General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
TIME-DEPENDENT RESPONSE OF FILAMENTARY COMPOSITE SPHERICAL PRESSURE VESSELS

By Jan D. Dozier
Structures & Propulsion Laboratory
Science and Engineering Directorate

August 1983
A filamentary composite spherical pressure vessel is modeled as a pseudo-isotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.
TABLE OF CONTENTS

LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF SYMBOLS ix

Chapter

1. INTRODUCTION 1
2. MATERIAL MODEL 7
3. EQUATIONS OF ELASTICITY 8
 3.1 Equilibrium Equations 8
 3.2 Kinematic Equations 9
4. MACROMECHANICAL BEHAVIOR OF A LAMINA 12
5. MICROMECHANICAL BEHAVIOR OF A LAMINA 14
 5.1 Determination of E_L 16
 5.2 Determination of E_T 18
 5.3 Determination of ν_{LT} and ν_{TL} 19
 5.4 Determination of ν_{TT} and G_{LT} 20
6. PROPERTIES OF THE LAMINATE 22
7. MAXIMUM STRAIN THEORY OF FAILURE 26
 7.1 Boundary Conditions 27
 7.2 Failure Prediction 27
8. DETERMINATION OF VISCOELASTIC MATERIAL
 PROPERTIES 30
 8.1 Laplace Transformations 30
 8.2 Determination of Creep Compliance, $J_m(t)$ 34
 8.3 Determination of Relaxation Modulus, $E_m(t)$ 35
 8.4 Determination of Poisson's Ratio, $\nu_m(t)$ 37
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATERIAL PROPERTIES</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>EXPERIMENTAL CREEP TEST</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>VALUES OF s, $E_m(s)$, and $\nu_m(s)$</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>VALUES FOR LAMINA PROPERTIES</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>VALUES FOR LAMINATE PROPERTIES AND n</td>
<td>57</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>CUTAWAY OF TYPICAL FILAMENTARY COMPOSITE SPHERICAL PRESSURE VESSEL</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SCHEMATIC OF MODEL AND DEFINITION OF COORDINATE SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>TRANSFORMATION ANGLE BETWEEN L-T AND 1-2 COORDINATE SYSTEM</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>EXPERIMENTAL CREEP TEST APPARATUS</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>CREEP COMPLIANCE VS. TIME</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>CREEP COMPLIANCE VS. LOG TIME</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>RELAXATION MODULUS VS. LOG TIME</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>POISSON'S RATIO VS. LOG TIME</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td>BURST PRESSURE VS. LOG TIME, VARYING FIBER VOLUME FRACTION, v_f</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>BURST PRESSURE VS. LOG TIME, VARYING $\beta (= r_o/r_i)$</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>STRAIN VS. LOG TIME, VARYING FIBER VOLUME FRACTION, v_f</td>
<td>61</td>
</tr>
<tr>
<td>12</td>
<td>STRAIN VS. LOG TIME, VARYING $\beta (= r_o/r_i)$</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(a \) Constant \(\left[= \frac{g}{f} r_0 - 2n b \right] \)

\(A \) Constant \(\left[= p_f(t_o) - \sum_{v=1}^{k} h_v \right] \)

\(A_f \) Area of fiber

\(A_m \) Area of matrix

\(b \) Constant \(\left[= \frac{p}{\frac{1}{2} \left(n \left(\frac{3}{2} - n\right) - 2n - p \right)} \right] \)

\(B_j \) Variable in partial fractions inversion

\(C_i \) Constants in partial fractions inversion

\(C_{ijkl} \) Elasticity matrix

\(\{ C_{\theta\theta}, C_{\theta r}, C_{\theta \phi}, C_{rr} \} \) Stiffness of laminate

\(\{ C_{LL}, C_{Tr}, C_{RR}, C_{TT} \} \) Stiffness of lamina

\(C_{LT} \) Stiffness of lamina

\(D \) Constant from least squares curve fit

\(E \) Elastic modulus

\(E_f \) Elastic modulus of fiber

\(E_L \) Elastic modulus of lamina, longitudinal direction

\(E_m \) Elastic modulus of matrix
\(E_r \)
Elastic modulus of laminate, radial direction

\(E_T \)
Elastic modulus of lamina, transverse direction

\(E_\theta \)
Elastic modulus of laminate, theta direction

\(f \)
Constant \([= (n - \frac{1}{2}) C_{rr} + 2C_{r\theta}]\)

\(F_f \)
Fracture strength of fiber

\(F_f \)
Constant from least squares curve fit

\(g \)
Constant \([= (n + \frac{1}{2}) C_{rr} - 2C_{r\theta}]\)

\(G \)
Shear modulus

\(G_f \)
Shear modulus of fiber

\(G_m \)
Shear modulus of matrix

\(G_{LT}, G_{Tr}, G_{Lr} \)
Shear moduli of lamina

\(h_v \)
Constant in associated elastic solution

\(H \)
Constant from least squares curve fit

\(K \)
Bulk modulus

\(K_\theta \)
Circumferential strain of composite fiber

\(L \)
Length of specimen

\(L, T, r \)
Lamina coordinates

\(M \)
Constant \([= 3, 4, 5, \ldots]\)

\(n \)
Degree of anisotropy

\(N \)
Constant \([= \frac{G_m(\pi+4\nu_f) + G_m(\pi-4\nu_f)}{G_f(\pi-4\nu_f) + G_m(\pi+4\nu_f)}\]

\(P \)
Force

\(p \)
Pressure
P_f Burst pressure

$P(\lambda_j)$ Polynomial in partial fractions inversion

$Q(\lambda_j)$ Polynomial in partial fractions inversion

R_i Assigned values in least squares curve fit

r_i Inner radius of composite

r_o Outer radius of composite

r, θ, ϕ Spherical coordinates of laminate

s Laplace parameter

S_{ij} Compliance matrix

t Time

t_o Time zero

u Displacement

u_r Displacement in radial direction

u_θ Displacement in theta direction

u_ϕ Displacement in phi direction

v_f Volume fraction of fiber

v_m Volume fraction of matrix

W Width of specimen

W_f Width of fiber

W_m Width of matrix

α Angle between L axis and l axis, or between adjacent lamina

α_v Constant [$= e^{(7-2v)}$]
\(\beta \) Ratio of outer radius to inner radius \((r_o/r_i)\)

\(\gamma \) Wrap angle

\(\varepsilon_f \) Strain in fiber

\(\varepsilon_{ij} \) Strain components

\(\varepsilon_L \) Strain in lamina, longitudinal direction

\(\varepsilon_m \) Strain in matrix

\(\varepsilon_0 \) Constant uniaxial strain

\(\varepsilon_T \) Strain in lamina, transverse direction

\[\varepsilon_{\theta \theta}, \varepsilon_{\phi \phi} \] Strain components in laminate

\[\varepsilon_{r \theta}, \varepsilon_{r \phi} \] Roots of partial fractions solution

\(\lambda_j \) Constants \([= (1 + \nu_{TT})(1 - \nu_{TT} - 2\nu_{LT} - \nu_{TL})^{-1}] \)

\(\nu \) Poisson's ratio

\(\nu_f \) Poisson's ratio of fiber

\(\nu_m \) Poisson's ratio of matrix

\(\nu_{LT}, \nu_{TT} \) Poisson's ratio of lamina

\(\sigma \) Average stress

\(\sigma_f \) Stress in fiber

\(\sigma_L \) Stress in lamina, longitudinal direction

\(\sigma_m \) Stress in matrix
\(\sigma_T \)
Stress in lamina, transverse direction

\(\sigma_{ij} \)
Stress components

\(\sigma_o \)
Constant uniaxial stress

\[\{ \sigma_{rr}, \sigma_{\theta\theta} \} \]
Stress components in laminate

\[\{ \sigma_{rr}, \sigma_{\phi\phi} \} \]
Stress components in laminate

\(\pi \)
Constant \([\approx 3.14...] \)

\(- \)
Denotes Laplace transform when placed over a symbol
CHAPTER 1. INTRODUCTION

Pressure vessels which are made of filamentary composites have had a profound impact in applications where weight efficiency is a factor. In particular, filamentary composite pressure vessels with a spherical geometry are used in applications of space shuttle tankage [1] and for storage of various fluids [2].

Spherical storage pressure vessels usually consist of a thin metallic bladder onto which is wound high-strength fibers bound by an organic matrix. The bladder, which acts as a liner to prevent leakage, is usually fitted with one or more fill tubes for introducing the fluid to be pressurized. As shown in Figure 1, the spherical shape allows filament winding patterns which result in a laminate which may be considered as pseudo-isotropic. That is, the pseudo-isotropic (transversely isotropic) condition is met if the angles between lamina in a laminate satisfy the relation [3]:

\[\gamma = \frac{\pi}{M} \] (1)

where \(M = 3, 4, 5 \ldots \)

This wrap angle ensures that the stiffness matrix will be invariant for the \(\theta-\phi \) plane shown in Figure 2 and the composite may be modeled as a transversely isotropic material.
FIGURE 1. Cutaway of typical filamentary composite spherical pressure vessel [7]
FIGURE 2. Schematic of model and definition of coordinate system.
A number of closed-form solutions have been developed [3,4] which predict the stress-strain behavior of a composite shell assuming a pseudo-isotropic material and an elastic-plastic bladder response. These solutions predict short-term failure pressures of the vessel, and correlate well with experimental data [4,5,6]. Finite-element techniques are also used [2,7] to model discontinuities near the fill tubes.

