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1. SILICON DIOXIDE DIELECTRIC

1.1 INTRODUCTION

The research into the use of silane pyrolytic deposition methods

for silicon dioxide growth for the purpose of fabricating high energy

density capacitors had two major phases of activity. The first phase,

dealt mainly with the construction of single layer capacitors and the

evaluation of their properties. By this means,' the relative value of

the basic approach was studied and the techniques perfected which led

then to multiple layer capacitors.	 The second phase built upon the

knowledge gained in the construction of single layer capacitors in order

to make multiple layer capacitors. It was in Phase II that efforts were

concentrated on such important aspects of the work as total weight and

multiple layer bonding considerations. 	 Surface roughness and stress

considerations were also an important part of this phase of the

research.

1.2 SINGLE LAYER CAPACITORS

1.2.1 Construction

It was obvious from the onset that the quality of the silicon

dioxide, which was being used as the capacitor dielectric, would be of

paramount importance. The freedom from pin holes and the uniformity of

the oxide were the most important features o f the oxide after growth.

However, in order to establish a fabrication procedure which could be

extended to perhaps as many as 100 layers, the rate of oxide growth was

also a very important cons'deration. If the oxide is to be deposited on

aluminum. electrodes, the temperature of the growth becomes another para-

meter in the selection of the proper oxide deposition process.
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Although several possibilities existed, it appeared that the oxida-

tion of silane at a low temperature had the best potential for

satisfying all of the requirements mentioned above.	 This was the

approach originally proposed to NASA and was the approach adopted. The

high growth rate and low (400°C) deposition temperature are inherent in

the process. As an example, the growth rates attained for the equipment

used in this work could be conveniently varied from .02 to .12 Um/min.

The most difficult of the specifications to meet were the ones

dealing with the quality of the oxide as reflected in the pin holes and

uniformity. Both factors are of concern when the breakdown voltage is

taken into consideration because of the rather large (at least 1cm2)

areas involved. It was these factors,which led to the decision to pur-

chase a commercial reactor rather than to build one from scratch.

The reactor selected was a Nav-Tec System 3TO. Although the speci-

fications indicated that ±6% uniformity was obtainable, it was found

that this was not an easily attainable result. Quite a bit of effort

was expended and changes made in the reactor in order to achieve the

required uniformity. The uniformity achieved was about ±5% across a 2"

diameter surface. This is more than adequate for the intended purposes.

The pin hole size and density play an important role in determining

the breakdown voltage of the capacitors. The principal factor is the

size of the pin holes. If they are sufficiently small, shorts will not

occur when the metal electrodes are applied, because the metal will not

tend to fill a very small diameter hole. Even if a short does occur in

such a hole, tests have shown that it can be burned out by a short dura-

1



tion current pulse. Based on comparisons with integrated circuit tech-

nology, we have predicted that if the pin hole size and density can be

made comparable to that of a thermally grown wet oxide, that satisfac-

tory results will be obtained when capacitors are constructed from such

oxides.

Figure 1 shows scanning electron microscope photographs of both

thermally grown silicon dioxide and oxide which was pyrolytically

deposited in our laboratory. The pictures indicated a pyrolytic oxide

quality which is comparable to that of the wet thermal oxide. This evi-

dence coupled with the uniformity measu-ements indicated clearly that

the oxide deposition process is an excellent one and that a rather good

control has been achieved. Although quite a bit of time and effort went

into setting up the oxide deposition system, it has resulted in high

quality oxides.

After obtaining control over the oxide growth process, the next

step was the fabrication of single layer capacitors to evaluate the

breakdown voltage of the oxide as well as to determine the effective

dielectric constant of the oxide.

The capacitors which were initially built were made using the con-

struction technique shown in Fig. 2. The substrate was a silicon wafer,

approximately 2" in diameter. The resistivity of the substrate was in

the range of 1 to 5 ohm-cm. The wafers were cleaned prior to growth.

The cleaning steps were mainly designed to remove particulate contami-

nants rather than surface adsorbed chemical contamination.	 Silicon

dioxide was grown on the substrate at a temperature of 400 0 C. The

I
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thickness of the oxide was approximately 1 um. The top electrode was a

circular aluminum plate 1 cm2 in area. Seven such top electrodes were

deposited onto each wafer by evaporation through a mask. The evapora-

tion was performed in a standard evaporator at a pressure of about 10-4

to 10- 5 Torr. The aluminum was evaporated from a tungsten resistance

heater.

Each wafer so constructed now had seven capacitors, each of which

could be probed and tested independently. Each-capacitor had a small

tab on the aluminum electrode. The purpose of this tab was to make a

connection point for multiple layer capacitors by simply rotating the

tab location after each oxide layer was deposited. It had no advantage

in the construction of the single layer capacitors.

A large number of such capacitors were made and tested. The

initial tests were made to determine which capacitors had been shorted

during fabrication. This test could be made by simply using an ohmeter.

Occasionally, due to mask alignment errors, one or two of the capacitors

were over the edge of the wafer. These were not counted in any of the

tests beca.,se they, of course, would always be shorted and would Yield

no useful information. Of the capacitors which were completely within

the confines of the wafer area, the percent which were not shorted

varied from 60% to 100%. The shorts were due no doubt to pin holes in

the oxide. These pin holes were large enough to permit the evaporated

aluminum top electrode to contact the silicon substrate. In the initial

work no attempt was made to burn out these shorts by the use of high

current pulses. This was done in later work however.



The fact that there were some wafers in which no shorts occurred

was quite encouraging. This indicated that control of the oxide quality

over a wide area was possible. Obviously, for multiple layer capacitors

to be achieved, the shorting problem must be controlled even more

closely.

1.2.2 Capacitance and Dissipation Factor

The plots of capacitance vs. frequency are shown in Fig. 3. Each

plot represents the average capacitance of -the capacitors on a

particular wafer. The theoretical value for the capacitance, assuming a

relative dielectric constant of 4 for the silicon dioxide, is 3540pF.

The values measured are within the accuracy range of which the relative

dielectric constant of silicon dioxide is known. The differences from

one wafer to another were due mainly to the different oxide thicknesses.

The capacitance values were measured by using a probe to make contacts

to the capacitors and a General Radio Model 16100 capacitance measuring

The dissipation factor was also measured as a function of frequency

and the average value for the capacitors of each wafer is plotted in

Fig. 4. The dissipation factor is due to energy losses both in the

dielectric and in the lower silicon electrode. Not until an all alumi-

num electrode system was constructed, was it possible to accurately

separate those two components. Even so, the dissipation factor was not

extremely high, although it does increase at higher frequencies. Sample

Al-12N was the only one of the group shown in which the oxide was not
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annealed after growth. The effect on the dissipation factor is quite

noticeable. During the growth

water is formed and is incorpc

drives off most of this water.

the oxide which increases the

lions thus reached concerning

of the silicon dioxide, a by-product of

gated into the growing oxide. Annealing

Apparently, it is this water trapped in

dissipation factor. One of the conclu-

the oxide growth process was that the

^- annealing step is a necessity if low dissipation factors are desired.

There was	 some	 decrease	 in the	 dissipation	 factor	 when	 the

pyrolytic oxides were annealed at a sufficiently high temperature. 	 This

is presumed to be caused by a drive -off of the trapped water or hydro-

gen.	 The plot of dissipation factor as a function of anneal temperature

is shown in Figure 5. Clearly there is some advantage in annealing the

oxides at high temperatures.	 Unfortunately, the high temperature

t	
annealing is not compatible with many of the electrode materials. Thus

if annealing is done at all, it must be done at fairly low temperatures

(500°C to 600°C) in order to avoid undesirable inter_clion between the

oxide and the electrodes. A particularly sensitive test to determine

the degree cf densification of the oxide during annealing is the etch

rate test. The rate at which pyrolytic oxides etch in a buffered hydro-

(	 fluoric acid solution is stron g ly dependent on the annealing time and

temperature. Figure 6 is a plot of the etch rate as a function of the

annealing temperature for a five minute anneal. The final value of etch

rate will approach that of thermal oxides (0.05 to 0.06 11/min)  for

longer anneal times.

The breakdown voltage was measured for each capacitor using a

simple test system with a power supply and series resistor. The supply
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voltage was increased slowly. When breakdown occurred, a current pulse

would exist in the capacitor. This caused the aluminum metali^ation at

the point of breakdown to melt and evaporate. The result was tha% the

breakdown was self-healing. The power supply voltage could be increased

further until the next breakdown point occurred. Several such break-

downs were observed for each of the capacitors tested. Those voltages

are given in Table I.

The reason why breakdown occurs at several voltages lower than the

theoretical maximum voltage ( theoretical maximum field strength multi-

plied by the oxide thickness) is that imperfections in the electrodes

led to a tunnel emission of electrons into the oxide. This process is

basically the Fowler-Nordheim injection process and it leads to local-

ized filamentary heating.	 Because, for the case of thin electrodes,

this breakdown can be self-healing, it should be possible to condition

the electrodes by burning out weak spots.

1.2.3 Electrode Materials

Electrode materials other than aluminum were investigated in an

attempt to avoid some problems which were associated with the oxide-

aluminum interaction at the high temperatures which were desired for

annealing purposes.	 Silicon seemed to be a potentially good material

from several standpoints. It was fairly easy to deposit by decomposing

silane at 450°C using dibor.ane as a catalyst. It has no adverse reac-

tion with silicon dioxide and is stable at high temperatures. 	 One

problem of a serious nature does exist, however. That is related to the



Breakdown Voltage

Lowest

75

212

90

168

180

130

180

135

100

430

Capacitor

Al-10A-3

-5

-6

Al-11A-5

-7

Al-12N-1

-3

Al-14AB-1

-5

A1-15AB-1

-7

Table I. Capacitor Breakdown Voltages.
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1
1
I
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dissipation factor increase when capacitors are constructed with such a

high resistivity material.	 The resistivity of the pyrolytically

deposited silicon depended on the amount of boron trapped in the silicon

during growth as well as the temperature and time at which the silicon

was annealed.	 Figure 7 is a plot of this resistivity variation with

annealing time. The lower limit of 200 ohms per square was mainly due

to the low diborane concentration which was available. This effectively

limited the usefulness of silicon electrodes in this research.

