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lJ 

d 

d1,d2 

Ell ,E22 

Nomenclature 

load parameter coefficients 

hole diameter 

beam dimensions 

orthotropic moduli of elasticity in the 1 and 2 

directions, respectively 

moduli of elasticity of the composite, honeycomb 
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EI bending stiffness 
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Mx 

Mx,My 

Nx,Ny 
p 

w 

X,X' 

ranks, respectively 

orthotropic shear modulus of elasticity in the 

1-2 plane 

beam dimensions 

characteristic distances for tension, compression, 

shear and biaxial loading, respectively 

beam dimensions 

beam bending moment 

laminate bending moment resultants 

laminate normal stress resultants 

hydraul i c force 

line load (force/unit length) 

static lamina shear strength measured in 1-2 plane 

fatigue shear strength of lamina measured in the 

1-2 plane for given Nand R values 

sample width 

tensile and compressive static lamina strengths 

measured in the l-direction 
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Y,Y' 

Greek Symbols 

a 

y 

E 

a 

A 

v 

(J 

Subscripts 

x,y 

1 ,2 

6 

tensile and compressive lamina fatigue strengths 

measured in the l-direction for given Nand R values 

tensile and compressive static lamina strengths 

measured in the 2-direction 

tensile and compressive lamina fatigue strengths 

measured in the 2-direction for given Nand R values 

biaxial stress ratio 

shear strain 

normal strain 

fiber orientation relative to structural x-axis 

structural load parameter 

Poisson's ratio 

norma 1 stress 

orthogonal in-plane structural axes 

lamina material axes parallel and orthogonal to 

the fiber reinforcement, respectively 

indicates shear properties in the 1-2 plane 
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1. Introduction 

With the advent of composite material primary structural components 

in advanced high performance aircraft and helicopters, the need for 

proven predictive formulations to quantify the strength of laminates 

is of paramount concern. Not only is this important in the initial 

structural design phase, but efficient systems management programs 

require the ability to define 'accept/repair' criteria and non-destructive 

inspection intervals, thus necessitating the development of a methodology 

for assessing the effect of defects as well. 

In the design of laminates, one of the major difficulties still 

confronting the analyst is that of selecting a suitable strength criterion. 

This problem is of course further compounded by the presence of holes, 

inter1aminar flaws and boundary conditions which give rise to local stress 

concentrations and three-dimensional stress fields. Suffice it to say 

that an accurate static strength prediction for a laminate subject to 

these conditions represents a considerable analytical task. To extend 

this predictive capability to include fatigue loading represents an 

even more difficult problem. One can illustrate the various aspects 

involved by examining the flow chart of Fig. 1. For a given external 

load system (i.e., including temperature), one first needs to calculate 

the stress state in each lamina. If the effects of flaws and boundary 

conditions are not considered, then classical laminate theory can be used. 

Otherwise, recourse to complex analytical models and fracture mechanics 

considerations are necessary. 

The application of any failure criterion first requires a relatively 

accurate evaluation of the stress field. This is not at all a trivial 

task as, in general, composite failures result from complex three­

dimensional stress states and the materials are anisotropic. Thus, from 
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an applications point of view it seems that the assumption of laminate 

homogeneity must be made and this assumption has been determined to be 

reasonable even for cracked structures, provided that the elastic crack 

tip singularity contains a sufficient number of fibers [1]. In addition 

there are several other features of the problem which must be considered. 

First, is the failure dominated by planar or three-dimensional phenomena? 

For example, if delamination is a predominant mode of failure, then a 

three-dimensional analysis is a necessity. On the other hand, if the 

failure is planar, then it is reasonable to approach the problem from a 

conventional lamine-laminate approach. The second consideration relates 

to the absence or presence of flaws. In this regard, there are 

basically three cases; nominally flaw free, sharp flaws (cracks, 

d8bminations) and smooth flaws (circular holes, cutouts). The failure 

criterion adopted and the corresponding stress analysis should probably 

address each of the above situations individually since it seems 

at present, that it is not possible to encompass all failure possibilities 

using a single failure criterion. 

Once the stress field is known, it would appear that the applicat-

ion of a lamina failure criterion would be appropriate, at each 'point' 

or 'element ' (if finite element techniques are used) throughout the 

laminate. Because of local stress concentrations, one would presume 

that failure initiates in the highest stressed region and progresses 

through the laminate. However, previous analytical and experimental 
~ 

studies on holes and cracks [Refs. 2, 3] for example, have shown poor 

correlation using this approach and recourse to 'characteristic 

distances', which define either 'evaluation points' or 'integration 

intervals' was necessary. These 'characteristic distances' were obtained 

from test data on laminates in combination with the calculated stress 

fields~ 
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It should also be noted that environmental effects can readily be 

taken into account by measuring the change in the constitutive properties 

(such as Ell, E22, G12, v12) and strength parameters. In the latter case, 

however, one requires a strength criterion before evaluating the 

appropriate coefficients. Such a criterion should also include three­

dimensional stress effects consistent with the stress analysis. 

An alternative method to that involving detailed stress calculations 

coupled with selected laminate strength measurements is a phenomenological 

approach. Assuming a given lamina failure criterion, one can proceed 

to evaluate the strength parameters as a function of flaw size/plate 

width, flaw location and environment. Thus, a laminate is treated as 

though it had no flaw but coosisted of individual lamina having strength 

properties suitably reduced according to the above parameters. 

Up to present, the discussion has focussed on static strength predict­

ions. It is of interest to examine if these methods can be extended to 

predict fatigue failure of laminates. Previous work by other authors 

[4-6] has shown that the use of 'fatigue functions', based on simple 

static quadratic failure relations, can yield reasonable correlation 

with test data in many instances. In these cases, only the fatigue 

strengths under tension-tension and shear loading were reqllired 

(X, Y, S) although a delamination effect was included. Similar work 

based on a quadratic Tsai-Hill failure criterion has also been completed 

[7] ,again using only the X, Y and S strength parameters. Although 

reasonable comparisons with test data were reported in Ref. 7 for 

S-glass/epoxy (SP-250-SF1), such was not the case for graphite/epoxy (GRE) 

(E 788/T300) based on limited results to date. However, despite 

the disagreement, it is felt that this approach should be pursued 

utilizing an improved strength criterion in combination with fatigue 
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functions derived from tension, compression, torsion and biaxial load 

tests, a brief outline of which is presented in Appendix A. 

In this investigation, effort has been directed towards evaluating 

the tensor polynomial failure criterion, which was advocated as early 

as 1966 by Ma1meister [8] for 'unflawed' laminates. This failure 

model has been further developed extensive1y·by Tsai and Wu [9] in 

quadratic and cubic forms [10]. However, it has also been found [10] 

that the cubic form can lead to some undesirable features. The 

mathematical nature of the cubic equation is such that the failure 

surface in stress space (u l ,u2 ,u6 ) is not closed. Thus, there exist 

situations for which the cubic failure criterion will predict that the 

ultimate strength of a laminate is infinite. This phenomenon was 

found [10,11] to occur for some regions in the compression-compression 

quadrant for example. 

These difficulties have led to the desire to obtain some experimental 

results in this 'open area' of the compression-compression quadrant. 

With these experiments, and some additional analysis, it was hypothesized 

that the open areas of the failure surface could be closed. Thus the 

cubic tensor polynomial would be all the more viable as a failure 

criterion. At this point, it is reasonable to question the need for 

retaining the cubic interaction terms. However, it has been found that in 

certain biaxial load cases, these terms contribute substantially to the 

ultimate strength prediction [10-12] and must therefore be included in 

the formulation. On the other hand, it should be emphasized that for 

many load cases, particularly simple tension and compression, little 

difference in failure loads is predicted between the quadratic and cubic 

models. This feature will be implemented later when the quadratic form is 

employed to analyse sampies containing circular holes. This report 
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describes the design of an experimental technique and the subsequent 

testing of a composite laminate under a biaxial compressive loading. 

The results are then used to obtain new coefficients for the cubic 

tensor polynomial. The improved failure surfaces that are calculated 

from the biaxial compression experiment are studied, and some 

comparisons are made between the revised cubic and quadratic theories. 

Complete descriptions of the analysis and design of the biaxial 

compression apparatus are provided in Appendices D-F. 

In addition to the refinement of the tensor polynomial failure 

criterion, a combined analytical and experimental program was undertaken 

to demonstrate its application in predicting the tensile strength of 

laminates with holes. This work is described in Section 5. 