Although recognized as a significant problem, little is known about the mechanisms which lead to the loss of long-term structural integrity of filamentary composite spherical pressure vessels. Some possible causes of this time-dependent loss of structural integrity are environmental degradation, matrix crazing, and manufacturing processes.

The static fatigue susceptibility in composites is well-known, but it has not been treated successfully from the standpoint of mechanism identification. Therefore, in the case of long-term, high-pressurization storage, high factors of safety are used to compensate for uncertainties regarding creep rupture under conditions of sustained pressurization. The resulting low design allowables then detract from the weight-saving attributes of composites. This problem has heretofore been dealt with by a statistical analysis of manufacturing variations and experimental data [8].
The study of the time-dependent behavior of filamentary composite pressure vessels is further complicated by the lack of experimental data. Some data were collected at Lawrence Livermore National Laboratory on S-glass/epoxy composites [9], but most of the test specimens were destroyed and the test data invalidated due to a major earthquake in Northern California in 1980.

This study examines the time-dependent response of filamentary composite spherical pressure vessels by considering the linearly viscoelastic character of the matrix in the filamentary composite laminate. This characterization is important because the composite material over a period of time becomes more anisotropic, thus increasing the failure potential of the system. Therefore, this material model which includes the time-dependent properties of the matrix in a composite laminate is used to predict burst pressure and strain under conditions of sustained internal pressurization of a spherical pressure vessel. The lamina and laminate properties in the analysis are initially determined using micromechanical and macro-mechanical techniques. Viscoelastic material properties for the matrix are experimentally determined and included in the constitutive equations for the composite. These time-dependent expressions are transformed into the Laplace domain and solved using the maximum strain theory of failure. The solution is then inverted back into the time domain using the method of collocation, and burst pressure and critical strain
of the composite spherical pressure vessels are expressed as a function of time. Finally, an application is given for a Kevlar/epoxy system, where the solution is numerically evaluated. The burst pressures for this system are predicted as a function of time, and critical strain is computed for a constant internal pressurization. The effects of constituent volume fractions and shell thickness on failure potential are also investigated. Thus, an analytical method is outlined and a numerical application is given to predict the time-dependent response of a filamentary composite spherical pressure vessel.
CHAPTER 2. MATERIAL MODEL

Filamentary composite spherical pressure vessels generally have filaments which are wound into a laminate considered as pseudo-isotropic (or transversely isotropic). In this analysis, the filamentary composite pressure vessel is assumed to be transversely isotropic in the $\theta - \phi$ plane, as shown in Figure 2.

The spherical geometry of pressure vessels under consideration is uniform, except in the areas surrounding the fill tubes. However, the model used in this analysis assumes a uniformly spherical geometry and does not include the discontinuities in the fill tube regions.

It has been shown that the bladder which lines the inner surface of the composite shell has a minimal effect in the burst pressure prediction of the pressure vessel [4, 10]. Therefore, the structural model used in this analysis does not include the effect of the bladder. Models have been developed which consider the elastic-plastic behavior of the bladder in failure prediction [3].

This model will be used in the following viscoelastic analysis to predict burst pressure and to calculate critical strain. It is further elaborated upon in the application to a Kevlar/epoxy spherical pressure vessel.
CHAPTER 3. EQUATIONS OF ELASTICITY

For a spherical geometry with uniformly symmetrical loading, all of the shear stress and strain components vanish. For the special case of a transversely isotropic material system, the general governing equations of elasticity may be further simplified. The following discussion derives the equilibrium equations and kinematic equations in spherical coordinates for a sphere transversely isotropic in the \(r \) plane.

3.1 EQUILIBRIUM EQUATIONS

Neglecting body forces, the following general equilibrium equations relative to a spherical coordinate system are [11]:

\[
\begin{align*}
\frac{\partial \sigma_\phi}{\partial r} + \frac{1}{r} \frac{\partial \sigma_\phi}{\partial \phi} + \frac{1}{r \sin \phi} \frac{\partial \sigma_\phi}{\partial \theta} + \frac{3}{r} \sigma_r + \frac{\cos \phi}{\sin \phi} (\sigma_\phi - \sigma_\theta) &= 0 \\
\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \sigma_r}{\partial \phi} + \frac{1}{r \sin \phi} \frac{\partial \sigma_r}{\partial \theta} + \frac{3}{r} \sigma_\theta + \frac{2 \cos \phi}{\sin \phi} \sigma_\phi &= 0 \\
\frac{\partial \sigma_\theta}{\partial r} + \frac{1}{r} \frac{\partial \sigma_\theta}{\partial \phi} + \frac{1}{r \sin \phi} \frac{\partial \sigma_\theta}{\partial \theta} + \frac{\cos \phi}{\sin \phi} \sigma_\phi &= 0
\end{align*}
\]

where \(\sigma_{ij} \) are stress components in the \(\theta, \phi, r \) coordinate system. For uniform loading conditions, all of the shear stress components vanish, i.e., \(\sigma_\phi = \sigma_r = \sigma_\theta = \sigma_\phi = \sigma_\theta = 0 \). Therefore, Equations (2) reduce to:
For a transversely isotropic material system, the tangential stresses, $\sigma_{\theta\theta}$ and $\sigma_{\phi\phi}$ are equal. Equations (3) thus can be written:

\[
\begin{align*}
\frac{1}{r} \frac{d\sigma_{\phi\phi}}{d\phi} &= 0 \\
\frac{1}{r \sin \phi} \frac{d\sigma_{\theta\theta}}{d\theta} &= 0 \\
\frac{d\sigma_{rr}}{dr} + \frac{1}{r} \left(2\sigma_{rr} - \sigma_{\phi\phi} - \sigma_{\theta\theta} \right) &= 0
\end{align*}
\]

Equation (4c) is then the only equilibrium equation of interest.

3.2 KINEMATIC EQUATIONS

For linear elasticity, the kinematic equations in spherical coordinates for any geometry are given by [11]:

\[
\epsilon_{\phi\phi} = \frac{1}{r} \frac{\partial u_\phi}{\partial \phi} + \frac{u_r}{r}
\]
\[\varepsilon_{\theta\theta} = \frac{1}{r \sin \phi} \left(\frac{\partial^2 u_\theta}{\partial \phi^2} + \frac{u_r}{r} + \frac{u_\phi}{r} \cot \phi \right) \quad (5b) \]

\[\varepsilon_{rr} = \frac{\partial u_r}{\partial r} \quad (5c) \]

\[\varepsilon_{\theta\phi} = \frac{1}{2} \left(\frac{1}{r \sin \phi} \frac{\partial^2 u_\phi}{\partial \phi^2} - \frac{u_\theta}{r} \cot \phi + \frac{1}{r} \frac{\partial u_\theta}{\partial \phi} \right) \quad (5d) \]

\[\varepsilon_{\phi r} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \phi} - \frac{u_\phi}{r} + \frac{\partial u_\phi}{\partial r} \right) \quad (5e) \]

\[\varepsilon_{r\theta} = \frac{1}{2} \left(\frac{\partial u_\theta}{\partial r} + \frac{1}{r \sin \phi} \frac{\partial^2 u_r}{\partial \phi \partial \theta} - \frac{u_\theta}{r} \right) \quad (5f) \]

where \(\varepsilon_{ij} \) are the strain components and \(u_i \) are the displacements in the \(\theta, \phi, r \) coordinate system.

For a condition of uniform loading, all shear strain components vanish and Equations (5d) through (5f) may then be eliminated. Also, displacement components \(u_\phi \) and \(u_\theta \) are zero and Equations (5a) through (5c) reduce to:

\[\varepsilon_{\phi\phi} = \frac{u_r}{r} \quad (6a) \]

\[\varepsilon_{\theta\theta} = \frac{u_r}{r} \quad (6b) \]

\[\varepsilon_{rr} = \frac{d u_r}{d r} \quad (6c) \]
For a material transversely isotropic in the r plane,
$\epsilon_{\theta\theta} = \epsilon_{\phi\phi}$ and $u_r = u$. Therefore, the final form of the kinematic equations is:

\begin{align}
\epsilon_{\theta\theta} &= \frac{u}{r} \quad \text{(7a)} \\
\epsilon_{rr} &= \frac{du}{dr} \quad \text{(7b)}
\end{align}
CHAPTER 4. MACROMECHANICAL BEHAVIOR OF A LAMINA

A lamina in a filamentary composite is an assemblage of fibers embedded in a matrix. It is necessary to describe the macromechanical behavior of a lamina, i.e., the behavior when averaged properties are considered, in order to understand the laminated structure. In this discussion the coordinate system \(\theta, \phi, r \) is aligned with the principal material directions \(1, 2, 3 \) of the lamina.

The generalized Hooke's law relating stresses to strains can be written as:

\[
\sigma_{ij} = C_{ijkl} \varepsilon_{kl} \quad i, j, k, l = 1, 2, \ldots, 6
\]

(8)

where \(\sigma_{ij} \) are stress components, \(C_{ijkl} \) is the elasticity matrix, and \(\varepsilon_{kl} \) are the strain components. Although the elasticity matrix has 36 terms, it is symmetric and only 21 of the terms are independent.