It was thought that perhaps chromium electrodes might be better

than aluminum in the anneal temperature range because of the much higher

melting point of chromium.	 Unfortunately, chromium reacts with the

oxide at high temperature and seems to disappear into the oxide after

only a few minutes at high temperatures. This problem might be overcome

by using a thicker deposit.	 This was not possible during this work

because of the difficulty of evaporation of chromium from a resistive

heating evaporation boat.

Other electrode materials were also used in an attempt to compare

the ease of deposition, annealing characteristics etc. of various

materials. An attempt was made to deposit both copper and nickel from

electroless solutions. Although this is quite easy when depositing on a

conductor, it becomes quite difficult when attempting a deposit on an

insulator such as silicon dioxide.	 No success was ever achieved with

the nickel deposit attempts, but some success was noted with the

electroless copper deposition. The copper layers were rather thin and

non-uniform and no further experiments were conducted.
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Silver was deposited from an electroless solution of silver

1	 nitrate. Although the rate of plating of the oxide was fairly good, the
adhesion and uniformity were quite poor. No other electroless solutions

I were tried.

Gold was evaporated onto the wafers in the hope that it would react

less with the oxide during anneal cycles. The stresses in the gold-

oxide interface were substantial however, and peeling of the gold

occurred when a layer of oxide was deposited on the gold.

It was generally concluded that aluminum seemed to be the best

choice for an electrode material when the first attempts at multiple

layer capacitors were started.

'	 1.3 MULTIPLE LAYER CAPACITORS

1.3.1 Basic Construction

There are two fundamental problems which must be confronted when

multiple layer devices are attempted. One of those problems is that of

the interconnection scheme to be used. The other is related to the com-

patibility of adjacent layers with respect to temperature coefficient of

expansion and stresses.

I

The interconnection difficulties are not as great when only a few

layers are used as they are when tens of layers are attempted. One of

the possibilities considered was a scheme to vary the doping in the

oxide on alternate layers. By using varying amounts of boron doping in

the oxide, the etch rate could be controlled over more than an order of

magnitude. It was hoped that this would enable selective etching and

the ability to interconnect all of the alternate layers. Boron doped

t
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oxides were grown by the addition of diborane - B2H6 to the gas phase

reaction. Because of the insufficient concentration of diborane avail-

able, it was not possible to dope the oxide to a great enough extent to

obtain the desired change in etch rate. Only about a two to one reduc-

tion in etch rate was obtainable.

When the first attempt at multiple layer capacitors was made, a

simple mask geometry was used with interconnection tabs being

alternately shifted from one side of the wafer to the other. the first

capacitor in the multiple layer structure was tested and there were no

shorts between the first (A1-1) and the second (A1-2) aluminum layers.

At this point, a second oxide layer was deposited and a third (A1-3)

aluminum layer was evaporated. The capacitors were again tested. There

were no shorts between Al-2 and Al-3 but all of the capacitors formed by

Al-1 and Al-2 were now shorted. The next layer of oxide was deposited

and A14 was evaporated.	 The test results showed that all of the

capacitors formed by Al-2 and Al-3 were shorted with the Al-3 to A14

capacitors being satisfactory. The pattern became quite clear at this

point. Apparently, when each successive layer of oxide was grown, the

,tresses introduced caused previously grown layers to crack and form

shorts.

It was speculated that perhaps the silicon substrate might be

playing a role in this problem. The same multi-layer capacitor was con-

structed on a glass substrate which was in fact a high resolution photo-

graphic plate. The results were exactly the same as for the silicon

substrate - each successive layer created shorts in the previously grown

layers.

.

i



1
1
1
t
1
I
1
t
1
1
I
1
I
t
I
I

19

Because of the different stresses in the oxide which are created

when the oxide is doped, it was decided to attempt multiple layer

devices using boron doped oxide. The results were worse than before.

There were a number of shorts between Al-1 and Al-21 when the first

layer was deposited. When the next oxide layer and Al-3 were deposited,

again all of the Al-1 to Al-2 capacitors were shorted and in addition

some of the Al-2 to Al-3 capacitors were shorted. When the third oxide

layer was grown, the entire oxide cracked.	 The use of boron doped

oxides apparently was only increasin g the thermal stress problems.

In an effort to better characterize the multi-layer problems, a

series of experiments was begun using different procedures for the

formation of the multi-layer capacitors. The geometry of the mask used

to form the capacitors was changed to that shown in Figure 8. The first

experiments were an attempt to determine if silicon as an electrode

material would help reduce the stresses between the oxide and the metal

electrode. The metal electrode was retained in order to keep the dissi-

pation factor low. The stacking sequence was: Al - S102 - Si - Al etc.

After growing the third layer of silicon, cracks began to develop in the

layers. Figure 9 shows the resulting wafer.

Next, the above experiment was repeated this time using silicon on

both sides of the oxide. The stacking sequence was: Si - S102 - Al -Si

- S102 - Si - Al etc.	 After the third layer, it appeared that the

center region began to crack but that the electrode region was not

cracked. It seemed then that the aluminum added strength to the struc

ture.



Poly-silicon Mask

si02 Mask

Al Mask

OT. GI !AL PAGE 1J
OF POUR QUALITY
	

20

Fig. 8 
Modified mask geometry for multi-layer capacitors,

I

r•
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}yam	 J

Fig. 9. An Al - Si02 - Si - Al etc. structure.
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A vertification of the conclusion about aluminum adding strength to9	 9

the system was made by repeating the above mentioned structure without

the aluminum present. This time the entire structure developed cracks,

even in the electrode regions, thus confirming the idea that the alumi-

num adds strength.

Additional	 work using	 silicon	 as	 a buffer	 was	 done	 by	 increasing

the thickness of the silicon	 using the Al	 -	 Si	 -	 Si02	 -	 Si	 -	 Al	 etc.

structure. When	 cooled	 to	 room	 temperature,	 cracks	 developed	 which

Iseemed to propagate from the edge.

Most of the evidence up to this point indicated that	 it was	 the

thick first.cracked	 In ordervery	 oxide and/or Si - Si02 regions which

to determine the maximum thickness of,oxide which could be tolerated in

any region, oxide was grown on a wafer until cracks began to occur.	 Our

test wafers showed that cracks appeared after about 2 microns of growth.

Quite a number of factors 	 affect the tendency	 of	 the	 layers	 to

For	 if	 layercrack.	 example,	 an oxide became contaminated after growth;

the adhesion of the aluminum was quite poor. The photograph in Figure

10 shows such a wafer.

To eliminate the problem of thick oxide build-up, the mask

configuration was changed to make the oxide mask cover only the elec-

trode area as shown in Figure 11. Capacitors were constructed which

consisted simply of alternating layers of aluminum and silicon dioxide.

Upon deposition of the fourth layer of oxide, a loss of adhesion

occurred between the third layer of oxide and the fourth aluminum layer.

The oxides were cracked between layers and the electrodes were shorted.
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Fig. 10. Loss of adhesion due to contaminated oxide.

Si0 2 Mask

^ .j Al Mask

l	 '

Fig. 11. New mask geometry to eliminate the thick oxide regions.
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There were two distinct problems which occurred.	 One was cracks in

the oxide.	 This led to shorts which couldn't be blown out.	 The second

problem	 was	 loss	 of	 adhesion	 between	 layers.	 As	 the	 previously	 run

- experiments showed, elimination of one problem often led to the creation

of the	 other.	 In	 some cases,	 both problems were present	 at the same

time.	 inThe	 adhesion	 problem was	 the	 one	 that	 was	 examined	 detail

first.

An experimental	 structure consisting of alternating layers of oxide

and	 a	 thick	 aluminum	 deposition	 was	 made	 without	 using	 any	 masking.

This	 arrangement	 resulted	 in ten	 layers being achieved with no loss of

adhesion.	 Howevcr the oxide did develop cracks and all the layers were

shorted.	 The	 same	 test	 was	 repeated	 using	 a	 much	 thinner	 aluminum

evaporation.	 The structure wi s carried through to ten layers, but some

loss of adhesion occurred on the eighth layer wherever foreign particles

had fallen on the surface.	 Here again, the oxides were cracked and the

electrodes were shorted to each other.

Thus it appeared that the loss of adhesion problem could be over-

come with the oxide-aluminum system through proper processing

procedures. The cracking prublem was more difficult to solve. It was

presumed that the stresses introduced in the oxide during the evapora-

tion of aluminum led to the cracks upon heating. This thought led to

the experiment referred to as the hot deposition approach.

Previously, the aluminum was not evaporated until the oxide was

cool. This meant that when the next oxide layer was added, the thermal

I
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coefficient of expansion of the oxide being different from the aluminum

would lead to stresses and oxide cracks. To overcome this, a capacitor

was constructed in which the aluminum was evaporated while the oxide was

still hot. A three layer device was made which resulted in no cracks or

shorts. This was a clear demonstration that the cracking problem was

due to the stresses developed in the oxide. After about three days,

however, there was a loss of adhesion on parts of the electrodes of this

capacitor.

1.3.2 Phosphosilicate Glass

The evidence associated with the numerous experiments conducted up

to this point now led to the following conclusions. Firstly, the use of

an aluminum-silicon dioxide system seelned to be the best choice from the

overall point of view. Secondly, the loss of adhesion problem could be

controlled through proper processing. Thirdly, the cracking problem was

definitely due to stresses in the oxide at the oxide-aluminum interface.

The clear choice at this point was to find a way to reduce the stresses

in the oxide.

The available literature gave some help in this area. Stress

measurements on phosphorus doped oxide indicated that the formation of a

phosphosilicate glass (PSG) significantly reduced stress problems and

improved yields associated with such things as integrated circuits.

Thus it was decided to add a phosphorus doping capability to our

pyrolytic oxide reactor.

Because of the quantity of phosphorus required in the oxide,

extreme care had to be taken in the installation of the system to insuret
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'	 the safety of personnel. Phosphine was used as the phosphorus source

and it is extremely toxic. The entire system, including the tank of

phosphine gas mixture, was kept entirely within the confines of the fume

hood in which the reactor was installed.

The concentration of P205 in the oxide was predicted analytically

from the gas flow information. It was measured using infrared spectro-

scopy. The agreement between the predicted value and the measured value

was excellent. Shown in Figure 12 is an IR transmission curve showing

the absorption dip due to the phosphorus-oxygen bond. Shown in Figure

13 is a plot of the measured and calculated values of PSG composition as

functions of the flow rate of the phosphine mixture.

