feed horn,

Rs = -----
2d 2	

(53)

The algorithm derives directly from the fact that the induced voltage which results from

the interaction of two elliptical states ic:, given by

	

VOC =V • 1),
	

(54)

where n* is the complex-conjugate of the received field and p represents a linear receiving an-

tenna. See Ref, 8, p. 105, Ref, 9, p. 184. When p and q are both unit complex-vectors,

an expression for polarization efficiency may be written as

nPOL = I 'f ' ^* I'
	

(55)

In the subject cross-correlation for receiving apertures equation (54) becomes

VOC = f ER • Ff M	 (56)

Here (E^ is a complex-vector focal-region field and (E f ) is characterized by the feed function.

In the present context the received field may be regarded as having the dimensions (volts/meter' ),

and the feed function acts as an effective height (meter') per unit solid angle (92). The dif-

ferential solid angle (M) may be formally associated with area (dS) on the spherical locus (S) via

M	
r 3 n1 dS	 (57)

r

I 
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where

	

J YJ a Rs	 (58)

and the unit normal (n j )is that of a sphere. See Ref. 10, p. 290. It is noted that (N)

(Ef) are, in general, not unit quantities in (56) and only relative voltage is required for

a radiation pattern,

The magnetic counterpart to (56) may therefore be written tm a proportionality;

	

VOC a f f HR • II	f do	 (59)
62 

The magnetic field (H^ incident on the locus (S) is obta?ned from equation (9). The term

(Hf) depends on the feed function selected for the calculation, It may be as simple as

A cosN CM

Hf =

	

	 hi	 (60)
p

where

	

hi — Ipx^l	 (61)

Here (A) is a scalar amplitude, (N) is a directivity factor, (EDis a polar angle taken with respec

to the feed horn axis, n is a polarization moment, and

	

T I ° Rs	 (62)

Many other representations are possible; rigorously derived expressions for feed horns and open

waveguides, numerical data, etc.

Returning to Fig. 8(a), it appears that a rotationally symmetric situation exists when the

primary or incident plane-wave is axially directed (a = 7r/2, a = 7r/2). This is somewhat illusory

since the rule for current .induction

	

K = 2n x HI	 (63)

17
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converts the axial symmetry associated with the paraboloid to uniplanar symmetry, This uni-

planar symmetry persists for (ot < it/2, P = 7r/2), or paraxial wave arrival, although the received

fields (E  are now displaced with respect to the feed function (E-1), as suggested by Fig. 8(b).

Introduction of diffraction fences, Fig. 8(c), will leave the calculation entirely without sym-

metry.

18



CONCLUSION

This document constitutes the first or analytical prase of an attempt to estimate the ef-

fects of proximate diffracting fences on the performance of paraboloidal antennas at the Mer-

ritt Island, FL Spacecraft Tracking and Data Network Station, The seco , id and third phases

are the writing and verification of a computer program which incorporates the theory presented

herein, and the actual generation of numerical data for assumed antenna and geometrical para-

meters. Introduction of fence mesh details in a higher level analysis, attendant program mudifi-

cation, and subsequent numerical calculations, constitute possible additional phases,

An appreciation of the antenna environment may be formed from Fig, 9, which shows

the Kennedy Space Center Layout (KSC). The effects of the diffraction fences are seen to be

a function of antenna pointing angle, elevation, range, and frequency. A photograph showing

the 30' (9-meter) USB Antenna, No. 2, is included as Fig. 10 and should be compared to the

abstraction originally presented as Fig. 1. It appears, from the large number of parameters,

the repeated appearance of integrals in the present formulations, the relatively high frequencies

of operation (S- and Ku-bands) and the electrical size of the antennas (3-meter, 9-meter), that

a highly organized approach to the overall problem is imperative. Accordingly the programming

is proceeding with careful monitoring of computer core and cp ,,, requirements, Option switches

are being incorporated as suggested by Figs. G and 7. Initial computations will be restricted

to linear polarization and single-fence configurations to obtain program verification although

the program will be written to accommodate arbitrary angle of primary wave arrival, elliptical