The 21 constants in the elasticity matrix are necessary in order to characterize a general anisotropic material because there are no planes of symmetry. The case of a lamina which is transversely isotropic in the 3 plane yields properties which are non-directional in the 1-2 plane. The stress-strain relationship is based upon only five independent constants and is given by [12]:

ORIGINAL PAGE 12 OF POOR QUALITY
Letting subscript 1 = θ, subscript 2 = ϕ, and subscript 3 = r in spherical coordinates, the stress-strain relations become:

\[
\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{23} \\
\sigma_{31} \\
\sigma_{12}
\end{bmatrix} =
\begin{bmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{11} - C_{12}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
\varepsilon_{23} \\
\varepsilon_{31} \\
\varepsilon_{12}
\end{bmatrix}
\]

(9)

Again, due to loading symmetry, $\varepsilon_{\theta\theta} = \varepsilon_{\phi\phi}$. Therefore, the constitutive equations reduce to:

\[
\begin{align*}
\sigma_{\theta\theta} &= (C_{\theta\theta} + C_{\theta\phi}) \varepsilon_{\theta\theta} + C_{\theta r} \varepsilon_{rr} \\
\sigma_{rr} &= 2 C_{r r} \varepsilon_{\theta\theta} + C_{rr} \varepsilon_{rr}
\end{align*}
\]

(11a) and (11b)
Micromechanics is the study of composite behavior where the interaction of the constituent materials is examined in detail. This study is based on a lamina consisting of two constituents, the fiber and the matrix. In the coordinate system, L,T,r, the longitudinal direction, L, is along the length of the fiber, and the transverse direction, T, is across the width of the fiber and is orthogonal to L. The radial direction, r, is perpendicular to the $L-T$ plane.

The constitutive relationship for an individual lamina in the $\theta-\phi$ plane may be expressed by the matrix given in Equation (10). If the coordinate axes (L,T,r) are oriented in the principal material directions and assumed to be transversely isotropic in the r-plane perpendicular to the fiber direction, the elasticity matrix is \([3]:\)

\[
\begin{bmatrix}
C_{LL} & C_{LT} & C_{LR} & 0 & 0 & 0 \\
C_{LT} & C_{TT} & C_{TR} & 0 & 0 & 0 \\
C_{LR} & C_{TR} & C_{rr} & 0 & 0 & 0 \\
0 & 0 & 0 & G_{Tr} & 0 & 0 \\
0 & 0 & 0 & 0 & G_{LT} & 0 \\
0 & 0 & 0 & 0 & 0 & G_{Lr}
\end{bmatrix}
\] (12)
Because of isotropy in the T-r plane:

\[C_{Lr} = C_{LT} \]
\[C_{rr} = C_{TT} \]
\[G_{Lr} = G_{LT} \]

and

\[G_{Tr} = \frac{C_{TT} - C_{Tr}}{2} \]

The corresponding lamina compliance matrix is:

\[
[S] = \begin{bmatrix}
\frac{1}{E_L} & \frac{\nu_{TL}}{E_L} & \frac{\nu_{TL}}{E_T} & 0 & 0 & 0 \\
\frac{\nu_{LT}}{E_T} & \frac{1}{E_T} & \frac{\nu_{TT}}{E_T} & 0 & 0 & 0 \\
-\frac{\nu_{LT}}{E_L} & -\frac{\nu_{TT}}{E_L} & \frac{1}{E_T} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{Tr}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{LT}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{LT}}
\end{bmatrix}
\]

Inversion of the lamina compliance matrix yields the elasticity matrix, Equation (12), and the following relationships [13]:

(13a)
(13b)
(13c)
(13d)

(14a)
The lamina engineering constants $(E_L, E_T, \nu_{LT}, \nu_{TL}, \nu_{TT}, G_{LT})$ can be expressed in terms of the elastic properties (E, ν, G) and volume fractions of the fiber and matrix of the composite material. Micromechanical techniques are used which are based upon the assumption that the properties of the fiber and matrix are isotropic and are equal in tension and compression.

5.1 DETERMINATION OF E_L

For a volume of material loaded in the longitudinal direction, basic mechanics of materials says that

$$ e_L = \frac{\Delta L}{L} $$

(15)

where L is the specimen length and e_L is the longitudinal extensional strain.
The stresses in the fiber and the matrix are given by

\[\sigma_f = E_f \varepsilon_L \quad (16a) \]
\[\varepsilon_m = E_m \varepsilon_L \quad (16b) \]

where \(E_f \) is the fiber modulus and \(E_m \) is the matrix modulus.

The average stress \(\sigma \) acts on a cross-sectional area \(A \), \(\sigma_f \) acts on the cross-sectional area of the fiber, \(A_f \), and \(\sigma_m \) acts on the cross-sectional area of the matrix, \(A_m \). Therefore, the resultant force on the composite material is:

\[P = \sigma A = \sigma_f A_f + \sigma_m A_m \quad (17) \]

Knowing that

\[\sigma = E_L \varepsilon_L \quad (18) \]

Substituting Equations (16) and (18) into Equation (17) and rearranging yields:

\[E_L = E_f \frac{A_f}{A} + E_m \frac{A_m}{A} \quad (19) \]

Defining the volume fractions of the fiber and matrix, respectively,

\[v_f = \frac{A_f}{A} \quad \text{and} \quad v_m = \frac{A_m}{A} \quad (20) \]

and substituting Equations (20) into Equation (19) results in the expression:

\[E_L = E_f v_f + E_m v_m \quad (21) \]
Equation (21) is the "rule of mixtures" expression for the elastic modulus in the direction of the fibers.

5.2 DETERMINATION OF E_T

If a stress σ_T is applied in a direction transverse to the fibers, the strains in the fiber and in the matrix are given by:

$$\varepsilon_f = \frac{\sigma_T}{E_f}$$ \hspace{1cm} (22a)

$$\varepsilon_m = \frac{\sigma_T}{E_m}$$ \hspace{1cm} (22b)

Let W be the transverse dimension of the specimen. Therefore, on an average basis, ε_f acts on $v_f W$ and ε_m acts on $v_m W$. Thus, the total transverse deformation is

$$\varepsilon_T W = v_f W \varepsilon_f + v_m W \varepsilon_m$$ \hspace{1cm} (23)

or

$$\varepsilon_T = v_f \varepsilon_f + v_m \varepsilon_m$$ \hspace{1cm} (24)

where ε_T is the transverse extensional strain.

Substituting Equations (22) into Equation (24) gives

$$\varepsilon_T = v_f \frac{\sigma_T}{E_f} + v_m \frac{\sigma_T}{E_m}$$ \hspace{1cm} (25)

Knowing that $\sigma_T = E_T \varepsilon_T$, \hspace{1cm} (26)

and substituting this relationship into Equation (25) yields
\[\sigma_T = E_T \left(\nu_f \frac{\sigma_T}{E_f} + \nu_m \frac{\sigma_T}{E_m} \right) \] \hspace{1cm} (27)

Solving for \(E_T \) from Equation (27) provides the expression for the transverse modulus:

\[E_T = \frac{E_f E_m}{\nu_m E_f + \nu_f E_m} \] \hspace{1cm} (28)

5.3 Determination of \(\nu_{LT} \) and \(\nu_{TL} \)

The major Poisson's ratio, \(\nu_{LT} \), can be determined by a method similar to that used to determine \(E_L \). For a volume of material loaded in the longitudinal direction, the Poisson's ratio is defined as:

\[\nu_{LT} = -\frac{\varepsilon_T}{\varepsilon_L} \] \hspace{1cm} (29)

For a deformation in the transverse direction:

\[\Delta W = -W \varepsilon_T \] \hspace{1cm} (30a)

or

\[\Delta W = W \nu_{LT} \varepsilon_L \] \hspace{1cm} (30b)

The total deformation is also given by

\[\Delta W = \Delta W_f + \Delta W_m \] \hspace{1cm} (31)

where \(W_f \) is the fiber width and \(W_m \) is the matrix width. On the average basis, \(\varepsilon_f \) acts on \(v_f W \) and \(\varepsilon_m \) acts on \(v_m W \).
Therefore,

$$\Delta W_f = W v_f \varepsilon_f = W v_f v_f \varepsilon_L$$ \hfill (32a)$$

and

$$\Delta W_m = W v_m \varepsilon_m = W v_m v_m \varepsilon_L$$ \hfill (32b)$$

where v_f is the Poisson's ratio of the fiber and v_m is the Poisson's ratio of the matrix.

Then,

$$\Delta W = W (v_m v_m \varepsilon_L + v_f v_f \varepsilon_L)$$ \hfill (33)$$

Substituting Equation (30) into Equation (33) gives

$$v_{LT} \varepsilon_L = \varepsilon_L (v_m v_m + v_f v_f)$$ \hfill (34)$$

which reduces to the expression:

$$v_{LT} = v_m v_m + v_f v_f$$ \hfill (35)$$

Equation (35) is the "rule of mixtures" expression for the major Poisson's ratio.