2. The Tensor Polynomial Failure Criterion 

2.1 Cubic Form 

The general form of the tensor polynomial failure criterion is 

[8,9] 

{ 

< 1 no failure 
F.a. + F .. a.cr. + F .. a.a.a + •.• = tea) = 1 failure (1) 

1 1 1J 1 J 1Jk 1 J k > 1 failure exceeded 

i,j,k = 1,2, ... ,6 

The 0i represents the six principal stresses and Fi' f ij and Fijk are 

strength tensors of 2nd, 4th and 6th rank, respectively. If one considers 

a cubic formulation and restricts the analysis to a state of plane stress, 

then Eq. (1) reduces to 

F.cr. + F .. cr.cr. + F .. ka.cr.ak = 1 
1 1 1J 1 J 1) 1 J 

i = 1,2,6 (2) 

It is further assumed that the material exhibits some form of symmetry 

and thus Fij = Fji' Fijk = Fi kj = ••• = Fkji , etc. Furthermore, it can 
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be shown that [9] F ... terms can be discarded. If the material 
111 

exhibits equal strength in both positive and negative shear, then the 

failure criterion should not depend upon the sign of 06. Since this 

is true for most materials, including the one considered in this 

report, all odd order terms of 06 in Eq. (2) can be removed. Finally, 

Eq. (2) reduces to the following: 

Flol + F202 + 2Fl2ol 0'2 2 
+ FUO'l + 

2 
F220'2 + 

2 
F660'6 

(3) 
2 2 2 2 + 3FU20'102 + 3F122olCJ2 + 3F1660'10'6 + 3F266CJ20'6 = 1 

This is the final form of the cubic tensor polynomial that is 

used as a lamina failure criterion. It can be considered to present 

the equation of a surface in stress space (°1,°2,°6). To visualize 

this, consider a surface enclosing the origin formed by the intersection 

of orthogonal °1,°2 and 06 axes (Fig. 2). Also, consider a load 

starting at the origin within this surface and pointing in an arbitrary 

direction. As the material is loaded, its state of stress increases 

along this path. The location at which the load path intersects the 

surface represents the point of failure. 

If one considers a linear load path, not necessarily commencing 

at the origin, then the principal stresses can be written as a function 

of a load parameter, A, such that 

° 1 = Cll A + C12 

°2 = C21 A + C22 

°6 = C31 A + C32 

Substituting these equations into Eq. (3) yields 

aA3 + bA2 + CA + d = 0 

where 
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2 2 
+ 3F166(C12C31+2CIIC31C32) + 3F266(C22C31+2C21C31C32) (6b) 

222 
+ FIICII + F22C21 + F66C31 + 2F12CIIC21 

(6c) 

(6d) 

Once the coefficients of the load parameter, Cij , have been specified, 

Eq. (5) can be solved for the two ultimate failure loads, corresponding 

to positive and negative values of A. However, the solution of this 

cubic equation will yield a set of three roots, so a selection criterion 

must be used to establish which of the roots is valid. 

These sets of roots can be classified into three groups: three 

real distinct roots, three real roots with two equal. and one real 

root with a complex conjugate pair. These three possibilities are 

illustrated in Fig. 3 where f(A) (Eq. 5) is plotted as a function of the 

load parameter, A. Any state of stress which results in an f(A) below 

the A-axis represents a Ino-failure l condition. However, once f(A) 

becomes greater than or equal to zero, the material has failed, and the 
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values of A for f(A)=O represent the ultimate failure loads. 

For the first case of three distinct real roots (Fig. 3a), the 

two physically realistic values of AU1t are those that bound the 

local minimum of the curve. The third root is superfluous since it 

cannot be reached from the origin without passing through the failed 

state of f(A»O. 

The second case of two equal roots is also straightforward 

(Fig. 3b). Here there exists a local minimumbounded on either side by 

only two roots. The monotonically decreasing portion of the curve 

cannot be reached without passing through the f(A)=O value, and 

therefore it is not an admissible region. 

The last group of roots, the single real value with a complex 

conjugate pair, is represented in Fig. 3c. Mathematically, the entire 

curve below the A-axis is an admissible region since it can be reached 

from A=O without passing through a failed state. Thus the value 

of A is unbounded on one side of the origin. This effect arises from 

the undesirable nature of the cubic polynomial to be 'open-surfaced ' • 

Hence, it is necessary to develop a scheme to artifica11y bound the 

local minimum. The method which has been proposed [12,14] is the 

intuitive one of taking the local maximum as the second root. Analytically, 

this involves solving the derivative of Eq. (5) for ~ such that the 

second derivative is positive, 

ie; 

Therefore, 

where 

f'(A) = 3aA2 + 2bA + C = 0 

x = -2b ± Ab2 
-12ac 

6a 

" _ 
£ (A) = 6a). + 2b > 0 

-8-
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This method is satisfactory if the local maximum is relatively close to 

the A-axis. However, if the f(A) curve appears as shown in Fig. 4, 

the local maximum does not intuitively represent the best solution. 

Indeed, it is difficult to use any intuitive method to establish the 

value of the second root for this case. This is the situation that 

arises in the third quadrant (compression-compression) of the (01'02) 

planar surface. 

2.2 Principal Strength Tensors 

The principal strength tensors for the cubic polynomial are Fl , 

Fll , F2, F22 and F66 • It has been shown by Wu [15] that these are 

experimentally derivable quantities from simple tension, compression 

and shear tests; ie; 

F 1 - .l 
1 = X X, 

Extensive experimentation on 3M SP288-T300 GRE has been performed 

in Ref's. [10-12] to determine the values for these five principal 

strength tensors. The results are summarized in Table 1. 

2.3 Interaction Strength Tensors 

The nature of these tensor components demands that complicated 

multi-load experimental techniques be used to determine material 

strengths with interacting principal stresses. These experiments can 

be expensive and tedious to perform. Consequently a hybrid method was 

devised [10-11] using only one experiment and four constraint equations 

to determine the interaction tensors. However, this approach is 

inadequate in providing a reasonable solution in the compression-

compression quadrant of the (01,02) plane. The following alternate method 

has been developed to overcome this problem. 

Consider a biaxial experiment involving only 01 and 02 stresses. 

With 06 equal to zero, the following tensor polynomial equation is 

/ 
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obtained from Eq. (3) 

(9) 

Having previously established the values of the principal tensors, there 

are three unknowns in this equation: F12 , Fl12 and F122 • By performing 

three different strength experiments in the (a1 ,a2) plane, three 

simultaneous equations of the form of Eq. (9) can be obtained. Solving 

this set of equations will yield values for the interaction tensors. 

It should be noted that this technique does not guarantee closure 

in the (a 1 ,a2) plane. The three experiments must be judicously selected 

so that closure will be obtained. 

The remaining two interaction parameters, F166 and F266 , are then 

determined using the method of constraint equations which are derived 

by setting the discriminant of the cubic polynomial equation (Eq. (5» 

to zero. This has the effect of forcing the failure equation to yield 

three real roots, two of which are equal, along the chosen load path. 

Previous work [10,11] has used internal pressure loading of 

symmetric balanced (±8)s laminated tubes for different values of e 

as the load paths. Under this type of loading, with the load parameter 

equal to internal pressure, 

ell R/2 

e21 = [T]k [Q .. ] [A] -1 R 
1) k 

(10) 

e31 0 

and 

e12 
0 

e22 = 0 (11) 

C32 
0 
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where R represents the tube radius. Note that for symmetric balanced 

tubes, the Cij are equal for each ply. Using the above, Eq. (6) 

reduces to 

d = -1 

Setting the discriminant of Eq. (5) to zero, and substituting d=-l, 

yields, 

27a2 + a(4c3 + 18bc) - 4b3 - b2c2 = 0 

By solving Eq. (10) for two different ply angles, a, Eqs. (12) 

and (13) can be set up as a system of two nonlinear simultaneous 

equations in two unknown. The solution of this system will yield 

appropriate values for F166 and F266 . 

3. Biaxial Compression Experiment 

3.1 Experiment Design 

(12) 

(13 ) 

To obtain the desired stress state of biaxial compression, several 

different experimental techniques were considered. These included: 

(1) combined external pressure and axial compression of tubes; (2) 

bending of honeycomb sandwich plates; (3) bi-directional compressive 

loading of coupons with small test sections; (4) bending of honeycomb 

sandwich cross-beams. 