Some shorting of capacitor layers almost always occurred when the

number of layers wassufficiently large such that the surface

irregularities created cracks in the PSG.	 Although most such shorts

could be blown out by a discharge pulse from a large capacitor, it was

nevertheless desirable to minimize the occurrence of such shorts. To

that end we studied the problem of delineating small micro-cracks in

order to determine which process parameters to vary in order to reduce

crack formation.

Normally for PSG layers over aluminum all that is required is to

place the samples in an etch that will easily attack the underlying

aluminum. Such things as hot HCl are commonly used. It is not as easy

however to show up the cracks over silicon. This is of some importance

in this work since we are currently using a silicon substrate on which

the alternating layers of aluminum and PSG are deposited. To this end
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I.R.Absorption spectrum of 1'SC using plain Si wafer as a reference
on Perkin Elmer ?lodel 180
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' we	 developed	 a	 new	 etch	 which	 seems	 to	 work	 quite	 well	 for	 the

delineation	 of cracks	 and	 pin	 holes	 in	 PSG deposited	 on	 silicon.	 The

etch is fast acting and easy to use.

In order to test the etch, a 1 Um layer of PSG was deposited from a

SiH4,	 02	 and	 PH3 mixture	 at	 a	 temperature	 of	 400'0C	 onto	 2"	 polished

silicon wafers.	 The coated wafers were then removed from the reactor

and cooled rather rapidly so as to induce cracks in the PSG.

The wafers were then put into the etch solution which consisted of

a mixture of H2O;	 HF and H3PO4	 in the ratio 60:3:1. 	 The HF	 and H3PO4

were	 48% and	 85% respectively as received	 in the bottles.	 The ratios

given were not extremely critical to the success of the etch.

No	 cracks	 were	 visible	 either	 to	 the	 unaided	 eye	 or	 through	 a

microscope prior 	 to	 placing	 the wafers	 in	 the	 etch.	 When	 the	 wafers

were	 placed	 in	 the	 etch,	 the	 larger	 cracks	 almost	 immediately	 became

visible even without the use of a microscope.	 Only about	 30 s	 in the

etch is necessary to delineate most cracks. 	 The etch works well with a

} wide	 range	 of	 PSG	 concentrations	 but	 does	 not	 seem	 to	 delineate	 pin

holes in undoped Si02.

This was one of the many evaluation tools available to use for the

detection of	 process imperfections in 	 procedures.	 It was not as usefulP	 p 

when the surface became rough after the deposition of a large number of

layers. In such cases, the SEM was a better anlaysis tool.

There is some interaction between aluminum and un-doped silicon

dioxide resulting in the formation of aluminum oxide and silicon. This

is however rather slow and completely negligible at temperatures below
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approximately 450°C. With phosphosiliate glass the situation is con-

siderably different. The presence of phosphorus pentoxide leads to the

formation of phosphoric acid if any moisture is present. There is water

formation during the growth of the PSG and as a result part of this is

trapped in the oxide. The resultant phosphoric acid will readily attack

aluminum even at a few hundred degrees of temperature.

Because such an attack on the aluminum could create dissipation

factor problems, we decided to set up sane •basic experiments to

determine the degree to which such a reaction would affect our thin

aluminum layers.	 The basic approach used was to deposit thin film

resistors of aluminum over PSG and to monitor the resistance as a func-

tion of time and temperature. As the reaction between the aluminum and

PSG proceeded, it would reduce the thickness of the aluminum thereby

increasing the resistance.

Because the resistors were rather low in value, it would have been

best if a Kelvin double bridge were available with which to make the

measurements. Since one was not conveniently available the measurements

were made by a rather conventional voltmeter -ammeter method.

Two different tests were run, one at room temperature and the other

at 250°C. The results of the room temperature test showed an increase

of approximately 7% in resistance over a 100 hour period. The data were

rather scattered and the precision of the measurement was such that some

of the statisical significance of this was lost. For the 250°C test the

results were quite clear. The resistor increased an average of 24% in

115 hours.	 This translates into an estimated rate of attack of the
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aluminum of 3.9A/hr. That is not negligible since the aluminum layers

are being attacked on both sides resulting in the loss of aluminum at

the rate of 7.8A/hr.

The standard fabrication procedure for multilayer capacitors was to

keep the capacitors at an elevated temperature of 200-250 °C in between

the times that the layers were being deposited. Since that occurred

over a period of up to two or three weeks if delays were encountered,	 it

created	 an	 appreciable	 loss of aluminum.	 Thus this	 is	 a factor which

had to be considered in the processing.	 Clearly the total time span of

multiple layer deposition must be kept as short as possible or else the

capacitors must be returned to room temperature in between	 layers.	 It

was necessary to follow the latter course of action for the capacitors

which had greater than 20 layers.

1.3.3 Ten Layer Capacitors

There were two different ten layer capacitors sets constructed

using 7% PSG.	 One of them used a hot deposition technique for the

aluminum, the other used a cold deposition. Each set was tested every

four layers and shorts due to oxide pin holes were blown out. Neither

set initially showed either cracks or loss of adhesion. After ten days,

one of the capacitors in the set which had been fabricated with the hot

deposition method peeled due to loss of adhesion. This can be seen as

the small black speck on one of the capacitors in Figure 14.

Capacitance as a function of frequency is shown in Figure 15.

The 10 layer capacitors have been studied further by scanning elec-

tron microscopy to determine the relative uniformity of the layers. The

SEM pictures are shown in Fig. 16 and illustrate the appearance
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Fig. 14. Ten layer PSG capacitor by hot deposition method . 
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under increasing mangificat:ion,. Because of a calibration error on the

'	 SEM screen, the size markers, visible on the left side of each picture,

are in error. The relative magnification can be Judged easily, however,

because the oxide layers, which are the dark bands, are within 5% of lum

in thickness. This has been determined from previous measurements under

'	 the same growth conditions.

The pictures show several things of interest. In the photos it is

clear that the surface does contain an a pp r2ciable number of

irregularities. Part of these are probably due to d6^t etc. picked up

while preparing the sample for insertion into the scanning electron

microscope. Part of these irregularities are actually in the layers as

can be seen rather clearly in Figure 16c. This is due in part to very

small particulate matter being trapped in the oxide layers during

growth. The size of these particles is quite small, approximately 1 to

2 and hence quite difficult to control.

As the layers grow in number, the small perturbations which are

introduced into the first layers are magnified by each additional layer.

This will ultimately create serious difficulties in the form of shorted

t

layers. This effect is shown rather clearly in Fig. 16c.

The edges of some of the aluminum layers were studied under the

SEM. It is significant to note that there was relatively little problem

due to such edge effects. 	 The oxide layers made the transition

smoothly. Thus the particular scheme which was chosen for alternating

metal layers by shifting the metal evaporation mask seemed to be a quite

satisfactory method.
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Fig. 16. S%M photos of an early 10 layer capacitor.
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There seemed to be quite a bit of variation in processing control

as far as the uniformity of the particulate contaminant problem was

concerned. Shown in Fig. 17 is a cross section of a 10 layer capacitor

made about three months after the one shown previously. Note that it is

quite a bit more irregular. It is concluded from this that minor varia-

tions in process steps and reactor cleanliness have an appreciable

effect on the smoothness of the layers.

1.3.4 Twent y  Layer Capacitors.^	 Y	 P

In the next phase of our efforts, we constructed 20 layer capaci-

tors. In Figs. 18 and 19 are shown plots of the capacitance and dissi-

pation factors as functions of frequency. The measurements were taken

r	 on a model 250 DE impedance bridge made by Electro Scientific Indus-

tries.	 As can be seen, the capacitance is quite constant with

frequency. The increase in dissipation factor with frequency indicates

a series resistance in the capacitor, rather than a shunt leakage. This

series resistance is probably due to the rather thin metal layers which

are being used and the attack of that metal by the PSG. This can poten-

tially be corrected by using a thicker metallization.

The DC leakage current was measured for each of the three capaci-

tors at a test voltage of 10 VDC. The results are given in Table II

along with the capacitance values and dissipation factors at 1 kHz.

These values are quite small considering that the capacitors have an

area of approximately 1 cm 2 and the leakage is the sum of that due to 20

different layers.

Shown in Fig. 20 are scanning electron microscope photographs of

the cross section of one of the 5 capacitors made during the twenty
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Fig. 17. SEM photograph of a later lU layer capacitor.
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Cap. No.

1

2

3

C

IS

.082975

.079830

.083655

0.004

nA

 0.08

	

0.027	 78.0

	

0.0251	 220.0

1
1
i
I
1
I
I

F s	 ^.^

Table II.	 Capacitance, dissipation factor and leakagc currents
of the three 20 layer capacitors.
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1 layer attempts. Two of the capacitors developed shorts, the other 3

were good. These photographs show very clearly and unfortunately that

the problems associated with surface and layer irregularities can become

rather bad when a large number of layers is grown. In fact, considering

how bad the upper layers appear, it is amazing that any of the capaci-

tors worked. And ye:, 60% were not shorted. This is attributable no

doubt to the ability of the phosphosilicate glass dielectric to conform

MF
to the surface irregularities without cracking or developing pin	 holes.

These capacitors were made using a silicon dioxide doped with 7%	 P205.

A careful	 study of the SEM photographs does reveal	 an interesting

point, however. Note that the gross irregularities seem mainly to begin

at around the 6th layer and that up until that point there was much 1 es

irregularity. This suggests that perhaps that layer was accidently

contaminated or that something occurred during the processing which was

not noticed by the operator.

1.3.5 Stress Measurements

There were a number of problems present in the construction of the

20 layer capacitors. Those problems were mainly in the area of surface

roughness and oxide stresses. Because the surface lavers were quite

irregular, on the order of 3 to 4 )1 m,  it was clear that this would be a

major limitation in extending the number of layers beyond that point.

Consequently an extensive study of the stress problems was conducted.

In the multi-layer capacitor construction which had been done

previously, the phosphosilicate glass (PSG) composition was in the

t
.	 _i
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Fig. 20 SEM photos of a 20 layer capacitor.
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range of 7 to 107 P205. No attempt was made at that time to optimize

the percent of P205 with respect to the capacitor construction. In this

phase of our work, we attempted to determine some of the parameters

which were creating stresses in the oxide, such as P205 concentration,

and to design a better growth procedure so that the stresses could be

reduced without compromising the capacitor quality appreciably.