Because of symmetry requirements of the lamina compliance matrix, v_{TL} can be obtained from the relationship:

$$v_{TL} = \frac{E_T}{E_L} v_{LT}$$ \hfill (36)$$

5.4 DETERMINATION OF ν_{TT} AND G_{LT}

Although there is not general agreement about the prediction of transverse lamina properties, reasonable predictions may be expressed as [14,15]:
\[
\nu_{TT} = \nu_f v_f + \nu_m v_m \frac{1 + \nu_m - \nu_{LT} \left(\frac{E_m}{E_L} \right)}{1 - \nu_m^2 + \nu_m \nu_{LT} \left(\frac{E_m}{E_L} \right)} \tag{37}
\]

\[
G_{LT} = \frac{G_m}{2} \frac{(4-\pi) + \pi N}{4} + \frac{4N}{(4-\pi) N + \pi} \tag{38}
\]

where

\[
N = \frac{G_f(\pi+4v_f) + G_m(\pi-4v_f)}{G_f(\pi-4v_f) + G_m(\pi+4v_f)} \tag{39}
\]
Laminate properties may be determined by averaging properties of the individual lamina [12]. The laminate stiffnesses (C_{rr}, $C_{r\theta}$, $C_{\theta\theta}$, $C_{\theta\phi}$) are obtained by approximating the various lamina orientations in the spherical geometry as a continuous function of α, shown in Figure 3. An average stiffness is then computed by integrating the lamina stiffnesses which have been transformed from the (L,T,r) coordinates to the $(1,2,r)$ coordinate system, also shown in Figure 3. These averaged elastic properties are derived with the assumption of constant strain in the laminate, independent of the orientation.

The average laminate stiffness in the (θ, ϕ, r) coordinate system is calculated from:

$$C_{\theta\theta} = \frac{1}{\pi} \int_{0}^{\pi} C_{11} d\alpha$$

$$C_{\theta\phi} = \frac{1}{\pi} \int_{0}^{\pi} C_{12} d\alpha$$

$$C_{\theta r} = \frac{1}{\pi} \int_{0}^{\pi} C_{1r} d\alpha$$

$$C_{rr} = C_{TT}$$

These equations may be used to determine the laminate elastic stiffness for any thickness, if the individual lamina is thin compared to its width.
FIGURE 3. Transformation angle between L-T and 1-2 coordinate systems.
Using the method outlined by Gerstle [3], the following equations are obtained:

\[
C_{\theta\theta} = \frac{3C_{LL}}{8} + \frac{3C_{TT}}{8} + \frac{1}{4} (C_{LT} + 2G_{LT}) \quad (41a)
\]

\[
C_{\theta\phi} = \frac{C_{LL}}{8} + \frac{C_{TT}}{8} + \frac{1}{4} (3C_{LT} - 2G_{LT}) \quad (41b)
\]

\[
C_{\theta r} = \frac{1}{2} (C_{LT} + C_{Tr}) \quad (41c)
\]

Assuming that the transversely isotropic condition is met in the \(\theta - \phi \) plane

\[
C_{\phi\phi} = C_{\theta\theta} \quad (42a)
\]

\[
G_{\theta\phi} = \frac{C_{\theta\theta} - C_{\theta\phi}}{2} \quad (42b)
\]

\[
C_{\phi r} = C_{\theta r} \quad (42c)
\]

By substituting Equations (14) into Equations (41), the laminate stiffnesses may be obtained in terms of the elastic constants of an individual lamina:

\[
C_{\theta\theta} = \frac{\Lambda}{8} [3(1-\nu_{TT}^2)E_L + 3(1-\nu_{LT}\nu_{TL})E_T + 2\nu_{TL}(1+\nu_{TT})E_L] + \frac{G_{LT}}{2} \quad (43a)
\]

\[
C_{\theta\phi} = \frac{\Lambda}{8} [(1-\nu_{TT}^2)E_L + (1-\nu_{LT}\nu_{TL})E_T + 6\nu_{TL}(1+\nu_{TT})E_L] + \frac{G_{LT}}{2} \quad (43b)
\]

\[
C_{\theta r} = \frac{E_T \Lambda}{2} \left[\nu_{LT} (1-\nu_{TT}) + (\nu_{TT} + \nu_{LT}\nu_{TL}) \right] \quad (43c)
\]

\[
C_{rr} = E_T \Lambda (1-\nu_{LT}\nu_{TL}) \quad (43d)
\]
The engineering constraints of the laminate are then obtained from:

\[
E_{\theta\theta} = \frac{(C_{\theta\theta} - C_{\theta\phi}) [C_{rr}(C_{\theta\theta} + C_{\theta\phi}) - 2 C_{\theta r}^2]}{C_{\theta\theta} C_{rr} - C_{\theta r}^2}
\]

\[
E_{rr} = C_{rr} - \frac{2 C_{\theta r}^2}{C_{\theta\theta} + C_{\theta\phi}}
\]

\[
\nu_{\theta\phi} = \frac{C_{\theta\phi} C_{rr} - C_{\theta r}^2}{C_{\theta\theta} C_{rr} - C_{\theta r}^2}
\]

\[
\nu_{\theta r} = \frac{C_{\theta r} (C_{\theta\theta} - C_{\theta\phi})}{C_{\theta\theta} C_{rr} - C_{\theta r}^2}
\]

Finally, the degree of anisotropy of the laminate is obtained from the relationship:

\[
n = \frac{3}{2} \left(\frac{E_{\theta\theta}}{E_{rr}} \right)^{\frac{1}{2}}
\]

It can be noted that if \(n = 1.5 \) the composite material is isotropic. The magnitude of \(n \) is affected by factors such as wrap angle, fiber and matrix content, and, as will be demonstrated herein, the time-dependent properties of the matrix material.
CHAPTER 7. MAXIMUM STRAIN THEORY OF FAILURE

Prediction of the burst (failure) pressure of a filamentary composite spherical pressure vessel with a metallic bladder is a function of the elastic-plastic behavior of the metallic bladder as well as of the composite material, but it has been demonstrated [4,10] that the behavior of the bladder has relatively little effect on the failure prediction of the composite. Therefore, the effect of the bladder on the burst pressure or circumferential strain of the composite sphere will not be considered in the following formulation.

Prediction of the burst pressure requires a determination of the maximum values of stress and strain at the inner surface of the sphere. The maximum strain theory of failure is chosen for this study for the following reasons:

1) Considerable experimental data has shown the general applicability of the maximum strain criterion for predicting vessel failure.

2) The published values for composite maximum strain have been shown to be essentially independent of vessel configuration or fiber volume fraction.

3) The calculated maximum strain includes the contribution of radial stress. This is important in predicting the behavior of thick-walled vessels.

26
7.1 BOUNDARY CONDITIONS

Boundary conditions for the composite material portion of the pressurized structure are:

\[\sigma_{rr} = -p \text{ at the inner surface, } r = r_i \] \hspace{1cm} (49a)

\[\sigma_{rr} = 0 \text{ at the outer surface, } r = r_o \] \hspace{1cm} (49b)

where \(\sigma_{rr} \) is the radial stress component and \(p \) is the internal pressure.

These boundary conditions and the symmetry of the spherical geometry greatly simplify the analysis and preclude the necessity of a three-dimensional analysis.

7.2 FAILURE PREDICTION

Within the composite, Equations (4), (7), and (11) yield:

\[\frac{d^2u}{dr^2} + \frac{2}{r} \frac{du}{dr} + 2 \left(\frac{C_{r\theta} - C_{\theta\theta} - C_{\theta\phi}}{r^2} \right) \frac{u}{r} = 0 \] \hspace{1cm} (50)

The solution to this second order differential equation is:

\[u = a r^{n-\frac{1}{2}} + b r^{-n-\frac{1}{2}} \] \hspace{1cm} (51)

where \(a \) and \(b \) are constants given by:

\[a = \frac{g}{f} r_o^{2n} b \] \hspace{1cm} (52)

\[b = \frac{p}{g \left(\frac{n}{2} \right) \left(r_i^{2n} - r_o^{2n} \right)} \] \hspace{1cm} (53)

and \(f \) and \(g \) are constants given by:

\[f = (n - \frac{1}{2}) C_{rr} + 2C_{\theta r} \] \hspace{1cm} (54)

\[g = (n + \frac{1}{2}) C_{rr} - 2C_{\theta r} \] \hspace{1cm} (55)
The maximum strain prediction is found from:
\[a \, r_1(r_2 - \frac{2}{3}) + b \, r_1(-\frac{3}{2}) \cdot K_0 \] (56)

where \(K_0 \) is the ultimate composite tensile strain. It is reasonable to assume that the maximum strain in the structure will be no greater than the ultimate tensile strain in the fibers. Experimental results from biaxially loaded pseudo-isotropic cylinders \([3]\) have shown failure strains of about \(0.75 \varepsilon_f\), where \(\varepsilon_f = \frac{F_f}{E_f}\) if the fibers remain linear to failure. Then,
\[K_0 \approx 0.75 \frac{F_f}{E_f} \] (57)

where \(E_f\) = Fiber modulus of elasticity
\(F_f\) = Fiber fracture strength

The maximum strain theory of failure predicts that vessel failure occurs when the circumferential strain in the composite is equal to or greater than the composite ultimate tensile strain, \(K_0\). This failure criterion may be expressed as:
\[\varepsilon_{\theta \theta} \geq K_0 \] (58)

The composite strain, \(\varepsilon_{\theta \theta}\), is found by evaluating kinematic Equation (5b) for the displacement given in Equation (6b).
Thus,
\[\varepsilon_{\theta \theta} = \frac{p}{\frac{d}{\beta^{2n} - 1} + \beta^{2n}} \] (59)

where \(\beta\) is the ratio \(r_o / r_1\).
Letting the pressure, p, equal the burst pressure, p_f, and comparing K_θ and $\varepsilon_{\theta\theta}$, the following equation can be used to determine when composite failure will occur:

$$K_\theta \leq \frac{p_f}{g(\beta^{2n}-1)/f} + \frac{\beta^{2n}}{f}$$ \hspace{1cm} (60)$$

If failure occurs when K_θ equals $\varepsilon_{\theta\theta}$, the expression for burst pressure is given by:

$$p_f = K_\theta g \frac{(\beta^{2n}-1)}{g/\bar{f} + \beta^{2n}}$$ \hspace{1cm} (61)$$

With the maximum strain theory of failure, Equations (60) and (61) are used to predict composite failure for a transversely isotropic spherical pressure vessel. These equations form the basis for the following derivations which consider the time-dependent behavior of the composite.
CHAPTER 8. DETERMINATION OF VISCOELASTIC MATERIAL PROPERTIES

A stress analysis of viscoelastic materials requires the use of mechanical properties which characterize the time-dependent behavior of the materials. These material properties must be experimentally determined. In this discussion of the properties of a linearly viscoelastic material, only the epoxy matrix of the composite is considered to exhibit time-dependent behavior.

