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Nomenclature

load parameter coefficients

hole diameter

beam dimensions

orthotropic moduli of elasticity in the 1 and 2
directions, respectively

moduli of elasticity of the composite, honeycomb
and metal, respectively

bending stiffness

forces

lamina strength tensors of the 2nd, 4th and 6th
ranks, respectively

orthotropic shear modulus of elasticity in the
1-2 plane

beam dimensions

characteristic distances for tension, compression,
shear and biaxial loading, respectively
beam dimensions .

beam bending moment

laminate bending moment resultants
laminate normal stress resultants
hydraulic force

line load (force/unit length)

static lamina shear strength measured in 1-2 plane

fatigue shear strength of lamina measured in the
1-2 plane for given N and R values

sample width

tensile and compressive static lamina strengths

measured in the 1-direction
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XD’X6

Y,Y!

YD’Y6

Greek Symbols

o

v

(o}

Subscrigts
Xy
1,2

tensile and compressive lamina fatigue strengths
measured in the 1-direction for given N and R values
tensile and compressive static lamina strengths
measured in the 2-direction

tensile and compressive lamina fatigue strengths

measured in the 2-direction for given N and R values

biaxial stress ratio

shear strain

normal strain

fiber orientation relative to structural x-axis
structural load parameter

Poisson's ratio

normal stress

orthogonal in-plane structural axes
lamina material axes parallel and orthogonal to
the fiber reinforcement, respectively

indicates shear properties in the 1-2 plane




1. Introduction

With the advent of composite material primary structural components
in advanced high performance aircraft and helicopters, the need for
proven predictive formulations to quantify the strength of laminates
is of paramount concern. Not only is this important in the initial
structural design phase, but efficient systems management programs
require the ability to define 'accept/repair' criteria and non-destructive
inspection intervals, thus necessitating the development of a methodology
for assessing the effect of defects as well.

In the design of laminates, one of the major difficulties still
confronting the analyst is that of selecting a suitable strength criterion.
This problem is of course further compounded by the presence of holes,
interlaminar flaws and boundary conditions which give rise to local stress
concentrations and three-dimensional stress fields. Suffice it to say
that an accurate static strength prediction for a laminate subject to
these conditions represents a considerable analytical task. To extend
this predictive capability to include fatigue loading represents an
even more difficult problem. One can illustrate the various aspects
involved by examining the flow chart of Fig. 1. For a given external
load system (i.e., including temperature), one first needs to calculate
the stress state in each lamina. If the effects of flaws and boundary
conditions are not considered, then classical laminate theory can be used.
Otherwise, recourse to complex analytical models and fracture mechanics
considerations are necessary.

The application of any failure criterion first requires a relatively
accurate evaluation of the stress field. This is not at all a trivial
task as, in general, composite failures result from complex three-

dimensional stress states and the materials are anisotropic. Thus, from




an applications point of view it seems that the assumption of laminate
homogeneity must be made and this assumption has been determined to be
reasonable even for cracked structures, provided that the elastic crack
tip singularity contains a sufficient number of fibers [1]. In addition
there are several other features of the problem which must be considered.
First, is the failure dominated by planar or three-dimensional phenomena?
For example, if delamination is a predominant mode of failure, then a
three-dimensional analysis is a necessity. On the other hand, if the
failure is planar, then it is reasonable to approach the problem from a
conventional lamine-laminate approach. The second consideration relates
to the absence or presence of flaws. In this regard, there are

basically three cases; nominally flaw free, sharp flaws (cracks,
déaminations) and smooth flaws (circular holes, cutouts). The failure
criterion adopted and the corresponding stress analysis should probably
address each of the above situations individually since it seems

at present, that it is not possible to encompass all failure possibilities
using a single failure criterion.

Once the stress field is known, it would appear that the applicat-
ion of a lamina failure criterion would be appropriate, at each 'point’
or 'element' (if finite element techniques are used) throughout the
laminate. Because of local stress concentrations, one would presume
that failure initiates in the highest stressed region and progresses
through the laminate. However, previous analytical and experimenta}
studies on holes and cracks [Refs. 2, 3] for example, have shown poor
correlation using this approach and recourse to 'characteristic
distances', which define either ‘'evaluation points' or 'integration
intervals' was necessary. These 'characteristic distances' were obtained
from test data on laminates in combination with the calculated stress

fields.




It should also be noted that environmental effects can readily be
taken into account by measuring the change in the constitutive properties
(such as E11, E22, G2, vi2) and strength parameters. In the latter case,
however, one requires a strength criterion before evaluating the
appropriate coefficients. Such a criterion should also include three-
dimensiona1 stress effects consistent with the stress analysis.

An alternative method to that involving detailed stress calculations
coupled with selected laminate strength measurements is a phenomenological
approach. Assuming a given lamina failure criterion, one can proceed
to evaluate the strength parameters as a function of flaw size/plate
width, flaw location and environment. Thus, a laminate is treated as
though it had no flaw but consisted of individual lamina having strength
properties suitably reduced according to the above parameters.

Up to present, the discussion has focussed on static strength predict-
ions. It is of interest to examine if these methods can be extended to
predict fatigue failure of laminates. Previous work by other authors
[4-6] has shown that the use of 'fatigue functions', based on simple
static quadratic failure relations, can yield reasonable correlation
with test data in many instances. In these cases, only the fatigue
strengths under tension-tension and shear loading were required
(X, Y, S) although a delamination effect was included. Similar work
based on a quadratic Tsai-Hil1l1 failure criterion has also been completed
[7] , again using only the X, Y and S strength parameters. Although
reasonable comparisons with test data were reported in Ref. 7 for
S-glass/epoxy (SP-250-SF1), such was not the case for graphite/epoxy (GRE)
(E 788/T300) based on limited results to date, However, despite
the disagreement, it is felt that this approach should be pursued

utilizing an improved strength criterion in combination with fatigue
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functions derived from tension, compression, torsion and biaxial load
tests, a brief outline of which is presented in Appendix A.

In this investigation, effort has been directed towards evaluating
the tensor polynomial failure criterion, which was advocated as early
as 1966 by Malmeister [8] for 'unflawed' laminates. This failure
model has been further developed extensively.-by Tsai and Wu [9] in
quadratic and cubic forms [10]. However, it has also been found [10]
that the cubic form can lead to some undesirable features. The
mathematical nature of the cubic equation is such that the failure
surface in stress space (01’02’06) is not closed. Thus, there exist
situations for which the cubic failure criterion will predict that the
ultimate strength of a laminate is infinite. This phenomenon was
found [10,11] to occur for some regions in the compression-compression
quadrant for example.

These difficulties have led to the desire to obtain some experimental
results in this 'open area' of the compression-compression quadrant.
With these experiments, and some additional analysis, it was hypothesized
that the open areas of the failure surface could be closed. Thus the
cubic tensor polynomial would be all the more viable as a failure
criterion. At this point, it is reasonable to question the need for
retaining the cubic interaction terms. However, it has been found that in
certain biaxial load cases, these terms contribute substantially to the
ultimate strength prediction [10-12] and must therefore be included in
the formulation. On the other hand, it should be emphasized that for
many load cases, particularly simple tension and compression, little
difference in failure loads is predicted between the quadratic and cubic
models. This feature will be implemented later when the quadratic form is

employed to analyse samples containing circular holes. This report
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describes the design of an experimental technique and the subsequent
testing of a composite laminate under a biaxial compressive loading.
The results are then used to obtain new coefficients for the cubic
tensor polynomial. The improved failure surfaces that are calculated
from the biaxial compression experiment are studied, and some
comparisons are made between the revised cubic and quadratic theories.
Complete descriptions of the analysis and design of the biaxial

compression apparatus are provided in Appendices D-F.

In addition to the refinement of the tensor polynomial failure
criterion, a combined analytical and experimental program was undertaken
to demonstrate its application in predicting the tensile strength of
laminates with holes. This work is described in Section 5.

2. The Tensor Polynomial Failure Criterion

2.1 Cubic Form

The general form of the tensor polynomial failure criterion is
[8,9]
no failure

failure (
fajlure cxceeded 1)

v it A
e

..0.0.0, + ... = f(o
F.o, + Fijcioj + FichloJ X (o) {
i,j,k = 1,2,...,6

The o represents the six principal stresses and Fi’ Fij and Fijk

strength tensors of 2nd, 4th and 6th rank, respectively. If one considers

are

a cubic formulation and restricts the analysis to a state of plane stress,

then Eq. (1) reduces to

F.o. + F

1% ijcicj + F i=1,2,6 (2)

It is further assumed that the material exhibits some form of symmetry

and thus Fi' = Fji’ F

] - F

i3k = Fikj = ... kji® etc. Furthermore, it can
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be shown that [9] F... terms can be discarded. If the material

iii
exhibits equal strength in both positive and negative shear, then the
failure criterion should not depend upon the sign of g Since this
is true for most materials, including the one considered in this

report, all odd order terms of % in Eq. (2) can be removed. Finally,

Eq. (2) reduces to the following:

2 2

2
F101 + Fp0; + 2F)5010, + Fj 0] + F,,05 + Feoc

171

) (3)
2 2 2
1129192 * 3F135070; + 3F 440,06 + 3F,c 0,00 = 1

+ 3F

This is the final form of the cubic tensor polynomial that is
used as a lamina failure criterion. It can be considered to present
the equation of a surface in stress space (01’02’06)' To visualize
this, consider a surface enclosing the origin formed by the intersection
of orthogonal o1s 9, and og axes (Fig. 2). Also, consider a load
starting at the origin within this surface and pointing in an arbitrary
direction. As the material is loaded, its state of stress increases
along this path. The location at which the load path intersects the
surface represents the point of failure.