There are several factors which affect the stresses which exist in

the deposited PSG. The principal ones are growth rate and temperature,

percent of P205 in the oxide and moisture content of the oxide. We did

not perform any studies on the effect of moisture content in the oxide.

Kern et al. indicates that some moisture added to the nitrogen during

deposition reduces the stress in the deposited oxide. Our work dealt

mainly with the stress reduction by the addition of P205 and partly with

stress reduction by the control of the growth rate.

The experimental procedure which would have been ideal for stress

determination would have been to hold the wafer perfectly flat during

deposition so that the stress after deposition would cause the greatest

amount of wafer bending and hence make the stress determination easier

to observe. An attempt was made to construct a vacuum chuck to serve

this purpose. It did not turn out to be satisfactory because of slight

irregularities on the surface which caused the silicon wafers to crack

when the vacuum was applied. As a result the oxides were grown in the

normal manner with the wafers not held rigidly in place.

The oxide doping was measured by IR absorption spectra and compared

to that calculated from gas flow rates. The agreement is good as shown

t
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in Table III.	 In addition the etch rate of each composition was

measured in a buffered HF solution. That data also appears in Table

III.

Oxide doping was varied from 2% P205 up to 10% P205. For each case

the stress was determined by measuring the amount of bending of the sub-

strate before and after oxide growth. 	 The curvature was determined

through the use of an optical microscope which has the capability of

measuring vertical displacement to within 0.1 mil. 	 Thus by simply

changing the substrate position and re-focusing the microscope, it was

possible to plot a profile of the wafer curvature as shown in Fig. 21

for one particular case.

From this data, it was possible , to compute the stress through the

use of the following equation derived by Glang et al.,

Q= d E	 ti

r7 TT-1-7v tf

where	 Q = stress (dynes /cm2)

6 - deflection of the substrate (cm)

v = poisson's ratio for the substrate

E = Young's modulus of the substrate

r	 radius of the substrate (cm)

tf = oxide thickness (cm)

is = substrate thickness (cm)

The data for stress for each doping level are given in Table IV.

Shown in Fig. 22 is a plot of the tensile stress as a function of molar

percent of P205 in the oxide. This curve is close to that published by

Kern.	 The main difference is that our growth rate was much lower than

that used by Kern. In fact it was one order of magnitude lower, thus

considerable differences in stress would normally be expected.
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Table III. Percent PSG and PSG etch rate.

% P
2
0 
5
1RSpectra	 % P205 Gas mole ratio	 Etch rate A/min

0 0 3318

3.38 3.79 3984

7.0 5.32, 5072

8.78 7.53 5760

11.08 8.64 4788

11.08 11.36 5703
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Measurement of surface profile using Depth of focus method

ORIGINA!- PAO' 18
OF POOR QUALITY	 b Surface profile without pyrolytic SiU2
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Table IV.	 Stress as a function of doping level.

Growth rate % P205	% P205 Tensile stress

i	 .A/m n IR Spectra	 Gas mole ratiop dynes/cm2

r.

720 0	 0 1.56x109

850 3.38	 3.79
g

2.56x10

820 7.0	 5.32 1.04x109

720 8.78	 7.53 0.86x109
I

830 11.08	 '8.64 0.80x109

770 11.02	 11.36 0.51x109

L

1

a

1

_
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Fig. 22
'fensilu Stresses as a function of .uf molar 1 1 2U5in S'02
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One result of our measurements is to note that we must go to very

high P205 levels, perhaps as much as 15%, to reduce the stress to zero.

This is an unacceptably high level due to attack of the aluminum by the

PSG. Thus a compromise will have to be made between stress and PSG

doping level. There are other techniques for controlling stress such as

control of the growth rate and moisture level of the incoming gases.

1.3.6 Buffered Oxide Layers

As previously discussed the higher concentrations of P205 in the

oxide reduce the stress and hence the tendency toward cracking and

peeling. However the sacrifice which must be made is increased chemical

interaction with aluminum. In an attempt to deal with these conflicting 0
requirements, several attempts were made in the construction of a

variable doping oxide layer such as shown in Fig. 23. For this

structure the oxide layer which is in immediate contact with the

aluminum has a reduced concentration of P205 in order to reduce the

attack of the aluminum while most of the oxide layer has a higher

concentration of P205 to reduce the siresses in the main thickness of

the oxide.

Three such capacitors were constructed. In each case the oxide

growth rate was 1000A/min, the thickness of the main oxide region was

0.9 Um and the two buffer regions of lower doping were each 0.05 m

thick. The first attempt was only a 15 layer capacitor in which the

main oxide region was doped with an 8% PSG while the buffer regions were

completely undoped. A photograph of this ccYacitor set is shown in Fig.

24. Although it is somewhat difficult to see in the photograph, there

I
^t
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Cross section view of a variable doping oxide

capacitor
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are quite a number of oxide cracks which can be seen as the dark lines

on each of the 5 capacitors.

A second attempt was made by reducing the main oxide layers to 6%

and increasing the buffer regions to 4% PSG. 	 There were still an

appreciable number of cracks in the oxide on the capacitors. This set

was a 20 layer capacitor set. A third set of 20 layer capacitors was

made in which the main oxide doping was 8% and the buffer regions were

6%. This still resulted in oxide -racks which are visible in Fig. 25.

However, there were fewer and less severe cracks in this case. It thus

appeared that it was necessary to go to a rather highly doped buffer

layer in order to avoid stress induced oxide cracks.

The capacitance and dissipation factor were measured for the 20

layer capacitors at a frequency of 1 kHz. The data for those capacitors

are given in Table V. Although the dissipation factor is rather high,

it should be pointed out that this is measured at 200°C. It would cer-

tainly be lower at room temperature. Measurements of capacitance and

dissipation factor were not made at lower temperatures because both

capacitors cracked when they were cooled down. Although we cannot be

perfectly certain, it is likely that the dissipation factor at room tem-

perature will be an improvement over the values obtained with the

previous 20 layer capacitors.

Our previous 20 layer capacitor suffered from appreciable surface

irregularities as was noted in the scanning electron micrographs. 	 To

overcome these problems, several processing changes were made. One of

the processing changes made was the increase of substrate temperature

c
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Fig. 24. Photograph of the 8%/0% 15 layer capacitor set.
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Fig. 25. Photograph of the 80/6% 20 layer capacitor set.
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Table V. Capacitance and dissipation factor for 20 layer capacitors.

Oxide doping C D

Main/Buffer microfarad ;at 1 KHz, 200 C

6%/4% 0.0911 0.05

8%/6% 0.0870 0.05
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during deposition of the aluminum electrode.	 The new temperature of

about 200°C seemed to help avoid stresses in the aluminum. 	 Other

changes such as cleaner and more carefully controlled processing were

also implemented. The real proof of the success of these changes lies

in the SEM micrographs. Shown in Figure 26 is a micrograph of a cross

section of the 20 layer capacitor which was fabricated using the older

methods along with a similiar picture for the 20 layer capacitors which

we made using the improved methods. The improvement is obviously sub-

stantial.	 There are no longer any extreme spikes and irregularities

which were previously experienced, and the general smoothness of the

Upper layers is not substantially different from that of the lower

layers.

The basic construction used was an improved version of the variable

oxide doping technique which was mentioned in the previous report. The

main idea in this method as illustrated in Fig. 23 was to create a buffer

zone which has a reduced concentration of P205 in order to minimize the

chemical interaction between the phosphosilicate glass (PSG) and the

aluminum. Our previous attempts at a construction method of this nature

resulted in excessive cracking because the buffer layer was too lightly

doped. In the more recently used method, the main layer was an 8% PSG

(i.e. 8% P205 in Si02) and the buffer layers were 6% PSG. The thickness

of the buffer layer was not extremely critical and varied from about

500A to about 1000 A in thickness. The main layer was about 1µm thick.

Because much of the past research had indicated that the surface

structure and irregularities were of prime importance, later research

I
I
t

t,
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Fig. 26 (a) SEM micrograph of previous 20 layer capacitor cross section.

(b) SEM micrograph of the most recent 20 layer capacitor cross section.
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concentrated on making improvements in that problem. The origin of the

problem was two fold.	 First the quality of the PSG determined the

roughness of the oxide surface.	 This was affected by the growth

conditions of the PSG particularly the growth rate. To address that

problem, we substantially lowered the growth rate in an attempt to

reduce the surface roughness. Where we previously used growth rates in

excess 1000 A/min, we lowered the growth rates on the first layer to

750-800 A/min and to 550-600 A/min after 5 layers. The reason for the

drop in growth rate was due to the fact that the reactor was cleaned

only after every 5 layers and as the reactor gets contaminated with

oxide, the growth conditions are affected. The cleaning procedure is

not simple and thus we settled on a procedure of cleaning after the

reactor had been used 5 tip +,es.

The second major problem related to surface roughness was the

aluminum electrode and the stresses which were created by the interface

between the electrode and the oxide. We greatly refined the evaporation

process with an improved substrate heating arrangement. The temperature

at which the substrate was maintained during evaporation was increased

to the range of 200-245 °C. The capacitors were stored at this same

temperature whenever there was a break in the fabrication sequence. The

aluminum was carefully evaporated from a fixed charge of aluminum placed

on the evaporation ! :eater coil. The rate of evaporation was rather

high-about 4500 to FnnO A/min giving a thickness of 3500-4000 A of

deposited electr.- . -

I
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As a result of the improvements made in the fabrication processing

there was a reduction in the surface roughness such that the number of

layers was extended to 30 and the dissipation factor was improved

generally over that which was previously experienced for the 20 layer

devices. Shown in Fig. 27a is a photomicrograph of the surface of a 32um

PSG film made by the improved methods. Notice that the grain size is in

the range of 2-4 um which is fairly small and seems to be acceptable for

30 layer capacitors. In Fig. 27b the surface of .an aluminum film 12-15um

thick is shown. This represents about 30 successive evaporation cycles

of 3500-4000 A thick aluminum layers. The surface is very smooth with

the average grain size being only about 2 um or less.

1.3.7 30 Layer Capacitors

Using the above-mentioned processing sequence, successful 30 layer

capacitors were contructed. As in previous multi-layer capacitors the

substrate was a polished 2" silicon wafer upon which 2 um of 8% PSG was

grown as the initial layer. There was a total of 5 capacitors on the

substrate arranged in a configuration shown in the photograph of Fig.