The determination of the relaxation modulus, \(E_m(t) \), is fundamental to the characterization of a linearly viscoelastic material. In a standard creep test, a constant uniaxial stress \(\sigma_0 \) is applied and the time-dependent uniaxial strain is measured. The time-dependent strain is proportional to \(\sigma_0 \) and may be written as

\[
\varepsilon(t) = \sigma_0 J_m(t)
\]

where \(J_m(t) \) is the creep compliance of the material. The creep compliance is the strain per unit of applied stress, and describes uniquely the stress-strain behavior of a linearly viscoelastic material.

8.1 LAPLACE TRANSFORMATIONS

If \(\sigma_0 \) is set equal to unity and the Laplace transform of Equation (62) is taken, the following result is obtained:

\[
\bar{\varepsilon}(s) = J_m(s)
\]
where \(s \) is the Laplace parameter and the Laplace transform is defined by

\[
\mathcal{F}(s) = \int_{0}^{\infty} f(t)e^{-st}dt
\]

(64)

If a standard stress relaxation test is now considered, wherein a uniaxial displacement is applied resulting in a normal strain \(\varepsilon_0 \) which is held constant, the corresponding time-dependent uniaxial stress is related to the constant uniaxial strain through the relationship

\[
\sigma(t) = \varepsilon_0 E_m(t)
\]

(65)

If \(\varepsilon_0 \) is set equal to unity and the Laplace transform of Equation (65) is taken, the following result is obtained:

\[
\bar{\sigma}(s) = \bar{E}_m(s)
\]

(66)

In the Laplace domain the "associated elastic" stress-strain relationship may be written

\[
\bar{\sigma}(s) = \bar{E}_m(s) \bar{\varepsilon}(s)
\]

(67)

and the corresponding strain-stress relationship may be written

\[
\bar{\varepsilon}(s) = J_m(s) \bar{\sigma}(s)
\]

(68)
where $\varepsilon(s)$ and $J(s)$ are the associated elastic modulus and compliance, respectively. If conditions of the standard uniaxial creep test, i.e.,

$$ \varepsilon(t) = J_m(t) $$

(69)

where

$$ \sigma_0 = 1 $$

(70)

are applied to Equation (68), the following results:

$$ J_m(s) = \frac{J_m(s)}{s} $$

(71)

or

$$ J_m(s) = sJ_m(s) $$

(72)

If conditions of the standard uniaxial stress relaxation test, i.e.,

$$ \sigma(t) = E_m(t) $$

(73)

where

$$ \varepsilon_0 = 1 $$

(74)

are applied to Equation (67), the following results:

$$ E_m(s) = \frac{E_m(s)}{s} $$

(75)

or

$$ E_m(s) = sE_m(s) $$

(76)

Combining Equations (72) and (76) yields

$$ E_m(s) = \frac{1}{s^2J_m(s)} $$

(77)
Since, from Equations (67) and (68),

\[E_m(s) = \frac{1}{J_m(s)} \]

(78)

From the definition of Poisson's ratio, \(\nu \), as a function of time,

\[\nu(t) = -\frac{\varepsilon_T(t)}{\varepsilon_L(t)} \]

(79)

where \(\varepsilon_T \) is transverse extensional strain and \(\varepsilon_L \) is longitudinal extensional strain in a uniaxial test. If the uniaxial strain is held constant, Equation (79) becomes:

\[\nu(t) = -\frac{\varepsilon_T(t)}{\varepsilon_0} \]

(80)

Taking the Laplace transform of both sides of this equation results in the following:

\[\overline{\nu}(s) = -\frac{\overline{\varepsilon_T}(s)}{\varepsilon_0} \]

(81)

and therefore,

\[\varepsilon_0 = -\frac{\varepsilon_T(s)}{\overline{\nu}(s)} \]

(82)

In the Laplace domain, Poisson's ratio is defined as:

\[\nu(s) = -\frac{\varepsilon_T(s)}{\varepsilon_L(s)} \]

(83)
With the assumed constant uniaxial strain, \(\varepsilon_0 \), Equation (83) becomes:

\[
\nu(s) = -\frac{\varepsilon_T(s)}{\varepsilon_0/s}
\]

(84)

or

\[
\nu(s) = -\frac{s\varepsilon_T(s)}{\varepsilon_0}
\]

(85)

and therefore,

\[
\varepsilon_0 = -\frac{s\varepsilon_T(s)}{\nu(s)}
\]

(86)

Setting the right-hand sides of Equations (82) and (86) equal to each other, the following relationship is obtained:

\[
-\frac{\varepsilon_T(s)}{\nu(s)} = -s \frac{\varepsilon_T(s)}{\nu(s)}
\]

(87)

This equation reduces to

\[
\frac{1}{\nu(s)} = \frac{s}{\nu(s)}
\]

(88)

or

\[
\nu(s) = s \bar{\nu}(s)
\]

(89)

which is the "associated elastic" Poisson's ratio as a function of the Laplace parameter.

8.2 DETERMINATION OF CREEP COMPLIANCE, \(J_m(t) \)

The creep compliance of a linearly viscoelastic material is determined by a curve fit to experimental data obtained
from a standard creep test. If a least squares curve fit is utilized, the creep compliance $J_m(t)$ may be expressed in a Prony series formulation as [16].

$$J_m(t) = D + \sum_{i=1}^{m} \frac{F_i}{s + R_i} \exp(-R_i t) + H t$$ \hspace{1cm} (90)

where D, F_i, and H are constants evaluated from the least squares curve fit to experimental data and the E_i values are assigned.

8.3 DETERMINATION OF RELAXATION MODULUS, $E_m(t)$

The relaxation modulus and creep compliance are related by their Laplace transforms as given in Equation (78). By inverting this relation through the use of partial fractions, the expression for the relaxation modulus, $E_m(t)$ can be obtained.

The Laplace transform of the creep compliance in Equation (90) is:

$$\tilde{J}_m(s) = \frac{D}{s} + \sum_{i=1}^{m} \frac{F_i}{s + R_i} + \frac{H}{s^2}$$ \hspace{1cm} (91)

If $m = 4$, for example, the expanded form is:

$$\tilde{J}_m(s) = \frac{D}{s} + \frac{F_1}{s + R_1} + \frac{F_2}{s + R_2} + \frac{F_3}{s + R_3} + \frac{F_4}{s + R_4} + \frac{H}{s^2}$$ \hspace{1cm} (92)

which can be written as

$$\tilde{J}_m(s) = \frac{C_1s^5 + C_2s^4 + C_3s^3 + C_4s^2 + C_5s + C_6}{s^2(s + R_1)(s + R_2)(s + R_3)(s + R_4)}$$ \hspace{1cm} (93)

where the C_i, $i=1,2,\ldots,6$, are coefficients evaluated by taking a common denominator.
From the relationship given in Equation (77),

\[F_m(s) = \frac{1}{s^2 M_m(s)} = \frac{(s+R_1)(s+R_2)(s+R_3)(s+R_4)}{C_1 s^5 + C_2 s^4 + C_3 s^3 + C_4 s^2 + C_5 s + C_6} \]

(94)

Solving for the roots of the fifth order polynomial in the denominator, and denoting the roots as \(\lambda_j \), where \(j = 1, 2, \ldots, 5 \) yields the expression:

\[F_m(s) = \frac{(s+R_1)(s+R_2)(s+R_3)(s+R_4)}{(s+\lambda_1)(s+\lambda_2)(s+\lambda_3)(s+\lambda_4)(s+\lambda_5)} \]

(95)

Inverting this equation by the method of partial fractions [17] gives the form

\[F_m(s) = \frac{P(s)}{Q(s)} \]

(96)

where \(Q(s) \) and \(P(s) \) are polynomials and the degree of \(P(s) \) is less than the degree of \(Q(s) \). Equation (95) may be written as the sum of partial fractions:

\[F_m(s) = \frac{B_1}{s+\lambda_1} + \frac{B_2}{s+\lambda_2} + \frac{B_3}{s+\lambda_3} + \frac{B_4}{s+\lambda_4} + \frac{B_5}{s+\lambda_5} \]