If one considers a linear load path, not necessarily commencing

at the origin, then the principal stresses can be written as a function

of a load parameter, A, such that

Q
—
1]

Ciir + Cyp

Coyr + Cyy (4)

9 = U312 *+ C3p

Substituting these equations into Eq. (3) yields

ax3 + bxz +ca+d=0 (5)°

where

2

2 2 2
a = 3(F115011%1 * F122011%1 * Fr66C11C31 * F266%21C

31) (6a)




2

b=3F 122 €121

(C +2C..C.,C,.) + 3F

2
1122261161265 +2C

112 11°21%22)

’ 2 2
* 3F166(C12C3172C11C37C35) * 3Fpe6(C55C35;+2C5;C51Cx)) (6b)

2 2 2
* F1aC * F2Ca1 * FeeCan * 2F12€101%

_ 2
c = 3F112(2C c,,C +C12C21 + 3F122(2C

11612622 C2*Cy

12621622*

)

172

c2.+2c..C

+ 3Fy¢6(C 126310320 * 3Fp66(C51C55+2€55C5,Cs))

2
11C32+2C

*+ 2F;1C1C0 * 2FppC,1Chp + 2FgcCyyCyy (6¢)

+ 2F15(C11Cp5%Cy1Cy0) + FiCyy + FCyy

2 2 2
c sz + 3F122C12C22 + 3F. . C..C

d = 3F;1,C)) 1661232

2 2 2
* SF266C22032 * F11C12 * F22C07 * 2F)5015Cs; (6d)

+ F C2 C + FZC

66C32 * F1C32 1

22 7

Once the coefficients of the load parameter, Cij’ have been specified,
Eq. (5) can be solved for the two ultimate failure loads, corresponding
to positive and negative values of A. However, the solution of this
cubic equation will yield a set of three roots, so a selection criterion
must be used to establish which of the roots is valid.

These sets of roots can be classified into three groups: three
real distinct roots, three real roots with two equal, and one real
root with a complex conjugate pair. These three possibilities are
illustrated in Fig. 3 where f(1) (Eq. 5) is plotted as a function of the
load parameter, A. Any state of stress which results in an f(1) below

the r-axis represents a 'no-failure' condition. However, once f(1)

becomes greater than or equal to zero, the material has failed, and the
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values of A for f(1)=0 represent the ultimate failure loads.
For the first case of three distinct real roots (Fig. 3a), the

two physically realistic values of A are those that bound the

ult
local minimum of the curve. The third root is superfluous since it
cannot be reached from the origin without passing through the failed
state of f(x)>0.

The second case of two equal roots is also straightforward
(Fig. 3b). Here there exists a local minimumbounded on either side by
only two roots. The monotonically decreasing portion of the curve
cannot be reached without passing through the f(1)=0 value, and
therefore it is not an admissible region.

The last group of roots, the single real value with a complex
conjugate pair, is represented in Fig. 3c. Mathematically, the entire
curve below the x-axis is an admissible region since it can be reached
from A=0 without passing through a failed state. Thus the value
of A is unbounded on one side of the origin. This effect arises from
the undesirable nature of the cubic polynomial to be 'open-surfaced'.
Hence, it is necessary to develop a scheme to artifically bound the
lTocal minimum. The method which has been proposed [12,14] is the
intuitive one of taking the local maximum as the second root. Analytically,
this involves solving the derivative of Eq. (5) for A such that the
second derivative is positive,

2

je; f'(2) =3 "+ 2bx +c =0 (7)

Therefore,

-2b v’4b2 ~-12ac

X = 6a

where
Tt

f('):)=6ai+2b>o
-8-




This method is satisfactory if the local maximum is relatively close to
the r-axis. However, if the f(1A) curve appears as shown in Fig. 4,

the local maximum does not intuitively represent the best solution.
Indeed, it is difficult to use any intuitive method to establish the
value of the second root for this case. This is the situation that
arises in the third quadrant (compression-compression) of the (o],oz)
planar surface.

2.2 Principal Strength Tensors

The principal strength tensors for the cubic polynomial are F],
Fi1s Fps Foo and Fee It has been shown by Wu [15] that these are
experimentally derivable quantities from simple tension, compression

and shear tests; ie;

1 =
F1= F Fz—

b L
<=

- Fii = T Fyy = 747 Y66 = ;%' (8)

Extensive experimentation on 3M SP288-T300 GRE has been performed
in Ref's. [10-12] to determine the values for these five principal
strength tensors. The results are summarized in Table 1.

2.3 Interaction Strength Tensors

The nature of these tensor components demands that complicated
multi-load experimental techniques be used to determine material
strengths with interacting principal stresses. These experiments can
be expensive and tedious to perform. Consequently a hybrid method was
devised [10-11] using only one experiment and four constraint equations
to determine the interaction tensors. However, this approach is
inadequate in providing a reasonable solution in the compression-
compression quadrant of the (01,02) plane. The following alternate method
has been developed to overcome this problem.

Consider a biaxial experiment involving only oy and 9, stresses.
With g equal to zero, the following tensor polynomial equation is

,
I4
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obtained from Eq. (3)
F,,(20,0,) + F (302 ) + F.,,(3 2)
12149192 11249919, 1229019,
(9)

o i 2 2
= (1 - Fj0; - Fy0, - F,0] - Fp,0))

Having previously established the values of the principal tensors, there
are three unknowns in this equation: F12’ F112 and F122. By performing
three different strength experiments in the (o],oz) plane, three
simultaneous equations of the form of Eq. (9) can be obtained. Solving
this set of equations will yield values for the interaction tensors.
It should be noted that this technique does not guarantee closure
in the (01,02) plane. The three experiments must be judicously selected
so that closure will be obtained.
The remaining two interaction parameters, F166 and F266’ are then
determined using the method of constraint equations which are derived
by setting the discriminant of the cubic polynomial equation (Eq. (5))
to zero. This has the effect of forcing the failure equation to yield
three real roots, two of which are equal, along the chosen load path.
Previous work [10,11] has used internal pressure loading of
symmetric balanced (:te)S laminated tubes for different values of 6
as the load paths. Under this type of loading, with the load parameter

equal to internal pressure,

[ —
C11 R/2
_ 1 (10)

C21 = [T]k[Qij]k[A] R

C 0

_31__k ]

and

C12 0

C,| =10 (11)
532_]( L_.O_
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where R represents the tube radius. Note that for symmetric balanced

tubes, the cij are equal for each ply. Using the above, Eq. (6)

reduces to
2
2 2 2 c ¢
a = 3(F;1,€11Co1 * F221€11C21 * Fieet11%31 * Fae621 31)
b= F..C2. + F.CE. +F C3 +2F C.C
= F11€91 * F22Co1 * Fe631 12%11%21 (a2)

c = FCpy + Folyy

d=-1

Setting the discriminant of Eq. (5) to zero, and substituting d=-1,
yields,
2

3 2 2

27a% + a(4c> + 18bc) - 4b° - b%% = 0 (13)
By solving Eq. (10) for two different ply angles, 6, Eqs. (12)

and (13) can be set up as a system of two nonlinear simultaneous

equations in two unknown. The solution of this system will yield

appropriate values for F166 and F266'

3. Biaxial Compression Experiment

3.1 Experiment Design

To obtain the desired stress state of biaxial compression, several
different experimental techniques were considered. These included:
(1) combined external pressure and axial compression of tubes; (2)
bending of honeycomb sandwich plates; (3) bi-directional compressive
loading of coupons with small test sections; (4) bending of honeycomb
sandwich cross-beams.

The most attractive of the above options is the combined loading
of tubes. It is, at first glance, a straightforward experiment to
implement and analyse. However, the experiment is susceptible to the

problem of shell buckling. To overcome this, the tube dimensions would
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have become unwieldy: very short and thick with a small diameter. The
advantage of simple analysis no longer exists because the tube cannot
be considered to behave as a shell, and boundary effects would have
also become a problem. Thus, the first of the above options was
eliminated.

The loading of plates or coupons to achieve a biaxial compressive
state was deemed to be too complicated to implement experimentally.
This left the bending of cross-beams as the most desirable experimental
technique. The same conclusion was reached by Cole (Ref. 16).

Much experience has been obtained in the use of honeycomb sandwich
beams in bending to achieve a uniaxial compressive stress state [17].
It is a natural extension of this test procedure to develop a beam in
the shape of a 'cross' for compression-compression tests. By applying
bending moments to each of the two perpendicular arms of this cross-beam,
a biaxial compressive state can be produced in the region where the
beams coincide.

The bending of honeycomb sandwich cross-beams has the advantage of
being relatively simple to design experimentally, but also has the dis-
advantage of being difficult to analyse. Because of the complex nature
of the cross-beam, a finite element subroutine called 'ADINA' [18]
was employed. As a check on its ability to analyse the biaxial experi-
ment, two cases were studied: uniaxial and biaxial bending of an
aluminum cross-beam. The theoretical Toad-strain responses agreed
very favourably with experimental results obtained using the bending
rig described in Section 3.4. The results of these check cases are
described more fully in Appendices B and C.