28. The dielectric area was circular with an area of about 1 cm 2 . The

electrodes are elongated and overlap at the edges. Figure 29 shows the

masks used for the oxide on the right and the aluminum electrodes on the

left. The alignment jig insured proper alignment of the two masks. A

close up view of a good capacitor is shown in Fig. 30a. Note the smooth

unflawed surface in contrast to the defective capacitor shown in Fig.

30b in which some cracks appeared on the surface.
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Fig.28. Slightly enlarged photograph of the S capacitor set.

Fig 29. Aluminum mask on the left; PSG mask on the right.
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Fi r . 30a Close up view of one of the good capacitors.

ORIGINAL F,aG^
OF BOOR QUALITY

Fig.30b Close up view of a capacitor in which the surface cracked.
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A	 high	 magnification	 (400X)	 view	 of	 the	 surface	 of	 one	 of	 the	 30

' layer	 capacitors	 is	 shown	 in	 the	 photograph	 of	 Fig.	 31a.	 Note	 that	 the

grain	 size	 is	 slighi.ly	 larger	 than	 that	 of	 a	 25	 layer	 capacitor	 shown	 in

Fig.	 31b.	 For	 comparison	 the	 surface	 of	 a	 5	 layer	 capacitor	 using	 Si02

rather	 than	 PSG	 is	 shown	 in	 Fig.	 31c.	 Because of	 this	 increase	 in	 sur-

face	 roughness,	 it	 appears	 that	 additional	 processing	 steps	 and	 improve-

ments	 will	 have	 to	 be	 made	 in	 order	 to	 extend	 the	 number	 of	 layers

1 beyond	 the	 30 which	 have	 been made	 to	 date.	 Occ	 Tonally	 there	 will	 be

small	 defects	 even	 on	 capacitors	 which	 are	 good	 units.	 To	 the	 unaided

eye	 they	 appear	 as	 small	 black	 specks.	 Under	 the	 microscope	 they	 have

jthe appearance	 as	 shown	 in	 Fig.	 32.

In	 general,	 the	 8%	 PSG	 showed	 very	 little	 evidence	 of	 crack	 forma-

tion.	 There	 were,	 however,	 a	 few	 places	 where	 such	 cracks	 did	 occur.

T The photographs	 it	 Fig.	 33	 show cracks	 at	 the edge of a 30 layer capaci-

tor.	 The cracks	 started	 forming	 in	 the	 32 U m	 thick	 PSG	 and	 extend	 only

to	 the edge	 of	 the	 capaci^;,r.	 Figure	 33b	 is	 simply a high magnification

view	 of	 one	 of	 those	 cracks.	 It	 isn't	 clear	 exactly	 why	 such	 cracks

form	 occasionally,	 but	 it	 is	 possibly	 due	 to	 minor	 defects	 which	 occur

in	 those regions	 and which create	 additional	 stresses.

After	 every	 layer	 the	 capacitors	 were	 checked	 to	 see	 if	 any shorts

1

•

had	 formed.	 If	 any were	 found	 they were	 blown	 out	 by di-.charging	 a	 40PF

capacitor	 which	 had	 been	 charged	 to	 about	 70	 volts	 through	 the	 shorted

capacitor.	 Occasionall y	it	 is	 was	 necessary	 to	 charge	 the	 capacitor ,	to

120	 V	 in	 order	 to	 have	 sufficient	 energy	 to	 completely	 blow	 out	 the

i shert.	 Whenever	 a	 short	 is	 blown	 out	 it	 was	 necessary	 to	 contact	 the

1 electrodes	 with	 point	 tip	 probes.	 This	 resulted	 in	 appreciable	 elec-

trode damage as	 shown	 in Fig.	 34.
1
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Fi r,. 31G Magnified view of the surface of a 25 layer capacitor.
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Fig. 31c Magnified view of the surface of a S layer capacitor.
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Fig. 32	 Surface do-iect on a 10 layer capacitor.
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Fig. 34. Electrode damage at the contact area when shorts arc
blown out.
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Sometimes cracks are created in the PSG by the act of blowing out

the shorts.	 Figure 35a is a photograph of such an induced set of

cracks. A higher magnification view of that is shown in Fig. 35b. In

all cases when a short was blown out a pit was formed. Figure 36 shows

a view of such a pit with the microscope focused on the top surface and

the bottom of the pit. The measured depth of the pit was about 35-40 um

thus extending through the entire 30 layer capacitor. Such a pit would

only ccur when shorts in the higher numbered layers occurred.Y	 9	 Y

Of the 5 capacitors which were fabricated, 3 of them had no shorts

whatever and did not require any blowouts. 	 The 4th capacitor was

shorted only once, that occurring on the 28th layer. The 5th capacitor

was very bad, giving rise to shorts on 10 different layers. 	 Thus

overall the process sequence was really quite good. There were, unfor-

tunately, shorts which formed even in the good capacitors after they had

been stored for about 3 weeks. This long term failure problem was not

understood.	 However it is possible that moisture absorption into the

PSG could have been the cause of this.	 It was possible to blow the

shorts out but this resulted in a substantial increase in the dissipa-

tion factor.

The capacitance of the good capacitors was exactly what was

expected from the theoretical value, namely about 0.18 VF. 	 Shown in

Fig. 37 is a plot of the capacitance as a function of frequency for one

of the good capacitors. The data beyond 20 kHz is probably inaccurate

due to the limitation of the impedance bridge.	 It is not likely that

the true capacitance shows such a radical increase.	 The impedance

t

0

i
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Fig. 3ba Cracks induced by blowing shorts.
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Fig. 36b Close up view of induced cracks.
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Fig. 36a Pit created by blowing a short. (Focussed on the top).

Fig. 36b Pit created by blowing a short. (Focussed on the bottom).
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'	 bridge accuracy is only guaranteed up to 20 kHz. The dissipation factor

of this same capacitor is plotted in Fig. 38.	 At low frequencies the

dissipation factor is reasonable but it rises to rather high values at

'	 100 kHz.	 The scatter in the data is due mainly to the fact that the

impedance bridge is not very sensitive to dissipation factor changes and

hence the accuracy is not very good.

1	
The effect of temperature variations upon capacitance and dissipa-

tion factor were also studied. Shown in Fig. 39 is a curve of the capa-

citance as a function of temperature for one of the capacitors. 	 In

general although the capacitance did not vary linearly with temperature

it could be assigned a temperature coefficient of about +100pmm/C which

is quite small.

The dissipation factor for one of the capacitors is plotted in Fig.

I
40. The increase at higher temperatures is due to the increased leakage

through the dielectric.

There was quite a bit of change in the surface of a multi-laye ►

capacitor as the number of layers was increased. 	 In general the rough-

ness increased which led to increased shorting probability. 	 Another

effect was observed, namely that of the upper oxide layers becoming

thinner.	 The reason for that wasnot well understood although we made a

guess that the surface temperature was lower as each layer was added,

resulting in a reduced growth rate.	 This effect was first observed as

an increase in the capacitance per layer for the higher numbered layers.

Shown in Fig. 41 is a plot of the capacitance per layer as a function ,f

the number of layers.	 These data were calculated from changes in the

1

1
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' capacitance	 after	 several	 layers	 had	 been	 deposited.	 The	 amount	 of

1
increasc	 is	 not	 negligible	 as	 can	 be	 clearly	 seen.	 Essentially	 the

thickness had been cut	 in half	 for the upper	 layers.

A	 detailed	 examination	 of	 the	 thickness	 of	 each	 layer	 was	 made

using	 an	 SEM photograph of	 the	 cross	 section	 of one	 such capacitor.	 The

I results of	 those	 measurements	 are	 shown	 in	 the	 plot	 of	 Fig.	 42.	 The

1
trend	 is	 a	 steady	 decrease	 in	 layer	 thickness	 although	 there	 are	 some

regicns	 of	 temporary	 increase.	 These	 are	 probably	 due	 to	 the	 points	 in

1

J

time	 where	 a	 new	 gro..p	 of	 layers	 were	 added.	 Usually only	 about 4 to	 6

layers were deposited during	 any one work	 session.	 After	 that	 it was	 at

1 least	 one	 day	 and	 perhaps	 several	 days	 before	 the	 next	 group	 of	 layers

was	 deposited.

Some experiments were run to	 try to measure the surface	 temperature

and	 to	 increase	 the	 temperature	 as	 the	 number	 of	 layers	 was	 increased.

That	 did	 seem	 to	 indicate	 that	 the	 problem was	 related	 to	 surface	 tem-

at	 least	 somewhat.	 However	 the	 results	 difficult	 toperature	 were

interpret	 and	 hence	 the	 conclusions	 are	 not	 assured.	 In	 order	 to main-

• tain	 a	 reasonable	 thickness	 at	 the	 upper	 layr, s,	 the	 growth	 time	 was

1
extended to compensate for the reduced growth rate.

The	 fact	 that	 thinner	 layers	 ware	 experienced	 is	 even more crucial

as	 the	 roughness	 increases.	 Figure	 43	 shows	 surface	 and	 cross	 section

j SEMI	 views	 of	 a	 32	 layer	 capacitor	 structure.	 The	 formation	 of	 these

nodules	 from	 which	 the	 growth	 propagates	 makes	 it	 very	 difficult	 to

maintain	 high	 integrity	 in	 the	 insulating	 layer.	 Thus	 it	 became	 of	 even

greater	 importance	 that	 the	 thickness	 of	 the	 upper	 la yers	 be	 at	 least	 as

i great as	 those of the	 lower	 layers.

iI

in
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b

Fig. 43. (a) SEM photo showing the surface view of a 32 layer capacitor structure in

which the nodules are clearly evident.
(b) SEM cross section of th.: same capacitor. Note how the nodules propagate

upward & increase in size as layers are added.
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1	 1.4 SPIN-ON PHOSPHOSILICATE GLASS
A spin-on source PSG is an alcohol solution of a phosphosilicate

glass such that the source is applied by spinning, dipping or spraying

1	
the solution.	 Upon drying in order to drive off the volatiles, the

result is a glass film with character isticcs quite similar to that of

deposited PSG.	 The manufacturer, Emulsitone Company, did not give an

indication of the amount of phosphorus pentoxide in the film but it was

suspected that it was less than the 6-8% which we used in the pyroly-

1	 tirally deposited "SG, 	 ^:2 did not run infrared absorption curves to

determine the concentration.