(97)

where \(B_j, j = 1, 2, \ldots, 5 \), is evaluated:

\[B_j = \frac{P(\lambda_j)}{Q'(\lambda_j)} \]

(98)

The variable \(Q'(\lambda_j) \) is the first time derivative of the polynomial \(Q(\lambda_j) \) and \(P(\lambda_j) \) is the polynomial evaluated at the roots \(\lambda_j \). The resulting equation for the relaxation modulus in the time domain is obtained:
8.4 DETERMINATION OF POISSON'S RATIO, $\nu_m(t)$

The relationship of the bulk modulus K to the relaxation modulus and Poisson's ratio is employed:

$$K = \frac{E_m(t)}{3 \left[1 - 2\nu_m(t) \right]}$$

(100)

Therefore,

$$\nu_m(t) = \frac{3K - E_m(t)}{6K}$$

(101)

or

$$\nu_m(t) = \frac{1}{2} - \frac{E_m(t)}{6K}$$

(102)

The bulk modulus for the epoxy resin material system is taken as a constant. This assumption is consistent with experimental evidence and accepted practice. The time-dependent expressions for the matrix properties, $E_m(t)$ and $\nu_m(t)$ are thus determined.
CHAPTER 9. ASSOCIATED ELASTIC SOLUTION

In order to study the time-dependent behavior of a filamentary composite spherical pressure vessel subjected to a constant internal pressure, the correspondence principle was employed. Based upon this principle, the problem is transformed from the time domain to the Laplace domain, and the time-dependent problem is replaced by an "associated elastic" problem with constitutive relationships and boundary conditions expressed as functions of the Laplace transform parameter s instead of the time parameter t. Inversion of the associated elastic solution then yields the solution for the time-dependent linearly viscoelastic problem.

The basic inversion process can usually be accomplished by the method of partial fractions if the mathematical model has a closed form elastic solution and simple material parameters [18]. However, for a typical actual material system, the function to be inverted is often known only for discrete positive real values of the transform parameter and, therefore, numerical techniques are appropriately used to obtain the transformed solution. Although numerical methods were not used to obtain the solution presented here, the complexity of the employed equations warranted the use of an appropriate numerical inversion technique. Among numerous techniques, the collocation method [19] is
apparently an accurate inversion technique which yields a relatively straightforward calculation, regardless of the complexity of material representation.

This approximate-inversion method yields a time-dependent solution of the form [20]:

\[p_f(t) = A + Bt + \sum_{v=1}^{k} h_v e^{-\frac{t}{a_v}} \] \hspace{1cm} (103)

where \(p_f \) is burst pressure and \(A, B, h_v, \) and \(a_v \) are constants. The constant \(A \) is evaluated from initial conditions,

\[A = p_f(t_0) - \sum_{v=1}^{k} h_v \] \hspace{1cm} (104)

In this case, an internal pressure \(p \) is applied at time \(t_0 \) and held constant. Since the long-time value of \(p_f \) is assumed to be a finite constant, the value \(B = 0 \) substituted into Equation (103) yields:

\[p_f(t) = A + \sum_{v=1}^{k} h_v e^{-\frac{t}{a_v}} \] \hspace{1cm} (105)

Taking the Laplace transform of this equation and rearranging gives:

\[s \tilde{p}_f(s) = A + s \sum_{v=1}^{k} h_v \left[\frac{1}{a_v} + \frac{1}{a_w} \right] \] \hspace{1cm} (106)

where \(w = 1, 2, \ldots, k \).
Substituting Equation (104) into Equation (106) and rearranging yields:

\[
\frac{k}{\sum_{v=1}^{3} \frac{h_v}{1 + \frac{a_v}{a_w}}} = p_f(t_o) - s \bar{p}_f(s) \tag{107}
\]

Because a six-term exponential function will be used to define the burst pressure \(p_f\) as a function of time, six discrete values of the Laplace parameter are utilized. An appropriate range of these values is chosen.

The selected expression for \(a_v\) is [20]:

\[
a_v = e^{(7 - 2v)} \quad (v = 1, 2, \ldots, 6) \tag{108}
\]

and Equation (105) can be expressed as:

\[
\begin{bmatrix}
\frac{1}{2} & \frac{1}{1+e^{-2}} & \frac{1}{1+e^{-4}} & \frac{1}{1+e^{-6}} & \frac{1}{1+e^{-8}} & \frac{1}{1+e^{-9}} \\
\frac{1}{1+e^{-2}} & \frac{1}{1+e^{-4}} & \frac{1}{1+e^{-6}} & \frac{1}{1+e^{-8}} & \frac{1}{1+e^{-9}} \\
\frac{1}{1+e^{-4}} & \frac{1}{1+e^{-2}} & \frac{1}{1+e^{-6}} & \frac{1}{1+e^{-8}} & \frac{1}{1+e^{-9}} \\
\frac{1}{1+e^{-6}} & \frac{1}{1+e^{-4}} & \frac{1}{1+e^{-2}} & \frac{1}{1+e^{-6}} & \frac{1}{1+e^{-8}} \\
\frac{1}{1+e^{-8}} & \frac{1}{1+e^{-6}} & \frac{1}{1+e^{-4}} & \frac{1}{1+e^{-2}} & \frac{1}{1+e^{-6}} \\
\frac{1}{1+e^{-10}} & \frac{1}{1+e^{-8}} & \frac{1}{1+e^{-6}} & \frac{1}{1+e^{-4}} & \frac{1}{1+e^{-2}}
\end{bmatrix}
\begin{bmatrix}
h_1 \\
h_2 \\
h_3 \\
h_4 \\
h_5 \\
h_6
\end{bmatrix}
\begin{bmatrix}
p_f(t_o) - s \bar{p}_f(s) \bigg|_{s=e^{-5}} \\
p_f(t_o) - s \bar{p}_f(s) \bigg|_{s=e^{-3}} \\
p_f(t_o) - s \bar{p}_f(s) \bigg|_{s=e^{-1}} \\
p_f(t_o) - s \bar{p}_f(s) \bigg|_{s=e^1} \\
p_f(t_o) - s \bar{p}_f(s) \bigg|_{s=e^3} \\
p_f(t_o) - s \bar{p}_f(s) \bigg|_{s=e^5}
\end{bmatrix}
\tag{109}
\]

Utilizing Equations (76) and (89) for the Laplace transforms of the relaxation modulus and Poisson's ratio, respectively, expressions for \(s \bar{E}_m(s)\) and \(s \bar{\nu}(s)\) are obtained.
These expressions are evaluated for discrete values of the Laplace parameter and inserted into the constitutive equations for the laminate given in Chapter 6. The laminate properties in the Laplace domain are then used to calculate burst pressure using the maximum strain theory of failure presented in Chapter 7. The associated elastic solution yielding $\overline{P}_f(s)$ is thus obtained:

$$\overline{P}_f(s) = sK_0 \frac{g(s)[\beta^2n(s)-1]}{g(s)+\beta^2n(s)} \frac{f(s)}{f(s)}$$ \hspace{1cm} (110)

The values of $\overline{P}_f(s)$ and $p_f(t_o)$, the burst pressure at time zero, are substituted into Equations (107) from which the h_v values are computed. The value of A is then calculated from Equation (104). Substituting these values of h_v and A into Equation (105) yields the expression for the time-dependent burst pressure for the filamentary composite spherical pressure vessel.

A similar associated elastic solution may be used to calculate the critical strain, $\varepsilon_{\theta \theta}$, as a function of time. The Laplace transform of a constant internal pressure is used to calculate $s\overline{\varepsilon}_{\theta \theta}(s)$:

$$\varepsilon_{\theta \theta}(s) = \frac{\bar{p}}{s} \frac{g(s)+\beta^2n(s)}{g(s)[\beta^2n(s)-1]} \frac{f(s)}{f(s)}$$ \hspace{1cm} (111)
The collocation method of inversion as outlined above is then used to obtain the time-dependent strain $\varepsilon_{\theta\theta}$ at the inner surface of the filamentary composite spherical pressure vessel.

The mathematical model for a linearly viscoelastic material therefore yields expressions which describe the time-dependent response of a filamentary composite structure. A numerical example will be presented to show the application of this method to a Kevlar/epoxy spherical pressure vessel subjected to a constant internal pressure.
CHAPTER 10. APPLICATION

The material system chosen to demonstrate the analysis technique presented is a Kevlar/HBRF-55 filamentary composite. The HBRF-55 matrix material is a resin currently used in the filament wound motorcase of the Space Shuttle's Solid Rocket Boosters. The Kevlar fiber properties were supplied by the manufacturer and obtained from the literature [4] and are listed in Table 1. For the analysis, the fiber volume fractions (ratio of fiber volume to total laminate volume) used were 0.5, 0.6, and 0.7. These reflect values attainable for the system when wound into a spherical geometry. To demonstrate the effect of increasing the composite shell thickness, the solution was obtained for values of S (ratio of outer radius to inner radius) of 1.1, 1.3, and 1.5.