The finite element model of the composite cross-beam is presented

in Appendix D. This model is the final version, based upon many
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iterations, and includes the final specimen design described in

the next section. One of the problems that involved this model was the
difficulty in matching the analytical stiffness of the cross-beam to
experimental results. Correction factors which were included in the
finite element model solved this difficulty, but their necessity gives
some indication of the complexity of the problem.

Finally, it was necessary to determine the stress ratio, o]/cz, to
use as a load path for the experiment. Since the purpose of the biaxial
compression test is to close the compression-compression quadrant, it
was decided to load the beam with a stress ratio that would create a
load vector passing through the open area of the original cubic solution.
Thus a biaxial compression stress ratio of about 0]/02 = 13 was
initially chosen based on previous solutions. This value is perhaps
not the optimum one for use in evaluating the strength tensors, but it
does guarantee a data point in the open area of the quadrant. With no
previous experimental data available in this region, it is valid as a
first iteration.

3.2 Test Specimen Design

The first parameter that was fixed in the design of the test
specimen was the ply layup. Since the objective of the biaxial compress-
ion experiment was to obtain a data point in the 1-2 plane, any
laminate which would involve a failure with a shear stress component
present could not be used. Also, the complexity of multimode failure
during the initial testing process was deemed to be undesirable. Thus
it was decided to use a unidirectional 0° laminate.

The primary concern in the design of the test specimen was to
ensure that the first failure of the GRE would occur in the test section
area without being initiated elsewhere. This premature failure could

arise from two sources: (1) stress concentrations at the interior
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corners of the cross-beam or (2) the lower strength of the cross-beam
arms due to their uniaxial stresses. The first point is an obvious one
and was solved, to a certain extent, by filleting the interior corners
of the cross-beam. From tables of stress concentration factors (SCF)
[19], it was found that rounding the interior corners to a radius of
0.5 inches was appropriate. This resuited in an SCF of about 2.
Any further decrease in the SCF at the corners would have resulted in
a fillet radius much too large to be practical.

The second problem mentioned above is not as obvious as the first.
The ultimate load of a unidirection laminate under biaxial compression
could be greater than the ultimate load under uniaxial compression,
if the Toad vector, originating at the origin and intersecting the
curve in the compression-compression quadrant, is larger than the load
vectors along either of the compressive axes. Thus a uniform thickness
GRE facing could fail on the cross-beam arms before ultimate stresses are
reached within the test section.

The solution to this problem is to create a reduced thickness test
section. This is equivalent to reinforcing the arms and corners of
the cross-beam. The thickness ratio between the test section and the
rest of the GRE facing was obtained from a consideration of the preliminary
analysis in Fig. 5. This was deemed to be a "worst case" condition
since the actual cubic representation of the 1-2 plane was not expected
to dip as low, in the compression-compression quadrant, as this analysis
predicted. Nevertheless, this was taken to be the design condition.
The maximum ratio between the lengths of the compressive load vectors
discussed above, and shown in Fig. 5 is about 4, Hence, the thickness
ratio was also taken to be 4.

It is interesting to note that this thickness ratio is also
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sufficient to solve the SCF problem at the cross-beam corners. Since
the SCF is 2 and the thickness ratio is 4, the stresses at the corners
will be about one half those in the test section.

The shape of the test section was chosen to be square. This
simplifies the finite element analysis by allowing one to use only a
few elements in the test section area. A circular test section would
require a detailed fine structure consisting of many elements. The
dimension of the test section was chosen to be 0.75 inches square,
for convenience and sufficiency.

The major drawback with the reduced thickness test section is the
tendency for the sample to fail at the thickness discontinuity. It is
in this area where the stresses are the greatest. However, this effect
was lessened by tapering the thickness change with resin during the
fabrication process. The method will be described in the following
section on specimen fabrication.

The thickness of the test section is largely determined by the
honeycomb to which it is bonded. The minimum thickness is determined
by stability requirements, such as intercellular buckling of the facing.
However, the maximum thickness is established by the requirement that
the ultimate compressive and shear stresses of the honeycomb are not
to be exceeded.

Some other factors that also influence the design of the test
specimen include the type of metal facing that is bonded to the tensile
side of the honeycomb, its tensile strength and modulus, and the thick-
nesses of the metal and honeycomb. Other considerations include the
beam bending moment arm (distance between load points)and the adhesive
strength. All of the above parameters influence one another and hence,

an iterative procedure was used to select the optima.
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To do this, a computer program was written which calculated the
stresses within the various components of the cross-beam. This program
uses simple beam theory (Appendix E) for each of the cross-beam arms
and some constraint equations at their intersection. It is recognized
that the program only approximates the stresses, but it was nevertheless
useful for design purposes given the cost of solving the finite element
problem. The final parameters were verified with the finite element
model as being within design limits. In addition to the computer program,
the stability requirements for the composite facing were obtained from
the design curves in Ref. 20.

The final design of the cross-beam test specimen resulted in a
test section thickness of two plys (about 0.01 inches). Thus, the
thickness of the surrounding composite was eight plys (about 0.04
inches). The tensile facing material was selected to be 7075-T6
aluminum for its low modulus and high strength characteristics. Also,
corrugated honeycomb, Hexcel ALC-1/8-5052-.003, was chosen for the
design because of its superior compressive and shear strengths compared
to the expanded variety. Finally, the optimum thicknesses of the aluminum
and honeycomb were found to be 0.25 inches and 1.5 inches, respectively.

3.3 Test Specimen Fabrication

The procedure used in the manufacture of GRE test specimens and
honeycomb beams is well documented and only an outline will be given
here. The GRE used in the fabrication of the cross-beam is 3M SP288-T300
prepreg tape. It was cut to shape using a cross-shaped template as a
guide. The individual plys were laid up, along with resin bleeder
cloth, on a steel mandrel coated with a releasing agent. The two plys
that comprised the test section were laid up against the mandrel. The

remaining six plys, being identical to the first two but with the
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square test section cut out, were laid on top. Teflon coated release
fabric separated the bleeder cloth from the prepreg.

A small steel insert, which was the size of the test section and
the thickness of the remaining plys, was placed between the Teflon fabric
and the bleeder cloth (Fig. 6). This insert had its edges rounded and
served the double purpose of (1) keeping the test section from filling
with resin and (2) creating contoured edges for the test section to
eliminate sharp thickness gradients.

A cork resin dam was built around the edge of the sample and a steel
caul plate was placed on top. The entire surface was covered with an
air breather cloth and placed in a vacuum bag. (The entire layup
sequence is depicted in Fig. 7.) The sample was then cured in an
autoclave according to manufactureﬁ% specifications. A photograph of the
cured sample is shown in Fig. 8. The average thickness of the test
section was measured to be 0.009 inches. The surrounding thickness of
the composite was found to average 0.035 inches.

The second stage in the manufacture of the cross-beam is the bonding
of the facings to the honeycomb. The adhesive that was used for this
procedure was Cyanamid FM123-2 film adhesive, selected for its
excellent shear properties and low temperature cure. The adhesive cure
temperature must not exceed the glass transition temperature of the
composite (in this case 275°F) or else degradation of properties will
occur,

Prior to bonding, the aluminum facing was cleaned in an acid
solution. Subsequently, all bonding surfaces of the honeycomb and fac-
ings were primed with Cyanamid BR-127 primer. The adhesive was cut to
shape, placed between the parts, and cured according to manufacture;s

specifications.
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3.4 Biaxial Compression Test Rig

The assembled rig that was designed to carry out the biaxial
compression tests is shown in Figs. 9 and 10. The design is basically
an extension of the beam bending rigs that are currently in use at
UTIAS for uniaxial compression testing [17].

The biaxial compression rig is designed to allow independent loading
of the two cross-beam arms. This is an extremely powerful feature
since it enables one to achieve almost any desired stress ratio within
the test section. The stresses are induced in the sampie by combining
two distinct types of loadings. A diagram showing the applied loads
is presented in Fig. 11. One of the arms is placed under a four-point
bending moment. The second arm, due to the restraining action of the
first arm, is loaded by an approximately three-point bending moment.

The first cross-beam arm is supported at the outside points by
two simple-support pads (Fig. 12). The two inside loads that complete
the four-point bending are applied by the central loading block illustrated
in Fig. 13. (Note the two simple-support pads here also.) This loading
block is held in position by four guide posts (Fig. 14) and is loaded,
in a testing machine, through a ball bearing placed centrally in a
divot on the upper surface of the block (Fig. 15). The ball bearing
ensures that the load is applied centrally with no bending moments;

The second arm is loaded independently with hydraulic pistons and
the load bar shown in Fig. 16. This load bar is placed along the lower
surface of the cross-beam and transmits the loads through the customary
simple-support pads. The hydraulic pistons load the sample through cables
attached to the transfer blocks of the load bar. These blocks are pinned
to allow only the transfer of pure forces to the load bar.

The simple-support pads are merely rocker type supports consisting
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of a grooved pad capable of rotating on a fulcrum. These parts have
all been machined from mild steel and then case hardened to protect the
sharp surfaces through which the loads are transmitted.

Note that the configuration shown in Fig. 15 depicts the use of
the compression rig without independent loading. This set up, with each
of the cross-beam arms under a four-point bending moment, was used to
load the aluminum cross described in Appendices B and C. However, this
same arrangement was found difficult to implement with the composite
cross-beam because of the stiffness discrepancies between the two arms.

The technical drawings of the biaxial compression rig are given in
Appendix F.