In order to begin the process of evaluation of this new type of

source, three experiments were done in order to get an idea of the

characteristics.	 The first of the tests was an attempt to determine

whether or not the surface roughness problem could be improved by the

use of such a spin-on source. The procedure used was to spin on either

one, two or three coats of the PSG following each coating with an anneal

step which was a 15-20 minute bake at 400°C. 	 Then a layer of aluminum

was evaporated on top to aid in viewing with an SEM. The results were

examined using an SEM.	 It seemed quite clear from the SEM pictures that

the spin-on source was in fact helping to accomplish its primary objec-

tive, which was to reduce the surface roughness. 	 Unlike the gas phase

pyrolytically deposited PSG, the liquid spin-un source tended to fill in

the valleys and as a result the surface was smoother after s:1ch a

deposition. This was very encoura g ing since it offered some hope for a

procedure to sol y : the long standing difficulty associated with the sur-

K
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face conditions.	 Naturally there was still the question of possible

cracks forming in such a spin-on layer. 	 In addition there was the

problem of masking the electrodes during the spin-on operation. 	 We

could not use a convenient mechanical mask as we employed for the gas

phase operations because of the problem of shadowing of regions beyond

the electrodes. Thus the spin-on approach did present some new probleifls

even if it did help solve other problems.

The second experiment performed was to make a several layer capaci-

tor using only spin-on PSG, without any pyrolytic PSG. 	 In order to

simplify the construction, no masking was done and it was thus not

possible to measure capacitance since the proper electrodes could not be

accessed.	 What it did tell us,, however, was the nature of a multi-

layer spin-on structure when a cross section view is taken of it using

an SEM. In Fig. 44 are shown cross sections of a seven layer structure

made with spin-on PSG.	 Several features are significant to note. 	 The

uniformity of thickness is reasonably good from one layer to the next.

Especially important is the fact that where surface particles or defects

nave appeared such as in Fig. 44a, the successive layers have actually

reduced the resulting surface irregularity rather than magnified it as

would be the case with the gas phase chemical vapor deposition of PSG.

This again was an encouraging sign and pointed toward some possible

improvements through the use of the spin-on sour;:e.

	

However, the photographs also point out a problem or two. 	 The

large defect which appears at the left side of Fig. 44a is something

that is peculiar to the spin-on source. 	 Defects of that r)ize were not

i
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Fig. 44 a,b SEM photos of the cross section of a 7 layer capacitor
using only spin-on PSG as the dielectric.
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previously noted with CVD PSG.	 In order to take a better look at such

defects, a surface view under low magnification was made of the multi-

layer spin-on structure.	 This is shown in Fig. 45. The crystallites on

the surface are apparently a result of the processing used for spin-on

deposition and drying.	 We ran some experiments on variations in the

drying procedure and were able to produce scme improvement in this

situation.

The third experiment which was performed using the spin-on source

was the construction of a standard pyrol ytically deposited multi-layer

structure ut with the addition of a spin-on layer once every six or

seven layers. The idea of this approach is to dl-termine whether or not

such a layer could help reduce the surface irreg ..ilarity problem. Thus a

25 layer capacitor was made in which the 6th, 13th and 22nd dielectric

layers were augmented with a spin-on PSG layer. 	 On those layers the

normal pyrolytic oxide was first deposited followed by a thin, approxi-

mately 2000A, layer of spin-on oxide. 	 Thus it would not be expected

that the spin-on layer would be enough to completely fill in the valleys

but some improvement should be noted.	 Figure 46 is an SEM picture of

the cross-section of that capacitor with the layers which have the spin-

on oxide added marked with arrows. 	 Although careful inspection is

required for discerning the results, it is clear that the layers which

have spin-on oxide added are smoother than the immediately preceding

layer.

The capacitance and dissipation factor were measured as a function

of frequency for this hybrid capacitor which used the three spin-on
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Fig. 45. Surface view of the spin-on PSG multilayer capacitor illustrating

the formation of crystallites due to an imperfect drying procedure.
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F ig. 46. SEM photo of the cross section view of a 25 iayer capacitor
in which the 6th, 13th and 22nd layers (marked with arrows)

have a spin-on PSG layer added to help reduce the surface roughness.
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i	 layers.	 The dissipation factor was somewhat higher than we would have
liked but it is not too bad at low frequencies. 	 As with the other

capacitors, the	 dissipation factor increased with increasing frequency

indicating that the series resistance of the aluminum electrodes was

limiting the dissipation and not the shunt leakage through the oxide.
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2.	 POLYMERS AS DIELECTRIC MATERIALS

' 2.1	 POLYIMIDE

Although	 silicon	 dioxide	 has	 a	 number	 of	 advantages	 as	 a

dielectric,	 it	 also	 !gas	 a	 number	 of	 problems	 as	 we	 have	 noted.	 It	 was

with	 these	 limitations	 in	 mind	 that	 we	 decided	 to	 direct	 our	 research

efforts	 to	 a	 slightly	 new	 direction	 in	 an	 attempt	 to	 look	 at	 different

1 materials for	 use as the capacitor dielectric.

Polyimide	 seemed	 to	 be	 an	 ideal	 choice	 for	 this	 role.	 It	 has

1 recently	 become	 available	 in	 electronic	 grade	 material	 and	 seems	 to

possess	 some	 excellent	 characteristics	 relative	 to	 the	 needs	 in	 this

work.	 It	 has	 a	 very	 high	 tensile	 strength	 and	 elongation	 and	 yet	 is

T flexible	 enough	 for	 a thin	 film	 to	 be	 bent	 180	 without	 breaking.	 It's

electrical	 characteristics	 were	 good	 insofar	 as	 breakdown	 voltage	 and

Idissipation factor were concerned. 	 The	 volume	 and	 surface	 resistivities

are	 quite	 high.	 The	 only	 disadvantage	 is	 a	 relatively	 low	 dielectric

constant,	 about	 3.5.	 This	 however	 is	 not	 that	 much	 lower	 than	 the

dielectric constant of	 silicon	 dioxide which	 is	 about	 3.9.

It can	 be	 applied	 by spinning which means	 that	 layer	 thicknesses	 of

1 pm or	 less	 can	 be	 achieved.	 We made	 a	 num5er of measurements on the

thickness	 as	 a	 function	 of	 spin	 speed	 and	 number	 of	 applications,	 the

results	 of	 which	 are	 shown	 in	 Fig.	 47.	 Tr.2se	 results	 alrea^y show	 that

r the	 polyimide	 thickness	 can	 be	 controlled	 in	 the	 ranges	 which	 are	 of

3a interest	 in	 this work.

Curing	 time	 and	 temperature	 w.-re	 found	 to	 be	 important	 in	 the

determination	 of	 the	 film	 thirLnacr	 aS	wcll	 as	 other	 important
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'	 characteristics.	 A final cure cycle of 350°C for 30 min. was selected

1	 for most. of this work.	 We found it to be of extreme importance to
filter the polymer immediately prior to dispensing to reduce particulate

'	 matter problems which is one of the causes of pin holes in the film.

Filter sizes down to .5 um were used.

The multilayer capacitors were fabricated by alternating layers of

polyimide and evaporated aluminum on a photographic glass plate

substrate, the High Resolution Plate (HRP) manufactured by Kodak, Inc.

The HRP plates were selected because of the flatness of the surface on

the emulsion side and their ability to withstand the temperature

cycling.	 To prepare the HRP plates for use as substrates several

cleaning steps were necessary. 	 The emulsion was stripped off by

immersing the plate in a 5% solution of hydrofluoric acrid (H.F.) and

dionized water (D.I.) for 15 seconds. Care was taken not to exceed this

time because the hydrofluoric acid attacked the glass and ruined the

Tsmoothness.	 The plate was then F aced in a running D.I. bath followed

by a hydrophobic and a hydrophilic cleaning, a separate three minute

immersion in boiling trichloroethylene (TCE) and boiling acetone being

suited for this purpose. The plate was then rinsed in running D.I. for

three minutes, placed in a 2-propanol (isopro^,yl alchohol) bath for

thirty second, and blown dry with filtered nitrogen.

Once the date was cleaned, a layer of polyimide was spun on

because the aluminum adheres better to the polyimide than tF^ gldss. 	 In

order to apply the polyim i de to the glass plate is was necessary to use

the adhension promoter VM 651, as manufactured by nijPnnt and reduced to

W"

1
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a .1-.01% concentration with methanol for application. 	 The coupler was

'	 filtered using the same technique as with the polyimide, and once

reduced was discarded after five days. 	 With the initial coat of

l
polyimide applied, the HRP was placed on a hot plate which was set at

350 °C for 30 minutes and which was kept on a laminar flow clean bench.

The plate must be kept enclosed at all times when not on a clean bench

'	 as the uncured polyimide has a strong affinity for particulate

contamination.

Using the initial layer of polyimide as a base, the plate was ready

for the first metalization.	 This is when the capacitor pattern is

1	 delineated by using a metal shadow mask in the aluminum evaporator. The

capacitor pattern and a cross- sectional view are illustrated in Fig. 48.

The evaporation was dcne in a minimum vacuum of 5x10- 6 Torr using 99.960

1	 pure aluminum wire on a tungsten spiral wound wire filament. Discretion

was exercised in monitoring the deposition rate. 	 High deposition rates

at good vacuums result in the purest film.	 However high deposition

rates also result in a phenomenon called microsplatters which is caused

by the molten aluminum outgass;,q during the vaporization stage. 	 This

causes small masses of molten aluminum to shoot off of the filament

before it is vaporized and is characterized by small projections off the

evaporated aluminum surface.	 This can be remedied by using specially

prepared gas-free aluminum or by moderating the deposition rate to an.

experimentally determined acceptable level. The aluminum film thickness

i
must be at least 4000A thick in order to maintain the bulk resistivity

value.
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'	 The dielectric layers were placed between the alternating layers of

i

electrodes.	 Each layer was comprised of two spun-on layers, spun

directly on top of each oth:!r without a curing cycle in between. 	 The

rpolyamic solution used was reduced 500 ::th the appropriate thinner T-

8035 as manufactured oy DuPont, 	 therefore the resultant double

application layer was approximatel y 4000A	 thick as shown in Fig. 47.

The reason for the double application per layer technique was to

minimize pinholes.	 The only quantitative method available to discern

the density of pinholes was simply to process several batches of one

application,	 two	 applications,	 and	 three	 application	 per	 layer

capacitors.	 There was a significant di f ference in pinhole density

between	 the	 single	 and	 double	 applications	 but	 no	 significant:

improvement in the triple application per layer capacitors. 	 therefore

the double application method was selected because of its thinness.