The most attractive of the above options is the combined loading 

of tubes. It is, at first glance, a straightforward experiment to 

implement and analyse. However, the experiment is susceptible to the 

problem of shell buckling. To overcome this, the tube dimensions would 
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have become unwieldy: very short and thick with a small diameter. The 

advantage of simple analysis no longer exists because the tube cannot 

be considered to behave as a shell, and boundary effects would have 

also become a problem. Thus, the first of the above options was 

eliminated. 

The loading of plates or coupons to achieve a biaxial compressive 

state was deemed to be too complicated to implement experimentally. 

This left the bending of cross-beams as the most desirable experimental 

technique. The same conclusion was reached by Cole (Ref. 16). 

Much experience has been obtained in the use of honeycomb sandwich 

beams in bending to achieve a uniaxial compressive stress state [17]. 

It is a natural extension of this test procedure to develop a beam in 

the shape of a Icrossl for compression-compression tests. By applying 

bending moments to each of the two perpendicular arms of this cross-beam, 

a biaxial compressive state can be produced in the region where the 

beams coincide. 

The bending of honeycomb sandwich cross-beams has the advantage of 

being relatively simple to design experimentally, but also has the dis­

advantage of being difficult to analyse. Because of the complex nature 

of the cross-beam, a finite element subroutine called 'ADINA' [18] 

was employed. As a check on its ability to analyse the biaxial experi­

ment, two cases were studied: uniaxial and biaxial bending of an 

aluminum cross-beam. The theoretical load-strain responses agreed 

very favourably with experimental results obtained using the bending 

rig described in Section 3.4. The results of these check cases are 

described more fully in Appendices Band C. 

The finite element model of the composite cross-beam is presented 

in Appendix D. This model is the final version, based upon many 
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iterations, and includes the final specimen design described in 

the next section. One of the problems that involved this model was the 

difficulty in matching the analytical stiffness of the cross-beam to 

experimental results. Correction factors which were included in the 

finite element model solved this difficulty. but their necessity gives 

some indication of the complexity of the problem. 

Finally, it was necessary to determine the stress ratio, 01/02' to 

use as a load path for the experiment. Since the purpose of the biaxial 

compression test is to close the compression-compression quadrant, it 

was decided to load the beam with a stress ratio that would create a 

load vector passing through the open area of the original cubic solution. 

Thus a biaxial compression stress ratio of about 01/02 = 13 was 

initially chosen based on previous solutions. This value is perhaps 

not the optimum one for use in evaluating the strength tensors, but it 

does guarantee a data point in the open area of the quadrant. With no 

previous experimental data available in this region, it is valid as a 

first iteration. 

3.2 Test Specimen Design 

The first parameter that was fixed in the design of the test 

specimen was the ply layup. Since the objective of the biaxial compress­

ion experiment was to obtain a data point in the 1-2 plane, any 

laminate which would involve a failure with a shear stress component 

present could not be used. Also, the complexity of multimode failure 

during the initial testing process was deemed to be undesirable. Thus 

it was decided to use a unidirectional 00 laminate. 

The primary concern in the design of the test specimen was to 

ensure that the first failure of the GRE would occur in the test section 

area without being initiated elsewhere. This premature failure could 

arise from two sources: (1) stress concentrations at the interior 
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corners of the cross-beam or (2) the lower strength of the cross-beam 

arms due to their uniaxial stresses. The first point is an obvious one 

and was solved, to a certain extent, by filleting the interior corners 

of the cross-beam. From tables of stress concentration factors (SCF) 

[19], it was found that rounding the interior corners to a radius of 

0.5 inches was appropriate. This resulted in an SCF of about 2. 

Any further decrease in the SCF at the corners would have resulted in 

a fillet radius much too large to be practical. 

The second problem mentioned above is not as obvious as the first. 

The ultimate load of a unidirection laminate under biaxial compression 

could be greater than the ultimate load under uniaxial compression~ 

if the load vector, originating at the origin and intersecting the 

curve in the compression-compression quadrant, is larger than the load 

vectors along either of the compressive axes. Thus a uniform thickness 

GRE facing could fail on the cross-beam arms before ultimate stresses are 

reached within the test section. 

The solution to this problem is to create a reduced thickness test 

section. This is equivalent to reinforcing the arms and corners of 

the cross-beam. The thickness ratio between the test section and the 

rest of the GRE facing was obtained from a consideration of the preliminary 

analysis in Fig. 5. This was deemed to be a "worst case" condition 

since the actual cubic representation of the 1-2 plane was not expected 

to dip as low, in the compression-compression quadrant, as this analysis 

predicted. Nevertheless, this was taken to be the design condition. 

The maximum ratio between the lengths of the compressive load vectors 

discussed above, and shown in Fig. 5 is about 4. Hence, the thickness 

ratio was also taken to be 4. 

It is interesting to note that this thickness ratio is also 
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sufficient to solve the SCF problem at the cross-beam corners. Since 

the SCF is 2 and the thickness ratio is 4, the stresses at the corners 

will be about one half those in the test section. 

The shape of the test section was chosen to be square. This 

simplifies the finite element analysis by allowing one to use only a 

few elements in the test section area. A circular test section would 

require a detailed fine structure consisting of many elements. The 

dimension of the test section was chosen to be 0.75 inches square, 

for convenience and sufficiency. 

The major drawback with the reduced thickness test section is the 

tendency for the sample to fail at the thickness discontinuity. It is 

in this area where the stresses are the greatest. However, this effect 

was lessened by tapering the thickness change with resin during the 

fabrication process. The method will be described in the following 

section on specimen fabrication. 

The thickness of the test section is largely determined by the 

honeycomb to which it is bonded. The minimum thickness is determined 

by stability requirements, such as intercellular buckling of the facing. 

However, the maximum thickness is established by the requirement that 

the ultimate compressive and shear stresses of the honeycomb are not 

to be exceeded. 

Some other factors that also influence the design of the test 

specimen include the type of metal facing that is bonded to the tensile 

side of the honeycomb, its tensile strength and modulus, and the thick­

nesses of the metal and honeycomb. Other considerations include the 

beam bending moment arm (distance between load points)and the adhesive 

strength. All of the above parameters influence one another and hence, 

an iterative procedure was used to select the optima. 
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To do this, a computer program was written which calculated the 

stresses within the various components of the cross-beam. This program 

uses simple beam theory (Appendix E) for each of the cross-beam a~s 

and some constraint equations at their intersection. It is recognized 

that the program only approximates the stresses, but it was nevertheless 

useful for design purposes given the cost of solving the finite element 

problem. The final parameters were verified with the finite element 

model as being within design limits. In addition to the computer program, 

the stability requirements for the composite facing were obtained from 

the design curves in Ref. 20. 

The final design of the cross-beam test specimen resulted in a 

test section thickness of two plys (about 0.01 inches). Thus, the 

thickness of the surrounding composite was eight plys (about 0.04 

inches). The tensile facing material was selected to be 707S-T6 

aluminum for its low modulus and high strength characteristics. Also, 

corrugated honeycomb, Hexcel ALC-l/8-S0S2-.003, was chosen for the 

design because of its superior compressive and shear strengths compared 

to the expanded variety. Finally, the optimum thicknesses of the aluminum 

and honeycomb were found to be 0.25 inches and 1.5 inches, respectively. 

3.3 Test Specimen Fabrication 

The procedure used in the manufacture of GRE test specimens and 

honeycomb beams is well documented and only an outline will be given 

here. The GRE used in the fabrication of the cross-beam is 3M SP288-T300 

prepreg tape. It was cut to shape using a cross-shaped template as a 

guide. The individual plys were laid up, along with resin bleeder 

cloth, on a steel mandrel coated with a releasing agent. The two plys 

that comprised the test section were laid up against the mandrel. The 

remaining six plys, being identical to the first two but with the 
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square test section cut out, were laid on top. Teflon coated release 

fabric separated the bleeder cloth from the prepreg. 

A small steel insert, which was the size of the test section and 

the thickness of the remaining p1ys, was placed between the Teflon fabric 

and the bleeder cloth (Fig. 6). This insert had its edges rounded and 

served the double purpose of (1) keeping the test section from filling 

with resin and (2) creating contoured edges for the test section to 

eliminate sharp thickness gradients. 