3.5 Experimental Procedure

Prior to its testing, the honeycomb cross-beam was instrumented
with strain gauges. A single rosette (Micro-Measurements CEA-125WT-350)
was bonded to the test section with Micro-Measurements M-Bond 200
adhesive. This rosette monitored the biaxial strain in the test
section in order that the failure stress could be determined from a
knowledge of the material properties.

The cross-beam was then placed in the test rig with the 0°
direction of the composite facing under the four point bending load
applied by the tensile testing machine (Tinius Olsen). The hydraulic
pistons and cables were then connected to the rig while in place in the
testing machine. The experimental set-up before testing is presented
in Fig's. 17 and 18.

An overall view of the associated instrumentation, monitoring
equipment and test set-up is shown in Fig. 19. A load cell on the
Tinius Olsen testing machine was connected to the abscissa of a dual
pen X-Y plotter. The two ordinates of the plotter received signals from

the strain gauge conditioning units. In addition, digital outputs from
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the conditioning units were used to manually record the strains. The
pressure in the hydraulic lines was measured with a pressure transducer
and associated conditioning unit. This output signal was then connected
to the abscissa of a second, single pen X-Y plotter and also to a digital
voltmeter for manual recording. The ordinate of this plotter was also
connected to the load cell. A schematic of the setup is presented in
Fig. 20.

Since the two loads (hydraulic pressure and testing machine) were
applied simultaneously and independently, a method was required to
ensure that they were always being applied in the correct proportion.
Knowing the desired ratio of the applied loads (Section 3.1), a line
was drawn on the graph paper which represented the desired path of the
pen on the X-Y plotter as it tracked the pressure transducer and load
cell signals. By tracing this line during the test, one was guaranteed
that the proper load ratio was being applied to the specimen. It should
be noted here that due to the setup configuration, the load cell measured
the sum of the applied compressive load of the testing machine and the
applied load of the hydraulic pistons. Thus, referring to Fig. 11, the
plotter recorded (F + P) versus P. As the specimen was loaded with the
testing machine, the desired load ratio was obtained by hand pumping the
hydraulic pistons to follow the predetermined line on the X-Y plotter.
It was found that this could be done with extreme ease and little
deviation from the desired path.

As the test progressed, the strains and hydraulic pressures were
noted and recorded at predetermined load increments. Simultaneously,
the dual pen plotter recorded the load-strain responses to give a more

complete, although less accurate record up to failure.
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3.6 Experimental Results

The biaxial compression test was successful in achieving a proper
compressive failure, as can be seen in the photographs of the failed
specimen, Figs. 21 and 22. It should be noted that no portion of the
composite facing appears to have buckled. A buckling failure is usually
characterized by the failure area 1ifting up from the surrounding
composite. Instead, the failure observed here is typical of the
compressive failure mode of composites.

The location of failure is seen to first occur at the edge of the
test section. It then propagates towards the corner of the beam. The
failure at the thickness discontinuity was predicted. However, it is
believed that the differencebetween the stresses at the failure
location and those at the centre of the test section is not large.
Experience with other types of compression experiments where failure can
sometimes occur near loading grips, reinforcements, etc., indicates
little correlation between ultimate Toad and location of failure. Since
the composite surrounding the biaxial test section is basically reinforcement,
the same can probably be said for this experiment, as well. Only until
further experiments build up a data base can this be conclusively shown
to be true.

The load-strain history for the specimen is presented in Fig. 23.
The curves do not pass through the origin because of some initial takeup
in the testing rig. The initial nonlinearity in the cutves (below 1000 1b.)
is due to the loading method at the start of the test to prevent
premature failure of the cross-beam. Until the total load reached 1000
1b., the hydraulic pressure was below, and asymptotically approaching,
the desired load ratio. To obtaqn the final strain at failure to be
used in the calculation of the failure stresses, the Tinear portion

of this curve was extrapolated to the measured failure load value.
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This is the standard practice in cases where multiple failures occur.
These ultimate strains and stresses, along with the failure loads, are
given in Table 2, based on the material properties given in Table 1.

4. Analysis of Failure Equation

4.1 Calculation of the Interaction Tensors

The pair of ultimate stresses obtained from the biaxial compression
experiment, along with those listed in Table 3, were employed to calculate
the new values for F]Z’ F”2 and F]22. The method used was that described
in Section 2.4. The complete new set of strength tensors for use in the
cubic polynomial criterion is shown in Table 4.

To verify the consistency of these new coefficients with previous
experimental results, two check cases were analysed. The first case
was the critical one of internal pressure loading of symmetric balanced
(te)S laminated tubes. Figure 24 shows some experimental results [10,12]
of failure pressure versus lamination angle, along with cubic and
quadratic predictions. These predictions were obtained with the use
of the failure analysis program in Reference 15. Excellent agreement is
observed between the cubic polynomial predictions and the experimental
results. Again, one should note the inadequacy of the quadratic theory
to accurately predict the failure load, as reported in [10].

The second check case involves some torsional strength experiments
of tubes reported in Ref. (14). Figure 25 presents the ultimate shear
strength of off-axis, four-ply laminated tubes versus lamination angle.
As with the pressure loading case, the quadratic and new cubic strength
prediction curves are plotted on this graph. Again it is seen that
the cubic polynomial is superior to the quadratic as a failure criterion.
However, whereas the quadratic prediction for internal pressure load-

ing resulted in conservative estimates, the quadratic polynomial over-
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predicts the strength of tubes under torsion. It should be noted

that the poor correlation between experiment and theory for lamination
angles greater than 9=35% is due to shear buckling of the tubes. This
phenomenon was reported by Wharram (Ref. 14).

The good agreement between the cubic theory and the established
experimental results for the above two cases indicates that the new
set of strength tensors is a reasonable one. The agreement does not
validate the accuracy of the tensors under all forms of loading, but
since the above cases are sensitive to differences between cubic and
quadratic theories, any existing inconsistencies would have Tikely
surfaced as a result of these checks.

4.2 Failure Surface and Profiles

The ultimate goal of this phase of the investigation was the
closure of the cubic failure surface. The 1-2 planar failure surface
that was recalculated with the new set of tensors is shown in Fig. 26.
It can be seen that the use of the biaxial compression test has been
entirely successful in closing this plane. Also notice that the quadratic
theory seems to overpredict the strength of the material under biaxial
compression. This could have dramatic implications in the design of
composite parts if one incorrectly assumes that the quadratic theory is
either exact or is a conservative estimate of the strength. The drawback
to the stress pair resulting from the biaxial compression test is its
proximity to the 9 axis. The stress ratio chosen for this experiment
(o} /02 = 13) was designed to travel down the throat of the open area
of the cubic solution presented in Refs. 10,11. This ratio turned out
to be much larger considering the lower than expected failure load.
Further work is definitely necessary, not only to increase the data base,

but also to obtain failures with a 0]/02 stress ratio less than 13,
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For the sake of completeness, the cubic and quadratic surfaces
for the 1-6 and 2-6 planes are presented in Figs. 27 and 28, respectively.
These curves are similar to those reported earlier (Ref. 10). It is
interesting to note that the dramatic differences in shape between the
two strength criteria in the 2-6 plane have never been verified experi-
mentally. Valuable information concerning the cubic polynomial could
be obtained from some simple tension-shear tests on unidirectional
laminates.

By looking at slices through the cubic surface parallel to the
1-2 plane, one can get an impression of its overall shape. Such a
series of curves is presented in Fig. 29. An examination of this
figure reveals the existence of a previously unknown open area in the
tension-tension quadrant for g © 10 ksi. Recall that there is
no sign dependence on the shear strength of the material. Thus the
surface is mirror imaged in the 1-2 plane and has two areas where it
is open. However, in contrast to the 1-2 plane of the original cubic
solution, the surface pinches together before opening out. An alternate
view of this surface is seen in Fig. 30, where one is now observing it
along the o]-axis. The pinching effect of the surface is quite apparent
here also.

These open areas are representative of the third possibility to
the solution of Eq. (5) described in Section 2.2; the case of one
real and two complex roots. These regions are the result of the
complex valued solution to the cubic equation. The technique that is
used in an attempt to solve this problem is the evaluation of the
cubic equation at its local maximum (Fig. 3c). This was done for
the o]=150 ksi planar failure surface and is presented in Fig. 31.
Notice how the local maximum solution closes the surface almost as

one would do so intuitively, based upon the shapes of the c]=0, 50
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and 100 ksi curves. Thus this 'patching' method can be considered
to be a very successful engineering approximation to the complex root
problem.

Finally, it is observed that the entire cubic failure surface
has been closed using both experimental and analytical techniques
thus eliminating one of the major criticisms for its use.

4.3 Strength Prediction Profiles for Biaxial Loading of Lamiantes

As an application of the new tensor coefficients and a comparison
between quadratic and cubic theories, some strength prediction curves
were re-derived for laminates under biaxial loading. The lamination
sequence is four ply, symmetric balanced (ie)S and the material is
3M SP288-T300 GRE. The biaxial loads are Nx and Ny, and are applied
with the ratio o = Nx/Ny'

Figures 32 to 35 show profiles of the ultimate failure stress,
(Oy)ult’ as a function of lamination angle, 6, for the cubic tensor
polynomial theory. Figures 36 to 39 show the corresponding profiles

for the quadratic theory.