10.1 VISCOELASTIC MATERIAL PROPERTIES OF HBRF-55 RESIN

As described in Chapter 8, a creep (or equivalent) test is necessary in order to determine the time-dependent properties of a linearly viscoelastic material. Using the apparatus shown in Figure 4, a constant load was applied to a rectangular sample of HBRF-55 resin. The deformation of the sample was measured by a dial indicator, and at selected time intervals, the deformation of the sample was recorded.
TABLE 1. MATERIAL PROPERTIES

\[E_f = 19 \times 10^6 \text{ psi} \]

\[v_f = 0.2 \]

Where the subscript \(f \) refers to the Kevlar fiber.
Figure 4. Experimental creep test apparatus.
The strain was calculated from Equation (111) and these values are listed in Table 2.

The FORTRAN program CREEP listed in Appendix A was written to calculate the creep compliance for each time increment and to obtain a creep compliance expression as a function of time by applying a least squares curve fit. A cross-sectional area of 0.258 in2 and an applied load of 107.9 pounds, provided a constant uniaxial stress of 574.2 psi. The creep compliance was, as outlined in Section 8.2, computed in program CREEP using Equation (90) for each time increment. A least squares curve fit of these data yielded the following expression for $J_m(t)$, the creep compliance of the HBRF-55 epoxy resin matrix:

$$J_m(t) = 0.2979 \times 10^{-5} + 0.2524 \times 10^{-6} e^{-0.22t} -0.22 x 10^{-6} e^{-t} -0.5191 x 10^{-7} e^{-10t} -0.181 x 10^{-6} e^{-100t} + 0.223 x 10^{-7}t$$ (112)

A plot of the curve fit and the input data points is given in Figure 5. These plots versus log time are given in Figure 6.

Following the development of equations in Sections 8.3 and 8.4, the expressions for relaxation modulus and Poisson's ratio as a function of time were obtained. The Laplace transform of $J_m(t)$ is $\overline{J}_m(s)$ and is programmed into CREEP. The expression for $\overline{E}_m(s)$ is obtained from Equation (99) and a fifth order polynomial results in the denominator.
<table>
<thead>
<tr>
<th>TIME (hrs.)</th>
<th>LOG TIME (hrs.)</th>
<th>ΔL (in. x 10^-4)</th>
<th>εc (in/in x 10^-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>-3.0</td>
<td>31.0</td>
<td>1.5881</td>
</tr>
<tr>
<td>0.001778</td>
<td>-2.75</td>
<td>31.5</td>
<td>1.6137</td>
</tr>
<tr>
<td>0.003167</td>
<td>-2.5</td>
<td>32.0</td>
<td>1.6393</td>
</tr>
<tr>
<td>0.005611</td>
<td>-2.25</td>
<td>32.2</td>
<td>1.6496</td>
</tr>
<tr>
<td>0.01</td>
<td>-2.0</td>
<td>32.6</td>
<td>1.6701</td>
</tr>
<tr>
<td>0.017778</td>
<td>-1.75</td>
<td>32.9</td>
<td>1.6855</td>
</tr>
<tr>
<td>0.031623</td>
<td>-1.5</td>
<td>33.2</td>
<td>1.7008</td>
</tr>
<tr>
<td>0.05556</td>
<td>-1.255</td>
<td>33.5</td>
<td>1.7162</td>
</tr>
<tr>
<td>0.1</td>
<td>-1.0</td>
<td>33.8</td>
<td>1.7316</td>
</tr>
<tr>
<td>0.1778</td>
<td>-0.75</td>
<td>34.0</td>
<td>1.7418</td>
</tr>
<tr>
<td>0.31611</td>
<td>-0.5</td>
<td>34.5</td>
<td>1.7674</td>
</tr>
<tr>
<td>0.5622</td>
<td>-0.25</td>
<td>34.8</td>
<td>1.7828</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>35.2</td>
<td>1.8033</td>
</tr>
<tr>
<td>1.945</td>
<td>0.289</td>
<td>35.9</td>
<td>1.8391</td>
</tr>
<tr>
<td>3.1622</td>
<td>0.5</td>
<td>36.2</td>
<td>1.8545</td>
</tr>
<tr>
<td>5.79</td>
<td>0.7627</td>
<td>36.3</td>
<td>1.8596</td>
</tr>
<tr>
<td>10.0</td>
<td>1.0</td>
<td>37.0</td>
<td>1.8955</td>
</tr>
<tr>
<td>17.7828</td>
<td>1.25</td>
<td>38.3</td>
<td>1.9621</td>
</tr>
</tbody>
</table>
FIGURE 5. CREEP COMPLIANCE VS. TIME
Roots of this polynomial were extracted using UNIVAC subroutine ATPOLY. The method of partial fractions is utilized in CREEP to invert the Laplace expression \(\bar{E}_m(s) \) into the time domain. The relaxation modulus, \(E_m(t) \), is thus obtained for the epoxy resin HBRF-55:

\[
E_m(t) = 0.2212 \times 10^5 e^{-1065t} + 0.5835 \times 10^4 e^{-10.18t} + 0.2242 \times 10^5 e^{-1.07t} - 0.3064 \times 10^5 e^{-0.92t} + 0.3402 \times 10^6 e^{-0.075t}
\]

(113)

A plot of \(E_m(t) \) versus log time is given in Figure 7. The relaxation modulus of HBRF-55 at time zero was calculated to be 360,000 psi.

The expression for Poisson's ratio, \(\nu_m(t) \), was obtained using the expression above for the relaxation modulus, \(E_m(t) \). Substituting into Equation (102) a bulk modulus for HBRF-55 of 400,000 psi and rearranging, the equation for the Poisson's ratio is:

\[
\nu_m(t) = \frac{1}{2} - \frac{E_m(t)}{2,400,000}
\]

(114)

From the expression for \(E_m(t) \) given in Equation (113) the resulting expression for \(\nu_m(t) \) is:

\[
\nu_m(t) = -9.2167 \times 10^{-3} e^{-106.5t} - 1.4313 \times 10^{-3} e^{-10.18t} - 9.3417 \times 10^{-3} e^{-2.07t} + 1.2767 \times 10^{-2} e^{-0.92t} - 1.4275 \times 10^{-1} e^{-0.075t} + 0.5
\]

(115)
A plot of $v_m(t)$ versus log time is shown in Figure 8. The Poisson's ratio for HBRF-55 at time zero was calculated to be 0.35.

10.2 ASSOCIATED ELASTIC SOLUTION

The correspondence principle, along with the collocation method, as derived in Chapter 9, may be used with the maximum strain theory of failure developed in Chapter 7 to predict the burst pressure as a function of time for a filamentary composite spherical pressure vessel subjected to a constant internal pressure. A FORTRAN program, THESIS, was developed to generate the time-dependent response of a Kevlar/HBRF-55 system and is listed in Appendix B. The program predicts burst pressure and critical strain as a function of time.

10.2.1 PROPERTIES OF THE LAMINATE

The previously derived expressions for $E_m(t)$ and $v_m(t)$ are transformed into the Laplace domain utilizing Equations (76) and (89) and result in the equations:

$$sE_m(s) = \frac{22,120}{s + 106.5} + \frac{5,835}{s + 10.18} + \frac{22,420}{s + 1.07} - \frac{30,640}{s + 0.092} + \frac{340,200}{s + 0.0075}$$

(116)

$$s v_m(s) = 0.5 - \frac{0.0092}{s + 106.5} - \frac{0.0024}{s + 10.18} - \frac{0.0093}{s + 1.07} + \frac{0.0128}{s + 0.092} - \frac{0.1418}{s + 0.0075}$$

(117)
Figure 8. Poisson's Ratio vs. Log Time
The matrix properties v_m and E_m are thus calculated in the program THESIS and summarized in Table 3. These values are then substituted into the lamina and laminate equations developed in Chapters 4, 5, and 6. For the case of $v_f = 0.6$ and $\beta = 1.1$, lamina properties computed in THESIS as a function of the six values of the Laplace parameter are given in Table 4. Laminate properties are listed in Table 5. Also listed are the computed values for n, the degree of anisotropy. For an isotropic material system, $n = 1.5$, and the departure from this value indicates the degree of anisotropy in the system.

10.2.2 \hspace{1em} MAXIMUM STRAIN THEORY OF FAILURE

The burst pressure and critical strain, utilizing Equations (61) and (59), respectively, are based upon the maximum strain theory of failure. In the Laplace domain, these expressions are given by Equations (110) and (111). The ultimate circumferential strain for Kevlar fiber is 0.0111 \cite{4} and is the numerical value for K_θ.