Several authors have reported on a reverse carbon decoration process fcr

the delineation of pinholes and have noted densities of 5 cm- 2 and .1cm-

2 with 1 and 3 um thick films respectively. One problem with dispensing

the polyamic acid tha, was noted was the presence of air bubbles that

result from forcing the solution through the freers. 	 This was

especially t r ;. ,Ablesome when using the polyamic acid undiluted because

the high viscosi t y of the solution reta r ded the rise of the bubbles to

the surface where they were spun off.	 To rectify this, an infrared

light source was used to heat the polyam i c acid for ateut thirty seconds

after it was pt.oled on the substrate. 	 this wa-I rr. oa of the liquid

temporarily decreased the viscosity and allowed the bubbles to rise to

i

t;
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the surface. When using reduced polyamic acid, a brief ten second wait

allowed the bubbles to rise on their own accord.

The most successful capacitor made using the aforementioned

processing techniques and materials was a ten layer capacitor. 	 The

limiting factor was a bubbling phenomena that affected the composite

structure, and manifested itself anytime from the fourth layer on, as

shown in Fig. 49. This blistering occurred only during the cure cycles

and was caused by the mismatcch in the thermal coefficients of expansion

between the glass substrate and the aluminum electrodes. Although the

coefficient of expansion of the polyimide is comparable to that of

aluminum, very little stress occurs in the polymer due to the

considerably lower modulus of elasticity in the polyimide. 	 This has

been verified by tests which include making a thirteen layer structure

on a substrate of aluminum at a curing temperature of 400°C to further

strain the device.	 The capacitor showed no signs of the slightest

bubbling.	 The bubbling had also occurred at earlier stages in this

research, at the first and second applied layers, but this was due to a

surface skin effect caused by curing in an oven. The surface of the

polyimide would form a surface s' 4 n first due to the ambient

temperature, and when the bulk of the film cured, the water vapor given

off was trapped by the surface skin creating bubbles. These are the

reasons that the heat curing was done on a hot plate at 350°C. 	 The

minimum cure temperature needed to insure a fully cured film, which

means the completion of the im •ids carbonyl bond, is 250°C as determined

by infrared absorption analysis. The maximum cure temperature in air is

approximately 480°C while in a nitrogen ambient it is 525°C.

C ` -^,
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Since the bubbling problem was a direct result cf the mismatch in

the thermal expansion coefficients, several other substrates were

investigated. The specifications for a substrate are that it be an

insulator, have a thermal coefficient of expansion approximating that of

aluminum, and have the ability to withstand the curing temperature. The

requirement that it be a solid insulator is a result of the method of

connecting the electrodes, that of cleaving the ends and using silver

epoxy, as shown in Fig. 48. One suitable material is a silicone and

glass fiber laminate sheet which is manufactured by Dow Corning, has a

thermal coefficient of expansion of 20-4Ox10- 6/C and a distortion

temperature of over 480°C. This material was used to make a twelve

layer capacitor which was cured at 400 0C without developing bubbles.

However the slight surface roughness of the laminate sheet caused the

capacitors to be shorted. If a method could be developed for smoothing

the surface this material would be suitable for use as a substrate.

The most successful capacitor fabricated was a nine layer device

with a capacitance of 140,000pF and a dissipation factor of .0063.

Several one layer capacitors were fabricated with dissipation factors as

low as .004, which should be obtainable on multilayer capacitors once

the substrate problem is rectified.

Experiments were conducted to elucidate the frequency and

temperature dependence of the capacitance and dissipation factor, and

the results are depicted in Fig. 50 and 51. In Fig. 50, the capacitance

decreases with both increasing temperature and frequency. The decrease

in capacitance with the increase in temperature is attributable to a

t
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slight	 expansion	 of	 the	 dielectric material	 which	 overwhelms any

cont r ibution	 due	 to	 an	 increase	 in the	 dielectric	 constant. The

decrease	 in capacitance with increasing frequency is attributable to a

decrease in the A ielectric constant, as is typical of nonpolar polymers.

The	 increase	 in the	 dissipation	 factor with	 increasing frequency is	 a

result	 of	 the	 increased	 contribution	 of the	 series	 resistance	 of the

electrodes. The increase in the dissipation factor as a function of

increased temperature is result of the resistivity of the dielectric

decreasing as a function of temperature.

2.2 KODAK METAL ETCH RESIST

Kodak Metal Etch Resist (KMER) is a negative photoresist. The

typical processing procedure For KMER was to spin for 30 seconds at the

desired speed. The resist was baked for 30 minutes at 85°C. Exposure

time was 30 seconds, followed by 30 seconds in KMER developer. The

resist was rinsed for 30 seconds in Kodak microresist rinse and then

hard baked at 185°C for 30 minutes.

Capacitance verses spin speed for undiluted KMER is shown in Fig.

52. Pure KMER tended to form cobweb like strands during the spin-on

step, which frequently fell on top of the substrate. For this reason a

dilution of two parts KMER to 1 part KMER thinner is now used. No

changes were made in the process parameters, however the film thickness

has decreased.

Capacitance and dissipation factor as a function of frequency and

temperature are plotted in Figs. 53, 54 and 55. The results are typical

for a single layer device on a glass substrate using undiluted KMER.

t
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Multilayer devices have been constructed using the diluated KMER on

glass and ferrotype substrates. Before device fabrication was started

on the ferrotype substrate, it was coated with fully cured polyimide

layers. Pyralin 2566 mixed with an equal amount of T-9035 thinner was

spun on twice at 800 RPM for 30 seconds for each layer and then baked 30

minutes at 350°C. Single layers of pure KMER have also been applied to

the ferrotype substrate with good results, but no multilayer devices

have been made: using pure KMER base layers.

The only problem in using KMER was a bubbling of the top metal

layer. During the hard bake of the most recently applied KMER layer,

the top-most layer of aluminum bubbled up, but no bubbles appeared

elsewhere on the plate. This has occurred on all multilayer structures

made on both the glass (HRP) and ferrotype substrates. The probable

cause is that the hard bake is not sufficient to expel all of the

solvents in the photoresist. After a metal layer was deposited and the

device was heated up in the next hard bake cycle, the remaining solvents

were trapped under the aluminum film and could not escape, causing it to

bubble. Efforts to completely drive out solvents during the hard bake

have had modest success.

By using a two hour hard bake at 185°C a two layer device was made.

Only a one layer device could be made with the original	 30 minute hard

bake. A 30 minute, 185°C bake in a vacuum oven, followed by a 30 minute

bake at 250 0C on a hot plate produced up to three layer devices. 	 In

both cases the top metal layer always bubbled. 	 More work is needed to

find a satisfactory hard bake.
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2.3 MICRORESIST 747

Microresist 747 is a negative photoresist manufactured by Kodak.

It is filtered by the manufacturer to an absolute value of 0.5

micrometers and is applied unfiltered and undiluted, directly to the

substrate. The plate was spun for 30 seconds at 2000 RPM and soft baked

30 minuses at 85°C. Exposure time was three seconds. The photoresist

was developed one minute in Kodak microresist developer and rinsed in

Kodak microresist thinner for 30 seconds. A 30 minute, 125 00 hard bake

was the final step.

A device with a maximum of two layers could be made using the above

process. By applying two layers of photoresist, a working six layer

device was fabricated.	 A short 1Q minute soft bake was performed

between the two layers of photoresist. 	 All other processing steps

remained the same, except the exposure time was increased to five

seconds. The dual layer increased the film thickness and greatly

reduced pinholes. The dissipation factor was quite high after three or

four layers had been fabricated. This was thought to be caused by small

defects that could be removed by dischargin,l a capacitor through the

device. This was done on the six layer device after each new metal

layer was deposited on half of the devices. The dissipation factor was

noted to be about an order of magnitude lower and the yield increased

for devices subjected to the electrical discharge.

Metal was removed from the localized defects during the discharge

and, if the current was large enough, several self propagating defects

resulted. Also, the edges of the metal at these sites may be several

micrometers thick, leading to even more local defects in the next layer.
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Capacitance as a function of spinner speed is shown in Fig. 56.

' Capacitance and dissipation factor as a function of frequency and

temperature are given in Figs. 57, 58, and 59. All data is for a single

layer capacitance using 747 with a viscosity of 110 centistokes and an

area of 0.225 cm2.

2.4 AZ-1350)

AZ-1350) is a positive type photoresist manufactured by The Shipley

Company. All capacitor structures were made on , PFO glass plates from

Kodak with the emulsion removed. The photoresist was soft baked for 30

minutes at .7;5 0C after a 30 second spin-on application. Exposure and

developing time were both 30 seconds. AZ-351 developer was used as the

developer and the five minute rinse was done using deionized water. The

hard bake was for 30 minutes at 125°C.

The best capacitor made was a three layer device with an average

capacitance of 5400pF, indicating an individual layer thickness of about

0.4 micrometers. The spin speed was 3000 RPM. The first layer was very

smc;oth but additional layers showed a build-up of photoresist near the

edges of the metal stripes. This build-up eventually caused shorts

between the two pairs of electrodes and step coverage problems for the

aluminum evaporation leading to opens or breaks in the metal stripes.

Another problem, common to all positive photoresist, was that they

unpolymerized when exposed to light, even after the hard bake. For this

reason, all processing stepb must be performed in areas equipped with

red or yellow lamps. Single layers of AZ-1350J, which had undergone

full hard bakes, would completely decompose when left in ordinary room
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light for a few days. Yellow lamps were installed in the evaporation

'

	

	 room and rubylith, a red mylar film, was placed over the lamps and glass

front of the fumehood to provide a safe area for testing.

Capacitance as a function of spin speed is shown Fig. 60.

Capacitance and dissipation factor as a function of frequency and

temperature is given in Figs. 61 and 62 for single layer devices with an

area of 0.225 cm 2 and a spinner speed of 3000 RPM.

2.5 Defect Studies of Polymers

2.5.1	 Pinhole Decoration

To help visualize cracks, pinholes and other defects in thin,

insulating films a reverse carbon decoration procedure was implemented.

The desired dielectric material was processed normally on a conducting

substrate. If the substrate was not conductive, a thin aluminum

evaporation on the substrate surface with a wire attached using silver

epoxy was sufficient for making contact to the ground plane. The sample

was placed on a ground plane with a wire grid two centimeters above.