Each of the above figures shows the effect of varying the biaxial
stress ratio, o, from 0 to £1. For example, Fig. 32 presents the
tension-tension case with Nx and Ny positive. Notice the definite
existence of an optimum lamination angle for maximum strength. The
case of a=0.5 represents the internal pressure loading of tubes
discussed in Section 4.1. The uncharacteristic sharp peaks that
occur when o equals 0.6 and 0.7 are due to the effect of complex
roots. At these locations, the solutions are described by the local
maximum of the cubic equation. The corresponding quadratic profiles
Aare given in Fig. 36. Notice that the quadratic maxima are significantly

less than the cubic maxima. Of the remaining curves of biaxial
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failure profiles, Figs. 33 and 37 are for Nx>0 and Ny<0; Figs. 34
and 38 for Nx<0 and Ny>0; and Figs. 35 and 39 for Nx<0 and Nito.

To more easily compare the differences between cubic and quadratic
theories, Figs. 40 to 43 were compiled. They represent the loci of
maximum failure stress and optimum fiber angle as a function of biaxial
stress ratio. All failure stresses have been normalized with respect
to their corresponding strength parameter, X or X', depending upon
the magnitude of Ny.

Figure 40 plots the case of Nx’Ny>0 for (:te)S laminates. It is
interesting to note the drastic difference between the maximum strengths
predicted by the two theories. Yet, the optimum lamination angle is
not nearly as affected by the choice of strength criterion. The effect
of the complex root problem is evident here as well. The cubic locus
has a distinct 'aberration' in it at «=0.6 resulting from the "local
maximum" solution. However, the deviation from the intuitive smooth
path is, at most, ten percent. This difference is quite acceptable
when one considers that a real solution does not even exist for
a=0.6 or 0.7. As long as the designer realizes that a complex solution
exists for a given loading scheme, compensations can be made for the
overprediction of the strength.

The next two curves for Nx> 0, Ny<0 and Nx< 0, Ny>0 show very
little difference between the two theories. However, the final curve
(Fig. 43) showing the compression-compression case indicates a
significant difference. This is largely due to the results of the
biaxial compression experiment which gave an ultimate stress much
less than was predicted by the quadratic theory. Since this was the
result of a single experiment, which is seldom sufficient to establish

material properties, further experiments at other stress ratios may
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alter compressive results. However, the biaxial compression experiment
was successful and there is no reason to doubt its results.

The above figures illustrate the significant differences between
cubic and quadratic strength theories. The discrepancies are not
limited to a select few of possible load cases, but become quite
apparent when a laminate is under a biaxial tension or biaxial
compression load. Further experiments at different load ratios are
necessary to confirm these differences.

5. Application of Strength Criterion to Laminates With Holes

Although the phenomenological approach to predicting the strength
of laminates under plane stress conditions (without consideration for
three-dimensional and stress concentration effects) has been
demonstrated to work reasonably well, it is of interest to ascertain
if the same methodology could be utilized to treat laminates with
holes, i.e., in the presence of local stress concentrations. Other
investigators have considered laminated composites with holes and
cracks (such as Ref's. 2, 3) under simple tension loading for example,
and they have shown that reasonably good correlations with test data can
be achieved using a combined fracture mechanics approach and the
notion of 'characteristic distances'; as described earlier. Note that
this latter method also relies on test data to solve for the 'characteristic
distances'. To illustrate the difference between this technique and
the 'all experimental' method, a flow chart comparison is given in
Fig. 44.

This phase of the program involved a series of tension tests on
off-axis (8) and angle-ply (#6) glass/epoxy laminates (3M, 1003)
containing circular holes with d/W = 0.15, 0.25 and 0.40. Two or
three replicates were tested for varying values of & for both laminate

configurations, the results of which are presented in Figs. 45 and 46.
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Note that 'first failure' was taken as the laminate 'strength' value.
This is consistent with the tests conducted on 0° and 90° laminates
to determine both the tensor polynomial parameters and the 'characteristic
distances' used in the 'point stress' calculations. Figures 47 and 48
present photographs of the off-angle and angle ply samples tested. As noted in
Figs. 45 and 46, the predicted curves are based on 'point stress'
calculations of the strength parameters for varying d/W. In Fig. 49, the
curves were obtained from the experimentally determined strength
coefficients for d/W = 0.25 (given in Table 5). One can readily see
that both methods are in good agreement with test data.
6. Conclusions

The cubic tensor polynomial failure criterion has an inherent
drawback in that the (0],02,06) surface in stress space is not closed.
Thus there exist some cases for which the theory will predict an
infinite failure load. This is partially solved with the use of three
biaxial strength tests involving o and 9p. Using the results from
these experiments, the three interaction tensors F12, FHZ and F]ZZ
can be evaluated. By choosing these tests properly, the problem of
an open compression-compression quadrant in the 1-2 plane can be
eliminated. The three tests which were found to close the plane are:
the 'quadratic B]Z' test, a biaxial tension test, and a biaxial
compression test. The remaining open areas of the surface, which are
the result of the formation of complex roots of the cubic equation,
can be closed by evaluating the cubic equation at its local maximum.

The experimental technique that was developed in this program
for obtaining the biaxial compressive strength data for composite
laminates has been found to be quite successful. The procedure

involves the bending of honeycomb sandwich cross-beams with independent
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loading of each arm. This loading scheme allows one to obtain almost
any desired stress ratio. The major disadvantage with the use of the
cross-beam bending method is the difficulty of analysing the stresses
within the composite. This is compounded by the necessity of using
a reduced thickness test section to localize the location of failure.
Nevertheless, stress results were successfully obtained from strain
gauge data and a knowledge of the material properties.

In analysing the differences between the cubic and quadratic
tensor polynomial theories, it is seen that the cubic requires more
experiments to evaluate the strength tensors. Some of these experiments,
for example biaxial compression, are tedious and expensive to perform.
The open nature of the cubic polynomial is a disadvantage that has,
until now, been difficult to overcome. Nevertheless, the quadratic
theory is, in many cases, inadequate to accurately predict the
ultimate strength of composite laminates. In some instances, the
quadratic can even over-predict the strength. This is particularly true
of the compression-compression strength. It would be argued that most
laminates under biaxial compression will fail due to buckling Tong
before material failure occurs. The fact is that situations could
arise where the difference between the prediction methods could be critical.
For example, a composite facing under compression but stabilized by
honeycomb, or a multimode failure where one or more plys is subjected
to a compressive stress without the laminate being under biaxial
compression. Since a failure criterion is only as good as its
predictive ability, the cubic tensor polynomial is the obvious choice.
The benefits far outweigh the disadvantages.

Finally, the application of the tensor polynomial failure criterion

to the strength analysis of laminates with holes has been shown to
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provide the same degree of correlation with test data as the method of

‘characteristic distances'. Both approaches work well for uniaxial

loading but insufficient evidence exists for biaxial load cases.
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TABLE ‘1

Material Properties for Graphite/Epoxy

(3M SP288-T300)

1 Eas V12 Gi2
(psi) (psi) (psi)
20.5x10° 1.4x10° 0.26 0.594x10°

Principle Strength Tensors for Graphite/Epoxy

(3M SP288-T300)

F F F F F F

1 11 2 22 6 66
(ksi) ! ksi)™®  (ksi)! (ksi)™?  (ksi)"!  (ksi)~?
2.482x10'3 4.239><1o’5 1.035><1o’1 3.936><1o“3 0 5.172><10"3
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TABLE 2

Ultimate Strains, Stresses and Failure Loads

from the Biaxial Compression Test

Ultimate Strain

(ue)
Fiber Direction -8870
Matrix Direction -5700

Testing Machine
F
(1b.)

Ultimate Load 1918

TABLE 3

Ultimate Stress
(ksi)

-184.7

-11.3

Hydraulic Pistons
P
(1b.)

482,

Biaxial Tests for Evaluating the Interaction Strength Tensors

‘1 %2
(ksi) (ksi)
161.5 -17.4 B12 test
187.2 7.0 Tension-Tension test
-184.7 -11.3 Compression-Compression test
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TABLE 4

Strength Tensors for Graphite/Epoxy

(3M SP288-T300)

Principle Strength Tensors:

F F

1 11 F Fa2 Fe Fee
=1 ey = I o U oy -
(ksi) ksi)® asi)! st sl k)2
-3 -5 -1 -3 -3
-2.482x10 4.239x10 1.035x10 3.936x%10 0 5.172x10
Interaction Strength Tensors:
F12 Fl12 Fi22 Fi66 Fa66
Ly =2 -~ Py - ey~ -
(ksi)™* (ksi)~> (ksi) ™3 (ksi) > (ksi) ™3
-2.233x10°%  _2.898x1077 -5.079x10"%  .4.170x10"% _1.026x107%
Table § Comparisoh .of Principal Tensor Polynomial Strength Parameters
for Glass/Epoxy Material (3M, 1003)
Strength Parameters
F1 F11 F2 F22 F66
case (ks1) "t (ks1) "2 (ks1) ! (kS1) "2 (xST) "2
?3/3°ieo) -3.076x1073  8.398~107°  2.344x10"% 2.270x1072  2.142x1072
a/W = 0.25 3 -4 -2 -
Experiment -8.013x10 4.045x10 0.382 6.090%10 8.000%10
only .
a/W = 0.25
Point stress -3 -4 2 -2
~characteristic -6.520%10 3.397x10 0.386 8.300%10

distance* from
tests

7.500%x10"

*) = -
LT 0.07", I'C

= 0.09", ls = 0.10".
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. EXTERNAL LOAD SYSTEM