A cork resin dam was built around the edge of the sample and a steel 

caul plate was placed on top. The entire surface was covered with an 

air breather cloth and placed in a vacuum bag. (The entire layup 

sequence is depicted in Fig. 7.) The sample was then cured in an 
, 

autoclave according to manufacturers specifications. A photograph of the 

cured sample is shown in Fig. 8. The average thickness of the test 

section was measured to be 0.009 inches. The surrounding thickness of 

the composite was found to average 0.035 inches. 

The second stage in the manufacture of the cross-beam is the bonding 

of the facings to the honeycomb. The adhesive that was used for this 

procedure was Cyanamid FM123-2 film adhesive, selected for its 

excellent shear properties and low temperature cure. The adhesive cure 

temperature must not exceed the glass transition temperature of the 

composite (in this case 27SoF) or else degradation of properties will 

occur. 

Prior to bonding, the aluminum facing was cleaned in an acid 

solution. Subsequently, all bonding surfaces of the honeycomb and fac­

ings were primed with Cyanamid BR-127 primer. The adhesive was cut to 
, 

shape, placed between the parts, and cured according to manufacturers 

specifications. 
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3.4 Biaxial Compression Test Rig 

The assembled rig that was designed to carry out the biaxial 

compression tests is shown in Figs. 9 and 10. The design is basically 

an extension of the beam bending rigs that are currently in use at 

UTIAS for uniaxial compression testing [17J. 

The biaxial compression rig is designed to allow independent loading 

of the two cross-beam arms. This is an extremely powerful feature 

since it enables one to achieve almost any desired stress ratio within 

the test section. The stresses are induced in the sample by combining 

two distinct types of loadings. A diagram showing the applied loads 

is presented in Fig. 11. One of the arms is placed under a four-point 

bending moment. The second arm, due to the restraining action of the 

first arm, is loaded by an approximately three-point bending moment. 

The first cross-beam arm is supported at the outside points by 

two simple-support pads (Fig. 12). The two inside loads that complete 

the four-point bending are applied by the central loading block illustrated 

in Fig. 13. (Note the two simple-support pads here also.) This loading 

block is held in position by four guide posts (Fig. 14) and is loaded, 

in a testing machine, through a ball bearing placed centrally in a 

divot on the upper surface of the block (Fig. 15). The ball bearing 

ensures that the load is applied centrally with no bending moments. 

The second arm is loaded independently with hydraulic pistons and 

the load bar shown in Fig. 16. This load bar is placed along the lower 

surface of the cross-beam and transmits the loads through the customary 

simple-support pads. The hydraulic pistons load the sample through cables 

attached to the transfer blocks of the load bar. These blocks are pinned 

to allow only the transfer of pure forces to the load bar. 

The simple-support pads are merely rocker type supports consisting 
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of a grooved pad capable of rotating on a fulcrum. These parts have 

all been machined from mild steel and then case hardened to protect the 

sharp surfaces through which the loads are transmitted. 

Note that the configuration shown in Fig. 15 depicts the use of 

the compression rig without independent loading. This set up, with each 

of the cross-beam arms under a four-point bending moment, was used to 

load the aluminum cross described in Appendices Band C. However, this 

same arrangement was found difficult to implement with the composite 

cross-beam because of the stiffness discrepancies between the two arms. 

The technical drawings of the biaxial compression rig are given in 

Appendix F. 

3.5 Experimental Procedure 

Prior to its testing, the honeycomb cross-beam was instrumented 

with strain gauges. A single rosette (Micro-Measurements CEA-125WT-350) 

was bonded to the test section with Micro-Measurements M-Bond 200 

adhesive. This rosette monitored the biaxial strain in the test 

section in order that the failure stress could be determined from a 

knowledge of the material properties. 

The cross-beam was then placed in the test rig with the 00 

direction of the composite facing under the four point bending load 

applied by the tensile testing machine (Tinius Olsen). The hydraulic 

pistons and cables were then connected to the rig while in place in the 

testing machine. The experimental set-up before testing is presented 

in Fig's. 17 and 18. 

An overall view of the associated instrumentation, monitoring 

equipment and test set-up is shown in Fig. 19. A load cellon the 

Tinius Olsen testing machine was connected to the abscissa of a dual 

pen x-v plotter. The two ordinates of the plotter received signals from 

the strain gauge conditioning units. In addition, digital outputs from 
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the conditioning units were used to manually record the strains. The 

pressure in the hydraulic lines was measured with a pressure transducer 

and associated conditioning unit. This output signal was then connected 

to the abscissa of a second, single pen X-V plotter and also to a digital 

voltmeter for manual recording. The ordinate of this plotter was also 

connected to the load cell. A schematic of the setup is presented in 

Fig. 20. 

Since the two loads (hydraulic pressure and testing machine) were 

applied simultaneously and independently, a method was required to 

ensure that they were always being applied in the correct proportion. 

Knowing the desired ratio of the applied loads (Section 3.1), a line 

was drawn on the graph paper which represented the desired path of the 

pen on the X-V plotter as it tracked the pressure transducer and load 

cell signals. By tracing this line during the test, one was guaranteed 

that the proper load ratio was being applied to the specimen. It should 

be noted here that due to the setup configuration, the load cell measured 

the sum of the applied compressive load of the testing machine and the 

applied load of the hydraulic pistons. Thus, referring to Fig. 11, the 

plotter recorded (F + P) versus P. As the speci~en was loaded with the 

testing machine, the desired load ratio was obtained by hand pumping the 

hydraulic pistons to follow the predetermined line on the X-V plotter. 

It was found that this could be done with extreme ease and little 

deviation from the desired path. 

As the test progressed, the strains and hydraulic pressures were 

noted and recorded at predetermined load increments. Simultaneously, 

the dual pen plotter recorded the load-strain responses to give a more 

complete, although less accurate record up to failure. 
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3.6 Experimental Results 

The biaxial compression test was successful in achieving a proper 

compressive failure, as can be seen in the photographs of the failed 

specimen, Figs. 21 and 22. It should be noted that no portion of the 

composite facing appears to have buckled. A buckling failure is usually 

characterized by the failure area lifting up from the surrounding 

composite. Instead, the failure observed here is typical of the 

compressive failure mode of composites. 

The location of failure is seen to first occur at the edge of the 

test section. It then propagates towards the corner of the beam. The 

failure at the thickness discontinuity was predicted. However, it is 

believed that the differencebetween the stresses at the failure 

location and those at the centre of the test section is not large. 

Experience with other types of compression experiments where failure can 

sometimes occur near loading grips, reinforcements, etc., indicates 

little correlation between ultimate load and location of failure. Since 

the composite surrounding the biaxial test section is basically reinforcement, 

the same can probably be said for this experiment, as well. Only until 

further experiments build up a data base can this be conclusively shown 

to be true. 

The load-strain history for the specimen is presented in Fig. 23. 

The curves do not pass through the origin because of some initial takeup 

in the testing rig. The initial nonlinearity in the curves (below 1000 lb.) 

is due to the loading method at the start of the test to prevent 

premature failure of the cross-beam. Until the total load reached 1000 

lb., the hydraulic pressure was below, and asymptotically approaching, 

the desired load ratio. To obtaf;n the final strain at failure to be 

used in the calculation of the failure stresses, the linear portion 

of this curve was extrapolated to the measured failure load value. 
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This is the standard practice in cases where multiple failures occur. 

These ultimate strains and stresses, along with the failure loads, are 

given in Table 2, based on the material properties given in Table 1. 

4. Analysis of Failure Equation 

4.1 Calculation of the Interaction Tensors 

The pair of ultimate stresses obtained from the biaxial compression 

experiment, along with those listed in Table 3, were employed to calculate 

the new values for F12 , Fl12 and F122 • The method used was that described 

in Section 2.4. The complete new set of strength tensors for use in the 

cubic polynomial criterion is shown in Table 4. 

To verify the consistency of these new coefficients with previous 

experimental results, two check cases were analysed. The first case 

was the critical one of internal pressure loading of symmetric balanced 

(±8)s laminated tubes. Figure 24 shows some experimental results [10,12] 

of failure pressure versus lamination angle, along with cubic and 

quadratic predictions. These predictions were obtained with the use 

of the failure analysis program in Reference 15. Excellent agreement is 

observed between the cubic polynomial predictions and the experimental 

results. Again, one should note the inadequacy of the quadratic theory 

to accurately predict the failure load, as reported in [lOJ. 

The second check case involves some torsional strength experiments 

of tubes reported in Ref. (14). Figure 25 presents the ultimate shear 

strength of off-axis, four-ply laminated tubes versus lamination angle. 