Equation (105) in the form of Equation (109) is then programmed into THESIS. The vector $\{p_f(t_0) - sp_f(s)\}$ is obtained by calculating $p_f(t_0)$ from Equation (61) in program THESIS.CCC, given in Appendix B. The value for $sp_f(s)$ is subtracted from $p_f(t_0)$ and evaluated for each discrete value of the Laplace parameter. From Equation
TABLE 3. VALUES OF s, $E_m(s)$, and $\nu_m(s)$

<table>
<thead>
<tr>
<th>$\ln s$</th>
<th>s</th>
<th>$E_m(s)$</th>
<th>$\nu_m(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>148.4</td>
<td>350.2</td>
<td>0.3542</td>
</tr>
<tr>
<td>3</td>
<td>20.09</td>
<td>338.2</td>
<td>0.3591</td>
</tr>
<tr>
<td>1</td>
<td>2.718</td>
<td>327.5</td>
<td>0.3636</td>
</tr>
<tr>
<td>-1</td>
<td>0.368</td>
<td>314.9</td>
<td>0.3688</td>
</tr>
<tr>
<td>-3</td>
<td>0.050</td>
<td>286.1</td>
<td>0.3808</td>
</tr>
<tr>
<td>-5</td>
<td>0.0067</td>
<td>158.6</td>
<td>0.4339</td>
</tr>
<tr>
<td>(\ln a)</td>
<td>(E_L(s))</td>
<td>(E_T(s))</td>
<td>(G_{LT}(s))</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>11.54</td>
<td>0.8519</td>
<td>0.5473</td>
</tr>
<tr>
<td>3</td>
<td>11.54</td>
<td>0.8236</td>
<td>0.5283</td>
</tr>
<tr>
<td>1</td>
<td>11.53</td>
<td>0.7981</td>
<td>0.5112</td>
</tr>
<tr>
<td>-1</td>
<td>11.53</td>
<td>0.7682</td>
<td>0.4913</td>
</tr>
<tr>
<td>-3</td>
<td>11.51</td>
<td>0.6994</td>
<td>0.4456</td>
</tr>
<tr>
<td>-5</td>
<td>11.46</td>
<td>0.3916</td>
<td>0.2453</td>
</tr>
</tbody>
</table>

TABLE 4. VALUES FOR LAMINA PROPERTIES

\((v_f = 0.6, \beta = 1.1)\)
TABLE 5. VALUES FOR LAMINATE PROPERTIES AND n
($v_f = 0.6, \beta = 1.1$)

<table>
<thead>
<tr>
<th>$n(s)$</th>
<th>$C_{rr}(s)$</th>
<th>$C_{\theta\theta}(s)$</th>
<th>$C_{\theta r}(s)$</th>
<th>$E_r(s)$</th>
<th>$E_\theta(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.316</td>
<td>0.9712</td>
<td>5.118</td>
<td>1.569</td>
<td>0.3379</td>
</tr>
<tr>
<td>3</td>
<td>3.356</td>
<td>0.9424</td>
<td>5.093</td>
<td>1.569</td>
<td>0.3319</td>
</tr>
<tr>
<td>1</td>
<td>3.395</td>
<td>0.9163</td>
<td>5.071</td>
<td>1.569</td>
<td>0.3263</td>
</tr>
<tr>
<td>-1</td>
<td>3.442</td>
<td>0.8855</td>
<td>5.045</td>
<td>1.569</td>
<td>0.3194</td>
</tr>
<tr>
<td>-3</td>
<td>3.564</td>
<td>0.8141</td>
<td>4.984</td>
<td>1.567</td>
<td>0.3026</td>
</tr>
<tr>
<td>-5</td>
<td>4.469</td>
<td>0.4814</td>
<td>4.697</td>
<td>1.537</td>
<td>0.2043</td>
</tr>
</tbody>
</table>

ORIGINAL PAGE IS OF POOR QUALITY
(109), the values for h_v are calculated in double precision with UNIVAC subroutine DPINV.

The constant A is evaluated from Equation (104), using the initial burst pressure and the sum of the values of h_v. This operation is easily accomplished in the program THESIS.

Finally, the burst pressure in the time domain can be calculated from Equation (110), where the units of time is hours. The burst pressures computed from THESIS are plotted with respect to log time. Figure 9 shows burst pressure as a function of fiber volume fraction, v_f. Figure 10 demonstrates the effect of varying β, the ratio of composite shell outer radius to inner radius.

In a similar fashion, the vector $(\epsilon_{\theta\theta}(t_o) - s\epsilon_{\theta\theta}(s))$ is obtained by calculating initial strain $\epsilon(t_o)$ in program THESIS.CCC. The value for $s\epsilon_{\theta\theta}(s)$ is subtracted from $\epsilon_{\theta\theta}(t_o)$ and evaluated for each discrete value of the Laplace parameter. Then, the values of h_v are calculated. The constant A' is evaluated and input into the time-dependent expression for strain. Computed values for strain from the program THESIS are plotted with respect to log time. Figure 11 is a plot of strain versus log time and illustrates the effect of fiber volume fraction, v_f. Figure 12 demonstrates the effect of varying β from 1.1 to 1.5.
Figure 10. Burst pressure vs. log time, varying β ($= r_0 / r_1$)
Figure 12. Strain vs. log time, varying $\beta = r_o/r_1$
A comparison of predicted burst pressure in Figure 9 and strain in Figure 11 is shown for fiber volume fractions 0.5, 0.6, and 0.7. These plots show that an increase in fiber volume fraction increases the performance of the composite. In particular, Figure 11 shows that the failure strain of Kevlar, 0.0192, is approached almost immediately for \(v_f = 0.5 \), is approached much later for \(v_f = 0.6 \), and is never approached for \(v_f = 0.7 \).

The effect of shell thickness on vessel performance is shown by varying \(\beta \) from 1.1 to 1.5 in Figures 10 and 12.

Figures 9 through 12 summarize the results of THESIS, a program of the time-dependent burst pressure and strain equations from the associated elastic solution based upon the maximum strain theory.
CHAPTER 11. CONCLUSIONS

The maximum strain theory of failure developed for composite filamentary pressure vessels, when combined with the linearly viscoelastic behavior of the composite matrix, yields a solution which predicts burst pressure and critical strain for the vessels as a function of time. This solution is obtained by solving the equations in the Laplace domain and inverting them back into the time domain using the method of collocation. An evaluation of the burst pressures and strains computed using this method demonstrates that when the time-dependent response of a composite matrix is considered, the failure performance of the vessel is reduced. It is thus concluded that this general method may be used to predict a time-dependent response, and that the linearly viscoelastic properties of a composite matrix contribute to this reduction in vessel performance. Knowing the relaxation modulus and Poisson's ratio of a matrix with respect to time, design criteria for a filamentary composite spherical pressure vessel could be derived which consider the time-dependent response of the matrix.

The numerical evaluation of the Kevlar-HBRF-55 system illustrates the reduction in burst pressure and increase in critical strain with respect to time. The inclusion of the viscoelastic material properties of the resin into the associated elastic solution is thus a viable approach for predicting time-dependent vessel performance.
There are additional mechanisms which affect vessel performance in time, such as nonlinear effects and/or matrix crazing, perhaps initiated by this modeled time-dependent matrix stiffness reduction. The same type analysis could include a damage criterion or function and provide a more accurate prediction of time-dependent response. It has been shown that this type of analysis can be used to predict the time-dependent response of filamentary composite spherical pressure vessels and can possibly be used to identify the mechanism(s) which cause the observed failures.
BIBLIOGRAPHY

APPENDIX A

FORTRAN PROGRAM CREEP
ORIGINAL PAGE IS
OF POOR QUALITY
C EVALUATE CONSTANT A FROM INITIAL STRAIN AND STRESS

C CONDITIONS

AC=ACF-YSUN

190 FORMAT(2X,'A CONSTANT=',D12.4)

210 FORMAT(2X,'SUM OF WE=',D12.4)

APL:STEM1.SUN

210 FORMAT(2X,'A CONSTANT=',D12.4)

C CALCULATE TIME-DEPENDENT STRESS AND STRAIN

254 WRITE(10,4)

256 FORMAT(2X,'TIME (HOURS)',1X,'LOG TIME',1X,'BURST PRESSURE',

257 1X,'STRAIN')

258 LI:1000

T=100

T=100

200 FORMAT(2X,'TIME=',F9.4)

210 FORMAT(2X,'FRICTION=',F9.4)

220 FORMAT(2X,'BUST=',F9.4)

FRICTION = 0.937

BURST = 0.837

IF (T < 0.0001) THEN STOP

END

PLOT

STOP

CONTINUE

STOP
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
</tr>
</tbody>
</table>

C = 2
APPENDIX C

FORTRAN PROGRAM THESIS.CCC
<table>
<thead>
<tr>
<th>Patient</th>
<th>Initials</th>
<th>Race</th>
<th>Gender</th>
<th>Age</th>
<th>Ethnicity</th>
<th>Diagnosis</th>
<th>Death Date</th>
<th>Cause of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>JKL</td>
<td>Black</td>
<td>Male</td>
<td>50</td>
<td>Hispanic</td>
<td>Cancer</td>
<td>12/31/2020</td>
<td>Heart Failure</td>
</tr>
<tr>
<td>P2</td>
<td>ABC</td>
<td>White</td>
<td>Female</td>
<td>35</td>
<td>Caucasian</td>
<td>Virus</td>
<td>08/15/2019</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>P3</td>
<td>DEF</td>
<td>Asian</td>
<td>Male</td>
<td>60</td>
<td>Indian</td>
<td>Stroke</td>
<td>11/23/2018</td>
<td>Stroke</td>
</tr>
<tr>
<td>P4</td>
<td>GHI</td>
<td>Black</td>
<td>Female</td>
<td>25</td>
<td>African</td>
<td>AIDS</td>
<td>01/16/2021</td>
<td>AIDS</td>
</tr>
<tr>
<td>P5</td>
<td>JKL</td>
<td>White</td>
<td>Male</td>
<td>75</td>
<td>Caucasian</td>
<td>Diabetes</td>
<td>09/10/2022</td>
<td>Diabetes</td>
</tr>
</tbody>
</table>

Note: Cause of death is based on the official death certificate.