'	 polarization states for the received fields and the feed horn characteristics, and polygonal fences

with elevation contours included.

i

i;E
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Figure 1. Illumination of Reflector (,yo ) due to Primary Source: (NW) and Secondary
Sources (CWd and (CW2).
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Figure 2. The Shadow and Reflection Regions (SR, RR) for a > 7r/2, 	 0.
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Figure 4. Coordinate Systems after Rotation of lialf-Plane
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Figure 6. Flow-Chart Showing Computation of Focal-Region Fields (FRF I)
and Perturbation (FRF II).
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Figure 7. Flow-Chart Showing Computation of Combined Focal-Region Fields
(FRF 111) and Radiation Pattern
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(a) Axial Plane Wave (PW)
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(b) Paraxial Plane Wave (PPW)

ORIGINAL PAGE 18
OF POOR QUALfTY

s

ER	
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ao ^
Paraboloid

Paraxial PW

S
L t 	 .^

E R	 <P> ERlE f

l
S

X0	 Paraboloid

(c) Paraxial Plane-Wave (PPW)
and (F i ) Present

Fences	 (F j)

Figure 8. Cross-Correlation of Feed-Pattern Tp and Received-Field (E R ) on Spherical
Locus (S)
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Scattered Fields for H-plane PolarizationI
The evaluation of equations (20) and (21) requires the partial derivatives (U x ) and (Uy)

for the H-Plane polarization case. An expression for (U), given in Ref. 1, p. 580, may be used

r

	

	 to form (U.) and (Uy ) for the E-plane polarization case only, and these partial derivatives may

be verified by utilization in equations (18) and (19) to obtain the explicit field equations (12)

through (17). This process is now carried out in detail. Subsequently an expression for (U)

of the H-plane polarization case is found and the process is repeated so that explicit field

equations may be written.

E-plane Polarization;

U = 
e ir/4 secoeik(r cost - zsin fl) [G(p) - G (q)) = Ce ikrcosg [G(p) - G(q)) _ CelE [G(p) - G(q)]

-^ri /4 	
(I -A)

Here C = e	 secpI ^r, and E = 1k cosp.

I	 1
p = -(2kr cosp)'h cos 

2 
(0 a) , q = -(2 kr cosp) /a cos 

2 
(0 + a)	 (2-A)

#	 x = r cos0	 , y = r sin0	 (3-A)

-ip 2 = -ik eosp(r + xcosa + ysina) _ - i(E + A)	 (4-A)

where A = kcosa(x coca + y sins)

-iq2 = -ik cosp(r + xcosa ysina) _ - i(E + B) 	 (5-A)

where B = kcosp(x cosy - y sins)

G(p) = e'4p2 f e'µ2 dµ	 G(q) = e-iq2 f00 el/A2 dµ	 (6-A)
p	 q

U = Ce-iA fp eiµ2 dµ - Ce-iB fq eiµ2 du	 (7-A)

-IA a	 00	 2	 8 00 2	 ae-iA „ 2	 ae 1B 00 2

Ux - Ce	 ax f p e
iµ dµ- Ce-iB aX fq eiµ dµ + C ax f p eiµ dµ - C 

ax 
fq e'µ dµ

(8-A)

A-1
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Applying Leibnitz's Rule to equation (8-A), 	
OF POOR QUALITY

Ux = -Ce-iA ei(E+A) al) CC-113 el(E+13) aq -Cik Cosa Cosa a-IA f e1µ2 dA - CID f
00 

e1JA2 dµ
ax	 ax	 p	 q

(9-A)
After simplification,

Ux	 -Ce1E I ik cosp cosy [G(p) - G (q)l + ax (p - q)	 (10-A)

where

p ,- q = -2 (2 k cosA)V2 sin 2 [ (x2 + y2 )'/2 - xj Y2	 (11-A)

and

a(p - q) _ (2 k cosp)'/2
 sin a sin 0	 (12-A)

ax	 2	 2

Substituting (12-A) into (10-A), and using

Hy _	 Ux	 (19)
k 

equation. (16) is verified,

A similar process produces

Uy	 -CCIE ik Cosa sing [G(p) * G(q)l * y (p - q)	 (13-A)

and
3(p q)	 _ cos 0/2 a(fl-q) 	 (14-A)

ay	 sin 0/2	 ax
4

Substituting (14-A) into (13-A), and using

Hx =	 k Uy	 (19)

equation (15) is verified..