LAMINATE FAILURE
CRITERION

EFFECT OF FLAWS ; l LAMINA
AND > LAMINA STRESS STATE e CONSTITUTIVE
BOUNDARY CONDITIONS RELATIONS

‘ — ENVIRONMENTAL INFLUENCE
- LAMINA FAILURE TEMPERATURE,

1

LAMINA STRENGTH
PARAMETERS

FIG. 1: CALCULATION PROCEDURE FOR DETERMINING STATIC AND FATIGUE STRENGTH
OF LAMINATED STRUCTURES.
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FIGURE 2: Arbitrary Failure Surface in Stress Space
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FIGURE 9: Close-Up View of Biaxigil Compression Apparatus

FIGURE 10: Test Set-Up for Biaxial Compression
using Dual Independent Loading System
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FIGURE 11: Loading Schematic of Cross—-Beam
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FIGURE 17: View of Load System for Biaxial Test

FIGURE 18: Close-Up View of Biaxial Test Rig
with Independent Loading Capability ,
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FIGURE 19: Experimental Set-Up for Performing
Biaxial Compression Tests
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FIGURE 21: Overall View of Failed Test Section in
Biaxial Compression Beam Experiment

FIGURE 22: Close-Up View of Failed Section
Note: Failure first occurred in test section
and then spread to beam edges.
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Stress Analysis of
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ALL EXPERIMENT METHOD

0°, 90° Tension
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for d/W > 0

Correlate Test Results
with Analysis to Obtain

Charac. Dist.
(27, 2c» 25, 2B)

Y
90° Shear Test
for d/W > 0
90° Biaxial Obtain
Load Test (Fy, Fi1)
for d/W > 0 for d/W > 0

[~ — | +
Using (21, %c» %5) Using 2B and . e P
Calculate Constraint Eq.* f$g$a&2ngz;g%ni1gé)*
(Fi, Fij) Calculate for d/W > 0
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| Apply Tensor Polynomial (see Fig. 1) -
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*see Ref. [11]
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Fig. 44 Methods of Failure Analysis for Laminates with Holes
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Appendix A

Application of Strength Criterion

to Fatigue Life Prediction

The purpose of this Appendix is to illustrate how the phenomenological
form of a static strength criterion can be used to predict fatigue 1ife.
Let us assume that the fatigue 1ife equation can be expressed in the
same form as the tensor polynomial failure criterion [Eq. (1)].

However, in this case, the fatigue strength parameters are not constants,
but rather are functionslof the frequency of loading (n), the number
Oin/ » i.e., F=F(n, N, R).

The stresses in Eq. (1) shall be regarded as the maximum cyclic principal

of cycles (N) and the stress ratio R = Ornax
lamina stresses.

Under simple loading conditions when n and R are constants, then the
fatigue strength parameters are only a function of the number of cycles,
N. As stated earlier, the quadratic formulation provides good strength
predictions for such load cases as uniaxial tension and compression.
Consequently, for this limited set of conditions, which are typical in
fatigue tests, then the fatigue strength functions necessary to

characterize a lamina, are given by

F, = 1 - 1 P, = 1 - 1 Fll = X ‘N).}(l ()
1 xDZN) xD(N) 2 YD(N) YD(N) D D (AJ)
1 1
P - _..T.T._-_T——— F =
22 YD N YD(N) 66 SD(N)Z

To determine the remaining quadratic interaction term would require
a biaxial fatigue test. However, for non-biaxial loading, it has been
found that F]2 contributes little to the static strength prediction.
In any case, fatigue tests must be conducted on 0° and 90° samples for
given R values to determine the fatigue functions contained in Egqs. (A.1).

This involves tension and compression fatigue tests in both the fiber (1)
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and transverse (2) directions, as well as pure shear in the 1-2 plane.
A preliminary attempt using this approach, including all of the above

'fatigue functions', is contained in Ref. (21).
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APPENDIX B

STRESS DIFFUSION IN AN ALUMINUM

CROSS-BEAM IN BENDING

As a first check on the ability of ADINA to adequately model
the biaxial load state, the diffusion of stresses in the test section
area of an aluminum cross-beam was studied. An aluminum beam, to be
placedkunderkuniaxial bending, was ihstrumented with strain gauges
at the locations shown in Fig. B-1. The purpose of the gauges was
to record the decrease in axial strain along the unloaded arm of
the cross-beam. The beam was loaded uniaxially in the compression
rig, and the strains were recorded at several loads. These values
are listed in Table B-1.

The finite element model of the cross-beam is shown in Fig. B-2.
It can be seen that, owing to symmetry, only one quarter of the beam
was analysed. The element type that was selected for the ADINA analysis
was the plate/shell element. To model the uniaxial bending loads, nodes
13 to 16 were constrained to behave as a simple support, and out of
plane loads were applied at nodes 1 to 4. The relevant results of this
analysis are summarized in Table B-2. Notice that since the program
calculates the stresses in the elements at the Gaussian Integration points,
the surface stresses in the beam were linearly extrapolated from these

values.
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Figure B-3 graphs the comparisons between ADINA and the experimental
-results. It plots the axial strains as a function of distance perpen-
dicular -to ‘the :loaded -arm of the cross-beam. The experimental points
were obtained from the values listed in Table B-1.by removing the zero
offset in the load-strain response caused by some initial slaék'in'the
testing apparatus.

Figure B-3 shows the excellent correlation that was found to exist
between*the<experimentalfand analytical results. It is also interesting
‘to note that the stress field diffuses about one beam width along the

unloaded arm of ‘the ¢ross-bean.
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TABLE B-1

Experimental Data for Uniaxial Bending of Aluminum Cross-Beam

Total Load
(1b.)

0
2.5
5.0
7.5

10.0
12,5
15.0
17.5
20.0
22.5
25.0
27.5

30.0

Strains (ue) , :
€9 € €, €4 €4 €g
0 0 0 0 0 0
-75 -63 -43 -27 -13 -130
-105 -87 ~-62 -35 -18 -184
-143 -120 -83 -50 -24 -250
-168 -139 -99 -56 ~-28 -294
-197 -165 -114 -69 -32 -344
-230 -190 -136 -78 -37 -401
-259 -217 -152 -89 -42 -452
~-290 -239 -171 -98 -47 -507
-322 -266 -188 -111 -53 -561
-353 -290 -208 -120 -58 -617
-385 -320 -228 -131 -63 -671
-415 -340 -245 -141 -67 -724
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TABLE B-2

ADINA Results for Uniaxial Bending of Cross-Beam

Element No. Node No. Stress of Integ. Pts.(psi) Surface Strains (ue)

% Y% €x__ ‘y

3 37 177.2 1262. -35 210
4 37 67.84 1140. .48 194
41 49.86 1093, .48 187

45 -1.699 819.7 42 142

49 -37.91 529.1 .34 94

5 49 -21.95 . 388.4 24 68
53 -24.20 189.8 -14 34

57 -11.20 67.23 -5 12
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APPENDIX C

BIAXIAL BENDING OF ALUMINUM CROSS-BEAM

The second check case of ADINA involved the biaxial bending of
the aluminum croés—beam. The beam was instrumented with strain
gauges in the locations shown in Fig. C-1. The beam was then stressed
with two equal four-point bending moments along each arm. The strains
that were measured at increments of the applied load are given in
Table C-1.

The finite element model of the aluminum beam is the same as
the one used in Appendix B to evaluate the stress diffusion through
the test séction and is illustrated in Fig. C-2. Notice, again, that
one quarter of the beam was analysed with plate/shell elements. The
bending moments were applied by constraining nodes 13 to 16 and nodes
61 to 64, to behave as simple supports. Equal out of plane loads were
then applied at nodes 1 to 4 and nodes 73 to 76. The relevant computer
results are summarized in Table C-2...

The ADINA analysis calculates the stresses in the beam at the
Gaussian integration points. For the 0.25 inch thick beam, these
are located at +0.07217 inches from the midplane. The values given
at these points were linearly extrapolated to the beam surface since

this is where the strain measurements were taken.
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Due to the symmetry of thekloading and of the sample itself, the
stresses will be symmetric in each of the four directions radiating
from the cross-beanm centre; The transverse and longitudinal strains
as a function of distance from the centre are plotted in Fig. C-3.

Both experimental and analytical results are shown here for comparison.
It can be seen that the correlation between the reéults is very good,
especially when one considers that the strain gauges indicate the

average strain over their measuring area.
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TABLE C-1

Experimental Data for Biaxial Bending of Aluminum Cross-Beam

Total Load
(1b.)

0

5
10
15
20
25
30
35
40
45

50

- Strains (ue)
€ox oy €1 €2 €3 €4 €5
0 0 0 0 0 0 0
233 40 217 -7 14 23 -76
57 =70 =30 0 24 39 ~132
-75 -92 -37 -4 31 51 -174
-94  -114 -49 o 39 65 -219
2116  -140  -59 -2 49 80 271
2137 -164 270 -2 57 93 -320
-159  -188 -85 -3 66 107 ~369
J181 211 -92 -2 74 121 ~420
204  -235  -104 -5 82 134 ~472
227 -259  -118 -3 91 149 -524
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TABLE C-2

ADINA Results for Biaxial Bending of Cross-Beam

Element No. Node No. Stress of Integ. Pts.(psi) Surface Strains (ue)

Ux Uy €x €y

3 37 1317. 1330. 159. 162.
4 37 1330. 1317. 162. 159.
41 1514. 1196. 200. 128.