As with the pressure loading case, the quadratic and new cubic strength 

prediction curves are plotted on this graph. Again it is seen that 

the cubic polynomial is superior to the quadratic as a failure criterion. 

However, whereas the quadratic prediction for internal pressure load-

ing resulted in conservative estimates, the quadratic polynomial over-
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predicts the strength of tubes under torsion. It should be noted 

that the poor correlation between experiment and theory for lamination 

angles greater than 9=350 is due to shear buckling of the tubes. This 

phenomenon was reported by Wharram (Ref. 14). 

The good agreement between the cubic theory and the established 

experimental results for the above two cases indicates that the new 

set of strength tensors is a reasonable one. The agreement does not 

validate the accuracy of the tensors under all forms of loading, but 

since the above cases are sensitive to differences between cubic and 

quadratic theories, any existing inconsistencies would have likely 

surfaced as a result of these checks. 

4.2 Failure Surface and Profiles 

The ultimate goal of this phase of the investigation was the 

closure of the cubic failure surface. The 1-2 planar failure surface 

that was recalculated with the new set of tensors is shown in Fig. 26. 

It can be seen that the use of the biaxial compression test has been 

entirely successful in closing this plane. Also notice that the quadratic 

theory seems to overpredict the strength of the material under biaxial 

compression. This could have dramatic implications in the design of 

composite parts if one incorrectly assumes that the quadratic theory is 

either exact or is a conservative estimate of the strength. The drawback 

to the stress pair resulting from the biaxial compression test is its 

proximity to the 01 axis. The stress ratio chosen for this experiment 

(01/02 = 13) was designed to travel down the throat of the open area 

of the cubic solution presented in Refs. 10,11. This ratio turned out 

to be much larger considering the lower than expected failure load. 

Further work is definitely necessary, not only to increase the data base, 

but also to obtain failures with a 01/02 stress ratio less than 13. 
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For the sake of completeness, the cubic and quadratic surfaces 

for the 1-6 and 2-6 planes are presented in Figs. 27 and 28. respectively. 

These curves are similar to those reported earlier (Ref. 10). It is 

interesting to note that the dramatic differences in shape between the 

two strength criteria in the 2-6 plane have never been verified experi­

mentally. Valuable information concerning the cubic polynomial could 

be obtained from some simple tension-shear tests on unidirectional 

laminates. 

By looking at slices through the cubic surface parallel to the 

1-2 plane, one can get an impression of its overall shape. Such a 

series of curves is presented in Fig. 29. An examination of this 

figure reveals the existence of a previously unknown open area in the 

tension-tension quadrant for 06 ~ 10 ksi. Recall that there is 

no sign dependence on the shear strength of the material. Thus the 

surface is mirror imaged in the 1-2 plane and has two areas where it 

is open. However, in contrast to the 1-2 plane of the original cubic 

solution, the surface pinches together before opening out. An alternate 

view of this surface is seen in Fig. 30, where one is now observing it 

along the 0l-axis. The pinching effect of the surface is quite apparent 

here also. 

These open areas are representative of the third possibility to 

the solution of Eq. (5) described in Section 2.2; the case of one 

real and two complex roots. These regions are the result of the 

complex valued solution to the cubic equation. The technique that is 

used in an attempt to solve this problem is the evaluation of the 

cubic equation at its local maximum (Fig. 3c). This was done for 

the 01=150 ksi planar failure surface and is presented in Fig. 31. 

Notice how the local maximum solution closes the surface almost as 

one would do so intuitively, based upon the shapes of the 01=0, 50 
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and 100 ksi curves. Thus this 'patching' method can be considered 

to be a very successful engineering approximation to the complex root 

problem. 

Finally, it is observed that the entire cubic failure surface 

has been closed using both experimental and analytical techniques 

thus eliminating one of the major criticisms for its use. 

4.3 Strength Prediction Profiles for Biaxial Loading of Lamiantes 

As an application of the new tensor coefficients and a comparison 

between quadratic and cubic theories, some strength prediction curves 

were re-derived for laminates under biaxial loading. The lamination 

sequence is four ply, symmetric balanced (±6)s and the material is 

3M SP288-T300 GRE. The biaxial loads are Nx and Ny' and are applied 

with the ratio a = Nx/Ny' 

Figures 32 to 35 show profiles of the ultimate failure stress, 

(Oy)ult' as a function of lamination angle, 6, for the cubic tensor 

polynomial theory. Figures 36 to 39 show the corresponding profiles 

for the quadratic theory. 

Each of the above figures shows the effect of varying the biaxial 

stress ratio, a, from 0 to fl. For example, Fig. 32 presents the 

tension-tension case with Nx and Ny positive. Notice the definite 

existence of an optimum lamination angle for maximum strength. The 

case of a=O.5 represents the internal pressure loading of tubes 

discussed in Section 4.1. The uncharacteristic sharp peaks that 

occur when a equals 0.6 and 0.7 are due to the effect of complex 

roots. At these locations, the solutions are described by the local 

maximum of the cubic equation. The corresponding quadratic profiles 

are given in Fig. 36. Notice that the quadratic maxima are significantly 

less than the cubic maxima. Of the remaining curves of biaxial 
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failure profiles, Figs. 33 and 37 are for Nx>O and Ny<O; Figs. 34 

and 38 for Nx<O and Ny>O; and Figs. 35 and 39 for Nx<O and Ny~O. 

To more easily compare the differences between cubic and quadratic 

theories, Figs. 40 to 43 were compiled. They represent the loci of 

maximum failure stress and optimum fiber angle as a function of biaxial 

stress ratio. All failure stresses have been normalized with respect 

to their corresponding strength parameter, X or XI, depending upon 

the magnitude of Ny. 

Figure 40 plots the case of Nx,Ny>O for (±6)S laminates. It is 

interesting to note the drastic difference between the maximum strengths 

predicted by the two theories. Yet, the optimum lamination angle is 

not nearly as affected by the choice of strength criterion. The effect 

of the complex root problem is evident here as well. The cubic locus 

has a distinct laberration l in it at a=0.6 resulting from the "l oca1 

maximum" solution. However, the deviation from the intuitive smooth 

path is, at most, ten percent. This difference is quite acceptable 

when one considers that a real solution does not even exist for 

a=0.6 or 0.7. As long as the designer realizes that a complex solution 

exists for a given loading scheme, compensations can be made for the 

overprediction of the strength. 

The next two curves for NIO' Ny<O and Nx<O, N10 show very 

little difference between the two theories. However, the final curve 

(Fig. 43) showing the compression-compression case indicates a 

Significant difference. This is largely due to the results of the 

biaxial compression experiment which gave an ultimate stress much 

less than was predicted by the quadratic theory. Since this was the 

result of a single experiment, which is seldom sufficient to establish 

material properties,further experiments at other stress ratios may 
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alter compressive results. However, the biaxial compression experiment 

was successful and there is no reason to doubt its results. 

The above figures illustrate the significant differences between 

cubic and quadratic strength theories. The discrepancies are not 

limited to a select few of possible load cases, but become quite 

apparent when a laminate is under a biaxial tension or biaxial 

compression load. Further experiments at different load ratios are 

necessary to confirm these differences. 

5. Application of Strength Criterion to Laminates With Holes 

Although the phenomenological approach to predicting the strength 

of laminates under plane stress conditions (without consideration for 

three-dimensional and stress concentration effects) has been 

demonstrated to work reasonably well, it is of interest to ascertain 

if the same methodology could be utilized to treat laminates with 

holes, i.e., in the presence of local stress concentrations. Other 

investigators have considered laminated composites with holes and 

cracks (such as Ref's. 2, 3) under simple tension loading for example, 

and they have shown that reasonably good correlations with test data can 

be achieved using a combined fracture mechanics approach and the 

notion of 'characteristic distances', as described earlier. Note that 

this latter method also relies on test data to solve for the 'characteristic 

distances'. To illustrate the difference between this technique and 

the 'all experimental' method, a flow chart comparison is given in 

Fig. 44. 

This phase of the program involved a series of tension tests on 

off-axis (a) and angle-ply (±a) glass/epoxy laminates (3M, 1003) 

containing circular holes with d/W = 0.15,0.25 and 0.40. Two or 

three replicates were tested for varying values of e for both laminate 

configurations, the results of which are presented in Figs. 45 and 46. 
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Note that 'first failure' was taken as the laminate 'strength' value. 