An expression for (U), appropriate for the l -plane polarization case may be forced

directly from a specialized cave (0=0) in Ref. 1, p. 574. Using (2,1) of the present document,

A-2

y
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0-7rl/4	 Ik(r cosh{ - ming)	 1k r cosp
U	 ^ seep e	 [G(p) + G(q)) = Cc [G(p) + G(q)) w CeiL' [G(p) + G(q)) (15-A)

Using equations (2-A) through (6-A),

U	 Ce-IA f00 eiµ2 dµ + Cc-1B f°° eIA2 dµ
	 (16 A.)

p	 q

Ux	 Ce-1A 8 
f00 eiµ2 dµ 

+ Ce-IB a f e
1,42 

dp + C a e-IA f°° el/12 dµ +
ax p	 ax q	 ax	 p

C 
_x 

a-IB f ao 
eiµ2 dp	 (17-A)

q

Using Leibnitz's Rule,

U -- -Ce-iA ei(E+A) ap	 C,-!B eI(E+B) aq
x -	 ax	 ax

Cik cosp Cosa CIA f00 eip2 dy + e-1B f00 ejµ2 dµ	 (18-A)
p	 q

After simplification,

a
U^ _ - CeIE ik cosy Cosa [G(p) + G(q)) + ax (p + 

^')	
(19-A)

where

p + q = -	 (2kcosh)'/2 cos 2 [(x 2 + y 2 ) ^/2 - X] 1/1	 (20-A)

and

a	 (2k cos(3)'/2	a
ax (p + q) _ -	 cos	 cos

Substituting (21-A) into (19-A), and using

E	
- i au

y 
:--
	 k	 ax

A-3

(21 -A)

r

1
i

(21)
	 i
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.l

=k

i

equation (23) is obtained.

A similar process produces

UY r: - CeIE ik cos/	 ay
 - G(q)) + 8y (p 4- q)	 (22-A)

and
8	 (2 k cosg)% a	 B
ay (p + q) - 

° ^r	
cos 

2 
sin 

2	
(23-A)

Substituting (23--A) into (22-A), and using

EX = k ay	 (20)

equation (22) Is obtained.

Returning to equations (20) and (21), (24) through (27) are obtained immediately using

(U), (UX ), and (UY ). Equations (22), (23), and (27) should be compared to those of the spec-

ialized case (R=0) of Ref, 1, p, 1574.

u	 4^
^S

i

A-4



APPENDIX B
C-10144 VAL PAGE iS
Of POOR QUALITY

The Fresnel Integrals

a > 0:

F(a)	 =	
f00 el/12 dµ

a

a<0:
F(a)	 =	 fal eiµ2 dµ	 =	 f 

gal 
e1µ2 dµ +	 f0	

eiµ2  dµ

Let µ	 - µ so that

µ2 =0	 2	 µ2=0	 2
f eila	 dµ =	 -	 f	 e1µ	 dµ	 =

lal	 2
f eiµ	 dµ

µa	 = —lal	 pi	 = lal 0

a<0:
F(a)	 =	 2 f	 eiµ2 dµ - f 

0
eiµ2 dµ 0

using (2-B), (3-B) and

fl l eiµ2 du	 '°	 f20	 e'µ2 dµ	 - f
l a l 	

e1µ2 dµ

From Ref. 1, p. 573, equation (35),

G(G)	 =	 f0	eiµ2 dpa	 =	 2	 r	 e76/4

so that

00G(a)	 =	 e-14	 [^en1^4 U(- a) + sgn(a)	 e'µ2µ2 dµ1

for

U(x)	 =	 1 I x > 0

0Ix<0

0 -B)

(2-B)

(3-B)

(4-B)

(5-^B)

(6-B)

(7-B)

(8-B)

ami
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sgn(x) = + 1 x > 0

— 1 lx<0
is a general formula for (a) positive, negative, or zero,

For G(a) to be continuous at a = 0,

lim G(- e) = lim G(e) = G(0) _ ^!" e7ri /4

	

e -* 0	 e -* 0	 2	 See Ref. 1, p. 76.