45 1782. 796.6 267. 4s.

49 2067. 502.3 332, -20.

5 49 2161. 399.0 354, -43,
53 2145. 298.0 356. -60.

57 2254. 422.1 368. -44.

61 2421. 663.0 385. -11.
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FIGURE C-2: Finite Element Model of Aluminum Cross—-Beam
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APPENDIX D

FINITE ELEMENT ANALYSIS OF THE HONEYCOMB

SANDWICH CROSS-BEAM

The finite éiement model of the honeycomb sandyich cross-beam
using ADINA is illustrated in Fig. D-1. The honeycomb was modelled
with 3-D elemenis and the facings with 2-D plate elements. The plate
elements have the same node numbering as the upper and lower surfaces
of the 3-D élements. They also have the necessary orthotropic
material capability for the composite facing. All of the elements
are isoparametric and could thus be distorted to follow the contours
of the beam. Due to symmetry considerations, only one quarter of
the sample was analysed.

Some difficulties were encountered in the correlation between
the experimental beam stiffness and the analytical results produced
by ADINA. A parameter study was performed to examine the effect of
varying the composite modulus and honeycomb thickness on the overall
beam stiffness as predicted by the compﬁter program. The results of
this study are shown in Table D-1. This table lists the load-strain
response of the beam in uniaxial bending as was calculated by ADINA.
To bring the analytical results to within ten percent of the experi-
mental values, the honeycomb thickness and composite modulus were
required to be modified to the values indicated on the table. As
a check on the results, the new parameters were used in a biaxial
case shown in Table D-2. It can be seen that with the modified

parameters, the difference between experiment and analysis is less
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than 10% here also. This is the configuration that was used in all
analyses of the cross-beam.

Having established a model of the cross-beam which corresponds
to experimental results, a study of the response to various biaxial
load ratios was undertaken. The results of this study are shown in
Fig. D-2. This figure plots the strain ratio in the test sectibn as
a function of the load ratio applied to the beam. Since the desired
stress ratio for the biaxial compression experiment was about o,/0, =13,
the corresponding strain ratio was about €1/€y =1, Thus the appro-

priate biaxial load ratio was found to be P/F =0.25.
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TABLE D-1

Parameter Study of Cross-Beam in Uniaxial Bending

ADINA

Honeycomb Composite Stiffness Load-Strain Response (ue/1b.)

Thickness (x 106 psi) X-Loading Y-Loading
(in) Ell 522 ex/F ey/F ex/F e /F
1.625 20.5 1.4 -5.74  4.25 4.10 -28.0
2.0 20.5 1.4 -4,48 3.88 3.51 -22.0
2.0 19.0 1.4 -4.77 4.11 3.72 -22.2
2.0 19.0 1.8 -4.74 3.80 3.43 -19.7
2.0 18.5 1.8 -4.84 3.87 3.51 -19.7

EXPERIMENT
- - - -5.37  3.69 3.49 -18.5

*Final Modifications
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TABLE D-2

Parameter Study of Cross-Beam in Biaxial Bending

ADINA
Honeycomb  Composite Stiffness Load-Strain Response (ue/l1b.)
Thickness (x 10% psi) e /F €, /F
(in.) E11 E22
1.625 20.5 1.4 -5.80 4.3
*2.0 18.5 1.8 -4.56 3.34
EXPERIMENT

- - - -5.00 3.13

*Modified Values
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APPENDIX E

CROSS-BEAM ANALYSIS USING BEAM THEORY

- The design of the cross-beam required the knowledge of the stresses
and loads that would be applied to the sample at failure. This was
necessary to ensure that premature failure of the honeycomb, for example,
did not occur before material failure of‘the composite. The cost of
the finite element analysis was prohibitive for this initial design
process, so beam theory was used.

The assumption that was made was that the analysis of the cross-
beam could be separated into the analysis of two separate single beams
in bending, with some constraint and compatibility requirements. It
was also assumed that the interaction area between the two beams could
be represented by a constant continuous load. The forces acting on
the two beams are illustrated in Fig. E-1.

Each of the beams can be separated into three distinct sections,
as shown. Analysing the first beam only, and observing the force

balance in Fig. E-2a, the curvature, slope and displacement are

de L (EI) :
1 1
2

F.x
dw 1 1
x|, = tEns K - ) (E.1b)

1 1 |
1 les

W'l = -i-(-ﬁ-l—j—i- (kz + klx - 3 ) ‘ (E.IC)
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where k1 and k, are integration constants. Similarly, for section 2,

from Fig. E-2b

d"w 1
= [(F,-F;)x = F,%,] (E.2a)
2 2 TED,; F27f 2%
awi 1l L Fgx + (Fo-F,) %’ (E.2b
dx|, = WED; |3 " F2h1 2"F1) 5 -2b)
1 » lelxz x3
W= mny etk - Tz R) (E.2¢)

And finally for section 3, from Fig. E-2¢

2
2 2 % -
dwl . _ 1 X 1
2| - CED '{'F2£1 *+ (Fy=Fp)x + P[%r - dyx o+ “?{]} (E.3a)
x*| 1 L
2
dw| _ 1 X
&|, © TED), {ks - Falyx v (Fy-Fp) =5
-3 2 d%x
2 3
N 1 X X
Wiy = (eI {ké * kgx = Foly 5+ (Fy-F )

34 ax®  a%P
+ 1 - -—-—-1 + 1 (E.3c)
P57 3 7 .

where k3’ k4, k5 and k6 are integration constants. The zero slope

condition at the beam centre gives
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g 4l 4y
ks = FZR'].L]. - (FZ-FI) -5 - P % - 5" B 2 V (E.4)

Slope compatibility between sections 1 and 2, and between sections 2

and 3 gives

lei
Ky o= kg - S ; (E.5)
3
Pdl ’
ks = ks + —-6-— : (E.G)
Displacement compatibility between the sections 2 and 3 gives
4
k6 = k4 + k3d1 - ksd1 - P35 (E.7)
Zero displacement at load point F, (x=21) gives
Foty
k2 =— - klnl (E.8)
and
Y
k4 = (2F2+F1) < - k321 (E.9)

Equations (E.4) to (E.9) can be solved for the six interation constants,

k.. A similar set of equations can be obtained for the second beam.

It only remains to find the relationships between the forces, F, and p.
Equating displacements between the ends (x=0) of the two beanms

gives
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%, (22-31%y g2
I e Uit O I I
F1[TetzEny, 2 [BCED]

| 2,2
o [y
3| 8EEDY,

4 %

-0,0 S
+ Fy lemeess—] + P |
4 VB(ZEI)ZV 48

Equating displacements between the beams at the beam centres gives

3 2
Pl-szlszLl
!_ 6 (TED)

Fl

3
'3

-2
+ F S -
2 |24 (ZEI)

3

3

3 12 3=t
- -£2+3£2L2—2L2
1 3 6(ZEI)2

2.2

4 Ls+164

3
+2d1-12d1 1 1

L1~6L

s

]

2.2
12d2L2+16d2L

+ Fy E4(ZEI)

3,4

4

48(EEI)1

3

0

48(ZEI)2

3.4
z‘“z]

(E.11)

Assume that the loads acting upon the beam in Fig. E-1 can be separated

into the sum of a pressure load and its simple support response, and a

four-point bending load, as shown in Fig. E-3.

the load points gives

1

t

Summing the forces ‘at

(E.12a)

(E.12b)

The values of C1 and CZ’ due to the pressure load, are obtained from

Castigliano's first theorem by minimizing the strain energy on ‘that

beam. Thus
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2wgd —ewg,d? - o wS —ewie.d
n 1 11 " 71 171
C, = 3 3 > (E.13a)
1621 —2421d1 -128,w

.~ _w

Cy =Gy 5 (E.13b) .
Similarly for the second beam

o] ' ’

Fz - Fz - Cgp = 0 (E.14a)

!

Fy - F5 - C4p = 0 (E.14b)

where
2w9,3 -~ 6wl d2 - % w3 -6w22 d
, 2 272 2 22
C4 = 3 5 > (E.153)
1622 -2452,2d2 -12£2w ~ »
- w

c3 = c4 -3 (E.15b)
And finally, the total load, F, on the cross-beam is given by

F=F +F+ FS + F4 (E.16)

Given ‘the total load, Eqs. (E.10) to (E.16) can be solved for the
1
3 "4 3

these values, they can be back substituted to solve for the beam dis-

1
seven unknown forces, Fl’ FZ’ F,, F,, Fl, F, and p. Having obtained

placements and slopes.
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The stresses in the beam can now be determined. Consider only
the first beam, and define it to be oriented in the x-direction. The

bending moment at the centre of the beam is given by

2
M, = -Fpfy + (Fy-F)L; + 121 (Ly-d;) (E.17)

The stresses at thickness z from the composite surface are given by

EcxMx(yc01'z)
OXC = (ZEI)I - (E.18)
where Ecx = Young's modulus of the composite in the x-direction
Yo = Distance of the composite outer surface to the
01

neutral axis of the first beam.