This is consistent with the tests conducted on 00 and 900 laminates 

to determine both the tensor polynomial parameters and the 'characteristic 

distances' used in the 'point stress' calculations. Figures 47 and 48 

present photographs of the off-angle and angle ply samples tested. As noted in 

Figs. 45 and 46, the predicted curves are based on 'point stress' 

calculations of the strength parameters for varying d/W. In Fig. 49, the 

curves were obtained from the experimentally determined strength 

coefficients for d/W = 0.25 (given in Table 5). One can readily see 

that both methods are in good agreement with test data. 

6. Conclusions 

The cubic tensor polynomial failure criterion has an inherent 

drawback in that the (01'02'06) surface in stress space is not closed. 

Thus there exist some cases for which the theory will predict an 

infinite failure load. This is partially solved with the use of three 

biaxial strength tests involving 01 and 02. Using the results from 

these experiments, the three interaction tensors F12 , Fl12 and F122 

can be evaluated. 8y choosing these tests properly, the problem of 

an open compression-compression quadrant in the 1-2 plane can be 

eliminated. The three tests which were found to close the plane are: 

the 'quadratic 812 ' test, a biaxial tension test, and a biaxial 

compression test. The remaining open areas of the surface, which are 

the result of the formation of complex roots of the cubic equation, 

can be closed by evaluating the cubic equation at its local maximum. 

The experimental technique that was developed in this program 

for obtaining the biaxial compressive strength data for composite 

laminates has been found to be quite successful. The procedure 

involves the bending of honeycomb sandwich cross-beams with independent 
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loading of each arm. This loading scheme allows one to obtain almost 

any desired stress ratio. The major disadvantage with the use of the 

cross-beam bending method is the difficulty of analysing the stresses 

within the composite. This is compounded by the necessity of using 

a reduced thickness test section to localize the location of failure. 

Nevertheless, stress results were successfully obtained from strain 

gauge data and a knowledge of the material properties. 

In analysing the differences between the cubic and quadratic 

tensor polynomial theories, it is seen that the cubic requires more 

experiments to evaluate the strength tensors. Some of these experiments, 

for example biaxial compression, are tedious and expensive to perform. 

The open nature of the cubic polynomial is a disadvantage that has, 

until now, been difficult to overcome. Nevertheless, the quadratic 

theory is, in many cases, inadequate to accurately predict the 

ultimate strength of composite laminates. In some instances, the 

quadratic can even over-predict the strength. This is particularly true 

of the compression-compression strength. It would be argued that most 

laminates under biaxial compression will fail due to buckling long 

before material failure occurs. The fact is that situations could 

arise where the difference between the prediction methods could be critical. 

For example, a composite facing under compression but stabilized by 

honeycomb, or a multimode failure where one or more plys is subjected 

to a compressive stress without the laminate being under biaxial 

compression. Since a failure criterion is only as good as its 

predictive ability, the cubic tensor polynomial is the obvious choice. 

The benefits far outweigh the disadvantages. 

Finally, the application of the tensor polynomial failure criterion 

to the strength analysis of laminates with holes has been shown to 
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provide the same degree of correlation with test data as the method of 

'characteristic distances'. Both approaches work well for uniaxial 

loading but insufficient evidence exists for biaxial load cases. 
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TABLE 1 

Material Properties for Graphite/Epoxy 

Ell 
(psi) 

6 20.5xlO 

(3M SP288-T300) 

E22 
(psi) 

6 
1. 4xlO 0.26 

G12 
(psi) 

6 0.594xlO 

Principle Strength Tensors for Graphite/Epoxy 

(3M SP288-T300) 

Fl Fll F2 F22 F6 

(ksi)-l (ksi)-2 (ksi) ··1 (ksi) -2 (ksi)-l 

2.482xlO -3 4.239xlO -5 1. 035xlO -1 3.936xlO -3 0 
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F66 

(ksi)-2 

5.l72xlO -3 



TABLE 2 

Ultimate Strains, Stresses and Failure Loads 

from the Biaxial Compression Test 

Fiber Direction 

Matrix Direction 

Ultimate Load 

U1 timate Strain 
(].Ie) 

-8870 

-5700 

Testing Machine 
F 

(lb.) 

1918 

TABLE 3 

Ultimate Stress 
(ksi) 

-184.7 

-11.3 

Hydraulic Pistons 
p 

(lb. ) 

482. 

Biaxial Tests for Evaluating the Interaction Strength Tensors 

<11 <12 
(ksi) (ksi) 

161.5 -17.4 B12 test 

187.2 7.0 Tension-Tension test 

-184.7 -11.3 Compression-Compression test 
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TABLE 4 

Strength Tensors for Graphite/Epoxy 

(3M SP288-T300) 

Principle Strength Tensors: 

Fl Fll F2 F22 F6 F66 

(ksi) -]~ (ksi) -2 (ksi) -: (ksi) -1 (ksi)-l (ksi)-2 

-2.482xlO ··3 4.239xlO -5 1.035xlO -1 . -3 3.936xlO 0 5.l72xlO 

Interaction Strength Tensors: 

F12 Fll2 F122 F166 F266 
(ksi) ··2 (ksi)-3 (ksi) -3 (ksi) -3 (ksi)-3 

·,2.233xlO -4 -2.898xlO-7 -S.079xlO -6 -4.l70xlO -6 -1.026xlO -4 

Table 5 Comparison of Principal Tensor Polynomial Strength Parameters 
for Glass/Epoxy Material (3M, 1003) 

··3 

I ;'~:~~;-o=-le-O-)----------~~------~~=~----
Strength Parameters 

Fl Fll F2 F22 F66 
(KSI)-l (KSI)-2 (KSI)-l (KSI)-2 (KSI)-2 

-3.076XIO-3 9.398<1.0- 5 2.344xIO-1 2.270xIO-2 2.l42xlO-2 

I 

d/W :: 0.251 
E)(periment: 
only 

d/W :: 0.251 

-8.013XlO-3 4.045xlO-4 

PClint stress 
-characteristic -6.520xlO-3 3.397xlO-4 

d:lstance* from 
tElsts 

*LT = 0.07", ic = 0.09", is = 0.10". 
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I EXTERNAL LOAD SYSTEM 

EFFECT OF FLAWS LAMINA 
AND :. I LAMINA STRESS I 

STATE I - CONSTITUTIVE 
BOUNDARY CONDITIONS RELATIONS 

, 
ENVIRONMENTAL INFLUENCE 

LAMINA FAILURE ... TEMPERATURE" .... 
CRITERION MOISTURE 

,It 

LAMINATE FAILURE LAMINA STRENGTH 
CRITERION PARAMETERS 

FIG. 1: CALCULATION PROCEDURE FOR DETERMINING STATIC AND FATIGUE STRENGTH 
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FIGURE 2: Arbitrary Failure Surface in Stress Space 
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FIGURE 4: Ambiguous Complex Root of the Cubic Polynomial 
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FIGURE 8: Photograph of Cross-Beam GRE Test Section 
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FIGURE 9: Close-Up View of Biaxial Compression Apparatus 

FIGURE 10: Test Set-Up for Biaxial Compression 

using Dual Independent loading System 

-44-



P 
2 

p -2 

FIGURE 11: Loading Schematic of Cross-Beam 
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FIGURE 12: Simple Support Pads 

FIGURE 13: Central Loading Block 

FIGURE 14: Guide Post Arrangement 
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F~GURE 15: Test Setup for Four Point Beam Loading 

FIGURE 16: Load Bar Used for Independent Loading 
of Second Beam Arm 
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FIGURE 17: View of load System for Biaxial Test 

FIGURE 18: Close-Up View of Biaxial Test Rig 
with Independent loading Capability 
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FIGURE 19: Experimental Set-Up for Performing 
Biaxial Compression Tests 
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FIGURE 21: Overall View of Failed Test Section in 
Biaxial Compression Beam Experiment 

FIGURE 22: Close-Up View of Failed Section 
Note: Failure first occurred in test section 

and then spread to beam edges. 
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Orthotropic Laminate and Compression Tests 
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- ..... I 

-- 90° Shear Test ----for d/W > 0 

Correlate Test Results 900 Biaxial Obtain with Analysis to Obtain .. Load Test (Fi. Fii) Charac. Dist. for d/W > 0 for d/W > 0 (tT. tC. tS. tB) 

... • ,It r-
ing (tT. tC. tS) Using tB and Obtain (Fij. F; 'k) Calculate Constraint Eq.* from Constraint ~q.* (Fi. Fii) Calculate 
()r any d/W > 0 (Fij. Fijk) for d/W > 0 

for any d/W > 0 

1 
It 

Apply Tensor Polynomial (see Fig. 1) ... 
for any Laminate d/W > 0 

*see Ref. [11] 

Fig.44 Methods of Failure Analysis for Laminates with Holes 
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b) d = 0.8 in 

FIGURE 47: Initial Tensile Failure Modes for Angle 

Ply Glass/Epoxy (3M, 1003) Laminates 
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FIGURE 48: Initial Tensile Failure Modes for Off-Angle 
Glass/Epoxy, (3M, 1003) Laminates Containing Circular Holes 
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AEpendix A 

Application of Strength Criterion 

to Fatigue Life Prediction 

The purpose of this Appendix is to illustrate how the phenomenological 

form of a static strength criterion can be used to predict fatigue life. 