The entire setup was in an enclosed box with dry air flowing to keep the

relative humidity as low as possible. A 5,000 to 10,000 volt D.C. bias

was applied to the grid, for 30 sec., setting up an electric field.

Nitrogen was attracted to the surface of the dielectric and remained

there fore a short length of time after the bias field was removed. The

plate was then dipped intc a solution containing carbon black particles

for 10 seconds. Carbon was deposited where charge had accumulated on

the surface of the dielectric. Where pinholes and cracks exposed the

ground plane, no carbon was deposited. 	 The contrast between regions
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with and without carbon deposition was readily visible and features in

the range of 0.1 mil were visible under microscopic examination. Figure

63 is a graphic depiction of this setup. Figure 64 is a photomicrograph

of a polyimide layer, depiciting typical results obtainable with this

method.

The following table lists the substances and their concentrations

that are used in the carbon decoration procedure.	 The concentrated

solution was mixed ultrasonically for 1 hour before adding it to the

C2C13F3 to form the working solution.

CONCENTRATE:

Carbon Black, 2000A diameter	 17 gm

Toluene	 1	 100 ml

50gm/50ml of Lubrizol 894/toluene 	 10 ml

50gm/90ml of AC 430 copolymer/toluene	 10 ml

WORKING

SOLUTION:	 CONCENTRATE	 2-5 grams

C2C13F3(FREON 113)	 40G ml

Table VI: Solutions for carbon decoration process

As seen in Fig. 64, there are several small white areas that are

not covered with carbon. It is difficult, even under high

magnification, to see if pinholes are actually present at these sites.

This makes it very difficult to determine pinhole density with

confidence, but the method does give a good indication of overall film

quality.

2.5.2 Breakdown Voltage Studies

In some of the capacitors, we noted that possibly due to structure

defects or ionic contamination in the dielectric that the breakdown
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'	 voltages seemed to be rather low in relationship to that which was

expected from dielectric strength information supplied by the

manufacturer. To better understand the nature of these breakdowns, a

special experiment was run, the block diagram of which is shown in Fig.

65. Figure 66 shows some of the electronic circuit details of a system

that counts self healing defects. When a dielectric film is stressed

with a sufficient voltage, a large current will flow through a localized

defect and heat it. If the to electrode is made thin enough, in thep	 9^

range of 1500 angstroms or less, the metal and defect are destroyed by

the Joule heating. After the defect is removed, the current is reduced

to the normal charging current. This temporary increase in current is

detected and recorded on an event counter.

The data may be plotted as events versus applied voltage, or vs.

electric field if the film thickness is known. The effects of specific

process parameters on dielectric breakdown and, therefore, film quality,

can be determined fairly easily.	 Important factors to consider in

comparing results are final breakdown voltage, relative spread of events

over voltage and the total number of events.

Figure 67 shows a plot typical of this process for a capacitor

using KODAK microresist 747 as the dielectric material and aluminum

electrodes. No obvious grouping of the data into primary, secondary and

tertiary regions can be discerned from this data. Aluminum is known to

form hillocks readily and this was initially thought to be the cause of

the almost continuous spread of events in Fig. 67, since variation of

hillock height across the capacitor could produce this kind of result.
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Several variations on the metallization procedure were tried and

'	 analyzed, keeping processing steps for the 747 the same. 	 All the

variations produced the same results indicating that either the hillocks

'	 are not the cause of the majority of breakdown events or that the

changes made in the metallization procedure did not significantly change

the surface features of the resulting film.

When taking current readings the electrometer varied wildly in the

breakdown range. If the ramp was held constant' the current sometimes

stablized indicating that the breakdowns had quit. When this happened

one found that these currents were reproducible and ohmic. It was felt

the polyimide on minor breakdown created a carbon streak connecting the

' electrodes. These carbon streaks did not create excessively large

currents but did give an ohmic response that is seen at lower voltages

indicating that possibly the sample has some small carbon streaks in it

before a voltage was applied. This was so, since after allowing a

sample to have a large voltage across it for 30 minutes, most of the

aluminum electrodes was literally blown away and the polyimide was black

in color indicating it had experienced heavy joule heating and, yet the

sample produced an ohmic response later at lower voltages.

All of this still did not tell us why these carbon streaks were

occurring. Inadvertently it was noticed that when applying the silver

epoxy to ' fie sample after scribing that long thin strands of the epoxy

were repelled by the sample. This could be static charge picked up

E
somewhere in the processing. This has not been proven as the culprit

for early breakdowns but is one possibility.
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2.5.3 Conduction Mechanism Studies

Part of the dissipation factor in a dielectric is related to the

conduction through the material.	 Because some of the dissipation

factors measured in polyimide were somewhat higher than desired, it was

decided to explore more carefully some of the underlying reasons for

conduction in polyimide.

We concentrated mainly on films of from 4000A to 11,000A in

thickness. Studies were made with aluminum electrodes and the

conduction mechanisms were deduced from graphs of the current as a

function of voltage and temperature.

In order to aovid duringelectromagnetic interference 	 the current-

voltage measurements, the entire measurement	 setup was	 enclosed	 in	 a

shielded cage.	 The currents	 were	 measured	 using	 a	 Keithley	 610°C

electrometer	 in series with the structure and the voltage was measured

across the entire circuit with a Data Tech 350 digital multimeter. The

voltage readings were corrected for the voltage drop across the

electrometer.

The typical curve of current-voltage characteristics is shown in

Fig. 68. The almost perfect straight line fit to the In I versus V1/2

plot seems strongly to suggest either a Schottky mechanism or a Poole-

Frenkel mechanism, both of which are electronic processes as opposed to

ionic.	 There is, however, the possibility of being misled by such a

plot. There are regions of the curve of a hyperbolic sine function

which when plotted on the same graph would also show roughly a straight

line. If that were the case, then the conduction mechanism might be due
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to ions and described by the rate theory. 	 This possibility was

eliminated for the curve shown by carefully plotting several hyperbolic

sine functions in an attempt to force a fit over the range plotted.

There were no parameters which could be adjusted to cause a reasonable

fit over this range of current and voltage.

Thus it seems clear that at room temperature and low fields that

the conduction process is electronic in nature. The equations governing

the current-voltage relationships for Schottky and Poole-Frenkel effects

are:

J = ART2 exp(-Os/kT) exp(SsE l/2kT)(Schottky)	 (1)

J = ART2 exp(-OpF/kT) exp(SpFE l/2/kT)(Poole-Frenkel)	 (2)

where

SS = (q3/4eperd) 1 / 2 = SpF/2

in which ^S is the barrier height of the aluminum-polymide interface,

^PF is the depth of the trap level, AR is Richardson's constant, T is

absolute temperature, q is the electronic charge, k is Boltzmann's

constant, co the permittivity, er the dielectric constant and d is the

polymer thickness. In order to distinguish between the two mechanisms

it is only necessary to determine the slope of the In I versus V1/2

curve since the slope for the Poole-Frenkel effect is twice that of the

Schottky effect.	 When that is done, however, it turns out that the

experimental S is: SeXp = 1.36 S S which puts the results in between that

of the two effects.

It is not at all unreasonable to assume that both effects are

present, the Schottky effect being controlled by the electrode-polymerI
1
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Iinterface characteristics and the Poole-Frenkel effect being controlled

'	 by the bulk polymer characteristics. In any case, it seems clear that

the room temperature conduction is electronic in nature.

A plot of the conductivity as a function of temperature is shown in

Fig. 69. The electronic type of conduction was measured at room

temperature where the slope of the curve shows an activation energy of

0.36 eV which is typical of impurity conduction mechanisms. At about 600f.

there is a sharp increase in the conductivity activation energy to a

value of 1.04 eV. Because cured polyimide does have an affinity for

water absorption and because the samples were stored in a relatively

high humidity ( 70%) environment, it is quite probable that this

conductivity range from 60° C to about 100 ° C corresponds to the

dissociation of loosely bound water molecules.

If this does indeed correspond to ionic conduction, then the

current-voltage characteristics should change at higher temperatures for

the I a exp(V 1/ 2 ) curve to a curve in which the current-voltage

characteristic is described by the rate theory:

I = I0 sinh(gV a/2kTd)	 (3)

where is the zero voltage intercept current, a is the ionic jump

( distance with the other terms as given before. Fig. 70 shows that at 80

and 100°C the curves no longer can be described by the Schottky or

Poole-Frenkel effects. If those two are hyperbolic sine relationships,

then a plot of 1n I versus V should produce a straight line at high

voltages. The data of Fig. 70 were plotted on such a graph as shown in

Fig. 71 for the two highest temperatures. Although some scatter exists,

t
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Fig. 71. The data of Fig. 70 have been plotted on a ln(I)-V curve to
show the straight line region which indicates a rate theory
type of ionic conduction at 80°C and 100°C. The "best fit"
hyperbolic sine curve is shown as a solid line.
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the data does form a reasonably straight line at voltages above 1.5

volts.	 From the slopes of those regions, the jump distance were

determined to be 252 A at 800 C and 274 A at 100°C. Such an increase in

jump distance with increasing temperature has been observed in polymers

by other investigators.	 Using the ,jump distance data and the zero

voltage intercept currents, the hyperbolic sine relationships were

plotted in Fig. 71. The data points fit reasonably well over the entire

range.

To help make certain that the higher temperature curves were not

electronic conduction phenomena, they were treated as such and a

determination made of the dielectric constant assuming Schottky or

Poole-Frenkel mechanisms. Those data,are given in Table VII. At the

two lower temperatures, where electronic processes for conduction have

been assumed, it can be seen that the dielectric constant determined by

the Poole-Frenkel mechanism overestimates the measured value of 3.5 and

thee value determined from the Schottky calculation underestimates the

value. This is consistent with, although not independent of, the

previous conclusion that the low temperature conduction was a

combination of the two electronic processes. However, in the case of

the two higher temperatures, both calculations yield dielectric constant

values considerably below the value of 3.5. The conclusion is that the

higher temperature region must be dominated by ionic conduction

mechanisms.



Table VII. Dielectric constant estimated from the slope of the In I

versus V1/2 assuming Schottky and Poole-Frenkel mechanisms.

The measured value of dielectric constant was 3.5.
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PFS
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1
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Temp.

26 C

55 C

80 C

100 C

't

1.63

1.56

.46

.28

6.50

6.24

1.84

1.13
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