The maximum stresses in the metal are given by

-E M

o m -
%xm © TED, [t +tp+t +2t, -y ] (E.19)

o1

where t., th’ tm and t, are the thickness of the composite, honeycomb,
metal and adhesive, respectively. The shear stress between the honey-

comb and composite is given by

F

1 { 2 2 2
T.. = 57— sE__[y -y, -t)7] +E_[(y -t)
cXx Z(ZEI)1 2 ] ¢y © a~ecgy ¢
2 \
- ‘t "t ) I E.20)
(ycm ¢ "t ] (
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And the shear stress between the honeycomb and the metal is given by

F
.1 2 2
Tox = ZCZEI)I \Em[(th+tm+tc+2ta'yc01) - (th+tc+2ta~yC01) ]
+ E_[(t,+t +2t - )2 - (ty+t +t - )2] (E 215
al**h "¢ “"a yco1 h "¢ "a chI :

Finally, the distance between the reutral axis and the surface of the

composite is given by

t t

| m h
[Emtm(tc+2ta+th +-§q + Bhth(tcn;a +—§J
. ti
+ E t_ (2t +2t_+t,) + E_ >
y, = aa’~’¢c a h c 2 (E.22)
0 [Emtm-+Ectc +Epty +ZEata]

All of the above equations were coded into a FORTRAN program and used

to design the composite cross-beam structure used in the biaxial compression

test rig.
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APPENDIX F

TECHNICAL DRAWINGS OF THE BIAXIAL

COMPRESSION TEST RIG

The figures on the following pages give the design drawings used
in the manufacture of the compression-compression apparatus. The

assembled test rig is illustrated in Figs. 13 and 14.

111



16

Y

¥
‘ 1
¢ @
T _,_l .
= g
4 ]
'4— 2 <
¢ ! @
¢ 2 ¢
o _ I i
e @
(4 ! e
]
@ @\
¥ :
3/8° Plate -/ \\- 1/4-20 thread
DIMENSIONS ARE IN INCHES
NO. REQ'D: 1 MATERIAL: ALUMINUM
BASE PLATE SCALE 1:4
Drawn by: W.G. ELLIOTT JULY 1982

FIGURE F-1

112




A

\

@)

&)

[~~~ 13/32 dia.

3/8

ZHA» dia.

*:3/16

\— 1/4 dia.

T

e
pola wieg
; H 1

DIMENSIONS ARE IN INCHES

GUIDE SUPPORT PLATE

NO. REQ’D: 1

MATERIAL: ALUMINUM

SCALE  1:2°

Drawn by: W.G. ELLIOTT

JULY 1982

FIGURE F-2 113




Al

174 rad.
7[‘“'“‘*7?/-

gy By
[Worpirdt |
oy
rzz
[V
Lt
1 wom t

1/4-20 thread

172 dla.

DIMENSIONS ARE IN INCHES

CENTRAL LOAD BLOCK GUIDE

NO., REQ'D: 4

MATERIAL: MILD STEEL

FULL SCALE

Drawn by: W.G, ELLIOTT

JULY 1982

FIGURE F"S 114




¢
e
\\‘ #6-32 thread
1/4-20 thread
e i
i

~ i N
© - © T BROHDH
<
3 (o] ¢
Y v
T . A
o - - o
\\.o 1 “.. ..“.“.J..."
S N i
© [ © © BHHROH I
o
| | !
© o &@— —@ BHEROH:
RSL of
Cowins 5 M «©
o ') =
¥ Y
Lt (3] iy
e S e B B
- s aoany
© © e BHEDES!
-
Aantnny
© © ¥ BRGRRL:

MATERIAL: ALUMINUM
JULY 1882

DIMENSIONS ARE IN INCHES

1
115

FULL SCALE
Drawn by: W.G. ELLIOTT

NO. REQ'D:

FIGURE F-4

CENTRAL LOADING BLOCK




|

os

0.4

O

R

\—- 1/4 dia,

o.1+ X"“ rad,

R 3

e = -

S

DIMENSIONS ARE IN INCHES

CENTRAL LOAD DIFFUSER

NO. REQ'D:

1

MATERIAL: MILD STEEL

FULL SCALE

CASE HARDEN

Drawn by: W.G. ELLIOTT

JULY 1982

FIGURE F-5

116




e 2 Il
oo
r @ 3/16 (1) /-‘ 174 dia.
NG
ol
l ¢ © ©\ \— 13/32 dia.

$#6-32 thread\

EF B s

= 2 AL 16

T8 CETTY
P [
1 1 § ¥
1 H '
N =
1] 1
| I ! '
o Lo
o .o
b P

DIMENSIONS ARE IN INCHES
NO. REQ'D: 4 MATERIAL: ALUMINUM
ROCKER ELEVATOR AND SUPPORT FULL SCALE
s i Drawn by: W.G. ELLIOTT JULY 1982

FIGURE F-6 117




{
}

1/4

DIMENSIONS ARE IN INCHES

SIMPLE SUPPORT ROCKER PLATE

NO. REQ'D: 8

MATERIAL: MILD STEEL

FULL SCALE

CASE HARDEN

Drawn by: W.G, ELLIOTT

JULY 1882

FIGURE F-7

118




VPSR Y G

T @) V4
: no) [Anan A
E:-.':'.- NS i
l 12
: 1/8 +
> -} Ll—*
UCE T et
I T

\- 15/64 dia.

9/64 dia.

#8~32 thread

1

va_f-y

O 1/8
'-} ¥

'f—

DIMENSIONS ARE IN INCHES

SIMPLE SUPPORT ROCKER BASE

NO, REQ'D: 8

MATERIAL: MILD STEEL

FULL SCALE

CASE HARDEN

Drawn by: W.G. ELLIOTT

JULY 1982

FIGURE F-8

119




T
L&

y16 | 4-qd |
DIMENSIONS ARE IN INCHES
NO. REQ'D: 16 MATERIAL: MILD STEEL
ROCKER BASE SIDE FULL SCALE

Drawn by: W.G., ELLIOTT

JULY 1982

FIGURE F-9

120




#6-32 thread

4—-—1%——’

|

) A
518 | L s
'\ ,?&___*
3 ] 1
12 N 13
I::g
!L____'_?_'_'i
A
3
1 o] 8 [
12;

[ gy

NI

03;

,

b
o

5/8

\
[
A

/—- #6-32 thread

T DIMENSIONS ARE IN INCHES

INDEPENDENT LOADING BAR

NO. REQ’'D: 1

MATERIAL: ALUMINUM

SCALE 1:2

Drawn by: W.G. ELLIOTT

AUG. 1982

FIGURE F-10

121




e IR S

i

l

[}

i

i

(4
i

1.5 bt Mt

fe o - s o am v w0 e e e oo

far o e aso W W en - om un eo @» s

/318 dia.
DIMENSIONS ARE IN INCHES
NO. REQ'D: 2 MATERIAL: ALUMINUM
CABLE LOAD TRANSFER BLOCK FULL SCALE
Drawn by: W.G. ELLIOTT AUG. 1982

FIGURE F-11 122




3/8

DIMENSIONS ARE IN INCHES

INDEPENDENT LOADING PIVOT PIN

NO. REQ'D: 2

MATERIAL: MILD STEEL

FULL SCALE

Drawn by: W.G, ELLIOTT

AUG. 1982

FIGURE F-12

123




I :

|_— 3/8 dia.

1
>8I 5/8
\ —'C? as8 {
¥
1/8° Plate

\ 8/64 dia.

DIMENSIONS ARE IN INCHES

LOADING BAR SIDE

NO. REQ'D: 4

MATERIAL: MILD STEEL

FULL SCALE

Drawn by: W.G. ELLIOTT

AUG,. 1982

FIGURE F-13 124



Biaxial Compression

. Report No. 2. Government Accession No. 3. Recipient’s Catalog: No.
NASA CR-172192

. Title and Subtitie 5. Report Date
Failure Analysis of Composite Laminates Including August 1983

6. Performing Organization Code

. Author(s)

R. C. Tennyson
W. G. ETliott

8. Performing Organization Report No.

10. Work Unit No,

. Performing Organization Name and Address

University of Toronto
Institute for Aerospace Studies
Toronto, Ontario, Canada

11. Contract or Grant No.

NSG-7409

13. Type of Report and Period Covered

. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

Contractor Report
8/80 - 8/82

14. Sponsoring Agency Code
505-42-23-03

15.

Supplementary Notes

Langley Technical Monitor: Donald J. Baker
Interim Report

. Abstract

This report describes a continued effort on the development and
application of the tensor polynomial failure criterion for com-

posite laminate analysis. In particular, emphasis is given to the
design, construction and testing of a cross-beam laminate configuration

to obtain 'pure' biaxial compression failure.

The purpose of this test

case was to provide data to permit 'closure' of the cubic form of the
failure surface in the 1-2 compression-compression quadrant. This
resulted in a revised set of interaction strength parameters and the
construction of a failure surface which can be used with confidence

for strength predictions, assuming a plane stress state exists.
Furthermore, the problem of complex conjugate roots which can occur

in some failure regions is addressed and an 'engineering' interpretation
is provided. Results are presented illustrating this behaviour and the
methodology for overcoming this problem is discussed.

Finally, a further application of the phenomenological approach using a
failure equation is presented dealing with holes in laminates. Both
analytical and experimental results are given to demonstrate an alter-

native method for predicting failure loads.

17.

Key Words (Suggested by Author(s)) 18. Distribution Statement
Composite Structures
Failure Analysis Unclassified - Unlimited
Laminates

Modulus of Elasticity
Tsi-Wu Criterion

Subject Category - 24

19.

Security Classif. {of this report) 20. Security Classif. (of this page)

Unclassified Unclassified

21. No. of Pages 22. Price
130 A07

N-305

For sale by the National Technical Information Service, Springfield, Virginia 22161




End of Document