Let us assume that the fatigue life equation can be expressed in the 

same form as the tensor polynomial failure criterion [Eq. (1)]. 

However, in this case, the fatigue strength parameters are not constants, 

but rather are functions of the frequency of loading (n), the number 

of cycles (N) and the stress ratio R = umin!umax' i.e., F = F(n, N, R). 

The stresses in Eq. (1) shall be regarded as the maximum cyclic principal 

lamina stresses. 

Under simple loading conditions when nand R are constants, then the 

fatigue strength parameters are only a function of the number of cycles, 

N. As stated earlier, the quadratic formulation provides good strength 

predictions for such load cases as uniaxial tension and compression. 

Consequently, for this limited set of conditions, which are typical in 

fatigue tests, then the fatigue strength functions necessary to 

characterize a lamina, are given by 

F22 = y (N) .y' (N) 
D D 

1 F _ 1 
66 - S (N)2 

D 

(A.l) 

To determine the remaining quadratic interaction term would require 

a biaxial fatigue test. However, for non-biaxial loading, it has been 

found that F12 contributes little to the static strength prediction. 

In any case, fatigue tests must be conducted on 00 and 900 samples for 

given R values to determine the fatigue functions contained in Eqs. (A.n. 

This involves tension and compression fatigue tests in both the fiber (1) 
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and transverse (2) directions, as well as pure shear in the 1-2 plane. 

A preliminary attempt using this approach, including all of the above 

'fatigue functions', is contained in Ref. (21). 
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APPENDIX B 

STRESS DIFFUSION IN AN ALUMINUM 

CROSS-BEAM IN BENDING 

As a first check on the ability of ADINA to adequately model 

thE! biaxial load state, the diffusion of stresses in the test section 

area of an aluminum cross-beam was studied. An aluminum beam, to be 

phced under uniaxial bending, was instrumented with strain gauges 

at the locations shown in Fig. B-1. The purpose of the gauges was 

to record the decrease in axial strain along the unloaded arm of 

the cross-beam. The beam was loaded uniaxially in the compression 

rig, and the strains were recorded at several loads. These values 

are listed in Table B-1. 

The finite element model of the cross-beam is shown in Fig. B-2. 

It can be seen that, owing to symmetry, only one quarter of the beam 

was analy.sed. The element type that was selected for the ADINA analysis 

was the plate/shell element. To model the uniaxial bending loads, nodes 

13 to 16 wl~re constrained to behave as a simple support, and out of 

plane load~; were applied at nodes 1 to 4. The relevant results of this 

analysis are summarized in Table B-2. Notice that since the program 

calculates the stresses in the elements at the Gaussian Integration points, 

the surface stresses in the beam were linearly extrapolated from these 

values. 
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Figure B-3 graphs the comparisons between ADINA and the experimental 

results. It plots the axial strains .as a function of distance perpen­

dicu~ar to .the ·loaded arm of the cross-beam. The experimental points 

were obt.ained from the values listed in Table B-1, by removing the zero 

offset in the lOad-strain.response caused by some initial slack in the 

testing apparatus. 

Figure B-3 shows the excellent correlation that was found to exist 

between the experimental and analytical results. It is also interesting 

to note that the stress field diffuses about one beam width along the 

unloaded arm of the cross-beam. 
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TABLE B-1 

!lxperimEmtal Data for Uniaxial Bending of Aluminum Cross .. Beam 

Total Load Strains (ll€) 
(lb.) 100 101 10 2 10 3 104 105 

0 0 0 0 0 0 0 

2.5 -75 -63 -43 -27 -13 -130 

5.0 -105 -87 -62 -35 -18 -184 

7.5 -143 -120 -83 -50 -24 -250 

10.0 -168 -139 -99 -56 -28 -294 

12.5 -197 -165 -114 -69 -32 -344 

15.0 -230 -190 -136 -78 -37 -401 

17.5 -259 -217 -152 -89 -42 -452 

20.0 -290 -239 -171 -98 -47 -507 

22.5 -322 -266 -188 -111 -53 -561 

25.0 -353 -290 -208 -120 -58 -617 

27.5 -385 -320 -228 -131 -63 -671 

30.0 -415 -340 -245 -141 -67 -724 
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TABLE B-2 

ADINA Results for Uniaxial Bending of Cross-Beam 

Element No. Node No. Stress of Integ. Pts. (psi) Surface Strains (J.I€) 
cr a EX Ey X Y 

3 37 177.2 1262. -3S 210 

4 37 67.84 1140. -48 194 

41 49.86 1093. -48 187 

4S -1.699 819.7 -42 142 

49 -37.91 529.1 -34 94 

5 49 -21.95 388.4 -24 68 

53 -24.20 189.8 -14 34 

57 -11.20 67.23 -S 12 
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FIGURE B-3: Uniaxial Bending of Aluminum Cross-Beam 
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APPENDIX C 

BIAXIAL BENDING OF ALUMINUM CROSS-BEAM 

The second check case of ADINA involved the biaxial bending of 

the aluminum cross-beam. The beam was instrumented with strain 

gauges in the locations shown in Fig. C-I. The beam was then stressed 

with two equal four-point bending moments along each arm. The strains 

that were measured at increments of the applied load are given in 

Table C-l. 

The finite element model of the aluminum beam is the same as 

the one used in Appendix B to evaluate the stress diffusion through 

the test section and is illustrated in Fig. C-2. Notice, again, that 

one quarter of the beam was analysed with plate/shell elements. The 

bending moments were applied by constraining nodes 13 to 16 and nodes 

61 to 64, to behave as simple supports. Equal out of plane loads were 

then applied at nodes 1 to 4 and nodes 73 to 76. The relevant computer 

results are summarized in Table C-2.,. 

The ADINA analysis calculates the stresses in the beam at the 

Gaussian integration points. For the 0.25 inch thick beam, these 

are located at ±0.07217 inches from the midplane. The values given 

at these points were linearly extrapolated to the beam surface since 

this is where the strain measurements were taken. 
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Due tlO the synunetry of the loading and of the sample itself, the 

strl~sses will be synunetric in each of the four directions radiating 

froID the cross-beam centre. The transverse and longitudinal strains 

as a function of distance from the centre are plotted in Fig. C-3. 

Both experimental and analytical results are shown here for comparison. 

It .::an be seen that the correlation between the results is very good, 

esp,~cially when one considers that the strain gauges indicate the 

ave1rage strain over their measuring area. 
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TABLE C-1 

Experimental Data for Biaxial Bending of Aluminum Cross-Beam 

Total Load Strains (ll€) 
(lb. ) €Ox €Ox: €1 €2 €3 €4 €5 

0 0 0 0 0 0 0 0 

5 -33 -40 -17 -7 14 23 -76 

10 -57 -70 -30 0 24 39 -132 

15 -75 -92 -37 -4 31 51 -174 

20 -94 -114 -49 0 39 65 -219 

25 -116 -140 -59 -2 49 80 -271 

30 -137 -164 -70 -2 57 93 -320 

35 -159 -188 -85 -3 66 107 -369 

40 -181 -211 -92 -2 74 121 -420 

45 -204 -235 -104 -5 82 134 -472 

50 -227 -259 -118 -3 91 149 -524 
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TABLE C-2 

ADINA Results for Biaxial Bending of Cross-Beam 

Element No. Node No. Stress of Integ. Pts. (psi) Surface Strains (lld 
(J (J €x €y X Y 

3 37 1317. 1330. 159. 162. 

4 37 1330. 1317. 162. 159. 

41 1514. 1196. 200. 128. 

45 1782. 796.6 267. 45. 

49 2067. 502.3 332. -20. 