G(- e) = Cie 2 [V"7r e7ii/4 - f e I e'µ2 dµl

G(e) = CIO flel e1µ2 dµ

lim 
lei-+0  f le i

  
e1µ2 dµ =^ e7ri/4

therefore (10-B) is satisfied.

Using

-ia2 00
	 i/12 	 i	 1

	

e	 flat e	 dµ	
2lal + 0 lal3

when (a) is large,

G(a) = ^e7ri /4 e a2 U(- a) + sgn (a) 21al + 
0( I s)lal

See Ref. 1, p. 572, equations (29) and (30) for the origin of equation (14-B).

(9-B)

(10-B)

(I1-B)

(I 2-B)

(I 3-B)

(14-B)

(15-B)

B-2
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Units and Dimensions

The Kirchhoff-Kottler (physical-optics) formulation of equations (8) through (11) of this

document is in the rationalized MKS system of units, It is characteristic of this system of

units flint, in the far-field, the ratio of the magnitude of the electric to the magnetic field

yields the free-space impedance (Zo ). This is easily seen from

1
1E I (V/m) - I - jcomo 47r fS 1 (n x H I ) ^ dS I	 Wpo -

C767k 
Zo (ohms)_

H I (AT/m)	 I	 f	 (B x 1-1	
o

^	 S1) x V^ dS I	
(1 _C)t

using (8) and (9) as r -+ «o .

The plane wave formulation, (1) through (4) and the solution for the half-plane, (12)

through (17) and (22) through (27), as obtained from Ref. 1 is in Gaussian units. Conver-

sion of units may be formally effected using Ref. 11. In Yriew of the fact that the magnetic

fields are of prime interest throughout this paper it is convenient to multiply all electric fields

of Ref. I by a numerical factor

µ
FN = (Zo )N =	 eo N = 377 ,	 (2-C)

Suppressing the units ohms for (F N ). The electric field and magnetic field expressions obtained

from Ref. 1 may then be taken as volts/meter (V/m) and ampere-turns (AT/m), respectively.

In the far-field

I EFF II EV/m I
----^- = FN	 = Z  ohms

RFF I	 I RAT/m 1

4

(3-C)
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The Total Field	 OF POOR QUALITY

Equations (12) through (17) and (22) through (27) represent the total fields associated

with a given half-plane, This may be seen by considering the special case (P = 0) and the

electric field in the reflection region (p < 0, q < 0), the illuminated region (p < 0, q > 0), and

the shadow region (p > 0, q > 0), respectively, for a remote observer (r -* 00). The G(p) and

G(q) of the field equations, cited above, then 1Fad to the indentification of interfering inci-

dent and reflected plane waves, a transmitted or incident plane wave, and the degenerate or

zero plane wa re for the regions named upon application of half-angle identity formulas. Col-

lectively these constitute the geometric optics field for the special case being considered;

e-ikr cos (0 - a) - e-Ikrcos (0 ± a) 1 0 ^ 0 < f - a

Ez (s)	 a ikr cos (0 a)	 7r - a < 0 < 7r + a	 (1-D)

0	 7r +a<0^<27r

See Ref. 1, p. 572, eqn. (33).

From the preceding it follows that the geometric optics field is contained in the field

solution of each half-plane r,:i # 0 in general), for electric and magnetic fields, and must be

subtracted (i) times when (i) fences are considered in the present simulation. The paraboloid

is illuminated directly by a specified incident plane-wave, and will not lie in either the shadow

or reflection regions.
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