5 49 2161. 399.0 354. -43. 

53 2145. 298.0 356. -60. 

57 2254. 422.1 368. -44. 

61 2421. 663.0 385. -11. 
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FIGURE C-2: Finite Element Model of Aluminum Cross-Beam 
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APPENDIX D 

FINITE ELEMENT ANALYSIS OF THE HONEYCOMB 

SANDWICH CROSS-BEAM 

The finite element model of the honeycomb sandwich cross-beam 

using ADINA is illustrated in Fig. D-l. The honeycomb was modelled 

with 3-D elements and the facings with 2-D plate elements. The plate 

elements have the same node numbering as the upper and lower surfaces 

of the 3-D elements. They also have the necessary orthotropic 

material capability for the composite facing. All of the elements 

are isoparametric and could thus be distorted to follow the contours 

of the beam. Due to symmetry considerations, only one quarter of 

th'e sample was analysed. 

Some difficulties were encountered in the correlation between 

thl~ experimental beam stiffness and the analytical results produced 

by ADINA. A parameter study was performed to examine the effect of 

va:rying the composite modulus and honeycomb thickness on the overall 

beam stiffness as predicted by the computer program. The results of 

this study are shown in Table D-l. This table lists the load-strain 

response ()f the beam in uniaxial bending as was calculated by ADINA. 

To bring the analytical results to within ten percent of the experi­

mental values, the honeycomb thickness and composite modulus were 

required to be modified to the values indicated on the table. As 

a check on the results, the new parameters were used in a biaxial 

case shown in Table D-2. It can be seen that with the modified 

parameters, the difference between experiment and analysis is less 
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than 10% here also. This is the configuration that was used in all 

analyses of the cross-beam. 

Having established a model of the cross-beam which corresponds 

to experimental results, a study of the response to various biaxial 

load ratios was undertaken. The results of this study are shown in 

Pig. D-2. This figure plots the strain ratio in the test section as 

a function of the load ratio applied to the beam. Since the desired 

stress ratio for the biaxial compression experiment was about 01/02 ~13, 

the corresponding strain ratio was about €1/€2 ~l. Thus the appro­

priate biaxial load ratio was found to be P/P ~0.25. 
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TABLE D-1 

Farameter Study of Cross-Beam in Uniaxial Bending 

ADINA 

Honeycomb Composite Stiffness Load-Strain Response (~€/1b.) 
Thickness (x 106 psi) X-Loading V-Loading 

(in) Ell E22 € IF x € IF 
Y €x/F € IF 

Y 

1.625 20.5 1.4 -5.74 4.25 4.10 -28.0 

2.0 20.5 1.4 -4.48 3.88 3.51 -22.0 

2.0 19.0 1.4 -4.77 4.11 3.72 -22.2 

2.0 19.0 1.8 -4.74 3.80 3.43 -19.7 

* 2.0 18.5 1.8 -4.84 3.87 3.51 -19.7 

EXPERIMENT 

-5.37 3.69 3.49 -18.5 

*Fina1 Modifications 

97 



TABLE D-2 

Parameter Study of Cross-Beam in Biaxial Bending 

ADINA 

Honeycomb Composite Stiffness Load-Strain Response (~€/1b.) 
Thickness (x 106 psi) € IF € IF 

(in. ) Ell E22 
x Y 

1.625 20.5 1.4 -5.80 4.3 

'* 2.0 18.5 1.8 -4.56 3.34 

EXPERIMENT 

-5.00 3.13 

*Modified Values 
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r FIGURE D-1: Finite Element Model of Honeycomb Sandwich Cross-Beam 
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APPENDIX E 

CROSS-BEAM ANALYSIS USING BEAM THEORY 

The design of the cross-beam required the knowledge of the stresses 

and loads that would be applied to the sample at failure. This was 

nec:essary to ensure that premature failure of the honeycomb, for example, 

did not occur before material failure of the composite. The cost of 

the! finite element analysis was prohibitive for this initial design 

process, so beam theory was used. 

The assumption that was made was that the analysis of the cross-

beam could be separated into the analysis of two separate single beams 

in bending, with some constraint and compatibility requirements. It 

was also assumed that the interaction area between the two beams could 

be represented by a constant continuous load. The forces acting on 

the two beams are illustrated in Fig. E-l. 

Each of the beams can be separated into three distinct sections, 

as shown. Analysing the first beam only, and observing the force 

balance in Fig. E-2a, the curvature, slope and displacement are 

d2w FIX 
(E.la) "2 = - r (EI) 

dx I 1 

dW\ I F x2 
1 (E.lb) ;:ix I = L:eEl)1 (k1 - 2-) 

3 

\1111 
1 FIX 

(E.lc) = r (El) 1 (k2 + klx - -6-) 
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where kl and k2 are integration constants. Similarly, for section 2, 

from Fig. E-2b 

dW/ 
dx 2 

1 
wI2 = -':::";:;.~­(EEl)l 

And finally for section 3, from Fig. E-2c 

where k3, k4 , kS and k6 are integration constants. The zero slope 

condition at the beam centre gives 
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(E.2a) 

(E.2b) 

(E.2c) 

(E.3a) 

(E.3b) 

(E.3c) 



322 

P ~ _ dl~l+ dl~~ (E.4) 

Slope compatibility between sections I and 2, and between sections 2 

and 3 gives 

(E.5) 

(E.6) 

Di:splacemcmt compatibility between the sections 2 and 3 gives 

(E.7) 

ZeJro displacement at load point F2 (x=Q,I) gives 

(E.8) 

and 

(E.9) 

Equations (E.4) to (E.9) can be solved for the six interation constants, 

ki' A similar set of equations can be obtained for the second beam. 

It only remains to find the relationships between the forces, Fi and p. 

Equating displacements between the ends Cx=O) of the two beams 

gives 
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(E.lO) 

Equating displacements between the beams at the beam centres gives 

(E.ll) 

Assume that the loads acting upon the beam in Fig. E-l can be separated 

into the sum of a pressure load and its simple support response, and a 

four-point bending load, as shown in Fig. E-3. Summing the forces at 

the load points gives 

(E.12a) 

(E.12b) 

The values of Cl and C2 , due to the pressure load, are obtained from 

Castigliano IS first theorem by minimizing the strain energy on that 

beam. Thus 
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3 232 

C2 
2wR-l - 6wR-l dl - R-l W - 6w R-l dl (E.13a) = '322 l6R-l - 24R-ldl -12R-l w 

Gl C2 
w (E.13b) = - '2 

Similarly for the second beam 

(E.14a) 

(E.14b) 

where 

(E .1Sa) 

(E.lSb) 

And finally, the total load, F, on the cross-beam is given by 

(E.16) 

Given ·the total load, Eqs. (E.lO) to (E.16) can be solved for the 
, , 

seven unknown forces, FI' F2, F3, F4, FI' F3 and p. Having obtained 

these values, they can be back substituted to solve for the beam dis-

plac,ements land slopes. 
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The stresses in the beam can now be determined. Consider only 

the first beam, and define it to be oriented in the x-direction. The 

bending moment at the centre of the beam is given by 

(E.l7) 

The stresses at thickness z from the composite surface are given by 

(E.18) 

where E = Young's modulus of the composite in the x-direction cx 

y = Distance of the composite outer surface to the 
cOl 

neutral axis of the first beam. 

The maximum stresses in the metal are given by 

-E M 
Cixm = (LE~): [tc+th+tm+2ta-Ycoil (E .19) 

where t c ' t h , tm and ta are the thickness of the composite, honeycomb, 

metal and adhesive, respectively. The shear stress between the honey-

comb and composite is given by 

(E.20) 
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And the shear stress between the honeycomb and the metal ·is given by 

T = Fl IE [(th+t +t +2t _y )2 _ (th+t +2t _y )2] 
mx 2(EEI)l \ m mea cOl c a cOl 

(E.2l) 

Finally, the distance between the r.eutral axis and the surface of the 

composite is given by 

(E.22) 
[E t +E t +Ehth +2E t ] m m c c a a 

All of the above equations were coded into a FORTRAN program and used 

to design the composite cross-beam structure used in the biaxial compression 

test rig. 
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APPENDIX F 

TECHNICAL DRAIHNGS OF THE BIAXIAL 

COMPRESSION TEST RIG 

The figures on the following pages give the design drawings used 

in the manufacture of the compression-compression apparatus. The 

assembled test rig is illustrated in Figs. 13 and 14. 
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